Namespace MathEx.MatrixOps '/************************************************************************* 'Copyright (c) 1992-2007 The University of Tennessee. All rights reserved. 'Contributors: ' * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to ' pseudocode. 'See subroutines comments for additional copyrights. 'Redistribution and use in source and binary forms, with or without 'modification, are permitted provided that the following conditions are 'met: '- Redistributions of source code must retain the above copyright ' notice, this list of conditions and the following disclaimer. '- Redistributions in binary form must reproduce the above copyright ' notice, this list of conditions and the following disclaimer listed ' in this license in the documentation and/or other materials ' provided with the distribution. '- Neither the name of the copyright holders nor the names of its ' contributors may be used to endorse or promote products derived from ' this software without specific prior written permission. 'THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS '"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 'LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 'A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 'OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 'SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 'LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 'DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 'THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT '(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 'OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. '*************************************************************************/ Public Class Determinant '/************************************************************************* 'Calculation of the determinant of a general matrix 'Input parameters: ' A - matrix, array[0..N-1, 0..N-1] ' N - size of matrix A. 'Result: determinant of matrix A. ' -- ALGLIB -- ' Copyright 2005 by Bochkanov Sergey '*************************************************************************/ Public Shared Function rmatrixdet(ByVal a As Double(,), ByVal n As Integer) As Double Dim pivots As Integer() = New Integer(0) {} Dim a2 = DirectCast(a.Clone, Double(,)) MathEx.SysLin.lu.rmatrixlu(a2, n, n, pivots) Return MathEx.MatrixOps.Determinant.rmatrixludet(a2, pivots, n) End Function '/************************************************************************* 'Determinant calculation of the matrix given by its LU decomposition. 'Input parameters: ' A - LU decomposition of the matrix (output of ' RMatrixLU subroutine). ' Pivots - table of permutations which were made during ' the LU decomposition. ' Output of RMatrixLU subroutine. ' N - size of matrix A. 'Result: matrix determinant. ' -- ALGLIB -- ' Copyright 2005 by Bochkanov Sergey '*************************************************************************/ Public Shared Function rmatrixludet(ByRef a As Double(,), ByRef pivots As Integer(), ByVal n As Integer) As Double Dim num As Double = 0 Dim index As Integer = 0 Dim num3 As Integer = 0 num = 1 num3 = 1 index = 0 Do While (index <= (n - 1)) num = (num * a(index, index)) If (pivots(index) <> index) Then num3 = -num3 End If index += 1 Loop Return (num * num3) End Function Public Shared Function determinant(ByVal a As Double(,), ByVal n As Integer) As Double Dim pivots As Integer() = New Integer(0) {} a = DirectCast(a.Clone, Double(,)) MathEx.SysLin.lu.ludecomposition(a, n, n, pivots) Return MathEx.MatrixOps.Determinant.determinantlu(a, pivots, n) End Function Public Shared Function determinantlu(ByRef a As Double(,), ByRef pivots As Integer(), ByVal n As Integer) As Double Dim num As Double = 0 Dim index As Integer = 0 Dim num3 As Integer = 0 num = 1 num3 = 1 index = 1 Do While (index <= n) num = (num * a(index, index)) If (pivots(index) <> index) Then num3 = -num3 End If index += 1 Loop Return (num * num3) End Function End Class Public Class Inverse '/************************************************************************* 'Inversion of a general matrix. 'Input parameters: ' A - matrix. Array whose indexes range within [0..N-1, 0..N-1]. ' N - size of matrix A. 'Output parameters: ' A - inverse of matrix A. ' Array whose indexes range within [0..N-1, 0..N-1]. 'Result: ' True, if the matrix is not singular. ' False, if the matrix is singular. ' -- ALGLIB -- ' Copyright 2005 by Bochkanov Sergey '*************************************************************************/ Public Shared Function rmatrixinverse(ByRef a As Double(,), ByVal n As Integer) As Boolean Dim pivots As Integer() = New Integer() {} MathEx.SysLin.lu.rmatrixlu(a, n, n, pivots) Return rmatrixluinverse(a, pivots, n) End Function '/************************************************************************* 'Inversion of a matrix given by its LU decomposition. 'Input parameters: ' A - LU decomposition of the matrix (output of RMatrixLU subroutine). ' Pivots - table of permutations which were made during the LU decomposition ' (the output of RMatrixLU subroutine). ' N - size of matrix A. 'Output parameters: ' A - inverse of matrix A. ' Array whose indexes range within [0..N-1, 0..N-1]. 'Result: ' True, if the matrix is not singular. ' False, if the matrix is singular. ' -- LAPACK routine (version 3.0) -- ' Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., ' Courant Institute, Argonne National Lab, and Rice University ' February 29, 1992 '*************************************************************************/ Public Shared Function rmatrixluinverse(ByRef a As Double(,), ByRef pivots As Integer(), ByVal n As Integer) As Boolean Dim flag As Boolean = False Dim numArray As Double() = New Double() {} Dim index As Integer = 0 Dim num2 As Integer = 0 Dim num3 As Integer = 0 Dim num4 As Double = 0 Dim num5 As Integer = 0 flag = True If (n <> 0) Then numArray = New Double(((n - 1) + 1)) {} If Not TRInverse.rmatrixtrinverse(a, n, True, False) Then Return False End If num2 = (n - 1) Do While (num2 >= 0) index = (num2 + 1) Do While (index <= (n - 1)) numArray(index) = a(index, num2) a(index, num2) = 0 index += 1 Loop If (num2 < (n - 1)) Then index = 0 Do While (index <= (n - 1)) num4 = 0 num5 = (num2 + 1) Do While (num5 <= (n - 1)) num4 = (num4 + (a(index, num5) * numArray(num5))) num5 += 1 Loop a(index, num2) = (a(index, num2) - num4) index += 1 Loop End If num2 -= 1 Loop num2 = (n - 2) Do While (num2 >= 0) num3 = pivots(num2) If (num3 <> num2) Then num5 = 0 Do While (num5 <= (n - 1)) numArray(num5) = a(num5, num2) num5 += 1 Loop num5 = 0 Do While (num5 <= (n - 1)) a(num5, num2) = a(num5, num3) num5 += 1 Loop num5 = 0 Do While (num5 <= (n - 1)) a(num5, num3) = numArray(num5) num5 += 1 Loop End If num2 -= 1 Loop End If Return flag End Function Public Shared Function inverse(ByRef a As Double(,), ByVal n As Integer) As Boolean Dim pivots As Integer() = New Integer() {} MathEx.SysLin.lu.ludecomposition(a, n, n, pivots) Return MathEx.MatrixOps.Inverse.inverselu(a, pivots, n) End Function Public Shared Function inverselu(ByRef a As Double(,), ByRef pivots As Integer(), ByVal n As Integer) As Boolean Dim flag As Boolean = False Dim numArray As Double() = New Double() {} Dim index As Integer = 0 Dim num2 As Integer = 0 Dim num3 As Integer = 0 Dim num4 As Integer = 0 Dim num5 As Double = 0 Dim num6 As Integer = 0 flag = True If (n <> 0) Then numArray = New Double((n + 1)) {} If Not TRInverse.invtriangular(a, n, True, False) Then Return False End If num2 = n Do While (num2 >= 1) index = (num2 + 1) Do While (index <= n) numArray(index) = a(index, num2) a(index, num2) = 0 index += 1 Loop If (num2 < n) Then num4 = (num2 + 1) index = 1 Do While (index <= n) num5 = 0 num6 = num4 Do While (num6 <= n) num5 = (num5 + (a(index, num6) * numArray(num6))) num6 += 1 Loop a(index, num2) = (a(index, num2) - num5) index += 1 Loop End If num2 -= 1 Loop num2 = (n - 1) Do While (num2 >= 1) num3 = pivots(num2) If (num3 <> num2) Then num6 = 1 Do While (num6 <= n) numArray(num6) = a(num6, num2) num6 += 1 Loop num6 = 1 Do While (num6 <= n) a(num6, num2) = a(num6, num3) num6 += 1 Loop num6 = 1 Do While (num6 <= n) a(num6, num3) = numArray(num6) num6 += 1 Loop End If num2 -= 1 Loop End If Return flag End Function End Class Public Class TRInverse '/************************************************************************* ' Triangular matrix inversion ' The subroutine inverts the following types of matrices: ' * upper triangular ' * upper triangular with unit diagonal ' * lower triangular ' * lower triangular with unit diagonal ' In case of an upper (lower) triangular matrix, the inverse matrix will ' also be upper (lower) triangular, and after the end of the algorithm, the ' inverse matrix replaces the source matrix. The elements below (above) the ' main diagonal are not changed by the algorithm. ' If the matrix has a unit diagonal, the inverse matrix also has a unit ' diagonal, and the diagonal elements are not passed to the algorithm. ' Input parameters: ' A - matrix. ' Array whose indexes range within [0..N-1, 0..N-1]. ' N - size of matrix A. ' IsUpper - True, if the matrix is upper triangular. ' IsUnitTriangular ' - True, if the matrix has a unit diagonal. ' Output parameters: ' A - inverse matrix (if the problem is not degenerate). ' Result: ' True, if the matrix is not singular. ' False, if the matrix is singular. ' -- LAPACK routine (version 3.0) -- ' Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., ' Courant Institute, Argonne National Lab, and Rice University ' February 29, 1992 ' *************************************************************************/ Public Shared Function rmatrixtrinverse(ByRef a As Double(,), ByVal n As Integer, ByVal isupper As Boolean, ByVal isunittriangular As Boolean) As Boolean Dim flag As Boolean = False Dim flag2 As Boolean = False Dim index As Integer = 0 Dim num2 As Integer = 0 Dim num3 As Double = 0 Dim num4 As Double = 0 Dim numArray As Double() = New Double() {} Dim num5 As Integer = 0 flag = True numArray = New Double(((n - 1) + 1)) {} flag2 = Not isunittriangular If isupper Then num2 = 0 Do While (num2 <= (n - 1)) If flag2 Then If (a(num2, num2) = 0) Then Return False End If a(num2, num2) = (1 / a(num2, num2)) num4 = -a(num2, num2) Else num4 = -1 End If If (num2 > 0) Then num5 = 0 Do While (num5 <= (num2 - 1)) numArray(num5) = a(num5, num2) num5 += 1 Loop index = 0 Do While (index <= (num2 - 1)) If (index < (num2 - 1)) Then num3 = 0 num5 = (index + 1) Do While (num5 <= (num2 - 1)) num3 = (num3 + (a(index, num5) * numArray(num5))) num5 += 1 Loop Else num3 = 0 End If If flag2 Then a(index, num2) = (num3 + (a(index, index) * numArray(index))) Else a(index, num2) = (num3 + numArray(index)) End If index += 1 Loop num5 = 0 Do While (num5 <= (num2 - 1)) a(num5, num2) = (num4 * a(num5, num2)) num5 += 1 Loop End If num2 += 1 Loop Return flag End If num2 = (n - 1) Do While (num2 >= 0) If flag2 Then If (a(num2, num2) = 0) Then Return False End If a(num2, num2) = (1 / a(num2, num2)) num4 = -a(num2, num2) Else num4 = -1 End If If (num2 < (n - 1)) Then num5 = (num2 + 1) Do While (num5 <= (n - 1)) numArray(num5) = a(num5, num2) num5 += 1 Loop index = (num2 + 1) Do While (index <= (n - 1)) If (index > (num2 + 1)) Then num3 = 0 num5 = (num2 + 1) Do While (num5 <= (index - 1)) num3 = (num3 + (a(index, num5) * numArray(num5))) num5 += 1 Loop Else num3 = 0 End If If flag2 Then a(index, num2) = (num3 + (a(index, index) * numArray(index))) Else a(index, num2) = (num3 + numArray(index)) End If index += 1 Loop num5 = (num2 + 1) Do While (num5 <= (n - 1)) a(num5, num2) = (num4 * a(num5, num2)) num5 += 1 Loop End If num2 -= 1 Loop Return flag End Function Public Shared Function invtriangular(ByRef a As Double(,), ByVal n As Integer, ByVal isupper As Boolean, ByVal isunittriangular As Boolean) As Boolean Dim flag As Boolean = False Dim flag2 As Boolean = False Dim index As Integer = 0 Dim num2 As Integer = 0 Dim num3 As Integer = 0 Dim num4 As Integer = 0 Dim num5 As Double = 0 Dim num6 As Double = 0 Dim numArray As Double() = New Double() {} Dim num7 As Integer = 0 flag = True numArray = New Double((n + 1)) {} flag2 = Not isunittriangular If isupper Then num2 = 1 Do While (num2 <= n) If flag2 Then If (a(num2, num2) = 0) Then Return False End If a(num2, num2) = (1 / a(num2, num2)) num6 = -a(num2, num2) Else num6 = -1 End If If (num2 > 1) Then num3 = (num2 - 1) num7 = 1 Do While (num7 <= num3) numArray(num7) = a(num7, num2) num7 += 1 Loop index = 1 Do While (index <= (num2 - 1)) If (index < (num2 - 1)) Then num5 = 0 num7 = (index + 1) Do While (num7 <= num3) num5 = (num5 + (a(index, num7) * numArray(num7))) num7 += 1 Loop Else num5 = 0 End If If flag2 Then a(index, num2) = (num5 + (a(index, index) * numArray(index))) Else a(index, num2) = (num5 + numArray(index)) End If index += 1 Loop num7 = 1 Do While (num7 <= num3) a(num7, num2) = (num6 * a(num7, num2)) num7 += 1 Loop End If num2 += 1 Loop Return flag End If num2 = n Do While (num2 >= 1) If flag2 Then If (a(num2, num2) = 0) Then Return False End If a(num2, num2) = (1 / a(num2, num2)) num6 = -a(num2, num2) Else num6 = -1 End If If (num2 < n) Then num4 = (num2 + 1) num7 = num4 Do While (num7 <= n) numArray(num7) = a(num7, num2) num7 += 1 Loop index = (num2 + 1) Do While (index <= n) If (index > (num2 + 1)) Then num5 = 0 num7 = num4 Do While (num7 <= (index - 1)) num5 = (num5 + (a(index, num7) * numArray(num7))) num7 += 1 Loop Else num5 = 0 End If If flag2 Then a(index, num2) = (num5 + (a(index, index) * numArray(index))) Else a(index, num2) = (num5 + numArray(index)) End If index += 1 Loop num7 = num4 Do While (num7 <= n) a(num7, num2) = (num6 * a(num7, num2)) num7 += 1 Loop End If num2 -= 1 Loop Return flag End Function End Class End Namespace