namespace Mapack { using System; /// LU decomposition of a rectangular matrix. /// /// For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n /// unit lower triangular matrix L, an n-by-n upper triangular matrix U, /// and a permutation vector piv of length m so that A(piv)=L*U. /// If m < n, then L is m-by-m and U is m-by-n. /// The LU decompostion with pivoting always exists, even if the matrix is /// singular, so the constructor will never fail. The primary use of the /// LU decomposition is in the solution of square systems of simultaneous /// linear equations. This will fail if returns . /// public class LuDecomposition { private Matrix LU; private int pivotSign; private int[] pivotVector; /// Construct a LU decomposition. public LuDecomposition(Matrix value) { if (value == null) { throw new ArgumentNullException("value"); } this.LU = (Matrix) value.Clone(); double[][] lu = LU.Array; int rows = value.Rows; int columns = value.Columns; pivotVector = new int[rows]; for (int i = 0; i < rows; i++) { pivotVector[i] = i; } pivotSign = 1; double[] LUrowi; double[] LUcolj = new double[rows]; // Outer loop. for (int j = 0; j < columns; j++) { // Make a copy of the j-th column to localize references. for (int i = 0; i < rows; i++) { LUcolj[i] = lu[i][j]; } // Apply previous transformations. for (int i = 0; i < rows; i++) { LUrowi = lu[i]; // Most of the time is spent in the following dot product. int kmax = Math.Min(i,j); double s = 0.0; for (int k = 0; k < kmax; k++) { s += LUrowi[k]*LUcolj[k]; } LUrowi[j] = LUcolj[i] -= s; } // Find pivot and exchange if necessary. int p = j; for (int i = j+1; i < rows; i++) { if (Math.Abs(LUcolj[i]) > Math.Abs(LUcolj[p])) { p = i; } } if (p != j) { for (int k = 0; k < columns; k++) { double t = lu[p][k]; lu[p][k] = lu[j][k]; lu[j][k] = t; } int v = pivotVector[p]; pivotVector[p] = pivotVector[j]; pivotVector[j] = v; pivotSign = - pivotSign; } // Compute multipliers. if (j < rows & lu[j][j] != 0.0) { for (int i = j+1; i < rows; i++) { lu[i][j] /= lu[j][j]; } } } } /// Returns if the matrix is non-singular. public bool NonSingular { get { for (int j = 0; j < LU.Columns; j++) if (LU[j, j] == 0) return false; return true; } } /// Returns the determinant of the matrix. public double Determinant { get { if (LU.Rows != LU.Columns) throw new ArgumentException("Matrix must be square."); double determinant = (double) pivotSign; for (int j = 0; j < LU.Columns; j++) determinant *= LU[j, j]; return determinant; } } /// Returns the lower triangular factor L with A=LU. public Matrix LowerTriangularFactor { get { int rows = LU.Rows; int columns = LU.Columns; Matrix X = new Matrix(rows, columns); for (int i = 0; i < rows; i++) for (int j = 0; j < columns; j++) if (i > j) X[i,j] = LU[i,j]; else if (i == j) X[i,j] = 1.0; else X[i,j] = 0.0; return X; } } /// Returns the lower triangular factor L with A=LU. public Matrix UpperTriangularFactor { get { int rows = LU.Rows; int columns = LU.Columns; Matrix X = new Matrix(rows, columns); for (int i = 0; i < rows; i++) for (int j = 0; j < columns; j++) if (i <= j) X[i,j] = LU[i,j]; else X[i,j] = 0.0; return X; } } /// Returns the pivot permuation vector. public double[] PivotPermutationVector { get { int rows = LU.Rows; double[] p = new double[rows]; for (int i = 0; i < rows; i++) { p[i] = (double) this.pivotVector[i]; } return p; } } /// Solves a set of equation systems of type A * X = B. /// Right hand side matrix with as many rows as A and any number of columns. /// Matrix X so that L * U * X = B. public Matrix Solve(Matrix value) { if (value == null) { throw new ArgumentNullException("value"); } if (value.Rows != this.LU.Rows) { throw new ArgumentException("Invalid matrix dimensions.", "value"); } if (!this.NonSingular) { throw new InvalidOperationException("Matrix is singular"); } // Copy right hand side with pivoting int count = value.Columns; Matrix X = value.Submatrix(pivotVector, 0, count-1); int rows = LU.Rows; int columns = LU.Columns; double[][] lu = LU.Array; // Solve L*Y = B(piv,:) for (int k = 0; k < columns; k++) { for (int i = k + 1; i < columns; i++) { for (int j = 0; j < count; j++) { X[i,j] -= X[k,j] * lu[i][k]; } } } // Solve U*X = Y; for (int k = columns - 1; k >= 0; k--) { for (int j = 0; j < count; j++) { X[k,j] /= lu[k][k]; } for (int i = 0; i < k; i++) { for (int j = 0; j < count; j++) { X[i,j] -= X[k,j] * lu[i][k]; } } } return X; } } }