# ===--------------------------------------------------------------------------------------===# # # This file implements the evaluator for the matrix multiplication problem with tensor size # of <2,4,5> # # ===--------------------------------------------------------------------------------------===# # # Some of the code in this file is adapted from: # # google-deepmind/alphaevolve_results: # Licensed under the Apache License v2.0. # # ===--------------------------------------------------------------------------------------===# import sys import os from importlib import __import__ import time import numpy as np BENCHMARK = 32 def verify_tensor_decomposition( decomposition: tuple[np.ndarray, np.ndarray, np.ndarray], n: int, m: int, p: int, rank: int ): """Verifies the correctness of the tensor decomposition.""" # Add robustness for cases where the optimizer might fail if not all(isinstance(arr, np.ndarray) for arr in decomposition) or not decomposition: raise ValueError("Decomposition must be a tuple of NumPy arrays.") if any(arr.size == 0 for arr in decomposition): print("Warning: One or more decomposition arrays are empty. Verification skipped.") return # Check that each factor matrix has the correct shape. factor_matrix_1, factor_matrix_2, factor_matrix_3 = decomposition if factor_matrix_1.shape != (n * m, rank): raise ValueError( f"Expected shape of factor matrix 1 is {(n * m, rank)}. Actual shape is {factor_matrix_1.shape}." ) if factor_matrix_2.shape != (m * p, rank): raise ValueError( f"Expected shape of factor matrix 2 is {(m * p, rank)}. Actual shape is {factor_matrix_2.shape}." ) if factor_matrix_3.shape != (n * p, rank): raise ValueError( f"Expected shape of factor matrix 3 is {(n * p, rank)}. Actual shape is {factor_matrix_3.shape}." ) # Form the matrix multiplication tensor . matmul_tensor = np.zeros((n * m, m * p, n * p), dtype=np.float32) for i in range(n): for j in range(m): for k in range(p): # Use the standard k*n+i indexing for the third dimension matmul_tensor[i * m + j, j * p + k, k * n + i] = 1 # Check that the tensor is correctly constructed. constructed_tensor = np.einsum("ir,jr,kr -> ijk", *decomposition) # Exact check if not np.array_equal(constructed_tensor, matmul_tensor): # If the exact check fails, report the floating-point difference for diagnostics. diff = np.max(np.abs(constructed_tensor - matmul_tensor)) raise ValueError( f"Tensor constructed by decomposition does not exactly match the target tensor. Maximum difference is {diff:.6e}." ) def evaluate(program_path: str): try: abs_program_path = os.path.abspath(program_path) program_dir = os.path.dirname(abs_program_path) module_name = os.path.splitext(os.path.basename(program_path))[0] try: sys.path.insert(0, program_dir) program = __import__(module_name) start_time = time.time() decomposition, n, m, p, loss, rank = program.run() end_time = time.time() eval_time = end_time - start_time except Exception as err: raise err finally: if program_dir in sys.path: sys.path.remove(program_dir) verify_tensor_decomposition(decomposition, n, m, p, rank) success_threshold = 1e-6 if loss > success_threshold: print( f"\nWarning: Final loss {loss:.2e} is above the success threshold of {success_threshold:.2e}." ) inverse_rank = BENCHMARK / rank return { "combined_score": inverse_rank, "loss": loss, "rank": rank, "eval_time": float(eval_time), } except Exception as e: return {"combined_score": 0.0, "error": str(e)}