File size: 6,361 Bytes
5e4510c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# EVOLVE-BLOCK-START
"""
PolynomialReal Task:

Given a polynomial of degree n with all real roots, the task is to approximate the roots of the polynomial.
The goal is to compute the approximated roots so that each is within 0.001 of the true value—i.e., correct to at least three decimal places (any extra precision beyond three decimal places is not considered).
A given solution's distance is said to be the average absolute difference between the approximated roots and the true roots.

Input: A list of polynomial coefficients in descending order.

Example input:
[1.0, -3.54, 3.25, -1.17, 0.23],

(The polynomial is x^4 - 3.54x^3 + 3.25x^2 - 1.17x + 0.23)

Output: A list of approximated roots in descending order.

Example output:
[1.544, 1.022, -0.478, -1.273]

Category: numerical_methods

OPTIMIZATION OPPORTUNITIES:
Consider these algorithmic improvements for substantial performance gains:
- JAX JIT compilation: Try JAX for massive speedups on numerical operations - start with pure functions
- Companion matrix methods: Alternative eigenvalue-based approach to numpy.roots for better performance
- Iterative root-finding: Newton-Raphson, Durand-Kerner, or Aberth methods with better convergence
- Compilation techniques: JIT frameworks often require specific code structures (functions vs methods)
- Polynomial structure exploitation: Leverage properties like Chebyshev polynomials or specific forms
- Deflation techniques: Remove found roots to improve conditioning for remaining roots
- Initial guess optimization: Better starting points for iterative methods using root bounds
- Specialized algorithms: Research advanced root-finding algorithms
- Multiple precision: Use higher precision only when needed for better accuracy
- Vectorized operations: Process multiple polynomials or roots simultaneously
- Memory-efficient methods: Avoid unnecessary array copies and intermediate calculations
- Hybrid approaches: Combine different methods based on polynomial degree or properties
- Real-root isolation: Use Sturm sequences or Descartes' rule for real-only root finding

This is the initial implementation that will be evolved by OpenEvolve.
The solve method will be improved through evolution.
"""
import logging
import random
import numpy as np
from typing import Any, Dict, List, Optional

class PolynomialReal:
    """
    Initial implementation of polynomial_real task.
    This will be evolved by OpenEvolve to improve performance and correctness.
    """
    
    def __init__(self):
        """Initialize the PolynomialReal."""
        pass
    
    def solve(self, problem):
        """
        Solve the polynomial_real problem.
        
        Args:
            problem: Dictionary containing problem data specific to polynomial_real
                   
        Returns:
            The solution in the format expected by the task
        """
        try:
            """
            Solve the polynomial problem by finding all real roots of the polynomial.

            The polynomial is given as a list of coefficients [aₙ, aₙ₋₁, ..., a₀],
            representing:
                p(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₀.
            This method computes the roots, converts them to real numbers if their imaginary parts are negligible,
            and returns them sorted in decreasing order.

            :param problem: A list of polynomial coefficients (real numbers) in descending order.
            :return: A list of real roots of the polynomial, sorted in decreasing order.
            """
            coefficients = problem
            computed_roots = np.roots(coefficients)
            # Convert roots to real numbers if the imaginary parts are negligible (tol=1e-3)
            computed_roots = np.real_if_close(computed_roots, tol=1e-3)
            computed_roots = np.real(computed_roots)
            # Sort roots in decreasing order.
            computed_roots = np.sort(computed_roots)[::-1]
            logging.debug(f"Computed roots (decreasing order): {computed_roots.tolist()}")
            return computed_roots.tolist()
            
        except Exception as e:
            logging.error(f"Error in solve method: {e}")
            raise e
    
    def is_solution(self, problem, solution):
        """
        Check if the provided solution is valid.
        
        Args:
            problem: The original problem
            solution: The proposed solution
                   
        Returns:
            True if the solution is valid, False otherwise
        """
        try:
            """
            Check if the polynomial root solution is valid and optimal.

            A valid solution must:
            1. Match the reference solution (computed using np.roots) within a small tolerance
            2. Be sorted in descending order

            :param problem: A list of polynomial coefficients (real numbers) in descending order.
            :param solution: A list of computed real roots.
            :return: True if the solution is valid and optimal, False otherwise.
            """
            coefficients = problem
            reference_roots = np.roots(coefficients)
            reference_roots = np.real_if_close(reference_roots, tol=1e-3)
            reference_roots = np.real(reference_roots)
            reference_roots = np.sort(reference_roots)[::-1]
            candidate = np.array(solution)
            reference = np.array(reference_roots)
            tol = 1e-6
            error = np.linalg.norm(candidate - reference) / (np.linalg.norm(reference) + 1e-12)
            if error > tol:
                logging.error(f"Polynomial real solution error {error} exceeds tolerance {tol}.")
                return False
            return True
            
        except Exception as e:
            logging.error(f"Error in is_solution method: {e}")
            return False

def run_solver(problem):
    """
    Main function to run the solver.
    This function is used by the evaluator to test the evolved solution.
    
    Args:
        problem: The problem to solve
        
    Returns:
        The solution
    """
    solver = PolynomialReal()
    return solver.solve(problem)

# EVOLVE-BLOCK-END

# Test function for evaluation
if __name__ == "__main__":
    # Example usage
    print("Initial polynomial_real implementation ready for evolution")