#region Copyright © 2009, De Santiago-Castillo JA. All rights reserved.
//Copyright © 2009 Jose Antonio De Santiago-Castillo
//E-mail:JAntonioDeSantiago@gmail.com
//Web: www.DotNumerics.com
//
#endregion
using System;
using System.Collections.Generic;
using System.Text;
using System.Diagnostics;
//A general tridiagonal matrix is a matrix whose nonzero elements are found only on the diagonal, subdiagonal, and superdiagonal of the matrix; that is:
//aij = 0 if |i-j| > 1
namespace DotNumerics.LinearAlgebra
{
///
/// Represents a Tridiagonal Matrix.
///
public sealed class TridiagonalMatrix : BaseMatrix
{
#region Public Constructors
///
/// Initializes a new instance of the TridiagonalMatrix class of the given size.
///
/// Size
public TridiagonalMatrix(int size) : base(size) { }
///
/// Initializes a new instance of the TridiagonalMatrix class of the given size using a array
///
/// Size
/// The data
internal TridiagonalMatrix(int size, double[] Data) : base(size, Data) { }
#endregion
#region Public Methods
public override double this[int row, int column]
{
get
{
if (column >= this._ColumnCount)
{
throw new ArgumentException("Index was outside the bounds of the matrix.");
}
return this._Data[row + column * this._RowCount];
}
set
{
if (column >= this._ColumnCount)
{
throw new ArgumentException("Index was outside the bounds of the matrix.");
}
//aij = 0 if |i-j| > 1
if (Math.Abs(row - column) <= 1)
{
this._Data[row + column * this._RowCount] = value;
}
}
}
internal void GetPackedMatrix(out double[] SubDiagonal, out double[] SuperDiagonal, out double[] Diagonal)
{
Diagonal = new double[this._RowCount];
SubDiagonal = new double[this._RowCount - 1];
SuperDiagonal = new double[this._RowCount - 1];
//Para la diagonal
for (int i = 0; i < this._RowCount; i++)
{
Diagonal[i] = this._Data[i + i * this._RowCount];
}
//Para la SubDiagonal
for (int i = 0; i < this._RowCount - 1; i++)
{
SubDiagonal[i] = this._Data[i + 1 + i * this._RowCount];
}
//Para la SuperDiagonal
for (int i = 0; i < this._RowCount - 1; i++)
{
SuperDiagonal[i] = this._Data[i + (i + 1) * this._RowCount];
}
}
public TridiagonalMatrix Clone()
{
TridiagonalMatrix NewMatrix = new TridiagonalMatrix(this._RowCount, this._Data);
return NewMatrix;
}
#region Static methods
/// Generate a TridiagonalMatrix with random elements
/// Size
public static TridiagonalMatrix Random(int size)
{
System.Random random = new System.Random();
TridiagonalMatrix X = new TridiagonalMatrix(size);
double[] XData = X.Data;
for (int j = 0; j < X.ColumnCount; j++)
{
for (int i = 0; i < X.RowCount; i++)
{
X[i, j] = random.NextDouble();
}
}
return X;
}
#endregion
#endregion
#region Overloading Operators
///
/// Matrix addition.
///
/// The left side matrix of the addition operator.
/// The right side matrix of the addition operator.
/// A matrix that represents the result of the matrix addition.
public static TridiagonalMatrix operator +(TridiagonalMatrix A, TridiagonalMatrix B)
{
if (B.RowCount != A.RowCount || B.ColumnCount != A.ColumnCount)
{
throw new System.ArgumentException("Matrix dimensions are not valid.");
}
TridiagonalMatrix C = new TridiagonalMatrix(A.RowCount);
double[] AData = A.Data;
double[] BData = B.Data;
double[] CData = C.Data;
for (int i = 0; i < AData.Length; i++)
{
CData[i] = AData[i] + BData[i];
}
return C;
}
///
/// Matrix subtraction.
///
/// The left side matrix of the subtraction operator.
/// The right side matrix of the subtraction operator.
/// A matrix that represents the result of the matrix subtraction.
public static TridiagonalMatrix operator -(TridiagonalMatrix A, TridiagonalMatrix B)
{
if (B.RowCount != A.RowCount || B.ColumnCount != A.ColumnCount)
{
throw new System.ArgumentException("Matrix dimensions are not valid.");
}
TridiagonalMatrix C = new TridiagonalMatrix(A.RowCount);
double[] AData = A.Data;
double[] BData = B.Data;
double[] CData = C.Data;
for (int i = 0; i < AData.Length; i++)
{
CData[i] = AData[i] - BData[i];
}
return C;
}
#region Scalar-Matrix Multiplication
///
/// Scalar-Matrix multiplication.
///
/// The left side scalar of the multiplication operator.
/// The right side matrix of the multiplication operator.
/// A matrix that represents the result of the multiplication.
public static TridiagonalMatrix operator *(double s, TridiagonalMatrix A)
{
TridiagonalMatrix C = new TridiagonalMatrix(A.RowCount);
double[] AData = A.Data;
double[] CData = C.Data;
Matrix.MultiplicationSM(s, AData, CData);
return C;
}
#endregion
///
/// Implicit TridiagonalMatrix to Matrix conversion.
///
/// The TridiagonalMatrix.
/// The Matrix.
public static implicit operator Matrix(TridiagonalMatrix tridiagonal)
{
Matrix NewMatrix = new Matrix(tridiagonal.RowCount, tridiagonal.ColumnCount, tridiagonal.Data);
return NewMatrix;
}
#endregion
}
}