# ===--------------------------------------------------------------------------------------===# # # This file implements the evaluator for the uncertainty inequality problem. # # ===--------------------------------------------------------------------------------------===# # # Some of the code in this file is adapted from: # # google-deepmind/alphaevolve_results: # Licensed under the Apache License v2.0. # # ===--------------------------------------------------------------------------------------===# import sys, os, time, numpy as np import sympy as sp BENCHMARK = 0.3215872333529007 x = sp.symbols("x") def _hermite_4k_polys(m: int): degrees = [4 * k for k in range(m)] Hs = [sp.polys.orthopolys.hermite_poly(n=d, x=x, polys=False) for d in degrees] return Hs, degrees def _construct_P_with_forced_zero(coeffs: np.ndarray) -> sp.Expr: """ Given m input coeffs (c0..c_{m-1}), build the Hermite combo c0*H0 + ... + c_{m-1}*H_{4(m-1)} + c_last*H_{4m} where c_last is chosen so that P(0) = 0. Also flip sign if limit at +inf is negative. """ m = len(coeffs) Hs, _ = _hermite_4k_polys(m + 1) # include the (m)-th term for solving P(0)=0 rc = [sp.Rational(c) for c in coeffs] partial = sum(rc[i] * Hs[i] for i in range(m)) a = Hs[m].subs(x, 0) b = -partial.subs(x, 0) c_last = sp.Rational(b) / sp.Rational(a) P = partial + c_last * Hs[m] # Ensure positivity at +inf (all degrees are multiples of 4, so sign is well-defined) if sp.limit(P, x, sp.oo) < 0: P = -P return sp.simplify(P) def _largest_positive_root_of_P_over_x2(P: sp.Expr) -> float: # P is even and has P(0)=0; divide by x^2 and find the largest positive real root. gq = sp.exquo(P, x**2) # exact division (should divide cleanly if multiplicity >= 2) roots = sp.real_roots(gq, x) if not roots: raise ValueError("No real roots for P(x)/x^2.") # Validate sign change around each candidate best = None for r in roots: r_approx = r.eval_rational(n=200) eps = sp.Rational(1, 10**198) left = gq.subs(x, r_approx - eps) right = gq.subs(x, r_approx + eps) if (left > 0 and right < 0) or (left < 0 and right > 0): if best is None or r_approx > best: best = r_approx if best is None: raise ValueError("No root with a verified sign change for P(x)/x^2.") return float(best) def compute_c4_and_rmax(input_coeffs: np.ndarray): P = _construct_P_with_forced_zero(input_coeffs) # Quick sanity checks assert P.subs(x, 0) == 0, "P(0) != 0 after forcing." assert sp.limit(P, x, sp.oo) > 0, "Limit at +inf is not positive." rmax = _largest_positive_root_of_P_over_x2(P) c4 = (rmax**2) / (2.0 * np.pi) return c4, rmax def verify_c4_solution_strict( user_coeffs: np.ndarray, reported_c4: float, reported_rmax: float, atol=1e-9, rtol=1e-9 ): c4, rmax = compute_c4_and_rmax(np.asarray(user_coeffs, dtype=float)) if not np.isclose(c4, reported_c4, rtol=rtol, atol=atol): raise ValueError(f"C4 mismatch: reported {reported_c4:.12f}, recomputed {c4:.12f}") if not np.isclose(rmax, reported_rmax, rtol=rtol, atol=atol): raise ValueError(f"r_max mismatch: reported {reported_rmax:.12f}, recomputed {rmax:.12f}") return c4, rmax def evaluate(program_path: str): try: abs_program_path = os.path.abspath(program_path) program_dir = os.path.dirname(abs_program_path) module_name = os.path.splitext(os.path.basename(program_path))[0] try: sys.path.insert(0, program_dir) program = __import__(module_name) t0 = time.time() coeffs, c4_bound, r_max = program.run() t1 = time.time() finally: if program_dir in sys.path: sys.path.remove(program_dir) coeffs = np.asarray(coeffs, dtype=float) c4, rmax = verify_c4_solution_strict(coeffs, float(c4_bound), float(r_max)) return { "c4_bound": float(c4), "combined_score": float(BENCHMARK / c4), "r_max": float(rmax), "coeffs": coeffs.tolist(), "eval_time": float(t1 - t0), } except Exception as e: return {"combined_score": 0.0, "error": str(e)}