// ----------------------------------------------
// Lutz Roeder's Mapack for .NET, September 2000
// Adapted from Mapack for COM and Jama routines.
// http://www.aisto.com/roeder/dotnet
// ----------------------------------------------
namespace Mapack
{
using System;
///
= -1; k--)
{
if (k == -1)
break;
if (Math.Abs(e[k]) <= eps*(Math.Abs(s[k]) + Math.Abs(s[k+1])))
{
e[k] = 0.0;
break;
}
}
if (k == p-2)
{
kase = 4;
}
else
{
int ks;
for (ks = p-1; ks >= k; ks--)
{
if (ks == k)
break;
double t = (ks != p ? Math.Abs(e[ks]) : 0.0) + (ks != k+1 ? Math.Abs(e[ks-1]) : 0.0);
if (Math.Abs(s[ks]) <= eps*t)
{
s[ks] = 0.0;
break;
}
}
if (ks == k)
kase = 3;
else if (ks == p-1)
kase = 1;
else
{
kase = 2;
k = ks;
}
}
k++;
// Perform the task indicated by kase.
switch (kase)
{
// Deflate negligible s(p).
case 1:
{
double f = e[p-2];
e[p-2] = 0.0;
for (int j = p-2; j >= k; j--)
{
double t = Hypotenuse(s[j],f);
double cs = s[j]/t;
double sn = f/t;
s[j] = t;
if (j != k)
{
f = -sn*e[j-1];
e[j-1] = cs*e[j-1];
}
if (wantv)
{
for (int i = 0; i < n; i++)
{
t = cs*v[i][j] + sn*v[i][p-1];
v[i][p-1] = -sn*v[i][j] + cs*v[i][p-1];
v[i][j] = t;
}
}
}
}
break;
// Split at negligible s(k).
case 2:
{
double f = e[k-1];
e[k-1] = 0.0;
for (int j = k; j < p; j++)
{
double t = Hypotenuse(s[j],f);
double cs = s[j]/t;
double sn = f/t;
s[j] = t;
f = -sn*e[j];
e[j] = cs*e[j];
if (wantu)
{
for (int i = 0; i < m; i++)
{
t = cs*u[i][j] + sn*u[i][k-1];
u[i][k-1] = -sn*u[i][j] + cs*u[i][k-1];
u[i][j] = t;
}
}
}
}
break;
// Perform one qr step.
case 3:
{
// Calculate the shift.
double scale = Math.Max(Math.Max(Math.Max(Math.Max(Math.Abs(s[p-1]),Math.Abs(s[p-2])),Math.Abs(e[p-2])), Math.Abs(s[k])),Math.Abs(e[k]));
double sp = s[p-1]/scale;
double spm1 = s[p-2]/scale;
double epm1 = e[p-2]/scale;
double sk = s[k]/scale;
double ek = e[k]/scale;
double b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0;
double c = (sp*epm1)*(sp*epm1);
double shift = 0.0;
if ((b != 0.0) | (c != 0.0))
{
shift = Math.Sqrt(b*b + c);
if (b < 0.0)
shift = -shift;
shift = c/(b + shift);
}
double f = (sk + sp)*(sk - sp) + shift;
double g = sk*ek;
// Chase zeros.
for (int j = k; j < p-1; j++)
{
double t = Hypotenuse(f,g);
double cs = f/t;
double sn = g/t;
if (j != k)
e[j-1] = t;
f = cs*s[j] + sn*e[j];
e[j] = cs*e[j] - sn*s[j];
g = sn*s[j+1];
s[j+1] = cs*s[j+1];
if (wantv)
{
for (int i = 0; i < n; i++)
{
t = cs*v[i][j] + sn*v[i][j+1];
v[i][j+1] = -sn*v[i][j] + cs*v[i][j+1];
v[i][j] = t;
}
}
t = Hypotenuse(f, g);
cs = f/t;
sn = g/t;
s[j] = t;
f = cs*e[j] + sn*s[j+1];
s[j+1] = -sn*e[j] + cs*s[j+1];
g = sn*e[j+1];
e[j+1] = cs*e[j+1];
if (wantu && (j < m-1))
{
for (int i = 0; i < m; i++)
{
t = cs*u[i][j] + sn*u[i][j+1];
u[i][j+1] = -sn*u[i][j] + cs*u[i][j+1];
u[i][j] = t;
}
}
}
e[p-2] = f;
iter = iter + 1;
}
break;
// Convergence.
case 4:
{
// Make the singular values positive.
if (s[k] <= 0.0)
{
s[k] = (s[k] < 0.0 ? -s[k] : 0.0);
if (wantv)
for (int i = 0; i <= pp; i++)
v[i][k] = -v[i][k];
}
// Order the singular values.
while (k < pp)
{
if (s[k] >= s[k+1])
break;
double t = s[k];
s[k] = s[k+1];
s[k+1] = t;
if (wantv && (k < n-1))
for (int i = 0; i < n; i++)
{
t = v[i][k+1];
v[i][k+1] = v[i][k];
v[i][k] = t;
}
if (wantu && (k < m-1))
for (int i = 0; i < m; i++)
{
t = u[i][k+1];
u[i][k+1] = u[i][k];
u[i][k] = t;
}
k++;
}
iter = 0;
p--;
}
break;
}
}
}
///