#region Copyright © 2009, De Santiago-Castillo JA. All rights reserved.
//Copyright © 2009 Jose Antonio De Santiago-Castillo
//E-mail:JAntonioDeSantiago@gmail.com
//Web: www.DotNumerics.com
//
#endregion
using System;
using System.Collections.Generic;
using System.Text;
using System.Diagnostics;
using System.IO;
using DotNumerics.FortranLibrary;
namespace DotNumerics.LinearAlgebra
{
//[DebuggerDisplay("[{RowCount},{ColumnCount}]", Name = "MatrixComplex")]
///
/// Represents a Complex Matrix.
///
[DebuggerDisplay("[{RowCount},{ColumnCount}]")]
[DebuggerTypeProxy(typeof(MatrixComplexDebuggerDisplay))]
public class ComplexMatrix : IMatrix
{
#region Fields
///
/// Los datos de la matriz, los datos se almacenan en un un array unidimensional,
/// Los elementos se almacenan por columnas, esto para que sean compatible con los Arrays de Fortran
///
[DebuggerBrowsable(DebuggerBrowsableState.Never)]
protected Complex[] _Data;
///
/// El numero de renglones
///
[DebuggerBrowsable(DebuggerBrowsableState.Never)]
protected int _RowCount;
///
/// El numero de columnas
///
[DebuggerBrowsable(DebuggerBrowsableState.Never)]
protected int _ColumnCount;
#endregion
#region Public Constructors
///
/// Initializes a new instance of the MatrixComplex class of the given size.
///
/// Number of rows.
/// Number of columns.
public ComplexMatrix(int rows, int columns)
{
if (rows < 1) throw new System.ArgumentException("rows < 1");
if (columns < 1) throw new System.ArgumentException("columns < 1");
this._Data = new Complex[rows * columns];
this._RowCount = rows;
this._ColumnCount = columns;
}
///
/// Initializes a new instance of the MatrixComplex class of the given size using a array
///
/// Number of rows.
/// Number of columns.
/// The data
internal ComplexMatrix(int rows, int columns, Complex[] Data)
{
if (rows < 1) throw new System.ArgumentException("rows < 1");
if (columns < 1) throw new System.ArgumentException("columns < 1");
this._Data = new Complex[rows * columns];
this._RowCount = rows;
this._ColumnCount = columns;
//Si incluye la posibilidad de que los datos tengan menos valores que la matriz a crear
for (int i = 0; i < Math.Min(this._Data.Length, Data.Length); i++)
{
this._Data[i] = Data[i];
}
}
///
/// Initializes a new instance of the MatrixComplex class of the given size.
///
/// Size
public ComplexMatrix(int size)
{
if (size < 1) throw new System.ArgumentException("size < 1");
this._Data = new Complex[size * size];
this._RowCount = size;
this._ColumnCount = size;
}
///
/// Initializes a new instance of the MatrixComplex class of the given size using a array
///
/// Size
/// The data
internal ComplexMatrix(int size, Complex[] Data)
{
if (size < 1) throw new System.ArgumentException("size < 1");
this._Data = new Complex[size * size];
this._RowCount = size;
this._ColumnCount = size;
//Si incluye la posibilidad de que los datos tengan menos valores que la matriz a crear
for (int i = 0; i < Math.Min(this._Data.Length, Data.Length); i++)
{
this._Data[i] = Data[i];
}
}
#endregion
#region Public Properties
///
/// Los datos de la matriz
///
[DebuggerBrowsable(DebuggerBrowsableState.Never)]
internal Complex[] Data
{
get { return this._Data; }
}
///
/// Returns the number of rows.
///
[DebuggerBrowsable(DebuggerBrowsableState.Never)]
public int RowCount
{
get { return _RowCount; }
set { _RowCount = value; }
}
///
/// Returns the number of columns.
///
[DebuggerBrowsable(DebuggerBrowsableState.Never)]
public int ColumnCount
{
get { return _ColumnCount; }
set { _ColumnCount = value; }
}
///
/// Gets a value indicating if the matrix is square.
///
public bool IsSquare
{
get
{
bool isSquare = false;
if (this._ColumnCount == this.RowCount) isSquare = true;
return isSquare;
}
}
///
/// Returns the value of a element of the matrix.
///
/// The row value (zero-based).
/// The column value (zero-based).
/// The matrix value at (row, column).
public virtual Complex this[int row, int column]
{
get
{
if (column >= this._ColumnCount)
{
throw new ArgumentException("Index was outside the bounds of the matrix.");
}
return this._Data[row + column * this._RowCount];
}
set
{
if (column >= this._ColumnCount)
{
throw new ArgumentException("Index was outside the bounds of the matrix.");
}
this._Data[row + column * this._RowCount] = value;
}
}
#endregion
#region Private Methods
/// Check if size(this) == size(B)
private void CheckMatrixDimensions(ComplexMatrix B)
{
if (this._RowCount != B.RowCount || B.ColumnCount != this._ColumnCount)
{
throw new System.ArgumentException("Matrix dimensions must agree.");
}
}
/// Check if size(this) == size(B)
private void CheckMatrixDimensions(Matrix B)
{
if (this._RowCount != B.RowCount || B.ColumnCount != this._ColumnCount)
{
throw new System.ArgumentException("Matrix dimensions must agree.");
}
}
#endregion // Private Methods
#region Elementary linear operations
/////
///// aij=Math.Abs(aij)
/////
//public virtual void ElementsAbs()
//{
// for (int i = 0; i < this.MeData.Length; i++)
// {
// this.MeData[i] =Complex. Math.Abs(this.MeData[i]);
// }
//}
/////
///// Element-by-element division: aij = aij/bij
/////
/////
//public virtual void ElemntsDiv(MatrixComplex B)
//{
// CheckMatrixDimensions(B);
// Complex[] BData = B.Data;
// for (int i = 0; i < this.MeData.Length; i++)
// {
// this.MeData[i] /= BData[i];
// }
//}
///
/// Element-by-element multiplication: aij = aij*bij
///
/// The B MatrixComplex
public virtual void ElemntsMult(ComplexMatrix B)
{
CheckMatrixDimensions(B);
Complex[] BData = B.Data;
for (int i = 0; i < this._Data.Length; i++)
{
this._Data[i] = this._Data[i] * BData[i];
}
}
///
/// In place addition A=A+B
///
/// The B MatrixComplex
public virtual void Add(ComplexMatrix B)
{
CheckMatrixDimensions(B);
Complex[] BData = B.Data;
for (int i = 0; i < this._Data.Length; i++)
{
this._Data[i] = this._Data[i] + BData[i];
}
}
///
/// In place scalar-matrix multiplication, A=s*A
///
/// The scalar s.
public virtual void Multiply(double s)
{
for (int i = 0; i < this._Data.Length; i++)
{
this._Data[i].Real = s * this._Data[i].Real;
this._Data[i].Imaginary = s * this._Data[i].Imaginary;
}
}
///
/// In place scalar-matrix multiplication, A=c*A
///
/// The scalar s.
public virtual void MultiplyC(Complex c)
{
for (int i = 0; i < this._Data.Length; i++)
{
this._Data[i] = c * this._Data[i];
}
}
///
/// In place matrix subtraction, A=A-B.
///
/// The B MatrixComplex.
public virtual void Subtract(ComplexMatrix B)
{
CheckMatrixDimensions(B);
Complex[] BData = B.Data;
for (int i = 0; i < this._Data.Length; i++)
{
this._Data[i].Real = this._Data[i].Real - BData[i].Real;
this._Data[i].Imaginary = this._Data[i].Imaginary - BData[i].Imaginary;
}
}
///
/// In place unary minus -A.
///
public virtual void UnaryMinus()
{
for (int i = 0; i < this._Data.Length; i++)
{
this._Data[i].Real = -this._Data[i].Real;
this._Data[i].Imaginary = -this._Data[i].Imaginary;
}
}
#endregion
#region Methods
///
/// Gets the column vectors of this matrix.
///
/// The columns vectors.
public ComplexVector[] GetColumnVectors()
{
ComplexVector[] columnVects = new ComplexVector[this._ColumnCount];
Complex[] VectData;
for (int j = 0; j < this._ColumnCount; j++)
{
columnVects[j] = new ComplexVector(VectorType.Column, this._RowCount);
VectData = columnVects[j].Data;
for (int i = 0; i < VectData.Length; i++)
{
VectData[i] = this._Data[i + j * this._RowCount];
}
}
return columnVects;
}
///
/// Gets the row vectors of this matrix.
///
/// The row vectors.
public ComplexVector[] GetRowVectors()
{
ComplexVector[] rowVects = new ComplexVector[this.RowCount];
Complex[] VectData;
for (int i = 0; i < this._RowCount; i++)
{
rowVects[i] = new ComplexVector(VectorType.Row, this._ColumnCount);
VectData = rowVects[i].Data;
for (int j = 0; j < VectData.Length; j++)
{
VectData[j] = this._Data[i + j * this._RowCount];
}
}
return rowVects;
}
///
/// Gets a matrix that contains the real part of this matrix.
///
/// A matrix that contains the real part of this matrix.
public Matrix GetReal()
{
Matrix RealMatrix = new Matrix(this.RowCount, this.ColumnCount);
double[] RealData = RealMatrix.Data;
for (int i = 0; i < this._Data.Length; i++)
{
RealData[i] = this._Data[i].Real;
}
return RealMatrix;
}
///
/// Gets a matrix that contains the imaginary part of this matrix.
///
/// A matrix that contains the imaginary part of this matrix.
public Matrix GetImag()
{
Matrix ImagMatrix = new Matrix(this.RowCount, this.ColumnCount);
double[] ImagData = ImagMatrix.Data;
for (int i = 0; i < this._Data.Length; i++)
{
ImagData[i] = this._Data[i].Imaginary;
}
return ImagMatrix;
}
///
/// Sets the real part of the elements of this matrix equal to the elemnets of a real matrix.
///
/// A matrix that contains the values of the real part.
public void SetReal(Matrix RM)
{
this.CheckMatrixDimensions(RM);
double[] RealData = RM.Data;
for (int i = 0; i < this._Data.Length; i++)
{
this._Data[i].Real = RealData[i];
}
}
///
/// Sets the imaginary part of the elements of this matrix equal to the elemnets of a real matrix.
///
/// A matrix that contains the values of the imaginary part.
public void SetImag(Matrix IM)
{
this.CheckMatrixDimensions(IM);
double[] ImagData = IM.Data;
for (int i = 0; i < this._Data.Length; i++)
{
this._Data[i].Imaginary = ImagData[i];
}
}
///
/// Returns the string of the matrix.
///
/// The string of the matrix.
public string MatrixToString()
{
using (StringWriter writer = new StringWriter())
{
for (int i = 0; i < this._RowCount; i++)
{
for (int j = 0; j < this._ColumnCount; j++)
writer.Write(this[i, j] + ", ");
writer.WriteLine();
}
return writer.ToString();
}
}
///
/// Returns the string of the matrix.
///
/// A numeric format string.
/// The string of the matrix.
public string MatrixToString(string format)
{
using (StringWriter writer = new StringWriter())
{
for (int i = 0; i < this._RowCount; i++)
{
for (int j = 0; j < this._ColumnCount; j++)
writer.Write(this[i, j].ToString(format) + ", ");
writer.WriteLine();
}
return writer.ToString();
}
}
/////
///// maximum column sum.
/////
///// maximum column sum.
//public double Norm1()
//{
// double n = 0.0;
// double ColSum = 0.0;
// int NRows = this.MeRowCount;
// for (int j = 0; j < this.MeColumnCount; j++)
// {
// ColSum = 0.0;
// for (int i = 0; i < this.MeRowCount; i++)
// {
// ColSum += Math.Abs(this.MeData[i + j * NRows]);
// }
// n = Math.Max(n, ColSum);
// }
// return n;
//}
/////
/////
/////
/////
//public double InfinityNorm()
//{
// double n = 0.0;
// double RowSum = 0.0;
// int NRows = this.MeRowCount;
// for (int i = 0; i < this.MeRowCount; i++)
// {
// RowSum = 0.0;
// for (int j = 0; j < this.MeColumnCount; j++)
// {
// RowSum += Math.Abs(this.MeData[i + j * NRows]);
// }
// n = Math.Max(n, RowSum);
// }
// return n;
//}
///// Frobenius norm
///// Sqrt of sum of squares of all elements.
//public double FrobeniusNorm()
//{
// double n=0;
// for(int i=0; isqrt(a^2 + b^2) without under/overflow.
//private double Hypot(double a, double b)
//{
// double r;
// if (Math.Abs(a) > Math.Abs(b))
// {
// r = b/a;
// r = Math.Abs(a) * Math.Sqrt(1 + r * r);
// }
// else if (b != 0)
// {
// r = a/b;
// r = Math.Abs(b) * Math.Sqrt(1 + r * r);
// }
// else
// {
// r = 0.0;
// }
// return r;
//}
#endregion
#region Matrix-Matrix Multiplication
///
/// Matrix multiplication.
///
/// The left side matrix of the multiplication operator.
/// The right side matrix of the multiplication operator.
/// A matrix that represents the result of the matrix multiplication.
public static ComplexMatrix operator *(ComplexMatrix A, ComplexMatrix B)
{
if (B.RowCount != A.ColumnCount)
{
throw new System.ArgumentException("Matrix dimensions are not valid.");
}
ComplexMatrix C = new ComplexMatrix(A.RowCount, B.ColumnCount);
Complex[] AData = A.Data;
Complex[] BData = B.Data;
Complex[] CData = C.Data;
int ARows = A.RowCount;
int AColumns = A.ColumnCount;
int BRows = B.RowCount;
int BColumns = B.ColumnCount;
Complex Sum = new Complex(0.0, 0.0);
for (int j = 0; j < BColumns; j++)
{
for (int i = 0; i < ARows; i++)
{
Sum.Imaginary = 0.0;
Sum.Real = 0.0;
for (int k = 0; k < AColumns; k++)
{
Sum += AData[i + k * ARows] * BData[k + j * BRows];
}
CData[i + j * ARows] = Sum;
}
}
return C;
}
///
/// Matrix multiplication.
///
/// The left side matrix of the multiplication operator.
/// The right side matrix of the multiplication operator.
/// A matrix that represents the result of the matrix multiplication.
public static ComplexMatrix operator *(BaseMatrix A, ComplexMatrix B)
{
if (B.RowCount != A.ColumnCount)
{
throw new System.ArgumentException("Matrix dimensions are not valid.");
}
ComplexMatrix C = new ComplexMatrix(A.RowCount, B.ColumnCount);
double[] AData = A.Data;
Complex[] BData = B.Data;
Complex[] CData = C.Data;
int ARows = A.RowCount;
int AColumns = A.ColumnCount;
int BRows = B.RowCount;
int BColumns = B.ColumnCount;
Complex Sum = new Complex(0.0, 0.0);
for (int j = 0; j < BColumns; j++)
{
for (int i = 0; i < ARows; i++)
{
Sum.Imaginary = 0.0;
Sum.Real = 0.0;
for (int k = 0; k < AColumns; k++)
{
Sum += AData[i + k * ARows] * BData[k + j * BRows];
}
CData[i + j * ARows] = Sum;
}
}
return C;
}
/// complex-Matrix multiplication.
/// The left side scalar of the multiplication operator.
/// The right side matrix of the multiplication operator.
/// A matrix that represents the result of the multiplication.
public static ComplexMatrix operator *(Complex c, ComplexMatrix B)
{
ComplexMatrix C = new ComplexMatrix(B.RowCount, B.ColumnCount);
Complex[] BData = B.Data;
Complex[] CData = C.Data;
for (int i = 0; i < BData.Length; i++)
{
CData[i] = c * BData[i];
}
return C;
}
#endregion
#region Matrix-Matrix Addition
///
/// Matrix addition.
///
/// The left side matrix of the addition operator.
/// The right side matrix of the addition operator.
/// A matrix that represents the result of the matrix addition.
public static ComplexMatrix operator +(ComplexMatrix A, ComplexMatrix B)
{
if (B.RowCount != A.RowCount || B.ColumnCount != A.ColumnCount)
{
throw new System.ArgumentException("Matrix dimensions are not valid.");
}
ComplexMatrix C = new ComplexMatrix(A.RowCount, A.ColumnCount);
Complex[] AData = A.Data;
Complex[] BData = B.Data;
Complex[] CData = C.Data;
for (int i = 0; i < AData.Length; i++)
{
CData[i] = AData[i] + BData[i];
}
return C;
}
#endregion
#region Matrix-Matrix Subtraction
///// Matrix Subtraction
///
/// Matrix subtraction.
///
/// The left side matrix of the subtraction operator.
/// The right side matrix of the subtraction operator.
/// A matrix that represents the result of the matrix subtraction.
public static ComplexMatrix operator -(ComplexMatrix A, ComplexMatrix B)
{
if (B.RowCount != A.RowCount || B.ColumnCount != A.ColumnCount)
{
throw new System.ArgumentException("Matrix dimensions are not valid.");
}
ComplexMatrix C = new ComplexMatrix(A.RowCount, A.ColumnCount);
Complex[] AData = A.Data;
Complex[] BData = B.Data;
Complex[] CData = C.Data;
for (int i = 0; i < AData.Length; i++)
{
CData[i] = AData[i] - BData[i];
}
return C;
}
#endregion
#region IMatrix Members
///
/// Copy all elements of this matrix to a rectangular 2D array.
///
/// A rectangular 2D array.
public Complex[,] CopyToArray()
{
Complex[,] matrixData = new Complex[this._RowCount, this._ColumnCount];
for (int j = 0; j < this._ColumnCount; j++)
{
for (int i = 0; i < this._RowCount; i++)
{
matrixData[i, j] = this._Data[i + j * this._RowCount];
}
}
return matrixData;
}
///
/// Copy all elements of this matrix to a jagged array.
///
/// A jagged array.
public Complex[][] CopyToJaggedArray()
{
Complex[][] newData = new Complex[this._RowCount][];
for (int i = 0; i < this._RowCount; i++)
{
Complex[] row = new Complex[this._ColumnCount];
for (int j = 0; j < this._ColumnCount; j++)
{
row[j] = this._Data[i + j * this._RowCount];
}
newData[i] = row;
}
return newData;
}
#endregion
}
}