#region Copyright © 2009, De Santiago-Castillo JA. All rights reserved. //Copyright © 2009 Jose Antonio De Santiago-Castillo //E-mail:JAntonioDeSantiago@gmail.com //Web: www.DotNumerics.com // #endregion using System; using System.Collections.Generic; using System.Text; using System.Diagnostics; //A general tridiagonal matrix is a matrix whose nonzero elements are found only on the diagonal, subdiagonal, and superdiagonal of the matrix; that is: //aij = 0 if |i-j| > 1 namespace DotNumerics.LinearAlgebra { /// /// Represents a Tridiagonal Matrix. /// public sealed class TridiagonalMatrix : BaseMatrix { #region Public Constructors /// /// Initializes a new instance of the TridiagonalMatrix class of the given size. /// /// Size public TridiagonalMatrix(int size) : base(size) { } /// /// Initializes a new instance of the TridiagonalMatrix class of the given size using a array /// /// Size /// The data internal TridiagonalMatrix(int size, double[] Data) : base(size, Data) { } #endregion #region Public Methods public override double this[int row, int column] { get { if (column >= this._ColumnCount) { throw new ArgumentException("Index was outside the bounds of the matrix."); } return this._Data[row + column * this._RowCount]; } set { if (column >= this._ColumnCount) { throw new ArgumentException("Index was outside the bounds of the matrix."); } //aij = 0 if |i-j| > 1 if (Math.Abs(row - column) <= 1) { this._Data[row + column * this._RowCount] = value; } } } internal void GetPackedMatrix(out double[] SubDiagonal, out double[] SuperDiagonal, out double[] Diagonal) { Diagonal = new double[this._RowCount]; SubDiagonal = new double[this._RowCount - 1]; SuperDiagonal = new double[this._RowCount - 1]; //Para la diagonal for (int i = 0; i < this._RowCount; i++) { Diagonal[i] = this._Data[i + i * this._RowCount]; } //Para la SubDiagonal for (int i = 0; i < this._RowCount - 1; i++) { SubDiagonal[i] = this._Data[i + 1 + i * this._RowCount]; } //Para la SuperDiagonal for (int i = 0; i < this._RowCount - 1; i++) { SuperDiagonal[i] = this._Data[i + (i + 1) * this._RowCount]; } } public TridiagonalMatrix Clone() { TridiagonalMatrix NewMatrix = new TridiagonalMatrix(this._RowCount, this._Data); return NewMatrix; } #region Static methods /// Generate a TridiagonalMatrix with random elements /// Size public static TridiagonalMatrix Random(int size) { System.Random random = new System.Random(); TridiagonalMatrix X = new TridiagonalMatrix(size); double[] XData = X.Data; for (int j = 0; j < X.ColumnCount; j++) { for (int i = 0; i < X.RowCount; i++) { X[i, j] = random.NextDouble(); } } return X; } #endregion #endregion #region Overloading Operators /// /// Matrix addition. /// /// The left side matrix of the addition operator. /// The right side matrix of the addition operator. /// A matrix that represents the result of the matrix addition. public static TridiagonalMatrix operator +(TridiagonalMatrix A, TridiagonalMatrix B) { if (B.RowCount != A.RowCount || B.ColumnCount != A.ColumnCount) { throw new System.ArgumentException("Matrix dimensions are not valid."); } TridiagonalMatrix C = new TridiagonalMatrix(A.RowCount); double[] AData = A.Data; double[] BData = B.Data; double[] CData = C.Data; for (int i = 0; i < AData.Length; i++) { CData[i] = AData[i] + BData[i]; } return C; } /// /// Matrix subtraction. /// /// The left side matrix of the subtraction operator. /// The right side matrix of the subtraction operator. /// A matrix that represents the result of the matrix subtraction. public static TridiagonalMatrix operator -(TridiagonalMatrix A, TridiagonalMatrix B) { if (B.RowCount != A.RowCount || B.ColumnCount != A.ColumnCount) { throw new System.ArgumentException("Matrix dimensions are not valid."); } TridiagonalMatrix C = new TridiagonalMatrix(A.RowCount); double[] AData = A.Data; double[] BData = B.Data; double[] CData = C.Data; for (int i = 0; i < AData.Length; i++) { CData[i] = AData[i] - BData[i]; } return C; } #region Scalar-Matrix Multiplication /// /// Scalar-Matrix multiplication. /// /// The left side scalar of the multiplication operator. /// The right side matrix of the multiplication operator. /// A matrix that represents the result of the multiplication. public static TridiagonalMatrix operator *(double s, TridiagonalMatrix A) { TridiagonalMatrix C = new TridiagonalMatrix(A.RowCount); double[] AData = A.Data; double[] CData = C.Data; Matrix.MultiplicationSM(s, AData, CData); return C; } #endregion /// /// Implicit TridiagonalMatrix to Matrix conversion. /// /// The TridiagonalMatrix. /// The Matrix. public static implicit operator Matrix(TridiagonalMatrix tridiagonal) { Matrix NewMatrix = new Matrix(tridiagonal.RowCount, tridiagonal.ColumnCount, tridiagonal.Data); return NewMatrix; } #endregion } }