'************************************************************************ 'Cephes Math Library Release 2.8: June, 2000 'Copyright by Stephen L. Moshier ' 'Contributors: ' * Sergey Bochkanov (ALGLIB project). Translation from C to ' pseudocode. ' 'See subroutines comments for additional copyrights. ' 'Redistribution and use in source and binary forms, with or without 'modification, are permitted provided that the following conditions are 'met: ' '- Redistributions of source code must retain the above copyright ' notice, this list of conditions and the following disclaimer. ' '- Redistributions in binary form must reproduce the above copyright ' notice, this list of conditions and the following disclaimer listed ' in this license in the documentation and/or other materials ' provided with the distribution. ' '- Neither the name of the copyright holders nor the names of its ' contributors may be used to endorse or promote products derived from ' this software without specific prior written permission. ' 'THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS '"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 'LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 'A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 'OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 'SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 'LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 'DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 'THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT '(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 'OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. '************************************************************************ Imports System Namespace MathEx.GammaFunctions Public Class igammaf '************************************************************************ ' Incomplete gamma integral ' ' The function is defined by ' ' x ' - ' 1 | | -t a-1 ' igam(a,x) = ----- | e t dt. ' - | | ' | (a) - ' 0 ' ' ' In this implementation both arguments must be positive. ' The integral is evaluated by either a power series or ' continued fraction expansion, depending on the relative ' values of a and x. ' ' ACCURACY: ' ' Relative error: ' arithmetic domain # trials peak rms ' IEEE 0,30 200000 3.6e-14 2.9e-15 ' IEEE 0,100 300000 9.9e-14 1.5e-14 ' ' Cephes Math Library Release 2.8: June, 2000 ' Copyright 1985, 1987, 2000 by Stephen L. Moshier ' ************************************************************************ Public Shared Function incompletegamma(ByVal a As Double, ByVal x As Double) As Double Dim result As Double = 0 Dim igammaepsilon As Double = 0 Dim ans As Double = 0 Dim ax As Double = 0 Dim c As Double = 0 Dim r As Double = 0 Dim tmp As Double = 0 igammaepsilon = 0.000000000000001R If x <= 0 Or a <= 0 Then result = 0 Return result End If If x > 1 And x > a Then result = 1 - incompletegammac(a, x) Return result End If ax = a * Math.Log(x) - x - gammaf.lngamma(a, tmp) If ax < -709.782712893384R Then result = 0 Return result End If ax = Math.Exp(ax) r = a c = 1 ans = 1 Do r = r + 1 c = c * x / r ans = ans + c Loop While c / ans > igammaepsilon result = ans * ax / a Return result End Function '************************************************************************ ' Complemented incomplete gamma integral ' ' The function is defined by ' ' ' igamc(a,x) = 1 - igam(a,x) ' ' inf. ' - ' 1 | | -t a-1 ' = ----- | e t dt. ' - | | ' | (a) - ' x ' ' ' In this implementation both arguments must be positive. ' The integral is evaluated by either a power series or ' continued fraction expansion, depending on the relative ' values of a and x. ' ' ACCURACY: ' ' Tested at random a, x. ' a x Relative error: ' arithmetic domain domain # trials peak rms ' IEEE 0.5,100 0,100 200000 1.9e-14 1.7e-15 ' IEEE 0.01,0.5 0,100 200000 1.4e-13 1.6e-15 ' ' Cephes Math Library Release 2.8: June, 2000 ' Copyright 1985, 1987, 2000 by Stephen L. Moshier ' ************************************************************************ Public Shared Function incompletegammac(ByVal a As Double, ByVal x As Double) As Double Dim result As Double = 0 Dim igammaepsilon As Double = 0 Dim igammabignumber As Double = 0 Dim igammabignumberinv As Double = 0 Dim ans As Double = 0 Dim ax As Double = 0 Dim c As Double = 0 Dim yc As Double = 0 Dim r As Double = 0 Dim t As Double = 0 Dim y As Double = 0 Dim z As Double = 0 Dim pk As Double = 0 Dim pkm1 As Double = 0 Dim pkm2 As Double = 0 Dim qk As Double = 0 Dim qkm1 As Double = 0 Dim qkm2 As Double = 0 Dim tmp As Double = 0 igammaepsilon = 0.000000000000001R igammabignumber = 4.5035996273705E+15 igammabignumberinv = 2.22044604925031R * 0.0000000000000001R If x <= 0 Or a <= 0 Then result = 1 Return result End If If x < 1 Or x < a Then result = 1 - incompletegamma(a, x) Return result End If ax = a * Math.Log(x) - x - gammaf.lngamma(a, tmp) If ax < -709.782712893384R Then result = 0 Return result End If ax = Math.Exp(ax) y = 1 - a z = x + y + 1 c = 0 pkm2 = 1 qkm2 = x pkm1 = x + 1 qkm1 = z * x ans = pkm1 / qkm1 Do c = c + 1 y = y + 1 z = z + 2 yc = y * c pk = pkm1 * z - pkm2 * yc qk = qkm1 * z - qkm2 * yc If qk <> 0 Then r = pk / qk t = Math.Abs((ans - r) / r) ans = r Else t = 1 End If pkm2 = pkm1 pkm1 = pk qkm2 = qkm1 qkm1 = qk If Math.Abs(pk) > igammabignumber Then pkm2 = pkm2 * igammabignumberinv pkm1 = pkm1 * igammabignumberinv qkm2 = qkm2 * igammabignumberinv qkm1 = qkm1 * igammabignumberinv End If Loop While t > igammaepsilon result = ans * ax Return result End Function '************************************************************************ ' Inverse of complemented imcomplete gamma integral ' ' Given p, the function finds x such that ' ' igamc( a, x ) = p. ' ' Starting with the approximate value ' ' 3 ' x = a t ' ' where ' ' t = 1 - d - ndtri(p) sqrt(d) ' ' and ' ' d = 1/9a, ' ' the routine performs up to 10 Newton iterations to find the ' root of igamc(a,x) - p = 0. ' ' ACCURACY: ' ' Tested at random a, p in the intervals indicated. ' ' a p Relative error: ' arithmetic domain domain # trials peak rms ' IEEE 0.5,100 0,0.5 100000 1.0e-14 1.7e-15 ' IEEE 0.01,0.5 0,0.5 100000 9.0e-14 3.4e-15 ' IEEE 0.5,10000 0,0.5 20000 2.3e-13 3.8e-14 ' ' Cephes Math Library Release 2.8: June, 2000 ' Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier ' ************************************************************************ Public Shared Function invincompletegammac(ByVal a As Double, ByVal y0 As Double) As Double Dim result As Double = 0 Dim igammaepsilon As Double = 0 Dim iinvgammabignumber As Double = 0 Dim x0 As Double = 0 Dim x1 As Double = 0 Dim x As Double = 0 Dim yl As Double = 0 Dim yh As Double = 0 Dim y As Double = 0 Dim d As Double = 0 Dim lgm As Double = 0 Dim dithresh As Double = 0 Dim i As Integer = 0 Dim dir As Integer = 0 Dim tmp As Double = 0 igammaepsilon = 0.000000000000001R iinvgammabignumber = 4.5035996273705E+15 x0 = iinvgammabignumber yl = 0 x1 = 0 yh = 1 dithresh = 5 * igammaepsilon d = 1 / (9 * a) y = 1 - d - normaldistr.invnormaldistribution(y0) * Math.Sqrt(d) x = a * y * y * y lgm = gammaf.lngamma(a, tmp) i = 0 While i < 10 If x > x0 Or x < x1 Then d = 0.0625 Exit While End If y = incompletegammac(a, x) If y < yl Or y > yh Then d = 0.0625 Exit While End If If y < y0 Then x0 = x yl = y Else x1 = x yh = y End If d = (a - 1) * Math.Log(x) - x - lgm If d < -709.782712893384R Then d = 0.0625 Exit While End If d = -Math.Exp(d) d = (y - y0) / d If Math.Abs(d / x) < igammaepsilon Then result = x Return result End If x = x - d i = i + 1 End While If x0 = iinvgammabignumber Then If x <= 0 Then x = 1 End If While x0 = iinvgammabignumber x = (1 + d) * x y = incompletegammac(a, x) If y < y0 Then x0 = x yl = y Exit While End If d = d + d End While End If d = 0.5 dir = 0 i = 0 While i < 400 x = x1 + d * (x0 - x1) y = incompletegammac(a, x) lgm = (x0 - x1) / (x1 + x0) If Math.Abs(lgm) < dithresh Then Exit While End If lgm = (y - y0) / y0 If Math.Abs(lgm) < dithresh Then Exit While End If If x <= 0.0R Then Exit While End If If y >= y0 Then x1 = x yh = y If dir < 0 Then dir = 0 d = 0.5 Else If dir > 1 Then d = 0.5 * d + 0.5 Else d = (y0 - yl) / (yh - yl) End If End If dir = dir + 1 Else x0 = x yl = y If dir > 0 Then dir = 0 d = 0.5 Else If dir < -1 Then d = 0.5 * d Else d = (y0 - yl) / (yh - yl) End If End If dir = dir - 1 End If i = i + 1 End While result = x Return result End Function End Class Public Class gammaf '************************************************************************ ' Gamma function ' ' Input parameters: ' X - argument ' ' Domain: ' 0 < X < 171.6 ' -170 < X < 0, X is not an integer. ' ' Relative error: ' arithmetic domain # trials peak rms ' IEEE -170,-33 20000 2.3e-15 3.3e-16 ' IEEE -33, 33 20000 9.4e-16 2.2e-16 ' IEEE 33, 171.6 20000 2.3e-15 3.2e-16 ' ' Cephes Math Library Release 2.8: June, 2000 ' Original copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier ' Translated to AlgoPascal by Bochkanov Sergey (2005, 2006, 2007). ' ************************************************************************ Public Shared Function gamma(ByVal x As Double) As Double Dim result As Double = 0 Dim p As Double = 0 Dim pp As Double = 0 Dim q As Double = 0 Dim qq As Double = 0 Dim z As Double = 0 Dim i As Integer = 0 Dim sgngam As Double = 0 sgngam = 1 q = Math.Abs(x) If q > 33.0R Then If x < 0.0R Then p = Convert.ToInt32(Math.Floor(q)) i = Convert.ToInt32(Math.Round(p)) If i Mod 2 = 0 Then sgngam = -1 End If z = q - p If z > 0.5 Then p = p + 1 z = q - p End If z = q * Math.Sin(Math.PI * z) z = Math.Abs(z) z = Math.PI / (z * gammastirf(q)) Else z = gammastirf(x) End If result = sgngam * z Return result End If z = 1 While x >= 3 x = x - 1 z = z * x End While While x < 0 If x > -0.000000001R Then result = z / ((1 + 0.577215664901533R * x) * x) Return result End If z = z / x x = x + 1 End While While x < 2 If x < 0.000000001R Then result = z / ((1 + 0.577215664901533R * x) * x) Return result End If z = z / x x = x + 1.0R End While If x = 2 Then result = z Return result End If x = x - 2.0R pp = 0.000160119522476752R pp = 0.00119135147006586R + x * pp pp = 0.0104213797561762R + x * pp pp = 0.0476367800457137R + x * pp pp = 0.207448227648436R + x * pp pp = 0.494214826801497R + x * pp pp = 1.0R + x * pp qq = -0.000023158187332412R qq = 0.000539605580493303R + x * qq qq = -0.00445641913851797R + x * qq qq = 0.011813978522206R + x * qq qq = 0.0358236398605499R + x * qq qq = -0.234591795718243R + x * qq qq = 0.0714304917030273R + x * qq qq = 1.0R + x * qq result = z * pp / qq Return result Return result End Function '************************************************************************ ' Natural logarithm of gamma function ' ' Input parameters: ' X - argument ' ' Result: ' logarithm of the absolute value of the Gamma(X). ' ' Output parameters: ' SgnGam - sign(Gamma(X)) ' ' Domain: ' 0 < X < 2.55e305 ' -2.55e305 < X < 0, X is not an integer. ' ' ACCURACY: ' arithmetic domain # trials peak rms ' IEEE 0, 3 28000 5.4e-16 1.1e-16 ' IEEE 2.718, 2.556e305 40000 3.5e-16 8.3e-17 ' The error criterion was relative when the function magnitude ' was greater than one but absolute when it was less than one. ' ' The following test used the relative error criterion, though ' at certain points the relative error could be much higher than ' indicated. ' IEEE -200, -4 10000 4.8e-16 1.3e-16 ' ' Cephes Math Library Release 2.8: June, 2000 ' Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier ' Translated to AlgoPascal by Bochkanov Sergey (2005, 2006, 2007). ' ************************************************************************ Public Shared Function lngamma(ByVal x As Double, ByRef sgngam As Double) As Double Dim result As Double = 0 Dim a As Double = 0 Dim b As Double = 0 Dim c As Double = 0 Dim p As Double = 0 Dim q As Double = 0 Dim u As Double = 0 Dim w As Double = 0 Dim z As Double = 0 Dim i As Integer = 0 Dim logpi As Double = 0 Dim ls2pi As Double = 0 Dim tmp As Double = 0 sgngam = 1 logpi = 1.1447298858494R ls2pi = 0.918938533204673R If x < -34.0R Then q = -x w = lngamma(q, tmp) p = Convert.ToInt32(Math.Floor(q)) i = Convert.ToInt32(Math.Round(p)) If i Mod 2 = 0 Then sgngam = -1 Else sgngam = 1 End If z = q - p If z > 0.5 Then p = p + 1 z = p - q End If z = q * Math.Sin(Math.PI * z) result = logpi - Math.Log(z) - w Return result End If If x < 13 Then z = 1 p = 0 u = x While u >= 3 p = p - 1 u = x + p z = z * u End While While u < 2 z = z / u p = p + 1 u = x + p End While If z < 0 Then sgngam = -1 z = -z Else sgngam = 1 End If If u = 2 Then result = Math.Log(z) Return result End If p = p - 2 x = x + p b = -1378.25152569121R b = -38801.6315134638R + x * b b = -331612.992738871R + x * b b = -1162370.97492762R + x * b b = -1721737.0082084R + x * b b = -853555.664245765R + x * b c = 1 c = -351.815701436523R + x * c c = -17064.2106651881R + x * c c = -220528.590553854R + x * c c = -1139334.44367983R + x * c c = -2532523.07177583R + x * c c = -2018891.41433533R + x * c p = x * b / c result = Math.Log(z) + p Return result End If q = (x - 0.5) * Math.Log(x) - x + ls2pi If x > 100000000 Then result = q Return result End If p = 1 / (x * x) If x >= 1000.0R Then q = q + ((7.93650793650794R * 0.0001 * p - 2.77777777777778R * 0.001) * p + 0.0833333333333333R) / x Else a = 8.11614167470508R * 0.0001 a = -(5.95061904284301R * 0.0001) + p * a a = 7.93650340457717R * 0.0001 + p * a a = -(2.777777777301R * 0.001) + p * a a = 8.33333333333332R * 0.01 + p * a q = q + a / x End If result = q Return result End Function Private Shared Function gammastirf(ByVal x As Double) As Double Dim result As Double = 0 Dim y As Double = 0 Dim w As Double = 0 Dim v As Double = 0 Dim stir As Double = 0 w = 1 / x stir = 0.000787311395793094R stir = -0.000229549961613378R + w * stir stir = -0.00268132617805781R + w * stir stir = 0.00347222221605459R + w * stir stir = 0.0833333333333482R + w * stir w = 1 + w * stir y = Math.Exp(x) If x > 143.01608 Then v = Math.Pow(x, 0.5 * x - 0.25) y = v * (v / y) Else y = Math.Pow(x, x - 0.5) / y End If result = 2.506628274631R * y * w Return result End Function End Class Class normaldistr '************************************************************************ ' Error function ' ' The integral is ' ' x ' - ' 2 | | 2 ' erf(x) = -------- | exp( - t ) dt. ' sqrt(pi) | | ' - ' 0 ' ' For 0 <= |x| < 1, erf(x) = x * P4(x**2)/Q5(x**2); otherwise ' erf(x) = 1 - erfc(x). ' ' ' ACCURACY: ' ' Relative error: ' arithmetic domain # trials peak rms ' IEEE 0,1 30000 3.7e-16 1.0e-16 ' ' Cephes Math Library Release 2.8: June, 2000 ' Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier ' ************************************************************************ Public Shared Function erf(ByVal x As Double) As Double Dim result As Double = 0 Dim xsq As Double = 0 Dim s As Double = 0 Dim p As Double = 0 Dim q As Double = 0 s = Math.Sign(x) x = Math.Abs(x) If x < 0.5 Then xsq = x * x p = 0.00754772803341863R p = 0.288805137207594R + xsq * p p = 14.3383842191748R + xsq * p p = 38.0140318123903R + xsq * p p = 3017.82788536508R + xsq * p p = 7404.07142710151R + xsq * p p = 80437.363096084R + xsq * p q = 0.0R q = 1.0R + xsq * q q = 38.0190713951939R + xsq * q q = 658.07015545924R + xsq * q q = 6379.60017324428R + xsq * q q = 34216.5257924629R + xsq * q q = 80437.363096084R + xsq * q result = s * 1.12837916709551R * x * p / q Return result End If If x >= 10 Then result = s Return result End If result = s * (1 - erfc(x)) Return result End Function '************************************************************************ ' Complementary error function ' ' 1 - erf(x) = ' ' inf. ' - ' 2 | | 2 ' erfc(x) = -------- | exp( - t ) dt ' sqrt(pi) | | ' - ' x ' ' ' For small x, erfc(x) = 1 - erf(x); otherwise rational ' approximations are computed. ' ' ' ACCURACY: ' ' Relative error: ' arithmetic domain # trials peak rms ' IEEE 0,26.6417 30000 5.7e-14 1.5e-14 ' ' Cephes Math Library Release 2.8: June, 2000 ' Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier ' ************************************************************************ Public Shared Function erfc(ByVal x As Double) As Double Dim result As Double = 0 Dim p As Double = 0 Dim q As Double = 0 If x < 0 Then result = 2 - erfc(-x) Return result End If If x < 0.5 Then result = 1.0R - erf(x) Return result End If If x >= 10 Then result = 0 Return result End If p = 0.0R p = 0.56418778255074R + x * p p = 9.67580788298727R + x * p p = 77.0816173036843R + x * p p = 368.519615471001R + x * p p = 1143.26207070389R + x * p p = 2320.43959025164R + x * p p = 2898.02932921677R + x * p p = 1826.33488422951R + x * p q = 1.0R q = 17.1498094362761R + x * q q = 137.125596050062R + x * q q = 661.736120710765R + x * q q = 2094.38436778954R + x * q q = 4429.61280388368R + x * q q = 6089.54242327244R + x * q q = 4958.82756472114R + x * q q = 1826.33488422951R + x * q result = Math.Exp(-AP.MathEx.Sqr(x)) * p / q Return result End Function '************************************************************************ ' Normal distribution function ' ' Returns the area under the Gaussian probability density ' function, integrated from minus infinity to x: ' ' x ' - ' 1 | | 2 ' ndtr(x) = --------- | exp( - t /2 ) dt ' sqrt(2pi) | | ' - ' -inf. ' ' = ( 1 + erf(z) ) / 2 ' = erfc(z) / 2 ' ' where z = x/sqrt(2). Computation is via the functions ' erf and erfc. ' ' ' ACCURACY: ' ' Relative error: ' arithmetic domain # trials peak rms ' IEEE -13,0 30000 3.4e-14 6.7e-15 ' ' Cephes Math Library Release 2.8: June, 2000 ' Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier ' ************************************************************************ Public Shared Function normaldistribution(ByVal x As Double) As Double Dim result As Double = 0 result = 0.5 * (erf(x / 1.4142135623731R) + 1) Return result End Function '************************************************************************ ' Inverse of the error function ' ' Cephes Math Library Release 2.8: June, 2000 ' Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier ' ************************************************************************ Public Shared Function inverf(ByVal e As Double) As Double Dim result As Double = 0 result = invnormaldistribution(0.5 * (e + 1)) / Math.Sqrt(2) Return result End Function '************************************************************************ ' Inverse of Normal distribution function ' ' Returns the argument, x, for which the area under the ' Gaussian probability density function (integrated from ' minus infinity to x) is equal to y. ' ' ' For small arguments 0 < y < exp(-2), the program computes ' z = sqrt( -2.0 * log(y) ); then the approximation is ' x = z - log(z)/z - (1/z) P(1/z) / Q(1/z). ' There are two rational functions P/Q, one for 0 < y < exp(-32) ' and the other for y up to exp(-2). For larger arguments, ' w = y - 0.5, and x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)). ' ' ACCURACY: ' ' Relative error: ' arithmetic domain # trials peak rms ' IEEE 0.125, 1 20000 7.2e-16 1.3e-16 ' IEEE 3e-308, 0.135 50000 4.6e-16 9.8e-17 ' ' Cephes Math Library Release 2.8: June, 2000 ' Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier ' ************************************************************************ Public Shared Function invnormaldistribution(ByVal y0 As Double) As Double Dim result As Double = 0 Dim expm2 As Double = 0 Dim s2pi As Double = 0 Dim x As Double = 0 Dim y As Double = 0 Dim z As Double = 0 Dim y2 As Double = 0 Dim x0 As Double = 0 Dim x1 As Double = 0 Dim code As Integer = 0 Dim p0 As Double = 0 Dim q0 As Double = 0 Dim p1 As Double = 0 Dim q1 As Double = 0 Dim p2 As Double = 0 Dim q2 As Double = 0 expm2 = 0.135335283236613R s2pi = 2.506628274631R If y0 <= 0 Then result = -AP.MathEx.MaxRealNumber Return result End If If y0 >= 1 Then result = AP.MathEx.MaxRealNumber Return result End If code = 1 y = y0 If y > 1.0R - expm2 Then y = 1.0R - y code = 0 End If If y > expm2 Then y = y - 0.5 y2 = y * y p0 = -59.9633501014108R p0 = 98.0010754186R + y2 * p0 p0 = -56.676285746907R + y2 * p0 p0 = 13.931260938728R + y2 * p0 p0 = -1.23916583867381R + y2 * p0 q0 = 1 q0 = 1.95448858338142R + y2 * q0 q0 = 4.67627912898882R + y2 * q0 q0 = 86.3602421390891R + y2 * q0 q0 = -225.462687854119R + y2 * q0 q0 = 200.260212380061R + y2 * q0 q0 = -82.0372256168333R + y2 * q0 q0 = 15.9056225126212R + y2 * q0 q0 = -1.1833162112133R + y2 * q0 x = y + y * y2 * p0 / q0 x = x * s2pi result = x Return result End If x = Math.Sqrt(-(2.0R * Math.Log(y))) x0 = x - Math.Log(x) / x z = 1.0R / x If x < 8.0R Then p1 = 4.05544892305962R p1 = 31.5251094599894R + z * p1 p1 = 57.1628192246421R + z * p1 p1 = 44.0805073893201R + z * p1 p1 = 14.6849561928858R + z * p1 p1 = 2.1866330685079R + z * p1 p1 = -(1.40256079171355R * 0.1) + z * p1 p1 = -(3.50424626827848R * 0.01) + z * p1 p1 = -(8.57456785154685R * 0.0001) + z * p1 q1 = 1 q1 = 15.7799883256467R + z * q1 q1 = 45.3907635128879R + z * q1 q1 = 41.3172038254672R + z * q1 q1 = 15.0425385692908R + z * q1 q1 = 2.50464946208309R + z * q1 q1 = -(1.42182922854788R * 0.1) + z * q1 q1 = -(3.80806407691578R * 0.01) + z * q1 q1 = -(9.33259480895457R * 0.0001) + z * q1 x1 = z * p1 / q1 Else p2 = 3.23774891776946R p2 = 6.91522889068984R + z * p2 p2 = 3.93881025292474R + z * p2 p2 = 1.33303460815808R + z * p2 p2 = 2.01485389549179R * 0.1 + z * p2 p2 = 1.2371663481782R * 0.01 + z * p2 p2 = 3.01581553508235R * 0.0001 + z * p2 p2 = 2.65806974686738R * 0.000001R + z * p2 p2 = 6.23974539184983R * 0.000000001R + z * p2 q2 = 1 q2 = 6.02427039364742R + z * q2 q2 = 3.67983563856161R + z * q2 q2 = 1.37702099489081R + z * q2 q2 = 2.16236993594497R * 0.1 + z * q2 q2 = 1.34204006088543R * 0.01 + z * q2 q2 = 3.28014464682128R * 0.0001 + z * q2 q2 = 2.89247864745381R * 0.000001R + z * q2 q2 = 6.79019408009981R * 0.000000001R + z * q2 x1 = z * p2 / q2 End If x = x0 - x1 If code <> 0 Then x = -x End If result = x Return result End Function End Class End Namespace