# EVOLVE-BLOCK-START """Advanced circle packing for n=26 circles in a unit square""" import numpy as np from scipy.optimize import minimize def construct_packing(): """ Construct an optimized arrangement of 26 circles in a unit square using mathematical principles and optimization techniques. Returns: Tuple of (centers, radii, sum_of_radii) centers: np.array of shape (26, 2) with (x, y) coordinates radii: np.array of shape (26) with radius of each circle sum_of_radii: Sum of all radii """ n = 26 # Initial guess: Strategic placement with some randomness centers = np.zeros((n, 2)) radii = np.zeros(n) # Heuristic placement for better initial guess: place larger circles in center radii[:] = np.linspace(0.12, 0.05, n) # Linear distribution of radii # Initial placement: approximate hexagonal grid grid_x = int(np.sqrt(n)) grid_y = int(n / grid_x) x_coords = np.linspace(0.15, 0.85, grid_x) y_coords = np.linspace(0.15, 0.85, grid_y) count = 0 for i in range(grid_x): for j in range(grid_y): if count < n: centers[count] = [x_coords[i] + 0.05 * (j % 2), y_coords[j]] count += 1 # Place remaining circles randomly while count < n: centers[count] = np.random.rand(2) * 0.7 + 0.15 count += 1 # Objective function: Negative sum of radii (to maximize) def objective(x): centers = x[: 2 * n].reshape(n, 2) radii = x[2 * n :] return -np.sum(radii) # Constraint: No overlaps and circles stay within the unit square def constraint(x): centers = x[: 2 * n].reshape(n, 2) radii = x[2 * n :] # Overlap constraint overlap_constraints = [] for i in range(n): for j in range(i + 1, n): dist = np.sqrt(np.sum((centers[i] - centers[j]) ** 2)) overlap_constraints.append(dist - (radii[i] + radii[j])) # Boundary constraints boundary_constraints = [] for i in range(n): boundary_constraints.append(centers[i, 0] - radii[i]) # x >= radius boundary_constraints.append(1 - centers[i, 0] - radii[i]) # x <= 1 - radius boundary_constraints.append(centers[i, 1] - radii[i]) # y >= radius boundary_constraints.append(1 - centers[i, 1] - radii[i]) # y <= 1 - radius return np.array(overlap_constraints + boundary_constraints) # Initial guess vector x0 = np.concatenate([centers.flatten(), radii]) # Bounds: Circles stay within the unit square and radii are positive bounds = [(0, 1)] * (2 * n) + [(0.03, 0.2)] * n # radii are positive, up to 0.2 # Constraints dictionary constraints = {"type": "ineq", "fun": constraint} # Optimization using SLSQP result = minimize( objective, x0, method="SLSQP", bounds=bounds, constraints=constraints, options={"maxiter": 1000, "ftol": 1e-8}, ) # Extract optimized centers and radii optimized_centers = result.x[: 2 * n].reshape(n, 2) optimized_radii = result.x[2 * n :] # Ensure radii are not negative (numerical stability) optimized_radii = np.maximum(optimized_radii, 0.001) # Calculate the sum of radii sum_radii = np.sum(optimized_radii) return optimized_centers, optimized_radii, sum_radii # EVOLVE-BLOCK-END # This part remains fixed (not evolved) def run_packing(): """Run the circle packing constructor for n=26""" centers, radii, sum_radii = construct_packing() return centers, radii, sum_radii def visualize(centers, radii): """ Visualize the circle packing Args: centers: np.array of shape (n, 2) with (x, y) coordinates radii: np.array of shape (n) with radius of each circle """ import matplotlib.pyplot as plt from matplotlib.patches import Circle fig, ax = plt.subplots(figsize=(8, 8)) # Draw unit square ax.set_xlim(0, 1) ax.set_ylim(0, 1) ax.set_aspect("equal") ax.grid(True) # Draw circles for i, (center, radius) in enumerate(zip(centers, radii)): circle = Circle(center, radius, alpha=0.5) ax.add_patch(circle) ax.text(center[0], center[1], str(i), ha="center", va="center") plt.title(f"Circle Packing (n={len(centers)}, sum={sum(radii):.6f})") plt.show() if __name__ == "__main__": centers, radii, sum_radii = run_packing() print(f"Sum of radii: {sum_radii}") # AlphaEvolve improved this to 2.635 # Uncomment to visualize: # visualize(centers, radii)