File size: 3,873 Bytes
5e4510c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
# EVOLVE-BLOCK-START
"""Constructor-based circle packing for n=26 circles"""
import numpy as np
def construct_packing():
"""
Construct a specific arrangement of 26 circles in a unit square
that attempts to maximize the sum of their radii.
Returns:
Tuple of (centers, radii, sum_of_radii)
centers: np.array of shape (26, 2) with (x, y) coordinates
radii: np.array of shape (26) with radius of each circle
sum_of_radii: Sum of all radii
"""
# Initialize arrays for 26 circles
n = 26
centers = np.zeros((n, 2))
# Place circles in a structured pattern
# This is a simple pattern - evolution will improve this
# First, place a large circle in the center
centers[0] = [0.5, 0.5]
# Place 8 circles around it in a ring
for i in range(8):
angle = 2 * np.pi * i / 8
centers[i + 1] = [0.5 + 0.3 * np.cos(angle), 0.5 + 0.3 * np.sin(angle)]
# Place 16 more circles in an outer ring
for i in range(16):
angle = 2 * np.pi * i / 16
centers[i + 9] = [0.5 + 0.7 * np.cos(angle), 0.5 + 0.7 * np.sin(angle)]
# Additional positioning adjustment to make sure all circles
# are inside the square and don't overlap
# Clip to ensure everything is inside the unit square
centers = np.clip(centers, 0.01, 0.99)
# Compute maximum valid radii for this configuration
radii = compute_max_radii(centers)
# Calculate the sum of radii
sum_radii = np.sum(radii)
return centers, radii, sum_radii
def compute_max_radii(centers):
"""
Compute the maximum possible radii for each circle position
such that they don't overlap and stay within the unit square.
Args:
centers: np.array of shape (n, 2) with (x, y) coordinates
Returns:
np.array of shape (n) with radius of each circle
"""
n = centers.shape[0]
radii = np.ones(n)
# First, limit by distance to square borders
for i in range(n):
x, y = centers[i]
# Distance to borders
radii[i] = min(x, y, 1 - x, 1 - y)
# Then, limit by distance to other circles
# Each pair of circles with centers at distance d can have
# sum of radii at most d to avoid overlap
for i in range(n):
for j in range(i + 1, n):
dist = np.sqrt(np.sum((centers[i] - centers[j]) ** 2))
# If current radii would cause overlap
if radii[i] + radii[j] > dist:
# Scale both radii proportionally
scale = dist / (radii[i] + radii[j])
radii[i] *= scale
radii[j] *= scale
return radii
# EVOLVE-BLOCK-END
# This part remains fixed (not evolved)
def run_packing():
"""Run the circle packing constructor for n=26"""
centers, radii, sum_radii = construct_packing()
return centers, radii, sum_radii
def visualize(centers, radii):
"""
Visualize the circle packing
Args:
centers: np.array of shape (n, 2) with (x, y) coordinates
radii: np.array of shape (n) with radius of each circle
"""
import matplotlib.pyplot as plt
from matplotlib.patches import Circle
fig, ax = plt.subplots(figsize=(8, 8))
# Draw unit square
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.set_aspect("equal")
ax.grid(True)
# Draw circles
for i, (center, radius) in enumerate(zip(centers, radii)):
circle = Circle(center, radius, alpha=0.5)
ax.add_patch(circle)
ax.text(center[0], center[1], str(i), ha="center", va="center")
plt.title(f"Circle Packing (n={len(centers)}, sum={sum(radii):.6f})")
plt.show()
if __name__ == "__main__":
centers, radii, sum_radii = run_packing()
print(f"Sum of radii: {sum_radii}")
# AlphaEvolve improved this to 2.635
# Uncomment to visualize:
visualize(centers, radii)
|