File size: 4,664 Bytes
5e4510c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# EVOLVE-BLOCK-START
"""Advanced circle packing for n=26 circles in a unit square"""
import numpy as np
from scipy.optimize import minimize


def construct_packing():
    """
    Construct an optimized arrangement of 26 circles in a unit square
    using mathematical principles and optimization techniques.

    Returns:
        Tuple of (centers, radii, sum_of_radii)
        centers: np.array of shape (26, 2) with (x, y) coordinates
        radii: np.array of shape (26) with radius of each circle
        sum_of_radii: Sum of all radii
    """
    n = 26

    # Initial guess: Strategic placement with some randomness
    centers = np.zeros((n, 2))
    radii = np.zeros(n)

    # Heuristic placement for better initial guess: place larger circles in center
    radii[:] = np.linspace(0.12, 0.05, n)  # Linear distribution of radii

    # Initial placement: approximate hexagonal grid
    grid_x = int(np.sqrt(n))
    grid_y = int(n / grid_x)

    x_coords = np.linspace(0.15, 0.85, grid_x)
    y_coords = np.linspace(0.15, 0.85, grid_y)

    count = 0
    for i in range(grid_x):
        for j in range(grid_y):
            if count < n:
                centers[count] = [x_coords[i] + 0.05 * (j % 2), y_coords[j]]
                count += 1

    # Place remaining circles randomly
    while count < n:
        centers[count] = np.random.rand(2) * 0.7 + 0.15
        count += 1

    # Objective function: Negative sum of radii (to maximize)
    def objective(x):
        centers = x[: 2 * n].reshape(n, 2)
        radii = x[2 * n :]
        return -np.sum(radii)

    # Constraint: No overlaps and circles stay within the unit square
    def constraint(x):
        centers = x[: 2 * n].reshape(n, 2)
        radii = x[2 * n :]

        # Overlap constraint
        overlap_constraints = []
        for i in range(n):
            for j in range(i + 1, n):
                dist = np.sqrt(np.sum((centers[i] - centers[j]) ** 2))
                overlap_constraints.append(dist - (radii[i] + radii[j]))

        # Boundary constraints
        boundary_constraints = []
        for i in range(n):
            boundary_constraints.append(centers[i, 0] - radii[i])  # x >= radius
            boundary_constraints.append(1 - centers[i, 0] - radii[i])  # x <= 1 - radius
            boundary_constraints.append(centers[i, 1] - radii[i])  # y >= radius
            boundary_constraints.append(1 - centers[i, 1] - radii[i])  # y <= 1 - radius

        return np.array(overlap_constraints + boundary_constraints)

    # Initial guess vector
    x0 = np.concatenate([centers.flatten(), radii])

    # Bounds: Circles stay within the unit square and radii are positive
    bounds = [(0, 1)] * (2 * n) + [(0.03, 0.2)] * n  # radii are positive, up to 0.2

    # Constraints dictionary
    constraints = {"type": "ineq", "fun": constraint}

    # Optimization using SLSQP
    result = minimize(
        objective,
        x0,
        method="SLSQP",
        bounds=bounds,
        constraints=constraints,
        options={"maxiter": 1000, "ftol": 1e-8},
    )

    # Extract optimized centers and radii
    optimized_centers = result.x[: 2 * n].reshape(n, 2)
    optimized_radii = result.x[2 * n :]

    # Ensure radii are not negative (numerical stability)
    optimized_radii = np.maximum(optimized_radii, 0.001)

    # Calculate the sum of radii
    sum_radii = np.sum(optimized_radii)

    return optimized_centers, optimized_radii, sum_radii


# EVOLVE-BLOCK-END


# This part remains fixed (not evolved)
def run_packing():
    """Run the circle packing constructor for n=26"""
    centers, radii, sum_radii = construct_packing()
    return centers, radii, sum_radii


def visualize(centers, radii):
    """
    Visualize the circle packing

    Args:
        centers: np.array of shape (n, 2) with (x, y) coordinates
        radii: np.array of shape (n) with radius of each circle
    """
    import matplotlib.pyplot as plt
    from matplotlib.patches import Circle

    fig, ax = plt.subplots(figsize=(8, 8))

    # Draw unit square
    ax.set_xlim(0, 1)
    ax.set_ylim(0, 1)
    ax.set_aspect("equal")
    ax.grid(True)

    # Draw circles
    for i, (center, radius) in enumerate(zip(centers, radii)):
        circle = Circle(center, radius, alpha=0.5)
        ax.add_patch(circle)
        ax.text(center[0], center[1], str(i), ha="center", va="center")

    plt.title(f"Circle Packing (n={len(centers)}, sum={sum(radii):.6f})")
    plt.show()


if __name__ == "__main__":
    centers, radii, sum_radii = run_packing()
    print(f"Sum of radii: {sum_radii}")
    # AlphaEvolve improved this to 2.635

    # Uncomment to visualize:
    # visualize(centers, radii)