Namespace MathEx Public Class LMFit Public Enum FitType SecondDegreePoly = 0 ThirdDegreePoly = 1 FourthDegreePoly = 2 Linear = 3 FifthDegreePoly = 4 SixthDegreePoly = 5 Pvap = 6 Cp = 7 LiqVisc = 8 HVap = 9 LiqDens = 10 End Enum Private _x, _y As Double() Private sum As Double Private its As Integer = 0 Public Function GetCoeffs(ByVal x As Double(), ByVal y As Double(), ByVal inest As Double(), ByVal fittype As FitType, ByVal epsg As Double, ByVal epsf As Double, ByVal epsx As Double, ByVal maxits As Integer) As Tuple(Of Double(), String, Double, Integer) Dim lmsolve As New MathEx.LM.levenbergmarquardt Select Case fittype Case LMFit.FitType.SecondDegreePoly lmsolve.DefineFuncGradDelegate(AddressOf fvsdp) Case LMFit.FitType.ThirdDegreePoly lmsolve.DefineFuncGradDelegate(AddressOf fvstp) Case LMFit.FitType.FourthDegreePoly lmsolve.DefineFuncGradDelegate(AddressOf fvftp) Case LMFit.FitType.Linear lmsolve.DefineFuncGradDelegate(AddressOf fvlin) Case LMFit.FitType.FifthDegreePoly lmsolve.DefineFuncGradDelegate(AddressOf fvfdp) Case LMFit.FitType.SixthDegreePoly lmsolve.DefineFuncGradDelegate(AddressOf fvxdp) Case LMFit.FitType.Pvap lmsolve.DefineFuncGradDelegate(AddressOf fvpvap) Case LMFit.FitType.Cp lmsolve.DefineFuncGradDelegate(AddressOf fvcp) Case LMFit.FitType.LiqVisc lmsolve.DefineFuncGradDelegate(AddressOf fvlvisc) Case LMFit.FitType.HVap lmsolve.DefineFuncGradDelegate(AddressOf fvhvap) Case LMFit.FitType.LiqDens lmsolve.DefineFuncGradDelegate(AddressOf fvliqdens) End Select Dim newc(UBound(inest) + 1) As Double Dim i As Integer = 1 Do newc(i) = inest(i - 1) i = i + 1 Loop Until i = UBound(inest) + 2 Me._x = x Me._y = y Dim info As Integer = 56 its = 0 lmsolve.levenbergmarquardtminimize(inest.Length, _x.Length, newc, epsg, epsf, epsx, maxits, info) Dim coeffs(UBound(inest)) As Double i = 0 Do coeffs(i) = newc(i + 1) i = i + 1 Loop Until i = UBound(inest) + 1 Return New Tuple(Of Double(), String, Double, Integer)(coeffs, GetInfo(info), sum, its) End Function Private Function GetInfo(code As Integer) Select Case code Case -1 Return "Wrong parameters were specified" Case 0 Return "Interrupted by user" Case 1 Return "Relative decrease of sum of function values squares (real and predicted on the base of extrapolation) is less or equal EpsF" Case 2 Return "Relative change of solution Is less Or equal EpsX." Case 3 Return "Conditions (1) And (2) are fulfilled." Case 4 Return "Cosine of the angle between vector of function values and each of the Jacobian columns is less or equal EpsG by absolute value." Case 5 Return "Number of iterations exceeds MaxIts." Case 6 Return "EpsF Is too small. It is impossible to get a better result." Case 7 Return "EpsX Is too small. It Is impossible to get a better result." Case 8 Return "EpsG Is too small. Vector of functions is orthogonal to Jacobian columns with near-machine precision." Case Else Return "" End Select End Function Public Sub fvsdp(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer) If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1 If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1 'A + B * T + C * T ^ 2 Dim i As Integer If iflag = 1 Then sum = 0.0# i = 1 Do fvec(i) = -_y(i - 1) + (x(1) + x(2) * _x(i - 1) + x(3) * _x(i - 1) ^ 2) sum += (fvec(i)) ^ 2 i = i + 1 Loop Until i = UBound(_y) + 2 ElseIf iflag = 2 Then i = 1 Do 'A + B * T + C * T ^ 2 fjac(i, 1) = 1 fjac(i, 2) = _x(i - 1) fjac(i, 3) = _x(i - 1) ^ 2 i = i + 1 Loop Until i = UBound(_y) + 2 End If its += 1 End Sub Public Sub fvstp(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer) If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1 If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1 'A + B * T + C * T ^ 2 + D * T ^ 3 Dim i As Integer If iflag = 1 Then sum = 0.0# i = 1 Do fvec(i) = -_y(i - 1) + (x(1) + x(2) * _x(i - 1) + x(3) * _x(i - 1) ^ 2 + x(4) * _x(i - 1) ^ 3) sum += (fvec(i)) ^ 2 i = i + 1 Loop Until i = UBound(_y) + 2 ElseIf iflag = 2 Then i = 1 Do 'A + B * T + C * T ^ 2 + D * T ^ 3 fjac(i, 1) = 1 fjac(i, 2) = _x(i - 1) fjac(i, 3) = _x(i - 1) ^ 2 fjac(i, 4) = _x(i - 1) ^ 3 i = i + 1 Loop Until i = UBound(_y) + 2 End If its += 1 End Sub Public Sub fvftp(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer) If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1 If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1 'A + B * T + C * T ^ 2 + D * T ^ 3 + E * T ^ 4 Dim i As Integer If iflag = 1 Then sum = 0.0# i = 1 Do fvec(i) = -_y(i - 1) + (x(1) + x(2) * _x(i - 1) + x(3) * _x(i - 1) ^ 2 + x(4) * _x(i - 1) ^ 3 + x(5) * _x(i - 1) ^ 4) sum += (fvec(i)) ^ 2 i = i + 1 Loop Until i = UBound(_y) + 2 ElseIf iflag = 2 Then i = 1 Do 'A + B * T + C * T ^ 2 + D * T ^ 3 + E * T ^ 4 fjac(i, 1) = 1 fjac(i, 2) = _x(i - 1) fjac(i, 3) = _x(i - 1) ^ 2 fjac(i, 4) = _x(i - 1) ^ 3 fjac(i, 5) = _x(i - 1) ^ 4 i = i + 1 Loop Until i = UBound(_y) + 2 End If its += 1 End Sub Public Sub fvfdp(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer) If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1 If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1 'A + B * T + C * T ^ 2 + D * T ^ 3 + E * T ^ 4 + F * T ^ 5 Dim i As Integer If iflag = 1 Then sum = 0.0# i = 1 Do fvec(i) = -_y(i - 1) + (x(1) + x(2) * _x(i - 1) + x(3) * _x(i - 1) ^ 2 + x(4) * _x(i - 1) ^ 3 + x(5) * _x(i - 1) ^ 4 + x(6) * _x(i - 1) ^ 5) sum += (fvec(i)) ^ 2 i = i + 1 Loop Until i = UBound(_y) + 2 ElseIf iflag = 2 Then i = 1 Do 'A + B * T + C * T ^ 2 + D * T ^ 3 + E * T ^ 4 + F * T ^ 5 fjac(i, 1) = 1 fjac(i, 2) = _x(i - 1) fjac(i, 3) = _x(i - 1) ^ 2 fjac(i, 4) = _x(i - 1) ^ 3 fjac(i, 5) = _x(i - 1) ^ 4 fjac(i, 6) = _x(i - 1) ^ 5 i = i + 1 Loop Until i = UBound(_y) + 2 End If its += 1 End Sub Public Sub fvxdp(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer) If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1 If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1 'A + B * T + C * T ^ 2 + D * T ^ 3 + E * T ^ 4 + F * T ^ 5 + G * T ^ 6 Dim i As Integer If iflag = 1 Then sum = 0.0# i = 1 Do fvec(i) = -_y(i - 1) + (x(1) + x(2) * _x(i - 1) + x(3) * _x(i - 1) ^ 2 + x(4) * _x(i - 1) ^ 3 + x(5) * _x(i - 1) ^ 4 + x(6) * _x(i - 1) ^ 5 + x(7) * _x(i - 1) ^ 6) sum += (fvec(i)) ^ 2 i = i + 1 Loop Until i = UBound(_y) + 2 ElseIf iflag = 2 Then i = 1 Do 'A + B * T + C * T ^ 2 + D * T ^ 3 + E * T ^ 4 + F * T ^ 5 + G * T ^ 6 fjac(i, 1) = 1 fjac(i, 2) = _x(i - 1) fjac(i, 3) = _x(i - 1) ^ 2 fjac(i, 4) = _x(i - 1) ^ 3 fjac(i, 5) = _x(i - 1) ^ 4 fjac(i, 6) = _x(i - 1) ^ 5 fjac(i, 7) = _x(i - 1) ^ 6 i = i + 1 Loop Until i = UBound(_y) + 2 End If its += 1 End Sub Public Sub fvlin(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer) If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1 If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1 'A + B * T Dim i As Integer If iflag = 1 Then sum = 0.0# i = 1 Do fvec(i) = -_y(i - 1) + (x(1) + x(2) * _x(i - 1)) sum += (fvec(i)) ^ 2 i = i + 1 Loop Until i = UBound(_y) + 2 ElseIf iflag = 2 Then i = 1 Do 'A + B * T fjac(i, 1) = 1 fjac(i, 2) = _x(i - 1) i = i + 1 Loop Until i = UBound(_y) + 2 End If its += 1 End Sub Public Sub fvpvap(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer) If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1 If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1 sum = 0.0# Dim i As Integer If iflag = 1 Then i = 1 Do fvec(i) = -_y(i - 1) + (Math.Exp(x(1) + x(2) / _x(i - 1) + x(3) * Math.Log(_x(i - 1)) + x(4) * _x(i - 1) ^ x(5))) sum += (fvec(i)) ^ 2 i = i + 1 Loop Until i = UBound(_y) + 2 ElseIf iflag = 2 Then Dim fval As Double = 0 i = 1 Do 'Math.Exp(A + B / T + C * Math.Log(T) + D * T ^ E) fval = (Math.Exp(x(1) + x(2) / _x(i - 1) + x(3) * Math.Log(_x(i - 1)) + x(4) * _x(i - 1) ^ x(5))) fjac(i, 1) = fval fjac(i, 2) = fval * 1 / _x(i - 1) fjac(i, 3) = fval * Math.Log(_x(i - 1)) fjac(i, 4) = fval * _x(i - 1) ^ x(5) fjac(i, 5) = fval * x(5) * _x(i - 1) ^ x(5) * Math.Log(_x(i - 1)) i = i + 1 Loop Until i = UBound(_y) + 2 End If its += 1 End Sub Public Sub fvcp(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer) If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1 If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1 'A + B * T + C * T ^ 2 + D * T ^ 3 + E * T ^ 4 sum = 0.0# Dim i As Integer If iflag = 1 Then i = 1 Do fvec(i) = -_y(i - 1) + (x(1) + x(2) * _x(i - 1) + x(3) * _x(i - 1) ^ 2 + x(4) * _x(i - 1) ^ 3 + x(5) * _x(i - 1) ^ 4) sum += (fvec(i)) ^ 2 i = i + 1 Loop Until i = UBound(_y) + 2 ElseIf iflag = 2 Then i = 1 Do 'A + B * T + C * T ^ 2 + D * T ^ 3 + E * T ^ 4 fjac(i, 1) = 1 fjac(i, 2) = _x(i - 1) fjac(i, 3) = _x(i - 1) ^ 2 fjac(i, 4) = _x(i - 1) ^ 3 fjac(i, 5) = _x(i - 1) ^ 4 i = i + 1 Loop Until i = UBound(_y) + 2 End If its += 1 End Sub Public Sub fvlvisc(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer) If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1 If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1 sum = 0 Dim i As Integer If iflag = 1 Then i = 1 Do fvec(i) = -_y(i - 1) + (Math.Exp(x(1) + x(2) / _x(i - 1) + x(3) * Math.Log(_x(i - 1)) + x(4) * _x(i - 1) ^ x(5))) sum += (fvec(i)) ^ 2 i = i + 1 Loop Until i = UBound(_y) + 2 ElseIf iflag = 2 Then Dim fval As Double = 0 i = 1 Do 'Math.Exp(A + B / T + C * Math.Log(T) + D * T ^ E) fval = (Math.Exp(x(1) + x(2) / _x(i - 1) + x(3) * Math.Log(_x(i - 1)) + x(4) * _x(i - 1) ^ x(5))) fjac(i, 1) = fval fjac(i, 2) = fval * 1 / _x(i - 1) fjac(i, 3) = fval * Math.Log(_x(i - 1)) fjac(i, 4) = fval * _x(i - 1) ^ x(5) fjac(i, 5) = fval * x(5) * _x(i - 1) ^ x(5) * Math.Log(_x(i - 1)) i = i + 1 Loop Until i = UBound(_y) + 2 End If its += 1 End Sub Public Sub fvhvap(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer) If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1 If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1 'A * (1 - Tr) ^ (B + C * Tr + D * Tr ^ 2) sum = 0.0# Dim i As Integer If iflag = 1 Then i = 1 Do fvec(i) = -_y(i - 1) + (x(1) * (1 - _x(i - 1)) ^ (x(2) + x(3) * _x(i - 1) + x(4) * _x(i - 1) ^ 2)) sum += (fvec(i)) ^ 2 i = i + 1 Loop Until i = UBound(_y) + 2 ElseIf iflag = 2 Then i = 1 Do Dim fval As Double = 0 'A * (1 - Tr) ^ (B + C * Tr + D * Tr ^ 2) fval = (x(1) * (1 - _x(i - 1)) ^ (x(2) + x(3) * _x(i - 1) + x(4) * _x(i - 1) ^ 2)) fjac(i, 1) = fval fjac(i, 2) = fval fjac(i, 3) = fval * _x(i - 1) fjac(i, 4) = fval * _x(i - 1) ^ 2 i = i + 1 Loop Until i = UBound(_y) + 2 End If its += 1 End Sub Public Sub fvliqdens(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer) If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1 If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1 'a / b^[1 + (1 - t/c)^d] sum = 0.0# Dim i As Integer If iflag = 1 Then i = 1 Do fvec(i) = -_y(i - 1) + (x(1) / x(2) ^ (1 + (1 - _x(i - 1) / x(3)) ^ x(4))) sum += (fvec(i)) ^ 2 i = i + 1 Loop Until i = UBound(_y) + 2 ElseIf iflag = 2 Then i = 1 Do 'a / b^[1 + (1 - t/c)^d] fjac(i, 1) = 1 / x(2) ^ (1 + (1 - _x(i - 1) / x(3)) ^ x(4)) fjac(i, 2) = -(x(1) * (x(3) - _x(i - 1)) ^ x(4) + x(1) * x(3) ^ x(4)) / (x(2) ^ (((x(3) - _x(i - 1)) ^ x(4) + 2 * x(3) ^ x(4)) / x(3) ^ x(4)) * x(3) ^ x(4)) fjac(i, 3) = x(1) * Math.Log(x(2)) * x(4) * (x(3) - _x(i - 1)) ^ x(4) * _x(i - 1) / (x(2) ^ (((x(3) - _x(i - 1)) ^ x(4) + x(3) ^ x(4)) / x(3) ^ x(4)) * x(3) ^ (x(4) + 1) * _x(i - 1) - x(2) ^ (((x(3) - _x(i - 1)) ^ x(4) + x(3) ^ x(4)) / x(3) ^ x(4)) * x(3) ^ (x(4) + 2)) fjac(i, 4) = -(x(1) * Math.Log(x(2)) * Math.Log(x(3) - _x(i - 1)) - x(1) * Math.Log(x(2)) * Math.Log(x(3))) * (x(3) - _x(i - 1)) ^ x(4) / (x(2) ^ (((x(3) - _x(i - 1)) ^ x(4) + x(3) ^ x(4)) / x(3) ^ x(4)) * x(3) ^ x(4)) fjac(i, 5) = 0 i = i + 1 Loop Until i = UBound(_y) + 2 End If its += 1 End Sub 'Generic Function Implementation Private FunctionPointer As Func(Of Double(), Double, Double) Public Function GetCoeffs(x As Double(), y As Double(), inest As Double(), epsg As Double, maxits As Integer, fp As Func(Of Double(), Double, Double)) As Object Dim lmsolve As New MathEx.LM.levenbergmarquardt() FunctionPointer = fp lmsolve.DefineFuncGradDelegate(AddressOf fgeneric) Dim newc(UBound(inest) + 1) As Double Dim i As Integer = 1 Do newc(i) = inest(i - 1) i = i + 1 Loop Until i = UBound(inest) + 2 _x = x _y = y Dim info As Integer = 56 its = 0 lmsolve.levenbergmarquardtminimize(inest.Length, _x.Length, newc, epsg, epsg, epsg, maxits, info) Dim coeffs(UBound(inest)) As Double i = 0 Do coeffs(i) = newc(i + 1) i = i + 1 Loop Until i = UBound(inest) + 1 Dim ycalc = _x.Select(Function(xval) FunctionPointer.Invoke(newc, xval)).ToList() Dim ymean = y.Sum / y.Count Dim SST = y.Select(Function(yval) (yval - ymean) ^ 2).Sum Dim errors As New List(Of Double) Dim errors2 As New List(Of Double) For i = 0 To y.Count - 1 errors.Add((y(i) - ycalc(i)) / y(i) * 100.0) errors2.Add((y(i) - ycalc(i)) ^ 2) Next Dim R2 = 1.0 - errors2.Sum / SST Return New Object() {coeffs, info, sum, its, ycalc, errors, R2} End Function Public Sub fgeneric(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer) If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1 If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1 sum = 0.0# Dim i As Integer If iflag = 1 Then i = 1 Do fvec(i) = -_y(i - 1) + FunctionPointer.Invoke(x, _x(i - 1)) sum += (fvec(i)) ^ 2 i = i + 1 Loop Until i = UBound(_y) + 2 ElseIf iflag = 2 Then i = 1 Do Dim grad = FunctionGradient(x, _x(i - 1)) For j = 1 To x.Length - 1 fjac(i, j) = grad(j) Next i = i + 1 Loop Until i = UBound(_y) + 2 End If its += 1 End Sub Private Function FunctionGradient(ByVal x() As Double, xval As Double) As Double() Dim epsilon As Double = 0.1 Dim f1, f2 As Double Dim g(x.Length - 1), x1(x.Length - 1), x2(x.Length - 1) As Double Dim j, k As Integer For j = 1 To x.Length - 1 For k = 1 To x.Length - 1 x1(k) = x(k) x2(k) = x(k) Next If x(j) <> 0.0# Then x1(j) = x(j) * (1.0# + epsilon) x2(j) = x(j) * (1.0# - epsilon) Else x1(j) = x(j) + epsilon x2(j) = x(j) - epsilon End If f1 = FunctionPointer.Invoke(x1, xval) f2 = FunctionPointer.Invoke(x2, xval) g(j) = (f2 - f1) / (x2(j) - x1(j)) Next Return g End Function End Class End Namespace