/// ------------------------------------------------------ /// RandomOps - (Pseudo) Random Number Generator For C# /// Copyright (C) 2003-2010 Magnus Erik Hvass Pedersen. /// Please see the file license.txt for license details. /// RandomOps on the internet: http://www.Hvass-Labs.org/ /// ------------------------------------------------------ using System; using System.Diagnostics; namespace RandomOps { /// /// Implements RNG for a hypersphere. The methods are taken from: /// [1] Marsaglia, G. "Choosing a Point from the Surface of a Sphere." /// Ann. Math. Stat. 43, 645-646, 1972. /// [2] Muller, M. E. "A Note on a Method for Generating Points Uniformly /// on n-Dimensional Spheres." /// Comm. Assoc. Comput. Mach. 2, 19-20, Apr. 1959. /// public abstract partial class Random { /// /// Generate a uniform random point on the unit-radius 3-dimensional sphere. /// Thread-safe if Disk() is thread-safe. /// public virtual double[] Sphere3() { double[] x = new double[3]; Sphere3(ref x); return x; } /// /// Generate a uniform random point on the unit-radius 3-dimensional sphere. /// Thread-safe if Disk() is thread-safe. /// /// Array to hold the random point. public virtual void Sphere3(ref double[] x) { double v1, v2, s; // Pick two uniform numbers in the unit-radius 2-dim ball. Disk(out v1, out v2, out s); double a = Math.Sqrt(1 - s); x[0] = 2 * v1 * a; x[1] = 2 * v2 * a; x[2] = 1 - 2 * s; } /// /// Generate a uniform random point on the unit-radius 4-dimensional sphere. /// Thread-safe if Disk() is thread-safe. /// public virtual double[] Sphere4() { double[] x = new double[4]; Sphere4(ref x); return x; } /// /// Generate a uniform random point on the unit-radius 4-dimensional sphere. /// Thread-safe if Disk() is thread-safe. /// /// Array to hold the random point. public virtual void Sphere4(ref double[] x) { double v1, v2, v3, v4, s1, s2; // Pick uniform numbers in the unit-radius 2-dim ball. Disk(out v1, out v2, out s1); Disk(out v3, out v4, out s2); double a = Math.Sqrt((1 - s1) / s2); x[0] = v1; x[1] = v2; x[2] = v3 * a; x[3] = v4 * a; } /// /// Generate a uniform random point on the n-dimensional hypersphere. /// Thread-safe if Gauss() is thread-safe. /// /// Dimensionality of hypersphere. /// Radius of hypersphere. public virtual double[] Sphere(int n, double r) { Debug.Assert(n > 0); double[] x = new double[n]; Sphere(ref x, r); return x; } /// /// Generate a uniform random point on the n-dimensional hypersphere. /// Thread-safe if Gauss() is thread-safe, and each thread supplies /// its own array x. /// /// Array to hold the random point. /// Radius of hypersphere. public virtual void Sphere(ref double[] x, double r) { Debug.Assert(x != null); int n = x.Length; Debug.Assert(n > 0); double sum = 0; int i; for (i = 0; i < n; i++) { // Draw a gaussian (aka. normal) random number. double a = Gauss(); // Store the element. x[i] = a; // Accumulate sum of squared elements. sum += a * a; } // Adjust elements to get a certain radius. double rInv = r / Math.Sqrt(sum); for (i = 0; i < n; i++) { x[i] *= rInv; } } } }