|
|
|
|
|
import os |
|
|
|
|
|
os.environ["TQDM_DISABLE"] = "1" |
|
|
|
|
|
|
|
|
import jax |
|
|
import jax.numpy as jnp |
|
|
import optax |
|
|
import numpy as np |
|
|
from dataclasses import dataclass |
|
|
from scipy.special import hermite |
|
|
import tqdm |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class Hyperparameters: |
|
|
learning_rate: float = 0.001 |
|
|
num_steps: int = 100000 |
|
|
num_restarts: int = 20 |
|
|
num_hermite_coeffs: int = 4 |
|
|
|
|
|
|
|
|
class UncertaintyOptimizer: |
|
|
""" |
|
|
Finds coefficients for a generalized Hermite polynomial P(x) that minimize |
|
|
the largest positive root, providing an upper bound for C4. |
|
|
""" |
|
|
|
|
|
def __init__(self, hypers: Hyperparameters): |
|
|
self.hypers = hypers |
|
|
self.degrees = [4 * k for k in range(hypers.num_hermite_coeffs)] |
|
|
max_degree = self.degrees[-1] |
|
|
hermite_polys = [hermite(d) for d in self.degrees] |
|
|
|
|
|
basis = [] |
|
|
for poly in hermite_polys: |
|
|
pad_amount = max_degree - poly.order |
|
|
basis.append(jnp.array(np.pad(poly.coef, (pad_amount, 0)))) |
|
|
self.hermite_basis = jnp.stack(basis) |
|
|
|
|
|
self.H_vals_at_zero = jnp.array([p(0) for p in hermite_polys]) |
|
|
self.x_grid = jnp.linspace(0.0, 10.0, 3000) |
|
|
self.optimizer = optax.adam(self.hypers.learning_rate) |
|
|
|
|
|
@staticmethod |
|
|
def _objective_fn(params: jnp.ndarray, hermite_basis, H_vals_at_zero, x_grid): |
|
|
"""Penalize negative values of P(x) on [0, Xmax]; mild weighting to emphasize larger x.""" |
|
|
c_others, log_c_last = params[:-1], params[-1] |
|
|
c_last = jnp.exp(log_c_last) |
|
|
|
|
|
|
|
|
c0 = ( |
|
|
-(jnp.sum(c_others * H_vals_at_zero[1:-1]) + c_last * H_vals_at_zero[-1]) |
|
|
/ H_vals_at_zero[0] |
|
|
) |
|
|
hermite_coeffs = jnp.concatenate([jnp.array([c0]), c_others, jnp.array([c_last])]) |
|
|
|
|
|
poly_coeffs_std = jnp.sum(hermite_coeffs[:, None] * hermite_basis, axis=0) |
|
|
p_values = jnp.polyval(poly_coeffs_std, x_grid) |
|
|
|
|
|
|
|
|
weights = 1.0 + (x_grid / (x_grid[-1] + 1e-12)) |
|
|
loss = jnp.sum(weights * jax.nn.relu(-p_values)) |
|
|
return loss |
|
|
|
|
|
@staticmethod |
|
|
def train_step( |
|
|
params: jnp.ndarray, |
|
|
opt_state: optax.OptState, |
|
|
optimizer, |
|
|
hermite_basis, |
|
|
H_vals_at_zero, |
|
|
x_grid, |
|
|
): |
|
|
loss, grads = jax.value_and_grad(UncertaintyOptimizer._objective_fn)( |
|
|
params, hermite_basis, H_vals_at_zero, x_grid |
|
|
) |
|
|
updates, opt_state = optimizer.update(grads, opt_state, params) |
|
|
params = optax.apply_updates(params, updates) |
|
|
return params, opt_state, loss |
|
|
|
|
|
|
|
|
def run_single_trial(optimizer: UncertaintyOptimizer, key: jax.random.PRNGKey): |
|
|
"""Runs one full optimization from a near-good starting point with small noise.""" |
|
|
num_params_to_opt = optimizer.hypers.num_hermite_coeffs - 1 |
|
|
assert num_params_to_opt == 3, "This initialization assumes num_hermite_coeffs == 4." |
|
|
|
|
|
base_c1 = -0.01158510802599293 |
|
|
base_c2 = -8.921606035407065e-05 |
|
|
base_log_c_last = np.log(1e-6) |
|
|
|
|
|
base = jnp.array([base_c1, base_c2, base_log_c_last], dtype=jnp.float32) |
|
|
noise = jax.random.normal(key, (num_params_to_opt,)) * 1e-3 |
|
|
params = base + noise |
|
|
|
|
|
opt_state = optimizer.optimizer.init(params) |
|
|
jit_train_step = jax.jit(UncertaintyOptimizer.train_step, static_argnums=(2,)) |
|
|
|
|
|
for _ in range(optimizer.hypers.num_steps): |
|
|
params, opt_state, _ = jit_train_step( |
|
|
params, |
|
|
opt_state, |
|
|
optimizer.optimizer, |
|
|
optimizer.hermite_basis, |
|
|
optimizer.H_vals_at_zero, |
|
|
optimizer.x_grid, |
|
|
) |
|
|
return params |
|
|
|
|
|
|
|
|
def _build_P_from_hermite_coeffs(hermite_coeffs: np.ndarray, degrees: list[int]) -> np.poly1d: |
|
|
"""Build monomial-basis polynomial P from Hermite-basis coefficients.""" |
|
|
max_degree = degrees[-1] |
|
|
hermite_polys = [hermite(d) for d in degrees] |
|
|
|
|
|
P_poly_coeffs = np.zeros(max_degree + 1) |
|
|
for i, c in enumerate(hermite_coeffs): |
|
|
poly = hermite_polys[i] |
|
|
pad_amount = max_degree - poly.order |
|
|
P_poly_coeffs[pad_amount:] += c * poly.coef |
|
|
|
|
|
if P_poly_coeffs[0] < 0: |
|
|
P_poly_coeffs = -P_poly_coeffs |
|
|
hermite_coeffs[:] = -hermite_coeffs |
|
|
return np.poly1d(P_poly_coeffs) |
|
|
|
|
|
|
|
|
def _c4_from_hermite_coeffs(hermite_coeffs: np.ndarray, num_hermite_coeffs: int): |
|
|
"""Compute r_max and C4 from full Hermite coefficient vector (Google-style).""" |
|
|
degrees = [4 * k for k in range(num_hermite_coeffs)] |
|
|
P = _build_P_from_hermite_coeffs(hermite_coeffs.copy(), degrees) |
|
|
|
|
|
|
|
|
Q, R = np.polydiv(P, np.poly1d([1.0, 0.0, 0.0])) |
|
|
if np.max(np.abs(R.c)) > 1e-10: |
|
|
return None, None |
|
|
|
|
|
roots = Q.r |
|
|
real_pos = roots[(np.isreal(roots)) & (roots.real > 0)].real |
|
|
if real_pos.size == 0: |
|
|
return None, None |
|
|
|
|
|
|
|
|
r_candidates = np.sort(real_pos) |
|
|
r_max = None |
|
|
for r in r_candidates: |
|
|
eps = 1e-10 * max(1.0, abs(r)) |
|
|
left = np.polyval(Q, r - eps) |
|
|
right = np.polyval(Q, r + eps) |
|
|
if left * right < 0: |
|
|
r_max = float(r) |
|
|
if r_max is None: |
|
|
r_max = float(r_candidates[-1]) |
|
|
|
|
|
c4 = (r_max**2) / (2 * np.pi) |
|
|
return c4, r_max |
|
|
|
|
|
|
|
|
def get_c4_from_params(params: np.ndarray, hypers: Hyperparameters): |
|
|
"""Calculates the precise C4 bound from a final set of parameters.""" |
|
|
c_others, log_c_last = params[:-1], params[-1] |
|
|
c_last = np.exp(log_c_last) |
|
|
|
|
|
degrees = [4 * k for k in range(hypers.num_hermite_coeffs)] |
|
|
hermite_polys = [hermite(d) for d in degrees] |
|
|
H_vals_at_zero = np.array([p(0) for p in hermite_polys]) |
|
|
|
|
|
|
|
|
c0 = ( |
|
|
-(np.sum(c_others * H_vals_at_zero[1:-1]) + c_last * H_vals_at_zero[-1]) / H_vals_at_zero[0] |
|
|
) |
|
|
hermite_coeffs = np.concatenate([[c0], np.array(c_others), [c_last]]) |
|
|
|
|
|
c4, rmax = _c4_from_hermite_coeffs(hermite_coeffs, hypers.num_hermite_coeffs) |
|
|
if c4 is None: |
|
|
return None, None, None |
|
|
return hermite_coeffs, c4, rmax |
|
|
|
|
|
|
|
|
def run(): |
|
|
hypers = Hyperparameters() |
|
|
optimizer = UncertaintyOptimizer(hypers) |
|
|
main_key = jax.random.PRNGKey(42) |
|
|
best_c4_bound = float("inf") |
|
|
best_coeffs, best_r_max = None, None |
|
|
|
|
|
print(f"Running {hypers.num_restarts} trials to find the best C4 upper bound...") |
|
|
for _ in tqdm.tqdm(range(hypers.num_restarts), desc="Searching", disable=True): |
|
|
main_key, restart_key = jax.random.split(main_key) |
|
|
final_params = run_single_trial(optimizer, restart_key) |
|
|
|
|
|
coeffs, c4_bound, r_max = get_c4_from_params(np.array(final_params), hypers) |
|
|
|
|
|
if c4_bound is not None and c4_bound < best_c4_bound: |
|
|
best_c4_bound = c4_bound |
|
|
best_coeffs = coeffs |
|
|
best_r_max = r_max |
|
|
|
|
|
if best_coeffs is None: |
|
|
raise RuntimeError("Failed to find a valid solution in any restart.") |
|
|
|
|
|
print("\nSearch complete.") |
|
|
print(f"Best Hermite coeffs: {best_coeffs}") |
|
|
print(f"Best largest positive root r_max: {best_r_max:.8f}") |
|
|
print(f"Resulting best C4 upper bound: {best_c4_bound:.8f}") |
|
|
|
|
|
return best_coeffs, best_c4_bound, best_r_max |
|
|
|
|
|
|
|
|
|
|
|
|