#region Translated by Jose Antonio De Santiago-Castillo. //Translated by Jose Antonio De Santiago-Castillo. //E-mail:JAntonioDeSantiago@gmail.com //Website: www.DotNumerics.com // //Fortran to C# Translation. //Translated by: //F2CSharp Version 0.72 (Dicember 7, 2009) //Code Optimizations: , assignment operator, for-loop: array indexes // #endregion using System; using DotNumerics.FortranLibrary; namespace DotNumerics.ODE.DVode { #region The Class: DVODE // *DECK DVODE public class DVODE { #region Dependencies DVNLSD _dvnlsd; DUMACH _dumach; DVNORM _dvnorm; DCOPY _dcopy; DEWSET _dewset; DVHIN _dvhin; DSCAL _dscal; DVINDY _dvindy; XERRWD _xerrwd;DVSTEP _dvstep; #endregion #region Common variables #region Common Block: DVOD01 Declaration CommonBlock _dvod01; Odouble ACNRM; Odouble CCMXJ; Odouble CONP; Odouble CRATE; Odouble DRC; Odouble[] EL; int o_el; Odouble ETA; Odouble ETAMAX;Odouble H; Odouble HMIN; Odouble HMXI; Odouble HNEW; Odouble HSCAL; Odouble PRL1; Odouble RC; Odouble RL1; Odouble[] TAU; int o_tau;Odouble[] TQ; int o_tq; Odouble TN; Odouble UROUND; Oint ICF; Oint INIT; Oint IPUP; Oint JCUR; Oint JSTART; Oint JSV; Oint KFLAG; Oint KUTH; Oint L; Oint LMAX; Oint LYH; Oint LEWT;Oint LACOR; Oint LSAVF; Oint LWM; Oint LIWM; Oint LOCJS; Oint MAXORD; Oint METH; Oint MITER; Oint MSBJ; Oint MXHNIL;Oint MXSTEP; Oint N; Oint NEWH; Oint NEWQ; Oint NHNIL; Oint NQ; Oint NQNYH; Oint NQWAIT; Oint NSLJ; Oint NSLP; Oint NYH; #endregion #region Common Block: DVOD02 Declaration CommonBlock _dvod02; Odouble HU; Oint NCFN; Oint NETF; Oint NFE; Oint NJE; Oint NLU; Oint NNI; Oint NQU; Oint NST; #endregion #endregion #region Variables double FOUR = 0; double HUN = 0; double ONE = 0; double PT2 = 0; double TWO = 0; double ZERO = 0; int[] MORD = new int[2]; int offset_mord = 0; int o_mord = -1;int MXHNL0 = 0; int MXSTP0 = 0; #endregion public DVODE(DVNLSD dvnlsd, DUMACH dumach, DVNORM dvnorm, DCOPY dcopy, DEWSET dewset, DVHIN dvhin, DSCAL dscal, DVINDY dvindy, XERRWD xerrwd, DVSTEP dvstep , CommonBlock DVOD01, CommonBlock DVOD02) { #region Set Dependencies this._dvnlsd = dvnlsd; this._dumach = dumach; this._dvnorm = dvnorm; this._dcopy = dcopy; this._dewset = dewset; this._dvhin = dvhin;this._dscal = dscal; this._dvindy = dvindy; this._xerrwd = xerrwd; this._dvstep = dvstep; #endregion #region Data Initialization //MORD(1)/12 MORD[1 + o_mord] = 12; //MORD(2)/5 MORD[2 + o_mord] = 5; //MXSTP0/500 MXSTP0 = 500; //MXHNL0/10 MXHNL0 = 10; //ZERO/0.0D0 ZERO = 0.0E0; //ONE/1.0D0 ONE = 1.0E0; //TWO/2.0D0 TWO = 2.0E0; //FOUR/4.0D0 FOUR = 4.0E0; //PT2/0.2D0 PT2 = 0.2E0; //HUN/100.0D0 HUN = 100.0E0; #endregion #region Common varaible Initialization #region Common Block: DVOD01 Initialization this._dvod01 = DVOD01; ACNRM = DVOD01.doubleData[0]; CCMXJ = DVOD01.doubleData[1]; CONP = DVOD01.doubleData[2]; CRATE = DVOD01.doubleData[3]; DRC = DVOD01.doubleData[4]; //Start Array: EL StartIndex: 5 LastIndex: 17 EL = DVOD01.doubleData; o_el = 4; //o_ = StartIndex-1 //End Array: EL ETA = DVOD01.doubleData[18]; ETAMAX = DVOD01.doubleData[19]; H = DVOD01.doubleData[20]; HMIN = DVOD01.doubleData[21]; HMXI = DVOD01.doubleData[22]; HNEW = DVOD01.doubleData[23]; HSCAL = DVOD01.doubleData[24]; PRL1 = DVOD01.doubleData[25]; RC = DVOD01.doubleData[26]; RL1 = DVOD01.doubleData[27]; //Start Array: TAU StartIndex: 28 LastIndex: 40 TAU = DVOD01.doubleData; o_tau = 27; //o_ = StartIndex-1 //End Array: TAU //Start Array: TQ StartIndex: 41 LastIndex: 45 TQ = DVOD01.doubleData; o_tq = 40; //o_ = StartIndex-1 //End Array: TQ TN = DVOD01.doubleData[46]; UROUND = DVOD01.doubleData[47]; ICF = DVOD01.intData[0]; INIT = DVOD01.intData[1]; IPUP = DVOD01.intData[2]; JCUR = DVOD01.intData[3]; JSTART = DVOD01.intData[4]; JSV = DVOD01.intData[5]; KFLAG = DVOD01.intData[6]; KUTH = DVOD01.intData[7]; L = DVOD01.intData[8]; LMAX = DVOD01.intData[9]; LYH = DVOD01.intData[10]; LEWT = DVOD01.intData[11]; LACOR = DVOD01.intData[12]; LSAVF = DVOD01.intData[13]; LWM = DVOD01.intData[14]; LIWM = DVOD01.intData[15]; LOCJS = DVOD01.intData[16]; MAXORD = DVOD01.intData[17]; METH = DVOD01.intData[18]; MITER = DVOD01.intData[19]; MSBJ = DVOD01.intData[20]; MXHNIL = DVOD01.intData[21]; MXSTEP = DVOD01.intData[22]; N = DVOD01.intData[23]; NEWH = DVOD01.intData[24]; NEWQ = DVOD01.intData[25]; NHNIL = DVOD01.intData[26]; NQ = DVOD01.intData[27]; NQNYH = DVOD01.intData[28]; NQWAIT = DVOD01.intData[29]; NSLJ = DVOD01.intData[30]; NSLP = DVOD01.intData[31]; NYH = DVOD01.intData[32]; #endregion #region Common Block: DVOD02 Initialization this._dvod02 = DVOD02; HU = DVOD02.doubleData[0]; NCFN = DVOD02.intData[0]; NETF = DVOD02.intData[1]; NFE = DVOD02.intData[2]; NJE = DVOD02.intData[3]; NLU = DVOD02.intData[4]; NNI = DVOD02.intData[5]; NQU = DVOD02.intData[6]; NST = DVOD02.intData[7]; #endregion #endregion } public DVODE() { #region Initialization Common Blocks CommonBlock DVOD01 = new CommonBlock(48, 33, 0, 0); CommonBlock DVOD02 = new CommonBlock(1, 8, 0, 0); #endregion #region Dependencies (Initialization) DVNORM dvnorm = new DVNORM(); DCOPY dcopy = new DCOPY(); DSCAL dscal = new DSCAL(); IDAMAX idamax = new IDAMAX(); DAXPY daxpy = new DAXPY(); DDOT ddot = new DDOT(); DUMSUM dumsum = new DUMSUM(); DEWSET dewset = new DEWSET(); IUMACH iumach = new IUMACH(); DVSET dvset = new DVSET(DVOD01); DGEFA dgefa = new DGEFA(idamax, dscal, daxpy); DACOPY dacopy = new DACOPY(dcopy); DGBFA dgbfa = new DGBFA(idamax, dscal, daxpy); DVJAC dvjac = new DVJAC(dvnorm, dcopy, dscal, dgefa, dacopy, dgbfa, DVOD01, DVOD02); DGESL dgesl = new DGESL(ddot, daxpy); DGBSL dgbsl = new DGBSL(ddot, daxpy); DVSOL dvsol = new DVSOL(dgesl, dgbsl, DVOD01); DVNLSD dvnlsd = new DVNLSD(dvnorm, dcopy, dvjac, dvsol, dscal, daxpy, DVOD01, DVOD02); DUMACH dumach = new DUMACH(dumsum); DVHIN dvhin = new DVHIN(dvnorm); IXSAV ixsav = new IXSAV(iumach); XERRWD xerrwd = new XERRWD(ixsav); DVINDY dvindy = new DVINDY(dscal, xerrwd, DVOD01, DVOD02); DVJUST dvjust = new DVJUST(daxpy, DVOD01); DVSTEP dvstep = new DVSTEP(dvnorm, dvjust, dscal, dvset, daxpy, dcopy, DVOD01, DVOD02); #endregion #region Set Dependencies this._dvnlsd = dvnlsd; this._dumach = dumach; this._dvnorm = dvnorm; this._dcopy = dcopy; this._dewset = dewset; this._dvhin = dvhin;this._dscal = dscal; this._dvindy = dvindy; this._xerrwd = xerrwd; this._dvstep = dvstep; #endregion #region Data Initialization //MORD(1)/12 MORD[1 + o_mord] = 12; //MORD(2)/5 MORD[2 + o_mord] = 5; //MXSTP0/500 MXSTP0 = 500; //MXHNL0/10 MXHNL0 = 10; //ZERO/0.0D0 ZERO = 0.0E0; //ONE/1.0D0 ONE = 1.0E0; //TWO/2.0D0 TWO = 2.0E0; //FOUR/4.0D0 FOUR = 4.0E0; //PT2/0.2D0 PT2 = 0.2E0; //HUN/100.0D0 HUN = 100.0E0; #endregion #region Common varaible Initialization #region Common Block: DVOD01 Initialization this._dvod01 = DVOD01; ACNRM = DVOD01.doubleData[0]; CCMXJ = DVOD01.doubleData[1]; CONP = DVOD01.doubleData[2]; CRATE = DVOD01.doubleData[3]; DRC = DVOD01.doubleData[4]; //Start Array: EL StartIndex: 5 LastIndex: 17 EL = DVOD01.doubleData; o_el = 4; //o_ = StartIndex-1 //End Array: EL ETA = DVOD01.doubleData[18]; ETAMAX = DVOD01.doubleData[19]; H = DVOD01.doubleData[20]; HMIN = DVOD01.doubleData[21]; HMXI = DVOD01.doubleData[22]; HNEW = DVOD01.doubleData[23]; HSCAL = DVOD01.doubleData[24]; PRL1 = DVOD01.doubleData[25]; RC = DVOD01.doubleData[26]; RL1 = DVOD01.doubleData[27]; //Start Array: TAU StartIndex: 28 LastIndex: 40 TAU = DVOD01.doubleData; o_tau = 27; //o_ = StartIndex-1 //End Array: TAU //Start Array: TQ StartIndex: 41 LastIndex: 45 TQ = DVOD01.doubleData; o_tq = 40; //o_ = StartIndex-1 //End Array: TQ TN = DVOD01.doubleData[46]; UROUND = DVOD01.doubleData[47]; ICF = DVOD01.intData[0]; INIT = DVOD01.intData[1]; IPUP = DVOD01.intData[2]; JCUR = DVOD01.intData[3]; JSTART = DVOD01.intData[4]; JSV = DVOD01.intData[5]; KFLAG = DVOD01.intData[6]; KUTH = DVOD01.intData[7]; L = DVOD01.intData[8]; LMAX = DVOD01.intData[9]; LYH = DVOD01.intData[10]; LEWT = DVOD01.intData[11]; LACOR = DVOD01.intData[12]; LSAVF = DVOD01.intData[13]; LWM = DVOD01.intData[14]; LIWM = DVOD01.intData[15]; LOCJS = DVOD01.intData[16]; MAXORD = DVOD01.intData[17]; METH = DVOD01.intData[18]; MITER = DVOD01.intData[19]; MSBJ = DVOD01.intData[20]; MXHNIL = DVOD01.intData[21]; MXSTEP = DVOD01.intData[22]; N = DVOD01.intData[23]; NEWH = DVOD01.intData[24]; NEWQ = DVOD01.intData[25]; NHNIL = DVOD01.intData[26]; NQ = DVOD01.intData[27]; NQNYH = DVOD01.intData[28]; NQWAIT = DVOD01.intData[29]; NSLJ = DVOD01.intData[30]; NSLP = DVOD01.intData[31]; NYH = DVOD01.intData[32]; #endregion #region Common Block: DVOD02 Initialization this._dvod02 = DVOD02; HU = DVOD02.doubleData[0]; NCFN = DVOD02.intData[0]; NETF = DVOD02.intData[1]; NFE = DVOD02.intData[2]; NJE = DVOD02.intData[3]; NLU = DVOD02.intData[4]; NNI = DVOD02.intData[5]; NQU = DVOD02.intData[6]; NST = DVOD02.intData[7]; #endregion #endregion } /// /// = The name of the user-supplied subroutine defining the /// ODE system. The system must be put in the first-order /// form dy/dt = f(t,y), where f is a vector-valued function /// of the scalar t and the vector y. Subroutine F is to /// compute the function f. It is to have the form /// SUBROUTINE F (NEQ, T, Y, YDOT, RPAR, IPAR) /// DOUBLE PRECISION T, Y(NEQ), YDOT(NEQ), RPAR /// where NEQ, T, and Y are input, and the array YDOT = f(t,y) /// is output. Y and YDOT are arrays of length NEQ. /// Subroutine F should not alter Y(1),...,Y(NEQ). /// F must be declared EXTERNAL in the calling program. /// /// Subroutine F may access user-defined real and integer /// work arrays RPAR and IPAR, which are to be dimensioned /// in the main program. /// /// If quantities computed in the F routine are needed /// externally to DVODE, an extra call to F should be made /// for this purpose, for consistent and accurate results. /// If only the derivative dy/dt is needed, use DVINDY instead. /// /// /// = The size of the ODE system (number of first order /// ordinary differential equations). Used only for input. /// NEQ may not be increased during the problem, but /// can be decreased (with ISTATE = 3 in the input). /// /// /// = A real array for the vector of dependent variables, of /// length NEQ or more. Used for both input and output on the /// first call (ISTATE = 1), and only for output on other calls. /// On the first call, Y must contain the vector of initial /// values. In the output, Y contains the computed solution /// evaluated at T. If desired, the Y array may be used /// for other purposes between calls to the solver. /// /// This array is passed as the Y argument in all calls to /// F and JAC. /// /// /// = The independent variable. In the input, T is used only on /// the first call, as the initial point of the integration. /// In the output, after each call, T is the value at which a /// computed solution Y is evaluated (usually the same as TOUT). /// On an error return, T is the farthest point reached. /// /// /// = The next value of t at which a computed solution is desired. /// Used only for input. /// /// When starting the problem (ISTATE = 1), TOUT may be equal /// to T for one call, then should .ne. T for the next call. /// For the initial T, an input value of TOUT .ne. T is used /// in order to determine the direction of the integration /// (i.e. the algebraic sign of the step sizes) and the rough /// scale of the problem. Integration in either direction /// (forward or backward in t) is permitted. /// /// If ITASK = 2 or 5 (one-step modes), TOUT is ignored after /// the first call (i.e. the first call with TOUT .ne. T). /// Otherwise, TOUT is required on every call. /// /// If ITASK = 1, 3, or 4, the values of TOUT need not be /// monotone, but a value of TOUT which backs up is limited /// to the current internal t interval, whose endpoints are /// TCUR - HU and TCUR. (See optional output, below, for /// TCUR and HU.) /// /// /// = An indicator for the type of error control. See /// description below under ATOL. Used only for input. /// /// /// = A relative error tolerance parameter, either a scalar or /// an array of length NEQ. See description below under ATOL. /// Input only. /// /// /// = An absolute error tolerance parameter, either a scalar or /// an array of length NEQ. Input only. /// /// The input parameters ITOL, RTOL, and ATOL determine /// the error control performed by the solver. The solver will /// control the vector e = (e(i)) of estimated local errors /// in Y, according to an inequality of the form /// rms-norm of ( e(i)/EWT(i) ) .le. 1, /// where EWT(i) = RTOL(i)*abs(Y(i)) + ATOL(i), /// and the rms-norm (root-mean-square norm) here is /// rms-norm(v) = sqrt(sum v(i)**2 / NEQ). Here EWT = (EWT(i)) /// is a vector of weights which must always be positive, and /// the values of RTOL and ATOL should all be non-negative. /// The following table gives the types (scalar/array) of /// RTOL and ATOL, and the corresponding form of EWT(i). /// /// ITOL RTOL ATOL EWT(i) /// 1 scalar scalar RTOL*ABS(Y(i)) + ATOL /// 2 scalar array RTOL*ABS(Y(i)) + ATOL(i) /// 3 array scalar RTOL(i)*ABS(Y(i)) + ATOL /// 4 array array RTOL(i)*ABS(Y(i)) + ATOL(i) /// /// When either of these parameters is a scalar, it need not /// be dimensioned in the user's calling program. /// /// If none of the above choices (with ITOL, RTOL, and ATOL /// fixed throughout the problem) is suitable, more general /// error controls can be obtained by substituting /// user-supplied routines for the setting of EWT and/or for /// the norm calculation. See Part iv below. /// /// If global errors are to be estimated by making a repeated /// run on the same problem with smaller tolerances, then all /// components of RTOL and ATOL (i.e. of EWT) should be scaled /// down uniformly. /// /// /// = An index specifying the task to be performed. /// Input only. ITASK has the following values and meanings. /// 1 means normal computation of output values of y(t) at /// t = TOUT (by overshooting and interpolating). /// 2 means take one step only and return. /// 3 means stop at the first internal mesh point at or /// beyond t = TOUT and return. /// 4 means normal computation of output values of y(t) at /// t = TOUT but without overshooting t = TCRIT. /// TCRIT must be input as RWORK(1). TCRIT may be equal to /// or beyond TOUT, but not behind it in the direction of /// integration. This option is useful if the problem /// has a singularity at or beyond t = TCRIT. /// 5 means take one step, without passing TCRIT, and return. /// TCRIT must be input as RWORK(1). /// /// Note: If ITASK = 4 or 5 and the solver reaches TCRIT /// (within roundoff), it will return T = TCRIT (exactly) to /// indicate this (unless ITASK = 4 and TOUT comes before TCRIT, /// in which case answers at T = TOUT are returned first). /// /// /// = an index used for input and output to specify the /// the state of the calculation. /// /// In the input, the values of ISTATE are as follows. /// 1 means this is the first call for the problem /// (initializations will be done). See note below. /// 2 means this is not the first call, and the calculation /// is to continue normally, with no change in any input /// parameters except possibly TOUT and ITASK. /// (If ITOL, RTOL, and/or ATOL are changed between calls /// with ISTATE = 2, the new values will be used but not /// tested for legality.) /// 3 means this is not the first call, and the /// calculation is to continue normally, but with /// a change in input parameters other than /// TOUT and ITASK. Changes are allowed in /// NEQ, ITOL, RTOL, ATOL, IOPT, LRW, LIW, MF, ML, MU, /// and any of the optional input except H0. /// (See IWORK description for ML and MU.) /// Note: A preliminary call with TOUT = T is not counted /// as a first call here, as no initialization or checking of /// input is done. (Such a call is sometimes useful to include /// the initial conditions in the output.) /// Thus the first call for which TOUT .ne. T requires /// ISTATE = 1 in the input. /// /// In the output, ISTATE has the following values and meanings. /// 1 means nothing was done, as TOUT was equal to T with /// ISTATE = 1 in the input. /// 2 means the integration was performed successfully. /// -1 means an excessive amount of work (more than MXSTEP /// steps) was done on this call, before completing the /// requested task, but the integration was otherwise /// successful as far as T. (MXSTEP is an optional input /// and is normally 500.) To continue, the user may /// simply reset ISTATE to a value .gt. 1 and call again. /// (The excess work step counter will be reset to 0.) /// In addition, the user may increase MXSTEP to avoid /// this error return. (See optional input below.) /// -2 means too much accuracy was requested for the precision /// of the machine being used. This was detected before /// completing the requested task, but the integration /// was successful as far as T. To continue, the tolerance /// parameters must be reset, and ISTATE must be set /// to 3. The optional output TOLSF may be used for this /// purpose. (Note: If this condition is detected before /// taking any steps, then an illegal input return /// (ISTATE = -3) occurs instead.) /// -3 means illegal input was detected, before taking any /// integration steps. See written message for details. /// Note: If the solver detects an infinite loop of calls /// to the solver with illegal input, it will cause /// the run to stop. /// -4 means there were repeated error test failures on /// one attempted step, before completing the requested /// task, but the integration was successful as far as T. /// The problem may have a singularity, or the input /// may be inappropriate. /// -5 means there were repeated convergence test failures on /// one attempted step, before completing the requested /// task, but the integration was successful as far as T. /// This may be caused by an inaccurate Jacobian matrix, /// if one is being used. /// -6 means EWT(i) became zero for some i during the /// integration. Pure relative error control (ATOL(i)=0.0) /// was requested on a variable which has now vanished. /// The integration was successful as far as T. /// /// Note: Since the normal output value of ISTATE is 2, /// it does not need to be reset for normal continuation. /// Also, since a negative input value of ISTATE will be /// regarded as illegal, a negative output value requires the /// user to change it, and possibly other input, before /// calling the solver again. /// /// /// = An integer flag to specify whether or not any optional /// input is being used on this call. Input only. /// The optional input is listed separately below. /// IOPT = 0 means no optional input is being used. /// Default values will be used in all cases. /// IOPT = 1 means optional input is being used. /// /// /// = A real working array (double precision). /// The length of RWORK must be at least /// 20 + NYH*(MAXORD + 1) + 3*NEQ + LWM where /// NYH = the initial value of NEQ, /// MAXORD = 12 (if METH = 1) or 5 (if METH = 2) (unless a /// smaller value is given as an optional input), /// LWM = length of work space for matrix-related data: /// LWM = 0 if MITER = 0, /// LWM = 2*NEQ**2 + 2 if MITER = 1 or 2, and MF.gt.0, /// LWM = NEQ**2 + 2 if MITER = 1 or 2, and MF.lt.0, /// LWM = NEQ + 2 if MITER = 3, /// LWM = (3*ML+2*MU+2)*NEQ + 2 if MITER = 4 or 5, and MF.gt.0, /// LWM = (2*ML+MU+1)*NEQ + 2 if MITER = 4 or 5, and MF.lt.0. /// (See the MF description for METH and MITER.) /// Thus if MAXORD has its default value and NEQ is constant, /// this length is: /// 20 + 16*NEQ for MF = 10, /// 22 + 16*NEQ + 2*NEQ**2 for MF = 11 or 12, /// 22 + 16*NEQ + NEQ**2 for MF = -11 or -12, /// 22 + 17*NEQ for MF = 13, /// 22 + 18*NEQ + (3*ML+2*MU)*NEQ for MF = 14 or 15, /// 22 + 17*NEQ + (2*ML+MU)*NEQ for MF = -14 or -15, /// 20 + 9*NEQ for MF = 20, /// 22 + 9*NEQ + 2*NEQ**2 for MF = 21 or 22, /// 22 + 9*NEQ + NEQ**2 for MF = -21 or -22, /// 22 + 10*NEQ for MF = 23, /// 22 + 11*NEQ + (3*ML+2*MU)*NEQ for MF = 24 or 25. /// 22 + 10*NEQ + (2*ML+MU)*NEQ for MF = -24 or -25. /// The first 20 words of RWORK are reserved for conditional /// and optional input and optional output. /// /// The following word in RWORK is a conditional input: /// RWORK(1) = TCRIT = critical value of t which the solver /// is not to overshoot. Required if ITASK is /// 4 or 5, and ignored otherwise. (See ITASK.) /// /// /// = The length of the array RWORK, as declared by the user. /// (This will be checked by the solver.) /// /// /// = An integer work array. The length of IWORK must be at least /// 30 if MITER = 0 or 3 (MF = 10, 13, 20, 23), or /// 30 + NEQ otherwise (abs(MF) = 11,12,14,15,21,22,24,25). /// The first 30 words of IWORK are reserved for conditional and /// optional input and optional output. /// /// The following 2 words in IWORK are conditional input: /// IWORK(1) = ML These are the lower and upper /// IWORK(2) = MU half-bandwidths, respectively, of the /// banded Jacobian, excluding the main diagonal. /// The band is defined by the matrix locations /// (i,j) with i-ML .le. j .le. i+MU. ML and MU /// must satisfy 0 .le. ML,MU .le. NEQ-1. /// These are required if MITER is 4 or 5, and /// ignored otherwise. ML and MU may in fact be /// the band parameters for a matrix to which /// df/dy is only approximately equal. /// /// /// = the length of the array IWORK, as declared by the user. /// (This will be checked by the solver.) /// /// /// = The name of the user-supplied routine (MITER = 1 or 4) to /// compute the Jacobian matrix, df/dy, as a function of /// the scalar t and the vector y. It is to have the form /// SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD, /// RPAR, IPAR) /// DOUBLE PRECISION T, Y(NEQ), PD(NROWPD,NEQ), RPAR /// where NEQ, T, Y, ML, MU, and NROWPD are input and the array /// PD is to be loaded with partial derivatives (elements of the /// Jacobian matrix) in the output. PD must be given a first /// dimension of NROWPD. T and Y have the same meaning as in /// Subroutine F. /// In the full matrix case (MITER = 1), ML and MU are /// ignored, and the Jacobian is to be loaded into PD in /// columnwise manner, with df(i)/dy(j) loaded into PD(i,j). /// In the band matrix case (MITER = 4), the elements /// within the band are to be loaded into PD in columnwise /// manner, with diagonal lines of df/dy loaded into the rows /// of PD. Thus df(i)/dy(j) is to be loaded into PD(i-j+MU+1,j). /// ML and MU are the half-bandwidth parameters. (See IWORK). /// The locations in PD in the two triangular areas which /// correspond to nonexistent matrix elements can be ignored /// or loaded arbitrarily, as they are overwritten by DVODE. /// JAC need not provide df/dy exactly. A crude /// approximation (possibly with a smaller bandwidth) will do. /// In either case, PD is preset to zero by the solver, /// so that only the nonzero elements need be loaded by JAC. /// Each call to JAC is preceded by a call to F with the same /// arguments NEQ, T, and Y. Thus to gain some efficiency, /// intermediate quantities shared by both calculations may be /// saved in a user COMMON block by F and not recomputed by JAC, /// if desired. Also, JAC may alter the Y array, if desired. /// JAC must be declared external in the calling program. /// Subroutine JAC may access user-defined real and integer /// work arrays, RPAR and IPAR, whose dimensions are set by the /// user in the main program. /// /// /// = The method flag. Used only for input. The legal values of /// MF are 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, /// -11, -12, -14, -15, -21, -22, -24, -25. /// MF is a signed two-digit integer, MF = JSV*(10*METH + MITER). /// JSV = SIGN(MF) indicates the Jacobian-saving strategy: /// JSV = 1 means a copy of the Jacobian is saved for reuse /// in the corrector iteration algorithm. /// JSV = -1 means a copy of the Jacobian is not saved /// (valid only for MITER = 1, 2, 4, or 5). /// METH indicates the basic linear multistep method: /// METH = 1 means the implicit Adams method. /// METH = 2 means the method based on backward /// differentiation formulas (BDF-s). /// MITER indicates the corrector iteration method: /// MITER = 0 means functional iteration (no Jacobian matrix /// is involved). /// MITER = 1 means chord iteration with a user-supplied /// full (NEQ by NEQ) Jacobian. /// MITER = 2 means chord iteration with an internally /// generated (difference quotient) full Jacobian /// (using NEQ extra calls to F per df/dy value). /// MITER = 3 means chord iteration with an internally /// generated diagonal Jacobian approximation /// (using 1 extra call to F per df/dy evaluation). /// MITER = 4 means chord iteration with a user-supplied /// banded Jacobian. /// MITER = 5 means chord iteration with an internally /// generated banded Jacobian (using ML+MU+1 extra /// calls to F per df/dy evaluation). /// If MITER = 1 or 4, the user must supply a subroutine JAC /// (the name is arbitrary) as described above under JAC. /// For other values of MITER, a dummy argument can be used. /// /// /// User-specified array used to communicate real parameters /// to user-supplied subroutines. If RPAR is a vector, then /// it must be dimensioned in the user's main program. If it /// is unused or it is a scalar, then it need not be /// dimensioned. /// /// /// User-specified array used to communicate integer parameter /// to user-supplied subroutines. The comments on dimensioning /// RPAR apply to IPAR. /// public void Run(IFEX F, int NEQ, ref double[] Y, int offset_y, ref double T, double TOUT, int ITOL , double[] RTOL, int offset_rtol, double[] ATOL, int offset_atol, int ITASK, ref int ISTATE, int IOPT, ref double[] RWORK, int offset_rwork , int LRW, ref int[] IWORK, int offset_iwork, int LIW, IJEX JAC, int MF, double[] RPAR, int offset_rpar , int[] IPAR, int offset_ipar) { #region Variables bool IHIT = false; double ATOLI = 0; double BIG = 0; double EWTI = 0; double H0 = 0; double HMAX = 0; double HMX = 0; double RH = 0;double RTOLI = 0; double SIZE = 0; double TCRIT = 0; double TNEXT = 0; double TOLSF = 0; double TP = 0; int I = 0;int IER = 0; int IFLAG = 0; int IMXER = 0; int JCO = 0; int KGO = 0; int LENIW = 0; int LENJ = 0; int LENP = 0;int LENRW = 0; int LENWM = 0; int LF0 = 0; int MBAND = 0; int MFA = 0; int ML = 0; int MU = 0; int NITER = 0;int NSLAST = 0; string MSG = new string(' ', 80); #endregion #region Array Index Correction int o_y = -1 + offset_y; int o_rtol = -1 + offset_rtol; int o_atol = -1 + offset_atol; int o_rwork = -1 + offset_rwork; int o_iwork = -1 + offset_iwork; int o_rpar = -1 + offset_rpar; int o_ipar = -1 + offset_ipar; #endregion #region Prolog // C----------------------------------------------------------------------- // C DVODE: Variable-coefficient Ordinary Differential Equation solver, // C with fixed-leading-coefficient implementation. // C This version is in double precision. // C // C DVODE solves the initial value problem for stiff or nonstiff // C systems of first order ODEs, // C dy/dt = f(t,y) , or, in component form, // C dy(i)/dt = f(i) = f(i,t,y(1),y(2),...,y(NEQ)) (i = 1,...,NEQ). // C DVODE is a package based on the EPISODE and EPISODEB packages, and // C on the ODEPACK user interface standard, with minor modifications. // C----------------------------------------------------------------------- // C Authors: // C Peter N. Brown and Alan C. Hindmarsh // C Center for Applied Scientific Computing, L-561 // C Lawrence Livermore National Laboratory // C Livermore, CA 94551 // C and // C George D. Byrne // C Illinois Institute of Technology // C Chicago, IL 60616 // C----------------------------------------------------------------------- // C References: // C // C 1. P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, "VODE: A Variable // C Coefficient ODE Solver," SIAM J. Sci. Stat. Comput., 10 (1989), // C pp. 1038-1051. Also, LLNL Report UCRL-98412, June 1988. // C 2. G. D. Byrne and A. C. Hindmarsh, "A Polyalgorithm for the // C Numerical Solution of Ordinary Differential Equations," // C ACM Trans. Math. Software, 1 (1975), pp. 71-96. // C 3. A. C. Hindmarsh and G. D. Byrne, "EPISODE: An Effective Package // C for the Integration of Systems of Ordinary Differential // C Equations," LLNL Report UCID-30112, Rev. 1, April 1977. // C 4. G. D. Byrne and A. C. Hindmarsh, "EPISODEB: An Experimental // C Package for the Integration of Systems of Ordinary Differential // C Equations with Banded Jacobians," LLNL Report UCID-30132, April // C 1976. // C 5. A. C. Hindmarsh, "ODEPACK, a Systematized Collection of ODE // C Solvers," in Scientific Computing, R. S. Stepleman et al., eds., // C North-Holland, Amsterdam, 1983, pp. 55-64. // C 6. K. R. Jackson and R. Sacks-Davis, "An Alternative Implementation // C of Variable Step-Size Multistep Formulas for Stiff ODEs," ACM // C Trans. Math. Software, 6 (1980), pp. 295-318. // C----------------------------------------------------------------------- // C Summary of usage. // C // C Communication between the user and the DVODE package, for normal // C situations, is summarized here. This summary describes only a subset // C of the full set of options available. See the full description for // C details, including optional communication, nonstandard options, // C and instructions for special situations. See also the example // C problem (with program and output) following this summary. // C // C A. First provide a subroutine of the form: // C SUBROUTINE F (NEQ, T, Y, YDOT, RPAR, IPAR) // C DOUBLE PRECISION T, Y(NEQ), YDOT(NEQ), RPAR // C which supplies the vector function f by loading YDOT(i) with f(i). // C // C B. Next determine (or guess) whether or not the problem is stiff. // C Stiffness occurs when the Jacobian matrix df/dy has an eigenvalue // C whose real part is negative and large in magnitude, compared to the // C reciprocal of the t span of interest. If the problem is nonstiff, // C use a method flag MF = 10. If it is stiff, there are four standard // C choices for MF (21, 22, 24, 25), and DVODE requires the Jacobian // C matrix in some form. In these cases (MF .gt. 0), DVODE will use a // C saved copy of the Jacobian matrix. If this is undesirable because of // C storage limitations, set MF to the corresponding negative value // C (-21, -22, -24, -25). (See full description of MF below.) // C The Jacobian matrix is regarded either as full (MF = 21 or 22), // C or banded (MF = 24 or 25). In the banded case, DVODE requires two // C half-bandwidth parameters ML and MU. These are, respectively, the // C widths of the lower and upper parts of the band, excluding the main // C diagonal. Thus the band consists of the locations (i,j) with // C i-ML .le. j .le. i+MU, and the full bandwidth is ML+MU+1. // C // C C. If the problem is stiff, you are encouraged to supply the Jacobian // C directly (MF = 21 or 24), but if this is not feasible, DVODE will // C compute it internally by difference quotients (MF = 22 or 25). // C If you are supplying the Jacobian, provide a subroutine of the form: // C SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD, RPAR, IPAR) // C DOUBLE PRECISION T, Y(NEQ), PD(NROWPD,NEQ), RPAR // C which supplies df/dy by loading PD as follows: // C For a full Jacobian (MF = 21), load PD(i,j) with df(i)/dy(j), // C the partial derivative of f(i) with respect to y(j). (Ignore the // C ML and MU arguments in this case.) // C For a banded Jacobian (MF = 24), load PD(i-j+MU+1,j) with // C df(i)/dy(j), i.e. load the diagonal lines of df/dy into the rows of // C PD from the top down. // C In either case, only nonzero elements need be loaded. // C // C D. Write a main program which calls subroutine DVODE once for // C each point at which answers are desired. This should also provide // C for possible use of logical unit 6 for output of error messages // C by DVODE. On the first call to DVODE, supply arguments as follows: // C F = Name of subroutine for right-hand side vector f. // C This name must be declared external in calling program. // C NEQ = Number of first order ODEs. // C Y = Array of initial values, of length NEQ. // C T = The initial value of the independent variable. // C TOUT = First point where output is desired (.ne. T). // C ITOL = 1 or 2 according as ATOL (below) is a scalar or array. // C RTOL = Relative tolerance parameter (scalar). // C ATOL = Absolute tolerance parameter (scalar or array). // C The estimated local error in Y(i) will be controlled so as // C to be roughly less (in magnitude) than // C EWT(i) = RTOL*abs(Y(i)) + ATOL if ITOL = 1, or // C EWT(i) = RTOL*abs(Y(i)) + ATOL(i) if ITOL = 2. // C Thus the local error test passes if, in each component, // C either the absolute error is less than ATOL (or ATOL(i)), // C or the relative error is less than RTOL. // C Use RTOL = 0.0 for pure absolute error control, and // C use ATOL = 0.0 (or ATOL(i) = 0.0) for pure relative error // C control. Caution: Actual (global) errors may exceed these // C local tolerances, so choose them conservatively. // C ITASK = 1 for normal computation of output values of Y at t = TOUT. // C ISTATE = Integer flag (input and output). Set ISTATE = 1. // C IOPT = 0 to indicate no optional input used. // C RWORK = Real work array of length at least: // C 20 + 16*NEQ for MF = 10, // C 22 + 9*NEQ + 2*NEQ**2 for MF = 21 or 22, // C 22 + 11*NEQ + (3*ML + 2*MU)*NEQ for MF = 24 or 25. // C LRW = Declared length of RWORK (in user's DIMENSION statement). // C IWORK = Integer work array of length at least: // C 30 for MF = 10, // C 30 + NEQ for MF = 21, 22, 24, or 25. // C If MF = 24 or 25, input in IWORK(1),IWORK(2) the lower // C and upper half-bandwidths ML,MU. // C LIW = Declared length of IWORK (in user's DIMENSION statement). // C JAC = Name of subroutine for Jacobian matrix (MF = 21 or 24). // C If used, this name must be declared external in calling // C program. If not used, pass a dummy name. // C MF = Method flag. Standard values are: // C 10 for nonstiff (Adams) method, no Jacobian used. // C 21 for stiff (BDF) method, user-supplied full Jacobian. // C 22 for stiff method, internally generated full Jacobian. // C 24 for stiff method, user-supplied banded Jacobian. // C 25 for stiff method, internally generated banded Jacobian. // C RPAR,IPAR = user-defined real and integer arrays passed to F and JAC. // C Note that the main program must declare arrays Y, RWORK, IWORK, // C and possibly ATOL, RPAR, and IPAR. // C // C E. The output from the first call (or any call) is: // C Y = Array of computed values of y(t) vector. // C T = Corresponding value of independent variable (normally TOUT). // C ISTATE = 2 if DVODE was successful, negative otherwise. // C -1 means excess work done on this call. (Perhaps wrong MF.) // C -2 means excess accuracy requested. (Tolerances too small.) // C -3 means illegal input detected. (See printed message.) // C -4 means repeated error test failures. (Check all input.) // C -5 means repeated convergence failures. (Perhaps bad // C Jacobian supplied or wrong choice of MF or tolerances.) // C -6 means error weight became zero during problem. (Solution // C component i vanished, and ATOL or ATOL(i) = 0.) // C // C F. To continue the integration after a successful return, simply // C reset TOUT and call DVODE again. No other parameters need be reset. // C // C----------------------------------------------------------------------- // C EXAMPLE PROBLEM // C // C The following is a simple example problem, with the coding // C needed for its solution by DVODE. The problem is from chemical // C kinetics, and consists of the following three rate equations: // C dy1/dt = -.04*y1 + 1.e4*y2*y3 // C dy2/dt = .04*y1 - 1.e4*y2*y3 - 3.e7*y2**2 // C dy3/dt = 3.e7*y2**2 // C on the interval from t = 0.0 to t = 4.e10, with initial conditions // C y1 = 1.0, y2 = y3 = 0. The problem is stiff. // C // C The following coding solves this problem with DVODE, using MF = 21 // C and printing results at t = .4, 4., ..., 4.e10. It uses // C ITOL = 2 and ATOL much smaller for y2 than y1 or y3 because // C y2 has much smaller values. // C At the end of the run, statistical quantities of interest are // C printed. (See optional output in the full description below.) // C To generate Fortran source code, replace C in column 1 with a blank // C in the coding below. // C // C EXTERNAL FEX, JEX // C DOUBLE PRECISION ATOL, RPAR, RTOL, RWORK, T, TOUT, Y // C DIMENSION Y(3), ATOL(3), RWORK(67), IWORK(33) // C NEQ = 3 // C Y(1) = 1.0D0 // C Y(2) = 0.0D0 // C Y(3) = 0.0D0 // C T = 0.0D0 // C TOUT = 0.4D0 // C ITOL = 2 // C RTOL = 1.D-4 // C ATOL(1) = 1.D-8 // C ATOL(2) = 1.D-14 // C ATOL(3) = 1.D-6 // C ITASK = 1 // C ISTATE = 1 // C IOPT = 0 // C LRW = 67 // C LIW = 33 // C MF = 21 // C DO 40 IOUT = 1,12 // C CALL DVODE(FEX,NEQ,Y,T,TOUT,ITOL,RTOL,ATOL,ITASK,ISTATE, // C 1 IOPT,RWORK,LRW,IWORK,LIW,JEX,MF,RPAR,IPAR) // C WRITE(6,20)T,Y(1),Y(2),Y(3) // C 20 FORMAT(' At t =',D12.4,' y =',3D14.6) // C IF (ISTATE .LT. 0) GO TO 80 // C 40 TOUT = TOUT*10. // C WRITE(6,60) IWORK(11),IWORK(12),IWORK(13),IWORK(19), // C 1 IWORK(20),IWORK(21),IWORK(22) // C 60 FORMAT(/' No. steps =',I4,' No. f-s =',I4, // C 1 ' No. J-s =',I4,' No. LU-s =',I4/ // C 2 ' No. nonlinear iterations =',I4/ // C 3 ' No. nonlinear convergence failures =',I4/ // C 4 ' No. error test failures =',I4/) // C STOP // C 80 WRITE(6,90)ISTATE // C 90 FORMAT(///' Error halt: ISTATE =',I3) // C STOP // C END // C // C SUBROUTINE FEX (NEQ, T, Y, YDOT, RPAR, IPAR) // C DOUBLE PRECISION RPAR, T, Y, YDOT // C DIMENSION Y(NEQ), YDOT(NEQ) // C YDOT(1) = -.04D0*Y(1) + 1.D4*Y(2)*Y(3) // C YDOT(3) = 3.D7*Y(2)*Y(2) // C YDOT(2) = -YDOT(1) - YDOT(3) // C RETURN // C END // C // C SUBROUTINE JEX (NEQ, T, Y, ML, MU, PD, NRPD, RPAR, IPAR) // C DOUBLE PRECISION PD, RPAR, T, Y // C DIMENSION Y(NEQ), PD(NRPD,NEQ) // C PD(1,1) = -.04D0 // C PD(1,2) = 1.D4*Y(3) // C PD(1,3) = 1.D4*Y(2) // C PD(2,1) = .04D0 // C PD(2,3) = -PD(1,3) // C PD(3,2) = 6.D7*Y(2) // C PD(2,2) = -PD(1,2) - PD(3,2) // C RETURN // C END // C // C The following output was obtained from the above program on a // C Cray-1 computer with the CFT compiler. // C // C At t = 4.0000e-01 y = 9.851680e-01 3.386314e-05 1.479817e-02 // C At t = 4.0000e+00 y = 9.055255e-01 2.240539e-05 9.445214e-02 // C At t = 4.0000e+01 y = 7.158108e-01 9.184883e-06 2.841800e-01 // C At t = 4.0000e+02 y = 4.505032e-01 3.222940e-06 5.494936e-01 // C At t = 4.0000e+03 y = 1.832053e-01 8.942690e-07 8.167938e-01 // C At t = 4.0000e+04 y = 3.898560e-02 1.621875e-07 9.610142e-01 // C At t = 4.0000e+05 y = 4.935882e-03 1.984013e-08 9.950641e-01 // C At t = 4.0000e+06 y = 5.166183e-04 2.067528e-09 9.994834e-01 // C At t = 4.0000e+07 y = 5.201214e-05 2.080593e-10 9.999480e-01 // C At t = 4.0000e+08 y = 5.213149e-06 2.085271e-11 9.999948e-01 // C At t = 4.0000e+09 y = 5.183495e-07 2.073399e-12 9.999995e-01 // C At t = 4.0000e+10 y = 5.450996e-08 2.180399e-13 9.999999e-01 // C // C No. steps = 595 No. f-s = 832 No. J-s = 13 No. LU-s = 112 // C No. nonlinear iterations = 831 // C No. nonlinear convergence failures = 0 // C No. error test failures = 22 // C----------------------------------------------------------------------- // C Full description of user interface to DVODE. // C // C The user interface to DVODE consists of the following parts. // C // C i. The call sequence to subroutine DVODE, which is a driver // C routine for the solver. This includes descriptions of both // C the call sequence arguments and of user-supplied routines. // C Following these descriptions is // C * a description of optional input available through the // C call sequence, // C * a description of optional output (in the work arrays), and // C * instructions for interrupting and restarting a solution. // C // C ii. Descriptions of other routines in the DVODE package that may be // C (optionally) called by the user. These provide the ability to // C alter error message handling, save and restore the internal // C COMMON, and obtain specified derivatives of the solution y(t). // C // C iii. Descriptions of COMMON blocks to be declared in overlay // C or similar environments. // C // C iv. Description of two routines in the DVODE package, either of // C which the user may replace with his own version, if desired. // C these relate to the measurement of errors. // C // C----------------------------------------------------------------------- // C Part i. Call Sequence. // C // C The call sequence parameters used for input only are // C F, NEQ, TOUT, ITOL, RTOL, ATOL, ITASK, IOPT, LRW, LIW, JAC, MF, // C and those used for both input and output are // C Y, T, ISTATE. // C The work arrays RWORK and IWORK are also used for conditional and // C optional input and optional output. (The term output here refers // C to the return from subroutine DVODE to the user's calling program.) // C // C The legality of input parameters will be thoroughly checked on the // C initial call for the problem, but not checked thereafter unless a // C change in input parameters is flagged by ISTATE = 3 in the input. // C // C The descriptions of the call arguments are as follows. // C // C F = The name of the user-supplied subroutine defining the // C ODE system. The system must be put in the first-order // C form dy/dt = f(t,y), where f is a vector-valued function // C of the scalar t and the vector y. Subroutine F is to // C compute the function f. It is to have the form // C SUBROUTINE F (NEQ, T, Y, YDOT, RPAR, IPAR) // C DOUBLE PRECISION T, Y(NEQ), YDOT(NEQ), RPAR // C where NEQ, T, and Y are input, and the array YDOT = f(t,y) // C is output. Y and YDOT are arrays of length NEQ. // C Subroutine F should not alter Y(1),...,Y(NEQ). // C F must be declared EXTERNAL in the calling program. // C // C Subroutine F may access user-defined real and integer // C work arrays RPAR and IPAR, which are to be dimensioned // C in the main program. // C // C If quantities computed in the F routine are needed // C externally to DVODE, an extra call to F should be made // C for this purpose, for consistent and accurate results. // C If only the derivative dy/dt is needed, use DVINDY instead. // C // C NEQ = The size of the ODE system (number of first order // C ordinary differential equations). Used only for input. // C NEQ may not be increased during the problem, but // C can be decreased (with ISTATE = 3 in the input). // C // C Y = A real array for the vector of dependent variables, of // C length NEQ or more. Used for both input and output on the // C first call (ISTATE = 1), and only for output on other calls. // C On the first call, Y must contain the vector of initial // C values. In the output, Y contains the computed solution // C evaluated at T. If desired, the Y array may be used // C for other purposes between calls to the solver. // C // C This array is passed as the Y argument in all calls to // C F and JAC. // C // C T = The independent variable. In the input, T is used only on // C the first call, as the initial point of the integration. // C In the output, after each call, T is the value at which a // C computed solution Y is evaluated (usually the same as TOUT). // C On an error return, T is the farthest point reached. // C // C TOUT = The next value of t at which a computed solution is desired. // C Used only for input. // C // C When starting the problem (ISTATE = 1), TOUT may be equal // C to T for one call, then should .ne. T for the next call. // C For the initial T, an input value of TOUT .ne. T is used // C in order to determine the direction of the integration // C (i.e. the algebraic sign of the step sizes) and the rough // C scale of the problem. Integration in either direction // C (forward or backward in t) is permitted. // C // C If ITASK = 2 or 5 (one-step modes), TOUT is ignored after // C the first call (i.e. the first call with TOUT .ne. T). // C Otherwise, TOUT is required on every call. // C // C If ITASK = 1, 3, or 4, the values of TOUT need not be // C monotone, but a value of TOUT which backs up is limited // C to the current internal t interval, whose endpoints are // C TCUR - HU and TCUR. (See optional output, below, for // C TCUR and HU.) // C // C ITOL = An indicator for the type of error control. See // C description below under ATOL. Used only for input. // C // C RTOL = A relative error tolerance parameter, either a scalar or // C an array of length NEQ. See description below under ATOL. // C Input only. // C // C ATOL = An absolute error tolerance parameter, either a scalar or // C an array of length NEQ. Input only. // C // C The input parameters ITOL, RTOL, and ATOL determine // C the error control performed by the solver. The solver will // C control the vector e = (e(i)) of estimated local errors // C in Y, according to an inequality of the form // C rms-norm of ( e(i)/EWT(i) ) .le. 1, // C where EWT(i) = RTOL(i)*abs(Y(i)) + ATOL(i), // C and the rms-norm (root-mean-square norm) here is // C rms-norm(v) = sqrt(sum v(i)**2 / NEQ). Here EWT = (EWT(i)) // C is a vector of weights which must always be positive, and // C the values of RTOL and ATOL should all be non-negative. // C The following table gives the types (scalar/array) of // C RTOL and ATOL, and the corresponding form of EWT(i). // C // C ITOL RTOL ATOL EWT(i) // C 1 scalar scalar RTOL*ABS(Y(i)) + ATOL // C 2 scalar array RTOL*ABS(Y(i)) + ATOL(i) // C 3 array scalar RTOL(i)*ABS(Y(i)) + ATOL // C 4 array array RTOL(i)*ABS(Y(i)) + ATOL(i) // C // C When either of these parameters is a scalar, it need not // C be dimensioned in the user's calling program. // C // C If none of the above choices (with ITOL, RTOL, and ATOL // C fixed throughout the problem) is suitable, more general // C error controls can be obtained by substituting // C user-supplied routines for the setting of EWT and/or for // C the norm calculation. See Part iv below. // C // C If global errors are to be estimated by making a repeated // C run on the same problem with smaller tolerances, then all // C components of RTOL and ATOL (i.e. of EWT) should be scaled // C down uniformly. // C // C ITASK = An index specifying the task to be performed. // C Input only. ITASK has the following values and meanings. // C 1 means normal computation of output values of y(t) at // C t = TOUT (by overshooting and interpolating). // C 2 means take one step only and return. // C 3 means stop at the first internal mesh point at or // C beyond t = TOUT and return. // C 4 means normal computation of output values of y(t) at // C t = TOUT but without overshooting t = TCRIT. // C TCRIT must be input as RWORK(1). TCRIT may be equal to // C or beyond TOUT, but not behind it in the direction of // C integration. This option is useful if the problem // C has a singularity at or beyond t = TCRIT. // C 5 means take one step, without passing TCRIT, and return. // C TCRIT must be input as RWORK(1). // C // C Note: If ITASK = 4 or 5 and the solver reaches TCRIT // C (within roundoff), it will return T = TCRIT (exactly) to // C indicate this (unless ITASK = 4 and TOUT comes before TCRIT, // C in which case answers at T = TOUT are returned first). // C // C ISTATE = an index used for input and output to specify the // C the state of the calculation. // C // C In the input, the values of ISTATE are as follows. // C 1 means this is the first call for the problem // C (initializations will be done). See note below. // C 2 means this is not the first call, and the calculation // C is to continue normally, with no change in any input // C parameters except possibly TOUT and ITASK. // C (If ITOL, RTOL, and/or ATOL are changed between calls // C with ISTATE = 2, the new values will be used but not // C tested for legality.) // C 3 means this is not the first call, and the // C calculation is to continue normally, but with // C a change in input parameters other than // C TOUT and ITASK. Changes are allowed in // C NEQ, ITOL, RTOL, ATOL, IOPT, LRW, LIW, MF, ML, MU, // C and any of the optional input except H0. // C (See IWORK description for ML and MU.) // C Note: A preliminary call with TOUT = T is not counted // C as a first call here, as no initialization or checking of // C input is done. (Such a call is sometimes useful to include // C the initial conditions in the output.) // C Thus the first call for which TOUT .ne. T requires // C ISTATE = 1 in the input. // C // C In the output, ISTATE has the following values and meanings. // C 1 means nothing was done, as TOUT was equal to T with // C ISTATE = 1 in the input. // C 2 means the integration was performed successfully. // C -1 means an excessive amount of work (more than MXSTEP // C steps) was done on this call, before completing the // C requested task, but the integration was otherwise // C successful as far as T. (MXSTEP is an optional input // C and is normally 500.) To continue, the user may // C simply reset ISTATE to a value .gt. 1 and call again. // C (The excess work step counter will be reset to 0.) // C In addition, the user may increase MXSTEP to avoid // C this error return. (See optional input below.) // C -2 means too much accuracy was requested for the precision // C of the machine being used. This was detected before // C completing the requested task, but the integration // C was successful as far as T. To continue, the tolerance // C parameters must be reset, and ISTATE must be set // C to 3. The optional output TOLSF may be used for this // C purpose. (Note: If this condition is detected before // C taking any steps, then an illegal input return // C (ISTATE = -3) occurs instead.) // C -3 means illegal input was detected, before taking any // C integration steps. See written message for details. // C Note: If the solver detects an infinite loop of calls // C to the solver with illegal input, it will cause // C the run to stop. // C -4 means there were repeated error test failures on // C one attempted step, before completing the requested // C task, but the integration was successful as far as T. // C The problem may have a singularity, or the input // C may be inappropriate. // C -5 means there were repeated convergence test failures on // C one attempted step, before completing the requested // C task, but the integration was successful as far as T. // C This may be caused by an inaccurate Jacobian matrix, // C if one is being used. // C -6 means EWT(i) became zero for some i during the // C integration. Pure relative error control (ATOL(i)=0.0) // C was requested on a variable which has now vanished. // C The integration was successful as far as T. // C // C Note: Since the normal output value of ISTATE is 2, // C it does not need to be reset for normal continuation. // C Also, since a negative input value of ISTATE will be // C regarded as illegal, a negative output value requires the // C user to change it, and possibly other input, before // C calling the solver again. // C // C IOPT = An integer flag to specify whether or not any optional // C input is being used on this call. Input only. // C The optional input is listed separately below. // C IOPT = 0 means no optional input is being used. // C Default values will be used in all cases. // C IOPT = 1 means optional input is being used. // C // C RWORK = A real working array (double precision). // C The length of RWORK must be at least // C 20 + NYH*(MAXORD + 1) + 3*NEQ + LWM where // C NYH = the initial value of NEQ, // C MAXORD = 12 (if METH = 1) or 5 (if METH = 2) (unless a // C smaller value is given as an optional input), // C LWM = length of work space for matrix-related data: // C LWM = 0 if MITER = 0, // C LWM = 2*NEQ**2 + 2 if MITER = 1 or 2, and MF.gt.0, // C LWM = NEQ**2 + 2 if MITER = 1 or 2, and MF.lt.0, // C LWM = NEQ + 2 if MITER = 3, // C LWM = (3*ML+2*MU+2)*NEQ + 2 if MITER = 4 or 5, and MF.gt.0, // C LWM = (2*ML+MU+1)*NEQ + 2 if MITER = 4 or 5, and MF.lt.0. // C (See the MF description for METH and MITER.) // C Thus if MAXORD has its default value and NEQ is constant, // C this length is: // C 20 + 16*NEQ for MF = 10, // C 22 + 16*NEQ + 2*NEQ**2 for MF = 11 or 12, // C 22 + 16*NEQ + NEQ**2 for MF = -11 or -12, // C 22 + 17*NEQ for MF = 13, // C 22 + 18*NEQ + (3*ML+2*MU)*NEQ for MF = 14 or 15, // C 22 + 17*NEQ + (2*ML+MU)*NEQ for MF = -14 or -15, // C 20 + 9*NEQ for MF = 20, // C 22 + 9*NEQ + 2*NEQ**2 for MF = 21 or 22, // C 22 + 9*NEQ + NEQ**2 for MF = -21 or -22, // C 22 + 10*NEQ for MF = 23, // C 22 + 11*NEQ + (3*ML+2*MU)*NEQ for MF = 24 or 25. // C 22 + 10*NEQ + (2*ML+MU)*NEQ for MF = -24 or -25. // C The first 20 words of RWORK are reserved for conditional // C and optional input and optional output. // C // C The following word in RWORK is a conditional input: // C RWORK(1) = TCRIT = critical value of t which the solver // C is not to overshoot. Required if ITASK is // C 4 or 5, and ignored otherwise. (See ITASK.) // C // C LRW = The length of the array RWORK, as declared by the user. // C (This will be checked by the solver.) // C // C IWORK = An integer work array. The length of IWORK must be at least // C 30 if MITER = 0 or 3 (MF = 10, 13, 20, 23), or // C 30 + NEQ otherwise (abs(MF) = 11,12,14,15,21,22,24,25). // C The first 30 words of IWORK are reserved for conditional and // C optional input and optional output. // C // C The following 2 words in IWORK are conditional input: // C IWORK(1) = ML These are the lower and upper // C IWORK(2) = MU half-bandwidths, respectively, of the // C banded Jacobian, excluding the main diagonal. // C The band is defined by the matrix locations // C (i,j) with i-ML .le. j .le. i+MU. ML and MU // C must satisfy 0 .le. ML,MU .le. NEQ-1. // C These are required if MITER is 4 or 5, and // C ignored otherwise. ML and MU may in fact be // C the band parameters for a matrix to which // C df/dy is only approximately equal. // C // C LIW = the length of the array IWORK, as declared by the user. // C (This will be checked by the solver.) // C // C Note: The work arrays must not be altered between calls to DVODE // C for the same problem, except possibly for the conditional and // C optional input, and except for the last 3*NEQ words of RWORK. // C The latter space is used for internal scratch space, and so is // C available for use by the user outside DVODE between calls, if // C desired (but not for use by F or JAC). // C // C JAC = The name of the user-supplied routine (MITER = 1 or 4) to // C compute the Jacobian matrix, df/dy, as a function of // C the scalar t and the vector y. It is to have the form // C SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD, // C RPAR, IPAR) // C DOUBLE PRECISION T, Y(NEQ), PD(NROWPD,NEQ), RPAR // C where NEQ, T, Y, ML, MU, and NROWPD are input and the array // C PD is to be loaded with partial derivatives (elements of the // C Jacobian matrix) in the output. PD must be given a first // C dimension of NROWPD. T and Y have the same meaning as in // C Subroutine F. // C In the full matrix case (MITER = 1), ML and MU are // C ignored, and the Jacobian is to be loaded into PD in // C columnwise manner, with df(i)/dy(j) loaded into PD(i,j). // C In the band matrix case (MITER = 4), the elements // C within the band are to be loaded into PD in columnwise // C manner, with diagonal lines of df/dy loaded into the rows // C of PD. Thus df(i)/dy(j) is to be loaded into PD(i-j+MU+1,j). // C ML and MU are the half-bandwidth parameters. (See IWORK). // C The locations in PD in the two triangular areas which // C correspond to nonexistent matrix elements can be ignored // C or loaded arbitrarily, as they are overwritten by DVODE. // C JAC need not provide df/dy exactly. A crude // C approximation (possibly with a smaller bandwidth) will do. // C In either case, PD is preset to zero by the solver, // C so that only the nonzero elements need be loaded by JAC. // C Each call to JAC is preceded by a call to F with the same // C arguments NEQ, T, and Y. Thus to gain some efficiency, // C intermediate quantities shared by both calculations may be // C saved in a user COMMON block by F and not recomputed by JAC, // C if desired. Also, JAC may alter the Y array, if desired. // C JAC must be declared external in the calling program. // C Subroutine JAC may access user-defined real and integer // C work arrays, RPAR and IPAR, whose dimensions are set by the // C user in the main program. // C // C MF = The method flag. Used only for input. The legal values of // C MF are 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, // C -11, -12, -14, -15, -21, -22, -24, -25. // C MF is a signed two-digit integer, MF = JSV*(10*METH + MITER). // C JSV = SIGN(MF) indicates the Jacobian-saving strategy: // C JSV = 1 means a copy of the Jacobian is saved for reuse // C in the corrector iteration algorithm. // C JSV = -1 means a copy of the Jacobian is not saved // C (valid only for MITER = 1, 2, 4, or 5). // C METH indicates the basic linear multistep method: // C METH = 1 means the implicit Adams method. // C METH = 2 means the method based on backward // C differentiation formulas (BDF-s). // C MITER indicates the corrector iteration method: // C MITER = 0 means functional iteration (no Jacobian matrix // C is involved). // C MITER = 1 means chord iteration with a user-supplied // C full (NEQ by NEQ) Jacobian. // C MITER = 2 means chord iteration with an internally // C generated (difference quotient) full Jacobian // C (using NEQ extra calls to F per df/dy value). // C MITER = 3 means chord iteration with an internally // C generated diagonal Jacobian approximation // C (using 1 extra call to F per df/dy evaluation). // C MITER = 4 means chord iteration with a user-supplied // C banded Jacobian. // C MITER = 5 means chord iteration with an internally // C generated banded Jacobian (using ML+MU+1 extra // C calls to F per df/dy evaluation). // C If MITER = 1 or 4, the user must supply a subroutine JAC // C (the name is arbitrary) as described above under JAC. // C For other values of MITER, a dummy argument can be used. // C // C RPAR User-specified array used to communicate real parameters // C to user-supplied subroutines. If RPAR is a vector, then // C it must be dimensioned in the user's main program. If it // C is unused or it is a scalar, then it need not be // C dimensioned. // C // C IPAR User-specified array used to communicate integer parameter // C to user-supplied subroutines. The comments on dimensioning // C RPAR apply to IPAR. // C----------------------------------------------------------------------- // C Optional Input. // C // C The following is a list of the optional input provided for in the // C call sequence. (See also Part ii.) For each such input variable, // C this table lists its name as used in this documentation, its // C location in the call sequence, its meaning, and the default value. // C The use of any of this input requires IOPT = 1, and in that // C case all of this input is examined. A value of zero for any // C of these optional input variables will cause the default value to be // C used. Thus to use a subset of the optional input, simply preload // C locations 5 to 10 in RWORK and IWORK to 0.0 and 0 respectively, and // C then set those of interest to nonzero values. // C // C NAME LOCATION MEANING AND DEFAULT VALUE // C // C H0 RWORK(5) The step size to be attempted on the first step. // C The default value is determined by the solver. // C // C HMAX RWORK(6) The maximum absolute step size allowed. // C The default value is infinite. // C // C HMIN RWORK(7) The minimum absolute step size allowed. // C The default value is 0. (This lower bound is not // C enforced on the final step before reaching TCRIT // C when ITASK = 4 or 5.) // C // C MAXORD IWORK(5) The maximum order to be allowed. The default // C value is 12 if METH = 1, and 5 if METH = 2. // C If MAXORD exceeds the default value, it will // C be reduced to the default value. // C If MAXORD is changed during the problem, it may // C cause the current order to be reduced. // C // C MXSTEP IWORK(6) Maximum number of (internally defined) steps // C allowed during one call to the solver. // C The default value is 500. // C // C MXHNIL IWORK(7) Maximum number of messages printed (per problem) // C warning that T + H = T on a step (H = step size). // C This must be positive to result in a non-default // C value. The default value is 10. // C // C----------------------------------------------------------------------- // C Optional Output. // C // C As optional additional output from DVODE, the variables listed // C below are quantities related to the performance of DVODE // C which are available to the user. These are communicated by way of // C the work arrays, but also have internal mnemonic names as shown. // C Except where stated otherwise, all of this output is defined // C on any successful return from DVODE, and on any return with // C ISTATE = -1, -2, -4, -5, or -6. On an illegal input return // C (ISTATE = -3), they will be unchanged from their existing values // C (if any), except possibly for TOLSF, LENRW, and LENIW. // C On any error return, output relevant to the error will be defined, // C as noted below. // C // C NAME LOCATION MEANING // C // C HU RWORK(11) The step size in t last used (successfully). // C // C HCUR RWORK(12) The step size to be attempted on the next step. // C // C TCUR RWORK(13) The current value of the independent variable // C which the solver has actually reached, i.e. the // C current internal mesh point in t. In the output, // C TCUR will always be at least as far from the // C initial value of t as the current argument T, // C but may be farther (if interpolation was done). // C // C TOLSF RWORK(14) A tolerance scale factor, greater than 1.0, // C computed when a request for too much accuracy was // C detected (ISTATE = -3 if detected at the start of // C the problem, ISTATE = -2 otherwise). If ITOL is // C left unaltered but RTOL and ATOL are uniformly // C scaled up by a factor of TOLSF for the next call, // C then the solver is deemed likely to succeed. // C (The user may also ignore TOLSF and alter the // C tolerance parameters in any other way appropriate.) // C // C NST IWORK(11) The number of steps taken for the problem so far. // C // C NFE IWORK(12) The number of f evaluations for the problem so far. // C // C NJE IWORK(13) The number of Jacobian evaluations so far. // C // C NQU IWORK(14) The method order last used (successfully). // C // C NQCUR IWORK(15) The order to be attempted on the next step. // C // C IMXER IWORK(16) The index of the component of largest magnitude in // C the weighted local error vector ( e(i)/EWT(i) ), // C on an error return with ISTATE = -4 or -5. // C // C LENRW IWORK(17) The length of RWORK actually required. // C This is defined on normal returns and on an illegal // C input return for insufficient storage. // C // C LENIW IWORK(18) The length of IWORK actually required. // C This is defined on normal returns and on an illegal // C input return for insufficient storage. // C // C NLU IWORK(19) The number of matrix LU decompositions so far. // C // C NNI IWORK(20) The number of nonlinear (Newton) iterations so far. // C // C NCFN IWORK(21) The number of convergence failures of the nonlinear // C solver so far. // C // C NETF IWORK(22) The number of error test failures of the integrator // C so far. // C // C The following two arrays are segments of the RWORK array which // C may also be of interest to the user as optional output. // C For each array, the table below gives its internal name, // C its base address in RWORK, and its description. // C // C NAME BASE ADDRESS DESCRIPTION // C // C YH 21 The Nordsieck history array, of size NYH by // C (NQCUR + 1), where NYH is the initial value // C of NEQ. For j = 0,1,...,NQCUR, column j+1 // C of YH contains HCUR**j/factorial(j) times // C the j-th derivative of the interpolating // C polynomial currently representing the // C solution, evaluated at t = TCUR. // C // C ACOR LENRW-NEQ+1 Array of size NEQ used for the accumulated // C corrections on each step, scaled in the output // C to represent the estimated local error in Y // C on the last step. This is the vector e in // C the description of the error control. It is // C defined only on a successful return from DVODE. // C // C----------------------------------------------------------------------- // C Interrupting and Restarting // C // C If the integration of a given problem by DVODE is to be // C interrrupted and then later continued, such as when restarting // C an interrupted run or alternating between two or more ODE problems, // C the user should save, following the return from the last DVODE call // C prior to the interruption, the contents of the call sequence // C variables and internal COMMON blocks, and later restore these // C values before the next DVODE call for that problem. To save // C and restore the COMMON blocks, use subroutine DVSRCO, as // C described below in part ii. // C // C In addition, if non-default values for either LUN or MFLAG are // C desired, an extra call to XSETUN and/or XSETF should be made just // C before continuing the integration. See Part ii below for details. // C // C----------------------------------------------------------------------- // C Part ii. Other Routines Callable. // C // C The following are optional calls which the user may make to // C gain additional capabilities in conjunction with DVODE. // C (The routines XSETUN and XSETF are designed to conform to the // C SLATEC error handling package.) // C // C FORM OF CALL FUNCTION // C CALL XSETUN(LUN) Set the logical unit number, LUN, for // C output of messages from DVODE, if // C the default is not desired. // C The default value of LUN is 6. // C // C CALL XSETF(MFLAG) Set a flag to control the printing of // C messages by DVODE. // C MFLAG = 0 means do not print. (Danger: // C This risks losing valuable information.) // C MFLAG = 1 means print (the default). // C // C Either of the above calls may be made at // C any time and will take effect immediately. // C // C CALL DVSRCO(RSAV,ISAV,JOB) Saves and restores the contents of // C the internal COMMON blocks used by // C DVODE. (See Part iii below.) // C RSAV must be a real array of length 49 // C or more, and ISAV must be an integer // C array of length 40 or more. // C JOB=1 means save COMMON into RSAV/ISAV. // C JOB=2 means restore COMMON from RSAV/ISAV. // C DVSRCO is useful if one is // C interrupting a run and restarting // C later, or alternating between two or // C more problems solved with DVODE. // C // C CALL DVINDY(,,,,,) Provide derivatives of y, of various // C (See below.) orders, at a specified point T, if // C desired. It may be called only after // C a successful return from DVODE. // C // C The detailed instructions for using DVINDY are as follows. // C The form of the call is: // C // C CALL DVINDY (T, K, RWORK(21), NYH, DKY, IFLAG) // C // C The input parameters are: // C // C T = Value of independent variable where answers are desired // C (normally the same as the T last returned by DVODE). // C For valid results, T must lie between TCUR - HU and TCUR. // C (See optional output for TCUR and HU.) // C K = Integer order of the derivative desired. K must satisfy // C 0 .le. K .le. NQCUR, where NQCUR is the current order // C (see optional output). The capability corresponding // C to K = 0, i.e. computing y(T), is already provided // C by DVODE directly. Since NQCUR .ge. 1, the first // C derivative dy/dt is always available with DVINDY. // C RWORK(21) = The base address of the history array YH. // C NYH = Column length of YH, equal to the initial value of NEQ. // C // C The output parameters are: // C // C DKY = A real array of length NEQ containing the computed value // C of the K-th derivative of y(t). // C IFLAG = Integer flag, returned as 0 if K and T were legal, // C -1 if K was illegal, and -2 if T was illegal. // C On an error return, a message is also written. // C----------------------------------------------------------------------- // C Part iii. COMMON Blocks. // C If DVODE is to be used in an overlay situation, the user // C must declare, in the primary overlay, the variables in: // C (1) the call sequence to DVODE, // C (2) the two internal COMMON blocks // C /DVOD01/ of length 81 (48 double precision words // C followed by 33 integer words), // C /DVOD02/ of length 9 (1 double precision word // C followed by 8 integer words), // C // C If DVODE is used on a system in which the contents of internal // C COMMON blocks are not preserved between calls, the user should // C declare the above two COMMON blocks in his main program to insure // C that their contents are preserved. // C // C----------------------------------------------------------------------- // C Part iv. Optionally Replaceable Solver Routines. // C // C Below are descriptions of two routines in the DVODE package which // C relate to the measurement of errors. Either routine can be // C replaced by a user-supplied version, if desired. However, since such // C a replacement may have a major impact on performance, it should be // C done only when absolutely necessary, and only with great caution. // C (Note: The means by which the package version of a routine is // C superseded by the user's version may be system-dependent.) // C // C (a) DEWSET. // C The following subroutine is called just before each internal // C integration step, and sets the array of error weights, EWT, as // C described under ITOL/RTOL/ATOL above: // C SUBROUTINE DEWSET (NEQ, ITOL, RTOL, ATOL, YCUR, EWT) // C where NEQ, ITOL, RTOL, and ATOL are as in the DVODE call sequence, // C YCUR contains the current dependent variable vector, and // C EWT is the array of weights set by DEWSET. // C // C If the user supplies this subroutine, it must return in EWT(i) // C (i = 1,...,NEQ) a positive quantity suitable for comparison with // C errors in Y(i). The EWT array returned by DEWSET is passed to the // C DVNORM routine (See below.), and also used by DVODE in the computation // C of the optional output IMXER, the diagonal Jacobian approximation, // C and the increments for difference quotient Jacobians. // C // C In the user-supplied version of DEWSET, it may be desirable to use // C the current values of derivatives of y. Derivatives up to order NQ // C are available from the history array YH, described above under // C Optional Output. In DEWSET, YH is identical to the YCUR array, // C extended to NQ + 1 columns with a column length of NYH and scale // C factors of h**j/factorial(j). On the first call for the problem, // C given by NST = 0, NQ is 1 and H is temporarily set to 1.0. // C NYH is the initial value of NEQ. The quantities NQ, H, and NST // C can be obtained by including in DEWSET the statements: // C DOUBLE PRECISION RVOD, H, HU // C COMMON /DVOD01/ RVOD(48), IVOD(33) // C COMMON /DVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST // C NQ = IVOD(28) // C H = RVOD(21) // C Thus, for example, the current value of dy/dt can be obtained as // C YCUR(NYH+i)/H (i=1,...,NEQ) (and the division by H is // C unnecessary when NST = 0). // C // C (b) DVNORM. // C The following is a real function routine which computes the weighted // C root-mean-square norm of a vector v: // C D = DVNORM (N, V, W) // C where: // C N = the length of the vector, // C V = real array of length N containing the vector, // C W = real array of length N containing weights, // C D = sqrt( (1/N) * sum(V(i)*W(i))**2 ). // C DVNORM is called with N = NEQ and with W(i) = 1.0/EWT(i), where // C EWT is as set by subroutine DEWSET. // C // C If the user supplies this function, it should return a non-negative // C value of DVNORM suitable for use in the error control in DVODE. // C None of the arguments should be altered by DVNORM. // C For example, a user-supplied DVNORM routine might: // C -substitute a max-norm of (V(i)*W(i)) for the rms-norm, or // C -ignore some components of V in the norm, with the effect of // C suppressing the error control on those components of Y. // C----------------------------------------------------------------------- // C REVISION HISTORY (YYYYMMDD) // C 19890615 Date Written. Initial release. // C 19890922 Added interrupt/restart ability, minor changes throughout. // C 19910228 Minor revisions in line format, prologue, etc. // C 19920227 Modifications by D. Pang: // C (1) Applied subgennam to get generic intrinsic names. // C (2) Changed intrinsic names to generic in comments. // C (3) Added *DECK lines before each routine. // C 19920721 Names of routines and labeled Common blocks changed, so as // C to be unique in combined single/double precision code (ACH). // C 19920722 Minor revisions to prologue (ACH). // C 19920831 Conversion to double precision done (ACH). // C 19921106 Fixed minor bug: ETAQ,ETAQM1 in DVSTEP SAVE statement (ACH). // C 19921118 Changed LUNSAV/MFLGSV to IXSAV (ACH). // C 19941222 Removed MF overwrite; attached sign to H in estimated second // C deriv. in DVHIN; misc. comment changes throughout (ACH). // C 19970515 Minor corrections to comments in prologue, DVJAC (ACH). // C 19981111 Corrected Block B by adding final line, GO TO 200 (ACH). // C 20020430 Various upgrades (ACH): Use ODEPACK error handler package. // C Replaced D1MACH by DUMACH. Various changes to main // C prologue and other routine prologues. // C----------------------------------------------------------------------- // C Other Routines in the DVODE Package. // C // C In addition to subroutine DVODE, the DVODE package includes the // C following subroutines and function routines: // C DVHIN computes an approximate step size for the initial step. // C DVINDY computes an interpolated value of the y vector at t = TOUT. // C DVSTEP is the core integrator, which does one step of the // C integration and the associated error control. // C DVSET sets all method coefficients and test constants. // C DVNLSD solves the underlying nonlinear system -- the corrector. // C DVJAC computes and preprocesses the Jacobian matrix J = df/dy // C and the Newton iteration matrix P = I - (h/l1)*J. // C DVSOL manages solution of linear system in chord iteration. // C DVJUST adjusts the history array on a change of order. // C DEWSET sets the error weight vector EWT before each step. // C DVNORM computes the weighted r.m.s. norm of a vector. // C DVSRCO is a user-callable routine to save and restore // C the contents of the internal COMMON blocks. // C DACOPY is a routine to copy one two-dimensional array to another. // C DGEFA and DGESL are routines from LINPACK for solving full // C systems of linear algebraic equations. // C DGBFA and DGBSL are routines from LINPACK for solving banded // C linear systems. // C DAXPY, DSCAL, and DCOPY are basic linear algebra modules (BLAS). // C DUMACH sets the unit roundoff of the machine. // C XERRWD, XSETUN, XSETF, IXSAV, and IUMACH handle the printing of all // C error messages and warnings. XERRWD is machine-dependent. // C Note: DVNORM, DUMACH, IXSAV, and IUMACH are function routines. // C All the others are subroutines. // C // C----------------------------------------------------------------------- // C // C Type declarations for labeled COMMON block DVOD01 -------------------- // C // C // C Type declarations for labeled COMMON block DVOD02 -------------------- // C // C // C Type declarations for local variables -------------------------------- // C // C // C Type declaration for function subroutines called --------------------- // C // C // C----------------------------------------------------------------------- // C The following Fortran-77 declaration is to cause the values of the // C listed (local) variables to be saved between calls to DVODE. // C----------------------------------------------------------------------- // C----------------------------------------------------------------------- // C The following internal COMMON blocks contain variables which are // C communicated between subroutines in the DVODE package, or which are // C to be saved between calls to DVODE. // C In each block, real variables precede integers. // C The block /DVOD01/ appears in subroutines DVODE, DVINDY, DVSTEP, // C DVSET, DVNLSD, DVJAC, DVSOL, DVJUST and DVSRCO. // C The block /DVOD02/ appears in subroutines DVODE, DVINDY, DVSTEP, // C DVNLSD, DVJAC, and DVSRCO. // C // C The variables stored in the internal COMMON blocks are as follows: // C // C ACNRM = Weighted r.m.s. norm of accumulated correction vectors. // C CCMXJ = Threshhold on DRC for updating the Jacobian. (See DRC.) // C CONP = The saved value of TQ(5). // C CRATE = Estimated corrector convergence rate constant. // C DRC = Relative change in H*RL1 since last DVJAC call. // C EL = Real array of integration coefficients. See DVSET. // C ETA = Saved tentative ratio of new to old H. // C ETAMAX = Saved maximum value of ETA to be allowed. // C H = The step size. // C HMIN = The minimum absolute value of the step size H to be used. // C HMXI = Inverse of the maximum absolute value of H to be used. // C HMXI = 0.0 is allowed and corresponds to an infinite HMAX. // C HNEW = The step size to be attempted on the next step. // C HSCAL = Stepsize in scaling of YH array. // C PRL1 = The saved value of RL1. // C RC = Ratio of current H*RL1 to value on last DVJAC call. // C RL1 = The reciprocal of the coefficient EL(1). // C TAU = Real vector of past NQ step sizes, length 13. // C TQ = A real vector of length 5 in which DVSET stores constants // C used for the convergence test, the error test, and the // C selection of H at a new order. // C TN = The independent variable, updated on each step taken. // C UROUND = The machine unit roundoff. The smallest positive real number // C such that 1.0 + UROUND .ne. 1.0 // C ICF = Integer flag for convergence failure in DVNLSD: // C 0 means no failures. // C 1 means convergence failure with out of date Jacobian // C (recoverable error). // C 2 means convergence failure with current Jacobian or // C singular matrix (unrecoverable error). // C INIT = Saved integer flag indicating whether initialization of the // C problem has been done (INIT = 1) or not. // C IPUP = Saved flag to signal updating of Newton matrix. // C JCUR = Output flag from DVJAC showing Jacobian status: // C JCUR = 0 means J is not current. // C JCUR = 1 means J is current. // C JSTART = Integer flag used as input to DVSTEP: // C 0 means perform the first step. // C 1 means take a new step continuing from the last. // C -1 means take the next step with a new value of MAXORD, // C HMIN, HMXI, N, METH, MITER, and/or matrix parameters. // C On return, DVSTEP sets JSTART = 1. // C JSV = Integer flag for Jacobian saving, = sign(MF). // C KFLAG = A completion code from DVSTEP with the following meanings: // C 0 the step was succesful. // C -1 the requested error could not be achieved. // C -2 corrector convergence could not be achieved. // C -3, -4 fatal error in VNLS (can not occur here). // C KUTH = Input flag to DVSTEP showing whether H was reduced by the // C driver. KUTH = 1 if H was reduced, = 0 otherwise. // C L = Integer variable, NQ + 1, current order plus one. // C LMAX = MAXORD + 1 (used for dimensioning). // C LOCJS = A pointer to the saved Jacobian, whose storage starts at // C WM(LOCJS), if JSV = 1. // C LYH, LEWT, LACOR, LSAVF, LWM, LIWM = Saved integer pointers // C to segments of RWORK and IWORK. // C MAXORD = The maximum order of integration method to be allowed. // C METH/MITER = The method flags. See MF. // C MSBJ = The maximum number of steps between J evaluations, = 50. // C MXHNIL = Saved value of optional input MXHNIL. // C MXSTEP = Saved value of optional input MXSTEP. // C N = The number of first-order ODEs, = NEQ. // C NEWH = Saved integer to flag change of H. // C NEWQ = The method order to be used on the next step. // C NHNIL = Saved counter for occurrences of T + H = T. // C NQ = Integer variable, the current integration method order. // C NQNYH = Saved value of NQ*NYH. // C NQWAIT = A counter controlling the frequency of order changes. // C An order change is about to be considered if NQWAIT = 1. // C NSLJ = The number of steps taken as of the last Jacobian update. // C NSLP = Saved value of NST as of last Newton matrix update. // C NYH = Saved value of the initial value of NEQ. // C HU = The step size in t last used. // C NCFN = Number of nonlinear convergence failures so far. // C NETF = The number of error test failures of the integrator so far. // C NFE = The number of f evaluations for the problem so far. // C NJE = The number of Jacobian evaluations so far. // C NLU = The number of matrix LU decompositions so far. // C NNI = Number of nonlinear iterations so far. // C NQU = The method order last used. // C NST = The number of steps taken for the problem so far. // C----------------------------------------------------------------------- // C // C----------------------------------------------------------------------- // C Block A. // C This code block is executed on every call. // C It tests ISTATE and ITASK for legality and branches appropriately. // C If ISTATE .gt. 1 but the flag INIT shows that initialization has // C not yet been done, an error return occurs. // C If ISTATE = 1 and TOUT = T, return immediately. // C----------------------------------------------------------------------- #endregion #region Body if (ISTATE < 1 || ISTATE > 3) goto LABEL601; if (ITASK < 1 || ITASK > 5) goto LABEL602; if (ISTATE == 1) goto LABEL10; if (INIT.v != 1) goto LABEL603; if (ISTATE == 2) goto LABEL200; goto LABEL20; LABEL10: INIT.v = 0; if (TOUT == T) return; // C----------------------------------------------------------------------- // C Block B. // C The next code block is executed for the initial call (ISTATE = 1), // C or for a continuation call with parameter changes (ISTATE = 3). // C It contains checking of all input and various initializations. // C // C First check legality of the non-optional input NEQ, ITOL, IOPT, // C MF, ML, and MU. // C----------------------------------------------------------------------- LABEL20: if (NEQ <= 0) goto LABEL604; if (ISTATE == 1) goto LABEL25; if (NEQ > N.v) goto LABEL605; LABEL25: N.v = NEQ; if (ITOL < 1 || ITOL > 4) goto LABEL606; if (IOPT < 0 || IOPT > 1) goto LABEL607; JSV.v = FortranLib.Sign(1,MF); MFA = Math.Abs(MF); METH.v = MFA / 10; MITER.v = MFA - 10 * METH.v; if (METH.v < 1 || METH.v > 2) goto LABEL608; if (MITER.v < 0 || MITER.v > 5) goto LABEL608; if (MITER.v <= 3) goto LABEL30; ML = IWORK[1 + o_iwork]; MU = IWORK[2 + o_iwork]; if (ML < 0 || ML >= N.v) goto LABEL609; if (MU < 0 || MU >= N.v) goto LABEL610; LABEL30:; // C Next process and check the optional input. --------------------------- if (IOPT == 1) goto LABEL40; MAXORD.v = MORD[METH.v + o_mord]; MXSTEP.v = MXSTP0; MXHNIL.v = MXHNL0; if (ISTATE == 1) H0 = ZERO; HMXI.v = ZERO; HMIN.v = ZERO; goto LABEL60; LABEL40: MAXORD.v = IWORK[5 + o_iwork]; if (MAXORD.v < 0) goto LABEL611; if (MAXORD.v == 0) MAXORD.v = 100; MAXORD.v = Math.Min(MAXORD.v, MORD[METH.v + o_mord]); MXSTEP.v = IWORK[6 + o_iwork]; if (MXSTEP.v < 0) goto LABEL612; if (MXSTEP.v == 0) MXSTEP.v = MXSTP0; MXHNIL.v = IWORK[7 + o_iwork]; if (MXHNIL.v < 0) goto LABEL613; if (MXHNIL.v == 0) MXHNIL.v = MXHNL0; if (ISTATE != 1) goto LABEL50; H0 = RWORK[5 + o_rwork]; if ((TOUT - T) * H0 < ZERO) goto LABEL614; LABEL50: HMAX = RWORK[6 + o_rwork]; if (HMAX < ZERO) goto LABEL615; HMXI.v = ZERO; if (HMAX > ZERO) HMXI.v = ONE / HMAX; HMIN.v = RWORK[7 + o_rwork]; if (HMIN.v < ZERO) goto LABEL616; // C----------------------------------------------------------------------- // C Set work array pointers and check lengths LRW and LIW. // C Pointers to segments of RWORK and IWORK are named by prefixing L to // C the name of the segment. E.g., the segment YH starts at RWORK(LYH). // C Segments of RWORK (in order) are denoted YH, WM, EWT, SAVF, ACOR. // C Within WM, LOCJS is the location of the saved Jacobian (JSV .gt. 0). // C----------------------------------------------------------------------- LABEL60: LYH.v = 21; if (ISTATE == 1) NYH.v = N.v; LWM.v = LYH.v + (MAXORD.v + 1) * NYH.v; JCO = Math.Max(0, JSV.v); if (MITER.v == 0) LENWM = 0; if (MITER.v == 1 || MITER.v == 2) { LENWM = 2 + (1 + JCO) * N.v * N.v; LOCJS.v = N.v * N.v + 3; } if (MITER.v == 3) LENWM = 2 + N.v; if (MITER.v == 4 || MITER.v == 5) { MBAND = ML + MU + 1; LENP = (MBAND + ML) * N.v; LENJ = MBAND * N.v; LENWM = 2 + LENP + JCO * LENJ; LOCJS.v = LENP + 3; } LEWT.v = LWM.v + LENWM; LSAVF.v = LEWT.v + N.v; LACOR.v = LSAVF.v + N.v; LENRW = LACOR.v + N.v - 1; IWORK[17 + o_iwork] = LENRW; LIWM.v = 1; LENIW = 30 + N.v; if (MITER.v == 0 || MITER.v == 3) LENIW = 30; IWORK[18 + o_iwork] = LENIW; if (LENRW > LRW) goto LABEL617; if (LENIW > LIW) goto LABEL618; // C Check RTOL and ATOL for legality. ------------------------------------ RTOLI = RTOL[1 + o_rtol]; ATOLI = ATOL[1 + o_atol]; for (I = 1; I <= N.v; I++) { if (ITOL >= 3) RTOLI = RTOL[I + o_rtol]; if (ITOL == 2 || ITOL == 4) ATOLI = ATOL[I + o_atol]; if (RTOLI < ZERO) goto LABEL619; if (ATOLI < ZERO) goto LABEL620; } if (ISTATE == 1) goto LABEL100; // C If ISTATE = 3, set flag to signal parameter changes to DVSTEP. ------- JSTART.v = - 1; if (NQ.v <= MAXORD.v) goto LABEL90; // C MAXORD was reduced below NQ. Copy YH(*,MAXORD+2) into SAVF. --------- this._dcopy.Run(N.v, RWORK, LWM.v + o_rwork, 1, ref RWORK, LSAVF.v + o_rwork, 1); // C Reload WM(1) = RWORK(LWM), since LWM may have changed. --------------- LABEL90: if (MITER.v > 0) RWORK[LWM.v + o_rwork] = Math.Sqrt(UROUND.v); goto LABEL200; // C----------------------------------------------------------------------- // C Block C. // C The next block is for the initial call only (ISTATE = 1). // C It contains all remaining initializations, the initial call to F, // C and the calculation of the initial step size. // C The error weights in EWT are inverted after being loaded. // C----------------------------------------------------------------------- LABEL100: UROUND.v = this._dumach.Run(); TN.v = T; if (ITASK != 4 && ITASK != 5) goto LABEL110; TCRIT = RWORK[1 + o_rwork]; if ((TCRIT - TOUT) * (TOUT - T) < ZERO) goto LABEL625; if (H0 != ZERO && (T + H0 - TCRIT) * H0 > ZERO) H0 = TCRIT - T; LABEL110: JSTART.v = 0; if (MITER.v > 0) RWORK[LWM.v + o_rwork] = Math.Sqrt(UROUND.v); CCMXJ.v = PT2; MSBJ.v = 50; NHNIL.v = 0; NST.v = 0; NJE.v = 0; NNI.v = 0; NCFN.v = 0; NETF.v = 0; NLU.v = 0; NSLJ.v = 0; NSLAST = 0; HU.v = ZERO; NQU.v = 0; // C Initial call to F. (LF0 points to YH(*,2).) ------------------------- LF0 = LYH.v + NYH.v; F.Run(N.v, T, Y, offset_y, ref RWORK, LF0 + o_rwork, RPAR[1 + o_rpar], IPAR[1 + o_ipar]); NFE.v = 1; // C Load the initial value vector in YH. --------------------------------- this._dcopy.Run(N.v, Y, offset_y, 1, ref RWORK, LYH.v + o_rwork, 1); // C Load and invert the EWT array. (H is temporarily set to 1.0.) ------- NQ.v = 1; H.v = ONE; this._dewset.Run(N.v, ITOL, RTOL, offset_rtol, ATOL, offset_atol, RWORK, LYH.v + o_rwork, ref RWORK, LEWT.v + o_rwork); for (I = 1; I <= N.v; I++) { if (RWORK[I + LEWT.v - 1 + o_rwork] <= ZERO) goto LABEL621; RWORK[I + LEWT.v - 1 + o_rwork] = ONE / RWORK[I + LEWT.v - 1 + o_rwork]; } if (H0 != ZERO) goto LABEL180; // C Call DVHIN to set initial step size H0 to be attempted. -------------- this._dvhin.Run(N.v, T, RWORK, LYH.v + o_rwork, RWORK, LF0 + o_rwork, F, RPAR, offset_rpar , IPAR, offset_ipar, TOUT, UROUND.v, RWORK, LEWT.v + o_rwork, ITOL, ATOL, offset_atol , ref Y, offset_y, ref RWORK, LACOR.v + o_rwork, ref H0, ref NITER, ref IER); NFE.v += NITER; if (IER != 0) goto LABEL622; // C Adjust H0 if necessary to meet HMAX bound. --------------------------- LABEL180: RH = Math.Abs(H0) * HMXI.v; if (RH > ONE) H0 /= RH; // C Load H with H0 and scale YH(*,2) by H0. ------------------------------ H.v = H0; this._dscal.Run(N.v, H0, ref RWORK, LF0 + o_rwork, 1); goto LABEL270; // C----------------------------------------------------------------------- // C Block D. // C The next code block is for continuation calls only (ISTATE = 2 or 3) // C and is to check stop conditions before taking a step. // C----------------------------------------------------------------------- LABEL200: NSLAST = NST.v; KUTH.v = 0; switch (ITASK) { case 1: goto LABEL210; case 2: goto LABEL250; case 3: goto LABEL220; case 4: goto LABEL230; case 5: goto LABEL240; } LABEL210: if ((TN.v - TOUT) * H.v < ZERO) goto LABEL250; this._dvindy.Run(TOUT, 0, RWORK, LYH.v + o_rwork, NYH.v, ref Y, offset_y, ref IFLAG); if (IFLAG != 0) goto LABEL627; T = TOUT; goto LABEL420; LABEL220: TP = TN.v - HU.v * (ONE + HUN * UROUND.v); if ((TP - TOUT) * H.v > ZERO) goto LABEL623; if ((TN.v - TOUT) * H.v < ZERO) goto LABEL250; goto LABEL400; LABEL230: TCRIT = RWORK[1 + o_rwork]; if ((TN.v - TCRIT) * H.v > ZERO) goto LABEL624; if ((TCRIT - TOUT) * H.v < ZERO) goto LABEL625; if ((TN.v - TOUT) * H.v < ZERO) goto LABEL245; this._dvindy.Run(TOUT, 0, RWORK, LYH.v + o_rwork, NYH.v, ref Y, offset_y, ref IFLAG); if (IFLAG != 0) goto LABEL627; T = TOUT; goto LABEL420; LABEL240: TCRIT = RWORK[1 + o_rwork]; if ((TN.v - TCRIT) * H.v > ZERO) goto LABEL624; LABEL245: HMX = Math.Abs(TN.v) + Math.Abs(H.v); IHIT = Math.Abs(TN.v - TCRIT) <= HUN * UROUND.v * HMX; if (IHIT) goto LABEL400; TNEXT = TN.v + HNEW.v * (ONE + FOUR * UROUND.v); if ((TNEXT - TCRIT) * H.v <= ZERO) goto LABEL250; H.v = (TCRIT - TN.v) * (ONE - FOUR * UROUND.v); KUTH.v = 1; // C----------------------------------------------------------------------- // C Block E. // C The next block is normally executed for all calls and contains // C the call to the one-step core integrator DVSTEP. // C // C This is a looping point for the integration steps. // C // C First check for too many steps being taken, update EWT (if not at // C start of problem), check for too much accuracy being requested, and // C check for H below the roundoff level in T. // C----------------------------------------------------------------------- LABEL250:; if ((NST.v - NSLAST) >= MXSTEP.v) goto LABEL500; this._dewset.Run(N.v, ITOL, RTOL, offset_rtol, ATOL, offset_atol, RWORK, LYH.v + o_rwork, ref RWORK, LEWT.v + o_rwork); for (I = 1; I <= N.v; I++) { if (RWORK[I + LEWT.v - 1 + o_rwork] <= ZERO) goto LABEL510; RWORK[I + LEWT.v - 1 + o_rwork] = ONE / RWORK[I + LEWT.v - 1 + o_rwork]; } LABEL270: TOLSF = UROUND.v * this._dvnorm.Run(N.v, RWORK, LYH.v + o_rwork, RWORK, LEWT.v + o_rwork); if (TOLSF <= ONE) goto LABEL280; TOLSF *= TWO; if (NST.v == 0) goto LABEL626; goto LABEL520; LABEL280: if ((TN.v + H.v) != TN.v) goto LABEL290; NHNIL.v += 1; if (NHNIL.v > MXHNIL.v) goto LABEL290; FortranLib.Copy(ref MSG , "DVODE-- Warning: internal T (=R1) and H (=R2) are"); this._xerrwd.Run(MSG, 50, 101, 1, 0, 0 , 0, 0, ZERO, ZERO); FortranLib.Copy(ref MSG , " such that in the machine, T + H = T on the next step "); this._xerrwd.Run(MSG, 60, 101, 1, 0, 0 , 0, 0, ZERO, ZERO); FortranLib.Copy(ref MSG , " (H = step size). solver will continue anyway"); this._xerrwd.Run(MSG, 50, 101, 1, 0, 0 , 0, 2, TN.v, H.v); if (NHNIL.v < MXHNIL.v) goto LABEL290; FortranLib.Copy(ref MSG , "DVODE-- Above warning has been issued I1 times. "); this._xerrwd.Run(MSG, 50, 102, 1, 0, 0 , 0, 0, ZERO, ZERO); FortranLib.Copy(ref MSG , " it will not be issued again for this problem"); this._xerrwd.Run(MSG, 50, 102, 1, 1, MXHNIL.v , 0, 0, ZERO, ZERO); LABEL290:; // C----------------------------------------------------------------------- // C CALL DVSTEP (Y, YH, NYH, YH, EWT, SAVF, VSAV, ACOR, // C WM, IWM, F, JAC, F, DVNLSD, RPAR, IPAR) // C----------------------------------------------------------------------- this._dvstep.Run(ref Y, offset_y, ref RWORK, LYH.v + o_rwork, NYH.v, ref RWORK, LYH.v + o_rwork, RWORK, LEWT.v + o_rwork, ref RWORK, LSAVF.v + o_rwork , Y, offset_y, ref RWORK, LACOR.v + o_rwork, ref RWORK, LWM.v + o_rwork, ref IWORK, LIWM.v + o_iwork, F, JAC , F, this._dvnlsd, RPAR, offset_rpar, IPAR, offset_ipar); KGO = 1 - KFLAG.v; // C Branch on KFLAG. Note: In this version, KFLAG can not be set to -3. // C KFLAG .eq. 0, -1, -2 switch (KGO) { case 1: goto LABEL300; case 2: goto LABEL530; case 3: goto LABEL540; } // C----------------------------------------------------------------------- // C Block F. // C The following block handles the case of a successful return from the // C core integrator (KFLAG = 0). Test for stop conditions. // C----------------------------------------------------------------------- LABEL300: INIT.v = 1; KUTH.v = 0; switch (ITASK) { case 1: goto LABEL310; case 2: goto LABEL400; case 3: goto LABEL330; case 4: goto LABEL340; case 5: goto LABEL350; } // C ITASK = 1. If TOUT has been reached, interpolate. ------------------- LABEL310: if ((TN.v - TOUT) * H.v < ZERO) goto LABEL250; this._dvindy.Run(TOUT, 0, RWORK, LYH.v + o_rwork, NYH.v, ref Y, offset_y, ref IFLAG); T = TOUT; goto LABEL420; // C ITASK = 3. Jump to exit if TOUT was reached. ------------------------ LABEL330: if ((TN.v - TOUT) * H.v >= ZERO) goto LABEL400; goto LABEL250; // C ITASK = 4. See if TOUT or TCRIT was reached. Adjust H if necessary. LABEL340: if ((TN.v - TOUT) * H.v < ZERO) goto LABEL345; this._dvindy.Run(TOUT, 0, RWORK, LYH.v + o_rwork, NYH.v, ref Y, offset_y, ref IFLAG); T = TOUT; goto LABEL420; LABEL345: HMX = Math.Abs(TN.v) + Math.Abs(H.v); IHIT = Math.Abs(TN.v - TCRIT) <= HUN * UROUND.v * HMX; if (IHIT) goto LABEL400; TNEXT = TN.v + HNEW.v * (ONE + FOUR * UROUND.v); if ((TNEXT - TCRIT) * H.v <= ZERO) goto LABEL250; H.v = (TCRIT - TN.v) * (ONE - FOUR * UROUND.v); KUTH.v = 1; goto LABEL250; // C ITASK = 5. See if TCRIT was reached and jump to exit. --------------- LABEL350: HMX = Math.Abs(TN.v) + Math.Abs(H.v); IHIT = Math.Abs(TN.v - TCRIT) <= HUN * UROUND.v * HMX; // C----------------------------------------------------------------------- // C Block G. // C The following block handles all successful returns from DVODE. // C If ITASK .ne. 1, Y is loaded from YH and T is set accordingly. // C ISTATE is set to 2, and the optional output is loaded into the work // C arrays before returning. // C----------------------------------------------------------------------- LABEL400:; this._dcopy.Run(N.v, RWORK, LYH.v + o_rwork, 1, ref Y, offset_y, 1); T = TN.v; if (ITASK != 4 && ITASK != 5) goto LABEL420; if (IHIT) T = TCRIT; LABEL420: ISTATE = 2; RWORK[11 + o_rwork] = HU.v; RWORK[12 + o_rwork] = HNEW.v; RWORK[13 + o_rwork] = TN.v; IWORK[11 + o_iwork] = NST.v; IWORK[12 + o_iwork] = NFE.v; IWORK[13 + o_iwork] = NJE.v; IWORK[14 + o_iwork] = NQU.v; IWORK[15 + o_iwork] = NEWQ.v; IWORK[19 + o_iwork] = NLU.v; IWORK[20 + o_iwork] = NNI.v; IWORK[21 + o_iwork] = NCFN.v; IWORK[22 + o_iwork] = NETF.v; return; // C----------------------------------------------------------------------- // C Block H. // C The following block handles all unsuccessful returns other than // C those for illegal input. First the error message routine is called. // C if there was an error test or convergence test failure, IMXER is set. // C Then Y is loaded from YH, and T is set to TN. // C The optional output is loaded into the work arrays before returning. // C----------------------------------------------------------------------- // C The maximum number of steps was taken before reaching TOUT. ---------- LABEL500: FortranLib.Copy(ref MSG , "DVODE-- At current T (=R1), MXSTEP (=I1) steps "); this._xerrwd.Run(MSG, 50, 201, 1, 0, 0 , 0, 0, ZERO, ZERO); FortranLib.Copy(ref MSG , " taken on this call before reaching TOUT "); this._xerrwd.Run(MSG, 50, 201, 1, 1, MXSTEP.v , 0, 1, TN.v, ZERO); ISTATE = - 1; goto LABEL580; // C EWT(i) .le. 0.0 for some i (not at start of problem). ---------------- LABEL510: EWTI = RWORK[LEWT.v + I - 1 + o_rwork]; FortranLib.Copy(ref MSG , "DVODE-- At T (=R1), EWT(I1) has become R2 .le. 0."); this._xerrwd.Run(MSG, 50, 202, 1, 1, I , 0, 2, TN.v, EWTI); ISTATE = - 6; goto LABEL580; // C Too much accuracy requested for machine precision. ------------------- LABEL520: FortranLib.Copy(ref MSG , "DVODE-- At T (=R1), too much accuracy requested "); this._xerrwd.Run(MSG, 50, 203, 1, 0, 0 , 0, 0, ZERO, ZERO); FortranLib.Copy(ref MSG , " for precision of machine: see TOLSF (=R2) "); this._xerrwd.Run(MSG, 50, 203, 1, 0, 0 , 0, 2, TN.v, TOLSF); RWORK[14 + o_rwork] = TOLSF; ISTATE = - 2; goto LABEL580; // C KFLAG = -1. Error test failed repeatedly or with ABS(H) = HMIN. ----- LABEL530: FortranLib.Copy(ref MSG , "DVODE-- At T(=R1) and step size H(=R2), the error"); this._xerrwd.Run(MSG, 50, 204, 1, 0, 0 , 0, 0, ZERO, ZERO); FortranLib.Copy(ref MSG , " test failed repeatedly or with abs(H) = HMIN"); this._xerrwd.Run(MSG, 50, 204, 1, 0, 0 , 0, 2, TN.v, H.v); ISTATE = - 4; goto LABEL560; // C KFLAG = -2. Convergence failed repeatedly or with ABS(H) = HMIN. ---- LABEL540: FortranLib.Copy(ref MSG , "DVODE-- At T (=R1) and step size H (=R2), the "); this._xerrwd.Run(MSG, 50, 205, 1, 0, 0 , 0, 0, ZERO, ZERO); FortranLib.Copy(ref MSG , " corrector convergence failed repeatedly "); this._xerrwd.Run(MSG, 50, 205, 1, 0, 0 , 0, 0, ZERO, ZERO); FortranLib.Copy(ref MSG , " or with abs(H) = HMIN "); this._xerrwd.Run(MSG, 30, 205, 1, 0, 0 , 0, 2, TN.v, H.v); ISTATE = - 5; // C Compute IMXER if relevant. ------------------------------------------- LABEL560: BIG = ZERO; IMXER = 1; for (I = 1; I <= N.v; I++) { SIZE = Math.Abs(RWORK[I + LACOR.v - 1 + o_rwork] * RWORK[I + LEWT.v - 1 + o_rwork]); if (BIG >= SIZE) goto LABEL570; BIG = SIZE; IMXER = I; LABEL570:; } IWORK[16 + o_iwork] = IMXER; // C Set Y vector, T, and optional output. -------------------------------- LABEL580:; this._dcopy.Run(N.v, RWORK, LYH.v + o_rwork, 1, ref Y, offset_y, 1); T = TN.v; RWORK[11 + o_rwork] = HU.v; RWORK[12 + o_rwork] = H.v; RWORK[13 + o_rwork] = TN.v; IWORK[11 + o_iwork] = NST.v; IWORK[12 + o_iwork] = NFE.v; IWORK[13 + o_iwork] = NJE.v; IWORK[14 + o_iwork] = NQU.v; IWORK[15 + o_iwork] = NQ.v; IWORK[19 + o_iwork] = NLU.v; IWORK[20 + o_iwork] = NNI.v; IWORK[21 + o_iwork] = NCFN.v; IWORK[22 + o_iwork] = NETF.v; return; // C----------------------------------------------------------------------- // C Block I. // C The following block handles all error returns due to illegal input // C (ISTATE = -3), as detected before calling the core integrator. // C First the error message routine is called. If the illegal input // C is a negative ISTATE, the run is aborted (apparent infinite loop). // C----------------------------------------------------------------------- LABEL601: FortranLib.Copy(ref MSG , "DVODE-- ISTATE (=I1) illegal "); this._xerrwd.Run(MSG, 30, 1, 1, 1, ISTATE , 0, 0, ZERO, ZERO); if (ISTATE < 0) goto LABEL800; goto LABEL700; LABEL602: FortranLib.Copy(ref MSG , "DVODE-- ITASK (=I1) illegal "); this._xerrwd.Run(MSG, 30, 2, 1, 1, ITASK , 0, 0, ZERO, ZERO); goto LABEL700; LABEL603: FortranLib.Copy(ref MSG , "DVODE-- ISTATE (=I1) .gt. 1 but DVODE not initialized "); this._xerrwd.Run(MSG, 60, 3, 1, 1, ISTATE , 0, 0, ZERO, ZERO); goto LABEL700; LABEL604: FortranLib.Copy(ref MSG , "DVODE-- NEQ (=I1) .lt. 1 "); this._xerrwd.Run(MSG, 30, 4, 1, 1, NEQ , 0, 0, ZERO, ZERO); goto LABEL700; LABEL605: FortranLib.Copy(ref MSG , "DVODE-- ISTATE = 3 and NEQ increased (I1 to I2) "); this._xerrwd.Run(MSG, 50, 5, 1, 2, N.v , NEQ, 0, ZERO, ZERO); goto LABEL700; LABEL606: FortranLib.Copy(ref MSG , "DVODE-- ITOL (=I1) illegal "); this._xerrwd.Run(MSG, 30, 6, 1, 1, ITOL , 0, 0, ZERO, ZERO); goto LABEL700; LABEL607: FortranLib.Copy(ref MSG , "DVODE-- IOPT (=I1) illegal "); this._xerrwd.Run(MSG, 30, 7, 1, 1, IOPT , 0, 0, ZERO, ZERO); goto LABEL700; LABEL608: FortranLib.Copy(ref MSG , "DVODE-- MF (=I1) illegal "); this._xerrwd.Run(MSG, 30, 8, 1, 1, MF , 0, 0, ZERO, ZERO); goto LABEL700; LABEL609: FortranLib.Copy(ref MSG , "DVODE-- ML (=I1) illegal: .lt.0 or .ge.NEQ (=I2)"); this._xerrwd.Run(MSG, 50, 9, 1, 2, ML , NEQ, 0, ZERO, ZERO); goto LABEL700; LABEL610: FortranLib.Copy(ref MSG , "DVODE-- MU (=I1) illegal: .lt.0 or .ge.NEQ (=I2)"); this._xerrwd.Run(MSG, 50, 10, 1, 2, MU , NEQ, 0, ZERO, ZERO); goto LABEL700; LABEL611: FortranLib.Copy(ref MSG , "DVODE-- MAXORD (=I1) .lt. 0 "); this._xerrwd.Run(MSG, 30, 11, 1, 1, MAXORD.v , 0, 0, ZERO, ZERO); goto LABEL700; LABEL612: FortranLib.Copy(ref MSG , "DVODE-- MXSTEP (=I1) .lt. 0 "); this._xerrwd.Run(MSG, 30, 12, 1, 1, MXSTEP.v , 0, 0, ZERO, ZERO); goto LABEL700; LABEL613: FortranLib.Copy(ref MSG , "DVODE-- MXHNIL (=I1) .lt. 0 "); this._xerrwd.Run(MSG, 30, 13, 1, 1, MXHNIL.v , 0, 0, ZERO, ZERO); goto LABEL700; LABEL614: FortranLib.Copy(ref MSG , "DVODE-- TOUT (=R1) behind T (=R2) "); this._xerrwd.Run(MSG, 40, 14, 1, 0, 0 , 0, 2, TOUT, T); FortranLib.Copy(ref MSG , " integration direction is given by H0 (=R1) "); this._xerrwd.Run(MSG, 50, 14, 1, 0, 0 , 0, 1, H0, ZERO); goto LABEL700; LABEL615: FortranLib.Copy(ref MSG , "DVODE-- HMAX (=R1) .lt. 0.0 "); this._xerrwd.Run(MSG, 30, 15, 1, 0, 0 , 0, 1, HMAX, ZERO); goto LABEL700; LABEL616: FortranLib.Copy(ref MSG , "DVODE-- HMIN (=R1) .lt. 0.0 "); this._xerrwd.Run(MSG, 30, 16, 1, 0, 0 , 0, 1, HMIN.v, ZERO); goto LABEL700; LABEL617:; FortranLib.Copy(ref MSG , "DVODE-- RWORK length needed, LENRW (=I1), exceeds LRW (=I2)"); this._xerrwd.Run(MSG, 60, 17, 1, 2, LENRW , LRW, 0, ZERO, ZERO); goto LABEL700; LABEL618:; FortranLib.Copy(ref MSG , "DVODE-- IWORK length needed, LENIW (=I1), exceeds LIW (=I2)"); this._xerrwd.Run(MSG, 60, 18, 1, 2, LENIW , LIW, 0, ZERO, ZERO); goto LABEL700; LABEL619: FortranLib.Copy(ref MSG , "DVODE-- RTOL(I1) is R1 .lt. 0.0 "); this._xerrwd.Run(MSG, 40, 19, 1, 1, I , 0, 1, RTOLI, ZERO); goto LABEL700; LABEL620: FortranLib.Copy(ref MSG , "DVODE-- ATOL(I1) is R1 .lt. 0.0 "); this._xerrwd.Run(MSG, 40, 20, 1, 1, I , 0, 1, ATOLI, ZERO); goto LABEL700; LABEL621: EWTI = RWORK[LEWT.v + I - 1 + o_rwork]; FortranLib.Copy(ref MSG , "DVODE-- EWT(I1) is R1 .le. 0.0 "); this._xerrwd.Run(MSG, 40, 21, 1, 1, I , 0, 1, EWTI, ZERO); goto LABEL700; LABEL622:; FortranLib.Copy(ref MSG , "DVODE-- TOUT (=R1) too close to T(=R2) to start integration"); this._xerrwd.Run(MSG, 60, 22, 1, 0, 0 , 0, 2, TOUT, T); goto LABEL700; LABEL623:; FortranLib.Copy(ref MSG , "DVODE-- ITASK = I1 and TOUT (=R1) behind TCUR - HU (= R2) "); this._xerrwd.Run(MSG, 60, 23, 1, 1, ITASK , 0, 2, TOUT, TP); goto LABEL700; LABEL624:; FortranLib.Copy(ref MSG , "DVODE-- ITASK = 4 or 5 and TCRIT (=R1) behind TCUR (=R2) "); this._xerrwd.Run(MSG, 60, 24, 1, 0, 0 , 0, 2, TCRIT, TN.v); goto LABEL700; LABEL625:; FortranLib.Copy(ref MSG , "DVODE-- ITASK = 4 or 5 and TCRIT (=R1) behind TOUT (=R2) "); this._xerrwd.Run(MSG, 60, 25, 1, 0, 0 , 0, 2, TCRIT, TOUT); goto LABEL700; LABEL626: FortranLib.Copy(ref MSG , "DVODE-- At start of problem, too much accuracy "); this._xerrwd.Run(MSG, 50, 26, 1, 0, 0 , 0, 0, ZERO, ZERO); FortranLib.Copy(ref MSG , " requested for precision of machine: see TOLSF (=R1) "); this._xerrwd.Run(MSG, 60, 26, 1, 0, 0 , 0, 1, TOLSF, ZERO); RWORK[14 + o_rwork] = TOLSF; goto LABEL700; LABEL627: FortranLib.Copy(ref MSG , "DVODE-- Trouble from DVINDY. ITASK = I1, TOUT = R1. "); this._xerrwd.Run(MSG, 60, 27, 1, 1, ITASK , 0, 1, TOUT, ZERO); // C LABEL700:; ISTATE = - 3; return; // C LABEL800: FortranLib.Copy(ref MSG , "DVODE-- Run aborted: apparent infinite loop "); this._xerrwd.Run(MSG, 50, 303, 2, 0, 0 , 0, 0, ZERO, ZERO); return; // C----------------------- End of Subroutine DVODE ----------------------- #endregion } } #endregion #region The Class: DVHIN // *DECK DVHIN public class DVHIN { #region Dependencies DVNORM _dvnorm; #endregion #region Variables double HALF = 0; double HUN = 0; double PT1 = 0; double TWO = 0; #endregion public DVHIN(DVNORM dvnorm) { #region Set Dependencies this._dvnorm = dvnorm; #endregion #region Data Initialization //HALF/0.5D0 HALF = 0.5E0; //HUN/100.0D0 HUN = 100.0E0; //PT1/0.1D0 PT1 = 0.1E0; //TWO/2.0D0 TWO = 2.0E0; #endregion } public DVHIN() { #region Dependencies (Initialization) DVNORM dvnorm = new DVNORM(); #endregion #region Set Dependencies this._dvnorm = dvnorm; #endregion #region Data Initialization //HALF/0.5D0 HALF = 0.5E0; //HUN/100.0D0 HUN = 100.0E0; //PT1/0.1D0 PT1 = 0.1E0; //TWO/2.0D0 TWO = 2.0E0; #endregion } /// /// = Size of ODE system, input. /// /// /// = Initial value of independent variable, input. /// /// /// = Vector of initial conditions, input. /// /// /// = Vector of initial first derivatives, input. /// /// /// = Name of subroutine for right-hand side f(t,y), input. /// /// /// = First output value of independent variable /// /// /// = Machine unit roundoff /// /// /// = Step size to be attempted, output. /// /// /// = Number of iterations (and of f evaluations) to compute H0, /// output. /// /// /// = The error flag, returned with the value /// IER = 0 if no trouble occurred, or /// IER = -1 if TOUT and T0 are considered too close to proceed. /// public void Run(int N, double T0, double[] Y0, int offset_y0, double[] YDOT, int offset_ydot, IFEX F, double[] RPAR, int offset_rpar , int[] IPAR, int offset_ipar, double TOUT, double UROUND, double[] EWT, int offset_ewt, int ITOL, double[] ATOL, int offset_atol , ref double[] Y, int offset_y, ref double[] TEMP, int offset_temp, ref double H0, ref int NITER, ref int IER) { #region Variables double AFI = 0; double ATOLI = 0; double DELYI = 0; double H = 0; double HG = 0; double HLB = 0; double HNEW = 0; double HRAT = 0;double HUB = 0; double T1 = 0; double TDIST = 0; double TROUND = 0; double YDDNRM = 0; int I = 0; int ITER = 0; #endregion #region Array Index Correction int o_y0 = -1 + offset_y0; int o_ydot = -1 + offset_ydot; int o_rpar = -1 + offset_rpar; int o_ipar = -1 + offset_ipar; int o_ewt = -1 + offset_ewt; int o_atol = -1 + offset_atol; int o_y = -1 + offset_y; int o_temp = -1 + offset_temp; #endregion #region Prolog // C----------------------------------------------------------------------- // C Call sequence input -- N, T0, Y0, YDOT, F, RPAR, IPAR, TOUT, UROUND, // C EWT, ITOL, ATOL, Y, TEMP // C Call sequence output -- H0, NITER, IER // C COMMON block variables accessed -- None // C // C Subroutines called by DVHIN: F // C Function routines called by DVHI: DVNORM // C----------------------------------------------------------------------- // C This routine computes the step size, H0, to be attempted on the // C first step, when the user has not supplied a value for this. // C // C First we check that TOUT - T0 differs significantly from zero. Then // C an iteration is done to approximate the initial second derivative // C and this is used to define h from w.r.m.s.norm(h**2 * yddot / 2) = 1. // C A bias factor of 1/2 is applied to the resulting h. // C The sign of H0 is inferred from the initial values of TOUT and T0. // C // C Communication with DVHIN is done with the following variables: // C // C N = Size of ODE system, input. // C T0 = Initial value of independent variable, input. // C Y0 = Vector of initial conditions, input. // C YDOT = Vector of initial first derivatives, input. // C F = Name of subroutine for right-hand side f(t,y), input. // C RPAR, IPAR = Dummy names for user's real and integer work arrays. // C TOUT = First output value of independent variable // C UROUND = Machine unit roundoff // C EWT, ITOL, ATOL = Error weights and tolerance parameters // C as described in the driver routine, input. // C Y, TEMP = Work arrays of length N. // C H0 = Step size to be attempted, output. // C NITER = Number of iterations (and of f evaluations) to compute H0, // C output. // C IER = The error flag, returned with the value // C IER = 0 if no trouble occurred, or // C IER = -1 if TOUT and T0 are considered too close to proceed. // C----------------------------------------------------------------------- // C // C Type declarations for local variables -------------------------------- // C // C // C Type declaration for function subroutines called --------------------- // C // C----------------------------------------------------------------------- // C The following Fortran-77 declaration is to cause the values of the // C listed (local) variables to be saved between calls to this integrator. // C----------------------------------------------------------------------- // C #endregion #region Body NITER = 0; TDIST = Math.Abs(TOUT - T0); TROUND = UROUND * Math.Max(Math.Abs(T0), Math.Abs(TOUT)); if (TDIST < TWO * TROUND) goto LABEL100; // C // C Set a lower bound on h based on the roundoff level in T0 and TOUT. --- HLB = HUN * TROUND; // C Set an upper bound on h based on TOUT-T0 and the initial Y and YDOT. - HUB = PT1 * TDIST; ATOLI = ATOL[1 + o_atol]; for (I = 1; I <= N; I++) { if (ITOL == 2 || ITOL == 4) ATOLI = ATOL[I + o_atol]; DELYI = PT1 * Math.Abs(Y0[I + o_y0]) + ATOLI; AFI = Math.Abs(YDOT[I + o_ydot]); if (AFI * HUB > DELYI) HUB = DELYI / AFI; } // C // C Set initial guess for h as geometric mean of upper and lower bounds. - ITER = 0; HG = Math.Sqrt(HLB * HUB); // C If the bounds have crossed, exit with the mean value. ---------------- if (HUB < HLB) { H0 = HG; goto LABEL90; } // C // C Looping point for iteration. ----------------------------------------- LABEL50:; // C Estimate the second derivative as a difference quotient in f. -------- H = FortranLib.Sign(HG,TOUT - T0); T1 = T0 + H; for (I = 1; I <= N; I++) { Y[I + o_y] = Y0[I + o_y0] + H * YDOT[I + o_ydot]; } F.Run(N, T1, Y, offset_y, ref TEMP, offset_temp, RPAR[1 + o_rpar], IPAR[1 + o_ipar]); for (I = 1; I <= N; I++) { TEMP[I + o_temp] = (TEMP[I + o_temp] - YDOT[I + o_ydot]) / H; } YDDNRM = this._dvnorm.Run(N, TEMP, offset_temp, EWT, offset_ewt); // C Get the corresponding new value of h. -------------------------------- if (YDDNRM * HUB * HUB > TWO) { HNEW = Math.Sqrt(TWO / YDDNRM); } else { HNEW = Math.Sqrt(HG * HUB); } ITER += 1; // C----------------------------------------------------------------------- // C Test the stopping conditions. // C Stop if the new and previous h values differ by a factor of .lt. 2. // C Stop if four iterations have been done. Also, stop with previous h // C if HNEW/HG .gt. 2 after first iteration, as this probably means that // C the second derivative value is bad because of cancellation error. // C----------------------------------------------------------------------- if (ITER >= 4) goto LABEL80; HRAT = HNEW / HG; if ((HRAT > HALF) && (HRAT < TWO)) goto LABEL80; if ((ITER >= 2) && (HNEW > TWO * HG)) { HNEW = HG; goto LABEL80; } HG = HNEW; goto LABEL50; // C // C Iteration done. Apply bounds, bias factor, and sign. Then exit. ---- LABEL80: H0 = HNEW * HALF; if (H0 < HLB) H0 = HLB; if (H0 > HUB) H0 = HUB; LABEL90: H0 = FortranLib.Sign(H0,TOUT - T0); NITER = ITER; IER = 0; return; // C Error return for TOUT - T0 too small. -------------------------------- LABEL100: IER = - 1; return; // C----------------------- End of Subroutine DVHIN ----------------------- #endregion } } #endregion #region The Class: DVINDY // *DECK DVINDY public class DVINDY { #region Dependencies DSCAL _dscal; XERRWD _xerrwd; #endregion #region Common variables #region Common Block: DVOD01 Declaration CommonBlock _dvod01; Odouble ACNRM; Odouble CCMXJ; Odouble CONP; Odouble CRATE; Odouble DRC; Odouble[] EL; int o_el; Odouble ETA; Odouble ETAMAX;Odouble H; Odouble HMIN; Odouble HMXI; Odouble HNEW; Odouble HSCAL; Odouble PRL1; Odouble RC; Odouble RL1; Odouble[] TAU; int o_tau;Odouble[] TQ; int o_tq; Odouble TN; Odouble UROUND; Oint ICF; Oint INIT; Oint IPUP; Oint JCUR; Oint JSTART; Oint JSV; Oint KFLAG; Oint KUTH; Oint L; Oint LMAX; Oint LYH; Oint LEWT;Oint LACOR; Oint LSAVF; Oint LWM; Oint LIWM; Oint LOCJS; Oint MAXORD; Oint METH; Oint MITER; Oint MSBJ; Oint MXHNIL;Oint MXSTEP; Oint N; Oint NEWH; Oint NEWQ; Oint NHNIL; Oint NQ; Oint NQNYH; Oint NQWAIT; Oint NSLJ; Oint NSLP; Oint NYH; #endregion #region Common Block: DVOD02 Declaration CommonBlock _dvod02; Odouble HU; Oint NCFN; Oint NETF; Oint NFE; Oint NJE; Oint NLU; Oint NNI; Oint NQU; Oint NST; #endregion #endregion #region Variables double HUN = 0; double ZERO = 0; #endregion public DVINDY(DSCAL dscal, XERRWD xerrwd, CommonBlock DVOD01, CommonBlock DVOD02) { #region Set Dependencies this._dscal = dscal; this._xerrwd = xerrwd; #endregion #region Data Initialization //HUN/100.0D0 HUN = 100.0E0; //ZERO/0.0D0 ZERO = 0.0E0; #endregion #region Common varaible Initialization #region Common Block: DVOD01 Initialization this._dvod01 = DVOD01; ACNRM = DVOD01.doubleData[0]; CCMXJ = DVOD01.doubleData[1]; CONP = DVOD01.doubleData[2]; CRATE = DVOD01.doubleData[3]; DRC = DVOD01.doubleData[4]; //Start Array: EL StartIndex: 5 LastIndex: 17 EL = DVOD01.doubleData; o_el = 4; //o_ = StartIndex-1 //End Array: EL ETA = DVOD01.doubleData[18]; ETAMAX = DVOD01.doubleData[19]; H = DVOD01.doubleData[20]; HMIN = DVOD01.doubleData[21]; HMXI = DVOD01.doubleData[22]; HNEW = DVOD01.doubleData[23]; HSCAL = DVOD01.doubleData[24]; PRL1 = DVOD01.doubleData[25]; RC = DVOD01.doubleData[26]; RL1 = DVOD01.doubleData[27]; //Start Array: TAU StartIndex: 28 LastIndex: 40 TAU = DVOD01.doubleData; o_tau = 27; //o_ = StartIndex-1 //End Array: TAU //Start Array: TQ StartIndex: 41 LastIndex: 45 TQ = DVOD01.doubleData; o_tq = 40; //o_ = StartIndex-1 //End Array: TQ TN = DVOD01.doubleData[46]; UROUND = DVOD01.doubleData[47]; ICF = DVOD01.intData[0]; INIT = DVOD01.intData[1]; IPUP = DVOD01.intData[2]; JCUR = DVOD01.intData[3]; JSTART = DVOD01.intData[4]; JSV = DVOD01.intData[5]; KFLAG = DVOD01.intData[6]; KUTH = DVOD01.intData[7]; L = DVOD01.intData[8]; LMAX = DVOD01.intData[9]; LYH = DVOD01.intData[10]; LEWT = DVOD01.intData[11]; LACOR = DVOD01.intData[12]; LSAVF = DVOD01.intData[13]; LWM = DVOD01.intData[14]; LIWM = DVOD01.intData[15]; LOCJS = DVOD01.intData[16]; MAXORD = DVOD01.intData[17]; METH = DVOD01.intData[18]; MITER = DVOD01.intData[19]; MSBJ = DVOD01.intData[20]; MXHNIL = DVOD01.intData[21]; MXSTEP = DVOD01.intData[22]; N = DVOD01.intData[23]; NEWH = DVOD01.intData[24]; NEWQ = DVOD01.intData[25]; NHNIL = DVOD01.intData[26]; NQ = DVOD01.intData[27]; NQNYH = DVOD01.intData[28]; NQWAIT = DVOD01.intData[29]; NSLJ = DVOD01.intData[30]; NSLP = DVOD01.intData[31]; NYH = DVOD01.intData[32]; #endregion #region Common Block: DVOD02 Initialization this._dvod02 = DVOD02; HU = DVOD02.doubleData[0]; NCFN = DVOD02.intData[0]; NETF = DVOD02.intData[1]; NFE = DVOD02.intData[2]; NJE = DVOD02.intData[3]; NLU = DVOD02.intData[4]; NNI = DVOD02.intData[5]; NQU = DVOD02.intData[6]; NST = DVOD02.intData[7]; #endregion #endregion } public DVINDY() { #region Initialization Common Blocks CommonBlock DVOD01 = new CommonBlock(48, 33, 0, 0); CommonBlock DVOD02 = new CommonBlock(1, 8, 0, 0); #endregion #region Dependencies (Initialization) DSCAL dscal = new DSCAL(); IUMACH iumach = new IUMACH(); IXSAV ixsav = new IXSAV(iumach); XERRWD xerrwd = new XERRWD(ixsav); #endregion #region Set Dependencies this._dscal = dscal; this._xerrwd = xerrwd; #endregion #region Data Initialization //HUN/100.0D0 HUN = 100.0E0; //ZERO/0.0D0 ZERO = 0.0E0; #endregion #region Common varaible Initialization #region Common Block: DVOD01 Initialization this._dvod01 = DVOD01; ACNRM = DVOD01.doubleData[0]; CCMXJ = DVOD01.doubleData[1]; CONP = DVOD01.doubleData[2]; CRATE = DVOD01.doubleData[3]; DRC = DVOD01.doubleData[4]; //Start Array: EL StartIndex: 5 LastIndex: 17 EL = DVOD01.doubleData; o_el = 4; //o_ = StartIndex-1 //End Array: EL ETA = DVOD01.doubleData[18]; ETAMAX = DVOD01.doubleData[19]; H = DVOD01.doubleData[20]; HMIN = DVOD01.doubleData[21]; HMXI = DVOD01.doubleData[22]; HNEW = DVOD01.doubleData[23]; HSCAL = DVOD01.doubleData[24]; PRL1 = DVOD01.doubleData[25]; RC = DVOD01.doubleData[26]; RL1 = DVOD01.doubleData[27]; //Start Array: TAU StartIndex: 28 LastIndex: 40 TAU = DVOD01.doubleData; o_tau = 27; //o_ = StartIndex-1 //End Array: TAU //Start Array: TQ StartIndex: 41 LastIndex: 45 TQ = DVOD01.doubleData; o_tq = 40; //o_ = StartIndex-1 //End Array: TQ TN = DVOD01.doubleData[46]; UROUND = DVOD01.doubleData[47]; ICF = DVOD01.intData[0]; INIT = DVOD01.intData[1]; IPUP = DVOD01.intData[2]; JCUR = DVOD01.intData[3]; JSTART = DVOD01.intData[4]; JSV = DVOD01.intData[5]; KFLAG = DVOD01.intData[6]; KUTH = DVOD01.intData[7]; L = DVOD01.intData[8]; LMAX = DVOD01.intData[9]; LYH = DVOD01.intData[10]; LEWT = DVOD01.intData[11]; LACOR = DVOD01.intData[12]; LSAVF = DVOD01.intData[13]; LWM = DVOD01.intData[14]; LIWM = DVOD01.intData[15]; LOCJS = DVOD01.intData[16]; MAXORD = DVOD01.intData[17]; METH = DVOD01.intData[18]; MITER = DVOD01.intData[19]; MSBJ = DVOD01.intData[20]; MXHNIL = DVOD01.intData[21]; MXSTEP = DVOD01.intData[22]; N = DVOD01.intData[23]; NEWH = DVOD01.intData[24]; NEWQ = DVOD01.intData[25]; NHNIL = DVOD01.intData[26]; NQ = DVOD01.intData[27]; NQNYH = DVOD01.intData[28]; NQWAIT = DVOD01.intData[29]; NSLJ = DVOD01.intData[30]; NSLP = DVOD01.intData[31]; NYH = DVOD01.intData[32]; #endregion #region Common Block: DVOD02 Initialization this._dvod02 = DVOD02; HU = DVOD02.doubleData[0]; NCFN = DVOD02.intData[0]; NETF = DVOD02.intData[1]; NFE = DVOD02.intData[2]; NJE = DVOD02.intData[3]; NLU = DVOD02.intData[4]; NNI = DVOD02.intData[5]; NQU = DVOD02.intData[6]; NST = DVOD02.intData[7]; #endregion #endregion } /// /// is returned negative if either K or T is out of bounds. /// public void Run(double T, int K, double[] YH, int offset_yh, int LDYH, ref double[] DKY, int offset_dky, ref int IFLAG) { #region Variables double C = 0; double R = 0; double S = 0; double TFUZZ = 0; double TN1 = 0; double TP = 0; int I = 0; int IC = 0; int J = 0;int JB = 0; int JB2 = 0; int JJ = 0; int JJ1 = 0; int JP1 = 0; string MSG = new string(' ', 80); #endregion #region Array Index Correction int o_yh = -1 - LDYH + offset_yh; int o_dky = -1 + offset_dky; #endregion #region Prolog // C----------------------------------------------------------------------- // C Call sequence input -- T, K, YH, LDYH // C Call sequence output -- DKY, IFLAG // C COMMON block variables accessed: // C /DVOD01/ -- H, TN, UROUND, L, N, NQ // C /DVOD02/ -- HU // C // C Subroutines called by DVINDY: DSCAL, XERRWD // C Function routines called by DVINDY: None // C----------------------------------------------------------------------- // C DVINDY computes interpolated values of the K-th derivative of the // C dependent variable vector y, and stores it in DKY. This routine // C is called within the package with K = 0 and T = TOUT, but may // C also be called by the user for any K up to the current order. // C (See detailed instructions in the usage documentation.) // C----------------------------------------------------------------------- // C The computed values in DKY are gotten by interpolation using the // C Nordsieck history array YH. This array corresponds uniquely to a // C vector-valued polynomial of degree NQCUR or less, and DKY is set // C to the K-th derivative of this polynomial at T. // C The formula for DKY is: // C q // C DKY(i) = sum c(j,K) * (T - TN)**(j-K) * H**(-j) * YH(i,j+1) // C j=K // C where c(j,K) = j*(j-1)*...*(j-K+1), q = NQCUR, TN = TCUR, H = HCUR. // C The quantities NQ = NQCUR, L = NQ+1, N, TN, and H are // C communicated by COMMON. The above sum is done in reverse order. // C IFLAG is returned negative if either K or T is out of bounds. // C // C Discussion above and comments in driver explain all variables. // C----------------------------------------------------------------------- // C // C Type declarations for labeled COMMON block DVOD01 -------------------- // C // C // C Type declarations for labeled COMMON block DVOD02 -------------------- // C // C // C Type declarations for local variables -------------------------------- // C // C----------------------------------------------------------------------- // C The following Fortran-77 declaration is to cause the values of the // C listed (local) variables to be saved between calls to this integrator. // C----------------------------------------------------------------------- // C // C // C #endregion #region Body IFLAG = 0; if (K < 0 || K > NQ.v) goto LABEL80; TFUZZ = HUN * UROUND.v * (TN.v + HU.v); TP = TN.v - HU.v - TFUZZ; TN1 = TN.v + TFUZZ; if ((T - TP) * (T - TN1) > ZERO) goto LABEL90; // C S = (T - TN.v) / H.v; IC = 1; if (K == 0) goto LABEL15; JJ1 = L.v - K; for (JJ = JJ1; JJ <= NQ.v; JJ++) { IC *= JJ; } LABEL15: C = Convert.ToSingle(IC); for (I = 1; I <= N.v; I++) { DKY[I + o_dky] = C * YH[I+L.v * LDYH + o_yh]; } if (K == NQ.v) goto LABEL55; JB2 = NQ.v - K; for (JB = 1; JB <= JB2; JB++) { J = NQ.v - JB; JP1 = J + 1; IC = 1; if (K == 0) goto LABEL35; JJ1 = JP1 - K; for (JJ = JJ1; JJ <= J; JJ++) { IC *= JJ; } LABEL35: C = Convert.ToSingle(IC); for (I = 1; I <= N.v; I++) { DKY[I + o_dky] = C * YH[I+JP1 * LDYH + o_yh] + S * DKY[I + o_dky]; } } if (K == 0) return; LABEL55: R = Math.Pow(H.v, - K); this._dscal.Run(N.v, R, ref DKY, offset_dky, 1); return; // C LABEL80: FortranLib.Copy(ref MSG , "DVINDY-- K (=I1) illegal "); this._xerrwd.Run(MSG, 30, 51, 1, 1, K , 0, 0, ZERO, ZERO); IFLAG = - 1; return; LABEL90: FortranLib.Copy(ref MSG , "DVINDY-- T (=R1) illegal "); this._xerrwd.Run(MSG, 30, 52, 1, 0, 0 , 0, 1, T, ZERO); FortranLib.Copy(ref MSG , " T not in interval TCUR - HU (= R1) to TCUR (=R2) "); this._xerrwd.Run(MSG, 60, 52, 1, 0, 0 , 0, 2, TP, TN.v); IFLAG = - 2; return; // C----------------------- End of Subroutine DVINDY ---------------------- #endregion } } #endregion #region The Class: DVSTEP // *DECK DVSTEP public class DVSTEP { #region Dependencies DVNORM _dvnorm; DVJUST _dvjust; DSCAL _dscal; DVSET _dvset; DAXPY _daxpy; DCOPY _dcopy; #endregion #region Common variables #region Common Block: DVOD01 Declaration CommonBlock _dvod01; Odouble ACNRM; Odouble CCMXJ; Odouble CONP; Odouble CRATE; Odouble DRC; Odouble[] EL; int o_el; Odouble ETA; Odouble ETAMAX;Odouble H; Odouble HMIN; Odouble HMXI; Odouble HNEW; Odouble HSCAL; Odouble PRL1; Odouble RC; Odouble RL1; Odouble[] TAU; int o_tau;Odouble[] TQ; int o_tq; Odouble TN; Odouble UROUND; Oint ICF; Oint INIT; Oint IPUP; Oint JCUR; Oint JSTART; Oint JSV; Oint KFLAG; Oint KUTH; Oint L; Oint LMAX; Oint LYH; Oint LEWT;Oint LACOR; Oint LSAVF; Oint LWM; Oint LIWM; Oint LOCJS; Oint MAXORD; Oint METH; Oint MITER; Oint MSBJ; Oint MXHNIL;Oint MXSTEP; Oint N; Oint NEWH; Oint NEWQ; Oint NHNIL; Oint NQ; Oint NQNYH; Oint NQWAIT; Oint NSLJ; Oint NSLP; Oint NYH; #endregion #region Common Block: DVOD02 Declaration CommonBlock _dvod02; Odouble HU; Oint NCFN; Oint NETF; Oint NFE; Oint NJE; Oint NLU; Oint NNI; Oint NQU; Oint NST; #endregion #endregion #region Variables double ADDON = 0; double BIAS1 = 0; double BIAS2 = 0; double BIAS3 = 0; double ETACF = 0; double ETAMIN = 0; double ETAMX1 = 0;double ETAMX2 = 0; double ETAMX3 = 0; double ETAMXF = 0; double ETAQ = 0; double ETAQM1 = 0; double ONE = 0;double ONEPSM = 0; double THRESH = 0; double ZERO = 0; int KFC = 0; int KFH = 0; int MXNCF = 0; #endregion public DVSTEP(DVNORM dvnorm, DVJUST dvjust, DSCAL dscal, DVSET dvset, DAXPY daxpy, DCOPY dcopy, CommonBlock DVOD01, CommonBlock DVOD02) { #region Set Dependencies this._dvnorm = dvnorm; this._dvjust = dvjust; this._dscal = dscal; this._dvset = dvset; this._daxpy = daxpy; this._dcopy = dcopy; #endregion #region Data Initialization //KFC/-3 KFC = - 3; //KFH/-7 KFH = - 7; //MXNCF/10 MXNCF = 10; //ADDON/1.0D-6 ADDON = 1.0E-6; //BIAS1/6.0D0 BIAS1 = 6.0E0; //BIAS2/6.0D0 BIAS2 = 6.0E0; //BIAS3/10.0D0 BIAS3 = 10.0E0; //ETACF/0.25D0 ETACF = 0.25E0; //ETAMIN/0.1D0 ETAMIN = 0.1E0; //ETAMXF/0.2D0 ETAMXF = 0.2E0; //ETAMX1/1.0D4 ETAMX1 = 1.0E4; //ETAMX2/10.0D0 ETAMX2 = 10.0E0; //ETAMX3/10.0D0 ETAMX3 = 10.0E0; //ONEPSM/1.00001D0 ONEPSM = 1.00001E0; //THRESH/1.5D0 THRESH = 1.5E0; //ONE/1.0D0 ONE = 1.0E0; //ZERO/0.0D0 ZERO = 0.0E0; #endregion #region Common varaible Initialization #region Common Block: DVOD01 Initialization this._dvod01 = DVOD01; ACNRM = DVOD01.doubleData[0]; CCMXJ = DVOD01.doubleData[1]; CONP = DVOD01.doubleData[2]; CRATE = DVOD01.doubleData[3]; DRC = DVOD01.doubleData[4]; //Start Array: EL StartIndex: 5 LastIndex: 17 EL = DVOD01.doubleData; o_el = 4; //o_ = StartIndex-1 //End Array: EL ETA = DVOD01.doubleData[18]; ETAMAX = DVOD01.doubleData[19]; H = DVOD01.doubleData[20]; HMIN = DVOD01.doubleData[21]; HMXI = DVOD01.doubleData[22]; HNEW = DVOD01.doubleData[23]; HSCAL = DVOD01.doubleData[24]; PRL1 = DVOD01.doubleData[25]; RC = DVOD01.doubleData[26]; RL1 = DVOD01.doubleData[27]; //Start Array: TAU StartIndex: 28 LastIndex: 40 TAU = DVOD01.doubleData; o_tau = 27; //o_ = StartIndex-1 //End Array: TAU //Start Array: TQ StartIndex: 41 LastIndex: 45 TQ = DVOD01.doubleData; o_tq = 40; //o_ = StartIndex-1 //End Array: TQ TN = DVOD01.doubleData[46]; UROUND = DVOD01.doubleData[47]; ICF = DVOD01.intData[0]; INIT = DVOD01.intData[1]; IPUP = DVOD01.intData[2]; JCUR = DVOD01.intData[3]; JSTART = DVOD01.intData[4]; JSV = DVOD01.intData[5]; KFLAG = DVOD01.intData[6]; KUTH = DVOD01.intData[7]; L = DVOD01.intData[8]; LMAX = DVOD01.intData[9]; LYH = DVOD01.intData[10]; LEWT = DVOD01.intData[11]; LACOR = DVOD01.intData[12]; LSAVF = DVOD01.intData[13]; LWM = DVOD01.intData[14]; LIWM = DVOD01.intData[15]; LOCJS = DVOD01.intData[16]; MAXORD = DVOD01.intData[17]; METH = DVOD01.intData[18]; MITER = DVOD01.intData[19]; MSBJ = DVOD01.intData[20]; MXHNIL = DVOD01.intData[21]; MXSTEP = DVOD01.intData[22]; N = DVOD01.intData[23]; NEWH = DVOD01.intData[24]; NEWQ = DVOD01.intData[25]; NHNIL = DVOD01.intData[26]; NQ = DVOD01.intData[27]; NQNYH = DVOD01.intData[28]; NQWAIT = DVOD01.intData[29]; NSLJ = DVOD01.intData[30]; NSLP = DVOD01.intData[31]; NYH = DVOD01.intData[32]; #endregion #region Common Block: DVOD02 Initialization this._dvod02 = DVOD02; HU = DVOD02.doubleData[0]; NCFN = DVOD02.intData[0]; NETF = DVOD02.intData[1]; NFE = DVOD02.intData[2]; NJE = DVOD02.intData[3]; NLU = DVOD02.intData[4]; NNI = DVOD02.intData[5]; NQU = DVOD02.intData[6]; NST = DVOD02.intData[7]; #endregion #endregion } public DVSTEP() { #region Initialization Common Blocks CommonBlock DVOD01 = new CommonBlock(48, 33, 0, 0); CommonBlock DVOD02 = new CommonBlock(1, 8, 0, 0); #endregion #region Dependencies (Initialization) DVNORM dvnorm = new DVNORM(); DAXPY daxpy = new DAXPY(); DSCAL dscal = new DSCAL(); DCOPY dcopy = new DCOPY(); DVSET dvset = new DVSET(DVOD01); DVJUST dvjust = new DVJUST(daxpy, DVOD01); #endregion #region Set Dependencies this._dvnorm = dvnorm; this._dvjust = dvjust; this._dscal = dscal; this._dvset = dvset; this._daxpy = daxpy; this._dcopy = dcopy; #endregion #region Data Initialization //KFC/-3 KFC = - 3; //KFH/-7 KFH = - 7; //MXNCF/10 MXNCF = 10; //ADDON/1.0D-6 ADDON = 1.0E-6; //BIAS1/6.0D0 BIAS1 = 6.0E0; //BIAS2/6.0D0 BIAS2 = 6.0E0; //BIAS3/10.0D0 BIAS3 = 10.0E0; //ETACF/0.25D0 ETACF = 0.25E0; //ETAMIN/0.1D0 ETAMIN = 0.1E0; //ETAMXF/0.2D0 ETAMXF = 0.2E0; //ETAMX1/1.0D4 ETAMX1 = 1.0E4; //ETAMX2/10.0D0 ETAMX2 = 10.0E0; //ETAMX3/10.0D0 ETAMX3 = 10.0E0; //ONEPSM/1.00001D0 ONEPSM = 1.00001E0; //THRESH/1.5D0 THRESH = 1.5E0; //ONE/1.0D0 ONE = 1.0E0; //ZERO/0.0D0 ZERO = 0.0E0; #endregion #region Common varaible Initialization #region Common Block: DVOD01 Initialization this._dvod01 = DVOD01; ACNRM = DVOD01.doubleData[0]; CCMXJ = DVOD01.doubleData[1]; CONP = DVOD01.doubleData[2]; CRATE = DVOD01.doubleData[3]; DRC = DVOD01.doubleData[4]; //Start Array: EL StartIndex: 5 LastIndex: 17 EL = DVOD01.doubleData; o_el = 4; //o_ = StartIndex-1 //End Array: EL ETA = DVOD01.doubleData[18]; ETAMAX = DVOD01.doubleData[19]; H = DVOD01.doubleData[20]; HMIN = DVOD01.doubleData[21]; HMXI = DVOD01.doubleData[22]; HNEW = DVOD01.doubleData[23]; HSCAL = DVOD01.doubleData[24]; PRL1 = DVOD01.doubleData[25]; RC = DVOD01.doubleData[26]; RL1 = DVOD01.doubleData[27]; //Start Array: TAU StartIndex: 28 LastIndex: 40 TAU = DVOD01.doubleData; o_tau = 27; //o_ = StartIndex-1 //End Array: TAU //Start Array: TQ StartIndex: 41 LastIndex: 45 TQ = DVOD01.doubleData; o_tq = 40; //o_ = StartIndex-1 //End Array: TQ TN = DVOD01.doubleData[46]; UROUND = DVOD01.doubleData[47]; ICF = DVOD01.intData[0]; INIT = DVOD01.intData[1]; IPUP = DVOD01.intData[2]; JCUR = DVOD01.intData[3]; JSTART = DVOD01.intData[4]; JSV = DVOD01.intData[5]; KFLAG = DVOD01.intData[6]; KUTH = DVOD01.intData[7]; L = DVOD01.intData[8]; LMAX = DVOD01.intData[9]; LYH = DVOD01.intData[10]; LEWT = DVOD01.intData[11]; LACOR = DVOD01.intData[12]; LSAVF = DVOD01.intData[13]; LWM = DVOD01.intData[14]; LIWM = DVOD01.intData[15]; LOCJS = DVOD01.intData[16]; MAXORD = DVOD01.intData[17]; METH = DVOD01.intData[18]; MITER = DVOD01.intData[19]; MSBJ = DVOD01.intData[20]; MXHNIL = DVOD01.intData[21]; MXSTEP = DVOD01.intData[22]; N = DVOD01.intData[23]; NEWH = DVOD01.intData[24]; NEWQ = DVOD01.intData[25]; NHNIL = DVOD01.intData[26]; NQ = DVOD01.intData[27]; NQNYH = DVOD01.intData[28]; NQWAIT = DVOD01.intData[29]; NSLJ = DVOD01.intData[30]; NSLP = DVOD01.intData[31]; NYH = DVOD01.intData[32]; #endregion #region Common Block: DVOD02 Initialization this._dvod02 = DVOD02; HU = DVOD02.doubleData[0]; NCFN = DVOD02.intData[0]; NETF = DVOD02.intData[1]; NFE = DVOD02.intData[2]; NJE = DVOD02.intData[3]; NLU = DVOD02.intData[4]; NNI = DVOD02.intData[5]; NQU = DVOD02.intData[6]; NST = DVOD02.intData[7]; #endregion #endregion } /// /// = An array of length N used for the dependent variable vector. /// /// /// = An LDYH by LMAX array containing the dependent variables /// and their approximate scaled derivatives, where /// LMAX = MAXORD + 1. YH(i,j+1) contains the approximate /// j-th derivative of y(i), scaled by H**j/factorial(j) /// (j = 0,1,...,NQ). On entry for the first step, the first /// two columns of YH must be set from the initial values. /// /// /// = A constant integer .ge. N, the first dimension of YH. /// N is the number of ODEs in the system. /// /// /// = A one-dimensional array occupying the same space as YH. /// /// /// = An array of length N containing multiplicative weights /// for local error measurements. Local errors in y(i) are /// compared to 1.0/EWT(i) in various error tests. /// /// /// = An array of working storage, of length N. /// also used for input of YH(*,MAXORD+2) when JSTART = -1 /// and MAXORD .lt. the current order NQ. /// /// /// = A work array of length N passed to subroutine VNLS. /// /// /// = A work array of length N, used for the accumulated /// corrections. On a successful return, ACOR(i) contains /// the estimated one-step local error in y(i). /// /// /// = Dummy name for the user supplied subroutine for f. /// /// /// = Dummy name for the user supplied Jacobian subroutine. /// /// /// = Dummy name for the subroutine passed to VNLS, for /// possible use there. /// /// /// = Dummy name for the nonlinear system solving subroutine, /// whose real name is dependent on the method used. /// public void Run(ref double[] Y, int offset_y, ref double[] YH, int offset_yh, int LDYH, ref double[] YH1, int offset_yh1, double[] EWT, int offset_ewt, ref double[] SAVF, int offset_savf , double[] VSAV, int offset_vsav, ref double[] ACOR, int offset_acor, ref double[] WM, int offset_wm, ref int[] IWM, int offset_iwm, IFEX F, IJEX JAC , IFEX PSOL, IDVNLSD VNLS, double[] RPAR, int offset_rpar, int[] IPAR, int offset_ipar) { #region Variables double CNQUOT = 0; double DDN = 0; double DSM = 0; double DUP = 0; double ETAQP1 = 0; double FLOTL = 0; double R = 0; double TOLD = 0;int I = 0; int I1 = 0; int I2 = 0; int IBACK = 0; int J = 0; int JB = 0; int NCF = 0; int NFLAG = 0; #endregion #region Array Index Correction int o_y = -1 + offset_y; int o_yh = -1 - LDYH + offset_yh; int o_yh1 = -1 + offset_yh1; int o_ewt = -1 + offset_ewt; int o_savf = -1 + offset_savf; int o_vsav = -1 + offset_vsav; int o_acor = -1 + offset_acor; int o_wm = -1 + offset_wm; int o_iwm = -1 + offset_iwm; int o_rpar = -1 + offset_rpar; int o_ipar = -1 + offset_ipar; #endregion #region Prolog // C----------------------------------------------------------------------- // C Call sequence input -- Y, YH, LDYH, YH1, EWT, SAVF, VSAV, // C ACOR, WM, IWM, F, JAC, PSOL, VNLS, RPAR, IPAR // C Call sequence output -- YH, ACOR, WM, IWM // C COMMON block variables accessed: // C /DVOD01/ ACNRM, EL(13), H, HMIN, HMXI, HNEW, HSCAL, RC, TAU(13), // C TQ(5), TN, JCUR, JSTART, KFLAG, KUTH, // C L, LMAX, MAXORD, N, NEWQ, NQ, NQWAIT // C /DVOD02/ HU, NCFN, NETF, NFE, NQU, NST // C // C Subroutines called by DVSTEP: F, DAXPY, DCOPY, DSCAL, // C DVJUST, VNLS, DVSET // C Function routines called by DVSTEP: DVNORM // C----------------------------------------------------------------------- // C DVSTEP performs one step of the integration of an initial value // C problem for a system of ordinary differential equations. // C DVSTEP calls subroutine VNLS for the solution of the nonlinear system // C arising in the time step. Thus it is independent of the problem // C Jacobian structure and the type of nonlinear system solution method. // C DVSTEP returns a completion flag KFLAG (in COMMON). // C A return with KFLAG = -1 or -2 means either ABS(H) = HMIN or 10 // C consecutive failures occurred. On a return with KFLAG negative, // C the values of TN and the YH array are as of the beginning of the last // C step, and H is the last step size attempted. // C // C Communication with DVSTEP is done with the following variables: // C // C Y = An array of length N used for the dependent variable vector. // C YH = An LDYH by LMAX array containing the dependent variables // C and their approximate scaled derivatives, where // C LMAX = MAXORD + 1. YH(i,j+1) contains the approximate // C j-th derivative of y(i), scaled by H**j/factorial(j) // C (j = 0,1,...,NQ). On entry for the first step, the first // C two columns of YH must be set from the initial values. // C LDYH = A constant integer .ge. N, the first dimension of YH. // C N is the number of ODEs in the system. // C YH1 = A one-dimensional array occupying the same space as YH. // C EWT = An array of length N containing multiplicative weights // C for local error measurements. Local errors in y(i) are // C compared to 1.0/EWT(i) in various error tests. // C SAVF = An array of working storage, of length N. // C also used for input of YH(*,MAXORD+2) when JSTART = -1 // C and MAXORD .lt. the current order NQ. // C VSAV = A work array of length N passed to subroutine VNLS. // C ACOR = A work array of length N, used for the accumulated // C corrections. On a successful return, ACOR(i) contains // C the estimated one-step local error in y(i). // C WM,IWM = Real and integer work arrays associated with matrix // C operations in VNLS. // C F = Dummy name for the user supplied subroutine for f. // C JAC = Dummy name for the user supplied Jacobian subroutine. // C PSOL = Dummy name for the subroutine passed to VNLS, for // C possible use there. // C VNLS = Dummy name for the nonlinear system solving subroutine, // C whose real name is dependent on the method used. // C RPAR, IPAR = Dummy names for user's real and integer work arrays. // C----------------------------------------------------------------------- // C // C Type declarations for labeled COMMON block DVOD01 -------------------- // C // C // C Type declarations for labeled COMMON block DVOD02 -------------------- // C // C // C Type declarations for local variables -------------------------------- // C // C // C Type declaration for function subroutines called --------------------- // C // C----------------------------------------------------------------------- // C The following Fortran-77 declaration is to cause the values of the // C listed (local) variables to be saved between calls to this integrator. // C----------------------------------------------------------------------- // C----------------------------------------------------------------------- // C // C #endregion #region Body KFLAG.v = 0; TOLD = TN.v; NCF = 0; JCUR.v = 0; NFLAG = 0; if (JSTART.v > 0) goto LABEL20; if (JSTART.v == - 1) goto LABEL100; // C----------------------------------------------------------------------- // C On the first call, the order is set to 1, and other variables are // C initialized. ETAMAX is the maximum ratio by which H can be increased // C in a single step. It is normally 10, but is larger during the // C first step to compensate for the small initial H. If a failure // C occurs (in corrector convergence or error test), ETAMAX is set to 1 // C for the next increase. // C----------------------------------------------------------------------- LMAX.v = MAXORD.v + 1; NQ.v = 1; L.v = 2; NQNYH.v = NQ.v * LDYH; TAU[1 + o_tau].v = H.v; PRL1.v = ONE; RC.v = ZERO; ETAMAX.v = ETAMX1; NQWAIT.v = 2; HSCAL.v = H.v; goto LABEL200; // C----------------------------------------------------------------------- // C Take preliminary actions on a normal continuation step (JSTART.GT.0). // C If the driver changed H, then ETA must be reset and NEWH set to 1. // C If a change of order was dictated on the previous step, then // C it is done here and appropriate adjustments in the history are made. // C On an order decrease, the history array is adjusted by DVJUST. // C On an order increase, the history array is augmented by a column. // C On a change of step size H, the history array YH is rescaled. // C----------------------------------------------------------------------- LABEL20:; if (KUTH.v == 1) { ETA.v = Math.Min(ETA.v, H.v / HSCAL.v); NEWH.v = 1; } LABEL50: if (NEWH.v == 0) goto LABEL200; if (NEWQ.v == NQ.v) goto LABEL150; if (NEWQ.v < NQ.v) { this._dvjust.Run(ref YH, offset_yh, LDYH, - 1); NQ.v = NEWQ.v; L.v = NQ.v + 1; NQWAIT.v = L.v; goto LABEL150; } if (NEWQ.v > NQ.v) { this._dvjust.Run(ref YH, offset_yh, LDYH, 1); NQ.v = NEWQ.v; L.v = NQ.v + 1; NQWAIT.v = L.v; goto LABEL150; } // C----------------------------------------------------------------------- // C The following block handles preliminaries needed when JSTART = -1. // C If N was reduced, zero out part of YH to avoid undefined references. // C If MAXORD was reduced to a value less than the tentative order NEWQ, // C then NQ is set to MAXORD, and a new H ratio ETA is chosen. // C Otherwise, we take the same preliminary actions as for JSTART .gt. 0. // C In any case, NQWAIT is reset to L = NQ + 1 to prevent further // C changes in order for that many steps. // C The new H ratio ETA is limited by the input H if KUTH = 1, // C by HMIN if KUTH = 0, and by HMXI in any case. // C Finally, the history array YH is rescaled. // C----------------------------------------------------------------------- LABEL100:; LMAX.v = MAXORD.v + 1; if (N.v == LDYH) goto LABEL120; I1 = 1 + (NEWQ.v + 1) * LDYH; I2 = (MAXORD.v + 1) * LDYH; if (I1 > I2) goto LABEL120; for (I = I1; I <= I2; I++) { YH1[I + o_yh1] = ZERO; } LABEL120: if (NEWQ.v <= MAXORD.v) goto LABEL140; FLOTL = Convert.ToSingle(LMAX.v); if (MAXORD.v < NQ.v - 1) { DDN = this._dvnorm.Run(N.v, SAVF, offset_savf, EWT, offset_ewt) / TQ[1 + o_tq].v; ETA.v = ONE / (Math.Pow(BIAS1 * DDN,ONE / FLOTL) + ADDON); } if (MAXORD.v == NQ.v && NEWQ.v == NQ.v + 1) ETA.v = ETAQ; if (MAXORD.v == NQ.v - 1 && NEWQ.v == NQ.v + 1) { ETA.v = ETAQM1; this._dvjust.Run(ref YH, offset_yh, LDYH, - 1); } if (MAXORD.v == NQ.v - 1 && NEWQ.v == NQ.v) { DDN = this._dvnorm.Run(N.v, SAVF, offset_savf, EWT, offset_ewt) / TQ[1 + o_tq].v; ETA.v = ONE / (Math.Pow(BIAS1 * DDN,ONE / FLOTL) + ADDON); this._dvjust.Run(ref YH, offset_yh, LDYH, - 1); } ETA.v = Math.Min(ETA.v, ONE); NQ.v = MAXORD.v; L.v = LMAX.v; LABEL140: if (KUTH.v == 1) ETA.v = Math.Min(ETA.v, Math.Abs(H.v / HSCAL.v)); if (KUTH.v == 0) ETA.v = Math.Max(ETA.v, HMIN.v / Math.Abs(HSCAL.v)); ETA.v /= Math.Max(ONE, Math.Abs(HSCAL.v) * HMXI.v * ETA.v); NEWH.v = 1; NQWAIT.v = L.v; if (NEWQ.v <= MAXORD.v) goto LABEL50; // C Rescale the history array for a change in H by a factor of ETA. ------ LABEL150: R = ONE; for (J = 2; J <= L.v; J++) { R *= ETA.v; this._dscal.Run(N.v, R, ref YH, 1+J * LDYH + o_yh, 1); } H.v = HSCAL.v * ETA.v; HSCAL.v = H.v; RC.v *= ETA.v; NQNYH.v = NQ.v * LDYH; // C----------------------------------------------------------------------- // C This section computes the predicted values by effectively // C multiplying the YH array by the Pascal triangle matrix. // C DVSET is called to calculate all integration coefficients. // C RC is the ratio of new to old values of the coefficient H/EL(2)=h/l1. // C----------------------------------------------------------------------- LABEL200: TN.v += H.v; I1 = NQNYH.v + 1; for (JB = 1; JB <= NQ.v; JB++) { I1 -= LDYH; for (I = I1; I <= NQNYH.v; I++) { YH1[I + o_yh1] += YH1[I + LDYH + o_yh1]; } } this._dvset.Run(); RL1.v = ONE / EL[2 + o_el].v; RC.v = RC.v * (RL1.v / PRL1.v); PRL1.v = RL1.v; // C // C Call the nonlinear system solver. ------------------------------------ // C VNLS.Run(ref Y, offset_y, YH, offset_yh, LDYH, VSAV, offset_vsav, ref SAVF, offset_savf, EWT, offset_ewt , ref ACOR, offset_acor, ref IWM, offset_iwm, ref WM, offset_wm, F, JAC, PSOL , ref NFLAG, RPAR, offset_rpar, IPAR, offset_ipar); // C if (NFLAG == 0) goto LABEL450; // C----------------------------------------------------------------------- // C The VNLS routine failed to achieve convergence (NFLAG .NE. 0). // C The YH array is retracted to its values before prediction. // C The step size H is reduced and the step is retried, if possible. // C Otherwise, an error exit is taken. // C----------------------------------------------------------------------- NCF += 1; NCFN.v += 1; ETAMAX.v = ONE; TN.v = TOLD; I1 = NQNYH.v + 1; for (JB = 1; JB <= NQ.v; JB++) { I1 -= LDYH; for (I = I1; I <= NQNYH.v; I++) { YH1[I + o_yh1] -= YH1[I + LDYH + o_yh1]; } } if (NFLAG < - 1) goto LABEL680; if (Math.Abs(H.v) <= HMIN.v * ONEPSM) goto LABEL670; if (NCF == MXNCF) goto LABEL670; ETA.v = ETACF; ETA.v = Math.Max(ETA.v, HMIN.v / Math.Abs(H.v)); NFLAG = - 1; goto LABEL150; // C----------------------------------------------------------------------- // C The corrector has converged (NFLAG = 0). The local error test is // C made and control passes to statement 500 if it fails. // C----------------------------------------------------------------------- LABEL450:; DSM = ACNRM.v / TQ[2 + o_tq].v; if (DSM > ONE) goto LABEL500; // C----------------------------------------------------------------------- // C After a successful step, update the YH and TAU arrays and decrement // C NQWAIT. If NQWAIT is then 1 and NQ .lt. MAXORD, then ACOR is saved // C for use in a possible order increase on the next step. // C If ETAMAX = 1 (a failure occurred this step), keep NQWAIT .ge. 2. // C----------------------------------------------------------------------- KFLAG.v = 0; NST.v += 1; HU.v = H.v; NQU.v = NQ.v; for (IBACK = 1; IBACK <= NQ.v; IBACK++) { I = L.v - IBACK; TAU[I + 1 + o_tau].v = TAU[I + o_tau].v; } TAU[1 + o_tau].v = H.v; for (J = 1; J <= L.v; J++) { this._daxpy.Run(N.v, EL[J + o_el].v, ACOR, offset_acor, 1, ref YH, 1+J * LDYH + o_yh, 1); } NQWAIT.v -= 1; if ((L.v == LMAX.v) || (NQWAIT.v != 1)) goto LABEL490; this._dcopy.Run(N.v, ACOR, offset_acor, 1, ref YH, 1+LMAX.v * LDYH + o_yh, 1); CONP.v = TQ[5 + o_tq].v; LABEL490: if (ETAMAX.v != ONE) goto LABEL560; if (NQWAIT.v < 2) NQWAIT.v = 2; NEWQ.v = NQ.v; NEWH.v = 0; ETA.v = ONE; HNEW.v = H.v; goto LABEL690; // C----------------------------------------------------------------------- // C The error test failed. KFLAG keeps track of multiple failures. // C Restore TN and the YH array to their previous values, and prepare // C to try the step again. Compute the optimum step size for the // C same order. After repeated failures, H is forced to decrease // C more rapidly. // C----------------------------------------------------------------------- LABEL500: KFLAG.v -= 1; NETF.v += 1; NFLAG = - 2; TN.v = TOLD; I1 = NQNYH.v + 1; for (JB = 1; JB <= NQ.v; JB++) { I1 -= LDYH; for (I = I1; I <= NQNYH.v; I++) { YH1[I + o_yh1] -= YH1[I + LDYH + o_yh1]; } } if (Math.Abs(H.v) <= HMIN.v * ONEPSM) goto LABEL660; ETAMAX.v = ONE; if (KFLAG.v <= KFC) goto LABEL530; // C Compute ratio of new H to current H at the current order. ------------ FLOTL = Convert.ToSingle(L.v); ETA.v = ONE / (Math.Pow(BIAS2 * DSM,ONE / FLOTL) + ADDON); ETA.v = Math.Max(ETA.v, Math.Max(HMIN.v / Math.Abs(H.v), ETAMIN)); if ((KFLAG.v <= - 2) && (ETA.v > ETAMXF)) ETA.v = ETAMXF; goto LABEL150; // C----------------------------------------------------------------------- // C Control reaches this section if 3 or more consecutive failures // C have occurred. It is assumed that the elements of the YH array // C have accumulated errors of the wrong order. The order is reduced // C by one, if possible. Then H is reduced by a factor of 0.1 and // C the step is retried. After a total of 7 consecutive failures, // C an exit is taken with KFLAG = -1. // C----------------------------------------------------------------------- LABEL530: if (KFLAG.v == KFH) goto LABEL660; if (NQ.v == 1) goto LABEL540; ETA.v = Math.Max(ETAMIN, HMIN.v / Math.Abs(H.v)); this._dvjust.Run(ref YH, offset_yh, LDYH, - 1); L.v = NQ.v; NQ.v -= 1; NQWAIT.v = L.v; goto LABEL150; LABEL540: ETA.v = Math.Max(ETAMIN, HMIN.v / Math.Abs(H.v)); H.v *= ETA.v; HSCAL.v = H.v; TAU[1 + o_tau].v = H.v; F.Run(N.v, TN.v, Y, offset_y, ref SAVF, offset_savf, RPAR[1 + o_rpar], IPAR[1 + o_ipar]); NFE.v += 1; for (I = 1; I <= N.v; I++) { YH[I+2 * LDYH + o_yh] = H.v * SAVF[I + o_savf]; } NQWAIT.v = 10; goto LABEL200; // C----------------------------------------------------------------------- // C If NQWAIT = 0, an increase or decrease in order by one is considered. // C Factors ETAQ, ETAQM1, ETAQP1 are computed by which H could // C be multiplied at order q, q-1, or q+1, respectively. // C The largest of these is determined, and the new order and // C step size set accordingly. // C A change of H or NQ is made only if H increases by at least a // C factor of THRESH. If an order change is considered and rejected, // C then NQWAIT is set to 2 (reconsider it after 2 steps). // C----------------------------------------------------------------------- // C Compute ratio of new H to current H at the current order. ------------ LABEL560: FLOTL = Convert.ToSingle(L.v); ETAQ = ONE / (Math.Pow(BIAS2 * DSM,ONE / FLOTL) + ADDON); if (NQWAIT.v != 0) goto LABEL600; NQWAIT.v = 2; ETAQM1 = ZERO; if (NQ.v == 1) goto LABEL570; // C Compute ratio of new H to current H at the current order less one. --- DDN = this._dvnorm.Run(N.v, YH, 1+L.v * LDYH + o_yh, EWT, offset_ewt) / TQ[1 + o_tq].v; ETAQM1 = ONE / (Math.Pow(BIAS1 * DDN,ONE / (FLOTL - ONE)) + ADDON); LABEL570: ETAQP1 = ZERO; if (L.v == LMAX.v) goto LABEL580; // C Compute ratio of new H to current H at current order plus one. ------- CNQUOT = (TQ[5 + o_tq].v / CONP.v) * Math.Pow(H.v / TAU[2 + o_tau].v,L.v); for (I = 1; I <= N.v; I++) { SAVF[I + o_savf] = ACOR[I + o_acor] - CNQUOT * YH[I+LMAX.v * LDYH + o_yh]; } DUP = this._dvnorm.Run(N.v, SAVF, offset_savf, EWT, offset_ewt) / TQ[3 + o_tq].v; ETAQP1 = ONE / (Math.Pow(BIAS3 * DUP,ONE / (FLOTL + ONE)) + ADDON); LABEL580: if (ETAQ >= ETAQP1) goto LABEL590; if (ETAQP1 > ETAQM1) goto LABEL620; goto LABEL610; LABEL590: if (ETAQ < ETAQM1) goto LABEL610; LABEL600: ETA.v = ETAQ; NEWQ.v = NQ.v; goto LABEL630; LABEL610: ETA.v = ETAQM1; NEWQ.v = NQ.v - 1; goto LABEL630; LABEL620: ETA.v = ETAQP1; NEWQ.v = NQ.v + 1; this._dcopy.Run(N.v, ACOR, offset_acor, 1, ref YH, 1+LMAX.v * LDYH + o_yh, 1); // C Test tentative new H against THRESH, ETAMAX, and HMXI, then exit. ---- LABEL630: if (ETA.v < THRESH || ETAMAX.v == ONE) goto LABEL640; ETA.v = Math.Min(ETA.v, ETAMAX.v); ETA.v /= Math.Max(ONE, Math.Abs(H.v) * HMXI.v * ETA.v); NEWH.v = 1; HNEW.v = H.v * ETA.v; goto LABEL690; LABEL640: NEWQ.v = NQ.v; NEWH.v = 0; ETA.v = ONE; HNEW.v = H.v; goto LABEL690; // C----------------------------------------------------------------------- // C All returns are made through this section. // C On a successful return, ETAMAX is reset and ACOR is scaled. // C----------------------------------------------------------------------- LABEL660: KFLAG.v = - 1; goto LABEL720; LABEL670: KFLAG.v = - 2; goto LABEL720; LABEL680: if (NFLAG == - 2) KFLAG.v = - 3; if (NFLAG == - 3) KFLAG.v = - 4; goto LABEL720; LABEL690: ETAMAX.v = ETAMX3; if (NST.v <= 10) ETAMAX.v = ETAMX2; R = ONE / TQ[2 + o_tq].v; this._dscal.Run(N.v, R, ref ACOR, offset_acor, 1); LABEL720: JSTART.v = 1; return; // C----------------------- End of Subroutine DVSTEP ---------------------- #endregion } } #endregion #region The Class: DVSET // *DECK DVSET public class DVSET { #region Common variables #region Common Block: DVOD01 Declaration CommonBlock _dvod01; Odouble ACNRM; Odouble CCMXJ; Odouble CONP; Odouble CRATE; Odouble DRC; Odouble[] EL; int o_el; Odouble ETA; Odouble ETAMAX;Odouble H; Odouble HMIN; Odouble HMXI; Odouble HNEW; Odouble HSCAL; Odouble PRL1; Odouble RC; Odouble RL1; Odouble[] TAU; int o_tau;Odouble[] TQ; int o_tq; Odouble TN; Odouble UROUND; Oint ICF; Oint INIT; Oint IPUP; Oint JCUR; Oint JSTART; Oint JSV; Oint KFLAG; Oint KUTH; Oint L; Oint LMAX; Oint LYH; Oint LEWT;Oint LACOR; Oint LSAVF; Oint LWM; Oint LIWM; Oint LOCJS; Oint MAXORD; Oint METH; Oint MITER; Oint MSBJ; Oint MXHNIL;Oint MXSTEP; Oint N; Oint NEWH; Oint NEWQ; Oint NHNIL; Oint NQ; Oint NQNYH; Oint NQWAIT; Oint NSLJ; Oint NSLP; Oint NYH; #endregion #endregion #region Variables double CORTES = 0; double[] EM = new double[13]; double ONE = 0; double SIX = 0; double TWO = 0; double ZERO = 0; #endregion public DVSET(CommonBlock DVOD01) { #region Data Initialization //CORTES/0.1D0 CORTES = 0.1E0; //ONE/1.0D0 ONE = 1.0E0; //SIX/6.0D0 SIX = 6.0E0; //TWO/2.0D0 TWO = 2.0E0; //ZERO/0.0D0 ZERO = 0.0E0; #endregion #region Common varaible Initialization #region Common Block: DVOD01 Initialization this._dvod01 = DVOD01; ACNRM = DVOD01.doubleData[0]; CCMXJ = DVOD01.doubleData[1]; CONP = DVOD01.doubleData[2]; CRATE = DVOD01.doubleData[3]; DRC = DVOD01.doubleData[4]; //Start Array: EL StartIndex: 5 LastIndex: 17 EL = DVOD01.doubleData; o_el = 4; //o_ = StartIndex-1 //End Array: EL ETA = DVOD01.doubleData[18]; ETAMAX = DVOD01.doubleData[19]; H = DVOD01.doubleData[20]; HMIN = DVOD01.doubleData[21]; HMXI = DVOD01.doubleData[22]; HNEW = DVOD01.doubleData[23]; HSCAL = DVOD01.doubleData[24]; PRL1 = DVOD01.doubleData[25]; RC = DVOD01.doubleData[26]; RL1 = DVOD01.doubleData[27]; //Start Array: TAU StartIndex: 28 LastIndex: 40 TAU = DVOD01.doubleData; o_tau = 27; //o_ = StartIndex-1 //End Array: TAU //Start Array: TQ StartIndex: 41 LastIndex: 45 TQ = DVOD01.doubleData; o_tq = 40; //o_ = StartIndex-1 //End Array: TQ TN = DVOD01.doubleData[46]; UROUND = DVOD01.doubleData[47]; ICF = DVOD01.intData[0]; INIT = DVOD01.intData[1]; IPUP = DVOD01.intData[2]; JCUR = DVOD01.intData[3]; JSTART = DVOD01.intData[4]; JSV = DVOD01.intData[5]; KFLAG = DVOD01.intData[6]; KUTH = DVOD01.intData[7]; L = DVOD01.intData[8]; LMAX = DVOD01.intData[9]; LYH = DVOD01.intData[10]; LEWT = DVOD01.intData[11]; LACOR = DVOD01.intData[12]; LSAVF = DVOD01.intData[13]; LWM = DVOD01.intData[14]; LIWM = DVOD01.intData[15]; LOCJS = DVOD01.intData[16]; MAXORD = DVOD01.intData[17]; METH = DVOD01.intData[18]; MITER = DVOD01.intData[19]; MSBJ = DVOD01.intData[20]; MXHNIL = DVOD01.intData[21]; MXSTEP = DVOD01.intData[22]; N = DVOD01.intData[23]; NEWH = DVOD01.intData[24]; NEWQ = DVOD01.intData[25]; NHNIL = DVOD01.intData[26]; NQ = DVOD01.intData[27]; NQNYH = DVOD01.intData[28]; NQWAIT = DVOD01.intData[29]; NSLJ = DVOD01.intData[30]; NSLP = DVOD01.intData[31]; NYH = DVOD01.intData[32]; #endregion #endregion } public DVSET() { #region Initialization Common Blocks CommonBlock DVOD01 = new CommonBlock(48, 33, 0, 0); #endregion #region Data Initialization //CORTES/0.1D0 CORTES = 0.1E0; //ONE/1.0D0 ONE = 1.0E0; //SIX/6.0D0 SIX = 6.0E0; //TWO/2.0D0 TWO = 2.0E0; //ZERO/0.0D0 ZERO = 0.0E0; #endregion #region Common varaible Initialization #region Common Block: DVOD01 Initialization this._dvod01 = DVOD01; ACNRM = DVOD01.doubleData[0]; CCMXJ = DVOD01.doubleData[1]; CONP = DVOD01.doubleData[2]; CRATE = DVOD01.doubleData[3]; DRC = DVOD01.doubleData[4]; //Start Array: EL StartIndex: 5 LastIndex: 17 EL = DVOD01.doubleData; o_el = 4; //o_ = StartIndex-1 //End Array: EL ETA = DVOD01.doubleData[18]; ETAMAX = DVOD01.doubleData[19]; H = DVOD01.doubleData[20]; HMIN = DVOD01.doubleData[21]; HMXI = DVOD01.doubleData[22]; HNEW = DVOD01.doubleData[23]; HSCAL = DVOD01.doubleData[24]; PRL1 = DVOD01.doubleData[25]; RC = DVOD01.doubleData[26]; RL1 = DVOD01.doubleData[27]; //Start Array: TAU StartIndex: 28 LastIndex: 40 TAU = DVOD01.doubleData; o_tau = 27; //o_ = StartIndex-1 //End Array: TAU //Start Array: TQ StartIndex: 41 LastIndex: 45 TQ = DVOD01.doubleData; o_tq = 40; //o_ = StartIndex-1 //End Array: TQ TN = DVOD01.doubleData[46]; UROUND = DVOD01.doubleData[47]; ICF = DVOD01.intData[0]; INIT = DVOD01.intData[1]; IPUP = DVOD01.intData[2]; JCUR = DVOD01.intData[3]; JSTART = DVOD01.intData[4]; JSV = DVOD01.intData[5]; KFLAG = DVOD01.intData[6]; KUTH = DVOD01.intData[7]; L = DVOD01.intData[8]; LMAX = DVOD01.intData[9]; LYH = DVOD01.intData[10]; LEWT = DVOD01.intData[11]; LACOR = DVOD01.intData[12]; LSAVF = DVOD01.intData[13]; LWM = DVOD01.intData[14]; LIWM = DVOD01.intData[15]; LOCJS = DVOD01.intData[16]; MAXORD = DVOD01.intData[17]; METH = DVOD01.intData[18]; MITER = DVOD01.intData[19]; MSBJ = DVOD01.intData[20]; MXHNIL = DVOD01.intData[21]; MXSTEP = DVOD01.intData[22]; N = DVOD01.intData[23]; NEWH = DVOD01.intData[24]; NEWQ = DVOD01.intData[25]; NHNIL = DVOD01.intData[26]; NQ = DVOD01.intData[27]; NQNYH = DVOD01.intData[28]; NQWAIT = DVOD01.intData[29]; NSLJ = DVOD01.intData[30]; NSLP = DVOD01.intData[31]; NYH = DVOD01.intData[32]; #endregion #endregion } public void Run() { #region Variables double AHATN0 = 0; double ALPH0 = 0; double CNQM1 = 0; double CSUM = 0; double ELP = 0; int offset_em = 0; int o_em = -1;double EM0 = 0; double FLOTI = 0; double FLOTL = 0; double FLOTNQ = 0; double HSUM = 0;double RXI = 0; double RXIS = 0; double S = 0; double T1 = 0; double T2 = 0; double T3 = 0; double T4 = 0;double T5 = 0; double T6 = 0; double XI = 0; int I = 0; int IBACK = 0; int J = 0; int JP1 = 0; int NQM1 = 0;int NQM2 = 0; #endregion #region Prolog // C----------------------------------------------------------------------- // C Call sequence communication: None // C COMMON block variables accessed: // C /DVOD01/ -- EL(13), H, TAU(13), TQ(5), L(= NQ + 1), // C METH, NQ, NQWAIT // C // C Subroutines called by DVSET: None // C Function routines called by DVSET: None // C----------------------------------------------------------------------- // C DVSET is called by DVSTEP and sets coefficients for use there. // C // C For each order NQ, the coefficients in EL are calculated by use of // C the generating polynomial lambda(x), with coefficients EL(i). // C lambda(x) = EL(1) + EL(2)*x + ... + EL(NQ+1)*(x**NQ). // C For the backward differentiation formulas, // C NQ-1 // C lambda(x) = (1 + x/xi*(NQ)) * product (1 + x/xi(i) ) . // C i = 1 // C For the Adams formulas, // C NQ-1 // C (d/dx) lambda(x) = c * product (1 + x/xi(i) ) , // C i = 1 // C lambda(-1) = 0, lambda(0) = 1, // C where c is a normalization constant. // C In both cases, xi(i) is defined by // C H*xi(i) = t sub n - t sub (n-i) // C = H + TAU(1) + TAU(2) + ... TAU(i-1). // C // C // C In addition to variables described previously, communication // C with DVSET uses the following: // C TAU = A vector of length 13 containing the past NQ values // C of H. // C EL = A vector of length 13 in which vset stores the // C coefficients for the corrector formula. // C TQ = A vector of length 5 in which vset stores constants // C used for the convergence test, the error test, and the // C selection of H at a new order. // C METH = The basic method indicator. // C NQ = The current order. // C L = NQ + 1, the length of the vector stored in EL, and // C the number of columns of the YH array being used. // C NQWAIT = A counter controlling the frequency of order changes. // C An order change is about to be considered if NQWAIT = 1. // C----------------------------------------------------------------------- // C // C Type declarations for labeled COMMON block DVOD01 -------------------- // C // C // C Type declarations for local variables -------------------------------- // C // C // C----------------------------------------------------------------------- // C The following Fortran-77 declaration is to cause the values of the // C listed (local) variables to be saved between calls to this integrator. // C----------------------------------------------------------------------- // C // C // C #endregion #region Body FLOTL = Convert.ToSingle(L.v); NQM1 = NQ.v - 1; NQM2 = NQ.v - 2; switch (METH.v) { case 1: goto LABEL100; case 2: goto LABEL200; } // C // C Set coefficients for Adams methods. ---------------------------------- LABEL100: if (NQ.v != 1) goto LABEL110; EL[1 + o_el].v = ONE; EL[2 + o_el].v = ONE; TQ[1 + o_tq].v = ONE; TQ[2 + o_tq].v = TWO; TQ[3 + o_tq].v = SIX * TQ[2 + o_tq].v; TQ[5 + o_tq].v = ONE; goto LABEL300; LABEL110: HSUM = H.v; EM[1 + o_em] = ONE; FLOTNQ = FLOTL - ONE; for (I = 2; I <= L.v; I++) { EM[I + o_em] = ZERO; } for (J = 1; J <= NQM1; J++) { if ((J != NQM1) || (NQWAIT.v != 1)) goto LABEL130; S = ONE; CSUM = ZERO; for (I = 1; I <= NQM1; I++) { CSUM += S * EM[I + o_em] / Convert.ToSingle(I + 1); S = - S; } TQ[1 + o_tq].v = EM[NQM1 + o_em] / (FLOTNQ * CSUM); LABEL130: RXI = H.v / HSUM; for (IBACK = 1; IBACK <= J; IBACK++) { I = (J + 2) - IBACK; EM[I + o_em] += EM[I - 1 + o_em] * RXI; } HSUM += TAU[J + o_tau].v; } // C Compute integral from -1 to 0 of polynomial and of x times it. ------- S = ONE; EM0 = ZERO; CSUM = ZERO; for (I = 1; I <= NQ.v; I++) { FLOTI = Convert.ToSingle(I); EM0 += S * EM[I + o_em] / FLOTI; CSUM += S * EM[I + o_em] / (FLOTI + ONE); S = - S; } // C In EL, form coefficients of normalized integrated polynomial. -------- S = ONE / EM0; EL[1 + o_el].v = ONE; for (I = 1; I <= NQ.v; I++) { EL[I + 1 + o_el].v = S * EM[I + o_em] / Convert.ToSingle(I); } XI = HSUM / H.v; TQ[2 + o_tq].v = XI * EM0 / CSUM; TQ[5 + o_tq].v = XI / EL[L.v + o_el].v; if (NQWAIT.v != 1) goto LABEL300; // C For higher order control constant, multiply polynomial by 1+x/xi(q). - RXI = ONE / XI; for (IBACK = 1; IBACK <= NQ.v; IBACK++) { I = (L.v + 1) - IBACK; EM[I + o_em] += EM[I - 1 + o_em] * RXI; } // C Compute integral of polynomial. -------------------------------------- S = ONE; CSUM = ZERO; for (I = 1; I <= L.v; I++) { CSUM += S * EM[I + o_em] / Convert.ToSingle(I + 1); S = - S; } TQ[3 + o_tq].v = FLOTL * EM0 / CSUM; goto LABEL300; // C // C Set coefficients for BDF methods. ------------------------------------ LABEL200: for (I = 3; I <= L.v; I++) { EL[I + o_el].v = ZERO; } EL[1 + o_el].v = ONE; EL[2 + o_el].v = ONE; ALPH0 = - ONE; AHATN0 = - ONE; HSUM = H.v; RXI = ONE; RXIS = ONE; if (NQ.v == 1) goto LABEL240; for (J = 1; J <= NQM2; J++) { // C In EL, construct coefficients of (1+x/xi(1))*...*(1+x/xi(j+1)). ------ HSUM += TAU[J + o_tau].v; RXI = H.v / HSUM; JP1 = J + 1; ALPH0 += - ONE / Convert.ToSingle(JP1); for (IBACK = 1; IBACK <= JP1; IBACK++) { I = (J + 3) - IBACK; EL[I + o_el].v += EL[I - 1 + o_el].v * RXI; } } ALPH0 += - ONE / Convert.ToSingle(NQ.v); RXIS = - EL[2 + o_el].v - ALPH0; HSUM += TAU[NQM1 + o_tau].v; RXI = H.v / HSUM; AHATN0 = - EL[2 + o_el].v - RXI; for (IBACK = 1; IBACK <= NQ.v; IBACK++) { I = (NQ.v + 2) - IBACK; EL[I + o_el].v += EL[I - 1 + o_el].v * RXIS; } LABEL240: T1 = ONE - AHATN0 + ALPH0; T2 = ONE + Convert.ToSingle(NQ.v) * T1; TQ[2 + o_tq].v = Math.Abs(ALPH0 * T2 / T1); TQ[5 + o_tq].v = Math.Abs(T2 / (EL[L.v + o_el].v * RXI / RXIS)); if (NQWAIT.v != 1) goto LABEL300; CNQM1 = RXIS / EL[L.v + o_el].v; T3 = ALPH0 + ONE / Convert.ToSingle(NQ.v); T4 = AHATN0 + RXI; ELP = T3 / (ONE - T4 + T3); TQ[1 + o_tq].v = Math.Abs(ELP / CNQM1); HSUM += TAU[NQ.v + o_tau].v; RXI = H.v / HSUM; T5 = ALPH0 - ONE / Convert.ToSingle(NQ.v + 1); T6 = AHATN0 - RXI; ELP = T2 / (ONE - T6 + T5); TQ[3 + o_tq].v = Math.Abs(ELP * RXI * (FLOTL + ONE) * T5); LABEL300: TQ[4 + o_tq].v = CORTES * TQ[2 + o_tq].v; return; // C----------------------- End of Subroutine DVSET ----------------------- #endregion } } #endregion #region The Class: DVJUST // *DECK DVJUST public class DVJUST { #region Dependencies DAXPY _daxpy; #endregion #region Common variables #region Common Block: DVOD01 Declaration CommonBlock _dvod01; Odouble ACNRM; Odouble CCMXJ; Odouble CONP; Odouble CRATE; Odouble DRC; Odouble[] EL; int o_el; Odouble ETA; Odouble ETAMAX;Odouble H; Odouble HMIN; Odouble HMXI; Odouble HNEW; Odouble HSCAL; Odouble PRL1; Odouble RC; Odouble RL1; Odouble[] TAU; int o_tau;Odouble[] TQ; int o_tq; Odouble TN; Odouble UROUND; Oint ICF; Oint INIT; Oint IPUP; Oint JCUR; Oint JSTART; Oint JSV; Oint KFLAG; Oint KUTH; Oint L; Oint LMAX; Oint LYH; Oint LEWT;Oint LACOR; Oint LSAVF; Oint LWM; Oint LIWM; Oint LOCJS; Oint MAXORD; Oint METH; Oint MITER; Oint MSBJ; Oint MXHNIL;Oint MXSTEP; Oint N; Oint NEWH; Oint NEWQ; Oint NHNIL; Oint NQ; Oint NQNYH; Oint NQWAIT; Oint NSLJ; Oint NSLP; Oint NYH; #endregion #endregion #region Variables double ONE = 0; double ZERO = 0; #endregion public DVJUST(DAXPY daxpy, CommonBlock DVOD01) { #region Set Dependencies this._daxpy = daxpy; #endregion #region Data Initialization //ONE/1.0D0 ONE = 1.0E0; //ZERO/0.0D0 ZERO = 0.0E0; #endregion #region Common varaible Initialization #region Common Block: DVOD01 Initialization this._dvod01 = DVOD01; ACNRM = DVOD01.doubleData[0]; CCMXJ = DVOD01.doubleData[1]; CONP = DVOD01.doubleData[2]; CRATE = DVOD01.doubleData[3]; DRC = DVOD01.doubleData[4]; //Start Array: EL StartIndex: 5 LastIndex: 17 EL = DVOD01.doubleData; o_el = 4; //o_ = StartIndex-1 //End Array: EL ETA = DVOD01.doubleData[18]; ETAMAX = DVOD01.doubleData[19]; H = DVOD01.doubleData[20]; HMIN = DVOD01.doubleData[21]; HMXI = DVOD01.doubleData[22]; HNEW = DVOD01.doubleData[23]; HSCAL = DVOD01.doubleData[24]; PRL1 = DVOD01.doubleData[25]; RC = DVOD01.doubleData[26]; RL1 = DVOD01.doubleData[27]; //Start Array: TAU StartIndex: 28 LastIndex: 40 TAU = DVOD01.doubleData; o_tau = 27; //o_ = StartIndex-1 //End Array: TAU //Start Array: TQ StartIndex: 41 LastIndex: 45 TQ = DVOD01.doubleData; o_tq = 40; //o_ = StartIndex-1 //End Array: TQ TN = DVOD01.doubleData[46]; UROUND = DVOD01.doubleData[47]; ICF = DVOD01.intData[0]; INIT = DVOD01.intData[1]; IPUP = DVOD01.intData[2]; JCUR = DVOD01.intData[3]; JSTART = DVOD01.intData[4]; JSV = DVOD01.intData[5]; KFLAG = DVOD01.intData[6]; KUTH = DVOD01.intData[7]; L = DVOD01.intData[8]; LMAX = DVOD01.intData[9]; LYH = DVOD01.intData[10]; LEWT = DVOD01.intData[11]; LACOR = DVOD01.intData[12]; LSAVF = DVOD01.intData[13]; LWM = DVOD01.intData[14]; LIWM = DVOD01.intData[15]; LOCJS = DVOD01.intData[16]; MAXORD = DVOD01.intData[17]; METH = DVOD01.intData[18]; MITER = DVOD01.intData[19]; MSBJ = DVOD01.intData[20]; MXHNIL = DVOD01.intData[21]; MXSTEP = DVOD01.intData[22]; N = DVOD01.intData[23]; NEWH = DVOD01.intData[24]; NEWQ = DVOD01.intData[25]; NHNIL = DVOD01.intData[26]; NQ = DVOD01.intData[27]; NQNYH = DVOD01.intData[28]; NQWAIT = DVOD01.intData[29]; NSLJ = DVOD01.intData[30]; NSLP = DVOD01.intData[31]; NYH = DVOD01.intData[32]; #endregion #endregion } public DVJUST() { #region Initialization Common Blocks CommonBlock DVOD01 = new CommonBlock(48, 33, 0, 0); #endregion #region Dependencies (Initialization) DAXPY daxpy = new DAXPY(); #endregion #region Set Dependencies this._daxpy = daxpy; #endregion #region Data Initialization //ONE/1.0D0 ONE = 1.0E0; //ZERO/0.0D0 ZERO = 0.0E0; #endregion #region Common varaible Initialization #region Common Block: DVOD01 Initialization this._dvod01 = DVOD01; ACNRM = DVOD01.doubleData[0]; CCMXJ = DVOD01.doubleData[1]; CONP = DVOD01.doubleData[2]; CRATE = DVOD01.doubleData[3]; DRC = DVOD01.doubleData[4]; //Start Array: EL StartIndex: 5 LastIndex: 17 EL = DVOD01.doubleData; o_el = 4; //o_ = StartIndex-1 //End Array: EL ETA = DVOD01.doubleData[18]; ETAMAX = DVOD01.doubleData[19]; H = DVOD01.doubleData[20]; HMIN = DVOD01.doubleData[21]; HMXI = DVOD01.doubleData[22]; HNEW = DVOD01.doubleData[23]; HSCAL = DVOD01.doubleData[24]; PRL1 = DVOD01.doubleData[25]; RC = DVOD01.doubleData[26]; RL1 = DVOD01.doubleData[27]; //Start Array: TAU StartIndex: 28 LastIndex: 40 TAU = DVOD01.doubleData; o_tau = 27; //o_ = StartIndex-1 //End Array: TAU //Start Array: TQ StartIndex: 41 LastIndex: 45 TQ = DVOD01.doubleData; o_tq = 40; //o_ = StartIndex-1 //End Array: TQ TN = DVOD01.doubleData[46]; UROUND = DVOD01.doubleData[47]; ICF = DVOD01.intData[0]; INIT = DVOD01.intData[1]; IPUP = DVOD01.intData[2]; JCUR = DVOD01.intData[3]; JSTART = DVOD01.intData[4]; JSV = DVOD01.intData[5]; KFLAG = DVOD01.intData[6]; KUTH = DVOD01.intData[7]; L = DVOD01.intData[8]; LMAX = DVOD01.intData[9]; LYH = DVOD01.intData[10]; LEWT = DVOD01.intData[11]; LACOR = DVOD01.intData[12]; LSAVF = DVOD01.intData[13]; LWM = DVOD01.intData[14]; LIWM = DVOD01.intData[15]; LOCJS = DVOD01.intData[16]; MAXORD = DVOD01.intData[17]; METH = DVOD01.intData[18]; MITER = DVOD01.intData[19]; MSBJ = DVOD01.intData[20]; MXHNIL = DVOD01.intData[21]; MXSTEP = DVOD01.intData[22]; N = DVOD01.intData[23]; NEWH = DVOD01.intData[24]; NEWQ = DVOD01.intData[25]; NHNIL = DVOD01.intData[26]; NQ = DVOD01.intData[27]; NQNYH = DVOD01.intData[28]; NQWAIT = DVOD01.intData[29]; NSLJ = DVOD01.intData[30]; NSLP = DVOD01.intData[31]; NYH = DVOD01.intData[32]; #endregion #endregion } /// /// = An integer flag used when METH = 2 to indicate an order /// increase (IORD = +1) or an order decrease (IORD = -1). /// public void Run(ref double[] YH, int offset_yh, int LDYH, int IORD) { #region Variables double ALPH0 = 0; double ALPH1 = 0; double HSUM = 0; double PROD = 0; double T1 = 0; double XI = 0; double XIOLD = 0; int I = 0;int IBACK = 0; int J = 0; int JP1 = 0; int LP1 = 0; int NQM1 = 0; int NQM2 = 0; int NQP1 = 0; #endregion #region Array Index Correction int o_yh = -1 - LDYH + offset_yh; #endregion #region Prolog // C----------------------------------------------------------------------- // C Call sequence input -- YH, LDYH, IORD // C Call sequence output -- YH // C COMMON block input -- NQ, METH, LMAX, HSCAL, TAU(13), N // C COMMON block variables accessed: // C /DVOD01/ -- HSCAL, TAU(13), LMAX, METH, N, NQ, // C // C Subroutines called by DVJUST: DAXPY // C Function routines called by DVJUST: None // C----------------------------------------------------------------------- // C This subroutine adjusts the YH array on reduction of order, // C and also when the order is increased for the stiff option (METH = 2). // C Communication with DVJUST uses the following: // C IORD = An integer flag used when METH = 2 to indicate an order // C increase (IORD = +1) or an order decrease (IORD = -1). // C HSCAL = Step size H used in scaling of Nordsieck array YH. // C (If IORD = +1, DVJUST assumes that HSCAL = TAU(1).) // C See References 1 and 2 for details. // C----------------------------------------------------------------------- // C // C Type declarations for labeled COMMON block DVOD01 -------------------- // C // C // C Type declarations for local variables -------------------------------- // C // C----------------------------------------------------------------------- // C The following Fortran-77 declaration is to cause the values of the // C listed (local) variables to be saved between calls to this integrator. // C----------------------------------------------------------------------- // C // C // C #endregion #region Body if ((NQ.v == 2) && (IORD != 1)) return; NQM1 = NQ.v - 1; NQM2 = NQ.v - 2; switch (METH.v) { case 1: goto LABEL100; case 2: goto LABEL200; } // C----------------------------------------------------------------------- // C Nonstiff option... // C Check to see if the order is being increased or decreased. // C----------------------------------------------------------------------- LABEL100:; if (IORD == 1) goto LABEL180; // C Order decrease. ------------------------------------------------------ for (J = 1; J <= LMAX.v; J++) { EL[J + o_el].v = ZERO; } EL[2 + o_el].v = ONE; HSUM = ZERO; for (J = 1; J <= NQM2; J++) { // C Construct coefficients of x*(x+xi(1))*...*(x+xi(j)). ----------------- HSUM += TAU[J + o_tau].v; XI = HSUM / HSCAL.v; JP1 = J + 1; for (IBACK = 1; IBACK <= JP1; IBACK++) { I = (J + 3) - IBACK; EL[I + o_el].v = EL[I + o_el].v * XI + EL[I - 1 + o_el].v; } } // C Construct coefficients of integrated polynomial. --------------------- for (J = 2; J <= NQM1; J++) { EL[J + 1 + o_el].v = Convert.ToSingle(NQ.v) * EL[J + o_el].v / Convert.ToSingle(J); } // C Subtract correction terms from YH array. ----------------------------- for (J = 3; J <= NQ.v; J++) { for (I = 1; I <= N.v; I++) { YH[I+J * LDYH + o_yh] += - YH[I+L.v * LDYH + o_yh] * EL[J + o_el].v; } } return; // C Order increase. ------------------------------------------------------ // C Zero out next column in YH array. ------------------------------------ LABEL180:; LP1 = L.v + 1; for (I = 1; I <= N.v; I++) { YH[I+LP1 * LDYH + o_yh] = ZERO; } return; // C----------------------------------------------------------------------- // C Stiff option... // C Check to see if the order is being increased or decreased. // C----------------------------------------------------------------------- LABEL200:; if (IORD == 1) goto LABEL300; // C Order decrease. ------------------------------------------------------ for (J = 1; J <= LMAX.v; J++) { EL[J + o_el].v = ZERO; } EL[3 + o_el].v = ONE; HSUM = ZERO; for (J = 1; J <= NQM2; J++) { // C Construct coefficients of x*x*(x+xi(1))*...*(x+xi(j)). --------------- HSUM += TAU[J + o_tau].v; XI = HSUM / HSCAL.v; JP1 = J + 1; for (IBACK = 1; IBACK <= JP1; IBACK++) { I = (J + 4) - IBACK; EL[I + o_el].v = EL[I + o_el].v * XI + EL[I - 1 + o_el].v; } } // C Subtract correction terms from YH array. ----------------------------- for (J = 3; J <= NQ.v; J++) { for (I = 1; I <= N.v; I++) { YH[I+J * LDYH + o_yh] += - YH[I+L.v * LDYH + o_yh] * EL[J + o_el].v; } } return; // C Order increase. ------------------------------------------------------ LABEL300: for (J = 1; J <= LMAX.v; J++) { EL[J + o_el].v = ZERO; } EL[3 + o_el].v = ONE; ALPH0 = - ONE; ALPH1 = ONE; PROD = ONE; XIOLD = ONE; HSUM = HSCAL.v; if (NQ.v == 1) goto LABEL340; for (J = 1; J <= NQM1; J++) { // C Construct coefficients of x*x*(x+xi(1))*...*(x+xi(j)). --------------- JP1 = J + 1; HSUM += TAU[JP1 + o_tau].v; XI = HSUM / HSCAL.v; PROD *= XI; ALPH0 += - ONE / Convert.ToSingle(JP1); ALPH1 += ONE / XI; for (IBACK = 1; IBACK <= JP1; IBACK++) { I = (J + 4) - IBACK; EL[I + o_el].v = EL[I + o_el].v * XIOLD + EL[I - 1 + o_el].v; } XIOLD = XI; } LABEL340:; T1 = ( - ALPH0 - ALPH1) / PROD; // C Load column L + 1 in YH array. --------------------------------------- LP1 = L.v + 1; for (I = 1; I <= N.v; I++) { YH[I+LP1 * LDYH + o_yh] = T1 * YH[I+LMAX.v * LDYH + o_yh]; } // C Add correction terms to YH array. ------------------------------------ NQP1 = NQ.v + 1; for (J = 3; J <= NQP1; J++) { this._daxpy.Run(N.v, EL[J + o_el].v, YH, 1+LP1 * LDYH + o_yh, 1, ref YH, 1+J * LDYH + o_yh, 1); } return; // C----------------------- End of Subroutine DVJUST ---------------------- #endregion } } #endregion #region The Class: DVNLSD // *DECK DVNLSD public class DVNLSD : IDVNLSD { #region Dependencies DVNORM _dvnorm; DCOPY _dcopy; DVJAC _dvjac; DVSOL _dvsol; DSCAL _dscal; DAXPY _daxpy; #endregion #region Common variables #region Common Block: DVOD01 Declaration CommonBlock _dvod01; Odouble ACNRM; Odouble CCMXJ; Odouble CONP; Odouble CRATE; Odouble DRC; Odouble[] EL; int o_el; Odouble ETA; Odouble ETAMAX;Odouble H; Odouble HMIN; Odouble HMXI; Odouble HNEW; Odouble HSCAL; Odouble PRL1; Odouble RC; Odouble RL1; Odouble[] TAU; int o_tau;Odouble[] TQ; int o_tq; Odouble TN; Odouble UROUND; Oint ICF; Oint INIT; Oint IPUP; Oint JCUR; Oint JSTART; Oint JSV; Oint KFLAG; Oint KUTH; Oint L; Oint LMAX; Oint LYH; Oint LEWT;Oint LACOR; Oint LSAVF; Oint LWM; Oint LIWM; Oint LOCJS; Oint MAXORD; Oint METH; Oint MITER; Oint MSBJ; Oint MXHNIL;Oint MXSTEP; Oint N; Oint NEWH; Oint NEWQ; Oint NHNIL; Oint NQ; Oint NQNYH; Oint NQWAIT; Oint NSLJ; Oint NSLP; Oint NYH; #endregion #region Common Block: DVOD02 Declaration CommonBlock _dvod02; Odouble HU; Oint NCFN; Oint NETF; Oint NFE; Oint NJE; Oint NLU; Oint NNI; Oint NQU; Oint NST; #endregion #endregion #region Variables double CCMAX = 0; double CRDOWN = 0; double ONE = 0; double RDIV = 0; double TWO = 0; double ZERO = 0; int MAXCOR = 0; int MSBP = 0; #endregion public DVNLSD(DVNORM dvnorm, DCOPY dcopy, DVJAC dvjac, DVSOL dvsol, DSCAL dscal, DAXPY daxpy, CommonBlock DVOD01, CommonBlock DVOD02) { #region Set Dependencies this._dvnorm = dvnorm; this._dcopy = dcopy; this._dvjac = dvjac; this._dvsol = dvsol; this._dscal = dscal; this._daxpy = daxpy; #endregion #region Data Initialization //CCMAX/0.3D0 CCMAX = 0.3E0; //CRDOWN/0.3D0 CRDOWN = 0.3E0; //MAXCOR/3 MAXCOR = 3; //MSBP/20 MSBP = 20; //RDIV/2.0D0 RDIV = 2.0E0; //ONE/1.0D0 ONE = 1.0E0; //TWO/2.0D0 TWO = 2.0E0; //ZERO/0.0D0 ZERO = 0.0E0; #endregion #region Common varaible Initialization #region Common Block: DVOD01 Initialization this._dvod01 = DVOD01; ACNRM = DVOD01.doubleData[0]; CCMXJ = DVOD01.doubleData[1]; CONP = DVOD01.doubleData[2]; CRATE = DVOD01.doubleData[3]; DRC = DVOD01.doubleData[4]; //Start Array: EL StartIndex: 5 LastIndex: 17 EL = DVOD01.doubleData; o_el = 4; //o_ = StartIndex-1 //End Array: EL ETA = DVOD01.doubleData[18]; ETAMAX = DVOD01.doubleData[19]; H = DVOD01.doubleData[20]; HMIN = DVOD01.doubleData[21]; HMXI = DVOD01.doubleData[22]; HNEW = DVOD01.doubleData[23]; HSCAL = DVOD01.doubleData[24]; PRL1 = DVOD01.doubleData[25]; RC = DVOD01.doubleData[26]; RL1 = DVOD01.doubleData[27]; //Start Array: TAU StartIndex: 28 LastIndex: 40 TAU = DVOD01.doubleData; o_tau = 27; //o_ = StartIndex-1 //End Array: TAU //Start Array: TQ StartIndex: 41 LastIndex: 45 TQ = DVOD01.doubleData; o_tq = 40; //o_ = StartIndex-1 //End Array: TQ TN = DVOD01.doubleData[46]; UROUND = DVOD01.doubleData[47]; ICF = DVOD01.intData[0]; INIT = DVOD01.intData[1]; IPUP = DVOD01.intData[2]; JCUR = DVOD01.intData[3]; JSTART = DVOD01.intData[4]; JSV = DVOD01.intData[5]; KFLAG = DVOD01.intData[6]; KUTH = DVOD01.intData[7]; L = DVOD01.intData[8]; LMAX = DVOD01.intData[9]; LYH = DVOD01.intData[10]; LEWT = DVOD01.intData[11]; LACOR = DVOD01.intData[12]; LSAVF = DVOD01.intData[13]; LWM = DVOD01.intData[14]; LIWM = DVOD01.intData[15]; LOCJS = DVOD01.intData[16]; MAXORD = DVOD01.intData[17]; METH = DVOD01.intData[18]; MITER = DVOD01.intData[19]; MSBJ = DVOD01.intData[20]; MXHNIL = DVOD01.intData[21]; MXSTEP = DVOD01.intData[22]; N = DVOD01.intData[23]; NEWH = DVOD01.intData[24]; NEWQ = DVOD01.intData[25]; NHNIL = DVOD01.intData[26]; NQ = DVOD01.intData[27]; NQNYH = DVOD01.intData[28]; NQWAIT = DVOD01.intData[29]; NSLJ = DVOD01.intData[30]; NSLP = DVOD01.intData[31]; NYH = DVOD01.intData[32]; #endregion #region Common Block: DVOD02 Initialization this._dvod02 = DVOD02; HU = DVOD02.doubleData[0]; NCFN = DVOD02.intData[0]; NETF = DVOD02.intData[1]; NFE = DVOD02.intData[2]; NJE = DVOD02.intData[3]; NLU = DVOD02.intData[4]; NNI = DVOD02.intData[5]; NQU = DVOD02.intData[6]; NST = DVOD02.intData[7]; #endregion #endregion } public DVNLSD() { #region Initialization Common Blocks CommonBlock DVOD01 = new CommonBlock(48, 33, 0, 0); CommonBlock DVOD02 = new CommonBlock(1, 8, 0, 0); #endregion #region Dependencies (Initialization) DVNORM dvnorm = new DVNORM(); DCOPY dcopy = new DCOPY(); DSCAL dscal = new DSCAL(); IDAMAX idamax = new IDAMAX(); DAXPY daxpy = new DAXPY(); DDOT ddot = new DDOT(); DGEFA dgefa = new DGEFA(idamax, dscal, daxpy); DACOPY dacopy = new DACOPY(dcopy); DGBFA dgbfa = new DGBFA(idamax, dscal, daxpy); DVJAC dvjac = new DVJAC(dvnorm, dcopy, dscal, dgefa, dacopy, dgbfa, DVOD01, DVOD02); DGESL dgesl = new DGESL(ddot, daxpy); DGBSL dgbsl = new DGBSL(ddot, daxpy); DVSOL dvsol = new DVSOL(dgesl, dgbsl, DVOD01); #endregion #region Set Dependencies this._dvnorm = dvnorm; this._dcopy = dcopy; this._dvjac = dvjac; this._dvsol = dvsol; this._dscal = dscal; this._daxpy = daxpy; #endregion #region Data Initialization //CCMAX/0.3D0 CCMAX = 0.3E0; //CRDOWN/0.3D0 CRDOWN = 0.3E0; //MAXCOR/3 MAXCOR = 3; //MSBP/20 MSBP = 20; //RDIV/2.0D0 RDIV = 2.0E0; //ONE/1.0D0 ONE = 1.0E0; //TWO/2.0D0 TWO = 2.0E0; //ZERO/0.0D0 ZERO = 0.0E0; #endregion #region Common varaible Initialization #region Common Block: DVOD01 Initialization this._dvod01 = DVOD01; ACNRM = DVOD01.doubleData[0]; CCMXJ = DVOD01.doubleData[1]; CONP = DVOD01.doubleData[2]; CRATE = DVOD01.doubleData[3]; DRC = DVOD01.doubleData[4]; //Start Array: EL StartIndex: 5 LastIndex: 17 EL = DVOD01.doubleData; o_el = 4; //o_ = StartIndex-1 //End Array: EL ETA = DVOD01.doubleData[18]; ETAMAX = DVOD01.doubleData[19]; H = DVOD01.doubleData[20]; HMIN = DVOD01.doubleData[21]; HMXI = DVOD01.doubleData[22]; HNEW = DVOD01.doubleData[23]; HSCAL = DVOD01.doubleData[24]; PRL1 = DVOD01.doubleData[25]; RC = DVOD01.doubleData[26]; RL1 = DVOD01.doubleData[27]; //Start Array: TAU StartIndex: 28 LastIndex: 40 TAU = DVOD01.doubleData; o_tau = 27; //o_ = StartIndex-1 //End Array: TAU //Start Array: TQ StartIndex: 41 LastIndex: 45 TQ = DVOD01.doubleData; o_tq = 40; //o_ = StartIndex-1 //End Array: TQ TN = DVOD01.doubleData[46]; UROUND = DVOD01.doubleData[47]; ICF = DVOD01.intData[0]; INIT = DVOD01.intData[1]; IPUP = DVOD01.intData[2]; JCUR = DVOD01.intData[3]; JSTART = DVOD01.intData[4]; JSV = DVOD01.intData[5]; KFLAG = DVOD01.intData[6]; KUTH = DVOD01.intData[7]; L = DVOD01.intData[8]; LMAX = DVOD01.intData[9]; LYH = DVOD01.intData[10]; LEWT = DVOD01.intData[11]; LACOR = DVOD01.intData[12]; LSAVF = DVOD01.intData[13]; LWM = DVOD01.intData[14]; LIWM = DVOD01.intData[15]; LOCJS = DVOD01.intData[16]; MAXORD = DVOD01.intData[17]; METH = DVOD01.intData[18]; MITER = DVOD01.intData[19]; MSBJ = DVOD01.intData[20]; MXHNIL = DVOD01.intData[21]; MXSTEP = DVOD01.intData[22]; N = DVOD01.intData[23]; NEWH = DVOD01.intData[24]; NEWQ = DVOD01.intData[25]; NHNIL = DVOD01.intData[26]; NQ = DVOD01.intData[27]; NQNYH = DVOD01.intData[28]; NQWAIT = DVOD01.intData[29]; NSLJ = DVOD01.intData[30]; NSLP = DVOD01.intData[31]; NYH = DVOD01.intData[32]; #endregion #region Common Block: DVOD02 Initialization this._dvod02 = DVOD02; HU = DVOD02.doubleData[0]; NCFN = DVOD02.intData[0]; NETF = DVOD02.intData[1]; NFE = DVOD02.intData[2]; NJE = DVOD02.intData[3]; NLU = DVOD02.intData[4]; NNI = DVOD02.intData[5]; NQU = DVOD02.intData[6]; NST = DVOD02.intData[7]; #endregion #endregion } /// /// = The dependent variable, a vector of length N, input. /// /// /// = The Nordsieck (Taylor) array, LDYH by LMAX, input /// and output. On input, it contains predicted values. /// /// /// = A constant .ge. N, the first dimension of YH, input. /// /// /// = Unused work array. /// /// /// = A work array of length N. /// /// /// = An error weight vector of length N, input. /// /// /// = A work array of length N, used for the accumulated /// corrections to the predicted y vector. /// /// /// = Dummy name for user supplied routine for f. /// /// /// = Dummy name for user supplied Jacobian routine. /// /// /// = Unused dummy subroutine name. Included for uniformity /// over collection of integrators. /// /// /// = Input/output flag, with values and meanings as follows: /// INPUT /// 0 first call for this time step. /// -1 convergence failure in previous call to DVNLSD. /// -2 error test failure in DVSTEP. /// OUTPUT /// 0 successful completion of nonlinear solver. /// -1 convergence failure or singular matrix. /// -2 unrecoverable error in matrix preprocessing /// (cannot occur here). /// -3 unrecoverable error in solution (cannot occur /// here). /// public void Run(ref double[] Y, int offset_y, double[] YH, int offset_yh, int LDYH, double[] VSAV, int offset_vsav, ref double[] SAVF, int offset_savf, double[] EWT, int offset_ewt , ref double[] ACOR, int offset_acor, ref int[] IWM, int offset_iwm, ref double[] WM, int offset_wm, IFEX F, IJEX JAC, IFEX PDUM , ref int NFLAG, double[] RPAR, int offset_rpar, int[] IPAR, int offset_ipar) { #region Variables double CSCALE = 0; double DCON = 0; double DEL = 0; double DELP = 0; int I = 0; int IERPJ = 0; int IERSL = 0; int M = 0; #endregion #region Array Index Correction int o_y = -1 + offset_y; int o_yh = -1 - LDYH + offset_yh; int o_vsav = -1 + offset_vsav; int o_savf = -1 + offset_savf; int o_ewt = -1 + offset_ewt; int o_acor = -1 + offset_acor; int o_iwm = -1 + offset_iwm; int o_wm = -1 + offset_wm; int o_rpar = -1 + offset_rpar; int o_ipar = -1 + offset_ipar; #endregion #region Prolog // C----------------------------------------------------------------------- // C Call sequence input -- Y, YH, LDYH, SAVF, EWT, ACOR, IWM, WM, // C F, JAC, NFLAG, RPAR, IPAR // C Call sequence output -- YH, ACOR, WM, IWM, NFLAG // C COMMON block variables accessed: // C /DVOD01/ ACNRM, CRATE, DRC, H, RC, RL1, TQ(5), TN, ICF, // C JCUR, METH, MITER, N, NSLP // C /DVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST // C // C Subroutines called by DVNLSD: F, DAXPY, DCOPY, DSCAL, DVJAC, DVSOL // C Function routines called by DVNLSD: DVNORM // C----------------------------------------------------------------------- // C Subroutine DVNLSD is a nonlinear system solver, which uses functional // C iteration or a chord (modified Newton) method. For the chord method // C direct linear algebraic system solvers are used. Subroutine DVNLSD // C then handles the corrector phase of this integration package. // C // C Communication with DVNLSD is done with the following variables. (For // C more details, please see the comments in the driver subroutine.) // C // C Y = The dependent variable, a vector of length N, input. // C YH = The Nordsieck (Taylor) array, LDYH by LMAX, input // C and output. On input, it contains predicted values. // C LDYH = A constant .ge. N, the first dimension of YH, input. // C VSAV = Unused work array. // C SAVF = A work array of length N. // C EWT = An error weight vector of length N, input. // C ACOR = A work array of length N, used for the accumulated // C corrections to the predicted y vector. // C WM,IWM = Real and integer work arrays associated with matrix // C operations in chord iteration (MITER .ne. 0). // C F = Dummy name for user supplied routine for f. // C JAC = Dummy name for user supplied Jacobian routine. // C PDUM = Unused dummy subroutine name. Included for uniformity // C over collection of integrators. // C NFLAG = Input/output flag, with values and meanings as follows: // C INPUT // C 0 first call for this time step. // C -1 convergence failure in previous call to DVNLSD. // C -2 error test failure in DVSTEP. // C OUTPUT // C 0 successful completion of nonlinear solver. // C -1 convergence failure or singular matrix. // C -2 unrecoverable error in matrix preprocessing // C (cannot occur here). // C -3 unrecoverable error in solution (cannot occur // C here). // C RPAR, IPAR = Dummy names for user's real and integer work arrays. // C // C IPUP = Own variable flag with values and meanings as follows: // C 0, do not update the Newton matrix. // C MITER .ne. 0, update Newton matrix, because it is the // C initial step, order was changed, the error // C test failed, or an update is indicated by // C the scalar RC or step counter NST. // C // C For more details, see comments in driver subroutine. // C----------------------------------------------------------------------- // C Type declarations for labeled COMMON block DVOD01 -------------------- // C // C // C Type declarations for labeled COMMON block DVOD02 -------------------- // C // C // C Type declarations for local variables -------------------------------- // C // C // C Type declaration for function subroutines called --------------------- // C // C----------------------------------------------------------------------- // C The following Fortran-77 declaration is to cause the values of the // C listed (local) variables to be saved between calls to this integrator. // C----------------------------------------------------------------------- // C // C // C----------------------------------------------------------------------- // C On the first step, on a change of method order, or after a // C nonlinear convergence failure with NFLAG = -2, set IPUP = MITER // C to force a Jacobian update when MITER .ne. 0. // C----------------------------------------------------------------------- #endregion #region Body if (JSTART.v == 0) NSLP.v = 0; if (NFLAG == 0) ICF.v = 0; if (NFLAG == - 2) IPUP.v = MITER.v; if ((JSTART.v == 0) || (JSTART.v == - 1)) IPUP.v = MITER.v; // C If this is functional iteration, set CRATE .eq. 1 and drop to 220 if (MITER.v == 0) { CRATE.v = ONE; goto LABEL220; } // C----------------------------------------------------------------------- // C RC is the ratio of new to old values of the coefficient H/EL(2)=h/l1. // C When RC differs from 1 by more than CCMAX, IPUP is set to MITER // C to force DVJAC to be called, if a Jacobian is involved. // C In any case, DVJAC is called at least every MSBP steps. // C----------------------------------------------------------------------- DRC.v = Math.Abs(RC.v - ONE); if (DRC.v > CCMAX || NST.v >= NSLP.v + MSBP) IPUP.v = MITER.v; // C----------------------------------------------------------------------- // C Up to MAXCOR corrector iterations are taken. A convergence test is // C made on the r.m.s. norm of each correction, weighted by the error // C weight vector EWT. The sum of the corrections is accumulated in the // C vector ACOR(i). The YH array is not altered in the corrector loop. // C----------------------------------------------------------------------- LABEL220: M = 0; DELP = ZERO; this._dcopy.Run(N.v, YH, 1+1 * LDYH + o_yh, 1, ref Y, offset_y, 1); F.Run(N.v, TN.v, Y, offset_y, ref SAVF, offset_savf, RPAR[1 + o_rpar], IPAR[1 + o_ipar]); NFE.v += 1; if (IPUP.v <= 0) goto LABEL250; // C----------------------------------------------------------------------- // C If indicated, the matrix P = I - h*rl1*J is reevaluated and // C preprocessed before starting the corrector iteration. IPUP is set // C to 0 as an indicator that this has been done. // C----------------------------------------------------------------------- this._dvjac.Run(ref Y, offset_y, YH, offset_yh, LDYH, EWT, offset_ewt, ref ACOR, offset_acor, SAVF, offset_savf , ref WM, offset_wm, ref IWM, offset_iwm, F, JAC, ref IERPJ, RPAR, offset_rpar , IPAR, offset_ipar); IPUP.v = 0; RC.v = ONE; DRC.v = ZERO; CRATE.v = ONE; NSLP.v = NST.v; // C If matrix is singular, take error return to force cut in step size. -- if (IERPJ != 0) goto LABEL430; LABEL250: for (I = 1; I <= N.v; I++) { ACOR[I + o_acor] = ZERO; } // C This is a looping point for the corrector iteration. ----------------- LABEL270: if (MITER.v != 0) goto LABEL350; // C----------------------------------------------------------------------- // C In the case of functional iteration, update Y directly from // C the result of the last function evaluation. // C----------------------------------------------------------------------- for (I = 1; I <= N.v; I++) { SAVF[I + o_savf] = RL1.v * (H.v * SAVF[I + o_savf] - YH[I+2 * LDYH + o_yh]); } for (I = 1; I <= N.v; I++) { Y[I + o_y] = SAVF[I + o_savf] - ACOR[I + o_acor]; } DEL = this._dvnorm.Run(N.v, Y, offset_y, EWT, offset_ewt); for (I = 1; I <= N.v; I++) { Y[I + o_y] = YH[I+1 * LDYH + o_yh] + SAVF[I + o_savf]; } this._dcopy.Run(N.v, SAVF, offset_savf, 1, ref ACOR, offset_acor, 1); goto LABEL400; // C----------------------------------------------------------------------- // C In the case of the chord method, compute the corrector error, // C and solve the linear system with that as right-hand side and // C P as coefficient matrix. The correction is scaled by the factor // C 2/(1+RC) to account for changes in h*rl1 since the last DVJAC call. // C----------------------------------------------------------------------- LABEL350: for (I = 1; I <= N.v; I++) { Y[I + o_y] = (RL1.v * H.v) * SAVF[I + o_savf] - (RL1.v * YH[I+2 * LDYH + o_yh] + ACOR[I + o_acor]); } this._dvsol.Run(ref WM, offset_wm, IWM, offset_iwm, ref Y, offset_y, ref IERSL); NNI.v += 1; if (IERSL > 0) goto LABEL410; if (METH.v == 2 && RC.v != ONE) { CSCALE = TWO / (ONE + RC.v); this._dscal.Run(N.v, CSCALE, ref Y, offset_y, 1); } DEL = this._dvnorm.Run(N.v, Y, offset_y, EWT, offset_ewt); this._daxpy.Run(N.v, ONE, Y, offset_y, 1, ref ACOR, offset_acor, 1); for (I = 1; I <= N.v; I++) { Y[I + o_y] = YH[I+1 * LDYH + o_yh] + ACOR[I + o_acor]; } // C----------------------------------------------------------------------- // C Test for convergence. If M .gt. 0, an estimate of the convergence // C rate constant is stored in CRATE, and this is used in the test. // C----------------------------------------------------------------------- LABEL400: if (M != 0) CRATE.v = Math.Max(CRDOWN * CRATE.v, DEL / DELP); DCON = DEL * Math.Min(ONE, CRATE.v) / TQ[4 + o_tq].v; if (DCON <= ONE) goto LABEL450; M += 1; if (M == MAXCOR) goto LABEL410; if (M >= 2 && DEL > RDIV * DELP) goto LABEL410; DELP = DEL; F.Run(N.v, TN.v, Y, offset_y, ref SAVF, offset_savf, RPAR[1 + o_rpar], IPAR[1 + o_ipar]); NFE.v += 1; goto LABEL270; // C LABEL410: if (MITER.v == 0 || JCUR.v == 1) goto LABEL430; ICF.v = 1; IPUP.v = MITER.v; goto LABEL220; // C LABEL430:; NFLAG = - 1; ICF.v = 2; IPUP.v = MITER.v; return; // C // C Return for successful step. ------------------------------------------ LABEL450: NFLAG = 0; JCUR.v = 0; ICF.v = 0; if (M == 0) ACNRM.v = DEL; if (M > 0) ACNRM.v = this._dvnorm.Run(N.v, ACOR, offset_acor, EWT, offset_ewt); return; // C----------------------- End of Subroutine DVNLSD ---------------------- #endregion } } #endregion #region The Class: DVJAC // *DECK DVJAC public class DVJAC { #region Dependencies DVNORM _dvnorm; DCOPY _dcopy; DSCAL _dscal; DGEFA _dgefa; DACOPY _dacopy; DGBFA _dgbfa; #endregion #region Common variables #region Common Block: DVOD01 Declaration CommonBlock _dvod01; Odouble ACNRM; Odouble CCMXJ; Odouble CONP; Odouble CRATE; Odouble DRC; Odouble[] EL; int o_el; Odouble ETA; Odouble ETAMAX;Odouble H; Odouble HMIN; Odouble HMXI; Odouble HNEW; Odouble HSCAL; Odouble PRL1; Odouble RC; Odouble RL1; Odouble[] TAU; int o_tau;Odouble[] TQ; int o_tq; Odouble TN; Odouble UROUND; Oint ICF; Oint INIT; Oint IPUP; Oint JCUR; Oint JSTART; Oint JSV; Oint KFLAG; Oint KUTH; Oint L; Oint LMAX; Oint LYH; Oint LEWT;Oint LACOR; Oint LSAVF; Oint LWM; Oint LIWM; Oint LOCJS; Oint MAXORD; Oint METH; Oint MITER; Oint MSBJ; Oint MXHNIL;Oint MXSTEP; Oint N; Oint NEWH; Oint NEWQ; Oint NHNIL; Oint NQ; Oint NQNYH; Oint NQWAIT; Oint NSLJ; Oint NSLP; Oint NYH; #endregion #region Common Block: DVOD02 Declaration CommonBlock _dvod02; Odouble HU; Oint NCFN; Oint NETF; Oint NFE; Oint NJE; Oint NLU; Oint NNI; Oint NQU; Oint NST; #endregion #endregion #region Variables double ONE = 0; double PT1 = 0; double THOU = 0; double ZERO = 0; #endregion public DVJAC(DVNORM dvnorm, DCOPY dcopy, DSCAL dscal, DGEFA dgefa, DACOPY dacopy, DGBFA dgbfa, CommonBlock DVOD01, CommonBlock DVOD02) { #region Set Dependencies this._dvnorm = dvnorm; this._dcopy = dcopy; this._dscal = dscal; this._dgefa = dgefa; this._dacopy = dacopy; this._dgbfa = dgbfa; #endregion #region Data Initialization //ONE/1.0D0 ONE = 1.0E0; //THOU/1000.0D0 THOU = 1000.0E0; //ZERO/0.0D0 ZERO = 0.0E0; //PT1/0.1D0 PT1 = 0.1E0; #endregion #region Common varaible Initialization #region Common Block: DVOD01 Initialization this._dvod01 = DVOD01; ACNRM = DVOD01.doubleData[0]; CCMXJ = DVOD01.doubleData[1]; CONP = DVOD01.doubleData[2]; CRATE = DVOD01.doubleData[3]; DRC = DVOD01.doubleData[4]; //Start Array: EL StartIndex: 5 LastIndex: 17 EL = DVOD01.doubleData; o_el = 4; //o_ = StartIndex-1 //End Array: EL ETA = DVOD01.doubleData[18]; ETAMAX = DVOD01.doubleData[19]; H = DVOD01.doubleData[20]; HMIN = DVOD01.doubleData[21]; HMXI = DVOD01.doubleData[22]; HNEW = DVOD01.doubleData[23]; HSCAL = DVOD01.doubleData[24]; PRL1 = DVOD01.doubleData[25]; RC = DVOD01.doubleData[26]; RL1 = DVOD01.doubleData[27]; //Start Array: TAU StartIndex: 28 LastIndex: 40 TAU = DVOD01.doubleData; o_tau = 27; //o_ = StartIndex-1 //End Array: TAU //Start Array: TQ StartIndex: 41 LastIndex: 45 TQ = DVOD01.doubleData; o_tq = 40; //o_ = StartIndex-1 //End Array: TQ TN = DVOD01.doubleData[46]; UROUND = DVOD01.doubleData[47]; ICF = DVOD01.intData[0]; INIT = DVOD01.intData[1]; IPUP = DVOD01.intData[2]; JCUR = DVOD01.intData[3]; JSTART = DVOD01.intData[4]; JSV = DVOD01.intData[5]; KFLAG = DVOD01.intData[6]; KUTH = DVOD01.intData[7]; L = DVOD01.intData[8]; LMAX = DVOD01.intData[9]; LYH = DVOD01.intData[10]; LEWT = DVOD01.intData[11]; LACOR = DVOD01.intData[12]; LSAVF = DVOD01.intData[13]; LWM = DVOD01.intData[14]; LIWM = DVOD01.intData[15]; LOCJS = DVOD01.intData[16]; MAXORD = DVOD01.intData[17]; METH = DVOD01.intData[18]; MITER = DVOD01.intData[19]; MSBJ = DVOD01.intData[20]; MXHNIL = DVOD01.intData[21]; MXSTEP = DVOD01.intData[22]; N = DVOD01.intData[23]; NEWH = DVOD01.intData[24]; NEWQ = DVOD01.intData[25]; NHNIL = DVOD01.intData[26]; NQ = DVOD01.intData[27]; NQNYH = DVOD01.intData[28]; NQWAIT = DVOD01.intData[29]; NSLJ = DVOD01.intData[30]; NSLP = DVOD01.intData[31]; NYH = DVOD01.intData[32]; #endregion #region Common Block: DVOD02 Initialization this._dvod02 = DVOD02; HU = DVOD02.doubleData[0]; NCFN = DVOD02.intData[0]; NETF = DVOD02.intData[1]; NFE = DVOD02.intData[2]; NJE = DVOD02.intData[3]; NLU = DVOD02.intData[4]; NNI = DVOD02.intData[5]; NQU = DVOD02.intData[6]; NST = DVOD02.intData[7]; #endregion #endregion } public DVJAC() { #region Initialization Common Blocks CommonBlock DVOD01 = new CommonBlock(48, 33, 0, 0); CommonBlock DVOD02 = new CommonBlock(1, 8, 0, 0); #endregion #region Dependencies (Initialization) DVNORM dvnorm = new DVNORM(); DCOPY dcopy = new DCOPY(); DSCAL dscal = new DSCAL(); IDAMAX idamax = new IDAMAX(); DAXPY daxpy = new DAXPY(); DGEFA dgefa = new DGEFA(idamax, dscal, daxpy); DACOPY dacopy = new DACOPY(dcopy); DGBFA dgbfa = new DGBFA(idamax, dscal, daxpy); #endregion #region Set Dependencies this._dvnorm = dvnorm; this._dcopy = dcopy; this._dscal = dscal; this._dgefa = dgefa; this._dacopy = dacopy; this._dgbfa = dgbfa; #endregion #region Data Initialization //ONE/1.0D0 ONE = 1.0E0; //THOU/1000.0D0 THOU = 1000.0E0; //ZERO/0.0D0 ZERO = 0.0E0; //PT1/0.1D0 PT1 = 0.1E0; #endregion #region Common varaible Initialization #region Common Block: DVOD01 Initialization this._dvod01 = DVOD01; ACNRM = DVOD01.doubleData[0]; CCMXJ = DVOD01.doubleData[1]; CONP = DVOD01.doubleData[2]; CRATE = DVOD01.doubleData[3]; DRC = DVOD01.doubleData[4]; //Start Array: EL StartIndex: 5 LastIndex: 17 EL = DVOD01.doubleData; o_el = 4; //o_ = StartIndex-1 //End Array: EL ETA = DVOD01.doubleData[18]; ETAMAX = DVOD01.doubleData[19]; H = DVOD01.doubleData[20]; HMIN = DVOD01.doubleData[21]; HMXI = DVOD01.doubleData[22]; HNEW = DVOD01.doubleData[23]; HSCAL = DVOD01.doubleData[24]; PRL1 = DVOD01.doubleData[25]; RC = DVOD01.doubleData[26]; RL1 = DVOD01.doubleData[27]; //Start Array: TAU StartIndex: 28 LastIndex: 40 TAU = DVOD01.doubleData; o_tau = 27; //o_ = StartIndex-1 //End Array: TAU //Start Array: TQ StartIndex: 41 LastIndex: 45 TQ = DVOD01.doubleData; o_tq = 40; //o_ = StartIndex-1 //End Array: TQ TN = DVOD01.doubleData[46]; UROUND = DVOD01.doubleData[47]; ICF = DVOD01.intData[0]; INIT = DVOD01.intData[1]; IPUP = DVOD01.intData[2]; JCUR = DVOD01.intData[3]; JSTART = DVOD01.intData[4]; JSV = DVOD01.intData[5]; KFLAG = DVOD01.intData[6]; KUTH = DVOD01.intData[7]; L = DVOD01.intData[8]; LMAX = DVOD01.intData[9]; LYH = DVOD01.intData[10]; LEWT = DVOD01.intData[11]; LACOR = DVOD01.intData[12]; LSAVF = DVOD01.intData[13]; LWM = DVOD01.intData[14]; LIWM = DVOD01.intData[15]; LOCJS = DVOD01.intData[16]; MAXORD = DVOD01.intData[17]; METH = DVOD01.intData[18]; MITER = DVOD01.intData[19]; MSBJ = DVOD01.intData[20]; MXHNIL = DVOD01.intData[21]; MXSTEP = DVOD01.intData[22]; N = DVOD01.intData[23]; NEWH = DVOD01.intData[24]; NEWQ = DVOD01.intData[25]; NHNIL = DVOD01.intData[26]; NQ = DVOD01.intData[27]; NQNYH = DVOD01.intData[28]; NQWAIT = DVOD01.intData[29]; NSLJ = DVOD01.intData[30]; NSLP = DVOD01.intData[31]; NYH = DVOD01.intData[32]; #endregion #region Common Block: DVOD02 Initialization this._dvod02 = DVOD02; HU = DVOD02.doubleData[0]; NCFN = DVOD02.intData[0]; NETF = DVOD02.intData[1]; NFE = DVOD02.intData[2]; NJE = DVOD02.intData[3]; NLU = DVOD02.intData[4]; NNI = DVOD02.intData[5]; NQU = DVOD02.intData[6]; NST = DVOD02.intData[7]; #endregion #endregion } /// /// = Vector containing predicted values on entry. /// /// /// = The Nordsieck array, an LDYH by LMAX array, input. /// /// /// = A constant .ge. N, the first dimension of YH, input. /// /// /// = An error weight vector of length N. /// /// /// = Array containing f evaluated at predicted y, input. /// /// /// = Real work space for matrices. In the output, it containS /// the inverse diagonal matrix if MITER = 3 and the LU /// decomposition of P if MITER is 1, 2 , 4, or 5. /// Storage of matrix elements starts at WM(3). /// Storage of the saved Jacobian starts at WM(LOCJS). /// WM also contains the following matrix-related data: /// WM(1) = SQRT(UROUND), used in numerical Jacobian step. /// WM(2) = H*RL1, saved for later use if MITER = 3. /// /// /// = Integer work space containing pivot information, /// starting at IWM(31), if MITER is 1, 2, 4, or 5. /// IWM also contains band parameters ML = IWM(1) and /// MU = IWM(2) if MITER is 4 or 5. /// /// /// = Dummy name for the user supplied subroutine for f. /// /// /// = Dummy name for the user supplied Jacobian subroutine. /// /// /// = Output error flag, = 0 if no trouble, 1 if the P /// matrix is found to be singular. /// public void Run(ref double[] Y, int offset_y, double[] YH, int offset_yh, int LDYH, double[] EWT, int offset_ewt, ref double[] FTEM, int offset_ftem, double[] SAVF, int offset_savf , ref double[] WM, int offset_wm, ref int[] IWM, int offset_iwm, IFEX F, IJEX JAC, ref int IERPJ, double[] RPAR, int offset_rpar , int[] IPAR, int offset_ipar) { #region Variables double CON = 0; double DI = 0; double FAC = 0; double HRL1 = 0; double R = 0; double R0 = 0; double SRUR = 0; double YI = 0;double YJ = 0; double YJJ = 0; int I = 0; int I1 = 0; int I2 = 0; int IER = 0; int II = 0; int J = 0; int J1 = 0;int JJ = 0; int JOK = 0; int LENP = 0; int MBA = 0; int MBAND = 0; int MEB1 = 0; int MEBAND = 0; int ML = 0;int ML3 = 0; int MU = 0; int NP1 = 0; #endregion #region Implicit Variables int YH_2 = 0; int YH_1 = 0; #endregion #region Array Index Correction int o_y = -1 + offset_y; int o_yh = -1 - LDYH + offset_yh; int o_ewt = -1 + offset_ewt; int o_ftem = -1 + offset_ftem; int o_savf = -1 + offset_savf; int o_wm = -1 + offset_wm; int o_iwm = -1 + offset_iwm; int o_rpar = -1 + offset_rpar; int o_ipar = -1 + offset_ipar; #endregion #region Prolog // C----------------------------------------------------------------------- // C Call sequence input -- Y, YH, LDYH, EWT, FTEM, SAVF, WM, IWM, // C F, JAC, RPAR, IPAR // C Call sequence output -- WM, IWM, IERPJ // C COMMON block variables accessed: // C /DVOD01/ CCMXJ, DRC, H, RL1, TN, UROUND, ICF, JCUR, LOCJS, // C MITER, MSBJ, N, NSLJ // C /DVOD02/ NFE, NST, NJE, NLU // C // C Subroutines called by DVJAC: F, JAC, DACOPY, DCOPY, DGBFA, DGEFA, // C DSCAL // C Function routines called by DVJAC: DVNORM // C----------------------------------------------------------------------- // C DVJAC is called by DVNLSD to compute and process the matrix // C P = I - h*rl1*J , where J is an approximation to the Jacobian. // C Here J is computed by the user-supplied routine JAC if // C MITER = 1 or 4, or by finite differencing if MITER = 2, 3, or 5. // C If MITER = 3, a diagonal approximation to J is used. // C If JSV = -1, J is computed from scratch in all cases. // C If JSV = 1 and MITER = 1, 2, 4, or 5, and if the saved value of J is // C considered acceptable, then P is constructed from the saved J. // C J is stored in wm and replaced by P. If MITER .ne. 3, P is then // C subjected to LU decomposition in preparation for later solution // C of linear systems with P as coefficient matrix. This is done // C by DGEFA if MITER = 1 or 2, and by DGBFA if MITER = 4 or 5. // C // C Communication with DVJAC is done with the following variables. (For // C more details, please see the comments in the driver subroutine.) // C Y = Vector containing predicted values on entry. // C YH = The Nordsieck array, an LDYH by LMAX array, input. // C LDYH = A constant .ge. N, the first dimension of YH, input. // C EWT = An error weight vector of length N. // C SAVF = Array containing f evaluated at predicted y, input. // C WM = Real work space for matrices. In the output, it containS // C the inverse diagonal matrix if MITER = 3 and the LU // C decomposition of P if MITER is 1, 2 , 4, or 5. // C Storage of matrix elements starts at WM(3). // C Storage of the saved Jacobian starts at WM(LOCJS). // C WM also contains the following matrix-related data: // C WM(1) = SQRT(UROUND), used in numerical Jacobian step. // C WM(2) = H*RL1, saved for later use if MITER = 3. // C IWM = Integer work space containing pivot information, // C starting at IWM(31), if MITER is 1, 2, 4, or 5. // C IWM also contains band parameters ML = IWM(1) and // C MU = IWM(2) if MITER is 4 or 5. // C F = Dummy name for the user supplied subroutine for f. // C JAC = Dummy name for the user supplied Jacobian subroutine. // C RPAR, IPAR = Dummy names for user's real and integer work arrays. // C RL1 = 1/EL(2) (input). // C IERPJ = Output error flag, = 0 if no trouble, 1 if the P // C matrix is found to be singular. // C JCUR = Output flag to indicate whether the Jacobian matrix // C (or approximation) is now current. // C JCUR = 0 means J is not current. // C JCUR = 1 means J is current. // C----------------------------------------------------------------------- // C // C Type declarations for labeled COMMON block DVOD01 -------------------- // C // C // C Type declarations for labeled COMMON block DVOD02 -------------------- // C // C // C Type declarations for local variables -------------------------------- // C // C // C Type declaration for function subroutines called --------------------- // C // C----------------------------------------------------------------------- // C The following Fortran-77 declaration is to cause the values of the // C listed (local) variables to be saved between calls to this subroutine. // C----------------------------------------------------------------------- // C----------------------------------------------------------------------- // C // C #endregion #region Body IERPJ = 0; HRL1 = H.v * RL1.v; // C See whether J should be evaluated (JOK = -1) or not (JOK = 1). ------- JOK = JSV.v; if (JSV.v == 1) { if (NST.v == 0 || NST.v > NSLJ.v + MSBJ.v) JOK = - 1; if (ICF.v == 1 && DRC.v < CCMXJ.v) JOK = - 1; if (ICF.v == 2) JOK = - 1; } // C End of setting JOK. -------------------------------------------------- // C if (JOK == - 1 && MITER.v == 1) { // C If JOK = -1 and MITER = 1, call JAC to evaluate Jacobian. ------------ NJE.v += 1; NSLJ.v = NST.v; JCUR.v = 1; LENP = N.v * N.v; for (I = 1; I <= LENP; I++) { WM[I + 2 + o_wm] = ZERO; } JAC.Run(N.v, TN.v, Y, offset_y, 0, 0, ref WM, 3 + o_wm , N.v, RPAR[1 + o_rpar], IPAR[1 + o_ipar]); if (JSV.v == 1) this._dcopy.Run(LENP, WM, 3 + o_wm, 1, ref WM, LOCJS.v + o_wm, 1); } // C if (JOK == - 1 && MITER.v == 2) { // C If MITER = 2, make N calls to F to approximate the Jacobian. --------- NJE.v += 1; NSLJ.v = NST.v; JCUR.v = 1; FAC = this._dvnorm.Run(N.v, SAVF, offset_savf, EWT, offset_ewt); R0 = THOU * Math.Abs(H.v) * UROUND.v * Convert.ToSingle(N.v) * FAC; if (R0 == ZERO) R0 = ONE; SRUR = WM[1 + o_wm]; J1 = 2; for (J = 1; J <= N.v; J++) { YJ = Y[J + o_y]; R = Math.Max(SRUR * Math.Abs(YJ), R0 / EWT[J + o_ewt]); Y[J + o_y] += R; FAC = ONE / R; F.Run(N.v, TN.v, Y, offset_y, ref FTEM, offset_ftem, RPAR[1 + o_rpar], IPAR[1 + o_ipar]); for (I = 1; I <= N.v; I++) { WM[I + J1 + o_wm] = (FTEM[I + o_ftem] - SAVF[I + o_savf]) * FAC; } Y[J + o_y] = YJ; J1 += N.v; } NFE.v += N.v; LENP = N.v * N.v; if (JSV.v == 1) this._dcopy.Run(LENP, WM, 3 + o_wm, 1, ref WM, LOCJS.v + o_wm, 1); } // C if (JOK == 1 && (MITER.v == 1 || MITER.v == 2)) { JCUR.v = 0; LENP = N.v * N.v; this._dcopy.Run(LENP, WM, LOCJS.v + o_wm, 1, ref WM, 3 + o_wm, 1); } // C if (MITER.v == 1 || MITER.v == 2) { // C Multiply Jacobian by scalar, add identity, and do LU decomposition. -- CON = - HRL1; this._dscal.Run(LENP, CON, ref WM, 3 + o_wm, 1); J = 3; NP1 = N.v + 1; for (I = 1; I <= N.v; I++) { WM[J + o_wm] += ONE; J += NP1; } NLU.v += 1; this._dgefa.Run(ref WM, 3 + o_wm, N.v, N.v, ref IWM, 31 + o_iwm, ref IER); if (IER != 0) IERPJ = 1; return; } // C End of code block for MITER = 1 or 2. -------------------------------- // C if (MITER.v == 3) { // C If MITER = 3, construct a diagonal approximation to J and P. --------- NJE.v += 1; JCUR.v = 1; WM[2 + o_wm] = HRL1; R = RL1.v * PT1; for (I = 1; I <= N.v; I++) { Y[I + o_y] += R * (H.v * SAVF[I + o_savf] - YH[I+2 * LDYH + o_yh]); } F.Run(N.v, TN.v, Y, offset_y, ref WM, 3 + o_wm, RPAR[1 + o_rpar], IPAR[1 + o_ipar]); NFE.v += 1; YH_2 = 2 * LDYH + o_yh; for (I = 1; I <= N.v; I++) { R0 = H.v * SAVF[I + o_savf] - YH[I + YH_2]; DI = PT1 * R0 - H.v * (WM[I + 2 + o_wm] - SAVF[I + o_savf]); WM[I + 2 + o_wm] = ONE; if (Math.Abs(R0) < UROUND.v / EWT[I + o_ewt]) goto LABEL320; if (Math.Abs(DI) == ZERO) goto LABEL330; WM[I + 2 + o_wm] = PT1 * R0 / DI; LABEL320:; } return; LABEL330: IERPJ = 1; return; } // C End of code block for MITER = 3. ------------------------------------- // C // C Set constants for MITER = 4 or 5. ------------------------------------ ML = IWM[1 + o_iwm]; MU = IWM[2 + o_iwm]; ML3 = ML + 3; MBAND = ML + MU + 1; MEBAND = MBAND + ML; LENP = MEBAND * N.v; // C if (JOK == - 1 && MITER.v == 4) { // C If JOK = -1 and MITER = 4, call JAC to evaluate Jacobian. ------------ NJE.v += 1; NSLJ.v = NST.v; JCUR.v = 1; for (I = 1; I <= LENP; I++) { WM[I + 2 + o_wm] = ZERO; } JAC.Run(N.v, TN.v, Y, offset_y, ML, MU, ref WM, ML3 + o_wm , MEBAND, RPAR[1 + o_rpar], IPAR[1 + o_ipar]); if (JSV.v == 1) this._dacopy.Run(MBAND, N.v, WM, ML3 + o_wm, MEBAND, ref WM, LOCJS.v + o_wm, MBAND); } // C if (JOK == - 1 && MITER.v == 5) { // C If MITER = 5, make ML+MU+1 calls to F to approximate the Jacobian. --- NJE.v += 1; NSLJ.v = NST.v; JCUR.v = 1; MBA = Math.Min(MBAND, N.v); MEB1 = MEBAND - 1; SRUR = WM[1 + o_wm]; FAC = this._dvnorm.Run(N.v, SAVF, offset_savf, EWT, offset_ewt); R0 = THOU * Math.Abs(H.v) * UROUND.v * Convert.ToSingle(N.v) * FAC; if (R0 == ZERO) R0 = ONE; for (J = 1; J <= MBA; J++) { for (I = J; (MBAND >= 0) ? (I <= N.v) : (I >= N.v); I += MBAND) { YI = Y[I + o_y]; R = Math.Max(SRUR * Math.Abs(YI), R0 / EWT[I + o_ewt]); Y[I + o_y] += R; } F.Run(N.v, TN.v, Y, offset_y, ref FTEM, offset_ftem, RPAR[1 + o_rpar], IPAR[1 + o_ipar]); YH_1 = 1 * LDYH + o_yh; for (JJ = J; (MBAND >= 0) ? (JJ <= N.v) : (JJ >= N.v); JJ += MBAND) { Y[JJ + o_y] = YH[JJ + YH_1]; YJJ = Y[JJ + o_y]; R = Math.Max(SRUR * Math.Abs(YJJ), R0 / EWT[JJ + o_ewt]); FAC = ONE / R; I1 = Math.Max(JJ - MU, 1); I2 = Math.Min(JJ + ML, N.v); II = JJ * MEB1 - ML + 2; for (I = I1; I <= I2; I++) { WM[II + I + o_wm] = (FTEM[I + o_ftem] - SAVF[I + o_savf]) * FAC; } } } NFE.v += MBA; if (JSV.v == 1) this._dacopy.Run(MBAND, N.v, WM, ML3 + o_wm, MEBAND, ref WM, LOCJS.v + o_wm, MBAND); } // C if (JOK == 1) { JCUR.v = 0; this._dacopy.Run(MBAND, N.v, WM, LOCJS.v + o_wm, MBAND, ref WM, ML3 + o_wm, MEBAND); } // C // C Multiply Jacobian by scalar, add identity, and do LU decomposition. CON = - HRL1; this._dscal.Run(LENP, CON, ref WM, 3 + o_wm, 1); II = MBAND + 2; for (I = 1; I <= N.v; I++) { WM[II + o_wm] += ONE; II += MEBAND; } NLU.v += 1; this._dgbfa.Run(ref WM, 3 + o_wm, MEBAND, N.v, ML, MU, ref IWM, 31 + o_iwm , ref IER); if (IER != 0) IERPJ = 1; return; // C End of code block for MITER = 4 or 5. -------------------------------- // C // C----------------------- End of Subroutine DVJAC ----------------------- #endregion } } #endregion #region The Class: DACOPY // *DECK DACOPY public class DACOPY { #region Dependencies DCOPY _dcopy; #endregion public DACOPY(DCOPY dcopy) { #region Set Dependencies this._dcopy = dcopy; #endregion } public DACOPY() { #region Dependencies (Initialization) DCOPY dcopy = new DCOPY(); #endregion #region Set Dependencies this._dcopy = dcopy; #endregion } public void Run(int NROW, int NCOL, double[] A, int offset_a, int NROWA, ref double[] B, int offset_b, int NROWB) { #region Variables int IC = 0; #endregion #region Array Index Correction int o_a = -1 - NROWA + offset_a; int o_b = -1 - NROWB + offset_b; #endregion #region Prolog // C----------------------------------------------------------------------- // C Call sequence input -- NROW, NCOL, A, NROWA, NROWB // C Call sequence output -- B // C COMMON block variables accessed -- None // C // C Subroutines called by DACOPY: DCOPY // C Function routines called by DACOPY: None // C----------------------------------------------------------------------- // C This routine copies one rectangular array, A, to another, B, // C where A and B may have different row dimensions, NROWA and NROWB. // C The data copied consists of NROW rows and NCOL columns. // C----------------------------------------------------------------------- // C #endregion for (IC = 1; IC <= NCOL; IC++) { this._dcopy.Run(NROW, A, 1+IC * NROWA + o_a, 1, ref B, 1+IC * NROWB + o_b, 1); } // C return; // C----------------------- End of Subroutine DACOPY ---------------------- } } #endregion #region The Class: DVSOL // *DECK DVSOL public class DVSOL { #region Dependencies DGESL _dgesl; DGBSL _dgbsl; #endregion #region Common variables #region Common Block: DVOD01 Declaration CommonBlock _dvod01; Odouble ACNRM; Odouble CCMXJ; Odouble CONP; Odouble CRATE; Odouble DRC; Odouble[] EL; int o_el; Odouble ETA; Odouble ETAMAX;Odouble H; Odouble HMIN; Odouble HMXI; Odouble HNEW; Odouble HSCAL; Odouble PRL1; Odouble RC; Odouble RL1; Odouble[] TAU; int o_tau;Odouble[] TQ; int o_tq; Odouble TN; Odouble UROUND; Oint ICF; Oint INIT; Oint IPUP; Oint JCUR; Oint JSTART; Oint JSV; Oint KFLAG; Oint KUTH; Oint L; Oint LMAX; Oint LYH; Oint LEWT;Oint LACOR; Oint LSAVF; Oint LWM; Oint LIWM; Oint LOCJS; Oint MAXORD; Oint METH; Oint MITER; Oint MSBJ; Oint MXHNIL;Oint MXSTEP; Oint N; Oint NEWH; Oint NEWQ; Oint NHNIL; Oint NQ; Oint NQNYH; Oint NQWAIT; Oint NSLJ; Oint NSLP; Oint NYH; #endregion #endregion #region Variables double ONE = 0; double ZERO = 0; #endregion public DVSOL(DGESL dgesl, DGBSL dgbsl, CommonBlock DVOD01) { #region Set Dependencies this._dgesl = dgesl; this._dgbsl = dgbsl; #endregion #region Data Initialization //ONE/1.0D0 ONE = 1.0E0; //ZERO/0.0D0 ZERO = 0.0E0; #endregion #region Common varaible Initialization #region Common Block: DVOD01 Initialization this._dvod01 = DVOD01; ACNRM = DVOD01.doubleData[0]; CCMXJ = DVOD01.doubleData[1]; CONP = DVOD01.doubleData[2]; CRATE = DVOD01.doubleData[3]; DRC = DVOD01.doubleData[4]; //Start Array: EL StartIndex: 5 LastIndex: 17 EL = DVOD01.doubleData; o_el = 4; //o_ = StartIndex-1 //End Array: EL ETA = DVOD01.doubleData[18]; ETAMAX = DVOD01.doubleData[19]; H = DVOD01.doubleData[20]; HMIN = DVOD01.doubleData[21]; HMXI = DVOD01.doubleData[22]; HNEW = DVOD01.doubleData[23]; HSCAL = DVOD01.doubleData[24]; PRL1 = DVOD01.doubleData[25]; RC = DVOD01.doubleData[26]; RL1 = DVOD01.doubleData[27]; //Start Array: TAU StartIndex: 28 LastIndex: 40 TAU = DVOD01.doubleData; o_tau = 27; //o_ = StartIndex-1 //End Array: TAU //Start Array: TQ StartIndex: 41 LastIndex: 45 TQ = DVOD01.doubleData; o_tq = 40; //o_ = StartIndex-1 //End Array: TQ TN = DVOD01.doubleData[46]; UROUND = DVOD01.doubleData[47]; ICF = DVOD01.intData[0]; INIT = DVOD01.intData[1]; IPUP = DVOD01.intData[2]; JCUR = DVOD01.intData[3]; JSTART = DVOD01.intData[4]; JSV = DVOD01.intData[5]; KFLAG = DVOD01.intData[6]; KUTH = DVOD01.intData[7]; L = DVOD01.intData[8]; LMAX = DVOD01.intData[9]; LYH = DVOD01.intData[10]; LEWT = DVOD01.intData[11]; LACOR = DVOD01.intData[12]; LSAVF = DVOD01.intData[13]; LWM = DVOD01.intData[14]; LIWM = DVOD01.intData[15]; LOCJS = DVOD01.intData[16]; MAXORD = DVOD01.intData[17]; METH = DVOD01.intData[18]; MITER = DVOD01.intData[19]; MSBJ = DVOD01.intData[20]; MXHNIL = DVOD01.intData[21]; MXSTEP = DVOD01.intData[22]; N = DVOD01.intData[23]; NEWH = DVOD01.intData[24]; NEWQ = DVOD01.intData[25]; NHNIL = DVOD01.intData[26]; NQ = DVOD01.intData[27]; NQNYH = DVOD01.intData[28]; NQWAIT = DVOD01.intData[29]; NSLJ = DVOD01.intData[30]; NSLP = DVOD01.intData[31]; NYH = DVOD01.intData[32]; #endregion #endregion } public DVSOL() { #region Initialization Common Blocks CommonBlock DVOD01 = new CommonBlock(48, 33, 0, 0); #endregion #region Dependencies (Initialization) DDOT ddot = new DDOT(); DAXPY daxpy = new DAXPY(); DGESL dgesl = new DGESL(ddot, daxpy); DGBSL dgbsl = new DGBSL(ddot, daxpy); #endregion #region Set Dependencies this._dgesl = dgesl; this._dgbsl = dgbsl; #endregion #region Data Initialization //ONE/1.0D0 ONE = 1.0E0; //ZERO/0.0D0 ZERO = 0.0E0; #endregion #region Common varaible Initialization #region Common Block: DVOD01 Initialization this._dvod01 = DVOD01; ACNRM = DVOD01.doubleData[0]; CCMXJ = DVOD01.doubleData[1]; CONP = DVOD01.doubleData[2]; CRATE = DVOD01.doubleData[3]; DRC = DVOD01.doubleData[4]; //Start Array: EL StartIndex: 5 LastIndex: 17 EL = DVOD01.doubleData; o_el = 4; //o_ = StartIndex-1 //End Array: EL ETA = DVOD01.doubleData[18]; ETAMAX = DVOD01.doubleData[19]; H = DVOD01.doubleData[20]; HMIN = DVOD01.doubleData[21]; HMXI = DVOD01.doubleData[22]; HNEW = DVOD01.doubleData[23]; HSCAL = DVOD01.doubleData[24]; PRL1 = DVOD01.doubleData[25]; RC = DVOD01.doubleData[26]; RL1 = DVOD01.doubleData[27]; //Start Array: TAU StartIndex: 28 LastIndex: 40 TAU = DVOD01.doubleData; o_tau = 27; //o_ = StartIndex-1 //End Array: TAU //Start Array: TQ StartIndex: 41 LastIndex: 45 TQ = DVOD01.doubleData; o_tq = 40; //o_ = StartIndex-1 //End Array: TQ TN = DVOD01.doubleData[46]; UROUND = DVOD01.doubleData[47]; ICF = DVOD01.intData[0]; INIT = DVOD01.intData[1]; IPUP = DVOD01.intData[2]; JCUR = DVOD01.intData[3]; JSTART = DVOD01.intData[4]; JSV = DVOD01.intData[5]; KFLAG = DVOD01.intData[6]; KUTH = DVOD01.intData[7]; L = DVOD01.intData[8]; LMAX = DVOD01.intData[9]; LYH = DVOD01.intData[10]; LEWT = DVOD01.intData[11]; LACOR = DVOD01.intData[12]; LSAVF = DVOD01.intData[13]; LWM = DVOD01.intData[14]; LIWM = DVOD01.intData[15]; LOCJS = DVOD01.intData[16]; MAXORD = DVOD01.intData[17]; METH = DVOD01.intData[18]; MITER = DVOD01.intData[19]; MSBJ = DVOD01.intData[20]; MXHNIL = DVOD01.intData[21]; MXSTEP = DVOD01.intData[22]; N = DVOD01.intData[23]; NEWH = DVOD01.intData[24]; NEWQ = DVOD01.intData[25]; NHNIL = DVOD01.intData[26]; NQ = DVOD01.intData[27]; NQNYH = DVOD01.intData[28]; NQWAIT = DVOD01.intData[29]; NSLJ = DVOD01.intData[30]; NSLP = DVOD01.intData[31]; NYH = DVOD01.intData[32]; #endregion #endregion } /// /// = Real work space containing the inverse diagonal matrix if /// MITER = 3 and the LU decomposition of the matrix otherwise. /// Storage of matrix elements starts at WM(3). /// WM also contains the following matrix-related data: /// WM(1) = SQRT(UROUND) (not used here), /// WM(2) = HRL1, the previous value of H*RL1, used if MITER = 3. /// /// /// = Integer work space containing pivot information, starting at /// IWM(31), if MITER is 1, 2, 4, or 5. IWM also contains band /// parameters ML = IWM(1) and MU = IWM(2) if MITER is 4 or 5. /// /// /// = The right-hand side vector on input, and the solution vector /// on output, of length N. /// /// /// = Output flag. IERSL = 0 if no trouble occurred. /// IERSL = 1 if a singular matrix arose with MITER = 3. /// public void Run(ref double[] WM, int offset_wm, int[] IWM, int offset_iwm, ref double[] X, int offset_x, ref int IERSL) { #region Variables int I = 0; int MEBAND = 0; int ML = 0; int MU = 0; double DI = 0; double HRL1 = 0; double PHRL1 = 0; double R = 0; #endregion #region Array Index Correction int o_wm = -1 + offset_wm; int o_iwm = -1 + offset_iwm; int o_x = -1 + offset_x; #endregion #region Prolog // C----------------------------------------------------------------------- // C Call sequence input -- WM, IWM, X // C Call sequence output -- X, IERSL // C COMMON block variables accessed: // C /DVOD01/ -- H, RL1, MITER, N // C // C Subroutines called by DVSOL: DGESL, DGBSL // C Function routines called by DVSOL: None // C----------------------------------------------------------------------- // C This routine manages the solution of the linear system arising from // C a chord iteration. It is called if MITER .ne. 0. // C If MITER is 1 or 2, it calls DGESL to accomplish this. // C If MITER = 3 it updates the coefficient H*RL1 in the diagonal // C matrix, and then computes the solution. // C If MITER is 4 or 5, it calls DGBSL. // C Communication with DVSOL uses the following variables: // C WM = Real work space containing the inverse diagonal matrix if // C MITER = 3 and the LU decomposition of the matrix otherwise. // C Storage of matrix elements starts at WM(3). // C WM also contains the following matrix-related data: // C WM(1) = SQRT(UROUND) (not used here), // C WM(2) = HRL1, the previous value of H*RL1, used if MITER = 3. // C IWM = Integer work space containing pivot information, starting at // C IWM(31), if MITER is 1, 2, 4, or 5. IWM also contains band // C parameters ML = IWM(1) and MU = IWM(2) if MITER is 4 or 5. // C X = The right-hand side vector on input, and the solution vector // C on output, of length N. // C IERSL = Output flag. IERSL = 0 if no trouble occurred. // C IERSL = 1 if a singular matrix arose with MITER = 3. // C----------------------------------------------------------------------- // C // C Type declarations for labeled COMMON block DVOD01 -------------------- // C // C // C Type declarations for local variables -------------------------------- // C // C----------------------------------------------------------------------- // C The following Fortran-77 declaration is to cause the values of the // C listed (local) variables to be saved between calls to this integrator. // C----------------------------------------------------------------------- // C // C // C #endregion #region Body IERSL = 0; switch (MITER.v) { case 1: goto LABEL100; case 2: goto LABEL100; case 3: goto LABEL300; case 4: goto LABEL400; case 5: goto LABEL400; } LABEL100: this._dgesl.Run(WM, 3 + o_wm, N.v, N.v, IWM, 31 + o_iwm, ref X, offset_x, 0); return; // C LABEL300: PHRL1 = WM[2 + o_wm]; HRL1 = H.v * RL1.v; WM[2 + o_wm] = HRL1; if (HRL1 == PHRL1) goto LABEL330; R = HRL1 / PHRL1; for (I = 1; I <= N.v; I++) { DI = ONE - R * (ONE - ONE / WM[I + 2 + o_wm]); if (Math.Abs(DI) == ZERO) goto LABEL390; WM[I + 2 + o_wm] = ONE / DI; } // C LABEL330: for (I = 1; I <= N.v; I++) { X[I + o_x] *= WM[I + 2 + o_wm]; } return; LABEL390: IERSL = 1; return; // C LABEL400: ML = IWM[1 + o_iwm]; MU = IWM[2 + o_iwm]; MEBAND = 2 * ML + MU + 1; this._dgbsl.Run(WM, 3 + o_wm, MEBAND, N.v, ML, MU, IWM, 31 + o_iwm , ref X, offset_x, 0); return; // C----------------------- End of Subroutine DVSOL ----------------------- #endregion } } #endregion #region The Class: DVSRCO // *DECK DVSRCO public class DVSRCO { #region Common variables #region Common Block: DVOD01 Declaration CommonBlock _dvod01; Odouble[] RVOD1; int o_rvod1; Oint[] IVOD1; int o_ivod1; #endregion #region Common Block: DVOD02 Declaration CommonBlock _dvod02; Odouble[] RVOD2; int o_rvod2; Oint[] IVOD2; int o_ivod2; #endregion #endregion #region Variables int LENIV1 = 0; int LENIV2 = 0; int LENRV1 = 0; int LENRV2 = 0; #endregion public DVSRCO(CommonBlock DVOD01, CommonBlock DVOD02) { #region Data Initialization //LENRV1/48 LENRV1 = 48; //LENIV1/33 LENIV1 = 33; //LENRV2/1 LENRV2 = 1; //LENIV2/8 LENIV2 = 8; #endregion #region Common varaible Initialization #region Common Block: DVOD01 Initialization this._dvod01 = DVOD01; //Start Array: RVOD1 StartIndex: 0 LastIndex: 47 RVOD1 = DVOD01.doubleData; o_rvod1 = -1; //o_ = StartIndex-1 //End Array: RVOD1 //Start Array: IVOD1 StartIndex: 0 LastIndex: 32 IVOD1 = DVOD01.intData; o_ivod1 = -1; //o_ = StartIndex-1 //End Array: IVOD1 #endregion #region Common Block: DVOD02 Initialization this._dvod02 = DVOD02; //Start Array: RVOD2 StartIndex: 0 LastIndex: 0 RVOD2 = DVOD02.doubleData; o_rvod2 = -1; //o_ = StartIndex-1 //End Array: RVOD2 //Start Array: IVOD2 StartIndex: 0 LastIndex: 7 IVOD2 = DVOD02.intData; o_ivod2 = -1; //o_ = StartIndex-1 //End Array: IVOD2 #endregion #endregion } public DVSRCO() { #region Initialization Common Blocks CommonBlock DVOD01 = new CommonBlock(48, 33, 0, 0); CommonBlock DVOD02 = new CommonBlock(1, 8, 0, 0); #endregion #region Data Initialization //LENRV1/48 LENRV1 = 48; //LENIV1/33 LENIV1 = 33; //LENRV2/1 LENRV2 = 1; //LENIV2/8 LENIV2 = 8; #endregion #region Common varaible Initialization #region Common Block: DVOD01 Initialization this._dvod01 = DVOD01; //Start Array: RVOD1 StartIndex: 0 LastIndex: 47 RVOD1 = DVOD01.doubleData; o_rvod1 = -1; //o_ = StartIndex-1 //End Array: RVOD1 //Start Array: IVOD1 StartIndex: 0 LastIndex: 32 IVOD1 = DVOD01.intData; o_ivod1 = -1; //o_ = StartIndex-1 //End Array: IVOD1 #endregion #region Common Block: DVOD02 Initialization this._dvod02 = DVOD02; //Start Array: RVOD2 StartIndex: 0 LastIndex: 0 RVOD2 = DVOD02.doubleData; o_rvod2 = -1; //o_ = StartIndex-1 //End Array: RVOD2 //Start Array: IVOD2 StartIndex: 0 LastIndex: 7 IVOD2 = DVOD02.intData; o_ivod2 = -1; //o_ = StartIndex-1 //End Array: IVOD2 #endregion #endregion } /// /// = real array of length 49 or more. /// /// /// = integer array of length 41 or more. /// /// /// = flag indicating to save or restore the COMMON blocks: /// JOB = 1 if COMMON is to be saved (written to RSAV/ISAV). /// JOB = 2 if COMMON is to be restored (read from RSAV/ISAV). /// A call with JOB = 2 presumes a prior call with JOB = 1. /// public void Run(ref double[] RSAV, int offset_rsav, ref int[] ISAV, int offset_isav, int JOB) { #region Variables int I = 0; #endregion #region Array Index Correction int o_rsav = -1 + offset_rsav; int o_isav = -1 + offset_isav; #endregion #region Prolog // C----------------------------------------------------------------------- // C Call sequence input -- RSAV, ISAV, JOB // C Call sequence output -- RSAV, ISAV // C COMMON block variables accessed -- All of /DVOD01/ and /DVOD02/ // C // C Subroutines/functions called by DVSRCO: None // C----------------------------------------------------------------------- // C This routine saves or restores (depending on JOB) the contents of the // C COMMON blocks DVOD01 and DVOD02, which are used internally by DVODE. // C // C RSAV = real array of length 49 or more. // C ISAV = integer array of length 41 or more. // C JOB = flag indicating to save or restore the COMMON blocks: // C JOB = 1 if COMMON is to be saved (written to RSAV/ISAV). // C JOB = 2 if COMMON is to be restored (read from RSAV/ISAV). // C A call with JOB = 2 presumes a prior call with JOB = 1. // C----------------------------------------------------------------------- // C----------------------------------------------------------------------- // C The following Fortran-77 declaration is to cause the values of the // C listed (local) variables to be saved between calls to this integrator. // C----------------------------------------------------------------------- // C // C #endregion #region Body if (JOB == 2) goto LABEL100; for (I = 1; I <= LENRV1; I++) { RSAV[I + o_rsav] = RVOD1[I + o_rvod1].v; } for (I = 1; I <= LENRV2; I++) { RSAV[LENRV1 + I + o_rsav] = RVOD2[I + o_rvod2].v; } // C for (I = 1; I <= LENIV1; I++) { ISAV[I + o_isav] = IVOD1[I + o_ivod1].v; } for (I = 1; I <= LENIV2; I++) { ISAV[LENIV1 + I + o_isav] = IVOD2[I + o_ivod2].v; } // C return; // C LABEL100:; for (I = 1; I <= LENRV1; I++) { RVOD1[I + o_rvod1].v = RSAV[I + o_rsav]; } for (I = 1; I <= LENRV2; I++) { RVOD2[I + o_rvod2].v = RSAV[LENRV1 + I + o_rsav]; } // C for (I = 1; I <= LENIV1; I++) { IVOD1[I + o_ivod1].v = ISAV[I + o_isav]; } for (I = 1; I <= LENIV2; I++) { IVOD2[I + o_ivod2].v = ISAV[LENIV1 + I + o_isav]; } // C return; // C----------------------- End of Subroutine DVSRCO ---------------------- #endregion } } #endregion #region The Class: DEWSET // *DECK DEWSET /// /// ***PURPOSE Set error weight vector. /// ***TYPE DOUBLE PRECISION (SEWSET-S, DEWSET-D) /// ***AUTHOR Hindmarsh, Alan C., (LLNL) /// ***DESCRIPTION /// /// This subroutine sets the error weight vector EWT according to /// EWT(i) = RTOL(i)*ABS(YCUR(i)) + ATOL(i), i = 1,...,N, /// with the subscript on RTOL and/or ATOL possibly replaced by 1 above, /// depending on the value of ITOL. /// /// ***SEE ALSO DLSODE /// ***ROUTINES CALLED (NONE) /// ***REVISION HISTORY (YYMMDD) /// 791129 DATE WRITTEN /// 890501 Modified prologue to SLATEC/LDOC format. (FNF) /// 890503 Minor cosmetic changes. (FNF) /// 930809 Renamed to allow single/double precision versions. (ACH) /// ***END PROLOGUE DEWSET /// **End /// /// ***FIRST EXECUTABLE STATEMENT DEWSET /// public class DEWSET { public DEWSET() { } /// /// ***PURPOSE Set error weight vector. /// ***TYPE DOUBLE PRECISION (SEWSET-S, DEWSET-D) /// ***AUTHOR Hindmarsh, Alan C., (LLNL) /// ***DESCRIPTION /// /// This subroutine sets the error weight vector EWT according to /// EWT(i) = RTOL(i)*ABS(YCUR(i)) + ATOL(i), i = 1,...,N, /// with the subscript on RTOL and/or ATOL possibly replaced by 1 above, /// depending on the value of ITOL. /// /// ***SEE ALSO DLSODE /// ***ROUTINES CALLED (NONE) /// ***REVISION HISTORY (YYMMDD) /// 791129 DATE WRITTEN /// 890501 Modified prologue to SLATEC/LDOC format. (FNF) /// 890503 Minor cosmetic changes. (FNF) /// 930809 Renamed to allow single/double precision versions. (ACH) /// ***END PROLOGUE DEWSET /// **End /// /// ***FIRST EXECUTABLE STATEMENT DEWSET /// public void Run(int N, int ITOL, double[] RTOL, int offset_rtol, double[] ATOL, int offset_atol, double[] YCUR, int offset_ycur, ref double[] EWT, int offset_ewt) { #region Variables int I = 0; #endregion #region Array Index Correction int o_rtol = -1 + offset_rtol; int o_atol = -1 + offset_atol; int o_ycur = -1 + offset_ycur; int o_ewt = -1 + offset_ewt; #endregion #region Prolog // C***BEGIN PROLOGUE DEWSET // C***SUBSIDIARY // C***PURPOSE Set error weight vector. // C***TYPE DOUBLE PRECISION (SEWSET-S, DEWSET-D) // C***AUTHOR Hindmarsh, Alan C., (LLNL) // C***DESCRIPTION // C // C This subroutine sets the error weight vector EWT according to // C EWT(i) = RTOL(i)*ABS(YCUR(i)) + ATOL(i), i = 1,...,N, // C with the subscript on RTOL and/or ATOL possibly replaced by 1 above, // C depending on the value of ITOL. // C // C***SEE ALSO DLSODE // C***ROUTINES CALLED (NONE) // C***REVISION HISTORY (YYMMDD) // C 791129 DATE WRITTEN // C 890501 Modified prologue to SLATEC/LDOC format. (FNF) // C 890503 Minor cosmetic changes. (FNF) // C 930809 Renamed to allow single/double precision versions. (ACH) // C***END PROLOGUE DEWSET // C**End // C // C***FIRST EXECUTABLE STATEMENT DEWSET #endregion #region Body switch (ITOL) { case 1: goto LABEL10; case 2: goto LABEL20; case 3: goto LABEL30; case 4: goto LABEL40; } LABEL10:; for (I = 1; I <= N; I++) { EWT[I + o_ewt] = RTOL[1 + o_rtol] * Math.Abs(YCUR[I + o_ycur]) + ATOL[1 + o_atol]; } return; LABEL20:; for (I = 1; I <= N; I++) { EWT[I + o_ewt] = RTOL[1 + o_rtol] * Math.Abs(YCUR[I + o_ycur]) + ATOL[I + o_atol]; } return; LABEL30:; for (I = 1; I <= N; I++) { EWT[I + o_ewt] = RTOL[I + o_rtol] * Math.Abs(YCUR[I + o_ycur]) + ATOL[1 + o_atol]; } return; LABEL40:; for (I = 1; I <= N; I++) { EWT[I + o_ewt] = RTOL[I + o_rtol] * Math.Abs(YCUR[I + o_ycur]) + ATOL[I + o_atol]; } return; // C----------------------- END OF SUBROUTINE DEWSET ---------------------- #endregion } } #endregion #region The Class: DVNORM // *DECK DVNORM /// /// ***PURPOSE Weighted root-mean-square vector norm. /// ***TYPE DOUBLE PRECISION (SVNORM-S, DVNORM-D) /// ***AUTHOR Hindmarsh, Alan C., (LLNL) /// ***DESCRIPTION /// /// This function routine computes the weighted root-mean-square norm /// of the vector of length N contained in the array V, with weights /// contained in the array W of length N: /// DVNORM = SQRT( (1/N) * SUM( V(i)*W(i) )**2 ) /// /// ***SEE ALSO DLSODE /// ***ROUTINES CALLED (NONE) /// ***REVISION HISTORY (YYMMDD) /// 791129 DATE WRITTEN /// 890501 Modified prologue to SLATEC/LDOC format. (FNF) /// 890503 Minor cosmetic changes. (FNF) /// 930809 Renamed to allow single/double precision versions. (ACH) /// ***END PROLOGUE DVNORM /// **End /// /// ***FIRST EXECUTABLE STATEMENT DVNORM /// public class DVNORM { public DVNORM() { } /// /// ***PURPOSE Weighted root-mean-square vector norm. /// ***TYPE DOUBLE PRECISION (SVNORM-S, DVNORM-D) /// ***AUTHOR Hindmarsh, Alan C., (LLNL) /// ***DESCRIPTION /// /// This function routine computes the weighted root-mean-square norm /// of the vector of length N contained in the array V, with weights /// contained in the array W of length N: /// DVNORM = SQRT( (1/N) * SUM( V(i)*W(i) )**2 ) /// /// ***SEE ALSO DLSODE /// ***ROUTINES CALLED (NONE) /// ***REVISION HISTORY (YYMMDD) /// 791129 DATE WRITTEN /// 890501 Modified prologue to SLATEC/LDOC format. (FNF) /// 890503 Minor cosmetic changes. (FNF) /// 930809 Renamed to allow single/double precision versions. (ACH) /// ***END PROLOGUE DVNORM /// **End /// /// ***FIRST EXECUTABLE STATEMENT DVNORM /// public double Run(int N, double[] V, int offset_v, double[] W, int offset_w) { double dvnorm = 0; #region Variables int I = 0; double SUM = 0; #endregion #region Array Index Correction int o_v = -1 + offset_v; int o_w = -1 + offset_w; #endregion #region Prolog // C***BEGIN PROLOGUE DVNORM // C***SUBSIDIARY // C***PURPOSE Weighted root-mean-square vector norm. // C***TYPE DOUBLE PRECISION (SVNORM-S, DVNORM-D) // C***AUTHOR Hindmarsh, Alan C., (LLNL) // C***DESCRIPTION // C // C This function routine computes the weighted root-mean-square norm // C of the vector of length N contained in the array V, with weights // C contained in the array W of length N: // C DVNORM = SQRT( (1/N) * SUM( V(i)*W(i) )**2 ) // C // C***SEE ALSO DLSODE // C***ROUTINES CALLED (NONE) // C***REVISION HISTORY (YYMMDD) // C 791129 DATE WRITTEN // C 890501 Modified prologue to SLATEC/LDOC format. (FNF) // C 890503 Minor cosmetic changes. (FNF) // C 930809 Renamed to allow single/double precision versions. (ACH) // C***END PROLOGUE DVNORM // C**End // C // C***FIRST EXECUTABLE STATEMENT DVNORM #endregion SUM = 0.0E0; for (I = 1; I <= N; I++) { SUM += Math.Pow(V[I + o_v] * W[I + o_w],2); } dvnorm = Math.Sqrt(SUM / N); return dvnorm; // C----------------------- END OF FUNCTION DVNORM ------------------------ } } #endregion #region The Class: XERRWD // *DECK XERRWD /// /// ***PURPOSE Write error message with values. /// ***CATEGORY R3C /// ***TYPE DOUBLE PRECISION (XERRWV-S, XERRWD-D) /// ***AUTHOR Hindmarsh, Alan C., (LLNL) /// ***DESCRIPTION /// /// Subroutines XERRWD, XSETF, XSETUN, and the function routine IXSAV, /// as given here, constitute a simplified version of the SLATEC error /// handling package. /// /// All arguments are input arguments. /// /// MSG = The message (character array). /// NMES = The length of MSG (number of characters). /// NERR = The error number (not used). /// LEVEL = The error level.. /// 0 or 1 means recoverable (control returns to caller). /// 2 means fatal (run is aborted--see note below). /// NI = Number of integers (0, 1, or 2) to be printed with message. /// I1,I2 = Integers to be printed, depending on NI. /// NR = Number of reals (0, 1, or 2) to be printed with message. /// R1,R2 = Reals to be printed, depending on NR. /// /// Note.. this routine is machine-dependent and specialized for use /// in limited context, in the following ways.. /// 1. The argument MSG is assumed to be of type CHARACTER, and /// the message is printed with a format of (1X,A). /// 2. The message is assumed to take only one line. /// Multi-line messages are generated by repeated calls. /// 3. If LEVEL = 2, control passes to the statement STOP /// to abort the run. This statement may be machine-dependent. /// 4. R1 and R2 are assumed to be in double precision and are printed /// in D21.13 format. /// /// ***ROUTINES CALLED IXSAV /// ***REVISION HISTORY (YYMMDD) /// 920831 DATE WRITTEN /// 921118 Replaced MFLGSV/LUNSAV by IXSAV. (ACH) /// 930329 Modified prologue to SLATEC format. (FNF) /// 930407 Changed MSG from CHARACTER*1 array to variable. (FNF) /// 930922 Minor cosmetic change. (FNF) /// ***END PROLOGUE XERRWD /// /// *Internal Notes: /// /// For a different default logical unit number, IXSAV (or a subsidiary /// routine that it calls) will need to be modified. /// For a different run-abort command, change the statement following /// statement 100 at the end. /// ----------------------------------------------------------------------- /// Subroutines called by XERRWD.. None /// Function routine called by XERRWD.. IXSAV /// ----------------------------------------------------------------------- /// **End /// /// Declare arguments. /// public class XERRWD { #region Dependencies IXSAV _ixsav; #endregion public XERRWD(IXSAV ixsav) { #region Set Dependencies this._ixsav = ixsav; #endregion } public XERRWD() { #region Dependencies (Initialization) IUMACH iumach = new IUMACH(); IXSAV ixsav = new IXSAV(iumach); #endregion #region Set Dependencies this._ixsav = ixsav; #endregion } /// /// ***PURPOSE Write error message with values. /// ***CATEGORY R3C /// ***TYPE DOUBLE PRECISION (XERRWV-S, XERRWD-D) /// ***AUTHOR Hindmarsh, Alan C., (LLNL) /// ***DESCRIPTION /// /// Subroutines XERRWD, XSETF, XSETUN, and the function routine IXSAV, /// as given here, constitute a simplified version of the SLATEC error /// handling package. /// /// All arguments are input arguments. /// /// MSG = The message (character array). /// NMES = The length of MSG (number of characters). /// NERR = The error number (not used). /// LEVEL = The error level.. /// 0 or 1 means recoverable (control returns to caller). /// 2 means fatal (run is aborted--see note below). /// NI = Number of integers (0, 1, or 2) to be printed with message. /// I1,I2 = Integers to be printed, depending on NI. /// NR = Number of reals (0, 1, or 2) to be printed with message. /// R1,R2 = Reals to be printed, depending on NR. /// /// Note.. this routine is machine-dependent and specialized for use /// in limited context, in the following ways.. /// 1. The argument MSG is assumed to be of type CHARACTER, and /// the message is printed with a format of (1X,A). /// 2. The message is assumed to take only one line. /// Multi-line messages are generated by repeated calls. /// 3. If LEVEL = 2, control passes to the statement STOP /// to abort the run. This statement may be machine-dependent. /// 4. R1 and R2 are assumed to be in double precision and are printed /// in D21.13 format. /// /// ***ROUTINES CALLED IXSAV /// ***REVISION HISTORY (YYMMDD) /// 920831 DATE WRITTEN /// 921118 Replaced MFLGSV/LUNSAV by IXSAV. (ACH) /// 930329 Modified prologue to SLATEC format. (FNF) /// 930407 Changed MSG from CHARACTER*1 array to variable. (FNF) /// 930922 Minor cosmetic change. (FNF) /// ***END PROLOGUE XERRWD /// /// *Internal Notes: /// /// For a different default logical unit number, IXSAV (or a subsidiary /// routine that it calls) will need to be modified. /// For a different run-abort command, change the statement following /// statement 100 at the end. /// ----------------------------------------------------------------------- /// Subroutines called by XERRWD.. None /// Function routine called by XERRWD.. IXSAV /// ----------------------------------------------------------------------- /// **End /// /// Declare arguments. /// /// /// = The message (character array). /// /// /// = The length of MSG (number of characters). /// /// /// = The error number (not used). /// /// /// = The error level.. /// 0 or 1 means recoverable (control returns to caller). /// 2 means fatal (run is aborted--see note below). /// /// /// = Number of integers (0, 1, or 2) to be printed with message. /// /// /// = Number of reals (0, 1, or 2) to be printed with message. /// public void Run(string MSG, int NMES, int NERR, int LEVEL, int NI, int I1 , int I2, int NR, double R1, double R2) { #region Variables int LUNIT = 0; int MESFLG = 0; #endregion #region Prolog // C***BEGIN PROLOGUE XERRWD // C***SUBSIDIARY // C***PURPOSE Write error message with values. // C***CATEGORY R3C // C***TYPE DOUBLE PRECISION (XERRWV-S, XERRWD-D) // C***AUTHOR Hindmarsh, Alan C., (LLNL) // C***DESCRIPTION // C // C Subroutines XERRWD, XSETF, XSETUN, and the function routine IXSAV, // C as given here, constitute a simplified version of the SLATEC error // C handling package. // C // C All arguments are input arguments. // C // C MSG = The message (character array). // C NMES = The length of MSG (number of characters). // C NERR = The error number (not used). // C LEVEL = The error level.. // C 0 or 1 means recoverable (control returns to caller). // C 2 means fatal (run is aborted--see note below). // C NI = Number of integers (0, 1, or 2) to be printed with message. // C I1,I2 = Integers to be printed, depending on NI. // C NR = Number of reals (0, 1, or 2) to be printed with message. // C R1,R2 = Reals to be printed, depending on NR. // C // C Note.. this routine is machine-dependent and specialized for use // C in limited context, in the following ways.. // C 1. The argument MSG is assumed to be of type CHARACTER, and // C the message is printed with a format of (1X,A). // C 2. The message is assumed to take only one line. // C Multi-line messages are generated by repeated calls. // C 3. If LEVEL = 2, control passes to the statement STOP // C to abort the run. This statement may be machine-dependent. // C 4. R1 and R2 are assumed to be in double precision and are printed // C in D21.13 format. // C // C***ROUTINES CALLED IXSAV // C***REVISION HISTORY (YYMMDD) // C 920831 DATE WRITTEN // C 921118 Replaced MFLGSV/LUNSAV by IXSAV. (ACH) // C 930329 Modified prologue to SLATEC format. (FNF) // C 930407 Changed MSG from CHARACTER*1 array to variable. (FNF) // C 930922 Minor cosmetic change. (FNF) // C***END PROLOGUE XERRWD // C // C*Internal Notes: // C // C For a different default logical unit number, IXSAV (or a subsidiary // C routine that it calls) will need to be modified. // C For a different run-abort command, change the statement following // C statement 100 at the end. // C----------------------------------------------------------------------- // C Subroutines called by XERRWD.. None // C Function routine called by XERRWD.. IXSAV // C----------------------------------------------------------------------- // C**End // C // C Declare arguments. // C // C // C Declare local variables. // C // C // C Get logical unit number and message print flag. // C // C***FIRST EXECUTABLE STATEMENT XERRWD #endregion LUNIT = this._ixsav.Run(1, 0, false); MESFLG = this._ixsav.Run(2, 0, false); if (MESFLG == 0) goto LABEL100; // C // C Write the message. // C //ERROR-ERROR WRITE (LUNIT,10) MSG; if (NI == 1) ;//ERROR-ERRORWRITE(LUNIT,20)I1 if (NI == 2) ;//ERROR-ERRORWRITE(LUNIT,30)I1,I2 if (NR == 1) ;//ERROR-ERRORWRITE(LUNIT,40)R1 if (NR == 2) ;//ERROR-ERRORWRITE(LUNIT,50)R1,R2 // C // C Abort the run if LEVEL = 2. // C LABEL100: if (LEVEL != 2) return; return; // C----------------------- End of Subroutine XERRWD ---------------------- } } #endregion #region The Class: XSETF // *DECK XSETF /// /// ***PURPOSE Reset the error print control flag. /// ***CATEGORY R3A /// ***TYPE ALL (XSETF-A) /// ***KEYWORDS ERROR CONTROL /// ***AUTHOR Hindmarsh, Alan C., (LLNL) /// ***DESCRIPTION /// /// XSETF sets the error print control flag to MFLAG: /// MFLAG=1 means print all messages (the default). /// MFLAG=0 means no printing. /// /// ***SEE ALSO XERRWD, XERRWV /// ***REFERENCES (NONE) /// ***ROUTINES CALLED IXSAV /// ***REVISION HISTORY (YYMMDD) /// 921118 DATE WRITTEN /// 930329 Added SLATEC format prologue. (FNF) /// 930407 Corrected SEE ALSO section. (FNF) /// 930922 Made user-callable, and other cosmetic changes. (FNF) /// ***END PROLOGUE XSETF /// /// Subroutines called by XSETF.. None /// Function routine called by XSETF.. IXSAV /// ----------------------------------------------------------------------- /// **End /// /// ***FIRST EXECUTABLE STATEMENT XSETF /// public class XSETF { #region Dependencies IXSAV _ixsav; #endregion public XSETF(IXSAV ixsav) { #region Set Dependencies this._ixsav = ixsav; #endregion } public XSETF() { #region Dependencies (Initialization) IUMACH iumach = new IUMACH(); IXSAV ixsav = new IXSAV(iumach); #endregion #region Set Dependencies this._ixsav = ixsav; #endregion } /// /// ***PURPOSE Reset the error print control flag. /// ***CATEGORY R3A /// ***TYPE ALL (XSETF-A) /// ***KEYWORDS ERROR CONTROL /// ***AUTHOR Hindmarsh, Alan C., (LLNL) /// ***DESCRIPTION /// /// XSETF sets the error print control flag to MFLAG: /// MFLAG=1 means print all messages (the default). /// MFLAG=0 means no printing. /// /// ***SEE ALSO XERRWD, XERRWV /// ***REFERENCES (NONE) /// ***ROUTINES CALLED IXSAV /// ***REVISION HISTORY (YYMMDD) /// 921118 DATE WRITTEN /// 930329 Added SLATEC format prologue. (FNF) /// 930407 Corrected SEE ALSO section. (FNF) /// 930922 Made user-callable, and other cosmetic changes. (FNF) /// ***END PROLOGUE XSETF /// /// Subroutines called by XSETF.. None /// Function routine called by XSETF.. IXSAV /// ----------------------------------------------------------------------- /// **End /// /// ***FIRST EXECUTABLE STATEMENT XSETF /// public void Run(int MFLAG) { #region Variables int JUNK = 0; #endregion #region Prolog // C***BEGIN PROLOGUE XSETF // C***PURPOSE Reset the error print control flag. // C***CATEGORY R3A // C***TYPE ALL (XSETF-A) // C***KEYWORDS ERROR CONTROL // C***AUTHOR Hindmarsh, Alan C., (LLNL) // C***DESCRIPTION // C // C XSETF sets the error print control flag to MFLAG: // C MFLAG=1 means print all messages (the default). // C MFLAG=0 means no printing. // C // C***SEE ALSO XERRWD, XERRWV // C***REFERENCES (NONE) // C***ROUTINES CALLED IXSAV // C***REVISION HISTORY (YYMMDD) // C 921118 DATE WRITTEN // C 930329 Added SLATEC format prologue. (FNF) // C 930407 Corrected SEE ALSO section. (FNF) // C 930922 Made user-callable, and other cosmetic changes. (FNF) // C***END PROLOGUE XSETF // C // C Subroutines called by XSETF.. None // C Function routine called by XSETF.. IXSAV // C----------------------------------------------------------------------- // C**End // C // C***FIRST EXECUTABLE STATEMENT XSETF #endregion if (MFLAG == 0 || MFLAG == 1) JUNK = this._ixsav.Run(2, MFLAG, true); return; // C----------------------- End of Subroutine XSETF ----------------------- } } #endregion #region The Class: XSETUN // *DECK XSETUN /// /// ***PURPOSE Reset the logical unit number for error messages. /// ***CATEGORY R3B /// ***TYPE ALL (XSETUN-A) /// ***KEYWORDS ERROR CONTROL /// ***DESCRIPTION /// /// XSETUN sets the logical unit number for error messages to LUN. /// /// ***AUTHOR Hindmarsh, Alan C., (LLNL) /// ***SEE ALSO XERRWD, XERRWV /// ***REFERENCES (NONE) /// ***ROUTINES CALLED IXSAV /// ***REVISION HISTORY (YYMMDD) /// 921118 DATE WRITTEN /// 930329 Added SLATEC format prologue. (FNF) /// 930407 Corrected SEE ALSO section. (FNF) /// 930922 Made user-callable, and other cosmetic changes. (FNF) /// ***END PROLOGUE XSETUN /// /// Subroutines called by XSETUN.. None /// Function routine called by XSETUN.. IXSAV /// ----------------------------------------------------------------------- /// **End /// /// ***FIRST EXECUTABLE STATEMENT XSETUN /// public class XSETUN { #region Dependencies IXSAV _ixsav; #endregion public XSETUN(IXSAV ixsav) { #region Set Dependencies this._ixsav = ixsav; #endregion } public XSETUN() { #region Dependencies (Initialization) IUMACH iumach = new IUMACH(); IXSAV ixsav = new IXSAV(iumach); #endregion #region Set Dependencies this._ixsav = ixsav; #endregion } /// /// ***PURPOSE Reset the logical unit number for error messages. /// ***CATEGORY R3B /// ***TYPE ALL (XSETUN-A) /// ***KEYWORDS ERROR CONTROL /// ***DESCRIPTION /// /// XSETUN sets the logical unit number for error messages to LUN. /// /// ***AUTHOR Hindmarsh, Alan C., (LLNL) /// ***SEE ALSO XERRWD, XERRWV /// ***REFERENCES (NONE) /// ***ROUTINES CALLED IXSAV /// ***REVISION HISTORY (YYMMDD) /// 921118 DATE WRITTEN /// 930329 Added SLATEC format prologue. (FNF) /// 930407 Corrected SEE ALSO section. (FNF) /// 930922 Made user-callable, and other cosmetic changes. (FNF) /// ***END PROLOGUE XSETUN /// /// Subroutines called by XSETUN.. None /// Function routine called by XSETUN.. IXSAV /// ----------------------------------------------------------------------- /// **End /// /// ***FIRST EXECUTABLE STATEMENT XSETUN /// public void Run(int LUN) { #region Variables int JUNK = 0; #endregion #region Prolog // C***BEGIN PROLOGUE XSETUN // C***PURPOSE Reset the logical unit number for error messages. // C***CATEGORY R3B // C***TYPE ALL (XSETUN-A) // C***KEYWORDS ERROR CONTROL // C***DESCRIPTION // C // C XSETUN sets the logical unit number for error messages to LUN. // C // C***AUTHOR Hindmarsh, Alan C., (LLNL) // C***SEE ALSO XERRWD, XERRWV // C***REFERENCES (NONE) // C***ROUTINES CALLED IXSAV // C***REVISION HISTORY (YYMMDD) // C 921118 DATE WRITTEN // C 930329 Added SLATEC format prologue. (FNF) // C 930407 Corrected SEE ALSO section. (FNF) // C 930922 Made user-callable, and other cosmetic changes. (FNF) // C***END PROLOGUE XSETUN // C // C Subroutines called by XSETUN.. None // C Function routine called by XSETUN.. IXSAV // C----------------------------------------------------------------------- // C**End // C // C***FIRST EXECUTABLE STATEMENT XSETUN #endregion if (LUN > 0) JUNK = this._ixsav.Run(1, LUN, true); return; // C----------------------- End of Subroutine XSETUN ---------------------- } } #endregion #region The Class: IXSAV // *DECK IXSAV /// /// ***PURPOSE Save and recall error message control parameters. /// ***CATEGORY R3C /// ***TYPE ALL (IXSAV-A) /// ***AUTHOR Hindmarsh, Alan C., (LLNL) /// ***DESCRIPTION /// /// IXSAV saves and recalls one of two error message parameters: /// LUNIT, the logical unit number to which messages are printed, and /// MESFLG, the message print flag. /// This is a modification of the SLATEC library routine J4SAVE. /// /// Saved local variables.. /// LUNIT = Logical unit number for messages. The default is obtained /// by a call to IUMACH (may be machine-dependent). /// MESFLG = Print control flag.. /// 1 means print all messages (the default). /// 0 means no printing. /// /// On input.. /// IPAR = Parameter indicator (1 for LUNIT, 2 for MESFLG). /// IVALUE = The value to be set for the parameter, if ISET = .TRUE. /// ISET = Logical flag to indicate whether to read or write. /// If ISET = .TRUE., the parameter will be given /// the value IVALUE. If ISET = .FALSE., the parameter /// will be unchanged, and IVALUE is a dummy argument. /// /// On return.. /// IXSAV = The (old) value of the parameter. /// /// ***SEE ALSO XERRWD, XERRWV /// ***ROUTINES CALLED IUMACH /// ***REVISION HISTORY (YYMMDD) /// 921118 DATE WRITTEN /// 930329 Modified prologue to SLATEC format. (FNF) /// 930915 Added IUMACH call to get default output unit. (ACH) /// 930922 Minor cosmetic changes. (FNF) /// 010425 Type declaration for IUMACH added. (ACH) /// ***END PROLOGUE IXSAV /// /// Subroutines called by IXSAV.. None /// Function routine called by IXSAV.. IUMACH /// ----------------------------------------------------------------------- /// **End /// ----------------------------------------------------------------------- /// ----------------------------------------------------------------------- /// The following Fortran-77 declaration is to cause the values of the /// listed (local) variables to be saved between calls to this routine. /// ----------------------------------------------------------------------- /// /// ***FIRST EXECUTABLE STATEMENT IXSAV /// public class IXSAV { #region Dependencies IUMACH _iumach; #endregion #region Variables int LUNIT = 0; int MESFLG = 0; #endregion public IXSAV(IUMACH iumach) { #region Set Dependencies this._iumach = iumach; #endregion #region Data Initialization //LUNIT/-1 LUNIT = - 1; //MESFLG/1 MESFLG = 1; #endregion } public IXSAV() { #region Dependencies (Initialization) IUMACH iumach = new IUMACH(); #endregion #region Set Dependencies this._iumach = iumach; #endregion #region Data Initialization //LUNIT/-1 LUNIT = - 1; //MESFLG/1 MESFLG = 1; #endregion } /// /// ***PURPOSE Save and recall error message control parameters. /// ***CATEGORY R3C /// ***TYPE ALL (IXSAV-A) /// ***AUTHOR Hindmarsh, Alan C., (LLNL) /// ***DESCRIPTION /// /// IXSAV saves and recalls one of two error message parameters: /// LUNIT, the logical unit number to which messages are printed, and /// MESFLG, the message print flag. /// This is a modification of the SLATEC library routine J4SAVE. /// /// Saved local variables.. /// LUNIT = Logical unit number for messages. The default is obtained /// by a call to IUMACH (may be machine-dependent). /// MESFLG = Print control flag.. /// 1 means print all messages (the default). /// 0 means no printing. /// /// On input.. /// IPAR = Parameter indicator (1 for LUNIT, 2 for MESFLG). /// IVALUE = The value to be set for the parameter, if ISET = .TRUE. /// ISET = Logical flag to indicate whether to read or write. /// If ISET = .TRUE., the parameter will be given /// the value IVALUE. If ISET = .FALSE., the parameter /// will be unchanged, and IVALUE is a dummy argument. /// /// On return.. /// IXSAV = The (old) value of the parameter. /// /// ***SEE ALSO XERRWD, XERRWV /// ***ROUTINES CALLED IUMACH /// ***REVISION HISTORY (YYMMDD) /// 921118 DATE WRITTEN /// 930329 Modified prologue to SLATEC format. (FNF) /// 930915 Added IUMACH call to get default output unit. (ACH) /// 930922 Minor cosmetic changes. (FNF) /// 010425 Type declaration for IUMACH added. (ACH) /// ***END PROLOGUE IXSAV /// /// Subroutines called by IXSAV.. None /// Function routine called by IXSAV.. IUMACH /// ----------------------------------------------------------------------- /// **End /// ----------------------------------------------------------------------- /// ----------------------------------------------------------------------- /// The following Fortran-77 declaration is to cause the values of the /// listed (local) variables to be saved between calls to this routine. /// ----------------------------------------------------------------------- /// /// ***FIRST EXECUTABLE STATEMENT IXSAV /// /// /// = Parameter indicator (1 for LUNIT, 2 for MESFLG). /// /// /// = The value to be set for the parameter, if ISET = .TRUE. /// /// /// = Logical flag to indicate whether to read or write. /// If ISET = .TRUE., the parameter will be given /// the value IVALUE. If ISET = .FALSE., the parameter /// will be unchanged, and IVALUE is a dummy argument. /// public int Run(int IPAR, int IVALUE, bool ISET) { int ixsav = 0; #region Prolog // C***BEGIN PROLOGUE IXSAV // C***SUBSIDIARY // C***PURPOSE Save and recall error message control parameters. // C***CATEGORY R3C // C***TYPE ALL (IXSAV-A) // C***AUTHOR Hindmarsh, Alan C., (LLNL) // C***DESCRIPTION // C // C IXSAV saves and recalls one of two error message parameters: // C LUNIT, the logical unit number to which messages are printed, and // C MESFLG, the message print flag. // C This is a modification of the SLATEC library routine J4SAVE. // C // C Saved local variables.. // C LUNIT = Logical unit number for messages. The default is obtained // C by a call to IUMACH (may be machine-dependent). // C MESFLG = Print control flag.. // C 1 means print all messages (the default). // C 0 means no printing. // C // C On input.. // C IPAR = Parameter indicator (1 for LUNIT, 2 for MESFLG). // C IVALUE = The value to be set for the parameter, if ISET = .TRUE. // C ISET = Logical flag to indicate whether to read or write. // C If ISET = .TRUE., the parameter will be given // C the value IVALUE. If ISET = .FALSE., the parameter // C will be unchanged, and IVALUE is a dummy argument. // C // C On return.. // C IXSAV = The (old) value of the parameter. // C // C***SEE ALSO XERRWD, XERRWV // C***ROUTINES CALLED IUMACH // C***REVISION HISTORY (YYMMDD) // C 921118 DATE WRITTEN // C 930329 Modified prologue to SLATEC format. (FNF) // C 930915 Added IUMACH call to get default output unit. (ACH) // C 930922 Minor cosmetic changes. (FNF) // C 010425 Type declaration for IUMACH added. (ACH) // C***END PROLOGUE IXSAV // C // C Subroutines called by IXSAV.. None // C Function routine called by IXSAV.. IUMACH // C----------------------------------------------------------------------- // C**End // C----------------------------------------------------------------------- // C----------------------------------------------------------------------- // C The following Fortran-77 declaration is to cause the values of the // C listed (local) variables to be saved between calls to this routine. // C----------------------------------------------------------------------- // C // C***FIRST EXECUTABLE STATEMENT IXSAV #endregion if (IPAR == 1) { if (LUNIT == - 1) LUNIT = this._iumach.Run(); ixsav = LUNIT; if (ISET) LUNIT = IVALUE; } // C if (IPAR == 2) { ixsav = MESFLG; if (ISET) MESFLG = IVALUE; } // C return ixsav; // C----------------------- End of Function IXSAV ------------------------- } } #endregion #region The Class: IUMACH // *DECK IUMACH /// /// ***PURPOSE Provide standard output unit number. /// ***CATEGORY R1 /// ***TYPE INTEGER (IUMACH-I) /// ***KEYWORDS MACHINE CONSTANTS /// ***AUTHOR Hindmarsh, Alan C., (LLNL) /// ***DESCRIPTION /// *Usage: /// INTEGER LOUT, IUMACH /// LOUT = IUMACH() /// /// *Function Return Values: /// LOUT : the standard logical unit for Fortran output. /// /// ***REFERENCES (NONE) /// ***ROUTINES CALLED (NONE) /// ***REVISION HISTORY (YYMMDD) /// 930915 DATE WRITTEN /// 930922 Made user-callable, and other cosmetic changes. (FNF) /// ***END PROLOGUE IUMACH /// /// *Internal Notes: /// The built-in value of 6 is standard on a wide range of Fortran /// systems. This may be machine-dependent. /// **End /// ***FIRST EXECUTABLE STATEMENT IUMACH /// public class IUMACH { public IUMACH() { } /// /// ***PURPOSE Provide standard output unit number. /// ***CATEGORY R1 /// ***TYPE INTEGER (IUMACH-I) /// ***KEYWORDS MACHINE CONSTANTS /// ***AUTHOR Hindmarsh, Alan C., (LLNL) /// ***DESCRIPTION /// *Usage: /// INTEGER LOUT, IUMACH /// LOUT = IUMACH() /// /// *Function Return Values: /// LOUT : the standard logical unit for Fortran output. /// /// ***REFERENCES (NONE) /// ***ROUTINES CALLED (NONE) /// ***REVISION HISTORY (YYMMDD) /// 930915 DATE WRITTEN /// 930922 Made user-callable, and other cosmetic changes. (FNF) /// ***END PROLOGUE IUMACH /// /// *Internal Notes: /// The built-in value of 6 is standard on a wide range of Fortran /// systems. This may be machine-dependent. /// **End /// ***FIRST EXECUTABLE STATEMENT IUMACH /// public int Run() { int iumach = 0; #region Prolog // C***BEGIN PROLOGUE IUMACH // C***PURPOSE Provide standard output unit number. // C***CATEGORY R1 // C***TYPE INTEGER (IUMACH-I) // C***KEYWORDS MACHINE CONSTANTS // C***AUTHOR Hindmarsh, Alan C., (LLNL) // C***DESCRIPTION // C *Usage: // C INTEGER LOUT, IUMACH // C LOUT = IUMACH() // C // C *Function Return Values: // C LOUT : the standard logical unit for Fortran output. // C // C***REFERENCES (NONE) // C***ROUTINES CALLED (NONE) // C***REVISION HISTORY (YYMMDD) // C 930915 DATE WRITTEN // C 930922 Made user-callable, and other cosmetic changes. (FNF) // C***END PROLOGUE IUMACH // C // C*Internal Notes: // C The built-in value of 6 is standard on a wide range of Fortran // C systems. This may be machine-dependent. // C**End // C***FIRST EXECUTABLE STATEMENT IUMACH #endregion iumach = 6; // C return iumach; // C----------------------- End of Function IUMACH ------------------------ } } #endregion #region The Class: DUMACH // *DECK DUMACH /// /// ***PURPOSE Compute the unit roundoff of the machine. /// ***CATEGORY R1 /// ***TYPE DOUBLE PRECISION (RUMACH-S, DUMACH-D) /// ***KEYWORDS MACHINE CONSTANTS /// ***AUTHOR Hindmarsh, Alan C., (LLNL) /// ***DESCRIPTION /// *Usage: /// DOUBLE PRECISION A, DUMACH /// A = DUMACH() /// /// *Function Return Values: /// A : the unit roundoff of the machine. /// /// *Description: /// The unit roundoff is defined as the smallest positive machine /// number u such that 1.0 + u .ne. 1.0. This is computed by DUMACH /// in a machine-independent manner. /// /// ***REFERENCES (NONE) /// ***ROUTINES CALLED DUMSUM /// ***REVISION HISTORY (YYYYMMDD) /// 19930216 DATE WRITTEN /// 19930818 Added SLATEC-format prologue. (FNF) /// 20030707 Added DUMSUM to force normal storage of COMP. (ACH) /// ***END PROLOGUE DUMACH /// /// ***FIRST EXECUTABLE STATEMENT DUMACH /// public class DUMACH { #region Dependencies DUMSUM _dumsum; #endregion public DUMACH(DUMSUM dumsum) { #region Set Dependencies this._dumsum = dumsum; #endregion } public DUMACH() { #region Dependencies (Initialization) DUMSUM dumsum = new DUMSUM(); #endregion #region Set Dependencies this._dumsum = dumsum; #endregion } /// /// ***PURPOSE Compute the unit roundoff of the machine. /// ***CATEGORY R1 /// ***TYPE DOUBLE PRECISION (RUMACH-S, DUMACH-D) /// ***KEYWORDS MACHINE CONSTANTS /// ***AUTHOR Hindmarsh, Alan C., (LLNL) /// ***DESCRIPTION /// *Usage: /// DOUBLE PRECISION A, DUMACH /// A = DUMACH() /// /// *Function Return Values: /// A : the unit roundoff of the machine. /// /// *Description: /// The unit roundoff is defined as the smallest positive machine /// number u such that 1.0 + u .ne. 1.0. This is computed by DUMACH /// in a machine-independent manner. /// /// ***REFERENCES (NONE) /// ***ROUTINES CALLED DUMSUM /// ***REVISION HISTORY (YYYYMMDD) /// 19930216 DATE WRITTEN /// 19930818 Added SLATEC-format prologue. (FNF) /// 20030707 Added DUMSUM to force normal storage of COMP. (ACH) /// ***END PROLOGUE DUMACH /// /// ***FIRST EXECUTABLE STATEMENT DUMACH /// public double Run() { double dumach = 0; #region Variables double U = 0; double COMP = 0; #endregion #region Prolog // C***BEGIN PROLOGUE DUMACH // C***PURPOSE Compute the unit roundoff of the machine. // C***CATEGORY R1 // C***TYPE DOUBLE PRECISION (RUMACH-S, DUMACH-D) // C***KEYWORDS MACHINE CONSTANTS // C***AUTHOR Hindmarsh, Alan C., (LLNL) // C***DESCRIPTION // C *Usage: // C DOUBLE PRECISION A, DUMACH // C A = DUMACH() // C // C *Function Return Values: // C A : the unit roundoff of the machine. // C // C *Description: // C The unit roundoff is defined as the smallest positive machine // C number u such that 1.0 + u .ne. 1.0. This is computed by DUMACH // C in a machine-independent manner. // C // C***REFERENCES (NONE) // C***ROUTINES CALLED DUMSUM // C***REVISION HISTORY (YYYYMMDD) // C 19930216 DATE WRITTEN // C 19930818 Added SLATEC-format prologue. (FNF) // C 20030707 Added DUMSUM to force normal storage of COMP. (ACH) // C***END PROLOGUE DUMACH // C // C***FIRST EXECUTABLE STATEMENT DUMACH #endregion U = 1.0E0; LABEL10: U *= 0.5E0; this._dumsum.Run(1.0E0, U, ref COMP); if (COMP != 1.0E0) goto LABEL10; dumach = U * 2.0E0; return dumach; // C----------------------- End of Function DUMACH ------------------------ } } #endregion #region The Class: DUMSUM public class DUMSUM { public DUMSUM() { } public void Run(double A, double B, ref double C) { // C Routine to force normal storing of A + B, for DUMACH. C = A + B; return; } } #endregion #region The Class: DGEFA // *DECK DGEFA /// /// ***PURPOSE Factor a matrix using Gaussian elimination. /// ***CATEGORY D2A1 /// ***TYPE DOUBLE PRECISION (SGEFA-S, DGEFA-D, CGEFA-C) /// ***KEYWORDS GENERAL MATRIX, LINEAR ALGEBRA, LINPACK, /// MATRIX FACTORIZATION /// ***AUTHOR Moler, C. B., (U. of New Mexico) /// ***DESCRIPTION /// /// DGEFA factors a double precision matrix by Gaussian elimination. /// /// DGEFA is usually called by DGECO, but it can be called /// directly with a saving in time if RCOND is not needed. /// (Time for DGECO) = (1 + 9/N)*(Time for DGEFA) . /// /// On Entry /// /// A DOUBLE PRECISION(LDA, N) /// the matrix to be factored. /// /// LDA INTEGER /// the leading dimension of the array A . /// /// N INTEGER /// the order of the matrix A . /// /// On Return /// /// A an upper triangular matrix and the multipliers /// which were used to obtain it. /// The factorization can be written A = L*U where /// L is a product of permutation and unit lower /// triangular matrices and U is upper triangular. /// /// IPVT INTEGER(N) /// an integer vector of pivot indices. /// /// INFO INTEGER /// = 0 normal value. /// = K if U(K,K) .EQ. 0.0 . This is not an error /// condition for this subroutine, but it does /// indicate that DGESL or DGEDI will divide by zero /// if called. Use RCOND in DGECO for a reliable /// indication of singularity. /// /// ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. /// Stewart, LINPACK Users' Guide, SIAM, 1979. /// ***ROUTINES CALLED DAXPY, DSCAL, IDAMAX /// ***REVISION HISTORY (YYMMDD) /// 780814 DATE WRITTEN /// 890831 Modified array declarations. (WRB) /// 890831 REVISION DATE from Version 3.2 /// 891214 Prologue converted to Version 4.0 format. (BAB) /// 900326 Removed duplicate information from DESCRIPTION section. /// (WRB) /// 920501 Reformatted the REFERENCES section. (WRB) /// ***END PROLOGUE DGEFA /// public class DGEFA { #region Dependencies IDAMAX _idamax; DSCAL _dscal; DAXPY _daxpy; #endregion public DGEFA(IDAMAX idamax, DSCAL dscal, DAXPY daxpy) { #region Set Dependencies this._idamax = idamax; this._dscal = dscal; this._daxpy = daxpy; #endregion } public DGEFA() { #region Dependencies (Initialization) IDAMAX idamax = new IDAMAX(); DSCAL dscal = new DSCAL(); DAXPY daxpy = new DAXPY(); #endregion #region Set Dependencies this._idamax = idamax; this._dscal = dscal; this._daxpy = daxpy; #endregion } /// /// ***PURPOSE Factor a matrix using Gaussian elimination. /// ***CATEGORY D2A1 /// ***TYPE DOUBLE PRECISION (SGEFA-S, DGEFA-D, CGEFA-C) /// ***KEYWORDS GENERAL MATRIX, LINEAR ALGEBRA, LINPACK, /// MATRIX FACTORIZATION /// ***AUTHOR Moler, C. B., (U. of New Mexico) /// ***DESCRIPTION /// /// DGEFA factors a double precision matrix by Gaussian elimination. /// /// DGEFA is usually called by DGECO, but it can be called /// directly with a saving in time if RCOND is not needed. /// (Time for DGECO) = (1 + 9/N)*(Time for DGEFA) . /// /// On Entry /// /// A DOUBLE PRECISION(LDA, N) /// the matrix to be factored. /// /// LDA INTEGER /// the leading dimension of the array A . /// /// N INTEGER /// the order of the matrix A . /// /// On Return /// /// A an upper triangular matrix and the multipliers /// which were used to obtain it. /// The factorization can be written A = L*U where /// L is a product of permutation and unit lower /// triangular matrices and U is upper triangular. /// /// IPVT INTEGER(N) /// an integer vector of pivot indices. /// /// INFO INTEGER /// = 0 normal value. /// = K if U(K,K) .EQ. 0.0 . This is not an error /// condition for this subroutine, but it does /// indicate that DGESL or DGEDI will divide by zero /// if called. Use RCOND in DGECO for a reliable /// indication of singularity. /// /// ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. /// Stewart, LINPACK Users' Guide, SIAM, 1979. /// ***ROUTINES CALLED DAXPY, DSCAL, IDAMAX /// ***REVISION HISTORY (YYMMDD) /// 780814 DATE WRITTEN /// 890831 Modified array declarations. (WRB) /// 890831 REVISION DATE from Version 3.2 /// 891214 Prologue converted to Version 4.0 format. (BAB) /// 900326 Removed duplicate information from DESCRIPTION section. /// (WRB) /// 920501 Reformatted the REFERENCES section. (WRB) /// ***END PROLOGUE DGEFA /// /// /// DOUBLE PRECISION(LDA, N) /// the matrix to be factored. /// /// /// INTEGER /// the leading dimension of the array A . /// /// /// INTEGER /// the order of the matrix A . /// /// /// INTEGER(N) /// an integer vector of pivot indices. /// /// /// INTEGER /// = 0 normal value. /// = K if U(K,K) .EQ. 0.0 . This is not an error /// condition for this subroutine, but it does /// indicate that DGESL or DGEDI will divide by zero /// if called. Use RCOND in DGECO for a reliable /// indication of singularity. /// public void Run(ref double[] A, int offset_a, int LDA, int N, ref int[] IPVT, int offset_ipvt, ref int INFO) { #region Variables double T = 0; int J = 0; int K = 0; int KP1 = 0; int L = 0; int NM1 = 0; #endregion #region Array Index Correction int o_a = -1 - LDA + offset_a; int o_ipvt = -1 + offset_ipvt; #endregion #region Prolog // C***BEGIN PROLOGUE DGEFA // C***PURPOSE Factor a matrix using Gaussian elimination. // C***CATEGORY D2A1 // C***TYPE DOUBLE PRECISION (SGEFA-S, DGEFA-D, CGEFA-C) // C***KEYWORDS GENERAL MATRIX, LINEAR ALGEBRA, LINPACK, // C MATRIX FACTORIZATION // C***AUTHOR Moler, C. B., (U. of New Mexico) // C***DESCRIPTION // C // C DGEFA factors a double precision matrix by Gaussian elimination. // C // C DGEFA is usually called by DGECO, but it can be called // C directly with a saving in time if RCOND is not needed. // C (Time for DGECO) = (1 + 9/N)*(Time for DGEFA) . // C // C On Entry // C // C A DOUBLE PRECISION(LDA, N) // C the matrix to be factored. // C // C LDA INTEGER // C the leading dimension of the array A . // C // C N INTEGER // C the order of the matrix A . // C // C On Return // C // C A an upper triangular matrix and the multipliers // C which were used to obtain it. // C The factorization can be written A = L*U where // C L is a product of permutation and unit lower // C triangular matrices and U is upper triangular. // C // C IPVT INTEGER(N) // C an integer vector of pivot indices. // C // C INFO INTEGER // C = 0 normal value. // C = K if U(K,K) .EQ. 0.0 . This is not an error // C condition for this subroutine, but it does // C indicate that DGESL or DGEDI will divide by zero // C if called. Use RCOND in DGECO for a reliable // C indication of singularity. // C // C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. // C Stewart, LINPACK Users' Guide, SIAM, 1979. // C***ROUTINES CALLED DAXPY, DSCAL, IDAMAX // C***REVISION HISTORY (YYMMDD) // C 780814 DATE WRITTEN // C 890831 Modified array declarations. (WRB) // C 890831 REVISION DATE from Version 3.2 // C 891214 Prologue converted to Version 4.0 format. (BAB) // C 900326 Removed duplicate information from DESCRIPTION section. // C (WRB) // C 920501 Reformatted the REFERENCES section. (WRB) // C***END PROLOGUE DGEFA // C // C // C GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING // C // C***FIRST EXECUTABLE STATEMENT DGEFA #endregion #region Body INFO = 0; NM1 = N - 1; if (NM1 < 1) goto LABEL70; for (K = 1; K <= NM1; K++) { KP1 = K + 1; // C // C FIND L = PIVOT INDEX // C L = this._idamax.Run(N - K + 1, A, K+K * LDA + o_a, 1) + K - 1; IPVT[K + o_ipvt] = L; // C // C ZERO PIVOT IMPLIES THIS COLUMN ALREADY TRIANGULARIZED // C if (A[L+K * LDA + o_a] == 0.0E0) goto LABEL40; // C // C INTERCHANGE IF NECESSARY // C if (L == K) goto LABEL10; T = A[L+K * LDA + o_a]; A[L+K * LDA + o_a] = A[K+K * LDA + o_a]; A[K+K * LDA + o_a] = T; LABEL10:; // C // C COMPUTE MULTIPLIERS // C T = - 1.0E0 / A[K+K * LDA + o_a]; this._dscal.Run(N - K, T, ref A, K + 1+K * LDA + o_a, 1); // C // C ROW ELIMINATION WITH COLUMN INDEXING // C for (J = KP1; J <= N; J++) { T = A[L+J * LDA + o_a]; if (L == K) goto LABEL20; A[L+J * LDA + o_a] = A[K+J * LDA + o_a]; A[K+J * LDA + o_a] = T; LABEL20:; this._daxpy.Run(N - K, T, A, K + 1+K * LDA + o_a, 1, ref A, K + 1+J * LDA + o_a, 1); } goto LABEL50; LABEL40:; INFO = K; LABEL50:; } LABEL70:; IPVT[N + o_ipvt] = N; if (A[N+N * LDA + o_a] == 0.0E0) INFO = N; return; #endregion } } #endregion #region The Class: DGESL // *DECK DGESL /// /// ***PURPOSE Solve the real system A*X=B or TRANS(A)*X=B using the /// factors computed by DGECO or DGEFA. /// ***CATEGORY D2A1 /// ***TYPE DOUBLE PRECISION (SGESL-S, DGESL-D, CGESL-C) /// ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE /// ***AUTHOR Moler, C. B., (U. of New Mexico) /// ***DESCRIPTION /// /// DGESL solves the double precision system /// A * X = B or TRANS(A) * X = B /// using the factors computed by DGECO or DGEFA. /// /// On Entry /// /// A DOUBLE PRECISION(LDA, N) /// the output from DGECO or DGEFA. /// /// LDA INTEGER /// the leading dimension of the array A . /// /// N INTEGER /// the order of the matrix A . /// /// IPVT INTEGER(N) /// the pivot vector from DGECO or DGEFA. /// /// B DOUBLE PRECISION(N) /// the right hand side vector. /// /// JOB INTEGER /// = 0 to solve A*X = B , /// = nonzero to solve TRANS(A)*X = B where /// TRANS(A) is the transpose. /// /// On Return /// /// B the solution vector X . /// /// Error Condition /// /// A division by zero will occur if the input factor contains a /// zero on the diagonal. Technically this indicates singularity /// but it is often caused by improper arguments or improper /// setting of LDA . It will not occur if the subroutines are /// called correctly and if DGECO has set RCOND .GT. 0.0 /// or DGEFA has set INFO .EQ. 0 . /// /// To compute INVERSE(A) * C where C is a matrix /// with P columns /// CALL DGECO(A,LDA,N,IPVT,RCOND,Z) /// IF (RCOND is too small) GO TO ... /// DO 10 J = 1, P /// CALL DGESL(A,LDA,N,IPVT,C(1,J),0) /// 10 CONTINUE /// /// ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. /// Stewart, LINPACK Users' Guide, SIAM, 1979. /// ***ROUTINES CALLED DAXPY, DDOT /// ***REVISION HISTORY (YYMMDD) /// 780814 DATE WRITTEN /// 890831 Modified array declarations. (WRB) /// 890831 REVISION DATE from Version 3.2 /// 891214 Prologue converted to Version 4.0 format. (BAB) /// 900326 Removed duplicate information from DESCRIPTION section. /// (WRB) /// 920501 Reformatted the REFERENCES section. (WRB) /// ***END PROLOGUE DGESL /// /// ***FIRST EXECUTABLE STATEMENT DGESL /// public class DGESL { #region Dependencies DDOT _ddot; DAXPY _daxpy; #endregion public DGESL(DDOT ddot, DAXPY daxpy) { #region Set Dependencies this._ddot = ddot; this._daxpy = daxpy; #endregion } public DGESL() { #region Dependencies (Initialization) DDOT ddot = new DDOT(); DAXPY daxpy = new DAXPY(); #endregion #region Set Dependencies this._ddot = ddot; this._daxpy = daxpy; #endregion } /// /// ***PURPOSE Solve the real system A*X=B or TRANS(A)*X=B using the /// factors computed by DGECO or DGEFA. /// ***CATEGORY D2A1 /// ***TYPE DOUBLE PRECISION (SGESL-S, DGESL-D, CGESL-C) /// ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE /// ***AUTHOR Moler, C. B., (U. of New Mexico) /// ***DESCRIPTION /// /// DGESL solves the double precision system /// A * X = B or TRANS(A) * X = B /// using the factors computed by DGECO or DGEFA. /// /// On Entry /// /// A DOUBLE PRECISION(LDA, N) /// the output from DGECO or DGEFA. /// /// LDA INTEGER /// the leading dimension of the array A . /// /// N INTEGER /// the order of the matrix A . /// /// IPVT INTEGER(N) /// the pivot vector from DGECO or DGEFA. /// /// B DOUBLE PRECISION(N) /// the right hand side vector. /// /// JOB INTEGER /// = 0 to solve A*X = B , /// = nonzero to solve TRANS(A)*X = B where /// TRANS(A) is the transpose. /// /// On Return /// /// B the solution vector X . /// /// Error Condition /// /// A division by zero will occur if the input factor contains a /// zero on the diagonal. Technically this indicates singularity /// but it is often caused by improper arguments or improper /// setting of LDA . It will not occur if the subroutines are /// called correctly and if DGECO has set RCOND .GT. 0.0 /// or DGEFA has set INFO .EQ. 0 . /// /// To compute INVERSE(A) * C where C is a matrix /// with P columns /// CALL DGECO(A,LDA,N,IPVT,RCOND,Z) /// IF (RCOND is too small) GO TO ... /// DO 10 J = 1, P /// CALL DGESL(A,LDA,N,IPVT,C(1,J),0) /// 10 CONTINUE /// /// ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. /// Stewart, LINPACK Users' Guide, SIAM, 1979. /// ***ROUTINES CALLED DAXPY, DDOT /// ***REVISION HISTORY (YYMMDD) /// 780814 DATE WRITTEN /// 890831 Modified array declarations. (WRB) /// 890831 REVISION DATE from Version 3.2 /// 891214 Prologue converted to Version 4.0 format. (BAB) /// 900326 Removed duplicate information from DESCRIPTION section. /// (WRB) /// 920501 Reformatted the REFERENCES section. (WRB) /// ***END PROLOGUE DGESL /// /// ***FIRST EXECUTABLE STATEMENT DGESL /// /// /// DOUBLE PRECISION(LDA, N) /// the output from DGECO or DGEFA. /// /// /// INTEGER /// the leading dimension of the array A . /// /// /// INTEGER /// the order of the matrix A . /// /// /// INTEGER(N) /// the pivot vector from DGECO or DGEFA. /// /// /// DOUBLE PRECISION(N) /// the right hand side vector. /// /// /// INTEGER /// = 0 to solve A*X = B , /// = nonzero to solve TRANS(A)*X = B where /// TRANS(A) is the transpose. /// public void Run(double[] A, int offset_a, int LDA, int N, int[] IPVT, int offset_ipvt, ref double[] B, int offset_b, int JOB) { #region Variables double T = 0; int K = 0; int KB = 0; int L = 0; int NM1 = 0; #endregion #region Array Index Correction int o_a = -1 - LDA + offset_a; int o_ipvt = -1 + offset_ipvt; int o_b = -1 + offset_b; #endregion #region Prolog // C***BEGIN PROLOGUE DGESL // C***PURPOSE Solve the real system A*X=B or TRANS(A)*X=B using the // C factors computed by DGECO or DGEFA. // C***CATEGORY D2A1 // C***TYPE DOUBLE PRECISION (SGESL-S, DGESL-D, CGESL-C) // C***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE // C***AUTHOR Moler, C. B., (U. of New Mexico) // C***DESCRIPTION // C // C DGESL solves the double precision system // C A * X = B or TRANS(A) * X = B // C using the factors computed by DGECO or DGEFA. // C // C On Entry // C // C A DOUBLE PRECISION(LDA, N) // C the output from DGECO or DGEFA. // C // C LDA INTEGER // C the leading dimension of the array A . // C // C N INTEGER // C the order of the matrix A . // C // C IPVT INTEGER(N) // C the pivot vector from DGECO or DGEFA. // C // C B DOUBLE PRECISION(N) // C the right hand side vector. // C // C JOB INTEGER // C = 0 to solve A*X = B , // C = nonzero to solve TRANS(A)*X = B where // C TRANS(A) is the transpose. // C // C On Return // C // C B the solution vector X . // C // C Error Condition // C // C A division by zero will occur if the input factor contains a // C zero on the diagonal. Technically this indicates singularity // C but it is often caused by improper arguments or improper // C setting of LDA . It will not occur if the subroutines are // C called correctly and if DGECO has set RCOND .GT. 0.0 // C or DGEFA has set INFO .EQ. 0 . // C // C To compute INVERSE(A) * C where C is a matrix // C with P columns // C CALL DGECO(A,LDA,N,IPVT,RCOND,Z) // C IF (RCOND is too small) GO TO ... // C DO 10 J = 1, P // C CALL DGESL(A,LDA,N,IPVT,C(1,J),0) // C 10 CONTINUE // C // C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. // C Stewart, LINPACK Users' Guide, SIAM, 1979. // C***ROUTINES CALLED DAXPY, DDOT // C***REVISION HISTORY (YYMMDD) // C 780814 DATE WRITTEN // C 890831 Modified array declarations. (WRB) // C 890831 REVISION DATE from Version 3.2 // C 891214 Prologue converted to Version 4.0 format. (BAB) // C 900326 Removed duplicate information from DESCRIPTION section. // C (WRB) // C 920501 Reformatted the REFERENCES section. (WRB) // C***END PROLOGUE DGESL // C // C***FIRST EXECUTABLE STATEMENT DGESL #endregion #region Body NM1 = N - 1; if (JOB != 0) goto LABEL50; // C // C JOB = 0 , SOLVE A * X = B // C FIRST SOLVE L*Y = B // C if (NM1 < 1) goto LABEL30; for (K = 1; K <= NM1; K++) { L = IPVT[K + o_ipvt]; T = B[L + o_b]; if (L == K) goto LABEL10; B[L + o_b] = B[K + o_b]; B[K + o_b] = T; LABEL10:; this._daxpy.Run(N - K, T, A, K + 1+K * LDA + o_a, 1, ref B, K + 1 + o_b, 1); } LABEL30:; // C // C NOW SOLVE U*X = Y // C for (KB = 1; KB <= N; KB++) { K = N + 1 - KB; B[K + o_b] /= A[K+K * LDA + o_a]; T = - B[K + o_b]; this._daxpy.Run(K - 1, T, A, 1+K * LDA + o_a, 1, ref B, 1 + o_b, 1); } goto LABEL100; LABEL50:; // C // C JOB = NONZERO, SOLVE TRANS(A) * X = B // C FIRST SOLVE TRANS(U)*Y = B // C for (K = 1; K <= N; K++) { T = this._ddot.Run(K - 1, A, 1+K * LDA + o_a, 1, B, 1 + o_b, 1); B[K + o_b] = (B[K + o_b] - T) / A[K+K * LDA + o_a]; } // C // C NOW SOLVE TRANS(L)*X = Y // C if (NM1 < 1) goto LABEL90; for (KB = 1; KB <= NM1; KB++) { K = N - KB; B[K + o_b] += this._ddot.Run(N - K, A, K + 1+K * LDA + o_a, 1, B, K + 1 + o_b, 1); L = IPVT[K + o_ipvt]; if (L == K) goto LABEL70; T = B[L + o_b]; B[L + o_b] = B[K + o_b]; B[K + o_b] = T; LABEL70:; } LABEL90:; LABEL100:; return; #endregion } } #endregion #region The Class: DGBFA // *DECK DGBFA /// /// ***PURPOSE Factor a band matrix using Gaussian elimination. /// ***CATEGORY D2A2 /// ***TYPE DOUBLE PRECISION (SGBFA-S, DGBFA-D, CGBFA-C) /// ***KEYWORDS BANDED, LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION /// ***AUTHOR Moler, C. B., (U. of New Mexico) /// ***DESCRIPTION /// /// DGBFA factors a double precision band matrix by elimination. /// /// DGBFA is usually called by DGBCO, but it can be called /// directly with a saving in time if RCOND is not needed. /// /// On Entry /// /// ABD DOUBLE PRECISION(LDA, N) /// contains the matrix in band storage. The columns /// of the matrix are stored in the columns of ABD and /// the diagonals of the matrix are stored in rows /// ML+1 through 2*ML+MU+1 of ABD . /// See the comments below for details. /// /// LDA INTEGER /// the leading dimension of the array ABD . /// LDA must be .GE. 2*ML + MU + 1 . /// /// N INTEGER /// the order of the original matrix. /// /// ML INTEGER /// number of diagonals below the main diagonal. /// 0 .LE. ML .LT. N . /// /// MU INTEGER /// number of diagonals above the main diagonal. /// 0 .LE. MU .LT. N . /// More efficient if ML .LE. MU . /// On Return /// /// ABD an upper triangular matrix in band storage and /// the multipliers which were used to obtain it. /// The factorization can be written A = L*U where /// L is a product of permutation and unit lower /// triangular matrices and U is upper triangular. /// /// IPVT INTEGER(N) /// an integer vector of pivot indices. /// /// INFO INTEGER /// = 0 normal value. /// = K if U(K,K) .EQ. 0.0 . This is not an error /// condition for this subroutine, but it does /// indicate that DGBSL will divide by zero if /// called. Use RCOND in DGBCO for a reliable /// indication of singularity. /// /// Band Storage /// /// If A is a band matrix, the following program segment /// will set up the input. /// /// ML = (band width below the diagonal) /// MU = (band width above the diagonal) /// M = ML + MU + 1 /// DO 20 J = 1, N /// I1 = MAX(1, J-MU) /// I2 = MIN(N, J+ML) /// DO 10 I = I1, I2 /// K = I - J + M /// ABD(K,J) = A(I,J) /// 10 CONTINUE /// 20 CONTINUE /// /// This uses rows ML+1 through 2*ML+MU+1 of ABD . /// In addition, the first ML rows in ABD are used for /// elements generated during the triangularization. /// The total number of rows needed in ABD is 2*ML+MU+1 . /// The ML+MU by ML+MU upper left triangle and the /// ML by ML lower right triangle are not referenced. /// /// ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. /// Stewart, LINPACK Users' Guide, SIAM, 1979. /// ***ROUTINES CALLED DAXPY, DSCAL, IDAMAX /// ***REVISION HISTORY (YYMMDD) /// 780814 DATE WRITTEN /// 890531 Changed all specific intrinsics to generic. (WRB) /// 890831 Modified array declarations. (WRB) /// 890831 REVISION DATE from Version 3.2 /// 891214 Prologue converted to Version 4.0 format. (BAB) /// 900326 Removed duplicate information from DESCRIPTION section. /// (WRB) /// 920501 Reformatted the REFERENCES section. (WRB) /// ***END PROLOGUE DGBFA /// public class DGBFA { #region Dependencies IDAMAX _idamax; DSCAL _dscal; DAXPY _daxpy; #endregion public DGBFA(IDAMAX idamax, DSCAL dscal, DAXPY daxpy) { #region Set Dependencies this._idamax = idamax; this._dscal = dscal; this._daxpy = daxpy; #endregion } public DGBFA() { #region Dependencies (Initialization) IDAMAX idamax = new IDAMAX(); DSCAL dscal = new DSCAL(); DAXPY daxpy = new DAXPY(); #endregion #region Set Dependencies this._idamax = idamax; this._dscal = dscal; this._daxpy = daxpy; #endregion } /// /// ***PURPOSE Factor a band matrix using Gaussian elimination. /// ***CATEGORY D2A2 /// ***TYPE DOUBLE PRECISION (SGBFA-S, DGBFA-D, CGBFA-C) /// ***KEYWORDS BANDED, LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION /// ***AUTHOR Moler, C. B., (U. of New Mexico) /// ***DESCRIPTION /// /// DGBFA factors a double precision band matrix by elimination. /// /// DGBFA is usually called by DGBCO, but it can be called /// directly with a saving in time if RCOND is not needed. /// /// On Entry /// /// ABD DOUBLE PRECISION(LDA, N) /// contains the matrix in band storage. The columns /// of the matrix are stored in the columns of ABD and /// the diagonals of the matrix are stored in rows /// ML+1 through 2*ML+MU+1 of ABD . /// See the comments below for details. /// /// LDA INTEGER /// the leading dimension of the array ABD . /// LDA must be .GE. 2*ML + MU + 1 . /// /// N INTEGER /// the order of the original matrix. /// /// ML INTEGER /// number of diagonals below the main diagonal. /// 0 .LE. ML .LT. N . /// /// MU INTEGER /// number of diagonals above the main diagonal. /// 0 .LE. MU .LT. N . /// More efficient if ML .LE. MU . /// On Return /// /// ABD an upper triangular matrix in band storage and /// the multipliers which were used to obtain it. /// The factorization can be written A = L*U where /// L is a product of permutation and unit lower /// triangular matrices and U is upper triangular. /// /// IPVT INTEGER(N) /// an integer vector of pivot indices. /// /// INFO INTEGER /// = 0 normal value. /// = K if U(K,K) .EQ. 0.0 . This is not an error /// condition for this subroutine, but it does /// indicate that DGBSL will divide by zero if /// called. Use RCOND in DGBCO for a reliable /// indication of singularity. /// /// Band Storage /// /// If A is a band matrix, the following program segment /// will set up the input. /// /// ML = (band width below the diagonal) /// MU = (band width above the diagonal) /// M = ML + MU + 1 /// DO 20 J = 1, N /// I1 = MAX(1, J-MU) /// I2 = MIN(N, J+ML) /// DO 10 I = I1, I2 /// K = I - J + M /// ABD(K,J) = A(I,J) /// 10 CONTINUE /// 20 CONTINUE /// /// This uses rows ML+1 through 2*ML+MU+1 of ABD . /// In addition, the first ML rows in ABD are used for /// elements generated during the triangularization. /// The total number of rows needed in ABD is 2*ML+MU+1 . /// The ML+MU by ML+MU upper left triangle and the /// ML by ML lower right triangle are not referenced. /// /// ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. /// Stewart, LINPACK Users' Guide, SIAM, 1979. /// ***ROUTINES CALLED DAXPY, DSCAL, IDAMAX /// ***REVISION HISTORY (YYMMDD) /// 780814 DATE WRITTEN /// 890531 Changed all specific intrinsics to generic. (WRB) /// 890831 Modified array declarations. (WRB) /// 890831 REVISION DATE from Version 3.2 /// 891214 Prologue converted to Version 4.0 format. (BAB) /// 900326 Removed duplicate information from DESCRIPTION section. /// (WRB) /// 920501 Reformatted the REFERENCES section. (WRB) /// ***END PROLOGUE DGBFA /// /// /// DOUBLE PRECISION(LDA, N) /// contains the matrix in band storage. The columns /// of the matrix are stored in the columns of ABD and /// the diagonals of the matrix are stored in rows /// ML+1 through 2*ML+MU+1 of ABD . /// See the comments below for details. /// /// /// INTEGER /// the leading dimension of the array ABD . /// LDA must be .GE. 2*ML + MU + 1 . /// /// /// INTEGER /// the order of the original matrix. /// /// /// INTEGER /// number of diagonals below the main diagonal. /// 0 .LE. ML .LT. N . /// /// /// INTEGER /// number of diagonals above the main diagonal. /// 0 .LE. MU .LT. N . /// More efficient if ML .LE. MU . /// /// /// INTEGER(N) /// an integer vector of pivot indices. /// /// /// INTEGER /// = 0 normal value. /// = K if U(K,K) .EQ. 0.0 . This is not an error /// condition for this subroutine, but it does /// indicate that DGBSL will divide by zero if /// called. Use RCOND in DGBCO for a reliable /// indication of singularity. /// public void Run(ref double[] ABD, int offset_abd, int LDA, int N, int ML, int MU, ref int[] IPVT, int offset_ipvt , ref int INFO) { #region Variables double T = 0; int I = 0; int I0 = 0; int J = 0; int JU = 0; int JZ = 0; int J0 = 0; int J1 = 0; int K = 0; int KP1 = 0;int L = 0; int LM = 0; int M = 0; int MM = 0; int NM1 = 0; #endregion #region Implicit Variables int ABD_JZ = 0; #endregion #region Array Index Correction int o_abd = -1 - LDA + offset_abd; int o_ipvt = -1 + offset_ipvt; #endregion #region Prolog // C***BEGIN PROLOGUE DGBFA // C***PURPOSE Factor a band matrix using Gaussian elimination. // C***CATEGORY D2A2 // C***TYPE DOUBLE PRECISION (SGBFA-S, DGBFA-D, CGBFA-C) // C***KEYWORDS BANDED, LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION // C***AUTHOR Moler, C. B., (U. of New Mexico) // C***DESCRIPTION // C // C DGBFA factors a double precision band matrix by elimination. // C // C DGBFA is usually called by DGBCO, but it can be called // C directly with a saving in time if RCOND is not needed. // C // C On Entry // C // C ABD DOUBLE PRECISION(LDA, N) // C contains the matrix in band storage. The columns // C of the matrix are stored in the columns of ABD and // C the diagonals of the matrix are stored in rows // C ML+1 through 2*ML+MU+1 of ABD . // C See the comments below for details. // C // C LDA INTEGER // C the leading dimension of the array ABD . // C LDA must be .GE. 2*ML + MU + 1 . // C // C N INTEGER // C the order of the original matrix. // C // C ML INTEGER // C number of diagonals below the main diagonal. // C 0 .LE. ML .LT. N . // C // C MU INTEGER // C number of diagonals above the main diagonal. // C 0 .LE. MU .LT. N . // C More efficient if ML .LE. MU . // C On Return // C // C ABD an upper triangular matrix in band storage and // C the multipliers which were used to obtain it. // C The factorization can be written A = L*U where // C L is a product of permutation and unit lower // C triangular matrices and U is upper triangular. // C // C IPVT INTEGER(N) // C an integer vector of pivot indices. // C // C INFO INTEGER // C = 0 normal value. // C = K if U(K,K) .EQ. 0.0 . This is not an error // C condition for this subroutine, but it does // C indicate that DGBSL will divide by zero if // C called. Use RCOND in DGBCO for a reliable // C indication of singularity. // C // C Band Storage // C // C If A is a band matrix, the following program segment // C will set up the input. // C // C ML = (band width below the diagonal) // C MU = (band width above the diagonal) // C M = ML + MU + 1 // C DO 20 J = 1, N // C I1 = MAX(1, J-MU) // C I2 = MIN(N, J+ML) // C DO 10 I = I1, I2 // C K = I - J + M // C ABD(K,J) = A(I,J) // C 10 CONTINUE // C 20 CONTINUE // C // C This uses rows ML+1 through 2*ML+MU+1 of ABD . // C In addition, the first ML rows in ABD are used for // C elements generated during the triangularization. // C The total number of rows needed in ABD is 2*ML+MU+1 . // C The ML+MU by ML+MU upper left triangle and the // C ML by ML lower right triangle are not referenced. // C // C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. // C Stewart, LINPACK Users' Guide, SIAM, 1979. // C***ROUTINES CALLED DAXPY, DSCAL, IDAMAX // C***REVISION HISTORY (YYMMDD) // C 780814 DATE WRITTEN // C 890531 Changed all specific intrinsics to generic. (WRB) // C 890831 Modified array declarations. (WRB) // C 890831 REVISION DATE from Version 3.2 // C 891214 Prologue converted to Version 4.0 format. (BAB) // C 900326 Removed duplicate information from DESCRIPTION section. // C (WRB) // C 920501 Reformatted the REFERENCES section. (WRB) // C***END PROLOGUE DGBFA // C // C // C***FIRST EXECUTABLE STATEMENT DGBFA #endregion #region Body M = ML + MU + 1; INFO = 0; // C // C ZERO INITIAL FILL-IN COLUMNS // C J0 = MU + 2; J1 = Math.Min(N, M) - 1; if (J1 < J0) goto LABEL30; for (JZ = J0; JZ <= J1; JZ++) { I0 = M + 1 - JZ; ABD_JZ = JZ * LDA + o_abd; for (I = I0; I <= ML; I++) { ABD[I + ABD_JZ] = 0.0E0; } } LABEL30:; JZ = J1; JU = 0; // C // C GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING // C NM1 = N - 1; if (NM1 < 1) goto LABEL130; for (K = 1; K <= NM1; K++) { KP1 = K + 1; // C // C ZERO NEXT FILL-IN COLUMN // C JZ += 1; if (JZ > N) goto LABEL50; if (ML < 1) goto LABEL50; ABD_JZ = JZ * LDA + o_abd; for (I = 1; I <= ML; I++) { ABD[I + ABD_JZ] = 0.0E0; } LABEL50:; // C // C FIND L = PIVOT INDEX // C LM = Math.Min(ML, N - K); L = this._idamax.Run(LM + 1, ABD, M+K * LDA + o_abd, 1) + M - 1; IPVT[K + o_ipvt] = L + K - M; // C // C ZERO PIVOT IMPLIES THIS COLUMN ALREADY TRIANGULARIZED // C if (ABD[L+K * LDA + o_abd] == 0.0E0) goto LABEL100; // C // C INTERCHANGE IF NECESSARY // C if (L == M) goto LABEL60; T = ABD[L+K * LDA + o_abd]; ABD[L+K * LDA + o_abd] = ABD[M+K * LDA + o_abd]; ABD[M+K * LDA + o_abd] = T; LABEL60:; // C // C COMPUTE MULTIPLIERS // C T = - 1.0E0 / ABD[M+K * LDA + o_abd]; this._dscal.Run(LM, T, ref ABD, M + 1+K * LDA + o_abd, 1); // C // C ROW ELIMINATION WITH COLUMN INDEXING // C JU = Math.Min(Math.Max(JU, MU + IPVT[K + o_ipvt]), N); MM = M; if (JU < KP1) goto LABEL90; for (J = KP1; J <= JU; J++) { L -= 1; MM -= 1; T = ABD[L+J * LDA + o_abd]; if (L == MM) goto LABEL70; ABD[L+J * LDA + o_abd] = ABD[MM+J * LDA + o_abd]; ABD[MM+J * LDA + o_abd] = T; LABEL70:; this._daxpy.Run(LM, T, ABD, M + 1+K * LDA + o_abd, 1, ref ABD, MM + 1+J * LDA + o_abd, 1); } LABEL90:; goto LABEL110; LABEL100:; INFO = K; LABEL110:; } LABEL130:; IPVT[N + o_ipvt] = N; if (ABD[M+N * LDA + o_abd] == 0.0E0) INFO = N; return; #endregion } } #endregion #region The Class: DGBSL // *DECK DGBSL /// /// ***PURPOSE Solve the real band system A*X=B or TRANS(A)*X=B using /// the factors computed by DGBCO or DGBFA. /// ***CATEGORY D2A2 /// ***TYPE DOUBLE PRECISION (SGBSL-S, DGBSL-D, CGBSL-C) /// ***KEYWORDS BANDED, LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE /// ***AUTHOR Moler, C. B., (U. of New Mexico) /// ***DESCRIPTION /// /// DGBSL solves the double precision band system /// A * X = B or TRANS(A) * X = B /// using the factors computed by DGBCO or DGBFA. /// /// On Entry /// /// ABD DOUBLE PRECISION(LDA, N) /// the output from DGBCO or DGBFA. /// /// LDA INTEGER /// the leading dimension of the array ABD . /// /// N INTEGER /// the order of the original matrix. /// /// ML INTEGER /// number of diagonals below the main diagonal. /// /// MU INTEGER /// number of diagonals above the main diagonal. /// /// IPVT INTEGER(N) /// the pivot vector from DGBCO or DGBFA. /// /// B DOUBLE PRECISION(N) /// the right hand side vector. /// /// JOB INTEGER /// = 0 to solve A*X = B , /// = nonzero to solve TRANS(A)*X = B , where /// TRANS(A) is the transpose. /// /// On Return /// /// B the solution vector X . /// /// Error Condition /// /// A division by zero will occur if the input factor contains a /// zero on the diagonal. Technically this indicates singularity /// but it is often caused by improper arguments or improper /// setting of LDA . It will not occur if the subroutines are /// called correctly and if DGBCO has set RCOND .GT. 0.0 /// or DGBFA has set INFO .EQ. 0 . /// /// To compute INVERSE(A) * C where C is a matrix /// with P columns /// CALL DGBCO(ABD,LDA,N,ML,MU,IPVT,RCOND,Z) /// IF (RCOND is too small) GO TO ... /// DO 10 J = 1, P /// CALL DGBSL(ABD,LDA,N,ML,MU,IPVT,C(1,J),0) /// 10 CONTINUE /// /// ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. /// Stewart, LINPACK Users' Guide, SIAM, 1979. /// ***ROUTINES CALLED DAXPY, DDOT /// ***REVISION HISTORY (YYMMDD) /// 780814 DATE WRITTEN /// 890531 Changed all specific intrinsics to generic. (WRB) /// 890831 Modified array declarations. (WRB) /// 890831 REVISION DATE from Version 3.2 /// 891214 Prologue converted to Version 4.0 format. (BAB) /// 900326 Removed duplicate information from DESCRIPTION section. /// (WRB) /// 920501 Reformatted the REFERENCES section. (WRB) /// ***END PROLOGUE DGBSL /// /// ***FIRST EXECUTABLE STATEMENT DGBSL /// public class DGBSL { #region Dependencies DDOT _ddot; DAXPY _daxpy; #endregion public DGBSL(DDOT ddot, DAXPY daxpy) { #region Set Dependencies this._ddot = ddot; this._daxpy = daxpy; #endregion } public DGBSL() { #region Dependencies (Initialization) DDOT ddot = new DDOT(); DAXPY daxpy = new DAXPY(); #endregion #region Set Dependencies this._ddot = ddot; this._daxpy = daxpy; #endregion } /// /// ***PURPOSE Solve the real band system A*X=B or TRANS(A)*X=B using /// the factors computed by DGBCO or DGBFA. /// ***CATEGORY D2A2 /// ***TYPE DOUBLE PRECISION (SGBSL-S, DGBSL-D, CGBSL-C) /// ***KEYWORDS BANDED, LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE /// ***AUTHOR Moler, C. B., (U. of New Mexico) /// ***DESCRIPTION /// /// DGBSL solves the double precision band system /// A * X = B or TRANS(A) * X = B /// using the factors computed by DGBCO or DGBFA. /// /// On Entry /// /// ABD DOUBLE PRECISION(LDA, N) /// the output from DGBCO or DGBFA. /// /// LDA INTEGER /// the leading dimension of the array ABD . /// /// N INTEGER /// the order of the original matrix. /// /// ML INTEGER /// number of diagonals below the main diagonal. /// /// MU INTEGER /// number of diagonals above the main diagonal. /// /// IPVT INTEGER(N) /// the pivot vector from DGBCO or DGBFA. /// /// B DOUBLE PRECISION(N) /// the right hand side vector. /// /// JOB INTEGER /// = 0 to solve A*X = B , /// = nonzero to solve TRANS(A)*X = B , where /// TRANS(A) is the transpose. /// /// On Return /// /// B the solution vector X . /// /// Error Condition /// /// A division by zero will occur if the input factor contains a /// zero on the diagonal. Technically this indicates singularity /// but it is often caused by improper arguments or improper /// setting of LDA . It will not occur if the subroutines are /// called correctly and if DGBCO has set RCOND .GT. 0.0 /// or DGBFA has set INFO .EQ. 0 . /// /// To compute INVERSE(A) * C where C is a matrix /// with P columns /// CALL DGBCO(ABD,LDA,N,ML,MU,IPVT,RCOND,Z) /// IF (RCOND is too small) GO TO ... /// DO 10 J = 1, P /// CALL DGBSL(ABD,LDA,N,ML,MU,IPVT,C(1,J),0) /// 10 CONTINUE /// /// ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. /// Stewart, LINPACK Users' Guide, SIAM, 1979. /// ***ROUTINES CALLED DAXPY, DDOT /// ***REVISION HISTORY (YYMMDD) /// 780814 DATE WRITTEN /// 890531 Changed all specific intrinsics to generic. (WRB) /// 890831 Modified array declarations. (WRB) /// 890831 REVISION DATE from Version 3.2 /// 891214 Prologue converted to Version 4.0 format. (BAB) /// 900326 Removed duplicate information from DESCRIPTION section. /// (WRB) /// 920501 Reformatted the REFERENCES section. (WRB) /// ***END PROLOGUE DGBSL /// /// ***FIRST EXECUTABLE STATEMENT DGBSL /// /// /// DOUBLE PRECISION(LDA, N) /// the output from DGBCO or DGBFA. /// /// /// INTEGER /// the leading dimension of the array ABD . /// /// /// INTEGER /// the order of the original matrix. /// /// /// INTEGER /// number of diagonals below the main diagonal. /// /// /// INTEGER /// number of diagonals above the main diagonal. /// /// /// INTEGER(N) /// the pivot vector from DGBCO or DGBFA. /// /// /// DOUBLE PRECISION(N) /// the right hand side vector. /// /// /// INTEGER /// = 0 to solve A*X = B , /// = nonzero to solve TRANS(A)*X = B , where /// TRANS(A) is the transpose. /// public void Run(double[] ABD, int offset_abd, int LDA, int N, int ML, int MU, int[] IPVT, int offset_ipvt , ref double[] B, int offset_b, int JOB) { #region Variables double T = 0; int K = 0; int KB = 0; int L = 0; int LA = 0; int LB = 0; int LM = 0; int M = 0; int NM1 = 0; #endregion #region Array Index Correction int o_abd = -1 - LDA + offset_abd; int o_ipvt = -1 + offset_ipvt; int o_b = -1 + offset_b; #endregion #region Prolog // C***BEGIN PROLOGUE DGBSL // C***PURPOSE Solve the real band system A*X=B or TRANS(A)*X=B using // C the factors computed by DGBCO or DGBFA. // C***CATEGORY D2A2 // C***TYPE DOUBLE PRECISION (SGBSL-S, DGBSL-D, CGBSL-C) // C***KEYWORDS BANDED, LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE // C***AUTHOR Moler, C. B., (U. of New Mexico) // C***DESCRIPTION // C // C DGBSL solves the double precision band system // C A * X = B or TRANS(A) * X = B // C using the factors computed by DGBCO or DGBFA. // C // C On Entry // C // C ABD DOUBLE PRECISION(LDA, N) // C the output from DGBCO or DGBFA. // C // C LDA INTEGER // C the leading dimension of the array ABD . // C // C N INTEGER // C the order of the original matrix. // C // C ML INTEGER // C number of diagonals below the main diagonal. // C // C MU INTEGER // C number of diagonals above the main diagonal. // C // C IPVT INTEGER(N) // C the pivot vector from DGBCO or DGBFA. // C // C B DOUBLE PRECISION(N) // C the right hand side vector. // C // C JOB INTEGER // C = 0 to solve A*X = B , // C = nonzero to solve TRANS(A)*X = B , where // C TRANS(A) is the transpose. // C // C On Return // C // C B the solution vector X . // C // C Error Condition // C // C A division by zero will occur if the input factor contains a // C zero on the diagonal. Technically this indicates singularity // C but it is often caused by improper arguments or improper // C setting of LDA . It will not occur if the subroutines are // C called correctly and if DGBCO has set RCOND .GT. 0.0 // C or DGBFA has set INFO .EQ. 0 . // C // C To compute INVERSE(A) * C where C is a matrix // C with P columns // C CALL DGBCO(ABD,LDA,N,ML,MU,IPVT,RCOND,Z) // C IF (RCOND is too small) GO TO ... // C DO 10 J = 1, P // C CALL DGBSL(ABD,LDA,N,ML,MU,IPVT,C(1,J),0) // C 10 CONTINUE // C // C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. // C Stewart, LINPACK Users' Guide, SIAM, 1979. // C***ROUTINES CALLED DAXPY, DDOT // C***REVISION HISTORY (YYMMDD) // C 780814 DATE WRITTEN // C 890531 Changed all specific intrinsics to generic. (WRB) // C 890831 Modified array declarations. (WRB) // C 890831 REVISION DATE from Version 3.2 // C 891214 Prologue converted to Version 4.0 format. (BAB) // C 900326 Removed duplicate information from DESCRIPTION section. // C (WRB) // C 920501 Reformatted the REFERENCES section. (WRB) // C***END PROLOGUE DGBSL // C // C***FIRST EXECUTABLE STATEMENT DGBSL #endregion #region Body M = MU + ML + 1; NM1 = N - 1; if (JOB != 0) goto LABEL50; // C // C JOB = 0 , SOLVE A * X = B // C FIRST SOLVE L*Y = B // C if (ML == 0) goto LABEL30; if (NM1 < 1) goto LABEL30; for (K = 1; K <= NM1; K++) { LM = Math.Min(ML, N - K); L = IPVT[K + o_ipvt]; T = B[L + o_b]; if (L == K) goto LABEL10; B[L + o_b] = B[K + o_b]; B[K + o_b] = T; LABEL10:; this._daxpy.Run(LM, T, ABD, M + 1+K * LDA + o_abd, 1, ref B, K + 1 + o_b, 1); } LABEL30:; // C // C NOW SOLVE U*X = Y // C for (KB = 1; KB <= N; KB++) { K = N + 1 - KB; B[K + o_b] /= ABD[M+K * LDA + o_abd]; LM = Math.Min(K, M) - 1; LA = M - LM; LB = K - LM; T = - B[K + o_b]; this._daxpy.Run(LM, T, ABD, LA+K * LDA + o_abd, 1, ref B, LB + o_b, 1); } goto LABEL100; LABEL50:; // C // C JOB = NONZERO, SOLVE TRANS(A) * X = B // C FIRST SOLVE TRANS(U)*Y = B // C for (K = 1; K <= N; K++) { LM = Math.Min(K, M) - 1; LA = M - LM; LB = K - LM; T = this._ddot.Run(LM, ABD, LA+K * LDA + o_abd, 1, B, LB + o_b, 1); B[K + o_b] = (B[K + o_b] - T) / ABD[M+K * LDA + o_abd]; } // C // C NOW SOLVE TRANS(L)*X = Y // C if (ML == 0) goto LABEL90; if (NM1 < 1) goto LABEL90; for (KB = 1; KB <= NM1; KB++) { K = N - KB; LM = Math.Min(ML, N - K); B[K + o_b] += this._ddot.Run(LM, ABD, M + 1+K * LDA + o_abd, 1, B, K + 1 + o_b, 1); L = IPVT[K + o_ipvt]; if (L == K) goto LABEL70; T = B[L + o_b]; B[L + o_b] = B[K + o_b]; B[K + o_b] = T; LABEL70:; } LABEL90:; LABEL100:; return; #endregion } } #endregion #region The Class: DAXPY // *DECK DAXPY /// /// ***PURPOSE Compute a constant times a vector plus a vector. /// ***CATEGORY D1A7 /// ***TYPE DOUBLE PRECISION (SAXPY-S, DAXPY-D, CAXPY-C) /// ***KEYWORDS BLAS, LINEAR ALGEBRA, TRIAD, VECTOR /// ***AUTHOR Lawson, C. L., (JPL) /// Hanson, R. J., (SNLA) /// Kincaid, D. R., (U. of Texas) /// Krogh, F. T., (JPL) /// ***DESCRIPTION /// /// B L A S Subprogram /// Description of Parameters /// /// --Input-- /// N number of elements in input vector(s) /// DA double precision scalar multiplier /// DX double precision vector with N elements /// INCX storage spacing between elements of DX /// DY double precision vector with N elements /// INCY storage spacing between elements of DY /// /// --Output-- /// DY double precision result (unchanged if N .LE. 0) /// /// Overwrite double precision DY with double precision DA*DX + DY. /// For I = 0 to N-1, replace DY(LY+I*INCY) with DA*DX(LX+I*INCX) + /// DY(LY+I*INCY), /// where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is /// defined in a similar way using INCY. /// /// ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. /// Krogh, Basic linear algebra subprograms for Fortran /// usage, Algorithm No. 539, Transactions on Mathematical /// Software 5, 3 (September 1979), pp. 308-323. /// ***ROUTINES CALLED (NONE) /// ***REVISION HISTORY (YYMMDD) /// 791001 DATE WRITTEN /// 890831 Modified array declarations. (WRB) /// 890831 REVISION DATE from Version 3.2 /// 891214 Prologue converted to Version 4.0 format. (BAB) /// 920310 Corrected definition of LX in DESCRIPTION. (WRB) /// 920501 Reformatted the REFERENCES section. (WRB) /// ***END PROLOGUE DAXPY /// ***FIRST EXECUTABLE STATEMENT DAXPY /// public class DAXPY { public DAXPY() { } /// /// ***PURPOSE Compute a constant times a vector plus a vector. /// ***CATEGORY D1A7 /// ***TYPE DOUBLE PRECISION (SAXPY-S, DAXPY-D, CAXPY-C) /// ***KEYWORDS BLAS, LINEAR ALGEBRA, TRIAD, VECTOR /// ***AUTHOR Lawson, C. L., (JPL) /// Hanson, R. J., (SNLA) /// Kincaid, D. R., (U. of Texas) /// Krogh, F. T., (JPL) /// ***DESCRIPTION /// /// B L A S Subprogram /// Description of Parameters /// /// --Input-- /// N number of elements in input vector(s) /// DA double precision scalar multiplier /// DX double precision vector with N elements /// INCX storage spacing between elements of DX /// DY double precision vector with N elements /// INCY storage spacing between elements of DY /// /// --Output-- /// DY double precision result (unchanged if N .LE. 0) /// /// Overwrite double precision DY with double precision DA*DX + DY. /// For I = 0 to N-1, replace DY(LY+I*INCY) with DA*DX(LX+I*INCX) + /// DY(LY+I*INCY), /// where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is /// defined in a similar way using INCY. /// /// ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. /// Krogh, Basic linear algebra subprograms for Fortran /// usage, Algorithm No. 539, Transactions on Mathematical /// Software 5, 3 (September 1979), pp. 308-323. /// ***ROUTINES CALLED (NONE) /// ***REVISION HISTORY (YYMMDD) /// 791001 DATE WRITTEN /// 890831 Modified array declarations. (WRB) /// 890831 REVISION DATE from Version 3.2 /// 891214 Prologue converted to Version 4.0 format. (BAB) /// 920310 Corrected definition of LX in DESCRIPTION. (WRB) /// 920501 Reformatted the REFERENCES section. (WRB) /// ***END PROLOGUE DAXPY /// ***FIRST EXECUTABLE STATEMENT DAXPY /// /// /// number of elements in input vector(s) /// /// /// double precision scalar multiplier /// /// /// double precision vector with N elements /// /// /// storage spacing between elements of DX /// DY double precision vector with N elements /// /// /// double precision vector with N elements /// /// /// storage spacing between elements of DY /// public void Run(int N, double DA, double[] DX, int offset_dx, int INCX, ref double[] DY, int offset_dy, int INCY) { #region Implicit Variables int IX = 0; int IY = 0; int M = 0; int I = 0; int MP1 = 0; int NS = 0; #endregion #region Array Index Correction int o_dx = -1 + offset_dx; int o_dy = -1 + offset_dy; #endregion #region Prolog // C***BEGIN PROLOGUE DAXPY // C***PURPOSE Compute a constant times a vector plus a vector. // C***CATEGORY D1A7 // C***TYPE DOUBLE PRECISION (SAXPY-S, DAXPY-D, CAXPY-C) // C***KEYWORDS BLAS, LINEAR ALGEBRA, TRIAD, VECTOR // C***AUTHOR Lawson, C. L., (JPL) // C Hanson, R. J., (SNLA) // C Kincaid, D. R., (U. of Texas) // C Krogh, F. T., (JPL) // C***DESCRIPTION // C // C B L A S Subprogram // C Description of Parameters // C // C --Input-- // C N number of elements in input vector(s) // C DA double precision scalar multiplier // C DX double precision vector with N elements // C INCX storage spacing between elements of DX // C DY double precision vector with N elements // C INCY storage spacing between elements of DY // C // C --Output-- // C DY double precision result (unchanged if N .LE. 0) // C // C Overwrite double precision DY with double precision DA*DX + DY. // C For I = 0 to N-1, replace DY(LY+I*INCY) with DA*DX(LX+I*INCX) + // C DY(LY+I*INCY), // C where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is // C defined in a similar way using INCY. // C // C***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. // C Krogh, Basic linear algebra subprograms for Fortran // C usage, Algorithm No. 539, Transactions on Mathematical // C Software 5, 3 (September 1979), pp. 308-323. // C***ROUTINES CALLED (NONE) // C***REVISION HISTORY (YYMMDD) // C 791001 DATE WRITTEN // C 890831 Modified array declarations. (WRB) // C 890831 REVISION DATE from Version 3.2 // C 891214 Prologue converted to Version 4.0 format. (BAB) // C 920310 Corrected definition of LX in DESCRIPTION. (WRB) // C 920501 Reformatted the REFERENCES section. (WRB) // C***END PROLOGUE DAXPY // C***FIRST EXECUTABLE STATEMENT DAXPY #endregion #region Body if (N <= 0 || DA == 0.0E0) return; if (INCX == INCY) { if (INCX - 1 < 0) goto LABEL5; else { if (INCX - 1 > 0) goto LABEL60; else goto LABEL20; } } // C // C Code for unequal or nonpositive increments. // C LABEL5: IX = 1; IY = 1; if (INCX < 0) IX = ( - N + 1) * INCX + 1; if (INCY < 0) IY = ( - N + 1) * INCY + 1; for (I = 1; I <= N; I++) { DY[IY + o_dy] += DA * DX[IX + o_dx]; IX += INCX; IY += INCY; } return; // C // C Code for both increments equal to 1. // C // C Clean-up loop so remaining vector length is a multiple of 4. // C LABEL20: M = FortranLib.Mod(N,4); if (M == 0) goto LABEL40; for (I = 1; I <= M; I++) { DY[I + o_dy] += DA * DX[I + o_dx]; } if (N < 4) return; LABEL40: MP1 = M + 1; for (I = MP1; I <= N; I += 4) { DY[I + o_dy] += DA * DX[I + o_dx]; DY[I + 1 + o_dy] += DA * DX[I + 1 + o_dx]; DY[I + 2 + o_dy] += DA * DX[I + 2 + o_dx]; DY[I + 3 + o_dy] += DA * DX[I + 3 + o_dx]; } return; // C // C Code for equal, positive, non-unit increments. // C LABEL60: NS = N * INCX; for (I = 1; (INCX >= 0) ? (I <= NS) : (I >= NS); I += INCX) { DY[I + o_dy] = DA * DX[I + o_dx] + DY[I + o_dy]; } return; #endregion } } #endregion #region The Class: DCOPY // *DECK DCOPY /// /// ***PURPOSE Copy a vector. /// ***CATEGORY D1A5 /// ***TYPE DOUBLE PRECISION (SCOPY-S, DCOPY-D, CCOPY-C, ICOPY-I) /// ***KEYWORDS BLAS, COPY, LINEAR ALGEBRA, VECTOR /// ***AUTHOR Lawson, C. L., (JPL) /// Hanson, R. J., (SNLA) /// Kincaid, D. R., (U. of Texas) /// Krogh, F. T., (JPL) /// ***DESCRIPTION /// /// B L A S Subprogram /// Description of Parameters /// /// --Input-- /// N number of elements in input vector(s) /// DX double precision vector with N elements /// INCX storage spacing between elements of DX /// DY double precision vector with N elements /// INCY storage spacing between elements of DY /// /// --Output-- /// DY copy of vector DX (unchanged if N .LE. 0) /// /// Copy double precision DX to double precision DY. /// For I = 0 to N-1, copy DX(LX+I*INCX) to DY(LY+I*INCY), /// where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is /// defined in a similar way using INCY. /// /// ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. /// Krogh, Basic linear algebra subprograms for Fortran /// usage, Algorithm No. 539, Transactions on Mathematical /// Software 5, 3 (September 1979), pp. 308-323. /// ***ROUTINES CALLED (NONE) /// ***REVISION HISTORY (YYMMDD) /// 791001 DATE WRITTEN /// 890831 Modified array declarations. (WRB) /// 890831 REVISION DATE from Version 3.2 /// 891214 Prologue converted to Version 4.0 format. (BAB) /// 920310 Corrected definition of LX in DESCRIPTION. (WRB) /// 920501 Reformatted the REFERENCES section. (WRB) /// ***END PROLOGUE DCOPY /// ***FIRST EXECUTABLE STATEMENT DCOPY /// public class DCOPY { public DCOPY() { } /// /// ***PURPOSE Copy a vector. /// ***CATEGORY D1A5 /// ***TYPE DOUBLE PRECISION (SCOPY-S, DCOPY-D, CCOPY-C, ICOPY-I) /// ***KEYWORDS BLAS, COPY, LINEAR ALGEBRA, VECTOR /// ***AUTHOR Lawson, C. L., (JPL) /// Hanson, R. J., (SNLA) /// Kincaid, D. R., (U. of Texas) /// Krogh, F. T., (JPL) /// ***DESCRIPTION /// /// B L A S Subprogram /// Description of Parameters /// /// --Input-- /// N number of elements in input vector(s) /// DX double precision vector with N elements /// INCX storage spacing between elements of DX /// DY double precision vector with N elements /// INCY storage spacing between elements of DY /// /// --Output-- /// DY copy of vector DX (unchanged if N .LE. 0) /// /// Copy double precision DX to double precision DY. /// For I = 0 to N-1, copy DX(LX+I*INCX) to DY(LY+I*INCY), /// where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is /// defined in a similar way using INCY. /// /// ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. /// Krogh, Basic linear algebra subprograms for Fortran /// usage, Algorithm No. 539, Transactions on Mathematical /// Software 5, 3 (September 1979), pp. 308-323. /// ***ROUTINES CALLED (NONE) /// ***REVISION HISTORY (YYMMDD) /// 791001 DATE WRITTEN /// 890831 Modified array declarations. (WRB) /// 890831 REVISION DATE from Version 3.2 /// 891214 Prologue converted to Version 4.0 format. (BAB) /// 920310 Corrected definition of LX in DESCRIPTION. (WRB) /// 920501 Reformatted the REFERENCES section. (WRB) /// ***END PROLOGUE DCOPY /// ***FIRST EXECUTABLE STATEMENT DCOPY /// /// /// number of elements in input vector(s) /// /// /// double precision vector with N elements /// /// /// storage spacing between elements of DX /// DY double precision vector with N elements /// /// /// double precision vector with N elements /// /// /// storage spacing between elements of DY /// public void Run(int N, double[] DX, int offset_dx, int INCX, ref double[] DY, int offset_dy, int INCY) { #region Implicit Variables int IX = 0; int IY = 0; int M = 0; int I = 0; int MP1 = 0; int NS = 0; #endregion #region Array Index Correction int o_dx = -1 + offset_dx; int o_dy = -1 + offset_dy; #endregion #region Prolog // C***BEGIN PROLOGUE DCOPY // C***PURPOSE Copy a vector. // C***CATEGORY D1A5 // C***TYPE DOUBLE PRECISION (SCOPY-S, DCOPY-D, CCOPY-C, ICOPY-I) // C***KEYWORDS BLAS, COPY, LINEAR ALGEBRA, VECTOR // C***AUTHOR Lawson, C. L., (JPL) // C Hanson, R. J., (SNLA) // C Kincaid, D. R., (U. of Texas) // C Krogh, F. T., (JPL) // C***DESCRIPTION // C // C B L A S Subprogram // C Description of Parameters // C // C --Input-- // C N number of elements in input vector(s) // C DX double precision vector with N elements // C INCX storage spacing between elements of DX // C DY double precision vector with N elements // C INCY storage spacing between elements of DY // C // C --Output-- // C DY copy of vector DX (unchanged if N .LE. 0) // C // C Copy double precision DX to double precision DY. // C For I = 0 to N-1, copy DX(LX+I*INCX) to DY(LY+I*INCY), // C where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is // C defined in a similar way using INCY. // C // C***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. // C Krogh, Basic linear algebra subprograms for Fortran // C usage, Algorithm No. 539, Transactions on Mathematical // C Software 5, 3 (September 1979), pp. 308-323. // C***ROUTINES CALLED (NONE) // C***REVISION HISTORY (YYMMDD) // C 791001 DATE WRITTEN // C 890831 Modified array declarations. (WRB) // C 890831 REVISION DATE from Version 3.2 // C 891214 Prologue converted to Version 4.0 format. (BAB) // C 920310 Corrected definition of LX in DESCRIPTION. (WRB) // C 920501 Reformatted the REFERENCES section. (WRB) // C***END PROLOGUE DCOPY // C***FIRST EXECUTABLE STATEMENT DCOPY #endregion #region Body if (N <= 0) return; if (INCX == INCY) { if (INCX - 1 < 0) goto LABEL5; else { if (INCX - 1 > 0) goto LABEL60; else goto LABEL20; } } // C // C Code for unequal or nonpositive increments. // C LABEL5: IX = 1; IY = 1; if (INCX < 0) IX = ( - N + 1) * INCX + 1; if (INCY < 0) IY = ( - N + 1) * INCY + 1; for (I = 1; I <= N; I++) { DY[IY + o_dy] = DX[IX + o_dx]; IX += INCX; IY += INCY; } return; // C // C Code for both increments equal to 1. // C // C Clean-up loop so remaining vector length is a multiple of 7. // C LABEL20: M = FortranLib.Mod(N,7); if (M == 0) goto LABEL40; for (I = 1; I <= M; I++) { DY[I + o_dy] = DX[I + o_dx]; } if (N < 7) return; LABEL40: MP1 = M + 1; for (I = MP1; I <= N; I += 7) { DY[I + o_dy] = DX[I + o_dx]; DY[I + 1 + o_dy] = DX[I + 1 + o_dx]; DY[I + 2 + o_dy] = DX[I + 2 + o_dx]; DY[I + 3 + o_dy] = DX[I + 3 + o_dx]; DY[I + 4 + o_dy] = DX[I + 4 + o_dx]; DY[I + 5 + o_dy] = DX[I + 5 + o_dx]; DY[I + 6 + o_dy] = DX[I + 6 + o_dx]; } return; // C // C Code for equal, positive, non-unit increments. // C LABEL60: NS = N * INCX; for (I = 1; (INCX >= 0) ? (I <= NS) : (I >= NS); I += INCX) { DY[I + o_dy] = DX[I + o_dx]; } return; #endregion } } #endregion #region The Class: DDOT // *DECK DDOT /// /// ***PURPOSE Compute the inner product of two vectors. /// ***CATEGORY D1A4 /// ***TYPE DOUBLE PRECISION (SDOT-S, DDOT-D, CDOTU-C) /// ***KEYWORDS BLAS, INNER PRODUCT, LINEAR ALGEBRA, VECTOR /// ***AUTHOR Lawson, C. L., (JPL) /// Hanson, R. J., (SNLA) /// Kincaid, D. R., (U. of Texas) /// Krogh, F. T., (JPL) /// ***DESCRIPTION /// /// B L A S Subprogram /// Description of Parameters /// /// --Input-- /// N number of elements in input vector(s) /// DX double precision vector with N elements /// INCX storage spacing between elements of DX /// DY double precision vector with N elements /// INCY storage spacing between elements of DY /// /// --Output-- /// DDOT double precision dot product (zero if N .LE. 0) /// /// Returns the dot product of double precision DX and DY. /// DDOT = sum for I = 0 to N-1 of DX(LX+I*INCX) * DY(LY+I*INCY), /// where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is /// defined in a similar way using INCY. /// /// ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. /// Krogh, Basic linear algebra subprograms for Fortran /// usage, Algorithm No. 539, Transactions on Mathematical /// Software 5, 3 (September 1979), pp. 308-323. /// ***ROUTINES CALLED (NONE) /// ***REVISION HISTORY (YYMMDD) /// 791001 DATE WRITTEN /// 890831 Modified array declarations. (WRB) /// 890831 REVISION DATE from Version 3.2 /// 891214 Prologue converted to Version 4.0 format. (BAB) /// 920310 Corrected definition of LX in DESCRIPTION. (WRB) /// 920501 Reformatted the REFERENCES section. (WRB) /// ***END PROLOGUE DDOT /// ***FIRST EXECUTABLE STATEMENT DDOT /// public class DDOT { public DDOT() { } /// /// ***PURPOSE Compute the inner product of two vectors. /// ***CATEGORY D1A4 /// ***TYPE DOUBLE PRECISION (SDOT-S, DDOT-D, CDOTU-C) /// ***KEYWORDS BLAS, INNER PRODUCT, LINEAR ALGEBRA, VECTOR /// ***AUTHOR Lawson, C. L., (JPL) /// Hanson, R. J., (SNLA) /// Kincaid, D. R., (U. of Texas) /// Krogh, F. T., (JPL) /// ***DESCRIPTION /// /// B L A S Subprogram /// Description of Parameters /// /// --Input-- /// N number of elements in input vector(s) /// DX double precision vector with N elements /// INCX storage spacing between elements of DX /// DY double precision vector with N elements /// INCY storage spacing between elements of DY /// /// --Output-- /// DDOT double precision dot product (zero if N .LE. 0) /// /// Returns the dot product of double precision DX and DY. /// DDOT = sum for I = 0 to N-1 of DX(LX+I*INCX) * DY(LY+I*INCY), /// where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is /// defined in a similar way using INCY. /// /// ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. /// Krogh, Basic linear algebra subprograms for Fortran /// usage, Algorithm No. 539, Transactions on Mathematical /// Software 5, 3 (September 1979), pp. 308-323. /// ***ROUTINES CALLED (NONE) /// ***REVISION HISTORY (YYMMDD) /// 791001 DATE WRITTEN /// 890831 Modified array declarations. (WRB) /// 890831 REVISION DATE from Version 3.2 /// 891214 Prologue converted to Version 4.0 format. (BAB) /// 920310 Corrected definition of LX in DESCRIPTION. (WRB) /// 920501 Reformatted the REFERENCES section. (WRB) /// ***END PROLOGUE DDOT /// ***FIRST EXECUTABLE STATEMENT DDOT /// /// /// number of elements in input vector(s) /// /// /// double precision vector with N elements /// /// /// storage spacing between elements of DX /// DY double precision vector with N elements /// /// /// double precision vector with N elements /// /// /// storage spacing between elements of DY /// public double Run(int N, double[] DX, int offset_dx, int INCX, double[] DY, int offset_dy, int INCY) { double ddot = 0; #region Implicit Variables int IX = 0; int IY = 0; int M = 0; int I = 0; int MP1 = 0; int NS = 0; #endregion #region Array Index Correction int o_dx = -1 + offset_dx; int o_dy = -1 + offset_dy; #endregion #region Prolog // C***BEGIN PROLOGUE DDOT // C***PURPOSE Compute the inner product of two vectors. // C***CATEGORY D1A4 // C***TYPE DOUBLE PRECISION (SDOT-S, DDOT-D, CDOTU-C) // C***KEYWORDS BLAS, INNER PRODUCT, LINEAR ALGEBRA, VECTOR // C***AUTHOR Lawson, C. L., (JPL) // C Hanson, R. J., (SNLA) // C Kincaid, D. R., (U. of Texas) // C Krogh, F. T., (JPL) // C***DESCRIPTION // C // C B L A S Subprogram // C Description of Parameters // C // C --Input-- // C N number of elements in input vector(s) // C DX double precision vector with N elements // C INCX storage spacing between elements of DX // C DY double precision vector with N elements // C INCY storage spacing between elements of DY // C // C --Output-- // C DDOT double precision dot product (zero if N .LE. 0) // C // C Returns the dot product of double precision DX and DY. // C DDOT = sum for I = 0 to N-1 of DX(LX+I*INCX) * DY(LY+I*INCY), // C where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is // C defined in a similar way using INCY. // C // C***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. // C Krogh, Basic linear algebra subprograms for Fortran // C usage, Algorithm No. 539, Transactions on Mathematical // C Software 5, 3 (September 1979), pp. 308-323. // C***ROUTINES CALLED (NONE) // C***REVISION HISTORY (YYMMDD) // C 791001 DATE WRITTEN // C 890831 Modified array declarations. (WRB) // C 890831 REVISION DATE from Version 3.2 // C 891214 Prologue converted to Version 4.0 format. (BAB) // C 920310 Corrected definition of LX in DESCRIPTION. (WRB) // C 920501 Reformatted the REFERENCES section. (WRB) // C***END PROLOGUE DDOT // C***FIRST EXECUTABLE STATEMENT DDOT #endregion #region Body ddot = 0.0E0; if (N <= 0) return ddot; if (INCX == INCY) { if (INCX - 1 < 0) goto LABEL5; else { if (INCX - 1 > 0) goto LABEL60; else goto LABEL20; } } // C // C Code for unequal or nonpositive increments. // C LABEL5: IX = 1; IY = 1; if (INCX < 0) IX = ( - N + 1) * INCX + 1; if (INCY < 0) IY = ( - N + 1) * INCY + 1; for (I = 1; I <= N; I++) { ddot += DX[IX + o_dx] * DY[IY + o_dy]; IX += INCX; IY += INCY; } return ddot; // C // C Code for both increments equal to 1. // C // C Clean-up loop so remaining vector length is a multiple of 5. // C LABEL20: M = FortranLib.Mod(N,5); if (M == 0) goto LABEL40; for (I = 1; I <= M; I++) { ddot += DX[I + o_dx] * DY[I + o_dy]; } if (N < 5) return ddot; LABEL40: MP1 = M + 1; for (I = MP1; I <= N; I += 5) { ddot += DX[I + o_dx] * DY[I + o_dy] + DX[I + 1 + o_dx] * DY[I + 1 + o_dy] + DX[I + 2 + o_dx] * DY[I + 2 + o_dy] + DX[I + 3 + o_dx] * DY[I + 3 + o_dy] + DX[I + 4 + o_dx] * DY[I + 4 + o_dy]; } return ddot; // C // C Code for equal, positive, non-unit increments. // C LABEL60: NS = N * INCX; for (I = 1; (INCX >= 0) ? (I <= NS) : (I >= NS); I += INCX) { ddot += DX[I + o_dx] * DY[I + o_dy]; } return ddot; #endregion } } #endregion #region The Class: DNRM2 // *DECK DNRM2 /// /// ***PURPOSE Compute the Euclidean length (L2 norm) of a vector. /// ***CATEGORY D1A3B /// ***TYPE DOUBLE PRECISION (SNRM2-S, DNRM2-D, SCNRM2-C) /// ***KEYWORDS BLAS, EUCLIDEAN LENGTH, EUCLIDEAN NORM, L2, /// LINEAR ALGEBRA, UNITARY, VECTOR /// ***AUTHOR Lawson, C. L., (JPL) /// Hanson, R. J., (SNLA) /// Kincaid, D. R., (U. of Texas) /// Krogh, F. T., (JPL) /// ***DESCRIPTION /// /// B L A S Subprogram /// Description of parameters /// /// --Input-- /// N number of elements in input vector(s) /// DX double precision vector with N elements /// INCX storage spacing between elements of DX /// /// --Output-- /// DNRM2 double precision result (zero if N .LE. 0) /// /// Euclidean norm of the N-vector stored in DX with storage /// increment INCX. /// If N .LE. 0, return with result = 0. /// If N .GE. 1, then INCX must be .GE. 1 /// /// Four phase method using two built-in constants that are /// hopefully applicable to all machines. /// CUTLO = maximum of SQRT(U/EPS) over all known machines. /// CUTHI = minimum of SQRT(V) over all known machines. /// where /// EPS = smallest no. such that EPS + 1. .GT. 1. /// U = smallest positive no. (underflow limit) /// V = largest no. (overflow limit) /// /// Brief outline of algorithm. /// /// Phase 1 scans zero components. /// move to phase 2 when a component is nonzero and .LE. CUTLO /// move to phase 3 when a component is .GT. CUTLO /// move to phase 4 when a component is .GE. CUTHI/M /// where M = N for X() real and M = 2*N for complex. /// /// Values for CUTLO and CUTHI. /// From the environmental parameters listed in the IMSL converter /// document the limiting values are as follows: /// CUTLO, S.P. U/EPS = 2**(-102) for Honeywell. Close seconds are /// Univac and DEC at 2**(-103) /// Thus CUTLO = 2**(-51) = 4.44089E-16 /// CUTHI, S.P. V = 2**127 for Univac, Honeywell, and DEC. /// Thus CUTHI = 2**(63.5) = 1.30438E19 /// CUTLO, D.P. U/EPS = 2**(-67) for Honeywell and DEC. /// Thus CUTLO = 2**(-33.5) = 8.23181D-11 /// CUTHI, D.P. same as S.P. CUTHI = 1.30438D19 /// DATA CUTLO, CUTHI /8.232D-11, 1.304D19/ /// DATA CUTLO, CUTHI /4.441E-16, 1.304E19/ /// /// ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. /// Krogh, Basic linear algebra subprograms for Fortran /// usage, Algorithm No. 539, Transactions on Mathematical /// Software 5, 3 (September 1979), pp. 308-323. /// ***ROUTINES CALLED (NONE) /// ***REVISION HISTORY (YYMMDD) /// 791001 DATE WRITTEN /// 890531 Changed all specific intrinsics to generic. (WRB) /// 890831 Modified array declarations. (WRB) /// 890831 REVISION DATE from Version 3.2 /// 891214 Prologue converted to Version 4.0 format. (BAB) /// 920501 Reformatted the REFERENCES section. (WRB) /// ***END PROLOGUE DNRM2 /// /// ***FIRST EXECUTABLE STATEMENT DNRM2 /// public class DNRM2 { #region Variables double CUTLO = 0; double CUTHI = 0; double ZERO = 0; double ONE = 0; #endregion public DNRM2() { #region Data Initialization //ZERO,ONE/0.0D0,1.0D0 ZERO = 0.0E0; ONE = 1.0E0; //CUTLO,CUTHI/8.232D-11,1.304D19 CUTLO = 8.232E-11; CUTHI = 1.304E19; #endregion } /// /// ***PURPOSE Compute the Euclidean length (L2 norm) of a vector. /// ***CATEGORY D1A3B /// ***TYPE DOUBLE PRECISION (SNRM2-S, DNRM2-D, SCNRM2-C) /// ***KEYWORDS BLAS, EUCLIDEAN LENGTH, EUCLIDEAN NORM, L2, /// LINEAR ALGEBRA, UNITARY, VECTOR /// ***AUTHOR Lawson, C. L., (JPL) /// Hanson, R. J., (SNLA) /// Kincaid, D. R., (U. of Texas) /// Krogh, F. T., (JPL) /// ***DESCRIPTION /// /// B L A S Subprogram /// Description of parameters /// /// --Input-- /// N number of elements in input vector(s) /// DX double precision vector with N elements /// INCX storage spacing between elements of DX /// /// --Output-- /// DNRM2 double precision result (zero if N .LE. 0) /// /// Euclidean norm of the N-vector stored in DX with storage /// increment INCX. /// If N .LE. 0, return with result = 0. /// If N .GE. 1, then INCX must be .GE. 1 /// /// Four phase method using two built-in constants that are /// hopefully applicable to all machines. /// CUTLO = maximum of SQRT(U/EPS) over all known machines. /// CUTHI = minimum of SQRT(V) over all known machines. /// where /// EPS = smallest no. such that EPS + 1. .GT. 1. /// U = smallest positive no. (underflow limit) /// V = largest no. (overflow limit) /// /// Brief outline of algorithm. /// /// Phase 1 scans zero components. /// move to phase 2 when a component is nonzero and .LE. CUTLO /// move to phase 3 when a component is .GT. CUTLO /// move to phase 4 when a component is .GE. CUTHI/M /// where M = N for X() real and M = 2*N for complex. /// /// Values for CUTLO and CUTHI. /// From the environmental parameters listed in the IMSL converter /// document the limiting values are as follows: /// CUTLO, S.P. U/EPS = 2**(-102) for Honeywell. Close seconds are /// Univac and DEC at 2**(-103) /// Thus CUTLO = 2**(-51) = 4.44089E-16 /// CUTHI, S.P. V = 2**127 for Univac, Honeywell, and DEC. /// Thus CUTHI = 2**(63.5) = 1.30438E19 /// CUTLO, D.P. U/EPS = 2**(-67) for Honeywell and DEC. /// Thus CUTLO = 2**(-33.5) = 8.23181D-11 /// CUTHI, D.P. same as S.P. CUTHI = 1.30438D19 /// DATA CUTLO, CUTHI /8.232D-11, 1.304D19/ /// DATA CUTLO, CUTHI /4.441E-16, 1.304E19/ /// /// ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. /// Krogh, Basic linear algebra subprograms for Fortran /// usage, Algorithm No. 539, Transactions on Mathematical /// Software 5, 3 (September 1979), pp. 308-323. /// ***ROUTINES CALLED (NONE) /// ***REVISION HISTORY (YYMMDD) /// 791001 DATE WRITTEN /// 890531 Changed all specific intrinsics to generic. (WRB) /// 890831 Modified array declarations. (WRB) /// 890831 REVISION DATE from Version 3.2 /// 891214 Prologue converted to Version 4.0 format. (BAB) /// 920501 Reformatted the REFERENCES section. (WRB) /// ***END PROLOGUE DNRM2 /// /// ***FIRST EXECUTABLE STATEMENT DNRM2 /// /// /// number of elements in input vector(s) /// /// /// double precision vector with N elements /// /// /// storage spacing between elements of DX /// public double Run(int N, double[] DX, int offset_dx, int INCX) { double dnrm2 = 0; #region Variables int NEXT = 0; double HITEST = 0; double SUM = 0; double XMAX = 0; #endregion #region Implicit Variables int NN = 0; int I = 0; int J = 0; #endregion #region Array Index Correction int o_dx = -1 + offset_dx; #endregion #region Prolog // C***BEGIN PROLOGUE DNRM2 // C***PURPOSE Compute the Euclidean length (L2 norm) of a vector. // C***CATEGORY D1A3B // C***TYPE DOUBLE PRECISION (SNRM2-S, DNRM2-D, SCNRM2-C) // C***KEYWORDS BLAS, EUCLIDEAN LENGTH, EUCLIDEAN NORM, L2, // C LINEAR ALGEBRA, UNITARY, VECTOR // C***AUTHOR Lawson, C. L., (JPL) // C Hanson, R. J., (SNLA) // C Kincaid, D. R., (U. of Texas) // C Krogh, F. T., (JPL) // C***DESCRIPTION // C // C B L A S Subprogram // C Description of parameters // C // C --Input-- // C N number of elements in input vector(s) // C DX double precision vector with N elements // C INCX storage spacing between elements of DX // C // C --Output-- // C DNRM2 double precision result (zero if N .LE. 0) // C // C Euclidean norm of the N-vector stored in DX with storage // C increment INCX. // C If N .LE. 0, return with result = 0. // C If N .GE. 1, then INCX must be .GE. 1 // C // C Four phase method using two built-in constants that are // C hopefully applicable to all machines. // C CUTLO = maximum of SQRT(U/EPS) over all known machines. // C CUTHI = minimum of SQRT(V) over all known machines. // C where // C EPS = smallest no. such that EPS + 1. .GT. 1. // C U = smallest positive no. (underflow limit) // C V = largest no. (overflow limit) // C // C Brief outline of algorithm. // C // C Phase 1 scans zero components. // C move to phase 2 when a component is nonzero and .LE. CUTLO // C move to phase 3 when a component is .GT. CUTLO // C move to phase 4 when a component is .GE. CUTHI/M // C where M = N for X() real and M = 2*N for complex. // C // C Values for CUTLO and CUTHI. // C From the environmental parameters listed in the IMSL converter // C document the limiting values are as follows: // C CUTLO, S.P. U/EPS = 2**(-102) for Honeywell. Close seconds are // C Univac and DEC at 2**(-103) // C Thus CUTLO = 2**(-51) = 4.44089E-16 // C CUTHI, S.P. V = 2**127 for Univac, Honeywell, and DEC. // C Thus CUTHI = 2**(63.5) = 1.30438E19 // C CUTLO, D.P. U/EPS = 2**(-67) for Honeywell and DEC. // C Thus CUTLO = 2**(-33.5) = 8.23181D-11 // C CUTHI, D.P. same as S.P. CUTHI = 1.30438D19 // C DATA CUTLO, CUTHI /8.232D-11, 1.304D19/ // C DATA CUTLO, CUTHI /4.441E-16, 1.304E19/ // C // C***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. // C Krogh, Basic linear algebra subprograms for Fortran // C usage, Algorithm No. 539, Transactions on Mathematical // C Software 5, 3 (September 1979), pp. 308-323. // C***ROUTINES CALLED (NONE) // C***REVISION HISTORY (YYMMDD) // C 791001 DATE WRITTEN // C 890531 Changed all specific intrinsics to generic. (WRB) // C 890831 Modified array declarations. (WRB) // C 890831 REVISION DATE from Version 3.2 // C 891214 Prologue converted to Version 4.0 format. (BAB) // C 920501 Reformatted the REFERENCES section. (WRB) // C***END PROLOGUE DNRM2 // C // C***FIRST EXECUTABLE STATEMENT DNRM2 #endregion #region Body if (N > 0) goto LABEL10; dnrm2 = ZERO; goto LABEL300; // C LABEL10: NEXT = 30; SUM = ZERO; NN = N * INCX; // C // C BEGIN MAIN LOOP // C I = 1; LABEL20: switch (NEXT) { case 30: goto LABEL30; case 50: goto LABEL50; case 70: goto LABEL70; case 110: goto LABEL110; } LABEL30: if (Math.Abs(DX[I + o_dx]) > CUTLO) goto LABEL85; NEXT = 50; XMAX = ZERO; // C // C PHASE 1. SUM IS ZERO // C LABEL50: if (DX[I + o_dx] == ZERO) goto LABEL200; if (Math.Abs(DX[I + o_dx]) > CUTLO) goto LABEL85; // C // C PREPARE FOR PHASE 2. // C NEXT = 70; goto LABEL105; // C // C PREPARE FOR PHASE 4. // C LABEL100: I = J; NEXT = 110; SUM = (SUM / DX[I + o_dx]) / DX[I + o_dx]; LABEL105: XMAX = Math.Abs(DX[I + o_dx]); goto LABEL115; // C // C PHASE 2. SUM IS SMALL. // C SCALE TO AVOID DESTRUCTIVE UNDERFLOW. // C LABEL70: if (Math.Abs(DX[I + o_dx]) > CUTLO) goto LABEL75; // C // C COMMON CODE FOR PHASES 2 AND 4. // C IN PHASE 4 SUM IS LARGE. SCALE TO AVOID OVERFLOW. // C LABEL110: if (Math.Abs(DX[I + o_dx]) <= XMAX) goto LABEL115; SUM = ONE + SUM * Math.Pow(XMAX / DX[I + o_dx],2); XMAX = Math.Abs(DX[I + o_dx]); goto LABEL200; // C LABEL115: SUM += Math.Pow(DX[I + o_dx] / XMAX,2); goto LABEL200; // C // C PREPARE FOR PHASE 3. // C LABEL75: SUM = (SUM * XMAX) * XMAX; // C // C FOR REAL OR D.P. SET HITEST = CUTHI/N // C FOR COMPLEX SET HITEST = CUTHI/(2*N) // C LABEL85: HITEST = CUTHI / N; // C // C PHASE 3. SUM IS MID-RANGE. NO SCALING. // C for (J = I; (INCX >= 0) ? (J <= NN) : (J >= NN); J += INCX) { if (Math.Abs(DX[J + o_dx]) >= HITEST) goto LABEL100; SUM += Math.Pow(DX[J + o_dx],2); } dnrm2 = Math.Sqrt(SUM); goto LABEL300; // C LABEL200:; I += INCX; if (I <= NN) goto LABEL20; // C // C END OF MAIN LOOP. // C // C COMPUTE SQUARE ROOT AND ADJUST FOR SCALING. // C dnrm2 = XMAX * Math.Sqrt(SUM); LABEL300:; return dnrm2; #endregion } } #endregion #region The Class: DSCAL // *DECK DSCAL /// /// ***PURPOSE Multiply a vector by a constant. /// ***CATEGORY D1A6 /// ***TYPE DOUBLE PRECISION (SSCAL-S, DSCAL-D, CSCAL-C) /// ***KEYWORDS BLAS, LINEAR ALGEBRA, SCALE, VECTOR /// ***AUTHOR Lawson, C. L., (JPL) /// Hanson, R. J., (SNLA) /// Kincaid, D. R., (U. of Texas) /// Krogh, F. T., (JPL) /// ***DESCRIPTION /// /// B L A S Subprogram /// Description of Parameters /// /// --Input-- /// N number of elements in input vector(s) /// DA double precision scale factor /// DX double precision vector with N elements /// INCX storage spacing between elements of DX /// /// --Output-- /// DX double precision result (unchanged if N.LE.0) /// /// Replace double precision DX by double precision DA*DX. /// For I = 0 to N-1, replace DX(IX+I*INCX) with DA * DX(IX+I*INCX), /// where IX = 1 if INCX .GE. 0, else IX = 1+(1-N)*INCX. /// /// ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. /// Krogh, Basic linear algebra subprograms for Fortran /// usage, Algorithm No. 539, Transactions on Mathematical /// Software 5, 3 (September 1979), pp. 308-323. /// ***ROUTINES CALLED (NONE) /// ***REVISION HISTORY (YYMMDD) /// 791001 DATE WRITTEN /// 890831 Modified array declarations. (WRB) /// 890831 REVISION DATE from Version 3.2 /// 891214 Prologue converted to Version 4.0 format. (BAB) /// 900821 Modified to correct problem with a negative increment. /// (WRB) /// 920501 Reformatted the REFERENCES section. (WRB) /// ***END PROLOGUE DSCAL /// ***FIRST EXECUTABLE STATEMENT DSCAL /// public class DSCAL { public DSCAL() { } /// /// ***PURPOSE Multiply a vector by a constant. /// ***CATEGORY D1A6 /// ***TYPE DOUBLE PRECISION (SSCAL-S, DSCAL-D, CSCAL-C) /// ***KEYWORDS BLAS, LINEAR ALGEBRA, SCALE, VECTOR /// ***AUTHOR Lawson, C. L., (JPL) /// Hanson, R. J., (SNLA) /// Kincaid, D. R., (U. of Texas) /// Krogh, F. T., (JPL) /// ***DESCRIPTION /// /// B L A S Subprogram /// Description of Parameters /// /// --Input-- /// N number of elements in input vector(s) /// DA double precision scale factor /// DX double precision vector with N elements /// INCX storage spacing between elements of DX /// /// --Output-- /// DX double precision result (unchanged if N.LE.0) /// /// Replace double precision DX by double precision DA*DX. /// For I = 0 to N-1, replace DX(IX+I*INCX) with DA * DX(IX+I*INCX), /// where IX = 1 if INCX .GE. 0, else IX = 1+(1-N)*INCX. /// /// ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. /// Krogh, Basic linear algebra subprograms for Fortran /// usage, Algorithm No. 539, Transactions on Mathematical /// Software 5, 3 (September 1979), pp. 308-323. /// ***ROUTINES CALLED (NONE) /// ***REVISION HISTORY (YYMMDD) /// 791001 DATE WRITTEN /// 890831 Modified array declarations. (WRB) /// 890831 REVISION DATE from Version 3.2 /// 891214 Prologue converted to Version 4.0 format. (BAB) /// 900821 Modified to correct problem with a negative increment. /// (WRB) /// 920501 Reformatted the REFERENCES section. (WRB) /// ***END PROLOGUE DSCAL /// ***FIRST EXECUTABLE STATEMENT DSCAL /// /// /// number of elements in input vector(s) /// /// /// double precision scale factor /// /// /// double precision vector with N elements /// /// /// storage spacing between elements of DX /// public void Run(int N, double DA, ref double[] DX, int offset_dx, int INCX) { #region Variables int I = 0; int IX = 0; int M = 0; int MP1 = 0; #endregion #region Array Index Correction int o_dx = -1 + offset_dx; #endregion #region Prolog // C***BEGIN PROLOGUE DSCAL // C***PURPOSE Multiply a vector by a constant. // C***CATEGORY D1A6 // C***TYPE DOUBLE PRECISION (SSCAL-S, DSCAL-D, CSCAL-C) // C***KEYWORDS BLAS, LINEAR ALGEBRA, SCALE, VECTOR // C***AUTHOR Lawson, C. L., (JPL) // C Hanson, R. J., (SNLA) // C Kincaid, D. R., (U. of Texas) // C Krogh, F. T., (JPL) // C***DESCRIPTION // C // C B L A S Subprogram // C Description of Parameters // C // C --Input-- // C N number of elements in input vector(s) // C DA double precision scale factor // C DX double precision vector with N elements // C INCX storage spacing between elements of DX // C // C --Output-- // C DX double precision result (unchanged if N.LE.0) // C // C Replace double precision DX by double precision DA*DX. // C For I = 0 to N-1, replace DX(IX+I*INCX) with DA * DX(IX+I*INCX), // C where IX = 1 if INCX .GE. 0, else IX = 1+(1-N)*INCX. // C // C***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. // C Krogh, Basic linear algebra subprograms for Fortran // C usage, Algorithm No. 539, Transactions on Mathematical // C Software 5, 3 (September 1979), pp. 308-323. // C***ROUTINES CALLED (NONE) // C***REVISION HISTORY (YYMMDD) // C 791001 DATE WRITTEN // C 890831 Modified array declarations. (WRB) // C 890831 REVISION DATE from Version 3.2 // C 891214 Prologue converted to Version 4.0 format. (BAB) // C 900821 Modified to correct problem with a negative increment. // C (WRB) // C 920501 Reformatted the REFERENCES section. (WRB) // C***END PROLOGUE DSCAL // C***FIRST EXECUTABLE STATEMENT DSCAL #endregion #region Body if (N <= 0) return; if (INCX == 1) goto LABEL20; // C // C Code for increment not equal to 1. // C IX = 1; if (INCX < 0) IX = ( - N + 1) * INCX + 1; for (I = 1; I <= N; I++) { DX[IX + o_dx] *= DA; IX += INCX; } return; // C // C Code for increment equal to 1. // C // C Clean-up loop so remaining vector length is a multiple of 5. // C LABEL20: M = FortranLib.Mod(N,5); if (M == 0) goto LABEL40; for (I = 1; I <= M; I++) { DX[I + o_dx] *= DA; } if (N < 5) return; LABEL40: MP1 = M + 1; for (I = MP1; I <= N; I += 5) { DX[I + o_dx] *= DA; DX[I + 1 + o_dx] *= DA; DX[I + 2 + o_dx] *= DA; DX[I + 3 + o_dx] *= DA; DX[I + 4 + o_dx] *= DA; } return; #endregion } } #endregion #region The Class: IDAMAX // *DECK IDAMAX /// /// ***PURPOSE Find the smallest index of that component of a vector /// having the maximum magnitude. /// ***CATEGORY D1A2 /// ***TYPE DOUBLE PRECISION (ISAMAX-S, IDAMAX-D, ICAMAX-C) /// ***KEYWORDS BLAS, LINEAR ALGEBRA, MAXIMUM COMPONENT, VECTOR /// ***AUTHOR Lawson, C. L., (JPL) /// Hanson, R. J., (SNLA) /// Kincaid, D. R., (U. of Texas) /// Krogh, F. T., (JPL) /// ***DESCRIPTION /// /// B L A S Subprogram /// Description of Parameters /// /// --Input-- /// N number of elements in input vector(s) /// DX double precision vector with N elements /// INCX storage spacing between elements of DX /// /// --Output-- /// IDAMAX smallest index (zero if N .LE. 0) /// /// Find smallest index of maximum magnitude of double precision DX. /// IDAMAX = first I, I = 1 to N, to maximize ABS(DX(IX+(I-1)*INCX)), /// where IX = 1 if INCX .GE. 0, else IX = 1+(1-N)*INCX. /// /// ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. /// Krogh, Basic linear algebra subprograms for Fortran /// usage, Algorithm No. 539, Transactions on Mathematical /// Software 5, 3 (September 1979), pp. 308-323. /// ***ROUTINES CALLED (NONE) /// ***REVISION HISTORY (YYMMDD) /// 791001 DATE WRITTEN /// 890531 Changed all specific intrinsics to generic. (WRB) /// 890531 REVISION DATE from Version 3.2 /// 891214 Prologue converted to Version 4.0 format. (BAB) /// 900821 Modified to correct problem with a negative increment. /// (WRB) /// 920501 Reformatted the REFERENCES section. (WRB) /// ***END PROLOGUE IDAMAX /// ***FIRST EXECUTABLE STATEMENT IDAMAX /// public class IDAMAX { public IDAMAX() { } /// /// ***PURPOSE Find the smallest index of that component of a vector /// having the maximum magnitude. /// ***CATEGORY D1A2 /// ***TYPE DOUBLE PRECISION (ISAMAX-S, IDAMAX-D, ICAMAX-C) /// ***KEYWORDS BLAS, LINEAR ALGEBRA, MAXIMUM COMPONENT, VECTOR /// ***AUTHOR Lawson, C. L., (JPL) /// Hanson, R. J., (SNLA) /// Kincaid, D. R., (U. of Texas) /// Krogh, F. T., (JPL) /// ***DESCRIPTION /// /// B L A S Subprogram /// Description of Parameters /// /// --Input-- /// N number of elements in input vector(s) /// DX double precision vector with N elements /// INCX storage spacing between elements of DX /// /// --Output-- /// IDAMAX smallest index (zero if N .LE. 0) /// /// Find smallest index of maximum magnitude of double precision DX. /// IDAMAX = first I, I = 1 to N, to maximize ABS(DX(IX+(I-1)*INCX)), /// where IX = 1 if INCX .GE. 0, else IX = 1+(1-N)*INCX. /// /// ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. /// Krogh, Basic linear algebra subprograms for Fortran /// usage, Algorithm No. 539, Transactions on Mathematical /// Software 5, 3 (September 1979), pp. 308-323. /// ***ROUTINES CALLED (NONE) /// ***REVISION HISTORY (YYMMDD) /// 791001 DATE WRITTEN /// 890531 Changed all specific intrinsics to generic. (WRB) /// 890531 REVISION DATE from Version 3.2 /// 891214 Prologue converted to Version 4.0 format. (BAB) /// 900821 Modified to correct problem with a negative increment. /// (WRB) /// 920501 Reformatted the REFERENCES section. (WRB) /// ***END PROLOGUE IDAMAX /// ***FIRST EXECUTABLE STATEMENT IDAMAX /// /// /// number of elements in input vector(s) /// /// /// double precision vector with N elements /// /// /// storage spacing between elements of DX /// public int Run(int N, double[] DX, int offset_dx, int INCX) { int idamax = 0; #region Variables double DMAX = 0; double XMAG = 0; int I = 0; int IX = 0; #endregion #region Array Index Correction int o_dx = -1 + offset_dx; #endregion #region Prolog // C***BEGIN PROLOGUE IDAMAX // C***PURPOSE Find the smallest index of that component of a vector // C having the maximum magnitude. // C***CATEGORY D1A2 // C***TYPE DOUBLE PRECISION (ISAMAX-S, IDAMAX-D, ICAMAX-C) // C***KEYWORDS BLAS, LINEAR ALGEBRA, MAXIMUM COMPONENT, VECTOR // C***AUTHOR Lawson, C. L., (JPL) // C Hanson, R. J., (SNLA) // C Kincaid, D. R., (U. of Texas) // C Krogh, F. T., (JPL) // C***DESCRIPTION // C // C B L A S Subprogram // C Description of Parameters // C // C --Input-- // C N number of elements in input vector(s) // C DX double precision vector with N elements // C INCX storage spacing between elements of DX // C // C --Output-- // C IDAMAX smallest index (zero if N .LE. 0) // C // C Find smallest index of maximum magnitude of double precision DX. // C IDAMAX = first I, I = 1 to N, to maximize ABS(DX(IX+(I-1)*INCX)), // C where IX = 1 if INCX .GE. 0, else IX = 1+(1-N)*INCX. // C // C***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. // C Krogh, Basic linear algebra subprograms for Fortran // C usage, Algorithm No. 539, Transactions on Mathematical // C Software 5, 3 (September 1979), pp. 308-323. // C***ROUTINES CALLED (NONE) // C***REVISION HISTORY (YYMMDD) // C 791001 DATE WRITTEN // C 890531 Changed all specific intrinsics to generic. (WRB) // C 890531 REVISION DATE from Version 3.2 // C 891214 Prologue converted to Version 4.0 format. (BAB) // C 900821 Modified to correct problem with a negative increment. // C (WRB) // C 920501 Reformatted the REFERENCES section. (WRB) // C***END PROLOGUE IDAMAX // C***FIRST EXECUTABLE STATEMENT IDAMAX #endregion #region Body idamax = 0; if (N <= 0) return idamax; idamax = 1; if (N == 1) return idamax; // C if (INCX == 1) goto LABEL20; // C // C Code for increments not equal to 1. // C IX = 1; if (INCX < 0) IX = ( - N + 1) * INCX + 1; DMAX = Math.Abs(DX[IX + o_dx]); IX += INCX; for (I = 2; I <= N; I++) { XMAG = Math.Abs(DX[IX + o_dx]); if (XMAG > DMAX) { idamax = I; DMAX = XMAG; } IX += INCX; } return idamax; // C // C Code for increments equal to 1. // C LABEL20: DMAX = Math.Abs(DX[1 + o_dx]); for (I = 2; I <= N; I++) { XMAG = Math.Abs(DX[I + o_dx]); if (XMAG > DMAX) { idamax = I; DMAX = XMAG; } } return idamax; #endregion } } #endregion }