introvoyz041's picture
Migrated from GitHub
5e4510c verified
# Disable progress bar for cleaner output logs
import os
os.environ["TQDM_DISABLE"] = "1"
# EVOLVE-BLOCK-START
import jax
import jax.numpy as jnp
import optax
import numpy as np
from dataclasses import dataclass
from scipy.special import hermite
import tqdm
@dataclass
class Hyperparameters:
learning_rate: float = 0.001
num_steps: int = 100000
num_restarts: int = 20
num_hermite_coeffs: int = 4 # uses H0, H4, H8, H12
class UncertaintyOptimizer:
"""
Finds coefficients for a generalized Hermite polynomial P(x) that minimize
the largest positive root, providing an upper bound for C4.
"""
def __init__(self, hypers: Hyperparameters):
self.hypers = hypers
self.degrees = [4 * k for k in range(hypers.num_hermite_coeffs)]
max_degree = self.degrees[-1]
hermite_polys = [hermite(d) for d in self.degrees]
basis = []
for poly in hermite_polys:
pad_amount = max_degree - poly.order
basis.append(jnp.array(np.pad(poly.coef, (pad_amount, 0))))
self.hermite_basis = jnp.stack(basis)
self.H_vals_at_zero = jnp.array([p(0) for p in hermite_polys])
self.x_grid = jnp.linspace(0.0, 10.0, 3000)
self.optimizer = optax.adam(self.hypers.learning_rate)
@staticmethod
def _objective_fn(params: jnp.ndarray, hermite_basis, H_vals_at_zero, x_grid):
"""Penalize negative values of P(x) on [0, Xmax]; mild weighting to emphasize larger x."""
c_others, log_c_last = params[:-1], params[-1]
c_last = jnp.exp(log_c_last)
# Enforce P(0) = 0
c0 = (
-(jnp.sum(c_others * H_vals_at_zero[1:-1]) + c_last * H_vals_at_zero[-1])
/ H_vals_at_zero[0]
)
hermite_coeffs = jnp.concatenate([jnp.array([c0]), c_others, jnp.array([c_last])])
poly_coeffs_std = jnp.sum(hermite_coeffs[:, None] * hermite_basis, axis=0)
p_values = jnp.polyval(poly_coeffs_std, x_grid)
# Slightly increasing weight toward the right end of the interval
weights = 1.0 + (x_grid / (x_grid[-1] + 1e-12))
loss = jnp.sum(weights * jax.nn.relu(-p_values))
return loss
@staticmethod
def train_step(
params: jnp.ndarray,
opt_state: optax.OptState,
optimizer,
hermite_basis,
H_vals_at_zero,
x_grid,
):
loss, grads = jax.value_and_grad(UncertaintyOptimizer._objective_fn)(
params, hermite_basis, H_vals_at_zero, x_grid
)
updates, opt_state = optimizer.update(grads, opt_state, params)
params = optax.apply_updates(params, updates)
return params, opt_state, loss
def run_single_trial(optimizer: UncertaintyOptimizer, key: jax.random.PRNGKey):
"""Runs one full optimization from a near-good starting point with small noise."""
num_params_to_opt = optimizer.hypers.num_hermite_coeffs - 1 # = 3 when using H0,H4,H8,H12
assert num_params_to_opt == 3, "This initialization assumes num_hermite_coeffs == 4."
base_c1 = -0.01158510802599293
base_c2 = -8.921606035407065e-05
base_log_c_last = np.log(1e-6)
base = jnp.array([base_c1, base_c2, base_log_c_last], dtype=jnp.float32)
noise = jax.random.normal(key, (num_params_to_opt,)) * 1e-3
params = base + noise
opt_state = optimizer.optimizer.init(params)
jit_train_step = jax.jit(UncertaintyOptimizer.train_step, static_argnums=(2,))
for _ in range(optimizer.hypers.num_steps):
params, opt_state, _ = jit_train_step(
params,
opt_state,
optimizer.optimizer,
optimizer.hermite_basis,
optimizer.H_vals_at_zero,
optimizer.x_grid,
)
return params
def _build_P_from_hermite_coeffs(hermite_coeffs: np.ndarray, degrees: list[int]) -> np.poly1d:
"""Build monomial-basis polynomial P from Hermite-basis coefficients."""
max_degree = degrees[-1]
hermite_polys = [hermite(d) for d in degrees]
P_poly_coeffs = np.zeros(max_degree + 1)
for i, c in enumerate(hermite_coeffs):
poly = hermite_polys[i]
pad_amount = max_degree - poly.order
P_poly_coeffs[pad_amount:] += c * poly.coef
if P_poly_coeffs[0] < 0:
P_poly_coeffs = -P_poly_coeffs
hermite_coeffs[:] = -hermite_coeffs
return np.poly1d(P_poly_coeffs)
def _c4_from_hermite_coeffs(hermite_coeffs: np.ndarray, num_hermite_coeffs: int):
"""Compute r_max and C4 from full Hermite coefficient vector (Google-style)."""
degrees = [4 * k for k in range(num_hermite_coeffs)]
P = _build_P_from_hermite_coeffs(hermite_coeffs.copy(), degrees)
# Divide by x^2
Q, R = np.polydiv(P, np.poly1d([1.0, 0.0, 0.0]))
if np.max(np.abs(R.c)) > 1e-10:
return None, None
roots = Q.r
real_pos = roots[(np.isreal(roots)) & (roots.real > 0)].real
if real_pos.size == 0:
return None, None
# Tiny sign-change check around candidates
r_candidates = np.sort(real_pos)
r_max = None
for r in r_candidates:
eps = 1e-10 * max(1.0, abs(r))
left = np.polyval(Q, r - eps)
right = np.polyval(Q, r + eps)
if left * right < 0:
r_max = float(r)
if r_max is None:
r_max = float(r_candidates[-1])
c4 = (r_max**2) / (2 * np.pi)
return c4, r_max
def get_c4_from_params(params: np.ndarray, hypers: Hyperparameters):
"""Calculates the precise C4 bound from a final set of parameters."""
c_others, log_c_last = params[:-1], params[-1]
c_last = np.exp(log_c_last)
degrees = [4 * k for k in range(hypers.num_hermite_coeffs)]
hermite_polys = [hermite(d) for d in degrees]
H_vals_at_zero = np.array([p(0) for p in hermite_polys])
# Enforce P(0) = 0
c0 = (
-(np.sum(c_others * H_vals_at_zero[1:-1]) + c_last * H_vals_at_zero[-1]) / H_vals_at_zero[0]
)
hermite_coeffs = np.concatenate([[c0], np.array(c_others), [c_last]])
c4, rmax = _c4_from_hermite_coeffs(hermite_coeffs, hypers.num_hermite_coeffs)
if c4 is None:
return None, None, None
return hermite_coeffs, c4, rmax
def run():
hypers = Hyperparameters()
optimizer = UncertaintyOptimizer(hypers)
main_key = jax.random.PRNGKey(42)
best_c4_bound = float("inf")
best_coeffs, best_r_max = None, None
print(f"Running {hypers.num_restarts} trials to find the best C4 upper bound...")
for _ in tqdm.tqdm(range(hypers.num_restarts), desc="Searching", disable=True):
main_key, restart_key = jax.random.split(main_key)
final_params = run_single_trial(optimizer, restart_key)
coeffs, c4_bound, r_max = get_c4_from_params(np.array(final_params), hypers)
if c4_bound is not None and c4_bound < best_c4_bound:
best_c4_bound = c4_bound
best_coeffs = coeffs
best_r_max = r_max
if best_coeffs is None:
raise RuntimeError("Failed to find a valid solution in any restart.")
print("\nSearch complete.")
print(f"Best Hermite coeffs: {best_coeffs}")
print(f"Best largest positive root r_max: {best_r_max:.8f}")
print(f"Resulting best C4 upper bound: {best_c4_bound:.8f}")
return best_coeffs, best_c4_bound, best_r_max
# EVOLVE-BLOCK-END