| using System; | |
| /// <summary> | |
| /// Simpson's rule with the number of integration steps determined dynamically. | |
| /// Used for integrating a smooth function over a finite interval. | |
| /// The number of integration points is doubled at each step, while avoiding redundant function evaluations, until tolerance is met. | |
| /// </summary> | |
| public class SimpsonIntegrator | |
| { | |
| /// <summary> | |
| /// Simplest interface, returning no diagnostic data | |
| /// </summary> | |
| /// <param name="f">integrand</param> | |
| /// <param name="a">left limit of integration</param> | |
| /// <param name="b">right limit of integration</param> | |
| /// <param name="desiredRelativeError">relative error tolerance</param> | |
| /// <returns>Integral value</returns> | |
| static public double Integrate(Func<double, double> f, double a, double b, double desiredRelativeError) | |
| { | |
| int log2MaxFunctionEvals = 20; | |
| int functionEvalsUsed; | |
| double estimatedError; | |
| return Integrate(f, a, b, desiredRelativeError, log2MaxFunctionEvals, out functionEvalsUsed, out estimatedError); | |
| } | |
| /// <summary> | |
| /// Full interface. Gives a posteriori information, namely the mumber of function evaluations and a conservative estimate of the error. | |
| /// </summary> | |
| /// <param name="f">integrand</param> | |
| /// <param name="a">left limit of integration</param> | |
| /// <param name="b">right limit of integration</param> | |
| /// <param name="desiredRelativeError">relative error tolerance</param> | |
| /// <param name="log2MaxFunctionEvals">If this value is N, the number of function evaluations will be less than 2^n + 1</param> | |
| /// <param name="functionEvalsUsed">Actual number of function evaluations used</param> | |
| /// <param name="estimatedError">Conservative error estimate</param> | |
| /// <returns>Integral value</returns> | |
| static public double Integrate(Func<double, double> f, double a, double b, double relativeErrorTolerance, int log2MaxFunctionEvals, out int functionEvalsUsed, out double estimatedError) | |
| { | |
| double integral = 0.0; | |
| double mostRecentContribution = 0.0; | |
| double previousContribution = 0.0; | |
| double previousIntegral = 0.0; | |
| double sum = 0.0; | |
| functionEvalsUsed = 0; | |
| estimatedError = double.MaxValue; | |
| for (int stage = 0; stage <= log2MaxFunctionEvals; stage++) | |
| { | |
| if (stage == 0) | |
| { | |
| sum = f(a) + f(b); | |
| functionEvalsUsed = 2; | |
| integral = sum * 0.5 * (b - a); | |
| } | |
| else | |
| { | |
| // Pattern of Simpson's rule coefficients: | |
| // | |
| // 1 1 | |
| // 1 4 1 | |
| // 1 4 2 4 1 | |
| // 1 4 2 4 2 4 2 4 1 | |
| // ... | |
| // | |
| // Each row multiplies new function evaluations by 4, and the evalutations from the previous step by 2. | |
| int numNewPts = 1 << (stage - 1); | |
| mostRecentContribution = 0.0; | |
| double h = (b - a) / numNewPts; | |
| double x = a + 0.5 * h; | |
| for (int i = 0; i < numNewPts; i++) | |
| mostRecentContribution += f(x + i * h); | |
| functionEvalsUsed += numNewPts; | |
| mostRecentContribution *= 4.0; | |
| sum += mostRecentContribution - 0.5 * previousContribution; | |
| integral = sum * (b - a) / ((1 << stage) * 3.0); | |
| // Require at least five stages to reduce the risk of incorrectly declaring convergence too soon. | |
| // Note that you can specify fewer stages, but the early termination rule below will not be used. | |
| if (stage >= 5) | |
| { | |
| estimatedError = Math.Abs(integral - previousIntegral); // conservative | |
| if (estimatedError <= relativeErrorTolerance * Math.Abs(previousIntegral)) | |
| return integral; | |
| } | |
| previousContribution = mostRecentContribution; | |
| previousIntegral = integral; | |
| } | |
| } | |
| return integral; | |
| } | |
| } |