// ---------------------------------------------- // Lutz Roeder's Mapack for .NET, September 2000 // Adapted from Mapack for COM and Jama routines. // http://www.aisto.com/roeder/dotnet // ---------------------------------------------- namespace Mapack { using System; /// /// Singular Value Decomposition for a rectangular matrix. /// /// /// For an m-by-n matrix A with m >= n, the singular value decomposition is /// an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and /// an n-by-n orthogonal matrix V so that A = U * S * V'. /// The singular values, sigma[k] = S[k,k], are ordered so that /// sigma[0] >= sigma[1] >= ... >= sigma[n-1]. /// The singular value decompostion always exists, so the constructor will /// never fail. The matrix condition number and the effective numerical /// rank can be computed from this decomposition. /// public class SingularValueDecomposition { private Matrix U; private Matrix V; private double[] s; // singular values private int m; private int n; /// Construct singular value decomposition. public SingularValueDecomposition(Matrix value) { if (value == null) { throw new ArgumentNullException("value"); } Matrix copy = (Matrix) value.Clone(); double[][] a = copy.Array; m = value.Rows; n = value.Columns; int nu = Math.Min(m,n); s = new double [Math.Min(m+1,n)]; U = new Matrix(m, nu); V = new Matrix(n, n); double[][] u = U.Array; double[][] v = V.Array; double[] e = new double [n]; double[] work = new double [m]; bool wantu = true; bool wantv = true; // Reduce A to bidiagonal form, storing the diagonal elements in s and the super-diagonal elements in e. int nct = Math.Min(m-1,n); int nrt = Math.Max(0,Math.Min(n-2,m)); for (int k = 0; k < Math.Max(nct,nrt); k++) { if (k < nct) { // Compute the transformation for the k-th column and place the k-th diagonal in s[k]. // Compute 2-norm of k-th column without under/overflow. s[k] = 0; for (int i = k; i < m; i++) { s[k] = Hypotenuse(s[k],a[i][k]); } if (s[k] != 0.0) { if (a[k][k] < 0.0) { s[k] = -s[k]; } for (int i = k; i < m; i++) { a[i][k] /= s[k]; } a[k][k] += 1.0; } s[k] = -s[k]; } for (int j = k+1; j < n; j++) { if ((k < nct) & (s[k] != 0.0)) { // Apply the transformation. double t = 0; for (int i = k; i < m; i++) t += a[i][k]*a[i][j]; t = -t/a[k][k]; for (int i = k; i < m; i++) a[i][j] += t*a[i][k]; } // Place the k-th row of A into e for the subsequent calculation of the row transformation. e[j] = a[k][j]; } if (wantu & (k < nct)) { // Place the transformation in U for subsequent back // multiplication. for (int i = k; i < m; i++) u[i][k] = a[i][k]; } if (k < nrt) { // Compute the k-th row transformation and place the k-th super-diagonal in e[k]. // Compute 2-norm without under/overflow. e[k] = 0; for (int i = k+1; i < n; i++) { e[k] = Hypotenuse(e[k],e[i]); } if (e[k] != 0.0) { if (e[k+1] < 0.0) e[k] = -e[k]; for (int i = k+1; i < n; i++) e[i] /= e[k]; e[k+1] += 1.0; } e[k] = -e[k]; if ((k+1 < m) & (e[k] != 0.0)) { // Apply the transformation. for (int i = k+1; i < m; i++) work[i] = 0.0; for (int j = k+1; j < n; j++) for (int i = k+1; i < m; i++) work[i] += e[j]*a[i][j]; for (int j = k+1; j < n; j++) { double t = -e[j]/e[k+1]; for (int i = k+1; i < m; i++) a[i][j] += t*work[i]; } } if (wantv) { // Place the transformation in V for subsequent back multiplication. for (int i = k+1; i < n; i++) v[i][k] = e[i]; } } } // Set up the final bidiagonal matrix or order p. int p = Math.Min(n,m+1); if (nct < n) s[nct] = a[nct][nct]; if (m < p) s[p-1] = 0.0; if (nrt+1 < p) e[nrt] = a[nrt][p-1]; e[p-1] = 0.0; // If required, generate U. if (wantu) { for (int j = nct; j < nu; j++) { for (int i = 0; i < m; i++) u[i][j] = 0.0; u[j][j] = 1.0; } for (int k = nct-1; k >= 0; k--) { if (s[k] != 0.0) { for (int j = k+1; j < nu; j++) { double t = 0; for (int i = k; i < m; i++) t += u[i][k]*u[i][j]; t = -t/u[k][k]; for (int i = k; i < m; i++) u[i][j] += t*u[i][k]; } for (int i = k; i < m; i++ ) u[i][k] = -u[i][k]; u[k][k] = 1.0 + u[k][k]; for (int i = 0; i < k-1; i++) u[i][k] = 0.0; } else { for (int i = 0; i < m; i++) u[i][k] = 0.0; u[k][k] = 1.0; } } } // If required, generate V. if (wantv) { for (int k = n-1; k >= 0; k--) { if ((k < nrt) & (e[k] != 0.0)) { for (int j = k+1; j < nu; j++) { double t = 0; for (int i = k+1; i < n; i++) t += v[i][k]*v[i][j]; t = -t/v[k+1][k]; for (int i = k+1; i < n; i++) v[i][j] += t*v[i][k]; } } for (int i = 0; i < n; i++) v[i][k] = 0.0; v[k][k] = 1.0; } } // Main iteration loop for the singular values. int pp = p-1; int iter = 0; double eps = Math.Pow(2.0,-52.0); while (p > 0) { int k,kase; // Here is where a test for too many iterations would go. // This section of the program inspects for // negligible elements in the s and e arrays. On // completion the variables kase and k are set as follows. // kase = 1 if s(p) and e[k-1] are negligible and k

= -1; k--) { if (k == -1) break; if (Math.Abs(e[k]) <= eps*(Math.Abs(s[k]) + Math.Abs(s[k+1]))) { e[k] = 0.0; break; } } if (k == p-2) { kase = 4; } else { int ks; for (ks = p-1; ks >= k; ks--) { if (ks == k) break; double t = (ks != p ? Math.Abs(e[ks]) : 0.0) + (ks != k+1 ? Math.Abs(e[ks-1]) : 0.0); if (Math.Abs(s[ks]) <= eps*t) { s[ks] = 0.0; break; } } if (ks == k) kase = 3; else if (ks == p-1) kase = 1; else { kase = 2; k = ks; } } k++; // Perform the task indicated by kase. switch (kase) { // Deflate negligible s(p). case 1: { double f = e[p-2]; e[p-2] = 0.0; for (int j = p-2; j >= k; j--) { double t = Hypotenuse(s[j],f); double cs = s[j]/t; double sn = f/t; s[j] = t; if (j != k) { f = -sn*e[j-1]; e[j-1] = cs*e[j-1]; } if (wantv) { for (int i = 0; i < n; i++) { t = cs*v[i][j] + sn*v[i][p-1]; v[i][p-1] = -sn*v[i][j] + cs*v[i][p-1]; v[i][j] = t; } } } } break; // Split at negligible s(k). case 2: { double f = e[k-1]; e[k-1] = 0.0; for (int j = k; j < p; j++) { double t = Hypotenuse(s[j],f); double cs = s[j]/t; double sn = f/t; s[j] = t; f = -sn*e[j]; e[j] = cs*e[j]; if (wantu) { for (int i = 0; i < m; i++) { t = cs*u[i][j] + sn*u[i][k-1]; u[i][k-1] = -sn*u[i][j] + cs*u[i][k-1]; u[i][j] = t; } } } } break; // Perform one qr step. case 3: { // Calculate the shift. double scale = Math.Max(Math.Max(Math.Max(Math.Max(Math.Abs(s[p-1]),Math.Abs(s[p-2])),Math.Abs(e[p-2])), Math.Abs(s[k])),Math.Abs(e[k])); double sp = s[p-1]/scale; double spm1 = s[p-2]/scale; double epm1 = e[p-2]/scale; double sk = s[k]/scale; double ek = e[k]/scale; double b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0; double c = (sp*epm1)*(sp*epm1); double shift = 0.0; if ((b != 0.0) | (c != 0.0)) { shift = Math.Sqrt(b*b + c); if (b < 0.0) shift = -shift; shift = c/(b + shift); } double f = (sk + sp)*(sk - sp) + shift; double g = sk*ek; // Chase zeros. for (int j = k; j < p-1; j++) { double t = Hypotenuse(f,g); double cs = f/t; double sn = g/t; if (j != k) e[j-1] = t; f = cs*s[j] + sn*e[j]; e[j] = cs*e[j] - sn*s[j]; g = sn*s[j+1]; s[j+1] = cs*s[j+1]; if (wantv) { for (int i = 0; i < n; i++) { t = cs*v[i][j] + sn*v[i][j+1]; v[i][j+1] = -sn*v[i][j] + cs*v[i][j+1]; v[i][j] = t; } } t = Hypotenuse(f, g); cs = f/t; sn = g/t; s[j] = t; f = cs*e[j] + sn*s[j+1]; s[j+1] = -sn*e[j] + cs*s[j+1]; g = sn*e[j+1]; e[j+1] = cs*e[j+1]; if (wantu && (j < m-1)) { for (int i = 0; i < m; i++) { t = cs*u[i][j] + sn*u[i][j+1]; u[i][j+1] = -sn*u[i][j] + cs*u[i][j+1]; u[i][j] = t; } } } e[p-2] = f; iter = iter + 1; } break; // Convergence. case 4: { // Make the singular values positive. if (s[k] <= 0.0) { s[k] = (s[k] < 0.0 ? -s[k] : 0.0); if (wantv) for (int i = 0; i <= pp; i++) v[i][k] = -v[i][k]; } // Order the singular values. while (k < pp) { if (s[k] >= s[k+1]) break; double t = s[k]; s[k] = s[k+1]; s[k+1] = t; if (wantv && (k < n-1)) for (int i = 0; i < n; i++) { t = v[i][k+1]; v[i][k+1] = v[i][k]; v[i][k] = t; } if (wantu && (k < m-1)) for (int i = 0; i < m; i++) { t = u[i][k+1]; u[i][k+1] = u[i][k]; u[i][k] = t; } k++; } iter = 0; p--; } break; } } } ///

Returns the condition number max(S) / min(S). public double Condition { get { return s[0] / s[Math.Min(m, n) - 1]; } } /// Returns the Two norm. public double Norm2 { get { return s[0]; } } /// Returns the effective numerical matrix rank. /// Number of non-negligible singular values. public int Rank { get { double eps = Math.Pow(2.0,-52.0); double tol = Math.Max(m, n) * s[0] * eps; int r = 0; for (int i = 0; i < s.Length; i++) { if (s[i] > tol) { r++; } } return r; } } /// Return the one-dimensional array of singular values. public double[] Diagonal { get { return this.s; } } private static double Hypotenuse(double a, double b) { if (Math.Abs(a) > Math.Abs(b)) { double r = b / a; return Math.Abs(a) * Math.Sqrt(1 + r * r); } if (b != 0) { double r = a / b; return Math.Abs(b) * Math.Sqrt(1 + r * r); } return 0.0; } /// Returns the U matrix. public Matrix UMatrix { get { return this.U; } } /// Returns the U matrix. public Matrix VMatrix { get { return this.V; } } } }