File size: 3,873 Bytes
5e4510c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# EVOLVE-BLOCK-START
"""Constructor-based circle packing for n=26 circles"""
import numpy as np


def construct_packing():
    """
    Construct a specific arrangement of 26 circles in a unit square
    that attempts to maximize the sum of their radii.

    Returns:
        Tuple of (centers, radii, sum_of_radii)
        centers: np.array of shape (26, 2) with (x, y) coordinates
        radii: np.array of shape (26) with radius of each circle
        sum_of_radii: Sum of all radii
    """
    # Initialize arrays for 26 circles
    n = 26
    centers = np.zeros((n, 2))

    # Place circles in a structured pattern
    # This is a simple pattern - evolution will improve this

    # First, place a large circle in the center
    centers[0] = [0.5, 0.5]

    # Place 8 circles around it in a ring
    for i in range(8):
        angle = 2 * np.pi * i / 8
        centers[i + 1] = [0.5 + 0.3 * np.cos(angle), 0.5 + 0.3 * np.sin(angle)]

    # Place 16 more circles in an outer ring
    for i in range(16):
        angle = 2 * np.pi * i / 16
        centers[i + 9] = [0.5 + 0.7 * np.cos(angle), 0.5 + 0.7 * np.sin(angle)]

    # Additional positioning adjustment to make sure all circles
    # are inside the square and don't overlap
    # Clip to ensure everything is inside the unit square
    centers = np.clip(centers, 0.01, 0.99)

    # Compute maximum valid radii for this configuration
    radii = compute_max_radii(centers)

    # Calculate the sum of radii
    sum_radii = np.sum(radii)

    return centers, radii, sum_radii


def compute_max_radii(centers):
    """
    Compute the maximum possible radii for each circle position
    such that they don't overlap and stay within the unit square.

    Args:
        centers: np.array of shape (n, 2) with (x, y) coordinates

    Returns:
        np.array of shape (n) with radius of each circle
    """
    n = centers.shape[0]
    radii = np.ones(n)

    # First, limit by distance to square borders
    for i in range(n):
        x, y = centers[i]
        # Distance to borders
        radii[i] = min(x, y, 1 - x, 1 - y)

    # Then, limit by distance to other circles
    # Each pair of circles with centers at distance d can have
    # sum of radii at most d to avoid overlap
    for i in range(n):
        for j in range(i + 1, n):
            dist = np.sqrt(np.sum((centers[i] - centers[j]) ** 2))

            # If current radii would cause overlap
            if radii[i] + radii[j] > dist:
                # Scale both radii proportionally
                scale = dist / (radii[i] + radii[j])
                radii[i] *= scale
                radii[j] *= scale

    return radii


# EVOLVE-BLOCK-END


# This part remains fixed (not evolved)
def run_packing():
    """Run the circle packing constructor for n=26"""
    centers, radii, sum_radii = construct_packing()
    return centers, radii, sum_radii


def visualize(centers, radii):
    """
    Visualize the circle packing

    Args:
        centers: np.array of shape (n, 2) with (x, y) coordinates
        radii: np.array of shape (n) with radius of each circle
    """
    import matplotlib.pyplot as plt
    from matplotlib.patches import Circle

    fig, ax = plt.subplots(figsize=(8, 8))

    # Draw unit square
    ax.set_xlim(0, 1)
    ax.set_ylim(0, 1)
    ax.set_aspect("equal")
    ax.grid(True)

    # Draw circles
    for i, (center, radius) in enumerate(zip(centers, radii)):
        circle = Circle(center, radius, alpha=0.5)
        ax.add_patch(circle)
        ax.text(center[0], center[1], str(i), ha="center", va="center")

    plt.title(f"Circle Packing (n={len(centers)}, sum={sum(radii):.6f})")
    plt.show()


if __name__ == "__main__":
    centers, radii, sum_radii = run_packing()
    print(f"Sum of radii: {sum_radii}")
    # AlphaEvolve improved this to 2.635

    # Uncomment to visualize:
    visualize(centers, radii)