diff --git a/.gitattributes b/.gitattributes index 63e7b75beb7bd15287c4e825ffdc86b186db4a10..0d87a1879173948e9980955c853e0de3cacf1498 100644 --- a/.gitattributes +++ b/.gitattributes @@ -7262,3 +7262,51 @@ cNE2T4oBgHgl3EQfwgg2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf filter=lfs diff=lfs merge=lfs -text TdAyT4oBgHgl3EQf8foB/content/2301.00855v1.pdf filter=lfs diff=lfs merge=lfs -text StAzT4oBgHgl3EQfXfxy/content/2301.01319v1.pdf filter=lfs diff=lfs merge=lfs -text +utAzT4oBgHgl3EQfBvrw/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +AdAzT4oBgHgl3EQfTPx3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +19E2T4oBgHgl3EQfiwfE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf filter=lfs diff=lfs merge=lfs -text +ENE1T4oBgHgl3EQfEQP0/content/2301.02889v1.pdf filter=lfs diff=lfs merge=lfs -text +PtFPT4oBgHgl3EQfnzX3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +odFMT4oBgHgl3EQf7DEn/content/2301.12462v1.pdf filter=lfs diff=lfs merge=lfs -text +9tAzT4oBgHgl3EQfFPrO/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +pdAzT4oBgHgl3EQfOvsC/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +SNFKT4oBgHgl3EQfjS7T/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +D9E4T4oBgHgl3EQfGQye/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +0NFRT4oBgHgl3EQfkTex/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +odFMT4oBgHgl3EQf7DEn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +fdE4T4oBgHgl3EQfqg0X/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +89FRT4oBgHgl3EQfqDcj/content/2301.13615v1.pdf filter=lfs diff=lfs merge=lfs -text +SdE3T4oBgHgl3EQfzAun/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +etE2T4oBgHgl3EQfxghO/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +N9E3T4oBgHgl3EQfZQq9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +Z9AyT4oBgHgl3EQfv_kg/content/2301.00639v1.pdf filter=lfs diff=lfs merge=lfs -text +z9E0T4oBgHgl3EQfdACa/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +ddAzT4oBgHgl3EQfZ_yv/content/2301.01362v1.pdf filter=lfs diff=lfs merge=lfs -text +A9E1T4oBgHgl3EQfVgQy/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +Z9AyT4oBgHgl3EQfv_kg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +PtE4T4oBgHgl3EQfkg1D/content/2301.05151v1.pdf filter=lfs diff=lfs merge=lfs -text +A9AzT4oBgHgl3EQfF_vM/content/2301.01022v1.pdf filter=lfs diff=lfs merge=lfs -text +49E1T4oBgHgl3EQfAwK8/content/2301.02844v1.pdf filter=lfs diff=lfs merge=lfs -text +ZtE5T4oBgHgl3EQfeA-9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +JdE2T4oBgHgl3EQfUgew/content/2301.03814v1.pdf filter=lfs diff=lfs merge=lfs -text +PtAyT4oBgHgl3EQf7fqt/content/2301.00840v1.pdf filter=lfs diff=lfs merge=lfs -text +C9AyT4oBgHgl3EQf4fqw/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf filter=lfs diff=lfs merge=lfs -text +wtFKT4oBgHgl3EQf5S7u/content/2301.11937v1.pdf filter=lfs diff=lfs merge=lfs -text +bNAyT4oBgHgl3EQfXPcY/content/2301.00177v1.pdf filter=lfs diff=lfs merge=lfs -text +rtFST4oBgHgl3EQfQDhb/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +tNE0T4oBgHgl3EQfrwF-/content/2301.02570v1.pdf filter=lfs diff=lfs merge=lfs -text +fdE1T4oBgHgl3EQfewQV/content/2301.03209v1.pdf filter=lfs diff=lfs merge=lfs -text +SNA0T4oBgHgl3EQfD_8a/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +2dAzT4oBgHgl3EQfuP2J/content/2301.01688v1.pdf filter=lfs diff=lfs merge=lfs -text +wtFKT4oBgHgl3EQf5S7u/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +T9E2T4oBgHgl3EQfCga9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +89FRT4oBgHgl3EQfqDcj/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf filter=lfs diff=lfs merge=lfs -text +vdE3T4oBgHgl3EQfOAme/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +ItE1T4oBgHgl3EQfYARl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +Z9AzT4oBgHgl3EQfZPxu/content/2301.01348v1.pdf filter=lfs diff=lfs merge=lfs -text +3NE1T4oBgHgl3EQflwRz/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +3tFKT4oBgHgl3EQfRC0N/content/2301.11769v1.pdf filter=lfs diff=lfs merge=lfs -text +rtFST4oBgHgl3EQfQDhb/content/2301.13757v1.pdf filter=lfs diff=lfs merge=lfs -text diff --git a/0NFRT4oBgHgl3EQfkTex/vector_store/index.faiss b/0NFRT4oBgHgl3EQfkTex/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..cf520166186a350af43ae8b768f8156c6bd20906 --- /dev/null +++ b/0NFRT4oBgHgl3EQfkTex/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cba40fe04a6f7f99202160b1596de82faf34dcedf499713fba8f5d154c5787c6 +size 2097197 diff --git a/0dE1T4oBgHgl3EQfkwTA/content/tmp_files/2301.03278v1.pdf.txt b/0dE1T4oBgHgl3EQfkwTA/content/tmp_files/2301.03278v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..9ebcd35a97990a07bc30b3790f1272683c465097 --- /dev/null +++ b/0dE1T4oBgHgl3EQfkwTA/content/tmp_files/2301.03278v1.pdf.txt @@ -0,0 +1,1799 @@ +MNRAS 000, 1–14 (0000) +Preprint 10 January 2023 +Compiled using MNRAS LATEX style file v3.0 +MulGuisin, a Topological Clustering Algorithm, and Its +Performance as a Cosmic Structure Finder +Young Ju1,2, Inkyu Park1,2⋆, Cristiano G. Sabiu1,2 and Sungwook E. Hong,3,4 +1Department of Physics, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea +2Natural Science Research Institute, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea +3Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 34055, Republic of Korea +4Astronomy Campus, University of Science and Technology, 776 Daedeok-daero, Yuseong-gu, Daejeon 34055, Republic of Korea +10 January 2023 +ABSTRACT +We introduce a new clustering algorithm, MulGuisin (MGS), that can find galaxy clusters using topological informa- +tion from the galaxy distribution. This algorithm was first introduced in an LHC experiment as a Jet Finder software, +which looks for particles that clump together in close proximity. The algorithm preferentially considers particles with +high energies and merges them only when they are closer than a certain distance to create a jet. MGS shares some +similarities with the minimum spanning tree (MST) since it provides both clustering and graph-based topology in- +formation. Also, similar to the density-based spatial clustering of applications with noise (DBSCAN), MGS uses the +ranking or the local density of each particle to construct clustering. In this paper, we compare the performances of +clustering algorithms using some controlled data and some realistic simulation data as well as the SDSS observation +data, and we demonstrate that our new algorithm find clusters most efficiently and it defines galaxy clusters in a way +that most closely resembles human vision. +Key words: large-scale structure of Universe, galaxies: clusters: general, methods: statistical, software: data analysis +1 INTRODUCTION +In the standard ΛCDM cosmology paradigm, structures in +the universe grow in a hierarchical manner (e.g., White & +Rees 1978; Fall & Efstathiou 1980; Blumenthal et al. 1984). +It means that smaller structures of matter start forming ear- +lier, and the more massive structures form by the merging and +accretion of smaller structures at later epoch of the universe. +Therefore, understanding cosmic structures in the universe +at various scales is crucial for understanding the nature of +our universe. For example, numerous statistics of large-scale +structures, such as topological analyses (e.g., Gott et al. 1986; +Park & Gott 1991; Park & Kim 2010; Appleby et al. 2017, +2018), Alcock-Paczynski tests (e.g., Alcock & Paczynski 1979; +Ballinger et al. 1996; Li et al. 2014; Park et al. 2019), and +small-scale redshift-space distortion (RSD; e.g., Sheth 1996; +DeRose et al. 2019; Tonegawa et al. 2020), have been used to +constraint cosmological parameters such as the matter den- +sity parameter (Ωm) and the equation-of-state parameter of +dark energy (ωde). +While numerous statistics of cosmic structures have been +used to understand the evolution and structure formation +⋆ E-mail: icpark@uos.ac.kr +of our universe, the exact definition of cosmic structures re- +mains unclear. This is mainly because the matter distribution +on large scale is continuous, and therefore, there exists no +specific discrete boundary for each structure. Also, the mem- +bership for a certain structure might change if one considers +other properties than just position, such as dynamics, mass, +and so on (e.g., Serra & Diaferio 2013; Gifford et al. 2013). +Due to this ambiguity, numerous clustering algorithms have +been proposed and used in the astronomical community. For +example, Knebe et al. (2011) compared the various properties +of dark matter (DM) halos found by 17 different halo-finding +algorithms run on the same cosmological N-body simulation. +Galaxy clustering algorithms have been used as essential +tools for identifying galaxy clusters or super-clusters, as well +as for investigating the large structure of the universe, includ- +ing the filament structures. The most commonly used galaxy +clustering algorithms in astronomy research are the friends- +of-friends (FoF; Davis et al. 1985) and the minimum span- +ning tree (MST; Borůvka 1926). These algorithms were in- +troduced in the 1980s and have been widely used as standard +galaxy clustering algorithms. In recent years, with the rapid +development of machine learning (ML) technology, clustering +algorithms such as DBSCAN (Density-based Spatial Cluster- +ing of Applications with Noise; Ester et al. 1996) have also +been applied to galaxy clustering. These clustering softwares, +© 0000 The Authors +arXiv:2301.03278v1 [astro-ph.IM] 9 Jan 2023 + +2 +Y. Ju et al. +including the ML based one, show comparable performance +in galaxy clustering and produce consistent clustering results. +However, the results of clustering do not always represent the +clusters that the human eye can find. There are cases where a +distribution clearly contains a cluster but it is not recognized +as such by clustering algorithms, and there are cases where +it is clearly divided into two clusters, visually, but appears as +a single lump to the software. +As such, we have explored the possibility of developing an +algorithm that creates galaxy clusters in a way that more +closely resembles how the human eye and brain identify pat- +terns. One approach we considered was to adapt jet-finding +software used in high-energy particle physics research, with a +particular focus on the MulGuisin (MGS) algorithm as a po- +tentially suitable software for galaxy clustering. MulGuisin +(ᄆ +ᅮ +ᆯᄀ +ᅱᄉ +ᅵ +ᆫ) is a Korean word for a ghost that lives in water +and is a figure that often appears in old Korean stories. The +MGS algorithm started with the idea that the ghosts hiding +in the water could be found in the order of height by simply +draining the water from the lake. +Initially, we copied the MGS software from the A Toroidal +LHC Apparatus (ATLAS) Jet-Finding library released in the +early 1990s and developed it into a 3D galaxy clustering al- +gorithm. We then made several sample galaxy distributions +to check the performance of MGS and compared the results +to those produced by other standard clustering algorithms +such as FoF, MST, and DBSCAN. As a result, it was found +that MGS had characteristics that other algorithms could not +show, and it was also found that the cluster results created by +MGS were most similar to the cluster results that the human +eye found. +Since the clusters created by MGS show different shapes +when compared with clusters formed by other algorithms, +and the number of clusters and the size distribution of clus- +ters are quite different from those of classical algorithms, us- +ing MGS makes a big difference in searching halos and super- +clusters, and can yield a different interpretation for the large +scale structures of the universe. Therefore, we anticipate that +this new algorithm will be used as a new methodology in +galaxy cluster research and furthermore used to create new +interpretations in cosmology studies. +The structure of this paper is as follows. In Section 2, we +introduce the MulGuisin clustering algorithm, as well as FoF, +MST, and DBSCAN as benchmark clustering algorithms for +comparison. In Section 3, we describe both controlled random +data and realistic galaxy distribution data that we will use +for the performance test. We apply the above four clustering +algorithms to the data and compare their performances in +Section 4, and we summarize our results in Section 5. +2 METHODS +A halo or galaxy cluster is a group of galaxies held together by +gravity. Finding such cluster structures in galaxy distribution +data is very important for astronomical research because it +provides a tool to study super-clusters, filaments, and even +bigger the large scale structure of the universe. +A cluster can be defined as a concentration of points or +cells in a localized volume. The task of cluster identification +has been extensively studied in the field of computational +science, and a wide range of clustering algorithms have been +developed for this purpose. Because different algorithms have +different strengths and weaknesses, it is important for re- +searchers to carefully select the algorithm that best suits their +specific research purpose. +In this section, we first introduce our MulGuisin clustering +algorithm and introduce two clustering tools that are widely +used in the field of astronomy and a newly developed clus- +tering program through machine learning. +2.1 MulGuisin galaxy clustering algorithm +The MulGuisin (MGS) clustering algorithm was first intro- +duced as a jet finder for the Large Hadron Collider (LHC) +physics in the ATLAS Collaboration (Bosman et al. 1998). +The algorithm is neither a variant of the conventional cone +algorithm nor a variant of the kT algorithm that is used in +various collider experiments as the standard tools for finding +jets. Although it has shown some improvements in jet recon- +struction performance, such as optimized jet orientation and +jet energy resolution, but has not been used as a standard +jet-finding tool for LHC experiments. +Fig. 1 shows how the MGS algorithm works. The MGS +algorithm first finds the most massive point from the input +data and names it a cluster seed. Then it finds the second +massive point and decides whether the point should belong +to the first cluster or stand alone as the seed of a new cluster. +This decision is made by checking how close the test point +is to any neighboring clusters, for which we introduce a pa- +rameter called linking length (ℓMST). That is, if the distance +between the test point and the closest point in the cluster +is less than this parameter, the test point is attached to the +cluster, otherwise, it becomes the seed of a new cluster. The +algorithm then finds the next massive point and repeats the +above process until there are no more points left to test. At +this stage, all points are converted into clusters. Of course, +some points do not belong to any cluster and remain. +Fig. 2 is an illustration to explain how the MGS algorithm +creates galaxy clusters. In the figure, the points are sorted in +order according to their mass and number. And according to +this order, they become new cluster seeds or stick to exist- +ing clusters. After going through the process, a cluster forms +a tree-like structure that is sequentially connected accord- +ing to the order of mass. The points in a cluster then form +branches and nodes, and from the characteristic structure of +such tree shape, one may able to study the topology of the +galaxy cluster. +2.2 Benchmark Algorithms +In order to compare the performance of the MGS algorithm +with those of other standard clustering algorithms, we select +three benchmark algorithms, mostly based on their popular- +ity in the astronomical community, mathematical clarity, and +versatility. They are the friends-of-friends (FoF), minimum +spanning tree (MST), and the density-based spatial cluster- +ing of applications with noise (DBSCAN). Here we briefly +introduce each package and describe how they make clus- +ters.1 +1 Note that running our MGS algorithm from scratch may take +a longer time than the above benchmark algorithms, especially +MNRAS 000, 1–14 (0000) + +MulGuisin Clustering Algorithm +3 +Figure 1. Schematic flow chart to describe how MulGuisin (MGS) algorithm works +Figure 2. Diagram showing how the MulGuisin (MGS) algorithm works to identify clusters. Each gray circle represents a galaxy, and the +size of the circle denotes its local density, with the number specifying the galaxies ranking in descending order of density. In this specific +example, 21 galaxies are grouped into 3 clusters and 2 isolated galaxies. +MNRAS 000, 1–14 (0000) + +galaxies +No +Yes +clusters +No +Yes1st cluster +8 +5 +10 +numberofchildrene3 +12 +1st seed +19 +linking distance +isolatedgalaxy +3rd cluster +Oth generation +3rd seed +2nd cluster +2ndseed +3 +1st generation +13 +9 +16 +14 +2nd generation +b +15 +4th generation +21 +isolatedgalaxy4 +Y. Ju et al. +2.2.1 Friends-of-Friends (FoF) +The friends-of-friends (FoF) algorithm is a commonly used +technique for identifying clusters in astrophysical data +(Huchra & Geller 1982; Tago et al. 2008; Duarte & Mamon +2014; Tempel et al. 2016). This algorithm has a single free +parameter, the linking length (ℓFoF), which determines the +distance threshold for linking two data points. Points that are +within this distance of each other are considered to be con- +nected, and all connected points are grouped together into a +single cluster. +One limitation of the FoF algorithm is that it can be diffi- +cult to choose an appropriate linking length. Different values +of this parameter can result in clusters of different shapes +or numbers, making it challenging to determine the optimal +value (Tago et al. 2008).2 In this study, we use the Halotools +implementation of the FoF algorithm (Hearin et al. 2017) to +identify clusters in our datasets by applying various ℓFoF. +Unless otherwise noted, we assume all FoF groups containing +two or more members as clusters. +2.2.2 Minimum Spanning Tree (MST) +Galaxy data can be represented as a graph, with each galaxy +represented as a node and the distance between two galaxies +represented as an edge. The minimum spanning tree (MST) +algorithm is a method for constructing a unique network from +this data by connecting all nodes with minimum edges. Unlike +other clustering algorithms, the MST does not require the use +of a free parameter such as a linking length to construct the +entire network. However, the MST connects all nodes and +may not produce clusters with shapes that accurately reflect +those of the original clusters. +Nevertheless, MST has been used in cosmology to study +the large-scale structure of the universe (Barrow et al. 1985; +Krzewina & Saslaw 1996; Naidoo et al. 2020). In this study, +we use the MiSTree package (Naidoo 2019) to construct MSTs +from our galaxy data. Then, we find clusters from the single +MST tree by cutting nodes longer than the linking length +(ℓMST). Similar to the FoF case, we apply various values of +ℓMST and assume all tree segments containing two or more +members as clusters. +2.2.3 Density-based Spatial Clustering of Applications with +Noise (DBSCAN) +The use of machine learning (ML) techniques is widespread +in astronomy, as they enable the identification of patterns in +data using algorithms. ML algorithms can be classified based +on the type of data they are applied to, and one type, called +when the number of data points is large. We found that most of +the MGS calculation time, for a large number of data points, is +taken in constructing the Voronoi tesselation and calculating the +local density for each point. If we separate MGS into a density +calculation and a tree building part, we found that the tree building +takes a similar time to the benchmark algorithms. +2 Note that the appropriate choice linking length for identifying +DM halos from the DM particles in the N-body simulations is well +known (ℓFoF ≃ 0.2⟨dparticle⟩) (More et al. 2011). However, the +optimal choice of linking length in general clustering problems is +not well known. +unsupervised ML, is used with unlabeled data. Clustering al- +gorithms, a subcategory of unsupervised ML algorithms, are +used to group together data points with similar properties. +One popular clustering algorithm is DBSCAN (density-based +spatial clustering of applications with noise), which has been +applied in a variety of contexts (Ester et al. 1996; Sander +et al. 2017). +DBSCAN is a density-based clustering algorithm that +groups together data points based on their local density. In +this algorithm, each cluster is identified by defining its core, +which consists of high-density points within a certain dis- +tance. The definition of core requires two free parameters, +min_samples and eps, which determine the minimum num- +ber of neighbors a point must have within a given radius in +order to be considered as the core. Then, other points that are +directly reachable from some core points within eps are also +considered part of the cluster, while other points are labeled +as noise. +In this study, we use the scikit-learn package (Pedregosa +et al. 2011) to implement the DBSCAN algorithm and iden- +tify clusters in our data by applying various eps (or, the “link- +ing length” in DBSCAN (ℓDBSCAN)). Unless otherwise noted, +we assume min_samples = 3. +2.3 A Simple 2D Toy Model Test +To see how the shape of the clusters generated by the MGS +algorithm differs from the results of other clustering algo- +rithms, we created simple simulation data and compared the +results. We first assume that there are 5 clusters in 2D space, +and consider the case where each cluster contains 50 galaxies +equally. The width of the galaxy distribution of each cluster +was fixed to 10. The coordinates of the two-dimensional space +span from 0 to 100 on both the X- and Y-axes, and the posi- +tion of each cluster is set to have three different distributions, +from far away from each other to all close together, as shown +in Fig. 3 column (a) in rows (1), (2) and (3). +As shown in Fig. 3, both the MGS and MST algorithms +correctly find 5 clusters when the distances among the clus- +ters are sufficiently far apart. However, when the clusters get +closer together, MST can’t differentiate between the clus- +ters and starts recognizing them as one big cluster. Even +for the cases where clusters are attached to each other as +shown in Fig. 3 (3), MGS still recognizes four among five +true clusters like the human eyes can distinguish each clus- +ter, whereas MST recognizes 4 adjacent clusters as one huge +cluster. These differences can create serious differences in re- +sults when studying the number and mass distributions of +clusters. +Note that, although we leave its details as future works, +the tree structures made by the MGS algorithm have a non- +negligible number of long nodes connecting two distant points +in the cluster, while the MST algorithm connects only rea- +sonably nearby points. This is because the MGS algorithm +connects data points based on their local density, not only the +distance between the points. Therefore, if two highly dense +points are within the linking length, then they would be con- +nected in the MGS but may not be in the MST. +In the next section, we will compare the performance of +MGS and other algorithms with more realistic 3D data. +MNRAS 000, 1–14 (0000) + +MulGuisin Clustering Algorithm +5 +0 +20 +40 +60 +80 +100 +(1) +LL = 10 +0 +20 +40 +60 +80 +100 +(2) +0 +20 +40 +60 +80 +100 +(a) +0 +20 +40 +60 +80 +100 +(3) +0 +20 +40 +60 +80 +100 +(b) +0 +20 +40 +60 +80 +100 +(c) +Figure 3. A simple 2D toy model test of the MGS algorithm by comparing it with the MST algorithm. (a) Input distributions of 5 +clusters with different degrees of separation from each other ((1)–(3)). Background color denotes the galaxy number distribution we used +for generating the galaxies. (b) Clusters found by MGS and their tree structures. (c) Clusters found by MST and their tree structures. +3 DATA +Our final goal is to apply the MGS algorithm described in +Section 2 to the galaxy clusters or other large-scale struc- +tures of the universe. However, since some inconsistencies ex- +ist between various clustering algorithms for finding clusters +or other large-scale structures (e.g., see Knebe et al. 2011, +and references therein), we cannot compare the MGS clus- +ters found in the realistic data with their “truth”. +Therefore, we apply two types of data sets in this section +to compare the performance between MGS and other bench- +mark algorithms. The first sets, called the “controlled ran- +dom data” (D1–D3), are those that we design all properties +of clusters, including their positions and member galaxy dis- +tributions. Since we already know the true information of +each cluster, we can test which algorithms predict the true +clusters better in which conditions. The next sets, called the +“realistic data” (D4), are the observational and simulation +data sets of galaxies around z ≃ 0, and we focus on com- +paring the properties of predicted clusters in each algorithm. +Table 1 summarizes the data sets we use in this work. +3.1 Controlled Random Data (D1–D3) +3.1.1 Different Spatial Dispersion (D1) +We use controlled, simulated data to evaluate the perfor- +mance of the MGS algorithm in comparison to other clus- +tering algorithms. These data are generated randomly and +allow us to control the shape and distribution of clusters to +test the algorithms under different conditions. The first set +of data consists of 100 galaxies per cluster and 50 clusters +within a 3-dimensional cubic volume of space with a side +length 200 h−1Mpc. The cluster center positions are chosen +randomly, and the galaxies in each cluster are distributed ac- +cording to a Gaussian distribution with a variable standard +deviation (σ) that controls the spatial dispersion. The D1-LD +data has a low spatial dispersion (σ = 1 h−1Mpc), leading to +well-separated clusters, while the D1-HD data has a higher +MNRAS 000, 1–14 (0000) + +6 +Y. Ju et al. +Data set +Description +D1-LD +50 randomly positioned clusters, each of which contains 100 galaxies randomly spread by the 3D Gaussian +distribution with standard deviation σ = 1 h−1Mpc. The total number of galaxies is 5,000. +D1-HD +Same as D1-LD, but with the greater standard deviation σ = 10 h−1Mpc. +D2-NA +Same as D1-HD, but the number of galaxies in each cluster follows an exponential random distribution. +The total number of galaxies is 7,041. +D2-LA +Same as D2-NA, but adding uniformly randomly distributed noisy galaxies to the entire box to increase +the total galaxy number density 1.5 times of D2-NA.The total number of galaxies is 12,041. +D2-HA +Same as D2-LA, but adding more noisy galaxies so that the total galaxy number is twice D2-NA. The +total number of galaxies is 17,041. +D3-HOD +500 randomly positioned clusters with a mass distribution similar to the Press-Schechter mass function. +The number of galaxies for each cluster follows HODa for massive halos (M ⩾ 1013 h−1M⊙). The +galaxies are spread by the NFW profile with the concentration parameter to 10. The total number of +galaxies is 50,257. +D4-SDSS +Volume-limited sample of the KIAS-VAGCb with absolute r-band magnitude Mr − 5 log h < −20. +D4-HR4 +Four lightcone data of mock galaxy catalogs from the Horizon Run 4 simulationc with a similar condition +to D4-SDSS. +a Kravtsov et al. (2004). b Choi et al. (2010a). c Kim et al. (2015); Hong et al. (2016). +Table 1. Name and description of galaxy data sets that we use in this analysis. The box size of all controlled data (D1–D3) is +(200 h−1Mpc)3. +X +100 +75 +50 +25 +0 +25 +50 +75 +100 +Y +100 +75 +50 +25 +0 +25 +50 +75 +100 +Z +0 +25 +50 +75 +100 +125 +150 +175 +200 +X +100 +50 +0 +50 +100 +Y +100 +50 +0 +50 +100 +Z +0 +50 +100 +150 +200 +D1-LD +D1-HD +X +100 +75 +50 +25 +0 +25 +50 +75 +100 +Y +100 +75 +50 +25 +0 +25 +50 +75 +100 +Z +0 +25 +50 +75 +100 +125 +150 +175 +200 +X +100 +50 +0 +50 +100 +Y +100 +50 +0 +50 +100 +Z +0 +50 +100 +150 +200 +D1-LD +D1-HD +X +0 +50 +100 +150 +200 +Y +0 +50 +100 +150 +200 +Z +0 +50 +100 +150 +200 +D3-HOD +X +100 +50 +0 +50 +100 +Y +100 +50 +0 +50 +100 +Z +0 +50 +100 +150 +200 +X +100 +50 +0 +50 +100 +Y +100 +50 +0 +50 +100 +Z +0 +50 +100 +150 +200 +X +100 +50 +0 +50 +100 +Y +100 +50 +0 +50 +100 +Z +0 +50 +100 +150 +200 +D2-NA +D2-LA +D2-HA +X +100 +50 +0 +50 +100 +Y +100 +50 +0 +50 +100 +Z +0 +50 +100 +150 +200 +X +100 +50 +0 +50 +100 +Y +100 +50 +0 +50 +100 +Z +0 +50 +100 +150 +200 +X +100 +50 +0 +50 +100 +Y +100 +50 +0 +50 +100 +Z +0 +50 +100 +150 +200 +D2-NA +D2-LA +D2-HA +X +100 +50 +0 +50 +100 +Y +100 +50 +0 +50 +100 +Z +0 +50 +100 +150 +200 +X +100 +50 +0 +50 +100 +Y +100 +50 +0 +50 +100 +Z +0 +50 +100 +150 +200 +X +100 +50 +0 +50 +100 +Y +100 +50 +0 +50 +100 +Z +0 +50 +100 +150 +200 +D2-NA +D2-LA +D2-HA +Figure 4. Three-dimensional galaxy distributions of controlled data sets used in this paper. Top: D1-LD(left), D1-HD(middle), and D3- +HOD(right). Bottom: D2-NA(left), D2-LA(middle), and D2-HA(right), with noisy additional galaxies shown as yellow dots. See Table 1 +for details. +MNRAS 000, 1–14 (0000) + +MulGuisin Clustering Algorithm +7 +spatial dispersion (σ = 10 h−1Mpc), resulting in clusters that +are closer together. Upper left and middle panels of Fig. 4 +show the distribution of galaxies in the D1-LD and D1-HD +data sets. +3.1.2 Additional Noisy Galaxies (D2) +We generate additional controlled data sets that are similar +to D1 but with slightly different characteristics. We again +place 50 cluster centers at the same positions as D1, but this +time we use an exponential distribution to generate a variable +number of galaxies for each cluster: +P(Ngal) = +� +� +� +1 +∆N exp +� +−Ngal − N0 +∆N +� +if Ngal > N0 +0 +otherwise +. +(1) +Here, we set N0 and ∆N as 50 and 100, respectively, so +that the minimum number of galaxies per cluster and the +total number of galaxies roughly match with D1. The galax- +ies are spatially distributed according to a Gaussian function +centred on the cluster’s centre with a standard deviation of +σ = 10 h−1Mpc, as was done for D1-HD, and we call this +new controlled data D2-NA. The lower left panel of Fig. 4 +shows the distribution of galaxies in the D2-NA data. The +total number of galaxies in this data set is 7,041. +In addition to D2-NA, we introduce two more data sets +that are created by adding unclustered galaxies, which are +sampled uniformly in the entire box. We add these ‘noisy’ +galaxies so as to test how the algorithms are affected by the +background density. The lower middle panel of Fig. 4 shows +the D2-LA data, where we add 5,000 galaxies (yellow dots) +to increase the galaxy number density by 1.5 times compared +to D2-NA. On the other hand, the lower right panel shows +the D2-HA data, where we add 10,000 galaxies to make the +total galaxy number density twice that of D2-NA. +3.1.3 HOD-based Mock Galaxies (D3-HOD) +We generate a third set of controlled, simulated data to cre- +ate a more complex environment for testing the performance +of the MGS algorithm. We use an analytic formula to model +the distribution of galaxies in this data set. First, we create +500 cluster center positions by sampling uniform random dis- +tribution within a (200 h−1Mpc)3 box. Then, we obtain the +normalized version of Press-Schechter halo mass function at +z = 0(Press & Schechter 1974), with a concordance ΛCDM +cosmology to the Planck 2015 data (Planck Collaboration +et al. 2016), for massive halos Mhalo > 1013 h−1M⊙ using the +Colossus package (Diemer 2018). We then obtain masses for +each of the 500 clusters by randomly sampling for the mass +function.3 +We then use this information to generate a distribution +of the number of galaxies using a halo occupation distribu- +tion (HOD) model. The mean halo occupation is typically as- +sumed to follow a power law at massivehalo masses (Berlind +3 Note that neither the positions nor the mass distribution of clus- +ters in D3-HOD follows the estimation from the standard cosmol- +ogy. However, here we focus only on providing complex environ- +ments, and therefore, such differences do not affect our motivation. +See Section 3.2 for realistic data sets instead. +& Weinberg 2002; Kravtsov et al. 2004): +Navg(Mcluster) = +� +� +� +�Mcluster +M1 +�α +if Mhalo > Mmin +0 +otherwise +, +(2) +where α, Mmin, and M1 correspond to the power-law in- +dex, cutoff halo mass where halo cannot contain galaxies, +and the mass scale containing a single galaxy at the given +condition of galaxy sample. Here, we use α = 0.87 and +Mmin = 1013 h−1M⊙ by following Kravtsov et al. (2004). We +set M1 = 1011 h−1M⊙ so that the minimum number of galax- +ies for each cluster is set as 50. Also, for simplicity, we calcu- +late the actual number of galaxies at each cluster by applying +the ceiling to Navg. +Next, we use the Colossus package to create an Navarro- +Frenk-White (NFW) profile (Navarro et al. 1996) +ρ(x) = Mcluster +4πR3 +vir +�� +ln(1 + cs) − +cs +1 + cs +� +x(x + c−1 +s )2�−1 +, +(3) +where x ≡ r/Rvir. The concentration parameter for the NFW +profile cs is fixed as 10, and the virial radii Rvir is determined +by the cluster mass accordingly. We then randomly distribute +the galaxies according to this profile, and the resulting data +set consists of 50,257 galaxies. The upper right panel of Fig. 4 +shows the distribution of galaxies in D3-HOD. +3.2 Realistic Data: SDSS & Horizon Run 4 (D4) +In the previous subsection, we described a set of controlled +data catalogues for which we can carefully control the prop- +erties of the clusters. Such data are useful for testing the +performance of MGS over other benchmark algorithms by +comparing the properties of identified clusters with the in- +put truth. However, the true distribution of galaxies in the +universe differs from these controlled random data in the fol- +lowing ways. First, unlike those in the controlled random data +with low noise levels, the boundaries of clusters in the uni- +verse are often not clearly defined (e.g., Serra & Diaferio 2013; +Gifford et al. 2013). Also, the spatial distribution of galax- +ies in each cluster may not follow spherical symmetry (e.g., +Limousin et al. 2013, for a good review). Furthermore, the +redshift-space distortion elongates spherical clusters in real +space, which may require that we separate linking lengths +between the radial and tangential directions (Farrens et al. +2011; Tempel et al. 2016). +Therefore, it is necessary to adopt a realistic galaxy dis- +tribution for a fair performance test of the MGS algorithm. +However, unlike for the case of the controlled random data +where we know the answer, we may only study the dif- +ference between the cluster properties from the MGS and +other benchmark algorithms. Here we use observational data +and four corresponding sets of mock simulation data — the +volume-limited KIAS-Value Added Galaxy Catalog (KIAS- +VAGC) of the Sloan Digital Sky Survey (SDSS) Main Galaxy +Sample with r-band absolute magnitude Mr − 5 log h < −20 +(Choi et al. 2010a) and the lightcone mock galaxy samples +from the Horizon Run 4 simulation (Kim et al. 2015; Hong +et al. 2016). +MNRAS 000, 1–14 (0000) + +8 +Y. Ju et al. +3.2.1 Volume-limited KIAS-VAGC (D4-SDSS) +The KIAS Value-Added Galaxy Catalog (KIAS-VAGC; Choi +et al. 2010a) is an upgraded version of the New York Uni- +versity Value-Added Galaxy Catalog (NYU-VAGC; Blanton +et al. 2005), which is part of the Sloan Digital Sky Survey +(SDSS) Data Release 7 (Abazajian et al. 2009), by adding +some missing redshifts to improve spectroscopic complete- +ness. This catalog has been widely used in numerous studies, +including cosmic voids statistics (Pan et al. 2012; Hoyle et al. +2012), largest structures of universe (Park et al. 2012), frac- +tion of barred galaxies (Lee et al. 2012a), and the properties +of active galactic nuclei (AGN; Lee et al. 2012b; Hwang et al. +2012; Bae & Woo 2014). +Most of the KIAS-VAGC galaxies were observed with the +apparent r-band magnitude limit r = 17.6. It means that, in +terms of absolute magnitude, the catalog contains less bright +galaxies at lower redshifts, while only very bright galaxies +could be seen at higher redshifts. Therefore, for a fair com- +parison between galaxies over a wide redshift range, we ap- +ply a “volume-limited” selection by selecting galaxies brighter +than a certain absolute r-band magnitude (Choi et al. 2010b). +Here, we use Mr − 5 log h < −20. By combining with the +given apparent r-band magnitude limit, such absolute mag- +nitude cutoff naturally provides the upper redshift bound of +our volume-limited sample (z < 0.107; left panel of Fig. 5). +We also apply the lower redshift bound z > 0.02, by consider- +ing the incompleteness of the galaxy sample below the given +redshift. +In addition to the volume-limited selection in the redshift- +magnitude plane, we also apply a sky selection for simplifica- +tion. Specifically, we select galaxies within the SDSS Survey +coordinate −33.5◦ < η < 36.5◦ and −48◦ < λ < 51◦, in or- +der to maximize the sky area with a simple geometry, and +to avoid issues arising from a complicated boundary (right +panel of Fig. 5). +3.2.2 Horizon Run 4 (D4-HR4) +The Horizon Run 4 simulation (HR4; Kim et al. 2015) is an +extremely large cosmological N-body simulation that uses +6, 3003 DM particles within a periodic cube with a comoving +volume V = (3.15 h−1cGpc)3. It assumes a vanilla ΛCDM +cosmological model in concordance with the Wilkinson Mi- +crowave Anisotropy Probe (WMAP) 5th-year result (Dunkley +et al. 2009). Among 2,001 timesteps between z = 100 to 0, +75 coarse timesteps with mean time difference ∆t = 0.18 Gyr +are chosen between z = 12 to 0 to build a merging tree of +FoF halos. The FoF linking length is 0.2 times the particle +mean separation, and we identify halos only whose mass is +greater than M min +halo = 2.7 × 1011 h−1M⊙. +The mock galaxies are then produced by so-called the +most bound halo particle (MBP)-galaxy abundance match- +ing method (Hong et al. 2016). We find MBPs for all halos in +the merging tree and adopt their positions and peculiar ve- +locities as those of corresponding mock galaxies. The “mass” +of mock galaxies, which is used as a proxy of stellar mass or +luminosity, is defined as the mass of their hosting halos. For +satellite halos, we identify their MBPs at the timestep just +before the infall event and trace them until they are totally +absorbed toward their central halo by tidal disruption. For +estimating the tidal disruption timescale tmerge), we adopt a +modified model of Jiang et al. (2008), +tmerge +tdyn += (0.94ϵ0.60 + 0.60)/0.86 +ln[1 + (Mhost/Msat)] +�Mhost +Msat +�α +, +(4) +where ϵ, Mhost, Msat, tdyn are the circularity of the satellite’s +orbit, the mass of central and satellite halos, and the orbital +period of virialized objects, respectively. We adopt α = 1.5 +for a better match of the galaxy two-point correlation func- +tion (2pCF) at scales less than 1 h−1Mpc at a given spatial +resolution of the HR4 (Zehavi et al. 2011; Park et al. 2019). +Then the mass of survived satellite galaxies is defined as the +mass of their hosting halos just before the infall. +After producing snapshot mock galaxy catalogs for coarse +timesteps, we then produce lightcone mock galaxy catalogs +up to z = 1.5. The all-sky lightcone DM particle data of the +HR4 were created during the simulation by stacking the co- +moving shells at the corresponding redshifts. Then, we com- +pare the IDs of the galaxy MBPs at each coarse timestep +snapshots and those of DM particles at the lightcone data +with the coarse comoving shells. If the MBP ID of a given +mock galaxy matches that of a particle in the lightcone data, +we assign a galaxy in the lightcone data. Here, we adopt +the position and peculiar velocity from the particle at the +lightcone data, while the galaxy “mass” comes from the mock +galaxy at the nearest snapshot. +After creating the all-sky lightcone mock galaxy catalog, +we cut it in a similar way to the volume-limited KIAS-VAGC +sample. First, we apply the redshift space distortion (RSD) +for each mock galaxy for a fair comparison with observation, +by using real-space positions and peculiar velocities. Then, +we apply the same redshift range 0.02 < z < 0.107 and set +the lower bound of galaxy “mass,” so that the galaxy number +density of the HR4 lightcone data is identical to that of KIAS- +VAGC. After that, we create four non-overlapping subsets +from it with the same angular geometry as our SDSS Survey +coordinate selection. +During the analysis, we found that the fiber collision in the +fiber-fed spectroscopic observations affects various clustering +statistics (Zehavi et al. 2002; Guo et al. 2012; Reid et al. 2014; +Tonegawa et al. 2020). Therefore, for a fair comparison, our +HR4 mock galaxy catalogs also need to follow the same fiber +collision condition as the KIAS-VAGC. To do so, we select +pairs of mock galaxies whose angular distance is less than +55 arcseconds and keep only one from each pair by random +selection. Because SDSS observations were partially overlap- +ping, some close-pairs have both redshifts. In order to reflect +this, we only fiber-collide 60% of the close pairs. +4 RESULTS +We test MGS and the other algorithms using the 3 controlled +data and observation data. We run 4 algorithms with various +linking-length and find out the number of clusters. The same +process is repeated by changing linking-length and we check +the tendency of the number of clusters. +We use the three controlled data sets and observation data +to evaluate the performance of the MGS algorithm and com- +pare it to other clustering algorithms. We run each of the +four algorithms with different values of the linking length +and count the number of clusters identified by each algo- +rithm. We repeat this process for a range of linking lengths +MNRAS 000, 1–14 (0000) + +MulGuisin Clustering Algorithm +9 +0.00 +0.05 +0.10 +0.15 +0.20 +0.25 +Redshift +23 +22 +21 +20 +19 +18 +17 +r +5logh +150 +100 +50 +0 +50 +100 +150 + [degree] +60 +40 +20 +0 +20 +40 +60 + [degree] +Figure 5. Selection of the volume-limited sample of the KIAS Value-Added Galaxy Catalog (KIAS-VAGS) used in this study (red boxes). +Left: Volume-limited selection in the redshift vs. absolute r-band magnitude plane with Mr − 5 log h < −20. Right: Sky selection in SDSS +Survey coordinates (η, λ). +30 +35 +40 +45 +50 +Number of Clusters +D1-LD +MGS +MST +FoF +DBSCAN +2 +4 +6 +8 +10 +Linking-length +0 +10 +20 +30 +40 +50 +Number of Clusters +D1-HD +Figure 6. The number of clusters as a function of linking length +for D1-LD (top panel) and D1-HD (bottom). Each of the 4 clus- +tering algorithms are indicated using different colors and symbols. +Note that MST and DBSCAN show considerable overlap. The Hor- +izontal dash shows the original number of clusters, which is 50. +and analyze the trends in the number of clusters identified +by each algorithm. This allows us to assess the sensitivity of +the algorithms to the choice of linking length and to compare +their performance in identifying clusters in the different data +sets. +4.1 Results with Controlled Data +Fig. 6 shows the number of clusters identified by each algo- +rithm as a function of the linking length for the controlled +data set 1. The top panel shows the results for the D1- +LD data, which consists of well-separated clusters. The al- +gorithms are expected to identify 50 clusters in this data set. +All four algorithms perform well in identifying the clusters, +but the MGS algorithm stands out for its ability to accu- +rately identify the correct number of clusters. In particular, +for large linking lengths, the FoF and DBSCAN algorithms +identify fewer than 50 clusters, because they connect neigh- +boring clusters and merge them into a single cluster. +The bottom panel of Fig. 6 shows the results for the D1- +HD data, which has a higher level of spatial dispersion and +some clusters that are close to each other. For small link- +ing lengths, the algorithms identify fewer than 50 clusters +because the linking length is not sufficient to connect the +galaxies in these clusters. As the linking length increases, the +behavior of the algorithms becomes more distinct. The MGS +algorithm continues to accurately identify the correct number +of clusters, while the other algorithms identify fewer clusters +due to the merging of originally separate clusters. The MGS +algorithm is able to track the structure of the clusters and +identify their boundaries, leading to more accurate results in +this type of data. +Fig. 7 shows the results for controlled data set 2, which +includes the D2-NA data with no additional galaxies and the +D2-LA and D2-HA data with additional galaxies. The top +panel shows the number of clusters identified by each algo- +rithm for the D2-NA data. When this data was generated, +the minimum number of galaxies per cluster was set to 50. +In the region of small linking lengths, all algorithms iden- +tify fewer than 50 clusters because the linking length is too +small to connect the galaxies in the clusters. As a result, +the clusters identified by the algorithms have fewer than 50 +member galaxies, and are therefore not considered as true +clusters. For larger linking lengths, particularly those larger +than 5, the difference between the MGS algorithm and the +other algorithms becomes more pronounced. The MGS al- +gorithm continues to accurately identify the correct number +of clusters, while the other algorithms identify fewer clusters +due to the merging of originally separate clusters. +The behavior of the algorithms with additional galaxies is +even more distinct. The middle panel of Fig. 7 shows the re- +sults for the D2-LA data, where the other three algorithms +identify only a single cluster for very large linking lengths. +As the linking length increases, the algorithms merge several +clusters into a single giant cluster, resulting in a significantly +lower number of clusters than the original data. This rapid +MNRAS 000, 1–14 (0000) + +10 +Y. Ju et al. +10 +20 +30 +40 +50 +60 +Number of Clusters +D2-NA +d += 10.43 +Nmin = 50 +MGS +MST +FoF +DBSCAN +10 +20 +30 +40 +50 +60 +Number of Clusters +D2-LA +d += 8.73 +Nmin = 56 +2 +4 +6 +8 +10 +12 +14 +Linking-length +0 +10 +20 +30 +40 +50 +60 +Number of Clusters +D2-HA +d += 7.77 +Nmin = 59 +Figure 7. Same as Fig. 6, but with D2-NA(top), D2-LA(middle), +and D2-HA(bottom). The vertical dashed line is mean-separation +of data (⟨d⟩). Since each data set has a different overall number +density, we assign different minimum number of member galaxies +(Nmin) to define clusters. +increment of a single giant cluster is called “percolation,” and +it is known to occur at linking length similar to the mean- +separation (ℓ ≃ ⟨d⟩) for the ideal random Poisson graph (Dall +& Christensen 2002). Fig. 7 clearly shows that such percola- +tion occurs at ℓ ≃ ⟨d⟩ for all three benchmark algorithms. +Note that, however, the percolation occurs at the low- +est linking length in FoF, while both MST and DBSCAN +share a similar value of linking length at percolation. This +is because FoF does not have an additional consideration +for limiting the cluster boundary that exists in the other +two algorithms (minimize the number of edges in MST, and +core definition in DBSCAN). Fig. 8 shows the 3D distribu- +tions of clustering results from various algorithms at linking +length ℓ = 11 h−1Mpc, which is longer than the mean sep- +aration ⟨d⟩ = 8.73 h−1Mpc. As expected, three benchmark +algorithms show percolation (blue color), while our MGS al- +gorithm successfully reconstructs most of the true clusters. +Note that only one giant cluster is found in the FoF algo- +rithm, while both MST and DBSCAN have two additional +small clusters (green and orange colors). +The behavior of the MGS algorithm for the D2-HA data +is slightly different. In the region of small linking lengths, +the MGS algorithm accurately identifies the correct number +of clusters. However, for larger linking lengths, particularly +ℓ > 13 h−1Mpc, the MGS algorithm identifies additional clus- +ters that were not present in the original data. These “fake” +clusters are not true clusters and are not representative of the +underlying structure of the data. This behavior highlights the +ability of the MGS algorithm to identify clusters in data with +a complex distribution of galaxies but also underscores the +importance of choosing an appropriate linking length to avoid +identifying false clusters. +Fig. 9 shows the number of clusters for controlled 3 data +with a more complex environment than D1–D2. At ℓ ≳ +⟨d⟩/2 ≈ 3 h−1Mpc, the number of clusters using FoF and +DBSCAN decreases as the linking length increases, resulting +in the percolation at ℓ ≳ ⟨d⟩.The MST shows a flat curve +when the linking length is larger than ∼ 8 h−1Mpc. This is +because MST connects all galaxies with minimal edge first, +and then we cut off the links with linking length. Therefore, +if there were no links longer than 8 h−1Mpc in the original +tree, then cutting the links with any longer linking length +than 8 h−1Mpc would not change the result. So, the number +of clusters using MST shows a constant value. +In contrast, the number of clusters identified by the MGS +algorithm slowly decreases as the linking length increases. +This is because the clusters in this data set are close to each +other and are easily merged by the algorithm for large linking +lengths. However, the MGS algorithm is able to identify clus- +ters based on density, which allows it to retain the structure +of the clusters even for large linking lengths. This is the main +advantage of the MGS algorithm compared to the other three +algorithms, which are not able to accurately identify clusters +in complex data sets. +4.2 Results with Observational and Cosmological +Simulation Data +Fig. 10 shows the results of the four algorithms applied to +both KIAS-VAGC observational data and four sets of HR4 +lightcone data. We track the number of detected clusters +changing with both linking lengths and with the minimum +number of member galaxies from 2 to 5. +For all four clustering algorithms, the HR4 simulation re- +sults match well with the observations within cosmic vari- +ance, especially for n ⩾ 5 at ℓ ≳ ⟨dparticle⟩ = 0.5 h−1Mpc. +On the other hand, HR4 tends to underestimate the num- +ber of clusters for a smaller minimum number of member +galaxies and/or smaller linking length ℓ ≲ 0.5 h−1Mpc. This +may mean that, despite the agreement with the observation in +terms of 2pCF below 1 h−1Mpc-scale, some disagreements ex- +ist between HR4 and observation in terms of the higher-order +statistics in smaller scales than the particle mean separation +scale. +One notable feature of the MGS algorithm is that it does +not create a single giant cluster for large linking lengths. In- +stead, the algorithm identifies a number of smaller clusters, +even for large linking lengths. This is in contrast to the other +three algorithms, which all create a single giant cluster for +large linking lengths. This difference highlights the ability of +the MGS algorithm to accurately identify clusters in data +with a complex distribution of galaxies. +Fig. 11 shows the number of member galaxies for the 1st +MNRAS 000, 1–14 (0000) + +MulGuisin Clustering Algorithm +11 +X +100 +50 +0 +50 +100 +Y +100 +50 +0 +50 +100 +Z +0 +50 +100 +150 +200 +X +100 +50 +0 +50 +100 +Y +100 +50 +0 +50 +100 +Z +0 +50 +100 +150 +200 +X +0 +50 +100 +150 +200 +Y +0 +50 +100 +150 +200 +Z +0 +50 +100 +150 +200 +X +100 +50 +0 +50 +100 +Y +100 +50 +0 +50 +100 +Z +0 +50 +100 +150 +200 +MGS +MST +FoF +DBSCAN +Figure 8. 3D distribution of clustering results from MGS and other benchmark algorithms in D2-LA with linking length ℓ = 11 h−1Mpc, +which is longer than the mean-separation ⟨d⟩ = 8.73 h−1Mpc. Color indicates the cluster membership. MGS finds 49 clusters among 50 +true clusters, while other algorithms connect most of galaxies and finally make a giant cluster (blue color). +to 4th largest clusters identified by each algorithm in D4- +SDSS and D4-HR4. Similar to Fig. 10, both results from the +simulation and observation data match well with each other. +The top left panel of the figure shows the shape of the largest +cluster for each algorithm. As the linking length increases +over certain value, the largest cluster identified by the FoF, +MST, and DBSCAN algorithms contains all of the galaxies in +the data, while the MGS algorithm identifies a cluster with +only a portion of the galaxies. This indicates that the MGS +algorithm is able to identify multiple clusters even for large +linking lengths, while the other algorithms merge all of the +galaxies into a single giant cluster. +The main difference between the MGS algorithm and the +other three algorithms becomes particularly clear when ex- +amining the number of member galaxies in the 2nd to 4th +largest clusters (upper right and bottom panels of Fig. 11). As +the linking length increases, the number of member galaxies +in these clusters identified by the FoF, MST, and DBSCAN +algorithms decreases to zero. This is because the first largest +cluster identified by these algorithms took all the galaxies +in the data, leaving no galaxies to be considered for further +clustering. In contrast, the MGS algorithm is able to identify +multiple clusters even with large linking lengths as the largest +cluster does not monopolize all galaxies. This demonstrates +the ability of the MGS algorithm to accurately identify clus- +ters in data with a complex distribution of galaxies. +Fig. 12 shows the 30 largest clusters found by the MGS +algorithm in the D4-SDSS data with a linking length ℓMGS = +10 h−1Mpc. While such a large choice of linking length makes +a single giant cluster in all other three benchmark algorithms +(see Fig. 11), none of the 30 clusters suffer percolation. All +30 largest clusters are well-separated and have some even dis- +tribution of galaxies in the XY-plane (that is, the tangential +plane). On the other hand, most of the clusters have some- +what elongated features in the line-of-sight direction, which +clearly shows the Finger-of-God effect due to the RSD. There- +fore, although this needs further inspection, we consider that +the 30 largest clusters found by the MGS algorithm could be +MNRAS 000, 1–14 (0000) + +12 +Y. Ju et al. +0 +2 +4 +6 +8 +10 +12 +14 +Linking-Length +0 +100 +200 +300 +400 +500 +Number of cluster +D3-HOD +MGS +MST +FoF +DBSCAN +Figure 9. Same as Figs. 6–7, but with D3-HOD. +100 +101 +102 +103 +104 +Number of clusters +MGS +n +2 +n +3 +n +4 +n +5 +MST +100 +101 +Linking length(h +1Mpc) +100 +101 +102 +103 +104 +Number of clusters +FoF +100 +101 +Linking length(h +1Mpc) +DBSCAN +Figure 10. Same as Figs. 6, 7 & 9, but with D4-SDSS (thick +lines) and D4-HR4. For D4-HR4, the average values and the ranges +between minimums and the maximums of 4 data samples are drawn +as thin lines and error bars. Results from each clustering algorithm +are shown on different panels, while the color indicates the different +choices of the minimum number of member galaxies to identify +clusters. +the actual large structures similar to galaxy (super)clusters +in real space. +5 CONCLUSIONS +The MulGuisin (MGS) algorithm is a powerful technique for +identifying clusters in data from astrophysical simulations +and observations. It consistently produces results closer to +those inferred from human visual inspection. In comparison +to other clustering algorithms, such as the friends-of-friends +(FoF) algorithm, the minimum spanning tree (MST) algo- +100 +101 +102 +103 +104 +105 +Number of galaxies +1st cluster +MGS +MST +FoF +DBSCAN +2nd cluster +10 +1 +100 +101 +Linking length (h +1Mpc) +100 +101 +102 +103 +104 +105 +Number of galaxies +3rd cluster +10 +1 +100 +101 +Linking length (h +1Mpc) +4th cluster +Figure 11. The number of member galaxies for the 1st, 2nd, 3rd +and 4th largest clusters in D4-SDSS (thick lines) and in D4-HR4 +as a function of linking length. For D4-HR4, the average values +and the ranges between minimums and the maximums of 4 data +samples are drawn as thin lines and error bars. Color indicates the +different clustering algorithms. +rithm, and the DBSCAN algorithm, the MGS algorithm has +several advantages. The MGS algorithm is able to take into +consideration the local density and is able to accurately iden- +tify clusters even in complex data sets with a large number +of galaxies. In contrast, the FoF, MST, and DBSCAN algo- +rithms often merge clusters into a single giant cluster for large +linking lengths, losing the ability to accurately identify indi- +vidual clusters. This characteristic of the MGS algorithm is +particularly important for analyzing data from astrophysical +simulations and observations. +In this proof of concept work we have shown that the jet- +finding algorithm MGS can be applied to mock Galaxy data +resulting in reliable cluster identification. However the iden- +tification of clusters in real observation is a difficult issue due +to survey incompleteness, selection effects, redshift-space dis- +tortions, etc. In future work we will test MGS in the presence +of realistic observational systematic effects. +MGS also provides auxiliary topological information such +as the number and length of connections for each galaxy. In +future work we will explore the use of this enhanced enhanced +information in testing or constraining cosmological models. +ACKNOWLEDGEMENTS +The authors thank Changbom Park, Dongsu Bak, and Ena +Choi for helpful discussions. This research was supported by +Basic Science Research Program through the National Re- +search Foundation of Korea(NRF) funded by the Ministry +of Education(grant number) S.E.H. was supported by the +project ᄋ +ᅮᄌ +ᅮᄀ +ᅥᄃ +ᅢᄀ +ᅮᄌ +ᅩᄅ +ᅳ +ᆯ ᄋ +ᅵᄋ +ᅭ +ᆼᄒ +ᅡ +ᆫ ᄋ +ᅡ +ᆷᄒ +ᅳ +ᆨᄋ +ᅮᄌ +ᅮ ᄋ +ᅧ +ᆫᄀ +ᅮ (“Under- +MNRAS 000, 1–14 (0000) + +MulGuisin Clustering Algorithm +13 +200 +100 +0 +100 +200 +X (h +1Mpc) +200 +100 +0 +100 +200 +Y (h +1Mpc) +0 +100 +200 +300 +400 +500 +Z (h +1Mpc) +200 +100 +0 +100 +200 +Y (h +1Mpc) +200 +100 +0 +100 +200 +X (h +1Mpc) +0 +100 +200 +300 +400 +500 +Z (h +1Mpc) +X (h +1Mpc) +200 +100 +0 +100 +200 +Y (h +1Mpc) +200 +100 +0 +100 +200 +Z (h +1Mpc) +0 +100 +200 +300 +400 +500 +Figure 12. Top 30 largest clusters (colors) found by the MGS in the D4-SDSS galaxies (gray dots). The observer is located at the +origin. The linking length is ℓMGS = 10 h−1Mpc, where all D4-SDSS galaxies fall into a single giant cluster in all other three benchmark +algorithms (see Fig. 11). Note that, even in such a large linking length, none of the 30 largest clusters suffers percolation. +standing Dark Universe Using Large Scale Structure of the +Universe”), funded by the Ministry of Science. C.G.S is sup- +port via the Basic Science Research Program from the Na- +tional Research Foundation of South Korea (NRF) funded +by the Ministry of Education (2018R1A6A1A06024977 and +2020R1I1A1A01073494). +This work was supported by the Supercomputing Cen- +ter/Korea Institute of Science and Technology Information, +with supercomputing resources including technical support +(KSC-2013-G2-003), and the simulation data were trans- +ferred through a high-speed network provided by KRE- +ONET/GLORIAD. +Funding for the SDSS and SDSS-II has been provided by +the Alfred P. Sloan Foundation, the Participating Institu- +tions, the National Science Foundation, the US Department +of Energy, the National Aeronautics and Space Administra- +tion, the Japanese Monbukagakusho, the Max Planck Society, +and the Higher Education Funding Council for England. The +SDSS website is http://www.sdss.org/. +The SDSS is managed by the Astrophysical Research Con- +sortium for the Participating Institutions. The Participating +Institutions are the American Museum of Natural History, +Astrophysical Institute Potsdam, University of Basel, Uni- +versity of Cambridge, Case Western Reserve University, Uni- +versity of Chicago, Drexel University, Fermilab, the Institute +for Advanced Study, the Japan Participation Group, Johns +Hopkins University, the Joint Institute for Nuclear Astro- +physics, the Kavli Institute for Particle Astrophysics and Cos- +mology, the Korean Scientist Group, the Chinese Academy of +Sciences (LAMOST), Los Alamos National Laboratory, Max +Planck Institute for Astronomy (MPIA), the Max Planck In- +stitute for Astrophysics (MPA), New Mexico State Univer- +sity, Ohio State University, University of Pittsburgh, Uni- +versity of Portsmouth, Princeton University, the US Naval +Observatory, and the University of Washington. +MNRAS 000, 1–14 (0000) + +14 +Y. Ju et al. +DATA AVAILABILITY +The up-to-date MulGuisin algorithm can be downloaded at +https://github.com/youngju20/Mulguisin. +REFERENCES +Abazajian K. N., et al., 2009, ApJS, 182, 543 +Alcock C., Paczynski B., 1979, Nature, 281, 358 +Appleby S., Park C., Hong S. E., Kim J., 2017, ApJ, 836, 45 +Appleby S., Chingangbam P., Park C., Hong S. E., Kim J., Gane- +san V., 2018, ApJ, 858, 87 +Bae H.-J., Woo J.-H., 2014, ApJ, 795, 30 +Ballinger W. E., Peacock J. A., Heavens A. F., 1996, MNRAS, 282, +877 +Barrow J. D., Bhavsar S. P., Sonoda D. H., 1985, Monthly Notices +of the Royal Astronomical Society, 216, 17 +Berlind A. A., Weinberg D. H., 2002, The Astrophysical Journal, +575, 587 +Blanton M. R., et al., 2005, AJ, 129, 2562 +Blumenthal G. R., Faber S. M., Primack J. R., Rees M. J., 1984, +Nature, 311, 517 +Borůvka O., 1926, Plàce mor. přírodově d. spol. v Brně III (3), pp +37–58 +Bosman M., Park I., Corbal M., Costanzo D., Lami S., Paoletti +R., Azuelos G., Strahl K., 1998, ATLAS Software, 98, 038 +Choi Y.-Y., Han D.-H., Kim S. S., 2010a, Journal of Korean As- +tronomical Society, 43, 191 +Choi Y.-Y., Park C., Kim J., Gott J. Richard I., Weinberg D. H., +Vogeley M. S., Kim S. S., SDSS Collaboration 2010b, ApJS, +190, 181 +Dall J., Christensen M., 2002, Phys. Rev. E, 66, 016121 +Davis M., Efstathiou G., Frenk C. S., White S. D. M., 1985, ApJ, +292, 371 +DeRose J., et al., 2019, ApJ, 875, 69 +Diemer B., 2018, The Astrophysical Journal Supplement Series, +239, 35 +Duarte M., Mamon G. A., 2014, Monthly Notices of the Royal +Astronomical Society, 440, 1763 +Dunkley J., et al., 2009, ApJS, 180, 306 +Ester M., Kriegel H.-P., Sander J., Xu X., et al., 1996, in kdd. pp +226–231 +Fall S. M., Efstathiou G., 1980, MNRAS, 193, 189 +Farrens S., Abdalla F. B., Cypriano E. S., Sabiu C., Blake C., 2011, +Mon. Not. Roy. Astron. Soc., 417, 1402 +Gifford D., Miller C., Kern N., 2013, ApJ, 773, 116 +Gott J. Richard I., Melott A. L., Dickinson M., 1986, ApJ, 306, +341 +Guo H., Zehavi I., Zheng Z., 2012, ApJ, 756, 127 +Hearin A. P., et al., 2017, The Astronomical Journal, 154, 190 +Hong S. E., Park C., Kim J., 2016, ApJ, 823, 103 +Hoyle F., Vogeley M. S., Pan D., 2012, MNRAS, 426, 3041 +Huchra J. P., Geller M. J., 1982, The Astrophysical Journal, 257, +423 +Hwang H. S., Park C., Elbaz D., Choi Y. Y., 2012, A&A, 538, A15 +Jiang C. Y., Jing Y. P., Faltenbacher A., Lin W. P., Li C., 2008, +ApJ, 675, 1095 +Kim J., Park C., L’Huillier B., Hong S. E., 2015, Journal of Korean +Astronomical Society, 48, 213 +Knebe A., et al., 2011, MNRAS, 415, 2293 +Kravtsov A. V., Berlind A. A., Wechsler R. H., Klypin A. A., Got- +tlober S., Allgood B., Primack J. R., 2004, The Astrophysical +Journal, 609, 35 +Krzewina L. G., Saslaw W. C., 1996, Monthly Notices of the Royal +Astronomical Society, 278, 869 +Lee G.-H., Park C., Lee M. G., Choi Y.-Y., 2012a, ApJ, 745, 125 +Lee G.-H., Woo J.-H., Lee M. G., Hwang H. S., Lee J. C., Sohn J., +Lee J. H., 2012b, ApJ, 750, 141 +Li X.-D., Park C., Forero-Romero J. E., Kim J., 2014, ApJ, 796, +137 +Limousin M., Morandi A., Sereno M., Meneghetti M., Ettori S., +Bartelmann M., Verdugo T., 2013, Space Sci. Rev., 177, 155 +More S., Kravtsov A. V., Dalal N., Gottlöber S., 2011, ApJS, 195, +4 +Naidoo K., 2019, Journal of Open Source Software, 4, 1721 +Naidoo K., Whiteway L., Massara E., Gualdi D., Lahav O., Viel +M., Gil-Marún H., Font-Ribera A., 2020, Monthly Notices of +the Royal Astronomical Society, 491, 1709 +Navarro J. F., Frenk C. S., White S. D. M., 1996, ApJ, 462, 563 +Pan D. C., Vogeley M. S., Hoyle F., Choi Y.-Y., Park C., 2012, +MNRAS, 421, 926 +Park C., Gott J. R. I., 1991, ApJ, 378, 457 +Park C., Kim Y.-R., 2010, ApJ, 715, L185 +Park C., Choi Y.-Y., Kim J., Gott J. Richard I., Kim S. S., Kim +K.-S., 2012, ApJ, 759, L7 +Park H., Park C., Sabiu C. G., Li X.-d., Hong S. E., Kim J., +Tonegawa M., Zheng Y., 2019, ApJ, 881, 146 +Pedregosa F., et al., 2011, Journal of Machine Learning Research, +12, 2825 +Planck Collaboration et al., 2016, A&A, 594, A13 +Press W. H., Schechter P., 1974, ApJ, 187, 425 +Reid B. A., Seo H.-J., Leauthaud A., Tinker J. L., White M., 2014, +MNRAS, 444, 476 +Sander J., Ester M., et al., 2017, ACM Transactions on Database +Systems, 42, 1 +Serra A. L., Diaferio A., 2013, ApJ, 768, 116 +Sheth R. K., 1996, MNRAS, 279, 1310 +Tago E., Einasto J., Saar E., Tempel E., Einasto M., Vennik J., +Müller V., 2008, Astronomy & Astrophysics, 479, 927 +Tempel E., Kipper R., Tamm A., Gramann M., Einasto M., Sepp +T., Tuvikene T., 2016, Astronomy & Astrophysics, 588, A14 +Tonegawa M., Park C., Zheng Y., Park H., Hong S. E., Hwang +H. S., Kim J., 2020, ApJ, 897, 17 +White S. D. M., Rees M. J., 1978, MNRAS, 183, 341 +Zehavi I., et al., 2002, ApJ, 571, 172 +Zehavi I., et al., 2011, ApJ, 736, 59 +This paper has been typeset from a TEX/LATEX file prepared by +the author. +MNRAS 000, 1–14 (0000) + diff --git a/0dE1T4oBgHgl3EQfkwTA/content/tmp_files/load_file.txt b/0dE1T4oBgHgl3EQfkwTA/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..76edd67405837f0917978cc4903bbbcb54558367 --- /dev/null +++ b/0dE1T4oBgHgl3EQfkwTA/content/tmp_files/load_file.txt @@ -0,0 +1,1248 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf,len=1247 +page_content='MNRAS 000, 1–14 (0000) Preprint 10 January 2023 Compiled using MNRAS LATEX style file v3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 MulGuisin, a Topological Clustering Algorithm, and Its Performance as a Cosmic Structure Finder Young Ju1,2, Inkyu Park1,2⋆, Cristiano G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Sabiu1,2 and Sungwook E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Hong,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='4 1Department of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' University of Seoul,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 163 Seoulsiripdae-ro,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Dongdaemun-gu,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Seoul 02504,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Republic of Korea 2Natural Science Research Institute,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' University of Seoul,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 163 Seoulsiripdae-ro,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Dongdaemun-gu,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Seoul 02504,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Republic of Korea 3Korea Astronomy and Space Science Institute,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 776 Daedeok-daero,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Yuseong-gu,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Daejeon 34055,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Republic of Korea 4Astronomy Campus,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' University of Science and Technology,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 776 Daedeok-daero,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Yuseong-gu,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Daejeon 34055,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Republic of Korea 10 January 2023 ABSTRACT We introduce a new clustering algorithm,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' MulGuisin (MGS),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' that can find galaxy clusters using topological informa- tion from the galaxy distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' This algorithm was first introduced in an LHC experiment as a Jet Finder software, which looks for particles that clump together in close proximity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The algorithm preferentially considers particles with high energies and merges them only when they are closer than a certain distance to create a jet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' MGS shares some similarities with the minimum spanning tree (MST) since it provides both clustering and graph-based topology in- formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Also, similar to the density-based spatial clustering of applications with noise (DBSCAN), MGS uses the ranking or the local density of each particle to construct clustering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' In this paper, we compare the performances of clustering algorithms using some controlled data and some realistic simulation data as well as the SDSS observation data, and we demonstrate that our new algorithm find clusters most efficiently and it defines galaxy clusters in a way that most closely resembles human vision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Key words: large-scale structure of Universe, galaxies: clusters: general, methods: statistical, software: data analysis 1 INTRODUCTION In the standard ΛCDM cosmology paradigm, structures in the universe grow in a hierarchical manner (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', White & Rees 1978;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Fall & Efstathiou 1980;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Blumenthal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 1984).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' It means that smaller structures of matter start forming ear- lier, and the more massive structures form by the merging and accretion of smaller structures at later epoch of the universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Therefore, understanding cosmic structures in the universe at various scales is crucial for understanding the nature of our universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' For example, numerous statistics of large-scale structures, such as topological analyses (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Gott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 1986;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Park & Gott 1991;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Park & Kim 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Appleby et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2017, 2018), Alcock-Paczynski tests (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Alcock & Paczynski 1979;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Ballinger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 1996;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Park et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2019), and small-scale redshift-space distortion (RSD;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Sheth 1996;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' DeRose et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Tonegawa et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2020), have been used to constraint cosmological parameters such as the matter den- sity parameter (Ωm) and the equation-of-state parameter of dark energy (ωde).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' While numerous statistics of cosmic structures have been used to understand the evolution and structure formation ⋆ E-mail: icpark@uos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='kr of our universe, the exact definition of cosmic structures re- mains unclear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' This is mainly because the matter distribution on large scale is continuous, and therefore, there exists no specific discrete boundary for each structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Also, the mem- bership for a certain structure might change if one considers other properties than just position, such as dynamics, mass, and so on (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Serra & Diaferio 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Gifford et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Due to this ambiguity, numerous clustering algorithms have been proposed and used in the astronomical community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' For example, Knebe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' (2011) compared the various properties of dark matter (DM) halos found by 17 different halo-finding algorithms run on the same cosmological N-body simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Galaxy clustering algorithms have been used as essential tools for identifying galaxy clusters or super-clusters, as well as for investigating the large structure of the universe, includ- ing the filament structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The most commonly used galaxy clustering algorithms in astronomy research are the friends- of-friends (FoF;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Davis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 1985) and the minimum span- ning tree (MST;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Borůvka 1926).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' These algorithms were in- troduced in the 1980s and have been widely used as standard galaxy clustering algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' In recent years, with the rapid development of machine learning (ML) technology, clustering algorithms such as DBSCAN (Density-based Spatial Cluster- ing of Applications with Noise;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Ester et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 1996) have also been applied to galaxy clustering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' These clustering softwares, © 0000 The Authors arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='03278v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='IM] 9 Jan 2023 2 Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Ju et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' including the ML based one, show comparable performance in galaxy clustering and produce consistent clustering results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' However, the results of clustering do not always represent the clusters that the human eye can find.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' There are cases where a distribution clearly contains a cluster but it is not recognized as such by clustering algorithms, and there are cases where it is clearly divided into two clusters, visually, but appears as a single lump to the software.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' As such, we have explored the possibility of developing an algorithm that creates galaxy clusters in a way that more closely resembles how the human eye and brain identify pat- terns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' One approach we considered was to adapt jet-finding software used in high-energy particle physics research, with a particular focus on the MulGuisin (MGS) algorithm as a po- tentially suitable software for galaxy clustering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' MulGuisin (ᄆ ᅮ ᆯᄀ ᅱᄉ ᅵ ᆫ) is a Korean word for a ghost that lives in water and is a figure that often appears in old Korean stories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The MGS algorithm started with the idea that the ghosts hiding in the water could be found in the order of height by simply draining the water from the lake.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Initially, we copied the MGS software from the A Toroidal LHC Apparatus (ATLAS) Jet-Finding library released in the early 1990s and developed it into a 3D galaxy clustering al- gorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' We then made several sample galaxy distributions to check the performance of MGS and compared the results to those produced by other standard clustering algorithms such as FoF, MST, and DBSCAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' As a result, it was found that MGS had characteristics that other algorithms could not show, and it was also found that the cluster results created by MGS were most similar to the cluster results that the human eye found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Since the clusters created by MGS show different shapes when compared with clusters formed by other algorithms, and the number of clusters and the size distribution of clus- ters are quite different from those of classical algorithms, us- ing MGS makes a big difference in searching halos and super- clusters, and can yield a different interpretation for the large scale structures of the universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Therefore, we anticipate that this new algorithm will be used as a new methodology in galaxy cluster research and furthermore used to create new interpretations in cosmology studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The structure of this paper is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' In Section 2, we introduce the MulGuisin clustering algorithm, as well as FoF, MST, and DBSCAN as benchmark clustering algorithms for comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' In Section 3, we describe both controlled random data and realistic galaxy distribution data that we will use for the performance test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' We apply the above four clustering algorithms to the data and compare their performances in Section 4, and we summarize our results in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2 METHODS A halo or galaxy cluster is a group of galaxies held together by gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Finding such cluster structures in galaxy distribution data is very important for astronomical research because it provides a tool to study super-clusters, filaments, and even bigger the large scale structure of the universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' A cluster can be defined as a concentration of points or cells in a localized volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The task of cluster identification has been extensively studied in the field of computational science, and a wide range of clustering algorithms have been developed for this purpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Because different algorithms have different strengths and weaknesses, it is important for re- searchers to carefully select the algorithm that best suits their specific research purpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' In this section, we first introduce our MulGuisin clustering algorithm and introduce two clustering tools that are widely used in the field of astronomy and a newly developed clus- tering program through machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='1 MulGuisin galaxy clustering algorithm The MulGuisin (MGS) clustering algorithm was first intro- duced as a jet finder for the Large Hadron Collider (LHC) physics in the ATLAS Collaboration (Bosman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The algorithm is neither a variant of the conventional cone algorithm nor a variant of the kT algorithm that is used in various collider experiments as the standard tools for finding jets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Although it has shown some improvements in jet recon- struction performance, such as optimized jet orientation and jet energy resolution, but has not been used as a standard jet-finding tool for LHC experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 1 shows how the MGS algorithm works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The MGS algorithm first finds the most massive point from the input data and names it a cluster seed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Then it finds the second massive point and decides whether the point should belong to the first cluster or stand alone as the seed of a new cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' This decision is made by checking how close the test point is to any neighboring clusters, for which we introduce a pa- rameter called linking length (ℓMST).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' That is, if the distance between the test point and the closest point in the cluster is less than this parameter, the test point is attached to the cluster, otherwise, it becomes the seed of a new cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The algorithm then finds the next massive point and repeats the above process until there are no more points left to test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' At this stage, all points are converted into clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Of course, some points do not belong to any cluster and remain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2 is an illustration to explain how the MGS algorithm creates galaxy clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' In the figure, the points are sorted in order according to their mass and number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' And according to this order, they become new cluster seeds or stick to exist- ing clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' After going through the process, a cluster forms a tree-like structure that is sequentially connected accord- ing to the order of mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The points in a cluster then form branches and nodes, and from the characteristic structure of such tree shape, one may able to study the topology of the galaxy cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='2 Benchmark Algorithms In order to compare the performance of the MGS algorithm with those of other standard clustering algorithms, we select three benchmark algorithms, mostly based on their popular- ity in the astronomical community, mathematical clarity, and versatility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' They are the friends-of-friends (FoF), minimum spanning tree (MST), and the density-based spatial cluster- ing of applications with noise (DBSCAN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Here we briefly introduce each package and describe how they make clus- ters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='1 1 Note that running our MGS algorithm from scratch may take a longer time than the above benchmark algorithms, especially MNRAS 000, 1–14 (0000) MulGuisin Clustering Algorithm 3 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Schematic flow chart to describe how MulGuisin (MGS) algorithm works Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Diagram showing how the MulGuisin (MGS) algorithm works to identify clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Each gray circle represents a galaxy, and the size of the circle denotes its local density, with the number specifying the galaxies ranking in descending order of density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' In this specific example, 21 galaxies are grouped into 3 clusters and 2 isolated galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' MNRAS 000, 1–14 (0000) galaxies No Yes clusters No Yes1st cluster 8 5 10 numberofchildrene3 12 1st seed 19 linking distance isolatedgalaxy 3rd cluster Oth generation 3rd seed 2nd cluster 2ndseed 3 1st generation 13 9 16 14 2nd generation b 15 4th generation 21 isolatedgalaxy4 Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Ju et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='1 Friends-of-Friends (FoF) The friends-of-friends (FoF) algorithm is a commonly used technique for identifying clusters in astrophysical data (Huchra & Geller 1982;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Tago et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Duarte & Mamon 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Tempel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' This algorithm has a single free parameter, the linking length (ℓFoF), which determines the distance threshold for linking two data points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Points that are within this distance of each other are considered to be con- nected, and all connected points are grouped together into a single cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' One limitation of the FoF algorithm is that it can be diffi- cult to choose an appropriate linking length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Different values of this parameter can result in clusters of different shapes or numbers, making it challenging to determine the optimal value (Tago et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='2 In this study, we use the Halotools implementation of the FoF algorithm (Hearin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2017) to identify clusters in our datasets by applying various ℓFoF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Unless otherwise noted, we assume all FoF groups containing two or more members as clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='2 Minimum Spanning Tree (MST) Galaxy data can be represented as a graph, with each galaxy represented as a node and the distance between two galaxies represented as an edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The minimum spanning tree (MST) algorithm is a method for constructing a unique network from this data by connecting all nodes with minimum edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Unlike other clustering algorithms, the MST does not require the use of a free parameter such as a linking length to construct the entire network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' However, the MST connects all nodes and may not produce clusters with shapes that accurately reflect those of the original clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Nevertheless, MST has been used in cosmology to study the large-scale structure of the universe (Barrow et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 1985;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Krzewina & Saslaw 1996;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Naidoo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' In this study, we use the MiSTree package (Naidoo 2019) to construct MSTs from our galaxy data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Then, we find clusters from the single MST tree by cutting nodes longer than the linking length (ℓMST).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Similar to the FoF case, we apply various values of ℓMST and assume all tree segments containing two or more members as clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='3 Density-based Spatial Clustering of Applications with Noise (DBSCAN) The use of machine learning (ML) techniques is widespread in astronomy, as they enable the identification of patterns in data using algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' ML algorithms can be classified based on the type of data they are applied to, and one type, called when the number of data points is large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' We found that most of the MGS calculation time, for a large number of data points, is taken in constructing the Voronoi tesselation and calculating the local density for each point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' If we separate MGS into a density calculation and a tree building part, we found that the tree building takes a similar time to the benchmark algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2 Note that the appropriate choice linking length for identifying DM halos from the DM particles in the N-body simulations is well known (ℓFoF ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='2⟨dparticle⟩) (More et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' However, the optimal choice of linking length in general clustering problems is not well known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' unsupervised ML, is used with unlabeled data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Clustering al- gorithms, a subcategory of unsupervised ML algorithms, are used to group together data points with similar properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' One popular clustering algorithm is DBSCAN (density-based spatial clustering of applications with noise), which has been applied in a variety of contexts (Ester et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 1996;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Sander et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' DBSCAN is a density-based clustering algorithm that groups together data points based on their local density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' In this algorithm, each cluster is identified by defining its core, which consists of high-density points within a certain dis- tance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The definition of core requires two free parameters, min_samples and eps, which determine the minimum num- ber of neighbors a point must have within a given radius in order to be considered as the core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Then, other points that are directly reachable from some core points within eps are also considered part of the cluster, while other points are labeled as noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' In this study, we use the scikit-learn package (Pedregosa et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2011) to implement the DBSCAN algorithm and iden- tify clusters in our data by applying various eps (or, the “link- ing length” in DBSCAN (ℓDBSCAN)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Unless otherwise noted, we assume min_samples = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='3 A Simple 2D Toy Model Test To see how the shape of the clusters generated by the MGS algorithm differs from the results of other clustering algo- rithms, we created simple simulation data and compared the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' We first assume that there are 5 clusters in 2D space, and consider the case where each cluster contains 50 galaxies equally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The width of the galaxy distribution of each cluster was fixed to 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The coordinates of the two-dimensional space span from 0 to 100 on both the X- and Y-axes, and the posi- tion of each cluster is set to have three different distributions, from far away from each other to all close together, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 3 column (a) in rows (1), (2) and (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 3, both the MGS and MST algorithms correctly find 5 clusters when the distances among the clus- ters are sufficiently far apart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' However, when the clusters get closer together, MST can’t differentiate between the clus- ters and starts recognizing them as one big cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Even for the cases where clusters are attached to each other as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 3 (3), MGS still recognizes four among five true clusters like the human eyes can distinguish each clus- ter, whereas MST recognizes 4 adjacent clusters as one huge cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' These differences can create serious differences in re- sults when studying the number and mass distributions of clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Note that, although we leave its details as future works, the tree structures made by the MGS algorithm have a non- negligible number of long nodes connecting two distant points in the cluster, while the MST algorithm connects only rea- sonably nearby points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' This is because the MGS algorithm connects data points based on their local density, not only the distance between the points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Therefore, if two highly dense points are within the linking length, then they would be con- nected in the MGS but may not be in the MST.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' In the next section, we will compare the performance of MGS and other algorithms with more realistic 3D data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' MNRAS 000, 1–14 (0000) MulGuisin Clustering Algorithm 5 0 20 40 60 80 100 (1) LL = 10 0 20 40 60 80 100 (2) 0 20 40 60 80 100 (a) 0 20 40 60 80 100 (3) 0 20 40 60 80 100 (b) 0 20 40 60 80 100 (c) Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' A simple 2D toy model test of the MGS algorithm by comparing it with the MST algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' (a) Input distributions of 5 clusters with different degrees of separation from each other ((1)–(3)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Background color denotes the galaxy number distribution we used for generating the galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' (b) Clusters found by MGS and their tree structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' (c) Clusters found by MST and their tree structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 3 DATA Our final goal is to apply the MGS algorithm described in Section 2 to the galaxy clusters or other large-scale struc- tures of the universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' However, since some inconsistencies ex- ist between various clustering algorithms for finding clusters or other large-scale structures (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', see Knebe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2011, and references therein), we cannot compare the MGS clus- ters found in the realistic data with their “truth”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Therefore, we apply two types of data sets in this section to compare the performance between MGS and other bench- mark algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The first sets, called the “controlled ran- dom data” (D1–D3), are those that we design all properties of clusters, including their positions and member galaxy dis- tributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Since we already know the true information of each cluster, we can test which algorithms predict the true clusters better in which conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The next sets, called the “realistic data” (D4), are the observational and simulation data sets of galaxies around z ≃ 0, and we focus on com- paring the properties of predicted clusters in each algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Table 1 summarizes the data sets we use in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='1 Controlled Random Data (D1–D3) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='1 Different Spatial Dispersion (D1) We use controlled, simulated data to evaluate the perfor- mance of the MGS algorithm in comparison to other clus- tering algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' These data are generated randomly and allow us to control the shape and distribution of clusters to test the algorithms under different conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The first set of data consists of 100 galaxies per cluster and 50 clusters within a 3-dimensional cubic volume of space with a side length 200 h−1Mpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The cluster center positions are chosen randomly, and the galaxies in each cluster are distributed ac- cording to a Gaussian distribution with a variable standard deviation (σ) that controls the spatial dispersion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The D1-LD data has a low spatial dispersion (σ = 1 h−1Mpc), leading to well-separated clusters, while the D1-HD data has a higher MNRAS 000, 1–14 (0000) 6 Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Ju et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Data set Description D1-LD 50 randomly positioned clusters, each of which contains 100 galaxies randomly spread by the 3D Gaussian distribution with standard deviation σ = 1 h−1Mpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The total number of galaxies is 5,000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' D1-HD Same as D1-LD, but with the greater standard deviation σ = 10 h−1Mpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' D2-NA Same as D1-HD, but the number of galaxies in each cluster follows an exponential random distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The total number of galaxies is 7,041.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' D2-LA Same as D2-NA, but adding uniformly randomly distributed noisy galaxies to the entire box to increase the total galaxy number density 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='5 times of D2-NA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='The total number of galaxies is 12,041.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' D2-HA Same as D2-LA, but adding more noisy galaxies so that the total galaxy number is twice D2-NA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The total number of galaxies is 17,041.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' D3-HOD 500 randomly positioned clusters with a mass distribution similar to the Press-Schechter mass function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The number of galaxies for each cluster follows HODa for massive halos (M ⩾ 1013 h−1M⊙).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The galaxies are spread by the NFW profile with the concentration parameter to 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The total number of galaxies is 50,257.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' D4-SDSS Volume-limited sample of the KIAS-VAGCb with absolute r-band magnitude Mr − 5 log h < −20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' D4-HR4 Four lightcone data of mock galaxy catalogs from the Horizon Run 4 simulationc with a similar condition to D4-SDSS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' a Kravtsov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' b Choi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' (2010a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' c Kim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' (2015);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Hong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Name and description of galaxy data sets that we use in this analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The box size of all controlled data (D1–D3) is (200 h−1Mpc)3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='X ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='Y ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='Z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='125 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='175 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='X ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='Y ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='Z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='D1-LD ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='D1-HD ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='X ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='Y ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='Z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='125 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='175 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='X ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='Y ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='Z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='D1-LD ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='D1-HD ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='X ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='Y ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='Z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='D3-HOD ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='X ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='Y ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='Z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='X ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='Y ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='Z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='X ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='Y ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='Z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='D2-NA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='D2-LA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='D2-HA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='X ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='Y ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='Z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='X ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='Y ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='Z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='X ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='Y ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='Z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='D2-NA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='D2-LA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='D2-HA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='X ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='Y ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='Z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='X ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='Y ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='Z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='X ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='Y ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='Z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='D2-NA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='D2-LA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='D2-HA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Three-dimensional galaxy distributions of controlled data sets used in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Top: D1-LD(left), D1-HD(middle), and D3- HOD(right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Bottom: D2-NA(left), D2-LA(middle), and D2-HA(right), with noisy additional galaxies shown as yellow dots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' See Table 1 for details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' MNRAS 000, 1–14 (0000) MulGuisin Clustering Algorithm 7 spatial dispersion (σ = 10 h−1Mpc), resulting in clusters that are closer together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Upper left and middle panels of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 4 show the distribution of galaxies in the D1-LD and D1-HD data sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='2 Additional Noisy Galaxies (D2) We generate additional controlled data sets that are similar to D1 but with slightly different characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' We again place 50 cluster centers at the same positions as D1, but this time we use an exponential distribution to generate a variable number of galaxies for each cluster: P(Ngal) = � � � 1 ∆N exp � −Ngal − N0 ∆N � if Ngal > N0 0 otherwise .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' (1) Here, we set N0 and ∆N as 50 and 100, respectively, so that the minimum number of galaxies per cluster and the total number of galaxies roughly match with D1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The galax- ies are spatially distributed according to a Gaussian function centred on the cluster’s centre with a standard deviation of σ = 10 h−1Mpc, as was done for D1-HD, and we call this new controlled data D2-NA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The lower left panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 4 shows the distribution of galaxies in the D2-NA data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The total number of galaxies in this data set is 7,041.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' In addition to D2-NA, we introduce two more data sets that are created by adding unclustered galaxies, which are sampled uniformly in the entire box.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' We add these ‘noisy’ galaxies so as to test how the algorithms are affected by the background density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The lower middle panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 4 shows the D2-LA data, where we add 5,000 galaxies (yellow dots) to increase the galaxy number density by 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='5 times compared to D2-NA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' On the other hand, the lower right panel shows the D2-HA data, where we add 10,000 galaxies to make the total galaxy number density twice that of D2-NA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='3 HOD-based Mock Galaxies (D3-HOD) We generate a third set of controlled, simulated data to cre- ate a more complex environment for testing the performance of the MGS algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' We use an analytic formula to model the distribution of galaxies in this data set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' First, we create 500 cluster center positions by sampling uniform random dis- tribution within a (200 h−1Mpc)3 box.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Then, we obtain the normalized version of Press-Schechter halo mass function at z = 0(Press & Schechter 1974), with a concordance ΛCDM cosmology to the Planck 2015 data (Planck Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2016), for massive halos Mhalo > 1013 h−1M⊙ using the Colossus package (Diemer 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' We then obtain masses for each of the 500 clusters by randomly sampling for the mass function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='3 We then use this information to generate a distribution of the number of galaxies using a halo occupation distribu- tion (HOD) model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The mean halo occupation is typically as- sumed to follow a power law at massivehalo masses (Berlind 3 Note that neither the positions nor the mass distribution of clus- ters in D3-HOD follows the estimation from the standard cosmol- ogy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' However, here we focus only on providing complex environ- ments, and therefore, such differences do not affect our motivation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' See Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='2 for realistic data sets instead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' & Weinberg 2002;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Kravtsov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2004): Navg(Mcluster) = � � � �Mcluster M1 �α if Mhalo > Mmin 0 otherwise , (2) where α, Mmin, and M1 correspond to the power-law in- dex, cutoff halo mass where halo cannot contain galaxies, and the mass scale containing a single galaxy at the given condition of galaxy sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Here, we use α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='87 and Mmin = 1013 h−1M⊙ by following Kravtsov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' We set M1 = 1011 h−1M⊙ so that the minimum number of galax- ies for each cluster is set as 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Also, for simplicity, we calcu- late the actual number of galaxies at each cluster by applying the ceiling to Navg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Next, we use the Colossus package to create an Navarro- Frenk-White (NFW) profile (Navarro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 1996) ρ(x) = Mcluster 4πR3 vir �� ln(1 + cs) − cs 1 + cs � x(x + c−1 s )2�−1 , (3) where x ≡ r/Rvir.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The concentration parameter for the NFW profile cs is fixed as 10, and the virial radii Rvir is determined by the cluster mass accordingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' We then randomly distribute the galaxies according to this profile, and the resulting data set consists of 50,257 galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The upper right panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 4 shows the distribution of galaxies in D3-HOD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='2 Realistic Data: SDSS & Horizon Run 4 (D4) In the previous subsection, we described a set of controlled data catalogues for which we can carefully control the prop- erties of the clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Such data are useful for testing the performance of MGS over other benchmark algorithms by comparing the properties of identified clusters with the in- put truth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' However, the true distribution of galaxies in the universe differs from these controlled random data in the fol- lowing ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' First, unlike those in the controlled random data with low noise levels, the boundaries of clusters in the uni- verse are often not clearly defined (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Serra & Diaferio 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Gifford et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Also, the spatial distribution of galax- ies in each cluster may not follow spherical symmetry (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Limousin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2013, for a good review).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Furthermore, the redshift-space distortion elongates spherical clusters in real space, which may require that we separate linking lengths between the radial and tangential directions (Farrens et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Tempel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Therefore, it is necessary to adopt a realistic galaxy dis- tribution for a fair performance test of the MGS algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' However, unlike for the case of the controlled random data where we know the answer, we may only study the dif- ference between the cluster properties from the MGS and other benchmark algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Here we use observational data and four corresponding sets of mock simulation data — the volume-limited KIAS-Value Added Galaxy Catalog (KIAS- VAGC) of the Sloan Digital Sky Survey (SDSS) Main Galaxy Sample with r-band absolute magnitude Mr − 5 log h < −20 (Choi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2010a) and the lightcone mock galaxy samples from the Horizon Run 4 simulation (Kim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Hong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' MNRAS 000, 1–14 (0000) 8 Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Ju et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='1 Volume-limited KIAS-VAGC (D4-SDSS) The KIAS Value-Added Galaxy Catalog (KIAS-VAGC;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Choi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2010a) is an upgraded version of the New York Uni- versity Value-Added Galaxy Catalog (NYU-VAGC;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Blanton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2005), which is part of the Sloan Digital Sky Survey (SDSS) Data Release 7 (Abazajian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2009), by adding some missing redshifts to improve spectroscopic complete- ness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' This catalog has been widely used in numerous studies, including cosmic voids statistics (Pan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Hoyle et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2012), largest structures of universe (Park et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2012), frac- tion of barred galaxies (Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2012a), and the properties of active galactic nuclei (AGN;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2012b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Hwang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Bae & Woo 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Most of the KIAS-VAGC galaxies were observed with the apparent r-band magnitude limit r = 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' It means that, in terms of absolute magnitude, the catalog contains less bright galaxies at lower redshifts, while only very bright galaxies could be seen at higher redshifts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Therefore, for a fair com- parison between galaxies over a wide redshift range, we ap- ply a “volume-limited” selection by selecting galaxies brighter than a certain absolute r-band magnitude (Choi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2010b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Here, we use Mr − 5 log h < −20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' By combining with the given apparent r-band magnitude limit, such absolute mag- nitude cutoff naturally provides the upper redshift bound of our volume-limited sample (z < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='107;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' left panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' We also apply the lower redshift bound z > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='02, by consider- ing the incompleteness of the galaxy sample below the given redshift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' In addition to the volume-limited selection in the redshift- magnitude plane, we also apply a sky selection for simplifica- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Specifically, we select galaxies within the SDSS Survey coordinate −33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='5◦ < η < 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='5◦ and −48◦ < λ < 51◦, in or- der to maximize the sky area with a simple geometry, and to avoid issues arising from a complicated boundary (right panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='2 Horizon Run 4 (D4-HR4) The Horizon Run 4 simulation (HR4;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Kim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2015) is an extremely large cosmological N-body simulation that uses 6, 3003 DM particles within a periodic cube with a comoving volume V = (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='15 h−1cGpc)3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' It assumes a vanilla ΛCDM cosmological model in concordance with the Wilkinson Mi- crowave Anisotropy Probe (WMAP) 5th-year result (Dunkley et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Among 2,001 timesteps between z = 100 to 0, 75 coarse timesteps with mean time difference ∆t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='18 Gyr are chosen between z = 12 to 0 to build a merging tree of FoF halos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The FoF linking length is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='2 times the particle mean separation, and we identify halos only whose mass is greater than M min halo = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='7 × 1011 h−1M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The mock galaxies are then produced by so-called the most bound halo particle (MBP)-galaxy abundance match- ing method (Hong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' We find MBPs for all halos in the merging tree and adopt their positions and peculiar ve- locities as those of corresponding mock galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The “mass” of mock galaxies, which is used as a proxy of stellar mass or luminosity, is defined as the mass of their hosting halos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' For satellite halos, we identify their MBPs at the timestep just before the infall event and trace them until they are totally absorbed toward their central halo by tidal disruption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' For estimating the tidal disruption timescale tmerge), we adopt a modified model of Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' (2008), tmerge tdyn = (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='94ϵ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='60 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='60)/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='86 ln[1 + (Mhost/Msat)] �Mhost Msat �α , (4) where ϵ, Mhost, Msat, tdyn are the circularity of the satellite’s orbit, the mass of central and satellite halos, and the orbital period of virialized objects, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' We adopt α = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='5 for a better match of the galaxy two-point correlation func- tion (2pCF) at scales less than 1 h−1Mpc at a given spatial resolution of the HR4 (Zehavi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Park et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Then the mass of survived satellite galaxies is defined as the mass of their hosting halos just before the infall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' After producing snapshot mock galaxy catalogs for coarse timesteps, we then produce lightcone mock galaxy catalogs up to z = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The all-sky lightcone DM particle data of the HR4 were created during the simulation by stacking the co- moving shells at the corresponding redshifts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Then, we com- pare the IDs of the galaxy MBPs at each coarse timestep snapshots and those of DM particles at the lightcone data with the coarse comoving shells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' If the MBP ID of a given mock galaxy matches that of a particle in the lightcone data, we assign a galaxy in the lightcone data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Here, we adopt the position and peculiar velocity from the particle at the lightcone data, while the galaxy “mass” comes from the mock galaxy at the nearest snapshot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' After creating the all-sky lightcone mock galaxy catalog, we cut it in a similar way to the volume-limited KIAS-VAGC sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' First, we apply the redshift space distortion (RSD) for each mock galaxy for a fair comparison with observation, by using real-space positions and peculiar velocities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Then, we apply the same redshift range 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='02 < z < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='107 and set the lower bound of galaxy “mass,” so that the galaxy number density of the HR4 lightcone data is identical to that of KIAS- VAGC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' After that, we create four non-overlapping subsets from it with the same angular geometry as our SDSS Survey coordinate selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' During the analysis, we found that the fiber collision in the fiber-fed spectroscopic observations affects various clustering statistics (Zehavi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2002;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Reid et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Tonegawa et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Therefore, for a fair comparison, our HR4 mock galaxy catalogs also need to follow the same fiber collision condition as the KIAS-VAGC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' To do so, we select pairs of mock galaxies whose angular distance is less than 55 arcseconds and keep only one from each pair by random selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Because SDSS observations were partially overlap- ping, some close-pairs have both redshifts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' In order to reflect this, we only fiber-collide 60% of the close pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 4 RESULTS We test MGS and the other algorithms using the 3 controlled data and observation data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' We run 4 algorithms with various linking-length and find out the number of clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The same process is repeated by changing linking-length and we check the tendency of the number of clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' We use the three controlled data sets and observation data to evaluate the performance of the MGS algorithm and com- pare it to other clustering algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' We run each of the four algorithms with different values of the linking length and count the number of clusters identified by each algo- rithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' We repeat this process for a range of linking lengths MNRAS 000, 1–14 (0000) MulGuisin Clustering Algorithm 9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='25 Redshift 23 22 21 20 19 18 17 r 5logh 150 100 50 0 50 100 150 [degree] 60 40 20 0 20 40 60 [degree] Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Selection of the volume-limited sample of the KIAS Value-Added Galaxy Catalog (KIAS-VAGS) used in this study (red boxes).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Left: Volume-limited selection in the redshift vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' absolute r-band magnitude plane with Mr − 5 log h < −20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Right: Sky selection in SDSS Survey coordinates (η, λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 30 35 40 45 50 Number of Clusters D1-LD MGS MST FoF DBSCAN 2 4 6 8 10 Linking-length 0 10 20 30 40 50 Number of Clusters D1-HD Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The number of clusters as a function of linking length for D1-LD (top panel) and D1-HD (bottom).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Each of the 4 clus- tering algorithms are indicated using different colors and symbols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Note that MST and DBSCAN show considerable overlap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The Hor- izontal dash shows the original number of clusters, which is 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' and analyze the trends in the number of clusters identified by each algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' This allows us to assess the sensitivity of the algorithms to the choice of linking length and to compare their performance in identifying clusters in the different data sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='1 Results with Controlled Data Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 6 shows the number of clusters identified by each algo- rithm as a function of the linking length for the controlled data set 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The top panel shows the results for the D1- LD data, which consists of well-separated clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The al- gorithms are expected to identify 50 clusters in this data set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' All four algorithms perform well in identifying the clusters, but the MGS algorithm stands out for its ability to accu- rately identify the correct number of clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' In particular, for large linking lengths, the FoF and DBSCAN algorithms identify fewer than 50 clusters, because they connect neigh- boring clusters and merge them into a single cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The bottom panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 6 shows the results for the D1- HD data, which has a higher level of spatial dispersion and some clusters that are close to each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' For small link- ing lengths, the algorithms identify fewer than 50 clusters because the linking length is not sufficient to connect the galaxies in these clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' As the linking length increases, the behavior of the algorithms becomes more distinct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The MGS algorithm continues to accurately identify the correct number of clusters, while the other algorithms identify fewer clusters due to the merging of originally separate clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The MGS algorithm is able to track the structure of the clusters and identify their boundaries, leading to more accurate results in this type of data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 7 shows the results for controlled data set 2, which includes the D2-NA data with no additional galaxies and the D2-LA and D2-HA data with additional galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The top panel shows the number of clusters identified by each algo- rithm for the D2-NA data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' When this data was generated, the minimum number of galaxies per cluster was set to 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' In the region of small linking lengths, all algorithms iden- tify fewer than 50 clusters because the linking length is too small to connect the galaxies in the clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' As a result, the clusters identified by the algorithms have fewer than 50 member galaxies, and are therefore not considered as true clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' For larger linking lengths, particularly those larger than 5, the difference between the MGS algorithm and the other algorithms becomes more pronounced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The MGS al- gorithm continues to accurately identify the correct number of clusters, while the other algorithms identify fewer clusters due to the merging of originally separate clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The behavior of the algorithms with additional galaxies is even more distinct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The middle panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 7 shows the re- sults for the D2-LA data, where the other three algorithms identify only a single cluster for very large linking lengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' As the linking length increases, the algorithms merge several clusters into a single giant cluster, resulting in a significantly lower number of clusters than the original data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' This rapid MNRAS 000, 1–14 (0000) 10 Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Ju et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 10 20 30 40 50 60 Number of Clusters D2-NA d = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='43 Nmin = 50 MGS MST FoF DBSCAN 10 20 30 40 50 60 Number of Clusters D2-LA d = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='73 Nmin = 56 2 4 6 8 10 12 14 Linking-length 0 10 20 30 40 50 60 Number of Clusters D2-HA d = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='77 Nmin = 59 Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Same as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 6, but with D2-NA(top), D2-LA(middle), and D2-HA(bottom).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The vertical dashed line is mean-separation of data (⟨d⟩).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Since each data set has a different overall number density, we assign different minimum number of member galaxies (Nmin) to define clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' increment of a single giant cluster is called “percolation,” and it is known to occur at linking length similar to the mean- separation (ℓ ≃ ⟨d⟩) for the ideal random Poisson graph (Dall & Christensen 2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 7 clearly shows that such percola- tion occurs at ℓ ≃ ⟨d⟩ for all three benchmark algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Note that, however, the percolation occurs at the low- est linking length in FoF, while both MST and DBSCAN share a similar value of linking length at percolation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' This is because FoF does not have an additional consideration for limiting the cluster boundary that exists in the other two algorithms (minimize the number of edges in MST, and core definition in DBSCAN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 8 shows the 3D distribu- tions of clustering results from various algorithms at linking length ℓ = 11 h−1Mpc, which is longer than the mean sep- aration ⟨d⟩ = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='73 h−1Mpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' As expected, three benchmark algorithms show percolation (blue color), while our MGS al- gorithm successfully reconstructs most of the true clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Note that only one giant cluster is found in the FoF algo- rithm, while both MST and DBSCAN have two additional small clusters (green and orange colors).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The behavior of the MGS algorithm for the D2-HA data is slightly different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' In the region of small linking lengths, the MGS algorithm accurately identifies the correct number of clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' However, for larger linking lengths, particularly ℓ > 13 h−1Mpc, the MGS algorithm identifies additional clus- ters that were not present in the original data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' These “fake” clusters are not true clusters and are not representative of the underlying structure of the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' This behavior highlights the ability of the MGS algorithm to identify clusters in data with a complex distribution of galaxies but also underscores the importance of choosing an appropriate linking length to avoid identifying false clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 9 shows the number of clusters for controlled 3 data with a more complex environment than D1–D2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' At ℓ ≳ ⟨d⟩/2 ≈ 3 h−1Mpc, the number of clusters using FoF and DBSCAN decreases as the linking length increases, resulting in the percolation at ℓ ≳ ⟨d⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='The MST shows a flat curve when the linking length is larger than ∼ 8 h−1Mpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' This is because MST connects all galaxies with minimal edge first, and then we cut off the links with linking length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Therefore, if there were no links longer than 8 h−1Mpc in the original tree, then cutting the links with any longer linking length than 8 h−1Mpc would not change the result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' So, the number of clusters using MST shows a constant value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' In contrast, the number of clusters identified by the MGS algorithm slowly decreases as the linking length increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' This is because the clusters in this data set are close to each other and are easily merged by the algorithm for large linking lengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' However, the MGS algorithm is able to identify clus- ters based on density, which allows it to retain the structure of the clusters even for large linking lengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' This is the main advantage of the MGS algorithm compared to the other three algorithms, which are not able to accurately identify clusters in complex data sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='2 Results with Observational and Cosmological Simulation Data Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 10 shows the results of the four algorithms applied to both KIAS-VAGC observational data and four sets of HR4 lightcone data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' We track the number of detected clusters changing with both linking lengths and with the minimum number of member galaxies from 2 to 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' For all four clustering algorithms, the HR4 simulation re- sults match well with the observations within cosmic vari- ance, especially for n ⩾ 5 at ℓ ≳ ⟨dparticle⟩ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='5 h−1Mpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' On the other hand, HR4 tends to underestimate the num- ber of clusters for a smaller minimum number of member galaxies and/or smaller linking length ℓ ≲ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='5 h−1Mpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' This may mean that, despite the agreement with the observation in terms of 2pCF below 1 h−1Mpc-scale, some disagreements ex- ist between HR4 and observation in terms of the higher-order statistics in smaller scales than the particle mean separation scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' One notable feature of the MGS algorithm is that it does not create a single giant cluster for large linking lengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' In- stead, the algorithm identifies a number of smaller clusters, even for large linking lengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' This is in contrast to the other three algorithms, which all create a single giant cluster for large linking lengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' This difference highlights the ability of the MGS algorithm to accurately identify clusters in data with a complex distribution of galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 11 shows the number of member galaxies for the 1st MNRAS 000, 1–14 (0000) MulGuisin Clustering Algorithm 11 X 100 50 0 50 100 Y 100 50 0 50 100 Z 0 50 100 150 200 X 100 50 0 50 100 Y 100 50 0 50 100 Z 0 50 100 150 200 X 0 50 100 150 200 Y 0 50 100 150 200 Z 0 50 100 150 200 X 100 50 0 50 100 Y 100 50 0 50 100 Z 0 50 100 150 200 MGS MST FoF DBSCAN Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 3D distribution of clustering results from MGS and other benchmark algorithms in D2-LA with linking length ℓ = 11 h−1Mpc, which is longer than the mean-separation ⟨d⟩ = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='73 h−1Mpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Color indicates the cluster membership.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' MGS finds 49 clusters among 50 true clusters, while other algorithms connect most of galaxies and finally make a giant cluster (blue color).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' to 4th largest clusters identified by each algorithm in D4- SDSS and D4-HR4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Similar to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 10, both results from the simulation and observation data match well with each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The top left panel of the figure shows the shape of the largest cluster for each algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' As the linking length increases over certain value, the largest cluster identified by the FoF, MST, and DBSCAN algorithms contains all of the galaxies in the data, while the MGS algorithm identifies a cluster with only a portion of the galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' This indicates that the MGS algorithm is able to identify multiple clusters even for large linking lengths, while the other algorithms merge all of the galaxies into a single giant cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The main difference between the MGS algorithm and the other three algorithms becomes particularly clear when ex- amining the number of member galaxies in the 2nd to 4th largest clusters (upper right and bottom panels of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' As the linking length increases, the number of member galaxies in these clusters identified by the FoF, MST, and DBSCAN algorithms decreases to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' This is because the first largest cluster identified by these algorithms took all the galaxies in the data, leaving no galaxies to be considered for further clustering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' In contrast, the MGS algorithm is able to identify multiple clusters even with large linking lengths as the largest cluster does not monopolize all galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' This demonstrates the ability of the MGS algorithm to accurately identify clus- ters in data with a complex distribution of galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 12 shows the 30 largest clusters found by the MGS algorithm in the D4-SDSS data with a linking length ℓMGS = 10 h−1Mpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' While such a large choice of linking length makes a single giant cluster in all other three benchmark algorithms (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 11), none of the 30 clusters suffer percolation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' All 30 largest clusters are well-separated and have some even dis- tribution of galaxies in the XY-plane (that is, the tangential plane).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' On the other hand, most of the clusters have some- what elongated features in the line-of-sight direction, which clearly shows the Finger-of-God effect due to the RSD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' There- fore, although this needs further inspection, we consider that the 30 largest clusters found by the MGS algorithm could be MNRAS 000, 1–14 (0000) 12 Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Ju et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 0 2 4 6 8 10 12 14 Linking-Length 0 100 200 300 400 500 Number of cluster D3-HOD MGS MST FoF DBSCAN Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Same as Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 6–7, but with D3-HOD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 100 101 102 103 104 Number of clusters MGS n 2 n 3 n 4 n 5 MST 100 101 Linking length(h 1Mpc) 100 101 102 103 104 Number of clusters FoF 100 101 Linking length(h 1Mpc) DBSCAN Figure 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Same as Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 6, 7 & 9, but with D4-SDSS (thick lines) and D4-HR4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' For D4-HR4, the average values and the ranges between minimums and the maximums of 4 data samples are drawn as thin lines and error bars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Results from each clustering algorithm are shown on different panels, while the color indicates the different choices of the minimum number of member galaxies to identify clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' the actual large structures similar to galaxy (super)clusters in real space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 5 CONCLUSIONS The MulGuisin (MGS) algorithm is a powerful technique for identifying clusters in data from astrophysical simulations and observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' It consistently produces results closer to those inferred from human visual inspection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' In comparison to other clustering algorithms, such as the friends-of-friends (FoF) algorithm, the minimum spanning tree (MST) algo- 100 101 102 103 104 105 Number of galaxies 1st cluster MGS MST FoF DBSCAN 2nd cluster 10 1 100 101 Linking length (h 1Mpc) 100 101 102 103 104 105 Number of galaxies 3rd cluster 10 1 100 101 Linking length (h 1Mpc) 4th cluster Figure 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The number of member galaxies for the 1st, 2nd, 3rd and 4th largest clusters in D4-SDSS (thick lines) and in D4-HR4 as a function of linking length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' For D4-HR4, the average values and the ranges between minimums and the maximums of 4 data samples are drawn as thin lines and error bars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Color indicates the different clustering algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' rithm, and the DBSCAN algorithm, the MGS algorithm has several advantages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The MGS algorithm is able to take into consideration the local density and is able to accurately iden- tify clusters even in complex data sets with a large number of galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' In contrast, the FoF, MST, and DBSCAN algo- rithms often merge clusters into a single giant cluster for large linking lengths, losing the ability to accurately identify indi- vidual clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' This characteristic of the MGS algorithm is particularly important for analyzing data from astrophysical simulations and observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' In this proof of concept work we have shown that the jet- finding algorithm MGS can be applied to mock Galaxy data resulting in reliable cluster identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' However the iden- tification of clusters in real observation is a difficult issue due to survey incompleteness, selection effects, redshift-space dis- tortions, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' In future work we will test MGS in the presence of realistic observational systematic effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' MGS also provides auxiliary topological information such as the number and length of connections for each galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' In future work we will explore the use of this enhanced enhanced information in testing or constraining cosmological models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' ACKNOWLEDGEMENTS The authors thank Changbom Park, Dongsu Bak, and Ena Choi for helpful discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' This research was supported by Basic Science Research Program through the National Re- search Foundation of Korea(NRF) funded by the Ministry of Education(grant number) S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' was supported by the project ᄋ ᅮᄌ ᅮᄀ ᅥᄃ ᅢᄀ ᅮᄌ ᅩᄅ ᅳ ᆯ ᄋ ᅵᄋ ᅭ ᆼᄒ ᅡ ᆫ ᄋ ᅡ ᆷᄒ ᅳ ᆨᄋ ᅮᄌ ᅮ ᄋ ᅧ ᆫᄀ ᅮ (“Under- MNRAS 000,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 1–14 (0000) MulGuisin Clustering Algorithm 13 200 100 0 100 200 X (h 1Mpc) 200 100 0 100 200 Y (h 1Mpc) 0 100 200 300 400 500 Z (h 1Mpc) 200 100 0 100 200 Y (h 1Mpc) 200 100 0 100 200 X (h 1Mpc) 0 100 200 300 400 500 Z (h 1Mpc) X (h 1Mpc) 200 100 0 100 200 Y (h 1Mpc) 200 100 0 100 200 Z (h 1Mpc) 0 100 200 300 400 500 Figure 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Top 30 largest clusters (colors) found by the MGS in the D4-SDSS galaxies (gray dots).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The observer is located at the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The linking length is ℓMGS = 10 h−1Mpc, where all D4-SDSS galaxies fall into a single giant cluster in all other three benchmark algorithms (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' 11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Note that, even in such a large linking length, none of the 30 largest clusters suffers percolation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' standing Dark Universe Using Large Scale Structure of the Universe”), funded by the Ministry of Science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='S is sup- port via the Basic Science Research Program from the Na- tional Research Foundation of South Korea (NRF) funded by the Ministry of Education (2018R1A6A1A06024977 and 2020R1I1A1A01073494).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' This work was supported by the Supercomputing Cen- ter/Korea Institute of Science and Technology Information, with supercomputing resources including technical support (KSC-2013-G2-003), and the simulation data were trans- ferred through a high-speed network provided by KRE- ONET/GLORIAD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Funding for the SDSS and SDSS-II has been provided by the Alfred P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Sloan Foundation, the Participating Institu- tions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administra- tion, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The SDSS website is http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='sdss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='org/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The SDSS is managed by the Astrophysical Research Con- sortium for the Participating Institutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' The Participating Institutions are the American Museum of Natural History,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Astrophysical Institute Potsdam,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' University of Basel,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Uni- versity of Cambridge,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Case Western Reserve University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Uni- versity of Chicago,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Drexel University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Fermilab,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' the Institute for Advanced Study,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' the Japan Participation Group,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Johns Hopkins University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' the Joint Institute for Nuclear Astro- physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' the Kavli Institute for Particle Astrophysics and Cos- mology,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' the Korean Scientist Group,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' the Chinese Academy of Sciences (LAMOST),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Los Alamos National Laboratory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Max Planck Institute for Astronomy (MPIA),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' the Max Planck In- stitute for Astrophysics (MPA),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' New Mexico State Univer- sity,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Ohio State University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' University of Pittsburgh,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Uni- versity of Portsmouth,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Princeton University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' the US Naval Observatory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' and the University of Washington.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' MNRAS 000, 1–14 (0000) 14 Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Ju et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' DATA AVAILABILITY The up-to-date MulGuisin algorithm can be downloaded at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='com/youngju20/Mulguisin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' REFERENCES Abazajian K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2009, ApJS, 182, 543 Alcock C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Paczynski B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 1979, Nature, 281, 358 Appleby S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Park C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Hong S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Kim J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2017, ApJ, 836, 45 Appleby S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Chingangbam P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Park C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Hong S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Kim J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Gane- san V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2018, ApJ, 858, 87 Bae H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Woo J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2014, ApJ, 795, 30 Ballinger W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Peacock J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Heavens A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 1996, MNRAS, 282, 877 Barrow J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Bhavsar S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Sonoda D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 1985, Monthly Notices of the Royal Astronomical Society, 216, 17 Berlind A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Weinberg D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2002, The Astrophysical Journal, 575, 587 Blanton M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2005, AJ, 129, 2562 Blumenthal G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Faber S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Primack J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Rees M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 1984, Nature, 311, 517 Borůvka O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 1926, Plàce mor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' přírodově d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' spol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' v Brně III (3), pp 37–58 Bosman M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Park I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Corbal M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Costanzo D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Lami S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Paoletti R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Azuelos G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Strahl K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 1998, ATLAS Software, 98, 038 Choi Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Han D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Kim S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2010a, Journal of Korean As- tronomical Society, 43, 191 Choi Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Park C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Kim J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Gott J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Richard I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Weinberg D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Vogeley M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Kim S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', SDSS Collaboration 2010b, ApJS, 190, 181 Dall J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Christensen M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2002, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' E, 66, 016121 Davis M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Efstathiou G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Frenk C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', White S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 1985, ApJ, 292, 371 DeRose J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2019, ApJ, 875, 69 Diemer B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2018, The Astrophysical Journal Supplement Series, 239, 35 Duarte M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Mamon G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2014, Monthly Notices of the Royal Astronomical Society, 440, 1763 Dunkley J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2009, ApJS, 180, 306 Ester M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Kriegel H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Sander J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Xu X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 1996, in kdd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' pp 226–231 Fall S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Efstathiou G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 1980, MNRAS, 193, 189 Farrens S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Abdalla F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Cypriano E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Sabiu C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Blake C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2011, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 417, 1402 Gifford D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Miller C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Kern N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2013, ApJ, 773, 116 Gott J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Richard I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Melott A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Dickinson M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 1986, ApJ, 306, 341 Guo H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Zehavi I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Zheng Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2012, ApJ, 756, 127 Hearin A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2017, The Astronomical Journal, 154, 190 Hong S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Park C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Kim J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2016, ApJ, 823, 103 Hoyle F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Vogeley M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Pan D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2012, MNRAS, 426, 3041 Huchra J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Geller M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 1982, The Astrophysical Journal, 257, 423 Hwang H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Park C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Elbaz D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Choi Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2012, A&A, 538, A15 Jiang C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Jing Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Faltenbacher A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Lin W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Li C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2008, ApJ, 675, 1095 Kim J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Park C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', L’Huillier B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Hong S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2015, Journal of Korean Astronomical Society, 48, 213 Knebe A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2011, MNRAS, 415, 2293 Kravtsov A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Berlind A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Wechsler R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Klypin A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Got- tlober S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Allgood B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Primack J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2004, The Astrophysical Journal, 609, 35 Krzewina L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Saslaw W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 1996, Monthly Notices of the Royal Astronomical Society, 278, 869 Lee G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Park C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Lee M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Choi Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2012a, ApJ, 745, 125 Lee G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Woo J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Lee M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Hwang H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Lee J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Sohn J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Lee J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2012b, ApJ, 750, 141 Li X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='-D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Park C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Forero-Romero J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Kim J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2014, ApJ, 796, 137 Limousin M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Morandi A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Sereno M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Meneghetti M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Ettori S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Bartelmann M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Verdugo T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2013, Space Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 177, 155 More S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Kravtsov A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Dalal N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Gottlöber S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2011, ApJS, 195, 4 Naidoo K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2019, Journal of Open Source Software, 4, 1721 Naidoo K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Whiteway L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Massara E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Gualdi D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Lahav O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Viel M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Gil-Marún H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Font-Ribera A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2020, Monthly Notices of the Royal Astronomical Society, 491, 1709 Navarro J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Frenk C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', White S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 1996, ApJ, 462, 563 Pan D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Vogeley M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Hoyle F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Choi Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Park C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2012, MNRAS, 421, 926 Park C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Gott J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 1991, ApJ, 378, 457 Park C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Kim Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='-R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2010, ApJ, 715, L185 Park C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Choi Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Kim J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Gott J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' Richard I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Kim S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Kim K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2012, ApJ, 759, L7 Park H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Park C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Sabiu C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Li X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='-d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Hong S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Kim J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Tonegawa M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Zheng Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2019, ApJ, 881, 146 Pedregosa F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2011, Journal of Machine Learning Research, 12, 2825 Planck Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2016, A&A, 594, A13 Press W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Schechter P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 1974, ApJ, 187, 425 Reid B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Seo H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Leauthaud A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Tinker J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', White M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2014, MNRAS, 444, 476 Sander J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Ester M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2017, ACM Transactions on Database Systems, 42, 1 Serra A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Diaferio A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2013, ApJ, 768, 116 Sheth R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 1996, MNRAS, 279, 1310 Tago E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Einasto J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Saar E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Tempel E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Einasto M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Vennik J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Müller V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2008, Astronomy & Astrophysics, 479, 927 Tempel E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Kipper R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Tamm A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Gramann M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Einasto M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Sepp T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Tuvikene T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2016, Astronomy & Astrophysics, 588, A14 Tonegawa M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Park C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Zheng Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Park H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Hong S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Hwang H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Kim J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2020, ApJ, 897, 17 White S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', Rees M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 1978, MNRAS, 183, 341 Zehavi I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2002, ApJ, 571, 172 Zehavi I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=', 2011, ApJ, 736, 59 This paper has been typeset from a TEX/LATEX file prepared by the author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} +page_content=' MNRAS 000, 1–14 (0000)' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE1T4oBgHgl3EQfkwTA/content/2301.03278v1.pdf'} diff --git a/19E2T4oBgHgl3EQfiwfE/vector_store/index.faiss b/19E2T4oBgHgl3EQfiwfE/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..084e488bf1e438518b4a8ee9daad390225b7c48a --- /dev/null +++ b/19E2T4oBgHgl3EQfiwfE/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8233042e62b8f96aed409f289f827d821b2b752a059bbc6e4533ac9767667c79 +size 7077933 diff --git a/1tAzT4oBgHgl3EQfDfp4/content/tmp_files/2301.00977v1.pdf.txt b/1tAzT4oBgHgl3EQfDfp4/content/tmp_files/2301.00977v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..985ebfd341f01445d503ce6c1a0cd739955c0d8e --- /dev/null +++ b/1tAzT4oBgHgl3EQfDfp4/content/tmp_files/2301.00977v1.pdf.txt @@ -0,0 +1,1276 @@ +Publications of the Astronomical Society of Australia (), 1–11 +doi: +ARTICLE +Milliarcsecond Structures of Variable Peaked-Spectrum Sources +K. Ross,1 C. Reynolds,2 N. Seymour,1 J. R. Callingham,3,4 N. Hurley-Walker,1 and H. Bignall5,2 +1International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia +2 CSIRO, Space and Astronomy, P.O. Box 1130, Bentley, WA 6102, Australia +3Leiden Observatory, Leiden University, PO Box 9513, Leiden, 2300 RA, The Netherlands +4ASTRON, Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, Dwingeloo, 7991 PD, The Netherlands +5Manly Astrophysics, 15/41-42 East Esplanade, Manly, NSW 2095, Australia +Author for correspondence: K. Ross, Email: kathryn.ross@icrar.org. +(Received 03 Aug 2022; revised 24 Nov 2022; accepted 31 Dec 2022; first published online XX) +Abstract +Spectral variability offers a new technique to identify small scale structures from scintillation, as well as determining the absorption mechanism +for peaked-spectrum (PS) radio sources. In this paper, we present very long baseline interferometry (VLBI) imaging using the Long Baseline +Array (LBA) of two PS sources, MRC 0225–065 and PMN J0322–4820, identified as spectrally variable from observations with the Murchison +Widefield Array (MWA). We compare expected milliarcsecond structures based on the detected spectral variability with direct LBA imaging. +We find MRC 0225–065 is resolved into three components, a bright core and two fainter lobes, roughly 430 pc projected separation. A +comprehensive analysis of the magnetic field, host galaxy properties, and spectral analysis implies that MRC 0225–065 is a young radio +source with recent jet activity over the last 102–103 years. We find PMN J0322–4820 is unresolved on milliarcsecond scales. We conclude +PMN J0322–4820 is a blazar with flaring activity detected in 2014 with the MWA. We use spectral variability to predict morphology and find +these predictions consistent with the structures revealed by our LBA images. +1. +Introduction +Peaked-spectrum (PS) sources, are a subset of active galac- +tic nuclei (AGN) that are identified by a peak in their radio +spectral energy distribution (O’Dea & Saikia, 2021), and are +also often associated with compact morphologies (≲ 20 kpc; +Phillips & Mutel, 1982; Tzioumis et al., 2010). PS sources +provide an interesting population of AGN as the evolutionary +pathway from PS source to extended (≳ 30 kpc) AGN is still +unclear. Two contending theories hypothesise the nature and +evolutionary pathway of PS sources: the youth scenario, where +the age of the PS source is ≤ 105 years and has not yet had +ample time to grow to the large-scale AGN (O’Dea & Baum, +1997; Owsianik & Conway, 1998; Tinti & de Zotti, 2006); +and the frustration scenario, when the PS source is confined +by a dense cloud of the interstellar medium (ISM) of the host +galaxy environment (van Breugel et al., 1984; Wilkinson et al., +1984; O’Dea et al., 1991). Furthermore, recent identifications +of embedded PS cores within remnant ageing lobes has been +attributed to restarted and episodic AGN activity (Hernández- +García et al., 2019), i.e. a cyclical evolution rather than linear +evolution. +Compact symmetric objects (CSOs) are a subset of PS +sources with similar morphologies to large scale AGN, namely +a central region (often quite faint, if detected) with emission +either side associated with hot spots and/or lobes. Unlike +typical AGN, CSOs show emission only on very compact scales, +typically ≤1 kpc, and thus require high-resolution imaging to +detect (Phillips & Mutel, 1982; Gugliucci et al., 2005). CSOs +are generally considered young AGN (< 104 yr; O’Dea & +Baum, 1997; Owsianik & Conway, 1998; Tinti & de Zotti, +2006), which may evolve into typical, radio-loud AGN. +Previous attempts to discriminate between youth and frus- +tration scenarios have relied on spectral modelling and high- +resolution imaging (e.g. Marr et al., 2014; Keim et al., 2019) +using very long baseline interferometry (VLBI). The cause of +absorption at low-frequencies, producing the spectral peak, +has typically been attributed to synchrotron-self absorption +(SSA) and/or free-free absorption (FFA) for the youth and +frustration scenarios respectively (Tingay & de Kool, 2003; +Callingham et al., 2015). Unfortunately, without sufficient +sampling below the spectral turnover, the cause of absorption +is often ambiguous (Callingham et al., 2017). In rare cases, a +SSA model can be ruled out if the optically thin spectral index +is sufficiently steep (α ≥ 2.5)a. +Many PS sources have been identified as a CSOs (e.g. +0108+388, 0710+439 and 2352+495; Readhead et al., 1996). +As CSOs are typically considered to be young AGN, identify- +ing PS sources that are also CSOs could help to differentiate +between the youth and frustrations scenarios. However, identi- +fying CSOs requires high resolution (mas) observations using +VLBI. Likewise, PS sources sometimes display extremely asym- +metrical mas structures, likely due to an inhomogeneous sur- +rounding environment influencing their growth (Orienti et al., +2006; Keim et al., 2019), compared with a fairly symmetrical +morphology associated with CSOs with minor asymmetries +likely coming from orientation effects (Orienti & Dallacasa, +2008). VLBI can also be used to measure proper motion of +aWe assume a power-law relation where Sν = S0να, thus the sign of α, +being negative or positive, also indicates either the optically thin or thick +spectral index respectively. +arXiv:2301.00977v1 [astro-ph.GA] 3 Jan 2023 + +2 +K. Ross et al. +hot-spots in lobes to estimate kinematic ages of ≤ 3×103years +(Polatidis & Conway, 2003; Gugliucci et al., 2005), consistent +with the theory that CSOs are young AGN. Indeed, Gugliucci +et al. (2005) find a majority of the CSOs with age estimates +were ≤ 500 yrs, suggesting CSOs may be short lived and few +would continue to grow to the scale of typical AGN, thereby +explaining the large fraction of CSO and PS sources thought +to be young relative to the number of large-scale radio galaxies +(O’Dea & Saikia, 2021). VLBI of PS sources can thus help to +identify populations of CSOs and elucidate the youth scenario +and AGN evolution. +Spectral variability at radio frequencies offers a new tech- +nique for identifying young or frustrated candidates. Many +variability surveys have identified PS sources that lost their PS +classification over time (Tinti et al., 2005; Torniainen et al., +2005; Ross et al., 2021, hereafter R21), or showed a signifi- +cant change in spectral shape likely due to a variable opacity +from the inhomogeneous surrounding ISM (Tingay et al., +2015; Ross et al., 2022, hereafter R22). Thus the population of +known PS sources, which is already biased from sparse spectral +coverage from a range of instruments and times, is likely con- +taminated by temporary PS sources. This is particularly true +at higher frequencies (∼GHz), which is sensitive to emission +from the core/jets. PS sources with a peak at lower frequen- +cies (∼MHz) appear to be less contaminated by sources only +showing a temporary peak (Callingham et al., 2017, R21). +Spectral variability offers the a new technique to find and +exclude contaminating “temporary” PS sources, as well as iden- +tify CSO candidates with a decreased risk of contaminating +sources. Variability of PS sources has been used to infer the +presence of compact (µas – mas) features based on scintillation +(Fanti et al., 1979; Chhetri et al., 2018, R21). Such compact +features are common for CSOs, but VLBI is required for con- +firmation of a CSO classification. Spectral variability has also +found PS sources that show changing spectral shape, inconsis- +tent with scintillation, which suggests that some PS sources +are frustrated or contaminating blazars (R22). +This paper aims to investigate the milliarcsecond scale struc- +tures of variable PS sources using VLBI to test predictions based +on spectral variability. In particular, we investigate PS sources +that have shown a consistent spectral shape with a variable +overall flux density, consistent with scintillation, suggesting a +compact feature on milliarcsecond scales (R21, R22), and use +VLBI to test a CSO classification. We also investigate variable +PS sources that R21 found as changing spectral shape. They +concluded the short timescale (∼1 year), and variable spectral +shape is inconsistent with interstellar scintillation and present +it as a blazar caught flaring. +In Section 2, we describe the three variable PS sources of +this study, in Section 3 we describe the observational strategy +and data reduction. Section 4 outlines the results of the LBA +imaging. We discuss the host galaxy properties including +their linear size compared to turnover in Section 5.1, the mid- +infrared (MIR) and optical emission in Section 5.2 and the radio +properties in Section 5.3. In Section 6 we present the likely +absorption mechanisms and source classification of our targets. +We adopt the standard Λ-cold dark matter cosmological model, +with ΩM = 0.286, ΩΛ = 0.714, and the Hubble constant +H0 = 69.6 km s–1 Mpc–1 (Wright, 2006; Hinshaw et al., 2013) +2. +Target Selection +Targets were selected for LBA imaging with the goal of com- +paring direct imaging of milliarcsecond structures with pre- +dicted morphologies based on their variability. Three targets +were selected based on the variability detected by R21 and +R22. MRC 0225–065 (GLEAM J022744-062106) was initially +identified as variable in R21 but further monitoring over a +year found no evidence of variability (R22). As such, it was +predicted MRC 0225–065 would have resolved structures on +milliarcsecond scales with a compact feature ≲ 25 mas, re- +sulting in variability from refractive interstellar scintillation +(RISS) on a longer timescale with a dampened modulation +index due to the extended structure. Conversely, PMN J0322– +4820 (GLEAM J032237–482010) was selected due to the vari- +able spectral shape identified in R21. To explain the variable +spectral shape, R21 concluded PMN J0322–4820 was likely a +blazar caught flaring in 2014. As such, it was predicted to show +a compact morphology even on milliarcsecond scales. Finally, +MRC 2236-454 (GLEAM J223933–451414) was identified by +R21 as the only PS source in their sample that showed sig- +nificant variability but maintained a constant peak frequency +below 231 MHz. A low peak frequency is typically associated +with PS sources that are of the order of tens of kilo-parsecs +across, but the RISS detected by R22 suggested MRC 2236-454 +is dominated by a compact feature, and showed variability due +to a surrounding inhomogeneous environment. As such, it was +predicted MRC 2236-454 may be resolved on milliarcsecond +scales and show an asymmetrical morphology, often associ- +ated with frustrated sources in an inhomogeneous surrounding +environment (Orienti et al., 2006). +3. +LBA Observations and Data Reduction +3.1 +Observations +LBA observations were taken on November 23, 2020 and +February 17, 2021 as part of project V600. The November +observation was centered at 2.4 GHz and the February obser- +vation was centered at 8.3 GHz and both utilised 128 MHz of +bandwidth in dual polarizations. Stations used in each obser- +vation and their diameter is listed in Table 1. Both observa- +tions cycled through phase calibrator scans and target scans +of lengths 2 min and 5 min, respectively. However, the spatial +separation of each target and their respective phase calibrator +meant each target had a different number of scans. A summary +of the targets, phase calibrators and number of scans each is +presented in Table 2. +Parkes at 2.4 GHz, and Katherine at both frequencies, ob- +served using their native linear feeds. These were converted +to a circular polarization basis post-correlation using the Pol- +Convert software (Martí-Vidal et al., 2016) +3.2 +Data Processing and Calibration +After correlation, data calibration and processing were done +using the NRAO’s Astronomical Imaging Processing System + +Publications of the Astronomical Society of Australia +3 +Table 1. LBA stations included in observations +Name +Code +Diameter (m) +Nov20 +Feb21 +ATCA, phased up +At +5×22 +Y +Y +Mopra +Mp +22 +Y +Y +Parkes +Pa +64 +Y +Y +Hobart +Ho +26 +Y +Y +Ceduna +Cd +30 +Y +Y +Yarragadee +Yg +12 +Y +Y +Warkworth +Ww +12 +Y +Y +Hartebeesthoek +Hh +26 +Y +Y +Katherine +Ke +12 +Y +Y +Tidbinbilla +Td +34 +Y +N +Table 2. Targets, associated calibrators and number of LBA scans for each +target source. +Source Name +Expected S5GHz (mJy) +Number of scans +MRC 0225–065 +0.238 +27 +PKS J0217+0144 (C) +0.666 +27 +PMN J0322–4820 +0.112 +40 +PMN J0335-4837 (C) +0.112 +40 +MRC 2236–454 +0.420 +48 +QSO B2227–445 (C) +0.386 +48 +(AIPS) (Wells, 1985). The calibration and flagging followed +the general procedure outlined in the AIPS cookbookb and +was implemented in a semi-automated script with the Parsel- +Tongue interface (Kettenis et al., 2006). Initial flagging of edge +channels and RFI was done using UVFLG. Auto-correlations +were scaled to unity across the band using ACCOR before +removing gross residual instrumental delays using FRING on +a short scan of a bright calibrator. Complex bandpass cor- +rections were derived using BPASS. The system temperature +and gain calibration were applied using APCAL. Delay, rate +and phase calibrations were determined from fringe fitting +using FRING from each target’s respective phase calibrator. +A phase referenced image was created for all targets except +for MRC 0225–065, as a first pass detection of the targets to +determine if a phase shift was needed. Lastly, UVFIX was used +to apply a phase shift to the data for any sources that were +∼arcsecond away from the phase centre used in correlation. +MRC 0225–065 had accurate VLBI coordinates and thus did +not require a phase shift. The calibrated and phase shifted data +were exported to be imaged using CASA. +3.3 +Imaging and Self-Calibration +Initial Stokes-I images were made with a quasi-natural weight- +ing with robust parameter set to +1 (Briggs, 1995) using the +tclean function in CASA (McMullin et al., 2007). Clean boxes +were used but were tightly restricted for the models used for +self-calibration to avoid inducing artificial structure from the +bThe AIPS cookbook can be found here http://www.aips.nrao.edu/cook. +html +complex point-spread-function. For each image, phase only +self calibration was performed and applied using the gaincal +and applycal functions respectively. Due to the sparse (u, v)- +coverage and low signal-to-noise (SNR), calibration solutions +were inspected and applied without flagging solutions that +had insufficient SNR. The slow rate of improvement necessi- +tated several (∼9) rounds of self-calibration. The SNR of the +main component and the root-mean-squared (rms) noise of +the image were inspected after each self calibration iteration +to ensure each round improved the overall image quality. For +each source the initial model assumed for the self-calibration +was an unresolved point source to avoid inducing any morpho- +logical features. Any resolved components were included in +subsequent rounds of imaging clean components and kept in +the model for self-calibration if this reduced the rms noise of +the image. The initial solution interval for the self calibration +was set to the scan length and decreased in further rounds of +self calibration. Phase only self calibration rounds were contin- +ued until the rms noise of the image increased. A final round of +both phase and amplitude self calibration was then performed +(provided it reduced the rms of the final image) with the so- +lution interval set to the scan length. For MRC 0225–065, an +amplitude self-calibration was applied to both frequencies, but +no amplitude self-calibration was applied to the 2.4 GHz image +of PMN J0322–4820. +4. +Results +Images of MRC 0225–065 at both 2.4 and 8.3 GHz are pre- +sented in Figure 1, and an image of PMN J0322–4820 at +2.4 GHz, presented in Figure 3. Unfortunately, due to large +phase errors from a pointing offset, we were unable to re- +cover images for MRC 2236–454 at either frequency, or for +PMN J0322–4820 at 8.3 GHz, this was because the source po- +sitions were beyond the observed correlated field of view for +recovery in each case. For MRC 2236–454, the pointing offset +was over 11 arcseconds for both the 2.4 GHz and 8.3 GHz ob- +servations, thus the phase errors from this pointing offset was +beyond recovery. PMN J0322–4820 also had a pointing offset +of ≈ 11.5 arcseconds, however, given it was bright (∼ 0.2 Jy), +there was sufficient sensitivity using a subset of antennas (flag- +ging the Hartebeesthoek antenna), and a phase shift combined +with self calibration to recover and image at 2.4 GHz. How- +ever, this method was not possible at 8.3 GHz due to the smaller +field-of-view and decreased sensitivity. Henceforth, we will +only discuss the results for MRC 0225–065 and PMN J0322– +4820. +Table 3. Properties for each LBA image: synthesised beam size and rms +background noise. +Source, ν (GHz) +rms (mJy/beam) +θbeam,maj +θbeam,min +PA +MRC 0225–065, 2.4 +2.7 +9.5 +3.2 +7.0 +MRC 0225–065, 8.3 +1.0 +4.4 +2.7 +83 +PMN J0322–4820, 2.4 +1.0 +30 +17 +-54 + +4 +K. Ross et al. +4.1 +MRC B0225–065 +MRC 0225–065 was resolved into three components morphol- +ogy at both 2.4 GHz and 8.3 GHz, as shown in Figure 1. The +final image was made with a robust parameter of -1 at 2.4 GHz +and -0.5 at 8.3 GHz (Briggs, 1995). MRC 0225–065 is resolved +into 3 regions: a bright, unresolved central component, with +an upper limit of source size of 2.5 × 4 mas assuming the beam +size at 8.3 GHz (labelled C in Figure 1), a fainter 16 × 11 mas +Western region (L1) and even fainter 14 × 10 mas Eastern +component (L2). The sizes of L1 and L2 are measured using +the contours in the 2.4 GHz image. The triple morphology is +roughly symmetrical with the distance between the C to L1 +and L2 being ∼ 40 mas each. Since it appears the components +of MRC 0225–065 may be resolved, we measured their flux +density over an irregular polygonc for each component. +We recovered all the flux density predictions from the +spectral fit to the R22 ATCA observations at 2.4 GHz, but +found that ∼ 35% of the flux density was lost at 8.3 GHz. +The flux densities for each component and their spectral index +are presented in Table 4. The irregular polygon was shaped +based on contour levels to ensure only real flux was included in +the final measurement. However, the missing flux density at +8.3 GHz may be due to extended structure being resolved out. +Consequently, the estimates for the spectral index presented +in Table 4 should be considered lower limits. +Table 4. Flux densities and two component spectral index for each compo- +nent of MRC 0225–065 found in the LBA images. The uncertainties for the +fluxdensitiesaremeasuredcalculatedusingthemeasureduncertaintyfrom +polygon flux and the rms noise of the image. The uncertainty for α is calcu- +lated using standard propagation of errors. The model prediction is calcu- +lated from the best spectral fit, a double SSA spectral model with an expo- +nential break. +Component +S2.4GHz (mJy) +S8.3GHz (mJy) +α +C +270±10 +78±7 +-0.95±0.08 +L1 +121±8 +30±5 +-1.1±0.2 +L2 +56±7 +18±4 +-0.9±0.2 +Integrated LBA +447±14 +126±10 +-0.97±0.07 +Model Prediction +400 +195 +N/A +The symmetrical triple morphology suggests MRC 0225– +065 is a CSO candidate with a core (C) and two lobes (L1 +and L2). +The spectral index of the central component is +αC = –0.95 ± 0.08, which is far steeper than expected for +a typical AGN “core", generally expected to have a α ≥ –0.5 +(Orienti et al., 2006; Hardcastle & Looney, 2008). However, +components have previously been identified as cores with spec- +tral indices as steep as –0.7 (Orienti et al., 2006). We present +the SED for MRC 0225–065 in Figure 2 including the MWA +flux densities from R22 as well as the flux densities and power- +law spectral model for each LBA component. The entire SED +is fit, using the most recent MWA epoch (2020-09), with a +double SSA model with an exponential break, which assumes +two synchrotron emitting regions that are self-absorbed and +cusing https://github.com/nhurleywalker/polygon-flux, (Hurley-Walker +et al., 2019) +ageing producing the exponential break, νb, separate from the +peak frequency. The break frequency is the frequency where +the spectrum begins to steepen as the electrons are ageing +and experiencing energy losses (Turner et al., 2018). We fit +the spectral model using the UltraNest packaged (Buchner, +2021), which uses a nested sampling Monte Carlo algorithm. +From the double SSA spectral model, we find the peak frequen- +cies for the two SSA components to be νp,1 =400±100 MHz +and νp,2=112±90 MHz, and find νb =14.3±2.7 GHz. +MRC 0225–065 has a spectroscopic redshift of 0.445 (Al- +bareti et al., 2017); thus, 1 mas corresponds to a linear scale of +5.25 pc. Using this redshift, we find the projected linear size +of MRC 0225–065 (from L1 to L2) to be ∼430 pc, the linear +distance from the core to either lobe to be ∼210 pc and place +an upper limit on the size of component C to be ≤26 pc. +4.2 +PMN J0322–4820 +Due to difficulties in the phase calibration, we were only able to +produce a high quality image of J0322–483 at 2.4 GHz, shown +in Figure 3. We do not resolve PMN J0322–4820 and it is +confined to the size of the beam: 56 × 40 mas. The final image +was made using a robust parameter of +0.5, and by flagging the +Hartebeesthoek antenna, thus the beam size for PMN 0322– +4820 compared to MRC 0225–065 for the same frequency is +much larger. Details of the image properties are presented in +Table 3. Compared to the spectral model fit to the ATCA and +2014 MWA observations, 18% of the flux density was missing. +We used a reported photometric redshift for PMN J0322–4820 +of 0.16 (Bilicki et al., 2014), thus 1 mas corresponds to a linear +size of 2.650 pc. We place an upper limit on the source size of +148 pc. +5. +Discussion +In this section, we will present a comprehensive analysis of both +MRC 0225–065 and PMN J0322–4820 to produce a unified +perspective of these two sources with the aim of concluding +whether they are young or frustrated PS sources. In Sec- +tion 5.1, we present our two sources in the linear size and +turnover relation, in Section 5.2, we discuss the host galaxy +properties according to mid-infrared, optical observations and +radio properties. +5.1 +Linear Size and Turnover Relation +PS sources follow an inverse relation between their linear size +and intrinsic turnover frequency, often referred to as the linear +size turnover relation, first presented by O’Dea (1998). This +relation is directly predicted from the youth scenario (O’Dea, +1998) where the peak frequency is due to SSA and thus the +linear size is directly related to the peak frequency (Keller- +mann & Pauliny-Toth, 1981). While modifications to models +in the frustration scenario can reproduce this relation (Bick- +nell et al., 2018), it is generally understood that PS sources +that fall below the linear size-turnover relation are likely com- +pact beyond what is expected for a young source and a thus +dhttps://johannesbuchner.github.io/UltraNest/ + +Publications of the Astronomical Society of Australia +5 +40 +20 +0 +-20 +-40 +40 +20 +0 +-20 +-40 +Relative R.A. (mas) +Relative Dec (mas) +C +L1 +L2 +MRC 0225-065 at 2.4GHz +52.5pc +0.00 +0.02 +0.04 +0.06 +0.08 +0.10 +Intensity (Jy/beam) +40 +20 +0 +-20 +-40 +40 +20 +0 +-20 +-40 +Relative R.A. (mas) +Relative Dec (mas) +C +L1 +L2 +MRC 0225-065 at 8.3GHz +52.5pc +0.00 +0.01 +0.02 +0.03 +0.04 +Intensity (Jy/beam) +Figure 1. LBA images of MRC 0225–065 at 2.4 GHz (lef) and 8.3 GHz (right). Beam sizes are shown with a white ellipse in the bottom lef corner of each image +and dimensions are specified in Table 3. Contours are placed at (-3, 3, 4, 5, 6, 7, 10, 20, 50, 100, 200, 400, 800, 1600) times the rms noise of the image, also +specified in Table 3. Pixel brightness is plotted in a linear scale following the colour-bars to the right of each image. The resolved regions are labelled C, L1, +L2 and properties of each region are outlined in Table 4. Relative R.A and Dec are calculated from the position of the core (C) component with coordinates: +J2000 02h27m44.5s -06d21m06.7s. +0.1 +0.2 +0.5 +1.0 +2.0 +5.0 +10.0 +Frequency (GHz) +0.10 +0.20 +0.30 +0.40 +0.50 +0.60 +0.70 +0.80 +Flux Density (Jy) +MRC 0225-065 +2013 +2014 +2020-04 +2020-05 +2020-07 +2020-09 +ATCA 2020 +LBA int +C +L1 +L2 +40 +20 +0 +-20 +-40 +40 +20 +0 +-20 +-40 +Relative R.A. (mas) +Relative Dec (mas) +C +L1 +L2 +MRC 0225-065 Spectral Index Map +52.5pc +−1.8 +−1.6 +−1.4 +−1.2 +−1.0 +−0.8 +−0.6 +−0.4 +−0.2 +α +Figure 2. Spectral energy distribution (SED) for MRC 0225–065 (lef) and spectral index map (right). The spectral index map was created using by convolving +both the 8.3 GHz image and 2.4 GHz image to the same resolution. Data included in the SED are from R21 and R22 monitoring (circles) and coloured according +toepoch. LBAfluxdensitiesareplottedassquareswiththeintegratedfluxdensityofLBAplottedasblacksquares. ThespectralfittoeachLBApointisapower- +law with spectral index presented in Table 4. The grey spectral model to the entire SED is a double SSA model with an exponential break. Supplementary +data included: TIFR GMRT 150 MHz Sky Survey Alternative Data Release 1 (TGSS-ADR1; Intema, H. T. et al., 2017) (grey cross), Molonglo Reference Catalogue +(MRC; Large et al., 1981, 1991) (grey +), Rapid ASKAP Continuum Survey (RACS; McConnell et al., 2020; Hale et al., 2021) (grey ‘Y’), NRAO VLA Sky Survey (NVSS; +Condon et al., 1998), Australia Telescope 20 GHz (AT20G; Murphy et al., 2010) (grey right arrow). + +6 +K. Ross et al. +200 +100 +0 +-100 +-200 +200 +100 +0 +-100 +-200 +Relative R.A. (mas) +Relative Dec (mas) +C +L1 +L2 +PMN J0322-4820 at 2.4GHz +132.5pc +0.00 +0.02 +0.04 +0.06 +0.08 +Intensity (Jy/beam) +0.1 +0.2 +0.5 +1.0 +2.0 +5.0 +10.0 +Frequency (GHz) +0.10 +1.00 +0.50 +Flux Density (Jy) +PMN J0322-4820 +2013 +2014 +ATCA 2020 +LBA +Figure 3. LBA image for PMN J0322–4820 at 2.4 GHz (lef) and associated SED (right). The beam size is shown with a white ellipse in the bottom lef corner +and dimensions are specified in Table 3. Contours are placed at (-3, 3, 4, 5, 6, 7, 10, 20, 50, 100, 200, 400, 800, 1600) times the rms noise of the image, also +specified in Table 3. Pixel brightness is plotted in a linear scale following the colour-bars to the right of the image. Relative R.A and Dec are calculated from the +central coordinate: J2000 03h22m38.0s -48d20m16.2s. Data included in SED is from R21 and R22 (circles) and coloured according to epoch. LBA flux density +is plotted as a blue square. The grey spectral model to the entire SED is a single SSA model with an exponential break. Supplementary data included is: TIFR +GMRT 150 MHz Sky Survey Alternative Data Release 1 (TGSS-ADR1; Intema, H. T. et al., 2017) (grey cross), Sydney University Molonglo Sky Survey (SUMSS; +Mauch et al., 2003) (grey star), Rapid ASKAP Continuum Survey (RACS; McConnell et al., 2020; Hale et al., 2021) (grey ‘Y’). +assumed to be frustrated. We plot both MRC 0225–065 and +PMN J0322–4820 on the linear size-turnover relation in Fig- +ure 4, along with other known PS sources, details of which +are discussed by Keim et al. (2019). It is evident from Figure 4, +that MRC 0225–065 is entirely consistent with the relation +whereas PMN J0322–4820 sits somewhat below the relation, +particularly since the linear size is an upper limit. This would +suggest MRC 0225–065 is consistent with the youth scenario +whereas PMN J0322–4820 may be frustrated. However, it is +worth nothing, R21 identified PMN J0322–4820 as a variable +PS source with a changing spectral shape, and thus concluded +it was likely a blazar. Furthermore, R21 found the peak fre- +quency changed from ∼320 MHz in 2013 to ∼145 MHz in +2014. As the peak frequency is variable and PMN J0322–4820 +is known to exhibit a changing spectral shape, its position on +the linear size-turnover relation will also vary, shown by the +error bar in Figure 4 corresponding to the range of the peak +frequency from 2013 to 2014. Most likely, PMN J0322–4820 +is only a temporary PS source and thus should not be included +in this relation nor when considering the PS population at +large. +5.2 +Host Galaxy Properties +5.2.1 +WISE Colours +MIR colour selection techniques using the Wide-Field Infrared +Survey Explorer (Wright et al., 2010, WISE) are widely used to +efficiently distinguish between AGN and star-forming galax- +ies. +WISE is a MIR all sky survey covering four photometric +bands: 3.4, 4.6, 12, and 22 µm referred to as W1, W2, W3, and +W4 respectively. The MIR wavelengths are sensitive to the +emission from hot dust in the torus of the AGN, allowing for +the identification of AGN where X-ray and optical emission +10 +2 +10 +1 +100 +101 +102 +Linear Size (kpc) +102 +103 +104 +Rest-Frame Peak Frequency (MHz) +J0227-0621 +J0322-482 +Figure 4. Rest frame peak frequency versus linear size. Sources in black are +describedinKeimetal.(2019). Thedashedlineisthefittotherelationfound +by Orienti & Dallacasa (2014). Arrows indicate maximum linear sizes for un- +resolved sources. MRC 0225–065 (pink circle) and PMN J0322–4820 (purple +circle) are plotted with linear sizes calculated from LBA images. The error +bars for MRC 0225–065 represent the range for peak frequencies calculated +in R21. + +Publications of the Astronomical Society of Australia +7 +may be blocked by intervening gas and dust. This also makes +AGN stand out from star-bursting galaxies or stars due to their +extremely red MIR emission (Lonsdale et al., 2015). Obscured +AGN with red MIR emission have been identified by their MIR +colours, often by their place in a colour-colour diagram (Jarrett +et al., 2011; Lonsdale et al., 2015). The bulk of sources centred +around W1 – W2 = 1.2 and W2 – W3 = 3 correspond to the +region typically associated with quasars and AGN. MRC 0225– +065 is found in the region typically associated with emission +from star formation or stellar emission; i.e. there is no evidence +of hot AGN dust, however, there is evidence for moderate star +formation. As we know MRC 0225–065 is an AGN, it is likely +the emission at MIR is a combination of these two processes. +PMN J0322–4820 is well within the elliptical regime, thus +has low emission from star formation and no evidence of hot +AGN dust. Blazars are typically found to dominate the top +right region of the WISE colour-colour plot as the MIR emis- +sion is dominated by the emission of the blazar over the galaxy +(and associated stellar emission). A compact morphology and +variable spectral shape suggest PMN J0322–4820 is a blazar. +However, the WISE colours of PMN J0322–4820 suggest that +the host galaxy is an elliptical with predominantly red optical +emission. Therefore, the emission from the potential radio +blazar is not dominant in the MIR. While it is more common +to find blazars in the top right region of the WISE colour- +colour plot, the MIR colours, which suggest the host galaxy +for PMN J0322–4820 is an elliptical, are still consistent with a +blazar classification (Yang et al., 2015; D’Abrusco et al., 2019). +5.2.2 +Optical Spectra +MRC 0225–065 has an optical spectrum from the 13th data +release of the Sloan Digital Sky Survey (Albareti et al., 2017, +SDSS). From the fitted spectrum, Albareti et al. (2017) report +a spectroscopic redshift for MRC 0225–065 of z = 0.445 and +classify it as a broad-line, starburst quasar. The spectrum +additionally has low-ionisation nuclear emission-line region +(LINER) properties, evident from the strong NII, SiII and OI +lines. A LINER has a high energy radiation field. There is still +debate about whether this is AGN emission or star formation, +but likely the combination of the broad lines, strong OIII +emission and radio-loudness of MRC 0225–065 is evidence +of AGN. From the broad Hα, we can calculate the velocity +dispersion according to: +d(velocity) = cd(λ) +λ0 +, +(1) +where c is the speed of light, d(λ) is the wavelength dispersion +from the spectral fit, and λ0 is the rest-frame wavelength of +Hα. Using the reported fit to the broad Hα from SDSS where +λobserved = 9486 Å, we use the equivalent width, EW= 30±4 Å, +and find the velocity dispersion to be 900±100 km/s. This large +velocity dispersion may be from an extreme star formation +wind but it is also indicative of the broad-line regions from an +AGN, which is more consistent given our radio observations +identify MRC 0225–065 as an AGN. The broad Hα, and large +velocity dispersion, is consistent with an AGN that is quite +obscured, as reported by Albareti et al. (2017) who classify +it as a broad-line quasar. Perhaps of more interest are the +starburst properties of MRC 0225–065, namely OII and OIII +emission lines, identified by Albareti et al. (2017). Both OII and +OIII are forbidden lines with different origins: OII is mostly +due to star formation and thus is often used as an indicator +for star formation in galaxies; OIII is due to an AGN and +can be used as a proxy for the AGN bolometric luminosity. +This is also consistent with the WISE colours discussed in +Section 5.2.1, which find MRC 0225–065 consistent with a +galaxy with emission coming from both the AGN and star +formation. Combining the radio, MIR and optical properties +of MRC 0225–065, it is likely this galaxy has moderate star +formation with an obscured AGN. +5.3 +Radio Properties of MRC B0225–065 +Combining the spectral information and high resolution re- +solved structure of MRC 0225–065, we are able to determine +several intrinsic properties that can help differentiate between +SSA and FFA models. In this section, we estimate the magnetic +field strength and spectral ages to assess whether MRC 0225– +065 is consistent with the youth scenario. We do not consider +PMN J0322–4820 in this section due to its unresolved mor- +phology (even on mas scales) and since the radio variability +suggests it is a blazar with an added beaming effect producing +Doppler boosting and thus many of the assumptions required +for these calculations no longer hold. +5.3.1 +Magnetic Field +As a means of evaluating the validity of SSA compared to +an FFA, we can calculate the magnetic field estimates based +on a pure SSA model and on equipartition. Equipartition +assumes there is equal energy between the radiating particles +and the magnetic field. The comparison between magnetic +field estimates based on an SSA model and equipartition has +been used as evidence both for the SSA model (when the +estimates are in agreement; Orienti & Dallacasa, 2008) and +against (when there is a clear disparity; Keim et al., 2019). In +this section, we will first estimate the magnetic field assuming +a purely SSA model, then assuming equipartition and compare +these to determine whether SSA is a reasonable model for +MRC 0225–065. +We can estimate the magnetic field strength, in Gauss, +based on a purely SSA spectral model, BSSA, according to: +BSSA ≈ +(νpeak/f (αthin))5θsrc,min2θsrc,max2 +Speak +2(1 + z) +, +(2) +where νpeak is the observed peak frequency in GHz, Speak is the +flux density in Jy at the peak frequency for the source at redshift +z with angular minor and major component axis, θsrc,min and +θsrc,max, in mas (Kellermann & Pauliny-Toth, 1981). We note, +f (αthin) is as defined by Kellermann & Pauliny-Toth (1981), +where it is loosely related to αthin. We take f (αthin) = 8 based +on values from Marscher (1983); Orienti & Dallacasa (2008). + +8 +K. Ross et al. +Now, assuming equipartition, we calculate the magnetic +field strength, in Gauss, according to (Miley, 1980), as Bequi +by assuming the component has cylindrical symmetry such +that the width of the source on the sky is equivalent to the line +of sight path-length. +For both calculations, we calculate BSSA and Bequi for the +compact core region rather than the total source, to ensure we +are comparing a homogeneous region (Orienti & Dallacasa, +2008; Keim et al., 2019). For MRC 0225–065, using Equa- +tion 2, we estimate the magnetic field strength for a purely +SSA model to be BSSA ≈6±7 mG for the core region where +θsrc = 2.5 × 4 mas. To estimate Bequi, we assume a filling fac- +tor η = 1 and set k = 1e and find Bequi ≈6±2 mG. As BSSA is +within the uncertainties of Bequi, it suggests the core region of +MRC 0225–065 is in equipartition and consistent with a pure +SSA model. While this does not exclude the FFA model, it +does provide supportive evidence for the SSA model. Further- +more, it may not be a valid assumption that MRC 0225–065 +is in equipartition, thus the equation from Miley (1980) for +Bequi would not be a reasonable estimate of the magnetic field +strength. +We can also use the estimated magnetic field to calculate +the age of the electron population as a proxy for the age of the +jets/lobes. Calculating the spectral age of the electron popula- +tion requires an accurate estimate of the break frequency, νb. +We can thus calculate the spectral age, τspec, according to: +τspec = +aB1/2 +B2 + BiC2 +� +νb(1 + z) +�–1/2 +where +BiC = 0.318(1 + z)2 +a = +�243πme5c2 +4µ02e7 +�1/2 +(3) +where BiC is the magnitude of the microwave background +magnetic field in nT, B is the magnetic field of the source +in nT, νb is the break frequency in GHz, and the constants +me, c, µ0, and e are the mass of an electron, speed of light, +magnetic permeability of free space, and charge of an electron, +respectively. +It is possible the core is actually an unresolved double of +more recent AGN activity than the outer lobes, producing +the steep (α ≲ –1, see Table 4) spectral index. We assume a +constant expansion speed, v, and use the linear sizes to estimate +the dynamical age, τdyn, of the core and outer lobes. Using +the magnetic field calculated for the core region assuming +equipartition, i.e. setting B = Bequi = 6 ± 2 mG, and deter- +mining a break frequency, we can estimate the spectral age +of the core. Using a break frequency of νb = 14.3 ± 2.7 GHz, +calculated from the double SSA spectral model fit, we estimate +the spectral age of the core to be τspec ≈ 700 ± 100 years. +ek = 1 is equivalent to the minimum energy condition, however values for +k have ranged from 1 to 100, where k = 100 produces an order of magnitude +difference in Bequi (Pacholczyk & Roberts, 1971; Miley, 1980) +We then calculate an upper limit on the expected expansion +velocity of v ≤ 0.13 c (using simple speed = distance/time argu- +ments) for the core using the upper limit for the linear source +size of θsrc ≤ 26 pc, as outlined in Section 4.1. An expansion +velocity of v = 0.13 c is well within previous measurements of +the expansion speeds for compact AGN that have been found +to range from 0.1 c up to 0.7 c (Polatidis & Conway, 2003; +An & Baan, 2012; Orienti & Dallacasa, 2020). The range of +expansion velocities would correspond to a range in dynamical +ages for the core of 100 ≲ τdyn ≲ 900 years. If we assume the +expansion velocity of the core of “inner lobes" is roughly equal +to that of the outer lobes from a previous epoch of activity, we +can place an upper limit on the dynamical ages of the outer +lobes. We calculate the distance between the core and L1 as +∼ 210 pc, which corresponds to a dynamical age of 5000 years +for an expansion velocity of 0.13 c. For the range of dynamical +ages for typical PS sources, we expect the age of the outer lobes +to be 1000 ≲ τdyn ≲ 7000 years. Previous estimates for the +ages of PS sources using similar assumptions have estimated +ages from ∼ 101 to ∼ 105 years (Orienti et al., 2010), which +is entirely consistent with our age estimates for both the inner +core and outer lobes. +As the ages, expansion velocities, and magnetic fields that +we calculate are all consistent with the SSA model and a youth +scenario, it appears MRC 0225–065 is more consistent with +a young CSO rather than a frustrated compact AGN. How- +ever, there are several caveats and assumptions made in these +calculations. Thus, while these results are consistent with +the evolutionary scenario of MRC 0225–065 being the youth +model, it is not sufficient for excluding the frustration scenario +entirely. +6. +AUnifiedPerspectiveofMRCB0225–065andPMNJ0322– +4820 +Combining all the information we have obtained about MRC 0225– +065, we begin to create a unified perspective that suggests +MRC 0225–065 is a CSO with a peaked spectrum best ex- +plained by SSA and recent jet activity over the last 102–103 years. +A summary of the evidence in support of this conclusion are +as follows: +• Variability: R21 identified spectral variability of MRC 0225– +065 with a constant spectral shape, consistent with vari- +ability due to RISS. Further spectral variability monitor- +ing by R22 detected no further variability, suggesting a +resolved structure but consistent PS source classification. +This observation suggests it is unlikely MRC 0225–065 is +a contaminating blazar or source with only a temporary +PS source classification, such as frustrated sources with an +inhomogeneous surrounding medium. +• Radio morphology: Previously, it has been suggested +frustrated PS sources are more likely to show an asymmet- +rical morphology due to the asymmetrical environment +confining the growth of the lobes. Inversely, this suggests +young PS sources that are not frustrated may be more +likely to show a symmetrical morphology like that of a + +Publications of the Astronomical Society of Australia +9 +CSO. MRC 0225–065 has a very symmetrical morphology +according to our LBA images, suggesting it may not be +interacting with its surrounding environment. +• Linear size and turnover relation: We find MRC 0225– +065 is entirely consistent with the linear size turnover rela- +tion, a natural product of the youth scenario. Although, it +can be reproduced in certain frustration models. +• Host galaxy: Using the MIR colours reported in by WISE +and the optical spectrum from SDSS, we identify the MRC 0225– +065 as having an obscured AGN with moderate star forma- +tion. Since the AGN does not dominate the entire MIR and +optical emission, and there is still star formation present, it +is possible the AGN has only recently been switched on +and thus has not yet quenched all star formation in the +galaxy, which is not surprising given the compact size of +MRC 0225–065. +• Magnetic field: Estimating the magnetic field using a +purely SSA model and comparing it to the magnetic field +calculated assuming equipartition are entirely consistent, +suggesting the SSA model is a reasonable model for MRC 0225– +065 +• Spectral ages: Using spectral modelling of the break fre- +quency, we estimate the age of the radio emission (from +the core and lobes) to be roughly 700 years, consistent with +estimates of the age of PS sources in the youth scenario. +• Dynamical ages: Using the linear size from our LBA im- +ages and previous measurements of expansion velocity we +estimate MRC 0225–065 has two major epochs of activity, +one between 1000 to 7000 years ago and another more +recently from 100 to 900 years ago. This is also consistent +with previous estimates of the ages for young PS sources. +Furthermore, due to the missing flux density at 8.3 GHz, +this estimate should be considered an upper limit as the +spectral indices for each component may be artificially +steepened by the missing flux density. +We therefore conclude, MRC 0225–065 is likely a young AGN +and with the peak occurring due to SSA. +Likewise, combining all information of PMN J0322–4820, +we can also begin to create a unified picture that PMN J0322– +4820 is a blazar. A summary of the evidence for this conclusion +are: +• Spectral variability: R21 identified PMN J0322–4820 as +a variable source in and classified it as showing a changing +spectral shape. The dramatic change in spectral shape in the +megahertz regime on a timescale of ∼ 1 year is inconsistent +with evolutionary models for PS sources and predicted +variability due to RISS. The changing spectral shape is +most easily explained by the dynamical nature of blazars. +• Radio morphology: The high resolution image of PMN J0322– +4820 using the LBA found it was still compact on mas scales. +This is also entirely consistent with a blazar morphology, +which appears compact due to orientation effects. +• Linear size and turnover relation: PMN J0322–4820 sits +well below the linear size and turnover relation typically +associated with PS sources. This could either be because +it is a frustrated source and is thus more compact than +expected for it’s predicted age. However, more likely, is +that the temporary peak detected with the MWA in 2014 +was a result of the variability of a blazar with effects like +Doppler boosting influencing measurements and thus the +spectral peak is unrelated to the source age or absorption +mechanisms. +• WISE MIR Colours: PMN J0322–4820 has WISE colours +typically associated with elliptical galaxies and/or LERGs/BL +Lac blazars. +We therefore identify PMN J0322–4820 as a new blazar where +the jets are oriented along the line-of-sight. However, PMN J0322– +4820 was not in the ROMA-bzcat catalogue of γ-ray emitting +blazars. This is potentially due to the steep spectrum at fre- +quencies over 1 GHz where PMN J0322–4820 is too faint to be +detected by traditional blazar searches. We suggest further ob- +servations using higher frequency observations in the X-ray or +γ regimes to search for any high frequency counterpart (Mas- +saro et al., 2009, 2015). We conclude PMN J0322–4820 should +not be included in any future population studies of PS sources +as it is a contaminating blazar and not a genuine PS source. +Furthermore, this highlights the possibility of a population +of blazars with steep spectra at high frequencies (ν ≥ 1 GHz) +that aren’t detected in traditional blazar searches and thus may +be contaminating populations of PS sources. Low-frequency +spectral variability thus presents as a new method for identify- +ing blazar candidates. +7. +Conclusion +We have sought to compare detections of spectral variabil- +ity for two PS sources with small scale (∼mas) morphology +and structures. The images produced using observations with +the LBA have identified one resolved and one unresolved PS +source. We have also combined our observations with archival +observations of the host galaxies of our sources to provide +evidence for either the youth or frustration scenario. +We find PMN J0322–4820 is unresolved with the LBA at +2.4 GHz, and pace an upper limit of the source size to be 148 pc, +using a photometric redshift of 0.16. In R21, PMN J0322–4820 +was found to show a changing spectral shape and was presented +as a blazar candidate. Comparing our compact morphology +with the spectral variability of R21, we find PMN J0322–4820 +is consistent with a blazar classification, and suggest high fre- +quency (X-ray or Gamma) to confirm. +We resolve MRC 0225–065 into three components at both +2.4 GHz and 8.3 GHz: a bright central region containing +∼50% of the total flux density, and two fainter regions roughly +equal distance from the central region. In R21 and R22, +MRC 0225–065 was found to show low levels of variability +with a constant spectral shape, and presented as showing vari- +ability due to ISS from a compact morphology with resolved +structure on mas scales. We find the projected linear size to +be 430 pc, using a spectroscopic redshift of 0.445. Using spec- +tral modelling, we calculate the magnetic field assuming a +purely SSA model, and find it is in agreement with the mag- +netic field calculated assuming equipartition. We therefore +conclude MRC 0225–065 is a young CSO, with a PS classifi- + +10 +K. Ross et al. +cation due to SSA. We found the core to have a spectral age of +τspec = 700 ± 100 years, which is consistent with previous age +estimates of young CSO sources of 101 – 105 years (Orienti +et al., 2010; Orienti & Dallacasa, 2020). Furthermore, we use +the spectral age of the core and the upper limit of core size to +calculate and expected expansion velocity (assuming the simple +relation speed = distance/time), and place an upper limit on +the expansion velocity of the lobes to be v = 0.13c, well within +previous measurements of expansion velocities for PS sources +of 0.1c ≲ v ≲ 0.7c (Orienti & Dallacasa, 2020). Lastly, we +use this to estimate the dynamical age of the outer lobes and +estimate their age to be τdyn ≈ 5000 years, again, well within +previous estimates of ages for young PS sources. +Our findings highlight the advantage of spectral variability +in identifying different milliarcsecond structures in PS sources +traditionally acquired using VLBI. Furthermore, we have con- +firmed the use of identifying contaminating sources displaying +only a temporary spectral peak and present spectral variability +as a new method for identifying steep spectrum blazars. We +also suggest future observations of MRC 0225–065 to search +for direct observations of expansion to better constraining the +expansion velocity and age. We recommend observations of +MRC 0225–065 with the VLBA for improved sensitivity and +more u, v-coverage on short baselines to recover more flux +density from extended structures. Likewise, with improved ac- +curacy of the position for MRC 2236-454, we suggest another +VLBI observation. +Acknowledgement +We thank the referees for their comments that improved the +overall quality of this work. KR acknowledges a Doctoral +Scholarship and an Australian Government Research Training +Programme scholarship administered through Curtin Univer- +sity of Western Australia. JRC thanks the Nederlandse Organ- +isatie voor Wetenschappelijk Onderzoek (NWO) for support +via the Talent Programme Veni grant. NHW is supported +by an Australian Research Council Future Fellowship (project +number FT190100231) funded by the Australian Government. +The Long Baseline Array is part of the Australia Telescope +National Facility https://ror.org/05qajvd42 which is funded by +the Australian Government for operation as a National Facility +managed by CSIRO. This work was supported by resources +provided by the Pawsey Supercomputing Centre with funding +from the Australian Government and the Government of West- +ern Australia. LBA data was correlated at the Pawsey Super- +computer Centre using the DiFX software (Deller et al., 2011). +This scientific work uses data obtained from Inyarrimanha +Ilgari Bundara/the Murchison Radio-astronomy Observatory. +We acknowledge the Wajarri Yamaji People as the Traditional +Owners and native title holders of the Observatory site. The +Australian SKA Pathfinder is part of the Australia Telescope +National Facility https://ror.org/05qajvd42 which is managed +by CSIRO. Operation of ASKAP is funded by the Australian +Government with support from the National Collaborative +Research Infrastructure Strategy. ASKAP uses the resources of +the Pawsey Supercomputing Centre. Establishment of ASKAP, +the Murchison Radio-astronomy Observatory and the Pawsey +Supercomputing Centre are initiatives of the Australian Gov- +ernment, with support from the Government of Western Aus- +tralia and the Science and Industry Endowment Fund. This +paper includes archived data obtained through the CSIRO +ASKAP Science Data Archive, CASDA (https://data.csiro.au). +This research made use of NASA’s Astrophysics Data System, +the VizieR catalog access tool, CDS, Strasbourg, France. We +also make use of the IPYTHON package (Pérez & Granger, +2007); SciPy (Virtanen et al., 2020); MATPLOTLIB, a PYTHON +library for publication quality graphics (Hunter, 2007); AS- +TROPY, a community-developed core PYTHON package for +astronomy (Astropy Collaboration et al., 2013; Price-Whelan +et al., 2018); PANDAS, a data analysis and manipulation PYTHON +module (pandas development team, 2020; Wes McKinney, +2010); and NUMPY (van der Walt et al., 2011). We also made +extensive use of the visualisation and analysis packages DS9f +and Topcat (Taylor, 2005). This work was compiled in the +useful online LATEX editor Overleaf. +References +Albareti, F. D., Allende Prieto, C., Almeida, A., et al. 2017, ApJS, 233, 25 +An, T., & Baan, W. A. 2012, ApJ, 760, 77 +Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558, +A33 +Bicknell, G. V., Mukherjee, D., Wagner, A. Y., Sutherland, R. S., & Nesvadba, +N. P. H. 2018, MNRAS, 475, 3493 +Bilicki, M., Jarrett, T. H., Peacock, J. A., Cluver, M. E., & Steward, L. 2014, +ApJS, 210, 9 +Briggs, D. S. 1995, PhD thesis, New Mexico Institute of Mining and Tech- +nology +Buchner, J. 2021, The Journal of Open Source Software, 6, 3001 +Callingham, J. R., Gaensler, B. M., Ekers, R. D., et al. 2015, ApJ, 809, 168 +Callingham, J. R., Ekers, R. D., Gaensler, B. M., et al. 2017, ApJ, 836, 174 +Chhetri, R., Morgan, J., Ekers, R. D., et al. 2018, MNRAS, 474, 4937 +Condon, J. J., Cotton, W. D., Greisen, E. W., et al. 1998, AJ, 115, 1693 +D’Abrusco, R., Álvarez Crespo, N., Massaro, F., et al. 2019, ApJS, 242, 4 +Deller, A. T., Brisken, W. F., Phillips, C. J., et al. 2011, PASP, 123, 275 +Fanti, R., Ficarra, A., Mantovani, F., Padrielli, L., & Weiler, K. 1979, A&AS, +36, 359 +Gugliucci, N. E., Taylor, G. B., Peck, A. B., & Giroletti, M. 2005, ApJ, 622, +136 +Hale, C. L., McConnell, D., Thomson, A. J. M., et al. 2021, PASA, 38, e058 +Hardcastle, M. J., & Looney, L. W. 2008, Monthly Notices of the Royal +Astronomical Society, 388, 176 +Hernández-García, L., Panessa, F., Bassani, L., et al. 2019, MNRAS, 489, 4049 +Hinshaw, G., Larson, D., Komatsu, E., et al. 2013, ApJS, 208, 19 +Hunter, J. D. 2007, Computing in Science & Engineering, 9, 90 +Hurley-Walker, N., Gaensler, B. M., Leahy, D. A., et al. 2019, PASA, 36, +e048 +Intema, H. T., Jagannathan, P., Mooley, K. P., & Frail, D. A. 2017, A&A, 598, +A78 +Jarrett, T. H., Cohen, M., Masci, F., et al. 2011, ApJ, 735, 112 +Keim, M. A., Callingham, J. R., & Röttgering, H. J. A. 2019, A&A, 628, A56 +Kellermann, K. I., & Pauliny-Toth, I. I. K. 1981, ARA&A, 19, 373 +Kettenis, M., van Langevelde, H. J., Reynolds, C., & Cotton, B. 2006, in +Astronomical Society of the Pacific Conference Series, Vol. 351, Astronom- +ical Data Analysis Software and Systems XV, ed. C. Gabriel, C. Arviset, +D. Ponz, & S. Enrique, 497 +fhttp://ds9.si.edu/site/Home.html + +Publications of the Astronomical Society of Australia +11 +Large, M. I., Cram, L. E., & Burgess, A. M. 1991, The Observatory, 111, 72 +Large, M. I., Mills, B. Y., Little, A. G., Crawford, D. F., & Sutton, J. M. 1981, +MNRAS, 194, 693 +Lonsdale, C. J., Lacy, M., Kimball, A. E., et al. 2015, ApJ, 813, 45 +Marr, J. M., Perry, T. M., Read, J., Taylor, G. B., & Morris, A. O. 2014, ApJ, +780, 178 +Marscher, A. P. 1983, ApJ, 264, 296 +Martí-Vidal, I., Roy, A., Conway, J., & Zensus, A. J. 2016, A&A, 587, A143 +Massaro, E., Giommi, P., Leto, C., et al. 2009, A&A, 495, 691 +Massaro, E., Maselli, A., Leto, C., et al. 2015, Ap&SS, 357, 75 +Mauch, T., Murphy, T., Buttery, H. J., et al. 2003, MNRAS, 342, 1117 +McConnell, D., Hale, C. L., Lenc, E., et al. 2020, PASA, 37, e048 +McMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. 2007, in +Astronomical Society of the Pacific Conference Series, Vol. 376, Astronom- +ical Data Analysis Software and Systems XVI, ed. R. A. Shaw, F. Hill, & +D. J. Bell, 127 +Miley, G. 1980, ARA&A, 18, 165 +Murphy, T., Sadler, E. M., Ekers, R. D., et al. 2010, MNRAS, 402, 2403 +O’Dea, C. P. 1998, The Publications of the Astronomical Society of the Pacific, +110, 493 +O’Dea, C. P., & Baum, S. A. 1997, AJ, 113, 148 +O’Dea, C. P., Baum, S. A., & Stanghellini, C. 1991, ApJ, 380, 66 +O’Dea, C. P., & Saikia, D. J. 2021, The Astronomy and Astrophysics Review, +29, 3 +Orienti, M., & Dallacasa, D. 2008, A&A, 487, 885 +—. 2014, MNRAS, 438, 463 +—. 2020, MNRAS, 499, 1340 +Orienti, M., Dallacasa, D., Tinti, S., & Stanghellini, C. 2006, A&A, 450, 959 +Orienti, M., Murgia, M., & Dallacasa, D. 2010, MNRAS, 402, 1892 +Owsianik, I., & Conway, J. E. 1998, A&A, 337, 69 +Pacholczyk, A. G., & Roberts, J. 1971, Physics Today, 24, 57 +pandas development team, T. 2020, pandas-dev/pandas: Pandas, doi:10.5281/ +zenodo.3509134 +Pérez, F., & Granger, B. E. 2007, Computing in Science and Engineering, 9, +21 +Phillips, R. B., & Mutel, R. L. 1982, A&A, 106, 21 +Polatidis, A. G., & Conway, J. E. 2003, PASA, 20, 69 +Price-Whelan, A. M., Sipőcz, B. M., Günther, H. M., et al. 2018, AJ, 156, 123 +Readhead, A. C. S., Taylor, G. B., Pearson, T. J., & Wilkinson, P. N. 1996, +ApJ, 460, 634 +Ross, K., Hurley-Walker, N., Seymour, N., et al. 2022, MNRAS, 512, 5358 +Ross, K., Callingham, J. R., Hurley-Walker, N., et al. 2021, MNRAS, 501, +6139 +Taylor, M. B. 2005, Astronomical Society of the Pacific Conference Series, Vol. +347, TOPCAT & STIL: Starlink Table/VOTable Processing Software +(Shopbell, P. and Britton, M. and Ebert, R.), 29 +Tingay, S. J., & de Kool, M. 2003, AJ, 126, 723 +Tingay, S. J., Macquart, J. P., Collier, J. D., et al. 2015, AJ, 149, 74 +Tinti, S., Dallacasa, D., de Zotti, G., Celotti, A., & Stanghellini, C. 2005, +A&A, 432, 31 +Tinti, S., & de Zotti, G. 2006, A&A, 445, 889 +Torniainen, I., Tornikoski, M., Teräsranta, H., Aller, M. F., & Aller, H. D. +2005, A&A, 435, 839 +Turner, R. J., Shabala, S. S., & Krause, M. G. H. 2018, MNRAS, 474, 3361 +Tzioumis, A. K., Tingay, S. J., Stansby, B., et al. 2010, AJ, 140, 1506 +van Breugel, W., Miley, G., & Heckman, T. 1984, AJ, 89, 5 +van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, Computing in Science +Engineering, 13, 22 +Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nature Methods, 17, +261 +Wells, D. C. 1985, Nrao’S Astronomical Image Processing System (AIPS), ed. +V. D. Gesù, L. Scarsi, P. Crane, J. H. Friedman, & S. Levialdi (Boston, MA: +Springer US), 195–209 +Wes McKinney. 2010, in Proceedings of the 9th Python in Science Confer- +ence, ed. Stéfan van der Walt & Jarrod Millman, 56 – 61 +Wilkinson, P. N., Booth, R. S., Cornwell, T. J., & Clark, R. R. 1984, Nature, +308, 619 +Wright, E. L. 2006, The Publications of the Astronomical Society of the +Pacific, 118, 1711 +Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868 +Yang, X.-h., Chen, P.-s., & Huang, Y. 2015, MNRAS, 449, 3191 + diff --git a/1tAzT4oBgHgl3EQfDfp4/content/tmp_files/load_file.txt b/1tAzT4oBgHgl3EQfDfp4/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..95ee197be2268d7e4833c72dfe35d8b40946ea18 --- /dev/null +++ b/1tAzT4oBgHgl3EQfDfp4/content/tmp_files/load_file.txt @@ -0,0 +1,1058 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf,len=1057 +page_content='Publications of the Astronomical Society of Australia (), 1–11 doi: ARTICLE Milliarcsecond Structures of Variable Peaked-Spectrum Sources K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Ross,1 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Reynolds,2 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Seymour,1 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Callingham,3,4 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Hurley-Walker,1 and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Bignall5,2 1International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia 2 CSIRO, Space and Astronomy, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Box 1130, Bentley, WA 6102, Australia 3Leiden Observatory, Leiden University, PO Box 9513, Leiden, 2300 RA, The Netherlands 4ASTRON, Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, Dwingeloo, 7991 PD, The Netherlands 5Manly Astrophysics, 15/41-42 East Esplanade, Manly, NSW 2095, Australia Author for correspondence: K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Ross, Email: kathryn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='ross@icrar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='org.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' (Received 03 Aug 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' revised 24 Nov 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' accepted 31 Dec 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' first published online XX) Abstract Spectral variability offers a new technique to identify small scale structures from scintillation, as well as determining the absorption mechanism for peaked-spectrum (PS) radio sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' In this paper, we present very long baseline interferometry (VLBI) imaging using the Long Baseline Array (LBA) of two PS sources, MRC 0225–065 and PMN J0322–4820, identified as spectrally variable from observations with the Murchison Widefield Array (MWA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We compare expected milliarcsecond structures based on the detected spectral variability with direct LBA imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We find MRC 0225–065 is resolved into three components, a bright core and two fainter lobes, roughly 430 pc projected separation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' A comprehensive analysis of the magnetic field, host galaxy properties, and spectral analysis implies that MRC 0225–065 is a young radio source with recent jet activity over the last 102–103 years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We find PMN J0322–4820 is unresolved on milliarcsecond scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We conclude PMN J0322–4820 is a blazar with flaring activity detected in 2014 with the MWA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We use spectral variability to predict morphology and find these predictions consistent with the structures revealed by our LBA images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Introduction Peaked-spectrum (PS) sources, are a subset of active galac- tic nuclei (AGN) that are identified by a peak in their radio spectral energy distribution (O’Dea & Saikia, 2021), and are also often associated with compact morphologies (≲ 20 kpc;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Phillips & Mutel, 1982;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Tzioumis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' PS sources provide an interesting population of AGN as the evolutionary pathway from PS source to extended (≳ 30 kpc) AGN is still unclear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Two contending theories hypothesise the nature and evolutionary pathway of PS sources: the youth scenario, where the age of the PS source is ≤ 105 years and has not yet had ample time to grow to the large-scale AGN (O’Dea & Baum, 1997;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Owsianik & Conway, 1998;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Tinti & de Zotti, 2006);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' and the frustration scenario, when the PS source is confined by a dense cloud of the interstellar medium (ISM) of the host galaxy environment (van Breugel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 1984;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Wilkinson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 1984;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' O’Dea et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 1991).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Furthermore, recent identifications of embedded PS cores within remnant ageing lobes has been attributed to restarted and episodic AGN activity (Hernández- García et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2019), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' a cyclical evolution rather than linear evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Compact symmetric objects (CSOs) are a subset of PS sources with similar morphologies to large scale AGN, namely a central region (often quite faint, if detected) with emission either side associated with hot spots and/or lobes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Unlike typical AGN, CSOs show emission only on very compact scales, typically ≤1 kpc, and thus require high-resolution imaging to detect (Phillips & Mutel, 1982;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Gugliucci et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' CSOs are generally considered young AGN (< 104 yr;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' O’Dea & Baum, 1997;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Owsianik & Conway, 1998;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Tinti & de Zotti, 2006), which may evolve into typical, radio-loud AGN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Previous attempts to discriminate between youth and frus- tration scenarios have relied on spectral modelling and high- resolution imaging (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Marr et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Keim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2019) using very long baseline interferometry (VLBI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The cause of absorption at low-frequencies, producing the spectral peak, has typically been attributed to synchrotron-self absorption (SSA) and/or free-free absorption (FFA) for the youth and frustration scenarios respectively (Tingay & de Kool, 2003;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Callingham et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Unfortunately, without sufficient sampling below the spectral turnover, the cause of absorption is often ambiguous (Callingham et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' In rare cases, a SSA model can be ruled out if the optically thin spectral index is sufficiently steep (α ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='5)a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Many PS sources have been identified as a CSOs (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 0108+388, 0710+439 and 2352+495;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Readhead et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' As CSOs are typically considered to be young AGN, identify- ing PS sources that are also CSOs could help to differentiate between the youth and frustrations scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' However, identi- fying CSOs requires high resolution (mas) observations using VLBI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Likewise, PS sources sometimes display extremely asym- metrical mas structures, likely due to an inhomogeneous sur- rounding environment influencing their growth (Orienti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Keim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2019), compared with a fairly symmetrical morphology associated with CSOs with minor asymmetries likely coming from orientation effects (Orienti & Dallacasa, 2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' VLBI can also be used to measure proper motion of aWe assume a power-law relation where Sν = S0να, thus the sign of α, being negative or positive, also indicates either the optically thin or thick spectral index respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='00977v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='GA] 3 Jan 2023 2 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Ross et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' hot-spots in lobes to estimate kinematic ages of ≤ 3×103years (Polatidis & Conway, 2003;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Gugliucci et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2005), consistent with the theory that CSOs are young AGN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Indeed, Gugliucci et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' (2005) find a majority of the CSOs with age estimates were ≤ 500 yrs, suggesting CSOs may be short lived and few would continue to grow to the scale of typical AGN, thereby explaining the large fraction of CSO and PS sources thought to be young relative to the number of large-scale radio galaxies (O’Dea & Saikia, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' VLBI of PS sources can thus help to identify populations of CSOs and elucidate the youth scenario and AGN evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Spectral variability at radio frequencies offers a new tech- nique for identifying young or frustrated candidates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Many variability surveys have identified PS sources that lost their PS classification over time (Tinti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Torniainen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Ross et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2021, hereafter R21), or showed a signifi- cant change in spectral shape likely due to a variable opacity from the inhomogeneous surrounding ISM (Tingay et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Ross et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2022, hereafter R22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Thus the population of known PS sources, which is already biased from sparse spectral coverage from a range of instruments and times, is likely con- taminated by temporary PS sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' This is particularly true at higher frequencies (∼GHz), which is sensitive to emission from the core/jets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' PS sources with a peak at lower frequen- cies (∼MHz) appear to be less contaminated by sources only showing a temporary peak (Callingham et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2017, R21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Spectral variability offers the a new technique to find and exclude contaminating “temporary” PS sources, as well as iden- tify CSO candidates with a decreased risk of contaminating sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Variability of PS sources has been used to infer the presence of compact (µas – mas) features based on scintillation (Fanti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 1979;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Chhetri et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2018, R21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Such compact features are common for CSOs, but VLBI is required for con- firmation of a CSO classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Spectral variability has also found PS sources that show changing spectral shape, inconsis- tent with scintillation, which suggests that some PS sources are frustrated or contaminating blazars (R22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' This paper aims to investigate the milliarcsecond scale struc- tures of variable PS sources using VLBI to test predictions based on spectral variability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' In particular, we investigate PS sources that have shown a consistent spectral shape with a variable overall flux density, consistent with scintillation, suggesting a compact feature on milliarcsecond scales (R21, R22), and use VLBI to test a CSO classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We also investigate variable PS sources that R21 found as changing spectral shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' They concluded the short timescale (∼1 year), and variable spectral shape is inconsistent with interstellar scintillation and present it as a blazar caught flaring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' In Section 2, we describe the three variable PS sources of this study, in Section 3 we describe the observational strategy and data reduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Section 4 outlines the results of the LBA imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We discuss the host galaxy properties including their linear size compared to turnover in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='1, the mid- infrared (MIR) and optical emission in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='2 and the radio properties in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' In Section 6 we present the likely absorption mechanisms and source classification of our targets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We adopt the standard Λ-cold dark matter cosmological model, with ΩM = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='286, ΩΛ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='714, and the Hubble constant H0 = 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='6 km s–1 Mpc–1 (Wright, 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Hinshaw et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2013) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Target Selection Targets were selected for LBA imaging with the goal of com- paring direct imaging of milliarcsecond structures with pre- dicted morphologies based on their variability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Three targets were selected based on the variability detected by R21 and R22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' MRC 0225–065 (GLEAM J022744-062106) was initially identified as variable in R21 but further monitoring over a year found no evidence of variability (R22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' As such, it was predicted MRC 0225–065 would have resolved structures on milliarcsecond scales with a compact feature ≲ 25 mas, re- sulting in variability from refractive interstellar scintillation (RISS) on a longer timescale with a dampened modulation index due to the extended structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Conversely, PMN J0322– 4820 (GLEAM J032237–482010) was selected due to the vari- able spectral shape identified in R21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' To explain the variable spectral shape, R21 concluded PMN J0322–4820 was likely a blazar caught flaring in 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' As such, it was predicted to show a compact morphology even on milliarcsecond scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Finally, MRC 2236-454 (GLEAM J223933–451414) was identified by R21 as the only PS source in their sample that showed sig- nificant variability but maintained a constant peak frequency below 231 MHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' A low peak frequency is typically associated with PS sources that are of the order of tens of kilo-parsecs across, but the RISS detected by R22 suggested MRC 2236-454 is dominated by a compact feature, and showed variability due to a surrounding inhomogeneous environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' As such, it was predicted MRC 2236-454 may be resolved on milliarcsecond scales and show an asymmetrical morphology, often associ- ated with frustrated sources in an inhomogeneous surrounding environment (Orienti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' LBA Observations and Data Reduction 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='1 Observations LBA observations were taken on November 23, 2020 and February 17, 2021 as part of project V600.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The November observation was centered at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='4 GHz and the February obser- vation was centered at 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='3 GHz and both utilised 128 MHz of bandwidth in dual polarizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Stations used in each obser- vation and their diameter is listed in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Both observa- tions cycled through phase calibrator scans and target scans of lengths 2 min and 5 min, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' However, the spatial separation of each target and their respective phase calibrator meant each target had a different number of scans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' A summary of the targets, phase calibrators and number of scans each is presented in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Parkes at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='4 GHz, and Katherine at both frequencies, ob- served using their native linear feeds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' These were converted to a circular polarization basis post-correlation using the Pol- Convert software (Martí-Vidal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2016) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='2 Data Processing and Calibration After correlation, data calibration and processing were done using the NRAO’s Astronomical Imaging Processing System Publications of the Astronomical Society of Australia 3 Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' LBA stations included in observations Name Code Diameter (m) Nov20 Feb21 ATCA, phased up At 5×22 Y Y Mopra Mp 22 Y Y Parkes Pa 64 Y Y Hobart Ho 26 Y Y Ceduna Cd 30 Y Y Yarragadee Yg 12 Y Y Warkworth Ww 12 Y Y Hartebeesthoek Hh 26 Y Y Katherine Ke 12 Y Y Tidbinbilla Td 34 Y N Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Targets, associated calibrators and number of LBA scans for each target source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Source Name Expected S5GHz (mJy) Number of scans MRC 0225–065 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='238 27 PKS J0217+0144 (C) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='666 27 PMN J0322–4820 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='112 40 PMN J0335-4837 (C) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='112 40 MRC 2236–454 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='420 48 QSO B2227–445 (C) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='386 48 (AIPS) (Wells, 1985).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The calibration and flagging followed the general procedure outlined in the AIPS cookbookb and was implemented in a semi-automated script with the Parsel- Tongue interface (Kettenis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Initial flagging of edge channels and RFI was done using UVFLG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Auto-correlations were scaled to unity across the band using ACCOR before removing gross residual instrumental delays using FRING on a short scan of a bright calibrator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Complex bandpass cor- rections were derived using BPASS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The system temperature and gain calibration were applied using APCAL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Delay, rate and phase calibrations were determined from fringe fitting using FRING from each target’s respective phase calibrator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' A phase referenced image was created for all targets except for MRC 0225–065, as a first pass detection of the targets to determine if a phase shift was needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Lastly, UVFIX was used to apply a phase shift to the data for any sources that were ∼arcsecond away from the phase centre used in correlation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' MRC 0225–065 had accurate VLBI coordinates and thus did not require a phase shift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The calibrated and phase shifted data were exported to be imaged using CASA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='3 Imaging and Self-Calibration Initial Stokes-I images were made with a quasi-natural weight- ing with robust parameter set to +1 (Briggs, 1995) using the tclean function in CASA (McMullin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Clean boxes were used but were tightly restricted for the models used for self-calibration to avoid inducing artificial structure from the bThe AIPS cookbook can be found here http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='aips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='nrao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='edu/cook.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' html complex point-spread-function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' For each image, phase only self calibration was performed and applied using the gaincal and applycal functions respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Due to the sparse (u, v)- coverage and low signal-to-noise (SNR), calibration solutions were inspected and applied without flagging solutions that had insufficient SNR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The slow rate of improvement necessi- tated several (∼9) rounds of self-calibration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The SNR of the main component and the root-mean-squared (rms) noise of the image were inspected after each self calibration iteration to ensure each round improved the overall image quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' For each source the initial model assumed for the self-calibration was an unresolved point source to avoid inducing any morpho- logical features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Any resolved components were included in subsequent rounds of imaging clean components and kept in the model for self-calibration if this reduced the rms noise of the image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The initial solution interval for the self calibration was set to the scan length and decreased in further rounds of self calibration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Phase only self calibration rounds were contin- ued until the rms noise of the image increased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' A final round of both phase and amplitude self calibration was then performed (provided it reduced the rms of the final image) with the so- lution interval set to the scan length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' For MRC 0225–065, an amplitude self-calibration was applied to both frequencies, but no amplitude self-calibration was applied to the 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='4 GHz image of PMN J0322–4820.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Results Images of MRC 0225–065 at both 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='4 and 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='3 GHz are pre- sented in Figure 1, and an image of PMN J0322–4820 at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='4 GHz, presented in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Unfortunately, due to large phase errors from a pointing offset, we were unable to re- cover images for MRC 2236–454 at either frequency, or for PMN J0322–4820 at 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='3 GHz, this was because the source po- sitions were beyond the observed correlated field of view for recovery in each case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' For MRC 2236–454, the pointing offset was over 11 arcseconds for both the 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='4 GHz and 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='3 GHz ob- servations, thus the phase errors from this pointing offset was beyond recovery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' PMN J0322–4820 also had a pointing offset of ≈ 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='5 arcseconds, however, given it was bright (∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='2 Jy), there was sufficient sensitivity using a subset of antennas (flag- ging the Hartebeesthoek antenna), and a phase shift combined with self calibration to recover and image at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='4 GHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' How- ever, this method was not possible at 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='3 GHz due to the smaller field-of-view and decreased sensitivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Henceforth, we will only discuss the results for MRC 0225–065 and PMN J0322– 4820.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Properties for each LBA image: synthesised beam size and rms background noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Source, ν (GHz) rms (mJy/beam) θbeam,maj θbeam,min PA MRC 0225–065, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='7 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='2 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='0 MRC 0225–065, 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='7 83 PMN J0322–4820, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='0 30 17 54 4 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Ross et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='1 MRC B0225–065 MRC 0225–065 was resolved into three components morphol- ogy at both 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='4 GHz and 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='3 GHz, as shown in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The final image was made with a robust parameter of -1 at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='4 GHz and -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='5 at 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='3 GHz (Briggs, 1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' MRC 0225–065 is resolved into 3 regions: a bright, unresolved central component, with an upper limit of source size of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='5 × 4 mas assuming the beam size at 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='3 GHz (labelled C in Figure 1), a fainter 16 × 11 mas Western region (L1) and even fainter 14 × 10 mas Eastern component (L2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The sizes of L1 and L2 are measured using the contours in the 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='4 GHz image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The triple morphology is roughly symmetrical with the distance between the C to L1 and L2 being ∼ 40 mas each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Since it appears the components of MRC 0225–065 may be resolved, we measured their flux density over an irregular polygonc for each component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We recovered all the flux density predictions from the spectral fit to the R22 ATCA observations at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='4 GHz, but found that ∼ 35% of the flux density was lost at 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='3 GHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The flux densities for each component and their spectral index are presented in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The irregular polygon was shaped based on contour levels to ensure only real flux was included in the final measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' However, the missing flux density at 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='3 GHz may be due to extended structure being resolved out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Consequently, the estimates for the spectral index presented in Table 4 should be considered lower limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Flux densities and two component spectral index for each compo- nent of MRC 0225–065 found in the LBA images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The uncertainties for the fluxdensitiesaremeasuredcalculatedusingthemeasureduncertaintyfrom polygon flux and the rms noise of the image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The uncertainty for α is calcu- lated using standard propagation of errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The model prediction is calcu- lated from the best spectral fit, a double SSA spectral model with an expo- nential break.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Component S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='4GHz (mJy) S8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='3GHz (mJy) α C 270±10 78±7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='95±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='08 L1 121±8 30±5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='2 L2 56±7 18±4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='2 Integrated LBA 447±14 126±10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='97±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='07 Model Prediction 400 195 N/A The symmetrical triple morphology suggests MRC 0225– 065 is a CSO candidate with a core (C) and two lobes (L1 and L2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The spectral index of the central component is αC = –0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='95 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='08, which is far steeper than expected for a typical AGN “core", generally expected to have a α ≥ –0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='5 (Orienti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Hardcastle & Looney, 2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' However, components have previously been identified as cores with spec- tral indices as steep as –0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='7 (Orienti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We present the SED for MRC 0225–065 in Figure 2 including the MWA flux densities from R22 as well as the flux densities and power- law spectral model for each LBA component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The entire SED is fit, using the most recent MWA epoch (2020-09), with a double SSA model with an exponential break, which assumes two synchrotron emitting regions that are self-absorbed and cusing https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='com/nhurleywalker/polygon-flux, (Hurley-Walker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2019) ageing producing the exponential break, νb, separate from the peak frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The break frequency is the frequency where the spectrum begins to steepen as the electrons are ageing and experiencing energy losses (Turner et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We fit the spectral model using the UltraNest packaged (Buchner, 2021), which uses a nested sampling Monte Carlo algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' From the double SSA spectral model, we find the peak frequen- cies for the two SSA components to be νp,1 =400±100 MHz and νp,2=112±90 MHz, and find νb =14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='3±2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='7 GHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' MRC 0225–065 has a spectroscopic redshift of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='445 (Al- bareti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2017);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' thus, 1 mas corresponds to a linear scale of 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='25 pc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Using this redshift, we find the projected linear size of MRC 0225–065 (from L1 to L2) to be ∼430 pc, the linear distance from the core to either lobe to be ∼210 pc and place an upper limit on the size of component C to be ≤26 pc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='2 PMN J0322–4820 Due to difficulties in the phase calibration, we were only able to produce a high quality image of J0322–483 at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='4 GHz, shown in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We do not resolve PMN J0322–4820 and it is confined to the size of the beam: 56 × 40 mas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The final image was made using a robust parameter of +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='5, and by flagging the Hartebeesthoek antenna, thus the beam size for PMN 0322– 4820 compared to MRC 0225–065 for the same frequency is much larger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Details of the image properties are presented in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Compared to the spectral model fit to the ATCA and 2014 MWA observations, 18% of the flux density was missing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We used a reported photometric redshift for PMN J0322–4820 of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='16 (Bilicki et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2014), thus 1 mas corresponds to a linear size of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='650 pc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We place an upper limit on the source size of 148 pc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Discussion In this section, we will present a comprehensive analysis of both MRC 0225–065 and PMN J0322–4820 to produce a unified perspective of these two sources with the aim of concluding whether they are young or frustrated PS sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' In Sec- tion 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='1, we present our two sources in the linear size and turnover relation, in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='2, we discuss the host galaxy properties according to mid-infrared, optical observations and radio properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='1 Linear Size and Turnover Relation PS sources follow an inverse relation between their linear size and intrinsic turnover frequency, often referred to as the linear size turnover relation, first presented by O’Dea (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' This relation is directly predicted from the youth scenario (O’Dea, 1998) where the peak frequency is due to SSA and thus the linear size is directly related to the peak frequency (Keller- mann & Pauliny-Toth, 1981).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' While modifications to models in the frustration scenario can reproduce this relation (Bick- nell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2018), it is generally understood that PS sources that fall below the linear size-turnover relation are likely com- pact beyond what is expected for a young source and a thus dhttps://johannesbuchner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='io/UltraNest/ Publications of the Astronomical Society of Australia 5 40 20 0 20 40 40 20 0 20 40 Relative R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' (mas) Relative Dec (mas) C L1 L2 MRC 0225-065 at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='4GHz 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='5pc 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='10 Intensity (Jy/beam) 40 20 0 20 40 40 20 0 20 40 Relative R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' (mas) Relative Dec (mas) C L1 L2 MRC 0225-065 at 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='3GHz 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='5pc 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='04 Intensity (Jy/beam) Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' LBA images of MRC 0225–065 at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='4 GHz (lef) and 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='3 GHz (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Beam sizes are shown with a white ellipse in the bottom lef corner of each image and dimensions are specified in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Contours are placed at (-3, 3, 4, 5, 6, 7, 10, 20, 50, 100, 200, 400, 800, 1600) times the rms noise of the image, also specified in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Pixel brightness is plotted in a linear scale following the colour-bars to the right of each image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The resolved regions are labelled C, L1, L2 and properties of each region are outlined in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Relative R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='A and Dec are calculated from the position of the core (C) component with coordinates: J2000 02h27m44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='5s -06d21m06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='7s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='0 Frequency (GHz) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='80 Flux Density (Jy) MRC 0225-065 2013 2014 2020-04 2020-05 2020-07 2020-09 ATCA 2020 LBA int C L1 L2 40 20 0 20 40 40 20 0 20 40 Relative R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' (mas) Relative Dec (mas) C L1 L2 MRC 0225-065 Spectral Index Map 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='5pc −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='8 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='6 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='4 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='2 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='0 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='8 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='6 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='4 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='2 α Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Spectral energy distribution (SED) for MRC 0225–065 (lef) and spectral index map (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The spectral index map was created using by convolving both the 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='3 GHz image and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='4 GHz image to the same resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Data included in the SED are from R21 and R22 monitoring (circles) and coloured according toepoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' LBAfluxdensitiesareplottedassquareswiththeintegratedfluxdensityofLBAplottedasblacksquares.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' ThespectralfittoeachLBApointisapower- law with spectral index presented in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The grey spectral model to the entire SED is a double SSA model with an exponential break.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Supplementary data included: TIFR GMRT 150 MHz Sky Survey Alternative Data Release 1 (TGSS-ADR1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Intema, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2017) (grey cross), Molonglo Reference Catalogue (MRC;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Large et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 1981, 1991) (grey +), Rapid ASKAP Continuum Survey (RACS;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' McConnell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Hale et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2021) (grey ‘Y’), NRAO VLA Sky Survey (NVSS;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Condon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 1998), Australia Telescope 20 GHz (AT20G;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Murphy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2010) (grey right arrow).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 6 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Ross et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 200 100 0 100 200 200 100 0 100 200 Relative R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' (mas) Relative Dec (mas) C L1 L2 PMN J0322-4820 at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='4GHz 132.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='5pc 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='08 Intensity (Jy/beam) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='0 Frequency (GHz) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='10 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='50 Flux Density (Jy) PMN J0322-4820 2013 2014 ATCA 2020 LBA Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' LBA image for PMN J0322–4820 at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='4 GHz (lef) and associated SED (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The beam size is shown with a white ellipse in the bottom lef corner and dimensions are specified in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Contours are placed at (-3, 3, 4, 5, 6, 7, 10, 20, 50, 100, 200, 400, 800, 1600) times the rms noise of the image, also specified in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Pixel brightness is plotted in a linear scale following the colour-bars to the right of the image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Relative R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='A and Dec are calculated from the central coordinate: J2000 03h22m38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='0s -48d20m16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='2s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Data included in SED is from R21 and R22 (circles) and coloured according to epoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' LBA flux density is plotted as a blue square.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The grey spectral model to the entire SED is a single SSA model with an exponential break.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Supplementary data included is: TIFR GMRT 150 MHz Sky Survey Alternative Data Release 1 (TGSS-ADR1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Intema, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2017) (grey cross), Sydney University Molonglo Sky Survey (SUMSS;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Mauch et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2003) (grey star), Rapid ASKAP Continuum Survey (RACS;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' McConnell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Hale et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2021) (grey ‘Y’).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' assumed to be frustrated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We plot both MRC 0225–065 and PMN J0322–4820 on the linear size-turnover relation in Fig- ure 4, along with other known PS sources, details of which are discussed by Keim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' It is evident from Figure 4, that MRC 0225–065 is entirely consistent with the relation whereas PMN J0322–4820 sits somewhat below the relation, particularly since the linear size is an upper limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' This would suggest MRC 0225–065 is consistent with the youth scenario whereas PMN J0322–4820 may be frustrated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' However, it is worth nothing, R21 identified PMN J0322–4820 as a variable PS source with a changing spectral shape, and thus concluded it was likely a blazar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Furthermore, R21 found the peak fre- quency changed from ∼320 MHz in 2013 to ∼145 MHz in 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' As the peak frequency is variable and PMN J0322–4820 is known to exhibit a changing spectral shape, its position on the linear size-turnover relation will also vary, shown by the error bar in Figure 4 corresponding to the range of the peak frequency from 2013 to 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Most likely, PMN J0322–4820 is only a temporary PS source and thus should not be included in this relation nor when considering the PS population at large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='2 Host Galaxy Properties 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='1 WISE Colours MIR colour selection techniques using the Wide-Field Infrared Survey Explorer (Wright et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2010, WISE) are widely used to efficiently distinguish between AGN and star-forming galax- ies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' WISE is a MIR all sky survey covering four photometric bands: 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='4, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='6, 12, and 22 µm referred to as W1, W2, W3, and W4 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The MIR wavelengths are sensitive to the emission from hot dust in the torus of the AGN, allowing for the identification of AGN where X-ray and optical emission 10 2 10 1 100 101 102 Linear Size (kpc) 102 103 104 Rest-Frame Peak Frequency (MHz) J0227-0621 J0322-482 Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Rest frame peak frequency versus linear size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Sources in black are describedinKeimetal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='(2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Thedashedlineisthefittotherelationfound by Orienti & Dallacasa (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Arrows indicate maximum linear sizes for un- resolved sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' MRC 0225–065 (pink circle) and PMN J0322–4820 (purple circle) are plotted with linear sizes calculated from LBA images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The error bars for MRC 0225–065 represent the range for peak frequencies calculated in R21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Publications of the Astronomical Society of Australia 7 may be blocked by intervening gas and dust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' This also makes AGN stand out from star-bursting galaxies or stars due to their extremely red MIR emission (Lonsdale et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Obscured AGN with red MIR emission have been identified by their MIR colours, often by their place in a colour-colour diagram (Jarrett et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Lonsdale et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The bulk of sources centred around W1 – W2 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='2 and W2 – W3 = 3 correspond to the region typically associated with quasars and AGN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' MRC 0225– 065 is found in the region typically associated with emission from star formation or stellar emission;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' there is no evidence of hot AGN dust, however, there is evidence for moderate star formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' As we know MRC 0225–065 is an AGN, it is likely the emission at MIR is a combination of these two processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' PMN J0322–4820 is well within the elliptical regime, thus has low emission from star formation and no evidence of hot AGN dust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Blazars are typically found to dominate the top right region of the WISE colour-colour plot as the MIR emis- sion is dominated by the emission of the blazar over the galaxy (and associated stellar emission).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' A compact morphology and variable spectral shape suggest PMN J0322–4820 is a blazar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' However, the WISE colours of PMN J0322–4820 suggest that the host galaxy is an elliptical with predominantly red optical emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Therefore, the emission from the potential radio blazar is not dominant in the MIR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' While it is more common to find blazars in the top right region of the WISE colour- colour plot, the MIR colours, which suggest the host galaxy for PMN J0322–4820 is an elliptical, are still consistent with a blazar classification (Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' D’Abrusco et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='2 Optical Spectra MRC 0225–065 has an optical spectrum from the 13th data release of the Sloan Digital Sky Survey (Albareti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2017, SDSS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' From the fitted spectrum, Albareti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' (2017) report a spectroscopic redshift for MRC 0225–065 of z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='445 and classify it as a broad-line, starburst quasar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The spectrum additionally has low-ionisation nuclear emission-line region (LINER) properties, evident from the strong NII, SiII and OI lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' A LINER has a high energy radiation field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' There is still debate about whether this is AGN emission or star formation, but likely the combination of the broad lines, strong OIII emission and radio-loudness of MRC 0225–065 is evidence of AGN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' From the broad Hα, we can calculate the velocity dispersion according to: d(velocity) = cd(λ) λ0 , (1) where c is the speed of light, d(λ) is the wavelength dispersion from the spectral fit, and λ0 is the rest-frame wavelength of Hα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Using the reported fit to the broad Hα from SDSS where λobserved = 9486 Å, we use the equivalent width, EW= 30±4 Å, and find the velocity dispersion to be 900±100 km/s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' This large velocity dispersion may be from an extreme star formation wind but it is also indicative of the broad-line regions from an AGN, which is more consistent given our radio observations identify MRC 0225–065 as an AGN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The broad Hα, and large velocity dispersion, is consistent with an AGN that is quite obscured, as reported by Albareti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' (2017) who classify it as a broad-line quasar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Perhaps of more interest are the starburst properties of MRC 0225–065, namely OII and OIII emission lines, identified by Albareti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Both OII and OIII are forbidden lines with different origins: OII is mostly due to star formation and thus is often used as an indicator for star formation in galaxies;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' OIII is due to an AGN and can be used as a proxy for the AGN bolometric luminosity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' This is also consistent with the WISE colours discussed in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='1, which find MRC 0225–065 consistent with a galaxy with emission coming from both the AGN and star formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Combining the radio, MIR and optical properties of MRC 0225–065, it is likely this galaxy has moderate star formation with an obscured AGN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='3 Radio Properties of MRC B0225–065 Combining the spectral information and high resolution re- solved structure of MRC 0225–065, we are able to determine several intrinsic properties that can help differentiate between SSA and FFA models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' In this section, we estimate the magnetic field strength and spectral ages to assess whether MRC 0225– 065 is consistent with the youth scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We do not consider PMN J0322–4820 in this section due to its unresolved mor- phology (even on mas scales) and since the radio variability suggests it is a blazar with an added beaming effect producing Doppler boosting and thus many of the assumptions required for these calculations no longer hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='1 Magnetic Field As a means of evaluating the validity of SSA compared to an FFA, we can calculate the magnetic field estimates based on a pure SSA model and on equipartition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Equipartition assumes there is equal energy between the radiating particles and the magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The comparison between magnetic field estimates based on an SSA model and equipartition has been used as evidence both for the SSA model (when the estimates are in agreement;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Orienti & Dallacasa, 2008) and against (when there is a clear disparity;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Keim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' In this section, we will first estimate the magnetic field assuming a purely SSA model, then assuming equipartition and compare these to determine whether SSA is a reasonable model for MRC 0225–065.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We can estimate the magnetic field strength, in Gauss, based on a purely SSA spectral model, BSSA, according to: BSSA ≈ (νpeak/f (αthin))5θsrc,min2θsrc,max2 Speak 2(1 + z) , (2) where νpeak is the observed peak frequency in GHz, Speak is the flux density in Jy at the peak frequency for the source at redshift z with angular minor and major component axis, θsrc,min and θsrc,max, in mas (Kellermann & Pauliny-Toth, 1981).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We note, f (αthin) is as defined by Kellermann & Pauliny-Toth (1981), where it is loosely related to αthin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We take f (αthin) = 8 based on values from Marscher (1983);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Orienti & Dallacasa (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 8 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Ross et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Now, assuming equipartition, we calculate the magnetic field strength, in Gauss, according to (Miley, 1980), as Bequi by assuming the component has cylindrical symmetry such that the width of the source on the sky is equivalent to the line of sight path-length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' For both calculations, we calculate BSSA and Bequi for the compact core region rather than the total source, to ensure we are comparing a homogeneous region (Orienti & Dallacasa, 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Keim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' For MRC 0225–065, using Equa- tion 2, we estimate the magnetic field strength for a purely SSA model to be BSSA ≈6±7 mG for the core region where θsrc = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='5 × 4 mas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' To estimate Bequi, we assume a filling fac- tor η = 1 and set k = 1e and find Bequi ≈6±2 mG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' As BSSA is within the uncertainties of Bequi, it suggests the core region of MRC 0225–065 is in equipartition and consistent with a pure SSA model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' While this does not exclude the FFA model, it does provide supportive evidence for the SSA model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Further- more, it may not be a valid assumption that MRC 0225–065 is in equipartition, thus the equation from Miley (1980) for Bequi would not be a reasonable estimate of the magnetic field strength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We can also use the estimated magnetic field to calculate the age of the electron population as a proxy for the age of the jets/lobes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Calculating the spectral age of the electron popula- tion requires an accurate estimate of the break frequency, νb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We can thus calculate the spectral age, τspec, according to: τspec = aB1/2 B2 + BiC2 � νb(1 + z) �–1/2 where BiC = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='318(1 + z)2 a = �243πme5c2 4µ02e7 �1/2 (3) where BiC is the magnitude of the microwave background magnetic field in nT, B is the magnetic field of the source in nT, νb is the break frequency in GHz, and the constants me, c, µ0, and e are the mass of an electron, speed of light, magnetic permeability of free space, and charge of an electron, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' It is possible the core is actually an unresolved double of more recent AGN activity than the outer lobes, producing the steep (α ≲ –1, see Table 4) spectral index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We assume a constant expansion speed, v, and use the linear sizes to estimate the dynamical age, τdyn, of the core and outer lobes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Using the magnetic field calculated for the core region assuming equipartition, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' setting B = Bequi = 6 ± 2 mG, and deter- mining a break frequency, we can estimate the spectral age of the core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Using a break frequency of νb = 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='3 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='7 GHz, calculated from the double SSA spectral model fit, we estimate the spectral age of the core to be τspec ≈ 700 ± 100 years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' ek = 1 is equivalent to the minimum energy condition, however values for k have ranged from 1 to 100, where k = 100 produces an order of magnitude difference in Bequi (Pacholczyk & Roberts, 1971;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Miley, 1980) We then calculate an upper limit on the expected expansion velocity of v ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='13 c (using simple speed = distance/time argu- ments) for the core using the upper limit for the linear source size of θsrc ≤ 26 pc, as outlined in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' An expansion velocity of v = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='13 c is well within previous measurements of the expansion speeds for compact AGN that have been found to range from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='1 c up to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='7 c (Polatidis & Conway, 2003;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' An & Baan, 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Orienti & Dallacasa, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The range of expansion velocities would correspond to a range in dynamical ages for the core of 100 ≲ τdyn ≲ 900 years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' If we assume the expansion velocity of the core of “inner lobes" is roughly equal to that of the outer lobes from a previous epoch of activity, we can place an upper limit on the dynamical ages of the outer lobes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We calculate the distance between the core and L1 as ∼ 210 pc, which corresponds to a dynamical age of 5000 years for an expansion velocity of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='13 c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' For the range of dynamical ages for typical PS sources, we expect the age of the outer lobes to be 1000 ≲ τdyn ≲ 7000 years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Previous estimates for the ages of PS sources using similar assumptions have estimated ages from ∼ 101 to ∼ 105 years (Orienti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2010), which is entirely consistent with our age estimates for both the inner core and outer lobes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' As the ages, expansion velocities, and magnetic fields that we calculate are all consistent with the SSA model and a youth scenario, it appears MRC 0225–065 is more consistent with a young CSO rather than a frustrated compact AGN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' How- ever, there are several caveats and assumptions made in these calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Thus, while these results are consistent with the evolutionary scenario of MRC 0225–065 being the youth model, it is not sufficient for excluding the frustration scenario entirely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' AUnifiedPerspectiveofMRCB0225–065andPMNJ0322– 4820 Combining all the information we have obtained about MRC 0225– 065, we begin to create a unified perspective that suggests MRC 0225–065 is a CSO with a peaked spectrum best ex- plained by SSA and recent jet activity over the last 102–103 years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' A summary of the evidence in support of this conclusion are as follows: Variability: R21 identified spectral variability of MRC 0225– 065 with a constant spectral shape, consistent with vari- ability due to RISS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Further spectral variability monitor- ing by R22 detected no further variability, suggesting a resolved structure but consistent PS source classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' This observation suggests it is unlikely MRC 0225–065 is a contaminating blazar or source with only a temporary PS source classification, such as frustrated sources with an inhomogeneous surrounding medium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Radio morphology: Previously, it has been suggested frustrated PS sources are more likely to show an asymmet- rical morphology due to the asymmetrical environment confining the growth of the lobes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Inversely, this suggests young PS sources that are not frustrated may be more likely to show a symmetrical morphology like that of a Publications of the Astronomical Society of Australia 9 CSO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' MRC 0225–065 has a very symmetrical morphology according to our LBA images, suggesting it may not be interacting with its surrounding environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Linear size and turnover relation: We find MRC 0225– 065 is entirely consistent with the linear size turnover rela- tion, a natural product of the youth scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Although, it can be reproduced in certain frustration models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Host galaxy: Using the MIR colours reported in by WISE and the optical spectrum from SDSS, we identify the MRC 0225– 065 as having an obscured AGN with moderate star forma- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Since the AGN does not dominate the entire MIR and optical emission, and there is still star formation present, it is possible the AGN has only recently been switched on and thus has not yet quenched all star formation in the galaxy, which is not surprising given the compact size of MRC 0225–065.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Magnetic field: Estimating the magnetic field using a purely SSA model and comparing it to the magnetic field calculated assuming equipartition are entirely consistent, suggesting the SSA model is a reasonable model for MRC 0225– 065 Spectral ages: Using spectral modelling of the break fre- quency, we estimate the age of the radio emission (from the core and lobes) to be roughly 700 years, consistent with estimates of the age of PS sources in the youth scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Dynamical ages: Using the linear size from our LBA im- ages and previous measurements of expansion velocity we estimate MRC 0225–065 has two major epochs of activity, one between 1000 to 7000 years ago and another more recently from 100 to 900 years ago.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' This is also consistent with previous estimates of the ages for young PS sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Furthermore, due to the missing flux density at 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='3 GHz, this estimate should be considered an upper limit as the spectral indices for each component may be artificially steepened by the missing flux density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We therefore conclude, MRC 0225–065 is likely a young AGN and with the peak occurring due to SSA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Likewise, combining all information of PMN J0322–4820, we can also begin to create a unified picture that PMN J0322– 4820 is a blazar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' A summary of the evidence for this conclusion are: Spectral variability: R21 identified PMN J0322–4820 as a variable source in and classified it as showing a changing spectral shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The dramatic change in spectral shape in the megahertz regime on a timescale of ∼ 1 year is inconsistent with evolutionary models for PS sources and predicted variability due to RISS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The changing spectral shape is most easily explained by the dynamical nature of blazars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Radio morphology: The high resolution image of PMN J0322– 4820 using the LBA found it was still compact on mas scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' This is also entirely consistent with a blazar morphology, which appears compact due to orientation effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Linear size and turnover relation: PMN J0322–4820 sits well below the linear size and turnover relation typically associated with PS sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' This could either be because it is a frustrated source and is thus more compact than expected for it’s predicted age.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' However, more likely, is that the temporary peak detected with the MWA in 2014 was a result of the variability of a blazar with effects like Doppler boosting influencing measurements and thus the spectral peak is unrelated to the source age or absorption mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' WISE MIR Colours: PMN J0322–4820 has WISE colours typically associated with elliptical galaxies and/or LERGs/BL Lac blazars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We therefore identify PMN J0322–4820 as a new blazar where the jets are oriented along the line-of-sight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' However, PMN J0322– 4820 was not in the ROMA-bzcat catalogue of γ-ray emitting blazars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' This is potentially due to the steep spectrum at fre- quencies over 1 GHz where PMN J0322–4820 is too faint to be detected by traditional blazar searches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We suggest further ob- servations using higher frequency observations in the X-ray or γ regimes to search for any high frequency counterpart (Mas- saro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2009, 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We conclude PMN J0322–4820 should not be included in any future population studies of PS sources as it is a contaminating blazar and not a genuine PS source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Furthermore, this highlights the possibility of a population of blazars with steep spectra at high frequencies (ν ≥ 1 GHz) that aren’t detected in traditional blazar searches and thus may be contaminating populations of PS sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Low-frequency spectral variability thus presents as a new method for identify- ing blazar candidates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Conclusion We have sought to compare detections of spectral variabil- ity for two PS sources with small scale (∼mas) morphology and structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The images produced using observations with the LBA have identified one resolved and one unresolved PS source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We have also combined our observations with archival observations of the host galaxies of our sources to provide evidence for either the youth or frustration scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We find PMN J0322–4820 is unresolved with the LBA at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='4 GHz, and pace an upper limit of the source size to be 148 pc, using a photometric redshift of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' In R21, PMN J0322–4820 was found to show a changing spectral shape and was presented as a blazar candidate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Comparing our compact morphology with the spectral variability of R21, we find PMN J0322–4820 is consistent with a blazar classification, and suggest high fre- quency (X-ray or Gamma) to confirm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We resolve MRC 0225–065 into three components at both 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='4 GHz and 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='3 GHz: a bright central region containing ∼50% of the total flux density, and two fainter regions roughly equal distance from the central region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' In R21 and R22, MRC 0225–065 was found to show low levels of variability with a constant spectral shape, and presented as showing vari- ability due to ISS from a compact morphology with resolved structure on mas scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We find the projected linear size to be 430 pc, using a spectroscopic redshift of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='445.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Using spec- tral modelling, we calculate the magnetic field assuming a purely SSA model, and find it is in agreement with the mag- netic field calculated assuming equipartition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We therefore conclude MRC 0225–065 is a young CSO, with a PS classifi- 10 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Ross et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' cation due to SSA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We found the core to have a spectral age of τspec = 700 ± 100 years, which is consistent with previous age estimates of young CSO sources of 101 – 105 years (Orienti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Orienti & Dallacasa, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Furthermore, we use the spectral age of the core and the upper limit of core size to calculate and expected expansion velocity (assuming the simple relation speed = distance/time), and place an upper limit on the expansion velocity of the lobes to be v = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='13c, well within previous measurements of expansion velocities for PS sources of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='1c ≲ v ≲ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='7c (Orienti & Dallacasa, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Lastly, we use this to estimate the dynamical age of the outer lobes and estimate their age to be τdyn ≈ 5000 years, again, well within previous estimates of ages for young PS sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Our findings highlight the advantage of spectral variability in identifying different milliarcsecond structures in PS sources traditionally acquired using VLBI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Furthermore, we have con- firmed the use of identifying contaminating sources displaying only a temporary spectral peak and present spectral variability as a new method for identifying steep spectrum blazars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We also suggest future observations of MRC 0225–065 to search for direct observations of expansion to better constraining the expansion velocity and age.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We recommend observations of MRC 0225–065 with the VLBA for improved sensitivity and more u, v-coverage on short baselines to recover more flux density from extended structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Likewise, with improved ac- curacy of the position for MRC 2236-454, we suggest another VLBI observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Acknowledgement We thank the referees for their comments that improved the overall quality of this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' KR acknowledges a Doctoral Scholarship and an Australian Government Research Training Programme scholarship administered through Curtin Univer- sity of Western Australia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' JRC thanks the Nederlandse Organ- isatie voor Wetenschappelijk Onderzoek (NWO) for support via the Talent Programme Veni grant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' NHW is supported by an Australian Research Council Future Fellowship (project number FT190100231) funded by the Australian Government.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The Long Baseline Array is part of the Australia Telescope National Facility https://ror.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='org/05qajvd42 which is funded by the Australian Government for operation as a National Facility managed by CSIRO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' This work was supported by resources provided by the Pawsey Supercomputing Centre with funding from the Australian Government and the Government of West- ern Australia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' LBA data was correlated at the Pawsey Super- computer Centre using the DiFX software (Deller et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' This scientific work uses data obtained from Inyarrimanha Ilgari Bundara/the Murchison Radio-astronomy Observatory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We acknowledge the Wajarri Yamaji People as the Traditional Owners and native title holders of the Observatory site.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' The Australian SKA Pathfinder is part of the Australia Telescope National Facility https://ror.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='org/05qajvd42 which is managed by CSIRO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Operation of ASKAP is funded by the Australian Government with support from the National Collaborative Research Infrastructure Strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' ASKAP uses the resources of the Pawsey Supercomputing Centre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Establishment of ASKAP, the Murchison Radio-astronomy Observatory and the Pawsey Supercomputing Centre are initiatives of the Australian Gov- ernment, with support from the Government of Western Aus- tralia and the Science and Industry Endowment Fund.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' This paper includes archived data obtained through the CSIRO ASKAP Science Data Archive, CASDA (https://data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='csiro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='au).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' This research made use of NASA’s Astrophysics Data System, the VizieR catalog access tool, CDS, Strasbourg, France.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We also make use of the IPYTHON package (Pérez & Granger, 2007);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' SciPy (Virtanen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2020);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' MATPLOTLIB, a PYTHON library for publication quality graphics (Hunter, 2007);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' AS- TROPY, a community-developed core PYTHON package for astronomy (Astropy Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Price-Whelan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2018);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' PANDAS, a data analysis and manipulation PYTHON module (pandas development team, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Wes McKinney, 2010);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' and NUMPY (van der Walt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' We also made extensive use of the visualisation and analysis packages DS9f and Topcat (Taylor, 2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' This work was compiled in the useful online LATEX editor Overleaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' References Albareti, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Allende Prieto, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Almeida, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2017, ApJS, 233, 25 An, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Baan, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2012, ApJ, 760, 77 Astropy Collaboration, Robitaille, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Tollerud, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2013, A&A, 558, A33 Bicknell, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Mukherjee, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Wagner, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Sutherland, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Nesvadba, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2018, MNRAS, 475, 3493 Bilicki, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Jarrett, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Peacock, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Cluver, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Steward, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2014, ApJS, 210, 9 Briggs, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 1995, PhD thesis, New Mexico Institute of Mining and Tech- nology Buchner, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2021, The Journal of Open Source Software, 6, 3001 Callingham, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Gaensler, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Ekers, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2015, ApJ, 809, 168 Callingham, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Ekers, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Gaensler, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2017, ApJ, 836, 174 Chhetri, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Morgan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Ekers, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2018, MNRAS, 474, 4937 Condon, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Cotton, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Greisen, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 1998, AJ, 115, 1693 D’Abrusco, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Álvarez Crespo, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Massaro, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2019, ApJS, 242, 4 Deller, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Brisken, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Phillips, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2011, PASP, 123, 275 Fanti, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Ficarra, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Mantovani, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Padrielli, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Weiler, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 1979, A&AS, 36, 359 Gugliucci, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Taylor, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Peck, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Giroletti, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2005, ApJ, 622, 136 Hale, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', McConnell, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Thomson, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2021, PASA, 38, e058 Hardcastle, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Looney, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2008, Monthly Notices of the Royal Astronomical Society, 388, 176 Hernández-García, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Panessa, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Bassani, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2019, MNRAS, 489, 4049 Hinshaw, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Larson, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Komatsu, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2013, ApJS, 208, 19 Hunter, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2007, Computing in Science & Engineering, 9, 90 Hurley-Walker, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Gaensler, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Leahy, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2019, PASA, 36, e048 Intema, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Jagannathan, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Mooley, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Frail, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2017, A&A, 598, A78 Jarrett, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Cohen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Masci, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2011, ApJ, 735, 112 Keim, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Callingham, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Röttgering, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2019, A&A, 628, A56 Kellermann, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Pauliny-Toth, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 1981, ARA&A, 19, 373 Kettenis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', van Langevelde, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Reynolds, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Cotton, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2006, in Astronomical Society of the Pacific Conference Series, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 351, Astronom- ical Data Analysis Software and Systems XV, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Gabriel, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Arviset, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Ponz, & S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Enrique, 497 fhttp://ds9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='si.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='edu/site/Home.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='html Publications of the Astronomical Society of Australia 11 Large, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Cram, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Burgess, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 1991, The Observatory, 111, 72 Large, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Mills, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Little, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Crawford, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Sutton, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 1981, MNRAS, 194, 693 Lonsdale, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Lacy, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Kimball, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2015, ApJ, 813, 45 Marr, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Perry, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Read, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Taylor, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Morris, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2014, ApJ, 780, 178 Marscher, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 1983, ApJ, 264, 296 Martí-Vidal, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Roy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Conway, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Zensus, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2016, A&A, 587, A143 Massaro, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Giommi, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Leto, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2009, A&A, 495, 691 Massaro, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Maselli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Leto, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2015, Ap&SS, 357, 75 Mauch, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Murphy, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Buttery, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2003, MNRAS, 342, 1117 McConnell, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Hale, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Lenc, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2020, PASA, 37, e048 McMullin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Waters, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Schiebel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Young, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Golap, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2007, in Astronomical Society of the Pacific Conference Series, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 376, Astronom- ical Data Analysis Software and Systems XVI, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Shaw, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Hill, & D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Bell, 127 Miley, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 1980, ARA&A, 18, 165 Murphy, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Sadler, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Ekers, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2010, MNRAS, 402, 2403 O’Dea, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 1998, The Publications of the Astronomical Society of the Pacific, 110, 493 O’Dea, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Baum, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 1997, AJ, 113, 148 O’Dea, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Baum, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Stanghellini, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 1991, ApJ, 380, 66 O’Dea, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Saikia, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2021, The Astronomy and Astrophysics Review, 29, 3 Orienti, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Dallacasa, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2008, A&A, 487, 885 —.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2014, MNRAS, 438, 463 —.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2020, MNRAS, 499, 1340 Orienti, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Dallacasa, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Tinti, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Stanghellini, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2006, A&A, 450, 959 Orienti, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Murgia, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Dallacasa, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2010, MNRAS, 402, 1892 Owsianik, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Conway, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 1998, A&A, 337, 69 Pacholczyk, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Roberts, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 1971, Physics Today, 24, 57 pandas development team, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2020, pandas-dev/pandas: Pandas, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='5281/ zenodo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='3509134 Pérez, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Granger, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2007, Computing in Science and Engineering, 9, 21 Phillips, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Mutel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 1982, A&A, 106, 21 Polatidis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Conway, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2003, PASA, 20, 69 Price-Whelan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Sipőcz, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Günther, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2018, AJ, 156, 123 Readhead, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Taylor, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Pearson, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Wilkinson, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 1996, ApJ, 460, 634 Ross, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Hurley-Walker, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Seymour, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2022, MNRAS, 512, 5358 Ross, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Callingham, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Hurley-Walker, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2021, MNRAS, 501, 6139 Taylor, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2005, Astronomical Society of the Pacific Conference Series, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 347, TOPCAT &' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' STIL: Starlink Table/VOTable Processing Software (Shopbell, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' and Britton, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' and Ebert, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='), 29 Tingay, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & de Kool, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2003, AJ, 126, 723 Tingay, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Macquart, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Collier, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2015, AJ, 149, 74 Tinti, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Dallacasa, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', de Zotti, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Celotti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Stanghellini, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2005, A&A, 432, 31 Tinti, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & de Zotti, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2006, A&A, 445, 889 Torniainen, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Tornikoski, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Teräsranta, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Aller, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Aller, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2005, A&A, 435, 839 Turner, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Shabala, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Krause, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2018, MNRAS, 474, 3361 Tzioumis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Tingay, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Stansby, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2010, AJ, 140, 1506 van Breugel, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Miley, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Heckman, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 1984, AJ, 89, 5 van der Walt, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Colbert, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Varoquaux, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2011, Computing in Science Engineering, 13, 22 Virtanen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Gommers, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Oliphant, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2020, Nature Methods, 17, 261 Wells, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 1985, Nrao’S Astronomical Image Processing System (AIPS), ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Gesù, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Scarsi, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Crane, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Friedman, & S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Levialdi (Boston, MA: Springer US), 195–209 Wes McKinney.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2010, in Proceedings of the 9th Python in Science Confer- ence, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' Stéfan van der Walt & Jarrod Millman, 56 – 61 Wilkinson, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Booth, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Cornwell, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Clark, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 1984, Nature, 308, 619 Wright, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2006, The Publications of the Astronomical Society of the Pacific, 118, 1711 Wright, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Eisenhardt, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Mainzer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2010, AJ, 140, 1868 Yang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='-h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', Chen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content='-s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=', & Huang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} +page_content=' 2015, MNRAS, 449, 3191' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tAzT4oBgHgl3EQfDfp4/content/2301.00977v1.pdf'} diff --git a/2dAzT4oBgHgl3EQfuP2J/content/2301.01688v1.pdf b/2dAzT4oBgHgl3EQfuP2J/content/2301.01688v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..45c3faa33e38c99d0491815286b55307739275a4 --- /dev/null +++ b/2dAzT4oBgHgl3EQfuP2J/content/2301.01688v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c3b7734f65acee4200a3a8b2fce7e83f7c5e9cc3b7fd6b83f6ae3d401870fd9b +size 266979 diff --git a/3NAyT4oBgHgl3EQfb_eW/content/tmp_files/2301.00274v1.pdf.txt b/3NAyT4oBgHgl3EQfb_eW/content/tmp_files/2301.00274v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..9e3ac610f2d31d95beb59eee47cd9168c1d0d8d5 --- /dev/null +++ b/3NAyT4oBgHgl3EQfb_eW/content/tmp_files/2301.00274v1.pdf.txt @@ -0,0 +1,4259 @@ +CONVERGENCE OF INDUCTIVE SEQUENCES OF SPECTRAL TRIPLES FOR THE +SPECTRAL PROPINQUITY +CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER +ABSTRACT. In the context of metric geometry, we introduce a new necessary and suf- +ficient condition for the convergence of an inductive sequence of quantum compact +metric spaces for the Gromov-Hausdorff propinquity, which is a noncommutative ana- +logue of the Gromov-Hausdorff distance for compact metric spaces. This condition is +easy to verify in many examples, such as quantum compact metric spaces associated +to AF algebras or certain twisted convolution C*-algebras of discrete inductive limit +groups. Our condition also implies the convergence of an inductive sequence of spectral +triples in the sense of the spectral propinquity, a generalization of the Gromov-Hausdorff +propinquity on quantum compact metric spaces to the space of metric spectral triples. +In particular we show the convergence of the state spaces of the underlying C*-algebras +as quantum compact metric spaces, and also the convergence of the quantum dynamics +induced by the Dirac operators in the spectral triples. We apply these results to new +classes of inductive limit of even spectral triples on noncommutative solenoids and +Bunce-Deddens C*-algebras. Our construction, which involves length functions with +bounded doubling, adds geometric information and highlights the structure of these +twisted C*-algebras as inductive limits. +CONTENTS +1. +Introduction +2 +2. +A Characterization of Convergence in the Propinquity for Inductive Sequences +6 +2.1. +Preliminaries: the Gromov-Hausdorff Propinquity +7 +2.2. +Main result +10 +3. +Convergence of Inductive Sequences of Metric Spectral Triples for the Spectral +Propinquity +21 +3.1. +Preliminaries: The Spectral Propinquity +21 +3.2. +Preliminaries: Inductive Limits of Spectral Triples +25 +3.3. +Main result +26 +4. +Even Spectral Triples on Twisted Group C ∗-algebras +31 +4.1. +Discrete Groups, Proper Length Functions, 2-Cocycles, and Classical +Spectral Triples. +31 +4.2. +The Spectral Triples +32 +4.3. +Main result +39 +References +52 +Date: January 3, 2023. +2000 Mathematics Subject Classification. Primary: 46L89, 46L30, 58B34. +Key words and phrases. Spectral triples, Noncommutative metric geometry, quantum Gromov-Hausdorff +distance, Monge-Kantorovich distance, Quantum Metric Spaces, Quantum Tori, Noncommutative solenoids, +Bunce-Deddens algebras. +1 +arXiv:2301.00274v1 [math.OA] 31 Dec 2022 + +2 +CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER +1. INTRODUCTION +Spectral triples, introduced by Connes in 1985 as a noncommutative generalization of +Dirac operators acting on bundles over manifolds [11, 12], have emerged as a powerful +means to encode geometric information over noncommutative operator algebras. Mo- +tivated in part by ideas from mathematical physics, and by the recurrent usefulness of +various notions of limits of C*-algebras, the second author introduced in [47] a distance +on metric spectral triples, up to an obvious notion of unitary equivalence, thus enabling +the discussion of approximations of certain spectral triples by others, in a geometric +sense. This distance is named the spectral propinquity, and is built from a noncommuta- +tive analogue of the Gromov-Hausdorff distance for noncommutative geometry, called +the Gromov-Hausdorff propinquity [35, 38, 39, 40]. Thus, convergence of spectral triples +is defined as part of a larger framework for convergence of quantum compact metric +spaces, which are noncommutative analogues of algebras of Lipschitz functions over +compact metric spaces. Within this framework, the propinquity was extended to certain +modules over quantum compact metric spaces [48], and even C*-correspondences [46] +with additional metric data inspired by metric connections. The propinquity also was +extended to various dynamical systems [41, 44]. These extensions have been used by the +second author to define the spectral propinquity over metric spectral triples. +The spectral propinquity Λspec has been applied to approximations of spectral triples +on fractals [29] and on quantum tori [45], with the latter example rooted in matrix mod- +els in physics and the problem of their convergence. Indeed, the spectral propinquity +endows the space of all metric spectral triples with its own geometry, and it allows to cap- +ture some geometric intuition within the well understood framework of a topology. For +instance, while quantum tori are not inductive limits of finite dimensional C*-algebras, +spectral triples over quantum tori can now be approximated by spectral triples over full +matrix algebras to arbitrary precision using the spectral propinquity — a common heuris- +tics in mathematical physics, now formalized. Convergence for the spectral propinquity +implies convergence of the state spaces of the underlying algebras for a form of Gromov- +Hausdorff distance, convergence of the quantum dynamics obtained by exponentiating +the Dirac operators, and implies convergence of the spectra and the bounded continuous +functional calculus for the Dirac operators, with implications for the convergence of +physically important quantities such as the spectral actions [31]. +In this paper, we consider the question of when an inductive sequence of metric spectral +triples [20] converges, in the sense of the spectral propinquity, to its inductive limit. To +illustrate the power of our result, besides the class of AF algebras, we construct even +metric spectral triples on noncommutative solenoids [49] and on some Bunce-Deddens +algebras [8, 14] and show that they are limits of metric spectral triples on, respectively, +quantum tori and bundles of full matrix algebras over the circle, in the sense of the +spectral propinquity Λspec. In this way, we provide a noncommutative geometric version +of the fact that solenoid groups can be seen as metric limits of tori, and Bunce-Deddens +algebras are metric limits of algebras of matrix valued functions over the circle. +A spectral triple (A,H , /D) is given by a unital C*-algebra A acting on a Hilbert space +H and a (usually unbounded) self-adjoint operator /D on H , which has bounded com- +mutator with the elements of a dense ∗-subalgebra of A, and has compact resolvent (see +Definition (3.1)). Spectral triples contain much geometric information, including metric +data. Indeed, Connes noted in [12] that spectral triples define a canonical extended +pseudo-distance on the state space of their underlying C*-algebras, which, in particular, + +3 +recovers the geodesic distance when working with the usual spectral triple given by the +Dirac operator acting on the square integrable sections of the spinor bundle of a compact +connected Riemannian spin manifold without boundary. +Rieffel in [55, 56] then cast this metric aspect of noncommutative geometry under +a new light, starting from the observation that Connes’ distance induced by a spectral +triple is a noncommutative analogue of the Monge-Kantorovich metric [27, 28]; it was +thus natural to define a quantum compact metric space as an ordered pair (A,L) of a +unital C*-algebra A and a noncommutative analogue of a Lipschitz seminorm L such +that, in particular, if we set, for any two states ϕ,ψ of A, +mkL(ϕ,ψ) := sup +� +|ϕ(a)−ψ(a)| : L(a) � 1 +� +then mkL is a distance inducing the weak-∗ topology on the state space of A. The exact +list of requirements on the seminorm L have evolved as the study of noncommutative +metric geometry matured, and we will use the definition of a quantum compact metric +space given in [38, 39] and recalled in Definition (2.3). Indeed, a spectral triple whose +Connes’ metric induces the weak-∗ topology on the state space of its underlying C*- +algebra then automatically gives a quantum compact metric space; such a spectral triple +is called a metric spectral triple. +Metric spectral triples may thus be studied within the context of noncommutative +metric geometry. As a result, the second author introduced a distance on the space +of metric spectral triples. The first step in defining this distance, called the spectral +propinquity, is the construction of a noncommutative geometric analogue of the Gromov- +Hausdorff distance [17, 22, 23] between quantum compact metric spaces, which we +will recall in subsection (2.1). The first such analogue was introduced by Rieffel [57], +motivated by the possibility of formalizing certain convergence results found in the +mathematical physics literature. While several such analogues have been offered, we +will work with the Gromov-Hausdorff propinquity Λ∗, introduced by the second author +in [35, 38, 39, 40] precisely to be well adapted to C*-algebras theory and the type of +seminorms given by spectral triples. The propinquity in general is designed precisely +to enable distance computations between quantum compact metric spaces defined on +unrelated C*-algebras, such as between matrix algebra and quantum tori. However, in +this work, we investigate what additional properties of the propinquity we can derive +when we work with inductive limits of C*-algebras. +We begin this work by establishing a characterization of convergence of inductive +limits of quantum compact metric spaces to their inductive limit, in terms of bridge +builders, a type of ∗-automorphism with a natural relation to quantum metrics. +Definition (Definition (2.20)). For each n ∈ N ∪ {∞}, let (An,Ln) be a quantum com- +pact metric space, such that A∞ = cl(� +n∈NAn), where (An)n∈N is an increasing (for ⊆) +sequence of C*-subalgebras of A∞, with the unit of A∞ in A0. +A ∗-automorphism π : A∞ → A∞ is a bridge builder for ((An,Ln)n∈N,(A∞,L∞)) when, +for all ε > 0, there exists N ∈ N such that if n � N, then +∀a ∈ dom(L∞) +∃b ∈ dom(Ln) : +Ln(b) � L∞(a) and ∥π(a)−b∥A∞ < εL∞(a) +and +∀b ∈ dom(Ln) +∃a ∈ dom(L∞) : +L∞(a) � Ln(b) and ∥π(a)−b∥A∞ < εLn(b), +where ∥·∥A∞ is the C*-norm on A∞. + +4 +CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER +Bridge builders are powerful means to prove metric convergence for the propinquity +and notable because it is usually very difficult to find necessary conditions for metric +convergence in the sense of the propinquity (besides the trivial convergence for the +diameters). Thus, this theorem is of independent interest from our study of spectral +triples, and addresses the relationship between inductive limits and limits in a metric +sense as in [47, 35]. Our first main result is therefore the following theorem about +convergence for the propinquity Λ∗ of certain inductive sequences. +Theorem (Theorem (2.22)). For each n ∈ N ∪{∞}, let (An,Ln) be a quantum compact +metric space, where (An)n∈N is an increasing (for ⊆) sequence of C*-subalgebras of A∞ +such that A∞ = cl(� +n∈NAn), with the unit of A∞ in A0. We assume that there exists +∃M > 0 such that for all n ∈ N: +1 +M Ln � L∞ � M ·Ln on dom(Ln). +Then +lim +n→∞Λ∗ ((An,Ln),(A∞,L∞)) = 0, +if, and only if, for any subsequence (Ag(n),Lg(n))n∈N of (An,Ln)n∈N, there exists a strictly +increasing function f : N → N and a bridge builder π for ((Ag◦f (n),Lg◦f (n))n∈N,(A∞,L∞)). +The second step in the construction of the spectral propinquity Λspec on the space of +metric spectral triples is the extension of the Gromov-Hausdorff propinquity to a distance +on the class of C*-correspondences over quantum compact metric spaces endowed with +a form of quantum metric, and with a compatible action of some monoid. The C*- +correspondence associated with a metric spectral triple (A,H , /D) is the Hilbert space +H , seen as a A-C-C*-correspondence, with the quantum metric given by the graph norm +of /D, and with the action of [0,∞) on H given by t ∈ [0,∞) �→ exp(it /D). Convergence for +the spectral propinquity, by design, implies the convergence of the underlying quantum +compact metric spaces, but the converse does not hold in general. These matters will be +recalled in detail in Subsection (3.1). +We then turn to the more specific context of inductive sequences of metric spectral +triples. Inductive sequences of spectral triples were introduced in [20], and are a natural +source of spectral triples; our interest is in the convergence of such sequences for the +spectral propinquity, i.e. in the sense of an actual metric. We establish in the present +work, as our second main result, that an inductive sequence of metric spectral triples +converges for the spectral propinquity when there exists a fully quantum isometric bridge +builder for the underlying sequence of quantum compact metric spaces. Again, it is a +surprising result that a mild strengthening of convergence for the Gromov-Hausdorff +propinquity implies the much stronger convergence for the spectral propinquity, a fact +which does not hold for arbitrary sequences of metric spectral triples, but holds thanks +to the structure of inductive limits. Our second main theorem is given as follows. +Theorem (Theorem (3.17)). Let (A∞,H∞, /D∞) be a metric spectral triple which is the +inductive limit of a sequence (An,Hn, /Dn)n∈N of metric spectral triples, in the sense of +Definition (3.15). For each n ∈ N∪{∞}, let +dom(Ln) := +� +a ∈ An : a = a∗,a dom( /Dn) ⊆ dom( /Dn) and [ /Dn,a] is bounded +� +, +and, for all a ∈ dom(Ln), let Ln(a) be the operator norm of [ /Dn,a]. + +5 +If there exists a bridge builder π : (A∞,L∞) → (A∞,L∞) for ((An,Ln)n∈N,(A∞,L∞)) +which is a full quantum isometry of (A∞,L∞), i.e. such that π(dom(L∞)) ⊆ dom(L∞) and +L∞ ◦π = L∞ on dom(L∞), then +lim +n→∞Λspec((An,Hn, /Dn),(A∞,H∞, /D∞)) = 0. +We conclude our paper with the construction of new even spectral triples on certain +twisted group C*-algebras C ∗(G,σ) where the discrete group G = � +n∈NGn is the union +of a strictly increasing sequence of subgroups Gn of G. These examples include noncom- +mutative solenoids [49] and certain Bunce-Deddens algebras [8]. Our construction is +motivated by the desire to see our new spectral triples over C ∗(G,σ) as limits, for the +spectral propinquity, of an inductive sequence of metric spectral triples constructed over +the inductive sequence (C ∗(Gn,σ))n∈N. This metric aspect distinguishes our spectral +triples from other spectral triples on noncommutative solenoids [1, 2] or Bunce-Deddens +algebras [24], and is applicable, in principle, to many other examples. Moreover, non- +commutative solenoids were shown in [48] to be limits, for the propinquity, of quantum +tori, for a different family of quantum metrics which did not come from a spectral triple. +In general, it is difficult to prove that a given spectral triple is metric. Examples of +metric spectral triples can be found over certain manifolds, quantum tori [12, 15, 16, 34, +45], or more generally, over unital C*-algebras endowed with ergodic actions of compact +Lie groups [21, 55], over certain C*-crossed-products [24], over quantum groups [13], +over Podle´s spheres [3], over AF algebras [7], over certain fractals [10, 30], and more. We +note that there are known examples of spectral triples which are not metric [26]. +It is therefore quite interesting to obtain new examples of metric spectral triples, and +moreover, to prove that they are interesting limits of spectral triples for the spectral +propinquity. We thus establish the following third main result of this paper, which draws +on the first two in its proof. +Theorem (Simplified form of Theorem (4.16)). Let G = � +n∈NGn be an Abelian discrete +group, with (Gn)n∈N a strictly increasing sequence of subgroups of G. Let σ be a 2-cocycle +of G, with values in T := {z ∈ C : |z| = 1}. +Let LH be a length function over G whose restriction to Gn is proper for all n ∈ N, such +that the sequence (Gn)n∈N converges to G for the Hausdorff distance induced on the closed +subsets of G by LH. Let +F : g ∈ G �−→ scale(min{n ∈ N : g ∈ Gn}), +where scale : N → [0,∞) is a strictly increasing function. +If the proper length function L := max{LH,F} satisfies that, for some θ > 1, there exists +c > 0 such that for all r � 1: +��� +g ∈ G : L(g) � θ ·r +��� � c +��� +g ∈ G : L(g) � r +���, +then +lim +n→∞Λspec((C ∗(G,σ),ℓ2(G)⊗C2, /D),(C ∗(Gn,σ),ℓ2(Gn)⊗C2, /Dn)) = 0, +where for all n ∈ N∪{∞} and for all (ξ1,ξ2) in +� +ξ ∈ ℓ2(Gn)⊗C2 : +� +g∈Gn +(LH(g)2 +F(g)2) +��ξ(g) +��2 +C2 < ∞ +� +, +we set +/Dξ : g ∈ G �−→ +�F(g)ξ2(g)+LH(g)ξ1(g) +F(g)ξ2(g)−LH(g)ξ1(g) +� +. + +6 +CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER +In the above spectral triples, C ∗(G,σ) and C ∗(Gn,σ) act via their left regular σ-projective +representations. +We then apply this theorem to construct metric spectral triples on noncommutative +solenoids, i.e. the twisted group C*-algebras C ∗ +�� +Z +� +1 +p +��2 +,σ +� +where +Z +� 1 +p +� +:= +� k +pn : k ∈ Z,n ∈ N +� +, +with p a prime natural number, and where σ is a 2-cocycle of +� +Z +� +1 +p +��2 +. In this case, +using the notation of the above theorem, we choose LH to be the restriction to +� +Z +� +1 +p +��2 +of any norm on R2, while F can be chosen by setting F(g) := p +min +� +n∈N:g∈ +� +1 +pn Z +�2� +for all +g = (g1,g2) ∈ +� +Z +� +1 +p +��2 +. Alternatively, following the ideas of [19], which motivated the +present work, we can choose F(g1,g2) := max{|g1|p,|g2|p} for all g1,g2 ∈ Z +� +1 +p +� +, where +|·|p is the p-adic absolute value. +Similarly, we can apply [52] to see that the Bunce-Deddens algebras are given as the +twisted group C*-algebra C ∗ (Z(α)×Z,σ) for an appropriate choice of a 2-cocycle σ and +a sequence α = (αn)n∈N of nonzero natural numbers such that αn+1 +αn +is a prime number +for all n ∈ N, where the group Z(α) is the subgroup of the circle group T given by all roots +of unity of order αn for n ranging over N. We endow Z(α) with the discrete topology. +The supernatural number number describing the ∗-isomorphism class of the Bunce- +Deddens algebra thus obtained is +� +p|{n∈N: αn+1 +αn =p}|� +p prime . For our purpose, we will work +with sequences α for which +� +αn+1 +αn +� +n∈N is bounded. In this case, we will choose LH to be +the sum or the max (or one of many other choices) of the restriction of a length function +over T to Z(α), and the absolute value on Z. Observing that +Z(α) = +� +n∈N +� +Z⧸αn, +where � +Z⧸m is the group of all m-th roots of unity, we then set F(ζ,z) := min{αn : ζ ∈ +� +Z⧸αn} for all (ζ,z) ∈ Z(α)×Z. This provides a new way to look at Bunce-Deddens algebras +as limits of algebras of continuous sections of bundles of matrix algebras over circles +in a geometric sense, as an echo of the topological fact that they are AT algebras. This +work thus provides an approach to endowing Bunce-Deddens algebras with a different +quantum metric from [29], with the advantage that our quantum metrics are induced by +spectral triples — solving the main difficulty in [29], at least for these Bunce-Deddens +algebras to which our present work applies. +Acknowledgements. This work was partially supported by the Simons Foundation (Si- +mons Foundation collaboration grant #523991 [C. Farsi] and # 31698 [J. Packer].) +2. A CHARACTERIZATION OF CONVERGENCE IN THE PROPINQUITY FOR INDUCTIVE +SEQUENCES +We introduce in this section the notion of bridge builders associated with inductive +sequences of quantum compact metric spaces, which can be used to characterize the + +7 +convergence of such sequences to their inductive limits in the sense of the Gromov- +Hausdorff propinquity. We begin with a review of the notions of quantum compact +metric spaces and propinquity, and then we prove our main theorem, which underlies +all the rest of our work. +2.1. Preliminaries: the Gromov-Hausdorff Propinquity. Our work is concerned with +quantum compact metric spaces, which are noncommutative analogues of the algebras +of Lipschitz functions over a compact metric space. Our definition is the result of a +natural evolution from the notion of compact quantum metric spaces introduced in [55] +by Rieffel, designed as the natural context for the construction of the propinquity. This +subsection will also set some of the basic notation which we will use throughout this +paper. +Notation 2.1. By default, we denote the norm of a normed vector space E by ∥·∥E , and +for us, the set N of natural numbers always contains zero. +Notation 2.2. If A is a unital C*-algebra, then the unit of A will simply be denoted by +1. The state space of the C*-algebra A is denoted by S (A). For any a ∈ A, we write +ℜa = a+a∗ +2 +and ℑa = a−a∗ +2i +. The space {a ∈ A : a = a∗} is denoted by sa(A) and is closed +under the Jordan product a,b ∈ sa(A) �→ ℜ(ab) and the Lie product a,b ∈ sa(A) �→ ℑ(ab), +making sa(A) a Jordan-Lie algebra. +Definition 2.3 ([11, 38, 39, 55, 57, 58]). Fix Ω � 1 and Ω′ � 0. An (Ω,Ω′)-quantum com- +pact metric space (A,L) is given by a unital C*-algebra A and a seminorm L defined on a +dense Jordan-Lie subalgebra dom(L) of sa(A) such that: +(1) {a ∈ dom(L) : L(a) = 0} = R1, +(2) the Monge-Kantorovich metric mkL, defined on the state space S (A) of A, by, +for all ϕ,ψ ∈ S (A): +mkL(ϕ,ψ) := sup +� +|ϕ(a)−ψ(a)| : a ∈ dom(L),L(a) � 1 +� +is a metric which induces the weak-∗ topology on S (A), +(3) for all a,b ∈ sa(A), +max{L(ℜ(ab)),L(ℑ(ab))} � Ω(∥a∥AL(b)+L(a)∥b∥A)+Ω′L(a)L(b); +this inequality being referred to as the (Ω,Ω′)-Leibniz inequality, +(4) the set {a ∈ dom(L) : L(a) � 1} is closed in A. +Any such a seminorm L is called a Lipschitz seminorm on A. +Convention 2.4. By convention, if L is a Lipschitz seminorm on some unital C*-algebra +A, we will write L(a) = ∞ whenever a ∉ dom(L), with the convention that 0∞ = 0 and +∞+x = x+∞ = ∞ for all x ∈ [0,∞]. With this convention, L is lower semicontinuous over +sa(A) as a [0,∞]-valued function (not just on dom(L) but on the entire space sa(A)). +Convention 2.5. Throughout this paper, we fix Ω � 1 and Ω′ � 0. These parameters will +be implicit in our notation; when working with spectral triples, one may always assume +Ω = 1 and Ω′ = 0. +Remark 2.6. If (A,L) is a quantum compact metric space, then we record the following +fact which we shall use repeatedly: if a ∈ dom(L), then L(a +t1) = L(a) for all t ∈ R, since +L(a) = L(a+t1−t1) � L(a+t1)+L(t1) = L(a+t1)+t L(1) +=0 += L(a+t1) � L(a)+tL(1) = L(a). + +8 +CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER +Since the state space of a quantum compact metric space is a compact metric space +for the Monge-Kantorovich metric, it has bounded diameter. Moreover, its diameter can +used to obtain a natural bound on the norm of some self-adjoint elements, which is a +simple but very useful result, which we now recall. +Notation 2.7. The diameter of a metric space (E,d) is denoted by diam(E,d). If (A,L) is +a quantum compact metric space, then we will write qdiam(A,L) for diam +�S (A),mkL +� +. +If E is actually a normed vector space, then we simply write diam(A,E) for the diameter +of any subset A of E for the norm ∥·∥E of E. +We recall the following fact, which we will use repeatedly. +Theorem 2.8 ([55, Propostion 1.6]). If (A,L) is a quantum compact metric space, and if +µ ∈ S (A), then +��a −µ(a)1 +��A � L(a) qdiam(A,L). +Proof. For all ϕ ∈ S (A), we note that |ϕ(a −µ(a)1)| = |ϕ(a)−µ(a)| � L(a)qdiam(A,L). +Since a −µ(a)1 is self-adjoint, we conclude that +��a −µ(a)1 +��A � L(a)qdiam(A,L). +□ +The property difficult to establish when working with quantum compact metric spaces +is, of course, that the Monge-Kantorovich metric induces the weak-∗ topology. Rieffel +provided various characterizations; we will find the following helpful in this paper: +Theorem 2.9 ([51]). Let L be a seminorm defined on some dense subspace dom(L) of +sa(A) for some unital C*-algebra A such that {a ∈ dom(L) : L(a) = 0} = R1. If we set +mkL(ϕ,ψ) = sup +� +|ϕ(a)−ψ(a)| : a ∈ dom(L),L(a) � 1 +� +, for all ϕ,ψ ∈ S (A), then the fol- +lowing assertions are equivalent: +• mkL is a metric on the state space S (A) of A inducing the weak-∗ topology, +• there exists a state µ ∈ S (A) such that {a ∈ dom(L) : L(a) � 1,µ(a) = 0} is totally +bounded in sa(A), +• for all states µ ∈ S (A), the set {a ∈ dom(L) : L(a) � 1,µ(a) = 0} is totally bounded +in sa(A). +We record the following helpful result, which we will also use often. +Corollary 2.10 ([55]). If (A,L) is a quantum compact metric space, µ ∈ S (A), and if K > 0, +then the set +� +a ∈ dom(L) : L(a) � 1,|µ(a)| � K +� +is compact in A. +Proof. We first note that the set +� +a ∈ dom(L) : L(a) � 1,|µ(a)| � K +� +is closed since L is +lower semicontinuous and µ is continuous. +Let (an)n∈N be a sequence in dom(L) such that L(an) � 1 and |µ(an)| � K for all n ∈ N. +Since (|µ(an)|)n∈N is bounded in R, it has a convergent subsequence (|µ(a f (n))|)n∈N. +On the other hand, (a f (n) −µ(a f (n))1)n∈N has a convergent subsequence (a f (g(n)) − +µ(a f (g(n))))n∈N by Theorem (2.9). It now follows that (a f (g(n)))n∈N is a convergent se- +quence. +□ +Quantum compact metric spaces are the points of a (pseudo-)metric space, where +the metric is the Gromov-Hausdorff propinquity, an analogue of the Gromov-Hausdorff +distance in noncommutative geometry. The construction of the propinquity thus relies +on an appropriate notion of quantum isometries. + +9 +Definition 2.11. Let (A1,L1) and (A2,L2) be two quantum compact metric spaces. A Lips- +chitz morphism π : (A1,L1) → (A2,L2) from (A1,L1) to (A2,L2) is a surjective ∗-morphism +π from A1 to A2 such that π(dom(L1)) ⊆ dom(L2). Moreover, if, for all b ∈ dom(L2): +L2(b) = inf{L1(a) : π(a) = b}, +then π is called a quantum isometry. If π is a quantum isometry and a bijection whose +inverse is also a quantum isometry, then π is called a full quantum isometry; in this case +π is a ∗-isomorphism such that for all a ∈ sa(A1): +L2 ◦π(a) = L1(a). +The propinquity is a metric computed by isometrically “embedding” two quantum +compact metric spaces into an arbitrary third one, which in the contravariant picture of +noncommutative geometry, leads us to the following definition for a tunnel. Crucially, a +non-negative number can be associated to a tunnel using the Hausdorff distance. +Notation 2.12. The Hausdorff distance induced by the distance function of a metric +space (X ,d) on the hyperspace of closed subsets of X is denoted by Haus[d]. If N is a +norm on a vector space, we denote by Haus[N] the Hausdorff distance induced by the +metric given by the norm N. By default, if E is a normed vector space, we simplify our +notation and simply write Haus[E] for the Hausdorff distance induced by the distance +defined by the norm ∥·∥E of E. +Notation 2.13. If π : A → B is a unital ∗-morphism, then we define +π∗ : ϕ ∈ S (B) �−→ ϕ◦π ∈ S (A). +Definition 2.14 ([35, Definition 3.1],[40, Definition 2.11,Definition 3.6]). Let (A1,L1) and +(A2,L2) be two quantum compact metric spaces. A tunnel τ = (D,LD,π1,π2) is given by +a quantum compact metric space (D,LD) and two quantum isometries π1 : (D,LD) → +(A1,L1) and π2 : (D,LD) → (A2,L2). The domain dom(τ) of τ is (A1,L1) and the codomain +codom(τ) of τ is (A2,L2). +The extent χ(τ) of τ is the non-negative number: +χ(τ) := max +j∈{1,2}Haus +�mkLD +� � +π∗ +j (S (Aj )),S (D) +� +. +Remark 2.15. We emphasize that all quantum compact metric spaces involved in our +tunnels in this paper must satisfy the same (Ω,Ω′)-Leibniz inequality for our fixed Ω,Ω′. +There always exists a tunnel between any two quantum compact metric spaces, and +the extent of a tunnel is always finite. We thus define: +Definition 2.16. The (dual) Gromov-Hausdorff propinquity Λ∗((A,LA),(B,LB)) be- +tween any two quantum compact metric spaces (A,LA) to (B,LB) is defined by: +Λ∗((A,LA),(B,LB)) := inf +� +χ(τ) : τ tunnel from (A,LA) to (B,LB) +� +. +The (dual) propinquity is well-behaved, as summarized in the following theorem: +Theorem 2.17 ([38, 35]). The dual propinquity is a complete metric up to full quantum +isometry. Moreover, if (Xn,dn)n∈N is a sequence of compact metric spaces, then (Xn,dn)n∈N +converges to a compact metric space (X ,d) for the Gromov-Hausdorff distance if, and +only if limn→∞ Λ∗((C(Xn),Ldn),(C(X ),Ld)) = 0, where Ld denotes the Lipschitz seminorm +induced by any metric d. + +10 +CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER +There are several interesting known examples of convergence for the propinquity, in- +cluding approximations of quantum tori by fuzzy tori [33], approximations of spheres by +matrix algebras [9], continuity of quantum tori in their cocycle parameter [33], continuity +of UHF algebras with respect to the Baire space seen as their natural parameter space, +continuity of the Effros-Shen algebras in their irrational parameters [5], and more. +2.2. Main result. We begin with a simple sufficient condition to ensure that a seminorm +is indeed a Lipschitz seminorm on an inductive limit of unital C*-algebras, when each +of the C*-subalgebra in the inductive sequence is already equipped with a Lipschitz +seminorm. This condition is quite natural and generalizes, for instance, the idea behind +the construction of Lipschitz seminorms on AF algebras in [5]. +Proposition 2.18. Let A∞ be a unital C*-algebra. For each n ∈ N, let (An,Ln) be a quan- +tum compact metric space, where (An)n∈N is an increasing sequence of C*-subalgebras +of A∞ with the unit of A∞ in A0. Assume moreover that A∞ = cl(� +n∈NAn). Let L∞ be a +seminorm defined on a dense Jordan-Lie subalgebra dom(L∞) of sa(A∞), such that: +(1) {a ∈ dom(L∞) : L∞(a) = 0} = R1, +(2) the unit ball of L∞ is closed in A∞, +(3) L∞ is (Ω,Ω′)-Leibniz. +If there exists a unital isometric positive linear map π : A∞ → A∞ such that, for all +ε > 0, there exists N ∈ N with the property that: +∀a ∈ dom(L∞) +∃b ∈ dom(LN) : +LN(b) � L∞(a) and ∥π(a)−b∥A∞ < εL∞(a), +then (A∞,L∞) is a quantum compact metric space. +Proof. Let µ ∈ S (A∞). By assumption, µ ∈ S (An) for all n ∈ N — where we use the same +symbol µ to denote the restriction of µ to An. Let +B∞ := +� +a ∈ dom(L∞) : µ◦π(a) = 0,L∞(a) � 1 +� +. +Now, let ε > 0 and let n ∈ N. We set +Bn := +� +a ∈ dom(Ln) : |µ(a)| < ε +4,Ln(a) � 1 +� +. +Let a ∈ Bn, and let ϕ ∈ S (An). By Theorem (2.8), we have the following inclusion: +Bn ⊆ +� +a ∈ dom(Ln) : Ln(a) � 1,∥a∥An � qdiam(An,Ln)+ ε +4 +� +and the latter set is compact since Ln is a Lipschitz seminorm, by Corollary (2.10). So Bn +is totally bounded. In fact, since Ln is lower semicontinuous and µ is continuous, the set +Bn is also closed in the complete space A∞, so Bn is compact. +By assumption on π, there exists N ∈ N such that +∀a ∈ B∞ +∃b ∈ dom(LN) : +LN(b) � 1 and ∥π(a)−b∥A∞ < ε +4. +In particular, if a ∈ B∞ and b ∈ dom(LN) with LN(b) � 1 and ∥π(a)−b∥A∞ < ε +4, then +|µ(b)| � ∥b −π(a)∥A∞ +|µ(π(a))| < ε +4, so b ∈ BN. +Since BN is compact in sa(AN) by Corollary (2.10), there exists a ε +4-dense subset +F ⊆ BN of BN. So +Haus[A∞](π(B∞),F) � Haus[A∞](π(B∞),BN)+Haus[A∞](BN,F) < ε +2. + +11 +The domain dom(L∞) is dense in sa(A), so it is not empty and thus {a ∈ dom(L∞) : +L∞(a) � 1} is not empty, since L is a seminorm. Thus, by Remark (2.6), the set B∞ is not +empty as well. We thus obtain: +� ̸= B∞ = +� +b∈F +� +a ∈ B∞ : ∥π(a)−b∥A∞ < ε +2 +� +. +Therefore, if we define +G := +� +b ∈ F : +� +a ∈ B∞ : ∥π(a)−b∥A∞ < ε +2 +� +̸= � +� +, +then G ̸= � and B∞ = � +b∈G +� +a ∈ B∞ : ∥π(a)−b∥A∞ < ε +2 +� +. For each b ∈ G, we pick t(b) ∈ +B∞ such that ∥π(t(b))−b∥A∞ < ε +2. Let now a ∈ B∞. There exists b ∈ G such that +∥π(a)−b∥A∞ < ε +2. Then +∥a − t(b)∥A∞ = ∥π(a − t(b))∥A∞ +� ∥π(a)−b∥A∞ +∥b −π(t(b))∥A∞ +< ε +2 + ε +2 = ε. +Thus, t(G) is a ε-dense subset of B∞. So B∞ is totally bounded in A∞. Therefore, noting +that µ◦π is a state of A∞, we conclude by Theorem (2.9) that mkL∞ induces the weak-∗ +topology on S (A∞). Since all other required properties are assumed, L∞ is indeed a +Lipschitz seminorm. +□ +The next natural question is to find a sufficient condition to strengthen Proposition +(2.18) and obtain convergence of the sequence (An,Ln)n∈N to (A∞,L∞) in the sense of +the propinquity. To this end, we introduce the notion of a bridge builder — a map which, +among other things, satisfy the condition in Proposition (2.18). In fact, we basically “sym- +metrize” the condition in Proposition (2.18) and require that we work with ∗-morphism +(which will allow us to construct seminorms with the Leibniz property), rather than just +positive linear maps. +Notation 2.19. We will write N := N∪{∞} for the one point compactification of N. +Definition 2.20. For each n ∈ N∪{∞}, let (An,Ln) be a quantum compact metric space, +where (An)n∈N is an increasing (for ⊆) sequence of C*-subalgebras of A∞ such that +A∞ = cl(� +n∈NAn) and the unit of A∞ is in A0. +A ∗-automorphism π : A∞ → A∞ is a bridge builder for ((An,Ln)n∈N,(A∞,L∞)) when, +for all ε > 0, there exists N ∈ N such that if n � N, then +∀a ∈ dom(L∞) +∃b ∈ dom(Ln) : +Ln(b) � L∞(a) and ∥π(a)−b∥A∞ < εL∞(a) +and +∀b ∈ dom(Ln) +∃a ∈ dom(L∞) : +L∞(a) � Ln(b) and ∥π(a)−b∥A∞ < εLn(b). +Proposition 2.21. For each n ∈ N∪{∞}, let (An,Ln) be a quantum compact metric space, +where (An)n∈N is an increasing (for ⊆) sequence of C*-subalgebras of A∞ such that A∞ = +cl(� +n∈NAn) and the unit of A∞ is in A0. +If there exists a bridge builder for ((An,Ln)n∈N,(A∞,L∞)), then +lim +n→∞Λ∗((An,Ln),(A∞,L∞)) = 0. +Proof. Let π : A∞ → A∞ be the given bridge builder. Let ε > 0. There exists N ∈ N such +that if n � N, then +• ∀a ∈ dom(L∞) +∃b ∈ dom(Ln) : +Ln(b) � L∞(a)∧∥π(a)−b∥A∞ < εL∞(a), + +12 +CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER +• ∀b ∈ dom(Ln) +∃a ∈ dom(L∞) : +L∞(a) � Ln(b)∧∥π(a)−b∥A∞ < εLn(b). +Fix n � N. We define, for all a ∈ dom(L∞) and b ∈ dom(Ln): +Tn(a,b) := max +� +L∞(a),Ln(b), 1 +ε ∥π(a)−b∥A∞ +� +. +It is a standard argument that (A∞ ⊕An,Tn) is a quantum compact metric space: +(1) the domain dom(Tn) = dom(L∞)⊕dom(Ln) of Tn is dense in sa(A∞ ⊕An) since +dom(L∞) is dense in sa(A∞) and dom(Ln) is dense in sa(An), +(2) if Tn(a,b) = 0 for some (a,b) ∈ dom(Tn), then L∞(a) = 0 so a = t1 for some t ∈ R, +and Ln(b) = 0 so b = s1 for some s ∈ R (it matters here that the unit is the same +in A∞ and An), and 0 = ∥π(a)−b∥A∞ = |t − s| so (a,b) = t(1,1); +(3) Tn is the maximum of two lower semicontinuous functions and one continuous +function, so it is lower semicontinuous over sa(A∞ ⊕An); +(4) a direct computation shows that Tn is (Ω,Ω′)-Leibniz since L∞ and Ln both are, +and π is a ∗-morphism; +(5) fixing any state µ of A∞ and setting ϕ : (a,b) ∈ A∞⊕An �→ µ(a), then ϕ ∈ S (A∞⊕ +An), and +� +(a,b) ∈ dom(Tn) : Tn(a,b) � 1,ϕ(a,b) = 0 +� +⊆ +� +a ∈ dom(L∞) : L∞(a),µ(a) = 0 +� +× +� +b ∈ dom(Ln) : Ln(b) � 1,|µ◦π−1(b)| � ε +� +and, as seen in the proof of Proposition (2.18), the set on the right hand side is +a product of two compact set, and thus compact; thus the set on the left hand +side is compact (closed in a compact set) and thus, Tn is indeed a Lipschitz +seminorm, invoking Theorem (2.9). +We now check that τn := (A∞ ⊕An,Tn,ψn,θn), with ψn : (a,b) ∈ A∞ ⊕An �→ a ∈ A∞ +and θn : (a,b) ∈ A∞ ⊕An �→ b ∈ An, is a tunnel, in the sense of Definition (2.14). +Let a ∈ dom(L∞). By assumption, there exists b ∈ dom(Ln) with Ln(b) � L∞(a) and +∥π(a)−b∥A∞ < εL∞(a). Therefore, Tn(a,b) = L∞(a). Since by construction, Tn(a,c) � +L∞(a) for all a ∈ dom(L∞) and c ∈ dom(Ln), we have shown that ψn is a quantum +isometry by Definition (2.11). +Let now b ∈ dom(Ln). Again by assumption on π, there exists a ∈ dom(L∞) such +that ∥π(a)−b∥A∞ < εLn(b) and L∞(a) � Ln(b). Thus Tn(a,b) = Ln(b). Once again, +Tn(c,b) � Ln(b) by construction for all c ∈ dom(L∞), so θn is indeed a quantum isometry, +so τn is a tunnel. +We now compute the extent of τn, in the sense of Definition (2.14). Let ϕ ∈ S (A∞ ⊕ +An). Using Hahn-Banach theorem, we extend ϕ to a state ϕ′ of A∞ ⊕A∞. Let µ : a ∈ +A∞ �→ ϕ′(a,π(a)); since π is a unital ∗-morphism, µ is a state of A∞. By construction, if +Tn(a,b) � 1 then ∥π(a)−b∥A∞ � ε and thus +|ϕ(a,b)−µ◦ψn(a,b)| = |ϕ′(a,b)−ϕ′(a,π(a))| +� |ϕ′(0,b −π(a))| +� ∥b −π(a)∥A∞ � ε. +Thus Haus +�mkTn +� +(ψ∗ +n(S (A∞)),S (A∞ ⊕An)) � ε. + +13 +Let now µ′ : b ∈ An �→ ϕ(π−1(b),b). Since π is a ∗-automorphism of A∞, the map µ′ is +a state of An. Moreover: +|ϕ(a,b)−µ′ ◦θn(a,b)| = |ϕ(a,b)−ϕ(π−1(b),b)| += |ϕ(a −π−1(b),0)| +� +��a −π−1(b) +��A∞ += ∥π(a)−b∥A∞ � ε. +Thus Haus +�mkTn +� +(θ∗ +n(S (An)),S (A∞)) � ε. +Hence, the extent χ(τn) of τn is at most ε. By Definition (2.16), we thus have shown +that for all n � N, +(2.1) +Λ∗((An,Ln),(A∞,L∞)) � ε, +which concludes our proof. +□ +Our main result in this section is the following theorem, which shows that the natural +sufficient condition in Definition (2.20) and Proposition (2.21) is, in fact, very close to +necessary, under a mild and natural condition. This is notable because in general, it +is difficult to exhibit nontrivial necessary conditions for convergence in the sense of +the propinquity (besides, say, the fact that diameters must converge). It also shows +that the existence of bridge builders is the natural setup for establishing convergence +of inductive limits in the sense of the propinquity, thus providing a complete answer +for the relationship between convergence of inductive sequences of quantum compact +metric spaces in the categorical sense and the propinquity sense, under a commonly +met condition. +Theorem 2.22. For each n ∈ N∪{∞}, let (An,Ln) be a quantum compact metric space, +where (An)n∈N is an increasing (for ⊆) sequence of C*-subalgebras of A∞ such that A∞ = +cl(� +n∈NAn) and the unit of A∞ is in A0. We assume that there exists M > 0 such that for +all n ∈ N: +1 +M Ln � L∞ � M ·Ln on dom(Ln). +Then +lim +n→∞Λ∗ ((An,Ln),(A∞,L∞)) = 0, +if, and only if, for any subsequence (Ag(n),Lg(n))n∈N of (An,Ln)n∈N, there exists a strictly +increasing function f : N → N and a bridge builder π for ((Ag◦f (n),Lg◦f (n))n∈N,(A∞,L∞)). +Proof. First, assume that for any subsequence (Ag(n),Lg(n))n∈N, there exists a strictly +increasing function f : N → N and a bridge builder π for ((Ag◦f (n),Lg◦f (n))n∈N,(A∞,L∞)). +By Proposition (2.21), we conclude that every subsequence of (An,Ln)n∈N has a subse- +quence converging to (A∞,L∞). Therefore, (An,Ln)n∈N converges to (A∞,L∞) since the +propinquity is, indeed, a metric (up to full quantum isometry). +Let us now assume that (An,Ln)n∈N converges to (A∞,L∞) for the propinquity. Since +any subsequence will converge as well, it is sufficient to prove our statement for g being +the identity, and this will simplify our notation. +Since (An,Ln)n∈N converges to (A∞,L∞), there exists a sequence +(τn)n∈N := (Dn,Tn,ψn,θn)n∈N +of tunnels, as in Definition (2.14), with limn→∞ χ(τn) = 0, while, for each n ∈ N, we +have dom(τn) = (A∞,L∞) and codom(τn) = (An,Ln). To ease notation, the target set + +14 +CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER +of a ∈ dom(L∞) with l � L∞(a) defined by τn will be denoted by tn (a|l), rather than +tτn (a|l); we recall from [35, 38] that: +tn (a|l) = +� +θn(d) : d ∈ ψ−1 +n ({a}),Tn(d) � l +� +. +This proof heavily relies on the properties of target sets, as discussed in [35, 38, 39, 40]. In +[35], various estimates which we will refer to in this proof are expressed using the length +λ(τ) of a tunnel τ, rather than the extent χ(τ); however as seen in [40, Proposition 2.12], +for any tunnel τ, we have λ(τ) � χ(τ) � 2λ(τ). We will use this inequality without further +mention to express all our results here in terms of extents. +Claim 2.23. For all a ∈ dom(L∞), there exists a strictly increasing function f : N → N +and an element π(a) ∈ dom(L∞) such that, for all l � L∞(a), +lim +n→∞Haus[A∞] +�tf (n) (a|l),{π(a)} +� += 0, +and ∥π(a)∥A∞ = ∥a∥A∞. +Proof of Claim (2.23). First, since the sequence (χ(τn))n∈N converges (to 0), it is bounded; +let K ′ > 0 such that χ(τn) � K ′ for all n ∈ N. +Let a ∈ dom(L∞). Let l = L∞(a). For any K > 0, let +A∞[K ] := +� +b ∈ dom(L∞) : L∞(b) � K ,∥b∥A∞ � ∥a∥A∞ +K K ′� +. +The set A∞[K ] is compact in sa(A∞) by Corollary (2.10). By [35, Corollary 4.5] and since +L∞ � MLn on dom(Ln), the sequence (tn (a|l))n∈N is a sequence of compact subsets of +A∞[Ml], and +lim +n→∞diam(tn (a|l),A∞) = 0. +Since A∞[Ml] is compact in A∞, the Hausdorff distance Haus[A∞] induced on the set +of closed subsets of A∞[Ml] by the norm ∥·∥A∞ of A∞ gives a compact topology as well. +Therefore, there exists a subsequence (tf (n) (a|l))n∈N of (tn (a|l))n∈N which converges, +for Haus[A∞], to a singleton {π(a)} of A∞[Ml]. In particular, L∞(π(a)) � Ml = ML∞(a). +Let now L � l. By definition, tf (n) (a|l) ⊆ tf (n) (a|L) for all n ∈ N and +lim +n→∞diam +�tf (n) (a|L),A∞ +� += 0, +so we conclude easily as well that +lim +n→∞Haus[A∞] +�tf (n) (a|L),{π(a)} +� += 0. +By [35, Proposition 4.4], we also note that if bn ∈ tf (n) (a|l) for each n ∈ N, then +∥π(a)∥A∞ = lim +n→∞∥bn∥A∞ � limsup +n→∞ +� +∥a∥A∞ +χ +� +τf (n) +� +l +� += ∥a∥A∞ . +Similarly, since a ∈ tτ−1 +f (n) (bn|l), we also have +∥a∥A∞ � limsup +n→∞ +� +∥bn∥A∞ +lχ +� +τf (n) +�� += ∥π(a)∥A∞ . +So indeed, ∥π(a)∥A∞ = ∥a∥A∞. This proves our claim. +Q.E.D. +Claim 2.24. There exists a unital ∗-endomorphism π of A∞ such that π(dom(L∞)) ⊆ +dom(L∞), and a strictly increasing function f : N → N such that, for all a ∈ dom(L∞), +and for all l � L∞(a), +lim +n→∞Haus[A∞] +�tf (n) (a|l),{π(a)} +� += 0. + +15 +Proof of Claim (2.24). Since A∞ is separable, there exists a countable dense subset S∞ +of sa(A∞) with S∞ ⊆ dom(L∞). Using Claim (2.23), a diagonal argument shows that +there exists a strictly increasing sequence f : N → N such that, for all a ∈ S∞ and for all +l � L∞(a), we have limn→∞Haus[A∞] +�tf (n) (a|l),{π(a)} +� += 0. +Let now a ∈ dom(L∞), and let l � L∞(a). Let ε > 0. Since S∞ is dense in dom(L∞), +there exists aε ∈ dom(L∞) such that ∥a − aε∥A∞ < ε +5. Note that L∞(aε) < ∞ but in general, +there is no relation between L∞(aε) and L∞(a). +Let l = max{L∞(a),L∞(aε)}. Since it is convergent for the Hausdorff distance Haus[A∞], +the sequence +�tf (n) (aε|l) +� +n∈N is Cauchy for Haus[A∞]. +Therefore, there exists N ∈ N such that, for all p,q � N, we have +Haus[A∞] +�tf (p) (aε|l),tf (q) (aε|l) +� +< ε +5. +Since limn→∞ χ +� +τf (n) +� += 0, there exists N ′ ∈ N such that if n � N ′ then χ +� +τf (n) +� +< +ε +5(l+1). Therefore, if n � N ′, then by [35, Corollary 4.5], +Haus[A∞] +�tf (n) (a|l),tf (n) (aε|l) +� +� ∥a − aε∥A∞ +lχ +� +τf (n) +� +< 2ε +5 . +Let now p,q � max{N,N ′}. We compute: +Haus[A∞] +�tf (p) (a|l),tf (q) (a|l) +� +� Haus[A∞] +�tf (p) (a|l),tf (p) (aε|l) +� ++Haus[A∞] +�tf (p) (aε|l),tf (q) (aε|l) +� ++Haus[A∞] +�tf (q) (aε|l),tf (q) (a|l) +� +< 2ε +5 + ε +5 + 2ε +5 = ε. +Thus, +�tf (n) (a|l) +� +n∈N is Cauchy for Haus[A∞]. Since sa(A∞) is complete, so is the +set of all closed subsets of sa(A∞) with the Hausdorff distance Haus[A∞]. Therefore, +�tf (n) (a|l) +� +n∈N converges to some compact subset in sa(A∞). In fact, since +lim +n→∞diam +�tf (n) (a|l),A∞ +� += 0 +by [35, Corollary 4.5], the sequence +�tf (n) (a|l) +� +n∈N converges to some singleton. As +observed in Claim (2.23), this limit does not depend on l; we denote it by {π(a)}. Again +using the same argument, we also note that ∥π(a)∥A∞ = ∥a∥A∞. +Since L∞ is lower semicontinuous over A∞, and since by construction, π(a) is the limit +in A∞ of any sequence (bn)n∈N with bn ∈ tf (n) (a|L∞(a)) for all n ∈ N, we also conclude +that +L∞(π(a)) � liminf +n→∞ L∞(bn) +by lower semicontinuity of L∞, +� liminf +n→∞ M ·Ln(b) +since L∞ � M ·Ln for all n ∈ N, +� M ·L∞(a) +since Ln(b) � L∞(a), as b ∈ tf (n) (a|L∞(a)) . +Let a,a′ ∈ dom(L∞). Let t ∈ R. Since tf (n) (a|l)+t ·tf (n) +� +a′��l +� +⊆ tf (n) +� +a + ta′��(1+|t|)l +� +for all n ∈ N by [35, Corollary 4.5], we immediately conclude that {π(a)} + t · {π(a′)} ⊆ +{π(a + ta′)}, i.e. π is linear. A similar argument shows that π is a Jordan-Lie morphism +over dom(L∞), using [35, Proposition 4.8]. +As a linear map π with ∥π(a)∥A∞ = ∥a∥A∞ for all a ∈ dom(L∞), we can uniquely +extend π to sa(A∞) as a uniformly continuous map over sa(A∞); this map is of course +again a Jordan-Lie morphism from sa(A∞) to sa(A∞) and an isometry. + +16 +CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER +A straightforward argument shows that we can uniquely extent π to a continuous +Jordan-Lie algebra endomorphism of A∞, and thus π thus extended is a unital ∗-endo- +morphism with L∞ ◦π � L∞ over dom(L∞). +We already know that π is an isometry on sa(A∞) and a ∗-morphism, so it is injective +on A∞: if π(a) = 0 then π(ℜa) = 0 so ℜa = 0, and π(ℑa) = 0 so ℑa = 0, and thus a = 0. In +particular, since π is now an injective ∗-morphism, it is an isometry on A∞ (rather than +just sa(A∞)). This proves our claim. +Q.E.D. +Claim 2.25. For all ε > 0, there exists N ∈ N such that for all n � N, and for all a ∈ +dom(L∞) with L∞(a) � 1, we have +Haus[A∞] +� +{π(a)},tf (n) (a|1) +� +< ε. +Proof of Claim (2.25). Let ε > 0. Fix µ ∈ S (A∞). The set +B := +� +a ∈ dom(L∞) : L∞(a) � 1,µ(a) = 0 +� +is compact in sa(A∞) by Theorem (2.9). Therefore, there exists a finite subset F ⊆ B such +that Haus[A∞](F,B) < ε +4. Since F is finite, by Claim (2.24), there exists N ∈ N such that, +for all a ∈ F and for all n � N, we have Haus[A∞] +� +{π(a)},tf (n) (a|L∞(a)) +� +< ε +4. Moreover, +there exists N ′ ∈ N such that, if n � N ′, then χ(τn) < ε +4. +Now, let n � max{N,N ′}, a ∈ B and b ∈ tf (n) (a|1). There exists a′ ∈ F such that +��a − a′��A∞ < ε +4. Let b′ ∈ tf (n) +� +a′��1 +� +. By [35, Corollary 4.5], we compute the following +expression: +∥π(a)−b∥A∞ � +��π(a)−π(a′) +��A∞ + +��π(a′)−b′��A∞ + +��b′ −b +��A∞ +� +��π(a − a′) +��A∞ +π is linear ++ +ε +4 +by choice of N ++ +��a − a′��A∞ +χ(τn) +by [35] +� 2 +��a − a′��A∞ + ε +4 + ε +4 +� ε +2 + ε +4 + ε +4 = ε. +We thus have proven our uniform convergence claim over B. Let now a ∈ dom(L∞). +Then of course, a − µ(a)1 ∈ B, since L∞(a − µ(a)1) � L∞(a) + L∞(µ(a)1) = L∞(a) � 1 +(in fact, L∞(a) = L∞(a − µ(a)1)). If b ∈ tf (n) (a|1) then b − µ(a)1 ∈ tf (n) +� +a −µ(a)1 +��1 +� +by +construction, and thus ∥π(a)−b∥A∞ = +��π(a −µ(a)1)−(b −µ(a)1) +��A∞ < ε. +Thus, as claimed, Haus[A∞] +� +{π(a)},tf (n) (a|1) +� +< ε for all n � max{N,N ′} and for all +a ∈ B. This proves our claim. +Q.E.D. +Claim 2.26. For all ε > 0, there exists N ∈ N such that, if n � N, then +• ∀a ∈ dom(L∞) +∃b ∈ dom(Ln) : +Ln(b) � L∞(a) and ∥π(a)−b∥A∞ < εL∞(a), +• ∀b ∈ dom(Ln) +∃a ∈ dom(L∞) : +L∞(a) � Ln(b) and ∥π(a)−b∥A∞ < εLn(b). +Proof of Claim (2.26). Let ε > 0. Let N ∈ N be chosen as in Claim (2.25), so that for all +a ∈ dom(L∞) with L∞(a) � 1, and for all n � N, we have Haus[A∞]({π(a)},tf (n) (a|1)) < ε. +Let now n � N. +If a ∈ dom(L∞)\R1A∞, and if b ∈ tf (n) (a|L∞(a)), then L∞(a) > 0, Ln(b) � L∞(a), and +b +L∞(a) ∈ tf (n) +� +a +L∞(a) +���1 +� +and thus +���π +� +a +L∞(a) +� +− +b +L∞(a) +���A∞ < ε. So ∥π(a)−b∥A∞ < εL∞(a), as +needed. +Now, let b ∈ dom(Ln) \ R1A. Let b′ = +b +Ln(b), so Ln(b′) = 1. Let a′ ∈ tτ−1 +f (n) +� +b′��1 +� +, so +in particular L∞(a′) � 1. By symmetry, b′ ∈ tf (n) +� +a′��1 +� +. Therefore, +��π(a′)−b′��A∞ < ε. + +17 +Hence, letting a = Ln(b)a′, we conclude that ∥π(a)−b∥A∞ � Ln(b)ε and L∞(a) � Ln(b), +as desired. +Last, it is immediate that since π(1) = 1, our claim holds whenever L∞(a) = 0 or +Ln(b) = 0, i.e., for any a,b ∈ R1. This proves our claim. +Q.E.D. +Claim 2.27. The map π constructed in Claim (2.24) is a ∗-automorphism. +Proof of Claim (2.27). The map isometry of A∞, hence it is a ∗-monomorphism of A∞, +via Claim (2.24), +Now, let b ∈ � +n∈N dom(Ln), so b ∈ dom(Lm) for some m ∈ N. Thus b ∈ dom(L∞) by +assumption. Let l = Lm(b). By assumption, L∞(b) � MLm(b) = Ml. Let ε > 0 and let +N ∈ N given by Claim (2.26). Since Ln(b) � ML∞(b) � M2l, for all n � max{N,m}, and +there exists an ∈ A∞ with ∥π(an)−b∥A∞ < εM2l (and L∞(a) � Ln(b), which we do not +need for this claim). As ε > 0 was arbitrary, the element b lies in the closure of the range of +π. Since A∞ is complete and π is an isometry, the range of π is closed, and we now have +shown that the range of π is a closed set containing the total subspace � +n∈N dom(Ln) of +A∞; consequently, π is a surjection as well. Thus as claimed, π is a ∗-automorphism of +A∞. +Moreover, by construction, for all a ∈ dom(L∞), as noted in Claim (2.23), we have +L∞(π(a)) � ML∞(a) — in particular, π(a) ∈ dom(L∞). So π(dom(L∞)) ⊆ dom(L∞) and +thus π is a Lipschitz morphism. This proves our claim. +Q.E.D. +This concludes the proof of our theorem. +□ +Remark 2.28. Limits, for the propinquity, are unique up to full quantum isometry. There- +fore, the appearance of some map π in Theorem (2.22) is to be expected. However, the +map π in Theorem (2.22) is quite a bit more general than a full quantum isometry — in +fact, it need not be Lipschitz for us to use Proposition (2.21) — even though Theorem +(2.22) shows that it can always be chosen to be so. The map π is really used here as a +tool to construct a special kind of bridge. In general, the function π is not expected to +be unique: if Ln is just the restriction to An of L∞ for all n ∈ N, and if θ is a full quantum +isometry of (A∞,L∞), then π ◦ θ can be used in place of π, of course. The situation is +more delicate when Ln varies, but there will usually be many maps π if there is one. +Theorem (2.22) characterizes the convergence of inductive sequences in the sense of +the propinquity, under the condition of uniform equivalence of the Lipschitz seminorms +on the sequence. The condition of uniform equivalence of Lipschitz seminorms is in +essence our compatibility condition between the Lipschitz seminorms and the inductive +limit structure in Theorem (2.22): using the notation of Theorem (2.22), as seen in [37], +under the hypothesis that dom(Ln) = An ∩dom(L∞), the Lipschitz seminorms Ln and +L∞ are equivalent for each n ∈ N, and we require, in the assumptions of Theorem (2.22), +that we want this equivalence be uniform. This leads us to several natural questions: +does convergence of (An,Ln)n∈N imply some uniform equivalence of the Lipschitz semi- +norms Ln (n ∈ N) (i.e. is our assumption redundant)? Does the existence of a bridge +builder imply uniform equivalence of the Lipschitz seminorms? Does convergence of +an inductive limit for the propinquity imply the existence of a bridge builder without +the assumption of uniform equivalence of the Lipschitz seminorms? Moreover, does the +convergence of (An,Ln)n∈N to (A∞,L∞) for the propinquity imply the convergence of +(An,Lk)k�n to (An,L∞) for a fixed n ∈ N, for the propinquity? +We now will show with two examples that all of the above questions have negative +answers, so there is no obvious generalization of Theorem (2.22). First, we see that it is +possible to have convergence for the propinquity of an inductive sequence of quantum + +18 +CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER +0 +dist +1 +n ·dist +1−n−2 +0 +dist +1 +(n +1)·dist +1−(n +1)−2 +··· +n → ∞ +0 +dist +1 +X with dist : x, y ∈ X �→ |x − y| +FIGURE 1. Approximating [0,1] with itself by modifying the metric on a +small interval at the end (red) +compact metric spaces, using the identity as a bridge builder, and yet, not have uniform +equivalence of the Lipschitz seminorms. +Example 2.29. Let X = [0,1] with its usual metric. If Y ⊆ X with at least two points, then +we set LY (f ) = sup +� |f (x)−f (y)| +|x−y| +: x ̸= y,x, y ∈ Y +� +for all f ∈ C(X ), allowing for ∞. For each +n ∈ N, and for all f ∈ C(X ), we set: +Ln(f ) = L� +0,1− 1 +n2 +�(f )+ 1 +n L� +1− 1 +n2 ,1 +�(f ), +allowing again for ∞. +Let +fn : x ∈ [0,1] �−→ +� +0 +if x � 1− 1 +n2 , +x −(1− 1 +n2 ) +otherwise. +By construction, L[0,1](fn) = 1 for all n ∈ N. On the other hand, Ln(f ) = 0+ 1 +n ·1 = 1 +n . +So there does not exists M > 0 such that L[0,1] � MLn on the common domain of these +Lipschitz seminorms (the algebra of Lipschitz functions for the usual metric). +We now prove that (C(X ),Ln)n∈N converges for the propinquity to (C(X ),L[0,1]) — this +could be done here just as easily by proving the convergence for the Gromov-Hausdorff +distance of X with a sequence of distances which agree with the usual distance on +[0,1− 1 +n2 ] and is a dilation by a factor n of the usual distance on [1− 1 +n2 ,1], but we will +keep with our functional analytic perspective here. +We thus define, for all n ∈ N, and for all f ,g Lipschitz functions over [0,1] with its +usual metric: +Tn(f ,g) := max +� +L[0,1](f ),Ln(g),(n +1) +��f − g +�� +C(X ) +� +. +Let f ∈ C(X ) with L[0,1](f ) = 1. Then Ln(f ) � 1+ 1 +n . From this, we see that +Tn +� +f , +1 +1+ 1 +n +f − +1 +n +1 f (0) +� +� max +� +1, n +1 +n +1 +��f − f (0)1 +�� +C(X ) +� +� 1. +Let now g ∈ C(X ) with Ln(g) = 1. Thus L� +0,1− 1 +n2 +�(g) � 1 and L� +1− 1 +n2 ,1 +�(g) � n. In particular, +for all x ∈ [1− 1 +n2 ,1], we have +���g(x)− g +� +1− 1 +n2 +���� < n|x −1+ 1 +n2 | � 1 +n . +Let h ∈ C(X ) defined by h(x) = g(x) if x ∈ +� +0,1− 1 +n2 +� +, and h(x) = g +� +1− 1 +n2 +� +otherwise. +By construction, L[0,1](h) � 1 and +��g −h +�� +C(X ) < 1 +n . Thus Tn(h,g) = 1 = Ln(g). + +19 +1 +1 +2 +2 +1 +3 +3 +1 +4 +4 +1 +5 +5 +1 +6 +0 +... +1 +n+1 +1 +2 +3 +4 +5 +0 +... +1 +n+2 +1 +2 +3 +4 +5 +0 +... +1 +n+3 +··· +n → ∞ +0 +1 +2 +3 +4 +... +FIGURE 2. Approximating N by itself, by merging the first two points +at ∞ +Therefore, (C(X )⊕C(X ),Tn,p1,p2), with p1 : (f ,g) ∈ C(X )⊕C(X ) �→ f and p2 : (f ,g) ∈ +C(X )⊕C(X ) �→ g, is easily seen to be a tunnel whose extent is at most 1 +n (the method is +analogous to Proposition (2.21)). +Hence (C(X ),Ln)n∈N converges to (C(X ),L[0,1])n∈N for the propinquity. Moreover, +the identity map satisfies Condition (2) of Theorem (2.22). Nonetheless, there is no +M > 0 such that ∀n ∈ N +L[0,1] � MLn on the common domain of these seminorms. So +convergence in the propinquity does not imply uniform equivalence of the Lipschitz +seminorms, even when working with a fixed, Abelian C*-algebra. +Now, we can also ask whether convergence for the propinquity of an inductive se- +quence, implies the existence of a bridge builder, and as we shall see in the next example, +this is not the case: once again, convergence occurs without uniform equivalence of +Lipschitz seminorms (and we prove that we have neither uniform dominance or uniform +domination using both examples). Moreover, we see that (An,Lm)m�n does not converge +to (An,L∞) in this case, for any n ∈ N. +Example 2.30. Let A∞ be the C*-algebra of convergent sequences with values in C. +For each n ∈ N, let An = {(xk)k∈N : (xk)k�n is constant }, so An is a C*-subalgebra of A∞ +sharing the unit (1)n∈N of A∞. +For all n ∈ N, and for all (xk)k∈N ∈ An, we set +Ln((xk)k∈N) := sup +� +|xp − xq| +|ϕn(p)−ϕn(q)| : p,q ∈ N,p ̸= q +� +where: +ϕn : m ∈ N �→ +� 1 +m if m > 0, +1+ 1 +n if m = 0. +Of course, Ln is indeed a seminorm on the finite dimensional C*-subalgebra An of A∞. +We also set L∞((xk)k∈N) = sup +� +|xp−xq| +��� +1 +p+1 − +1 +q+1 +��� : p,q ∈ N,p ̸= q +� +for all (xk)k∈N ∈ A∞, al- +lowing for the value ∞. Of course, � +n∈NAn ⊆ dom(L∞). +Now, let +x : n ∈ N �→ +� +1 if n = 0, +0 otherwise. + +20 +CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER +By construction, L∞(x) = 2, yet Ln(x) = n. So there is no M > 0 such that, for all n ∈ N, +the inequality MLn � L∞ on dom(Ln) holds. +On the other hand, limn→∞ Λ∗((An,Ln),(A∞,L∞)) = 0. Indeed, let π : (xk)k∈N �→ +(x0,x0,x1,x2,x3,...) ∈ A∞, B = π(A∞), and let θ : (xk)k∈N ∈ B �→ (xk+1)k∈N ∈ A∞ — of +course, θ is a ∗-isomorphism from B onto A∞ such that π = θ−1. We define LB(π(x)) = +L∞(x) for all x ∈ dom(L∞). This way, π is easily checked to be a full quantum isometry +from (A∞,L∞) to (B,LB). +Let ε > 0 and let N ∈ N be such that if n � N, then +1 +n+1 < ε +2. If x = (xk)k∈N with +L∞(x) � 1, and if l = lims→∞ xs, then by construction, +|xk −l| +1 +k+1 += lim +s→∞ +|xk − xs| +1 +k+1 − +1 +s+1 +� 1 +so |xk −l| � +1 +k+1 < ε +2 for all k � N. Therefore, if k � N then |xk − xN| < ε. +Now, let n � N. Let Dn = An ⊕B, and for all (a,b) ∈ dom(An)⊕dom(B), we set: +Tn(a,b) := max +� +Ln(a),LB(b), 1 +ε ∥π(a)−b∥B +� +. +We also set pn : (a,b) ∈ Dn �→ a ∈ An and qn : (a,b) ∈ Dn �→ θ(b) ∈ A∞. We are now +going to prove that τn := (Dn,TNn,pn,qn) is indeed a tunnel from (An,Ln) to (A∞,L∞). +Let a := (xk)k∈N ∈ dom(L∞) with L∞(a) = 1, and let +a′ := (x0,x0,x1,x2,...,xN−1,xN,xN,xN ...) ∈ An. +By construction, Ln(a′) � 1 and +��π(a)− a′��A∞ < ε by our choice of N. Also by construc- +tion, LB(π(a)) = L∞(a) = 1. Thus Tn(a′,π(a)) � L∞(a) = 1. So, we have shown that, for +any a ∈ dom(L∞) with L∞(a) = 1, there exists an element d := (a′,π(a)) ∈ Dn such that +TNn(d) = 1 = L∞(a) and qn(d) = θ(π(a)) = a. Therefore, the map qn is indeed a quantum +isometry from (Dn,Tn) to (A∞,L∞). +Let now a = (xk)k∈N ∈ dom(Ln) with Ln(a) = 1. By definition, |x1 − x0| � 1 +n < ε. Let +b = (x1,x1,x2,x3,x4,...). +By construction, b ∈ dom(LB) with LB(b) � Ln(b), and ∥a −b∥A∞ = |x1 − x0| < ε. Thus +again Tn(a,b) = Ln(b). So pn : (a,b) ∈ Dn �→ a ∈ An is a quantum isometry. Therefore, +(Dn,Tn,pn,qn) is indeed a tunnel from (An,Ln) to (A∞,L∞). We now compute an upper +bound on its extent. +Let ϕ ∈ S (Dn) be a state of Dn. If we set µ : a ∈ An �→ ϕ(a,π(a)), then µ ∈ S (An) is +again a state of An. If (a,b) ∈ dom(Tn) with Tn(a,b) � 1, then +|ϕ(a,b)−µ◦ pn(a,b)| = |ϕ(a,b)−ϕ(a,π(a))| += |ϕ(0,b −π(a))| +� ∥b −π(a)∥A∞ < ε, +so indeed Haus +�mkTn +� +(S (Dn),p∗ +nS (An)) < ε. +On the other hand, let ν : a ∈ A∞ �→ ϕ′(a,π(a)) where ϕ′ is an extension of ϕ to a state +of A∞ ⊕B by the Hahn-Banach theorem. Once again, it is immediate that mkTn(ϕ,ν◦ +qn) < ε. So Haus +�mkTn +� +(S (D),q∗ +nS (A∞)) < ε. +Thus, for all n � N, the extend of χ(τn) is at most ε. We conclude: +lim +n→∞Λ∗((An,Ln),(A∞,L∞)) = 0. +However, for any fixed p ∈ N, it is easy to check, by a similar method, that +lim +n→∞Λ∗((Ap,Ln),(Ap−1,L∞)) = 0, + +21 +and since dimAp−1 < dimAp, the sequence (Ap,Ln)n�p does not converge to (Ap,L∞). +The map π we have used here is not surjective. In fact, there is no bridge builder in +this case. Indeed, assume that we have a unital ∗-morphism π : A∞ → A∞ such that for +all ε > 0, there exists Nπ(ε) ∈ N with the property that if n � Nπ(ε), and if a ∈ dom(L∞), +then there exists b ∈ dom(Ln) with Ln(b) � L∞(a) and ∥π(a)−b∥A∞ < ε +2L∞(a). +Fix a ∈ dom(L∞) with L∞(a) = 1. Let ε > 0 and let n � Nπ(ε) such that 1 +n < ε +2. De- +fine (yk)k∈N := π(a). Then there exists b := (bk)k∈N ∈ dom(Ln) such that Ln(b) � 1 and +∥π(a)−b∥A∞ < ε +2. By definition of Ln, we thus conclude that |b1 − b0| � 1 +n < ε +2. Thus, +|y1−y0| < ε. As ε > 0 is arbitrary, we conclude that y1 = y0. Thus π can never be surjective +— in fact, it is valued in B. So no bridge builder exists for this example. +As seen in Example (2.30), convergence of (An,Ln)n∈N to (A∞,L∞) for the propinquity +does not imply the convergence of (An,Lp)p∈N to (An,L∞). We have the following +immediate consequence of our work: +Corollary 2.31. Let A∞ be a unital separable C*-algebra, such that A∞ = cl(� +n∈NAn), +where (An)n∈N is an increasing (for ⊆) sequence of C*-subalgebras of A∞, with the unit of +A∞ in A0. For each n ∈ N, let Ln be a Lipschitz seminorm on An. If there exists a bridge +builder π : A∞ → A∞ for ((An,Ln)n∈N,(A∞,L∞)) such that π(An) ⊆ An for each n ∈ N, +then for all n ∈ N, +lim +p→∞ +p�n +Λ∗((An,Lp),(An,L∞)) = 0, +and limn→∞ Λspec((An,Ln),(A∞,L∞)) = 0. +Proof. This follows by observing that the restriction of π to An is a bridge builder for +((An,Lp)p�n,(An,L∞)). Our result then follows from Proposition (2.21). +□ +3. CONVERGENCE OF INDUCTIVE SEQUENCES OF METRIC SPECTRAL TRIPLES FOR THE +SPECTRAL PROPINQUITY +We now study the convergence of certain families of metric spectral triples for the +spectral propinquity [47], whose construction we will recall below. We thus begin this +section with the definition of a spectral triple, due to Connes, and the foundational +concept for noncommutative Riemannian geometry. +Definition 3.1 ([12, 11]). A spectral triple (A,H , /D) is given by a unital C*-algebra A of +bounded linear operators on a Hilbert space H , and a self-adjoint operator /D defined +on some dense subspace dom( /D) of H , such that: +(1) {a ∈ A : a ·dom( /D) ⊆ dom( /D),[ /D,a] is bounded } is a dense ∗-algebra in A, +(2) +/D has compact resolvent. +The operator /D is referred to as the Dirac operator of the spectral triple. +3.1. Preliminaries: The Spectral Propinquity. The spectral propinquity is a distance, +up to unitary equivalence, on the class of metric spectral triples. +Notation 3.2. If T : D ⊆ E → F is a linear operator defined from a dense subspace D of a +normed vector space E to a normed vector space F, then we write: +|||T |||F +E := sup +� +∥T ξ∥F : ξ ∈ D,∥ξ∥E � 1 +� +allowing for the value ∞. If F = E, then |||T |||F +E is simply denoted by |||T |||E. + +22 +CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER +Definition 3.3. A spectral triple (A,H , /D) is metric if the Connes extended pseudo- +distance, defined on the state space S (A) of A by: +mk /D : ϕ,ψ ∈ S (A) �→ sup +� +|ϕ(a)−ψ(a)| : a dom( /D) ⊆ dom( /D) and |||[ /D,a]|||H � 1 +� +is in fact a metric on S (A), which induces the weak-∗ topology on S (A). +As soon as a spectral triple is metric, it induces a structure of quantum compact metric +space on its underlying C*-algebra in a natural manner. +Proposition 3.4 ([47, Proposition 1.10]). Let (A,H , /D) be a spectral triple. We set: +dom(L /D) := {a ∈ sa(A) : a dom( /D) ⊆ dom( /D) and [ /D,a] is bounded } +and for all a ∈ dom(L /D): +L /D(a) := |||[ /D,a]|||H . +The spectral triple (A,H , /D) is metric if, and only if, (A,L /D) is a quantum compact +metric space. +The construction of the spectral propinquity begins with the following observation. +Recall from [47] that if (A,H , /D) is a metric spectral triple, and if we set +• for all ξ ∈ dom( /D): +(3.1) +DN /D(ξ) := ∥ξ∥H +∥ /Dξ∥H , +• dom(L /D) := {a ∈ sa(A) : a dom( /D) ⊆ dom( /D), [ /D,a] is bounded } +• for all a ∈ dom(L /D): +L /D(a) := |||[ /D,a]|||H , +then +metCor(A,H , /D) := (H ,DN /D,A,L /D,C,0) +is an example of a metrical C*-correspondence, in the following sense: +Definition 3.5. An A-B-C ∗-correspondence (M ,A,B), for two C*-algebras A and B, is +a right Hilbert module M over B (whose B-valued inner product is denoted by 〈·,·〉M ), +together with a unital ∗-morphism from A to the C*-algebra of adjoinable B-linear +operators over M . +Definition 3.6 ([47, Definition 2.2]). An (Ω,Ω′,Ωmod,Ωinner)-metrical C*-correspondence +(M ,DN,A,L,B,S), where Ω,Ωinner � 1, Ωmod � 2, and Ω′ � 0, is given by two (Ω,Ω′)- +quantum compact metric spaces (A,L) and (B,S), an A-B C*-correspondence (M ,A,B), +and a norm DN defined on a dense C-subspace dom(TN) of M , such that +(1) ∀ω ∈ dom(DN) +DN(ω) � ∥ω∥M := +���〈ω,ω〉M +��B, +(2) {ω ∈ dom(DN) : DN(ω) � 1} is compact in (M ,∥·∥M ), +(3) for all a ∈ dom(L) and ω ∈ dom(TN), +DN(aω) � Ωmod(∥a∥A +L(a))DN(ω), +(4) for all ω,η ∈ dom(DN), +max{S(ℜ〈ω,η〉M ),S(ℑ〈ω,η〉M )} � ΩinnerDN(ω)DN(η). +In particular, the norm DN is called a D-norm. +Convention 3.7. In this work, we fix Ωmod � 2 and Ωinner � 1 all throughout the paper. +All quantum compact metric spaces will be assumed to be in the class of (Ω,Ω′)-quantum +compact metric spaces and all metrical C*-correspondences will be assume to be in the +class of (Ω,Ω′,Ωmod,Ωinner)-metrical C*-correspondences, unless otherwise specified. + +23 +Note that the compactness condition in Definition (3.6) borrows and extends on +Theorem (2.9). +The importance of Definition (3.6) is that one can extend the propinquity to metrical +C*-correspondences as follows. First, we employ a natural notion of morphism between +metrical C*-correspondences. +Definition 3.8 ([47, Definition 2.13]). For each j ∈ {1,2}, let +Mj = +�Mj ,DNj ,Aj ,Lj ,Bj ,Sj +� +be a metrical C*-correspondence. +A metrical quantum isometry (Π,π,θ) from M1 to M2 is a given by: +(1) a continuous, surjective C-linear map Π : M1 → M2, +(2) a quantum isometry π : (A1,L1) → (A2,L2), +(3) a quantum isometry θ : (B1,S1) → (B2,S2), +such that +(1) ∀a ∈ A +∀ω ∈ M1 +Π(aω) = π(a)Π(ω), +(2) ∀b ∈ B +∀ω ∈ M2 +Π(ω·b) = Π(ω)θ(b), +(3) ∀ω,η ∈ M1 +θ(〈ω,η〉M1) = 〈Π(ω),Π(η)〉M2, +(4) Π(dom(DN1)) ⊆ dom(DN2) and, for all ω ∈ dom(DN2), the equality DN2(ω) = +inf +�DN1(η) : η ∈ dom(DN1),Π(η) = ω +� +. +The definition of a distance between metrical C*-correspondences, called the metrical +propinquity, relies on a notion of isometric embedding called a tunnel, and is defined as +follows. +Definition 3.9 ([47, Definition 2.19]). Let M1 and M2 be two metrical C*-correspondences. +A (metrical) tunnel τ = (J,Π1,Π2) from M1 to M2 is a triple given by a metrical C*- +correspondence J, and for each j ∈ {1,2}, a metrical quantum isometry Πj : J �→ Mj . +Remark 3.10. It is important to note that our tunnels involve (Ω,Ω′,Ωmod,Ωinner)-C*- +metrical correspondences only (as per Convention (3.7)). We will dispense calling our tun- +nels (Ω,Ω′,Ωmod,Ωinner)-tunnels, to keep our notation simple, but it should be stressed +that fixing (Ω,Ω′,Ωmod,Ωinner) and staying within the class of (Ω,Ω′,Ωmod,Ωinner)-C*- +metrical correspondences is crucial to obtain a metric from tunnels. +We now proceed by defining the extent of a metrical tunnel; remarkably this only +involves our previous notion of extent of a tunnel between quantum compact metric +spaces. +Definition 3.11 ([47, Definition 2.21]). Let Mj = (Mj ,DNj ,Aj ,Lj ,Bj ,Sj ) be a metrical +C*-correspondence, for each j ∈ {1,2}. Let τ = (P,(Π1,π1,θ1),(Π2,π2,θ2)) be a metrical +tunnel from M1 to M2, with P = (P,TN,D,LD,E,LE). +The extent χ(τ) of a metrical tunnel τ is +χ(τ) := max +� +χ(D,LD,π1,π2),χ(E,TE,θ1,θ2) +� +. +Given two metric spectral triples, we can thus either take the Gromov-Hausdorff +distance between their underlying quantum compact metric spaces, or take the metri- +cal propinquity [42, 46] between the metrical C*-correspondence they define, which is +defined as the infimum of the extent of every possible metrical tunnels between them. +However, the spectral propinquity involves our work on the geometry of quantum dy- +namics [43, 44, 47] as well. We recall the construction of the spectral propinquity; the new + +24 +CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER +quantity called the ε-magnitude was introduced in [47, Definition 3.31], but is simpler to +express for spectral triples, based on [31]. +Definition 3.12 ([31, Theorem 3.6]). Let (A1,H1, /D1) and (A2,H2, /D2) be two metric +spectral triples. Let +τ := +� +� (P,TN,D,LD,E,S) +metrical C*-correspondence +, +(Π1,π1,θ1) +metrical quantum isometry +, +(Π2,π2,θ2) +metrical quantum isometry +� +� +be a metrical tunnel from metCor(A1,H1, /D1) to metCor(A2,H2, /D2), We define the +ε-magnitude µ(τ|ε) of τ as the maximum of the extent χ(τ) of τ, and the ε-reach of τ, +which is the number: +(3.2) +sup +ξ∈dom +� +/D j +� +DNj (ξ)�1 +inf +η∈dom( /Dk) +DNk(η)�1 +sup +ω∈dom(TN) +TN(ω)�1 +0�t� 1 +ε +���〈exp(it /D j )ξ,Πj (ω)〉Hj −〈exp(it /Dk)η,Πk(ω)〉Hk +���, +for {j,k} = {1,2}. +Definition 3.13 ([47, Definition 4.2]). The spectral propinquity between two metric +spectral triples (A1,H1, /D1) and (A2,H2, /D2) is +Λspec((A1,H1, /D1),(A2,H2, /D2)) := +inf +�� +2 +2 ,ε > 0 : µ(τ|ε) < ε for τ a tunnel +from metCor(A1,H1, /D1) to metCor(A2,H2, /D2) +� +. +The key property of the spectral propinquity is that, for any two metric spectral triples +(A1,H1, /D1) and (A2,H2, /D2), we have the following equivalence: +Λspec((A1,H1, /D1),(A2,H2, /D2)) = 0 +if, and only if, there exists a unitary U : H1 → H2 such that +• Udom( /D1) = dom( /D2), +• U /D1 = /D2U on dom( /D1), +• a ∈ A1 �→UaU ∗ is a ∗-isomorphism from A1 onto A2. +A nontrivial example of convergence in the sense of the spectral propinquity is pro- +vided in [45] with the approximation of spectral triples on quantum tori by spectral +triples of certain matrix algebras known as fuzzy tori. These examples include many +examples of previously informally stated convergences in mathematical physics, dealing +with matrix models and their limits as the dimension of the algebra grows to infinity. +Such examples are a major motivation for the construction of the spectral propinquity. +Another example on fractals is presented in [29]. Moreover, convergence for the spec- +tral propinquity implies convergence of the spectra of the Dirac operators and, in an +appropriate sense, the convergence of the bounded functional calculi of these operators, +among other properties. Of course, convergence for the spectral propinquity implies +convergence of the underlying quantum compact metric spaces for the propinquity. +In this paper, we will construct new examples of convergence for new spectral triples +defined over noncommutative solenoids and over Bunce-Deddens algebras, seen as +limits of spectral triples. + +25 +3.2. Preliminaries: Inductive Limits of Spectral Triples. While the spectral propinquity +allows the discussion of convergence of spectral triples defined on vastly different C*- +algebras, there are certain more restricted situations where the C*-algebras of a sequence +of spectral triples may be related in a manner compatible with the spectral triples. In +[20], a simple notion of inductive limit for spectral triples is introduced, based on the +following encoding of such a compatibility via a natural, and rigid, notion of morphism +between spectral triples. +Definition 3.14 ([20]). An isometric morphism (π,S) from (A1,H1, /D1) to (A2,H2, /D2) is +given by a unital ∗-morphism π : A1 → A2 and a linear isometry S : H1 → H2 such that: +(1) π(dom(L1)) ⊆ dom(L2), +(2) Sdom( /D1) ⊆ dom( /D2) and S /D1 = /D2S on dom( /D1), +(3) ∀a ∈ A1 +Sa = π(a)S. +Since S is a linear isometry, H1 can be identified with the closed subspace SH1 of H2 +via S at no cost in our definition. In that case, /D1 is only defined on H1 ⊆ H2, and we +simply require that /D1 is the restriction of /D2 to dom( /D1). +We also note that if π(a) = 0 for some a ∈ A1, then π(a)S = Sa = 0. Since S is an +isometry, a = 0. So π is actually automatically a ∗-monomorphism, and we thus can +also identify A1 with the C*-subalgebra π(A1) of A2, since Definition (3.14) ensures that +aH1 ⊆ H1 and [ /D1,a] is identified with P[ /D2,π(a)]P = P[ /D2,π(a)] = [ /D2,π(a)]P where +P is the orthogonal projection of H2 onto H1. Furthermore, since π is unital, the unit of +A2 is contained in A1 with this identification. +An inductive sequence of spectral triples, as defined in [20], with a somewhat more +involved notation, is simply a sequence of the form ((An,Hn, /Dn),(πn,Sn))n∈N where +(An,Hn, /Dn) is a spectral triple and (πn,Sn) is an isometric morphism from (An,Hn, /Dn) +to (An+1,Hn+1, /Dn+1), for each n ∈ N. As we have seen above, we can identify such a +sequence with one of the following type, which we will take as our notion of inductive +limit of spectral triples. +Definition 3.15. Let A∞ = cl(� +n∈NAn) be a C*-algebra which is the closure of an increas- +ing sequence of C*-subalgebras (An)n∈N in A∞, with the unit of A∞ in A0. A spectral +triple (A∞,H∞, /D∞) is the inductive limit of a sequence (An,Hn, /Dn)n∈N of spectral +triples when: +(1) H∞ = cl(� +n∈N)Hn, where each Hn is a Hilbert subspace of H∞, +(2) for each n ∈ N, the restriction of /D∞ to dom( /Dn) is /Dn, +(3) for each n ∈ N, the subspace Hn is reducing for An, which is equivalent to +AnHn ⊆ Hn. +We note, using the notation of Definition (3.15), that the operator which, to any +ξ ∈ � +n∈N dom( /Dn), associates /Dnξ whenever ξ ∈ dom( /Dn) for any n ∈ N, is indeed well- +defined, and shown in [20] to be essentially self-adjoint, so /D∞ is the closure of this +operator. +For our purpose, the following result from [20] will play an important role. +Theorem 3.16 ([20, Theorem 3.1, partial]). If (An,Hn, /Dn)n∈N is an inductive sequence +of spectral triples converging to a spectral triple (A∞,H∞, /D∞), then for any C-valued +continuous function f ∈ C0(R) which vanishes at infinity, the sequence (Pn f ( /Dn)Pn)n∈N +converges to f ( /D∞) in norm. +This section is concerned with the question: if a spectral triple is an inductive limit +of spectral triples, then what additional assumptions should be made to get a more + +26 +CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER +geometric convergence, specifically in the sense of the spectral propinquity? In order to +make sense of this question, we will work with metric spectral triples, which give rise to +quantum compact metric spaces, and lie within the realm of noncommutative metric +geometry. +3.3. Main result. The notion of inductive limit of spectral triples is simpler to define +than the spectral propinquity but only applies to rather narrow examples — it is not +applicable to fuzzy and quantum tori [45] or the fractals in [29]. It is certainly interesting +to wonder how much metric information from the spectral triples are continuous with +respect to the inductive limit process. In this section, we establish a sufficient condition +for the convergence, in the sense of the spectral propinquity, of a sequence of metric +spectral triples which already converges to a metric spectral triple in the categorical sense. +This sufficient condition is simply the existence of an appropriate bridge builder which +is also a full quantum isometry. Thus, the main difficulty in establishing convergence for +the spectral propinquity, in this context, reduces to proving metric convergence for the +propinquity using adequate tunnels. +Theorem 3.17. Let (A∞,H∞, /D∞) be a metric spectral triple which is the inductive limit +of a sequence of metric spectral triples (An,Hn, /Dn), in the sense of Definition (3.15). For +each n ∈ N, let +dom(Ln) := {a ∈ sa(An) : a dom( /Dn) ⊆ dom( /Dn) and [ /Dn,a] is bounded}, +and for all a ∈ dom(Ln), define +Ln(a) := |||[ /Dn,a]|||Hn. +If there exists a full quantum isometry π : (A∞,L∞) → (A∞,L∞) which is also a bridge +builder for ((An,Ln)n∈N,(A∞,L∞)), then +lim +n→∞Λspec((An,Hn, /Dn),(A∞,H∞, /D∞)) = 0. +Proof. Fix ε > 0. By Proposition (2.21), the sequence (An,Ln)n∈N converges to (A∞,L∞) +for the propinquity. More specifically, set, for convenience, ˜ε = ε +2 > 0. Let Nπ ∈ N be given +so that, for all n � Nπ, we have: +• ∀a ∈ dom(L∞) +∃b ∈ dom(Ln) : +Ln(b) � L∞(a) and ∥π(a)−b∥A∞ < ˜εL∞(a), +• ∀b ∈ dom(Ln) +∃a ∈ dom(L∞) : +L∞(a) � Ln(b) and ∥π(a)−b∥A∞ < ˜εLn(b). +For each n ∈ N, we constructed in Proposition (2.21) a tunnel τn = (Dn,Tn,ψn,θn) +with Dn = A∞ ⊕An, and for all (a,b) ∈ dom(L∞)⊕dom(Ln), +Tn(a,b) := max +� +L∞(a),Ln(b), 1 +˜ε ∥π(a)−b∥A∞ +� +, +while ψn : (a,b) ∈ Dn �→ a, θn : (a,b) ∈ Dn �→ b. We proved that χ(τn) < ˜ε. It is immediate, +since π is a full quantum isometry, that τ′ +n := (Dn,Tn,π◦ψn,θn) is also a tunnel with the +same extent as τn. +For each n ∈ N and for all ξ ∈ dom( /Dn), we define +DNn(ξ) := ∥ξ∥Hn +∥ /Dnξ∥Hn , +following Expression (3.1). +Now, since DN∞ is a D-norm, the set X∞ = {ξ ∈ dom( /D∞) : DN∞(ξ) � 1} is compact +in H∞. Thus, there exists a finite subset F ⊆ X∞ of X∞ such that Haus[H∞](X∞,F) < ˜ε +3. +As /D∞ is the closure of an operator on � +n∈NHn by [20], for any ξ ∈ F, there exists +a sequence (ξn)n∈N, with ξn ∈ � +j∈NHj for all n ∈ N, such that limn→∞ ξn = ξ, and + +27 +limn→∞ /D∞ξn = /D∞ξ. Since F is finite, there exists NF ∈ N such that if n � NF and ξ ∈ F, +then ∥ξ−ξn∥H∞ < ˜ε +3 and ∥ /D∞ξ− /D∞ξn∥H∞ < ˜ε +3. Again by Definition (3.15), we also +have /D∞ξn = /Dnξn. +Fix n ∈ N,n � N := max{Nπ,NF }. Let Mn := H∞ ⊕ Hn, seen as a Dn-(C ⊕ C) C*- +correspondence, with the C*-correspondence structure: +∀(a,b) ∈ Dn +∀(ξ,η) ∈ Mn +(a,b)◁(ξ,η) := (π(a)ξ,bη), +and +∀(ξ,η),(ξ′,η′) ∈ Mn +〈(ξ,ξ′),(η,η′)〉n := +� +〈ξ,ξ′〉H∞,〈η,η′〉Hn +� +∈ C⊕C, +while +∀(t,s) ∈ C⊕C +∀(ξ,η) ∈ Mn +(ξ,η)·(t,s) := (tξ,sη). +We note that here, C2 is the C*-algebra of C-valued functions over a two points set, and +in particular, the norm of (z,w) ∈ C2 is max{|z|,|w|}. +We then define, for all (ξ,η) ∈ dom( /D∞)⊕dom( /Dn): +TNn(ξ,η) := max +� +DN∞(ξ),DNn(η), 1 +˜ε +��ξ−η +��H∞ +� +, +while we also set +Q : (z,w) ∈ C⊕C �→ 1 +˜ε|z − w|. +It is immediate to see that Q is a Lipschitz seminorm on C ⊕ C (it is, in fact, the +Lipschitz seminorm for the metric on the two point set which places these two points +exactly ˜ε apart). +Now, we check that TNn is a D-norm. Of course, for all (ξ,η) ∈ Mn: +TNn(ξ,η) � max{DN∞(ξ),DNn(η)} � max +� +∥ξ∥H∞ , +��η +��Hn +� += +��(ξ,η) +��Mn . +We observe that +{(ξ,η) ∈ Mn : TNn(ξ,η) � 1} ⊆ +{ξ ∈ dom( /D∞) :DN∞(ξ) � 1}×{η ∈ dom( /Dn) : DNn(η) � 1}, +the latter set being compact as a product of two compact sets – since DNn and DN∞ +are indeed D-norms. Since in addition, TNn is lower semicontinuous over Mn as the +maximum of three lower semicontinuous functions over this space, the unit ball of TNn +is indeed closed, hence compact, in Mn (which is complete). We now check the Leibniz +inequalities. If (a,b) ∈ dom(Tn) and (ξ,η) ∈ dom(TNn), then we compute: +��(a,b)◁(ξ,η) +��H∞ = +��π(a)ξ−bη +��H∞ +� ∥π(a)−b∥A∞ ∥ξ∥H∞ +∥b∥A∞ +��ξ−η +��H∞ +� ˜εTn(a,b)DNn(ξ)+∥(a,b)∥Dn ˜εTNn(ξ,η) +� ˜ε +�Tn(a,b)+∥(a,b)∥Dn +�TNn(ξ,η). +From this, it follows that for all (a,b) ∈ dom(Tn) and for all (ξ,η) ∈ dom(TNn), +TNn((a,b)◁(ξ,η)) � +�Tn(a,b)+∥(a,b)∥Dn +�TNn(ξ,η). + +28 +CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER +On the other hand, if (ξ,η),(ξ′,η′) ∈ dom(TNn), we have: +Q(〈(ξ,η),(ξ′,η′)〉Mn) = 1 +˜ε +��〈ξ,ξ′〉H∞ −〈η,η′〉H∞ +�� +� 1 +˜ε +���〈ξ−η,ξ′〉H∞ +��+ +��〈η,ξ′ −η′〉H∞ +��� +� 1 +˜ε +���ξ−η +��H∞ +��ξ′��H∞ + +��η +��H∞ +��ξ′ −η′��H∞ +� +� TNn(ξ,η) +��ξ′��H∞ + +��η +��H∞ TNn(ξ′,η′) +� 2TNn(ξ,η)TNn(ξ′,η′). +We now define the maps: +Πn : (ξ,η) ∈ Mn �→ ξ ∈ H∞, and Θn : (ξ,η) ∈ Mn �→ η ∈ Hn. +Our goal is to show that +Υn := +�Mn,(Πn,π◦ψn),(Θn,θn) +� +where Mn := (Mn,TNn,Dn,Tn,C⊕C,Q) +is a metrical tunnel, using Definition (3.9). +By construction, Πn(a ·ξ,b ·η) = π(a)ξ = π◦ψn(a,b)Πn(ξ,η) and Θn(a ·ξ,b ·η) = bη = +θn(a,b)Θn(ξ,η), for all (a,b) ∈ Dn and (ξ,η) ∈ Mn. +Now, let ξ ∈ H∞ with DN∞(ξ) = 1. By construction of F, there exists ξ′ ∈ F such that +��ξ−ξ′��H∞ < ˜ε +3. By our choice of N, there exists η(= ξ′ +n) ∈ Hn such that DNn(η) � 1+ ˜ε +3 +and +��ξ′ −η +��H∞ < ˜ε +3. Let χ = +1 +1+ ˜ε +3 +η ∈ Hn, so that DNn(χ) � 1. Moreover, +��ξ−χ +��H∞ � +��ξ−η +��H∞ + +˜ε +3 +1+ ˜ε +3 +��η +��H∞ +� +��ξ−η +��H∞ + +˜ε +3 +1+ ˜ε +3 +DNn(η) +� +��ξ−ξ′��H∞ + +��ξ′ −η +��H∞ + ˜ε +3 +< ˜ε. +Thus TNn(ξ,χ) = 1, and therefore, (Πn,π◦ψn) is indeed a metrical quantum isometry. +Now, let η ∈ Hn. By construction, /D∞η = /Dnη, so DN∞(η) = DNn(η). Therefore, +TNn(η,η) = DNn(η). Again, we conclude that (Θn,θn) is a metrical quantum isometry as +well. +Therefore, Υn is a metrical tunnel. It is immediate, of course, that the canonical +surjections from C⊕C to C are quantum isometries — the only Lipschitz seminorm on +C being the 0 function. So Υn is a metrical tunnel. +We now compute the extent of Υn. It is, by Definition (3.11), the maximum of the +extent of the tunnel τ′ +n, which is at most ˜ε, and the extent of the tunnel (C,0) ←− (C ⊕ +C,Q) −→ (C,0), which is immediately computed to be ˜ε. So the extent of Υn is ˜ε as well. +Therefore, for all n � N, we have +Λ∗met((Hn,DNn,An,Ln,C,0),(H∞,DN∞,A∞,L∞,C,0)) � χ(Υn) = ˜ε < ε, +and therefore, +lim +n→∞Λ∗met((Hn,DNn,An,Ln,C,0),(H∞,DN∞.A∞,L∞,C,0)) = 0. + +29 +It remains to compute an upper bound for the ε-reach of our tunnels Υn (see Defini- +tion 3.12). We will once again use our finite set F with Haus[H∞](F,X∞) < ˜ε +3 where X∞ +is the closed unit ball of DN∞. +Now, let (vk)k∈N be a sequence of continuous functions on R vanishing at ∞, valued +in [0,1], and converging pointwise to 1 over R. Therefore, (vk( /D∞))k∈N converges to /D∞ +in the strong operator topology. Since F is finite, there exists k ∈ N such that, for all ξ ∈ F +(3.3) +∥vk( /D∞)ξ−ξ∥H∞ < ˜ε +12. +We identify, from now on, /Dn with the linear operator on H∞ whose restriction to Hn +is /Dn, and whose restriction to H ⊥ +n is 0; thus dom( /Dn) is replaced with dom( /Dn)⊕H ⊥ +n . +We denote by Pn the orthogonal projection of H∞ onto Hn, so that Pn /Dn = /DnPn = /Dn +on dom( /Dn). +For each t ∈ [0,∞), let ut : s ∈ R �→ exp(its), and for each n ∈ N, we denote ut( /Dn) by +U t +n. +Fix t ∈ R. The function ut vk is continuous over R and vanishes at infinity. By Theorem +(3.16), since (A∞,H∞, /D∞) is a spectral triple, and the inductive limit of the sequence +(An,Hn, /Dn)n∈N of spectral triples, the sequence of operators (Pnut vk( /Dn)Pn)n∈N con- +verges in norm to ut vk( /D∞). Moreover, ut vk( /Dn)Pn = Pnut vk( /Dn)Pn for all n ∈ N by +construction. +Let F ′ be a finite subset of the compact set +� +0, 1 +ε +� +such that Haus[R](F ′, +� +0, 1 +ε +� +) < +˜ε +12. +Since F ′ is finite, there exists Nν ∈ N such that if n � Nν, then for all t ∈ F ′: +(3.4) +������U t +n(vk( /Dn))Pn −U t +∞(vk( /D∞)) +������H∞ < ˜ε +12. +Let n ∈ N. Now, we note that if ξ ∈ dom(DNn) with DNn(ξ) � 1, then for all s < t ∈ R: +��U t +nξ−U s +nξ +��Hn � +�t +s +���� +d +dr U r +nξ +����Hn +dr +� +�t +s +��U r +n /Dnξ +��Hn dr +� |s − t|. +Thus, for all s,t ∈ R and ξ ∈ dom(DNn) with DNn(ξ) � 1, we have +��U t +nξ−U s +nξ +��Hn � |s − t|. +Now, let n � N ′ := max{Nν,NF }. Since /Dn and Pn commute, if ξ ∈ X∞, then DNn(ξ) � +DN∞(ξ) and: +DNn(νk( /Dn)Pnξ) = ∥vk( /Dn)Pnξ∥H∞ +∥ /Dnvk( /Dn)Pnξ∥H∞ +� ∥vk∥C0(R) |||Pn|||H∞DNn(ξ) � 1. + +30 +CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER +For all ξ ∈ X∞ and t ∈ +� +0, 1 +˜ε +� +, let s ∈ F ′ and ξ′ ∈ F such that |s − t| < ˜ε +12, +��ξ−ξ′��H∞ < ˜ε +3, +then: +��U t +nνk( /Dn)Pnξ−U t +∞ξ +��H∞ � +��U t +nνk( /Dn)Pnξ−U s +nνk( /Dn)Pnξ +��H∞ +�|t−s|< ˜ε +12 since DNn(νk( /Dn)Pnξ)�1 ++ +��U s +nνk( /Dn)Pnξ−U s +∞νk( /D∞)ξ +��H∞ +�|||U snνk( /Dn)Pn−U s∞νk( /D∞)|||H∞< ˜ε +12 by Eq. (3.4) ++ +��U s +∞νk( /D∞)(ξ−ξ′) +��H∞ +�∥ξ−ξ′∥H∞< ˜ε +3 by Eq. (3.3) ++ +��U s +∞νk( /D∞)ξ′ −U s +∞ξ′��H∞ +�∥νk( /D∞)ξ′−ξ′∥H∞< ˜ε +12 ++ +��U s +∞ξ′ −U t +∞ξ′��H∞ +�|s−t|< ˜ε +12 ++ +��U t +∞ξ′ −U t +∞ξ +��H∞ +�∥ξ−ξ′∥H∞< ˜ε +3 +< ˜ε. +Let ξ ∈ dom( /D∞) with DN∞(ξ) � 1. Let n � N ′, and set η = νk( /D∞)Pnξ. For all +t ∈ +� +0, 1 +˜ε +� +, we have, η ∈ dom( /Dn) and DNn(η) � 1. Therefore, +inf +η∈dom(DNn) +DNn(η)�1 +sup +ω∈dom(TNn) +TNn(ω)�1 +���〈U t +nη,Θn(ω)〉Hn −〈U t +∞ξ,Πn(ω)〉H∞ +��� +� +sup +ω∈dom(TNn) +TNn(ω)�1 +���〈U t +nνk( /Dn)Pnξ,Θn(ω)〉Hn −〈U t +∞ξ,Πn(ω)〉H∞ +��� +� +sup +ω∈dom(TNn) +TNn(ω)�1 +� +�� +��U t +nνk( /Dn)ξ−U t +∞ξ +��H∞ ∥ω∥Mn + +��U t +∞ξ +��H∞ ∥Θn(ω)−Πn(ω)∥H∞ +<˜ε since TNn(ω)�1 +� +�� +< ˜ε+ ˜ε = ε. +Now, take ξ ∈ Hn, with DNn(ξ) � 1. By construction, ∥ /D∞ξ∥H∞ = ∥ /Dnξ∥Hn, and +U t +nξ =U t +∞ξ. So for all ξ ∈ dom(DNn) with DNn(ξ) � 1, we have, for all t ∈ R: +inf +η∈dom( /D∞) +DN∞(η)�1 +sup +ω∈dom(TNn) +TNn(ω)�1 +���〈U t +∞η,Πn(ω)〉H∞ −〈U t +nξ,Θn(ω)〉Hn +��� +� +���〈U t +∞ξ,Πn(ω)〉H∞ −〈U t +nξ,Θn(ω)〉Hn +��� = 0 < ε. +Therefore, for all n � max{N,N ′}, the ε-reach of Υn is no more than ε, and thus the +ε-magnitude µ(Υn|ε) of Υn is no more than ε (by Definition (3.12)). Therefore for all +n � N: +Λspec((An,Hn, /Dn),(A∞,H∞, /D∞)) � µ(Υn|ε) < ε, +and thus +lim +n→∞Λspec((An,Hn, /Dn),(A∞,H∞, /D∞)) = 0, +as claimed. +□ + +31 +Remark 3.18. A corollary of Theorem (3.17) is that we obtain convergence for the +bounded continuous functional calculus for the Dirac operators from the work in [31], +which extends Theorem (3.16). +4. EVEN SPECTRAL TRIPLES ON TWISTED GROUP C ∗-ALGEBRAS +We now apply our results of the previous sections to the construction of inductive +limits of spectral triples for the spectral propinquity on twisted C*-algebras of discrete +groups endowed with length functions. In particular we will prove in this section our +third main theorem, Theorem (4.11). Our approach introduces new metric spectral +triples on certain twisted group C*-algebras which generalize the related, though distinct, +past constructions using length functions over discrete groups such as the ones in [19]. +Our main applications would be the construction of new spectral triples over noncom- +mutative solenoids and some Bunce-Deddens algebras. In particular, we shall prove that +the noncommutative solenoids spectral triples are limits of spectral triples over quantum +2-tori for the spectral propinquity. We will start with detailing in the next two subsections +some background material that will be used to state and prove our main result. +4.1. Discrete Groups, Proper Length Functions, 2-Cocycles, and Classical Spectral +Triples. Let G∞ be a discrete group, and let σ be a 2-cocycle over G∞. Let λ be the +left regular σ-projective representation of G∞ on ℓ2(G∞), defined by, for all g ∈ G∞ and +for all ξ ∈ ℓ2(G∞): +λ(g)ξ : h ∈ G∞ �−→ σ(g,g −1h)ξ(g −1h). +Of course, each operator λ(g) is unitary for each g ∈ G∞. Let C ∗ +red(G∞,σ) be the re- +duced C*-algebra of G∞ twisted by σ, i.e. the C*-algebra of operators on ℓ2(G∞) gener- +ated by +� +λ(g) : g ∈ G∞ +� +. For any f ∈ ℓ1(G∞), the operator λ(f ) on ℓ2(G∞) is defined as +� +g∈G∞ f (g)λ(g) — it is easily checked that +������λ(f ) +������ +ℓ2(G∞) � +��f +�� +ℓ1(f ). The reduced group +C*-algebra C ∗ +red(G) is, in particular, C ∗ +red(G∞,1). +In [11], Connes introduced spectral triples (C ∗ +red(G∞),ℓ2(G∞),ML) using any proper +length function L overG∞, where ML is the operator of multiplication by L, defined on its +natural domain in the Hilbert space ℓ2(G∞). Connes proved that +������[ML,λ(g)] +������ +ℓ2(G∞) = +L(g) — which immediately follows from the triangle inequality and the fact that [ML,λ(g)]δe += L(g)σ(g,1)δg , where, for all g ∈ G∞: +δg : h ∈ G∞ �→ +� +1 if g = h, +0 otherwise. +It then follows that for the ∗-algebra Cc(G∞) of C-valued functions with finite support, +we obtain the inequality, for all f ∈ Cc(G∞): +(4.1) +������� +ML,λ(g) +������� +ℓ2(G∞) � +� +g∈G∞ +|f (g)|L(g), +since λ(g) is unitary for all g ∈ G∞. +Note that by construction, for the multiplication operator by L to have compact +resolvent, the spectral projection of this operator on any compact interval must have +finite rank. Thus, in particular, the set {δh ∈ ℓ2(G∞) : L(h) � r} must be finite for all r � 0. +In other words, all closed balls in G∞ for L must be finite, i.e., L must indeed be proper. +However, natural length functions on G∞ may not be proper, or even give the discrete +topology. An example of this situation is given when G∞ is the additive group +� +Z +� +1 +p +��2 + +32 +CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER +where: +Z +� 1 +p +� +:= +� a +pn : n ∈ N,a ∈ Z +� +, +and where p ∈ N is prime. It is natural to regard Z +� +1 +p +� +as a subgroup of Q, and thus equip +it with the induced length function from the usual absolute value on Q (see Figure (3)). +However, this length function is not proper — and induces a non-discrete topology. We +moreover note that Z +� +1 +p +� += � +n∈N +1 +pn Z, and we would like to capture this inductive limit +structure metrically; while the sequence +� +1 +pn Z +� +n∈N converges to Z +� +1 +p +� +for the Hausdorff +distance induced by | · |, we can not apply this observation directly to the associated +twisted C*-algebras since |·| does not define a spectral triple using Connes’ methods. +Let us discuss this situation by returning to a general discrete group G∞ and some +2-cocycle σ on G∞. We now assume that we are given a strictly increasing sequence +(Gn)n∈N of subgroups of G∞ such that G∞ = � +n∈NGn — in fancier terms, G∞ is the +inductive limit of the sequence of groups (Gn)n∈N, which we identify with a sequence of +subgroups of G∞ from now on. We also identify σ with its restriction to Gn for all n ∈ N. +We now have a conundrum. If we choose a proper length function L on G∞, then, +since G∞ = � +n∈NGn with (Gn)n∈N increasing, any finite subset of G∞ is contained in +some GN (and thus in all Gn with n � N). This implies that (Gn)n∈N converges to G∞ for +the pointed Gromov-Hausdorff distance for proper metric space, where we always use +1 as our base point, and the metrics are induced by L (see [22]). On the other hand, as +soon as G∞ is infinite — which is the only interesting case to consider when G∞ is the +union of countably many groups, otherwise of course G∞ is just Gn for n large enough +— not only the diameter of G∞ is infinite — it can not be a closed ball as these are finite +— but the subgroups Gn are not close to G∞ for the Hausdorff distance induced by L in +general. So, we can define the spectral triples (C ∗ +red(Gn,σ),ℓ2(Gn),ML) as before since L +is proper, but in general, there is no apparent reason why |||[ML,a]|||ℓ2(G∞) is particularly +close to |||[ML,a]|||ℓ2(Gn) for a ∈ C ∗ +red(Gn,σ). +On the other hand, there may be length functions on G∞ for which (Gn)n∈N does +converge in the Hausdorff distance for these length functions, but these length functions +are not proper whenever G∞ is infinite. We are thus led to build a new type of spectral +triples which combine these two apparently opposite situations: one where we do not +know how to build a spectral triple using a non-proper length with otherwise good metric +properties for our purpose, and one with a proper length function which has bad metric +property. The following construction is inspired, but different from [19], where a proper +length function is constructed as a sum of a non-proper length function with a p-norm. +4.2. The Spectral Triples. We now define our new spectral triples on a particular type of +twisted group C*-algebras, which are the subject of our main third theorem, Theorem +(4.11), and its corollaries. +From now on we assume that G∞ is a discrete group endowed with a 2-cocycle σ with +values in T := {z ∈ C : |z| = 1}, and that G∞ is the union of a strictly increasing sequence +for inclusion, (Gn), of subgroups of G∞ such that G∞ = � +n∈NGn. +We also assume that we are given a length function LH on G∞, whose restriction to +each Gn is proper for each n ∈ N, and with the property that +(4.2) +lim +n→∞Haus[LH](G∞,Gn) = 0. + +33 +Z +� 1 +2 +� +⊆ Q +-3 +-2 +-1 +0 +1 +2 +3 +(A) The geometry of Z +� +1 +2 +� +for |·| in Q +LH +log2 ◦F +0 +1 +2 +3 +-3 +-2 +-1 +0 +1 +2 +3 +(B) The geometry of Z +� +1 +2 +� +using F +FIGURE 3. The geometry of Z +� 1 +2 +� +In addition we require that we are given a strictly increasing unbounded function scale : +N → [0,∞), together with F : G∞ → [0,∞) such that for all g ∉ G0: +F(g) = scale(min{n ∈ N : g ∈ Gn}), +while F restricted to G0 satisfies: +• ∀g ∈ G0 +F(g) = F(g −1), +• ∀g,h ∈ G0 +F(gh) � max{F(g),F(h)}, +• ∀g ∈ G0 +F(g) ∈ [0,scale(0)], +• F(1) = 0. +Clearly, the above assumptions provide us with many length functions on G∞ and Gn; +we will use them in our spectral triples constructions. +One of our main examples for this section will be the noncommutative solenoids, +whose fundamental components are described below. We will give more details on this +example later in this work. +Example 4.1. Let d � 2 and p a prime number. Let G∞ = +� +Z +� +1 +p +��d +, and let Gn = +� +1 +pn Z +�d +for all n ∈ N. We note that G∞ = � +n∈NGn. We can then choose LH to be the restriction +of any norm on Rd, and scale : n ∈ N → pn ∈ [0,∞), so that: +F : g ∈ G∞ �→ scale +� +min +� +n ∈ N : g ∈ +� 1 +pn Z +�d�� +. +Now, for any function f : Gn → C, we denote by M f the operator of multiplication by +f on the subspace: +dom +� +M f +� +:= +� +ξ ∈ ℓ2(Gn) : (h ∈ Gn �→ f (h)ξ(h)) ∈ ℓ2(Gn) +� +of ℓ2(Gn). Of course, M f is bounded by +��f +�� +C(Gn) if f is bounded, and unbounded +otherwise; nonetheless dom +� +M f +� +always contains Cc(Gn) and thus is always dense in +ℓ2(Gn). +Let E be a finite dimensional Hilbert space with inner product 〈·,·〉E and dimE ∈ +2N\{0}, and let c be a ∗-representation of the Clifford algebra of C2 on E. Let γ1 = c +��1 +0 +�� + +34 +CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER +and γ2 = c +��0 +1 +�� +. For our purpose, we record that for all j,k ∈ {1,2}: +γj γk +γkγj = +� +2 if j = k, +0 otherwise. +. +Remark 4.2. There is no particular reason to restrict ourselves to E = C2, though it is the +natural choice. In this case, we can choose the usual Weyl matrices: +γ1 = +�1 +0 +0 +−1 +� +and γ2 = +�0 +1 +1 +0 +� +as the most natural choice for our construction. +For each n ∈ N := N∪{∞}, we identify the Hilbert space ℓ2(Gn,E) of E-valued func- +tions over Gn (with inner product 〈ξ,η〉ℓ2(Gn,E) := � +g∈Gn 〈ξ(g),η(g)〉E) with ℓ2(Gn)⊗E. We +then let +dom( /Dn) := +� +ξ ∈ ℓ2(Gn,E) : (LH(g)γ1ξ(g)+F(g)γ2ξ(g))g∈Gn ∈ ℓ2(Gn,E) +� +and on dom( /Dn), we define the Dirac operator: +(4.3) +/Dn := MLH ⊗γ1 + MF ⊗γ2. +We now prove that (C ∗(Gn,σ),ℓ2(Gn)⊗E, /Dn), as defined above, are indeed spectral +triples, for all n ∈ N. A first step is the computation of the domain of our Dirac operators +of Equation (4.3). To do so, we will need the following lemma. Recall that a norm ∥·∥R2 +on R2 is monotone when it is increasing with respect to the product order on R2; the +most important such norm for our purpose will be the max norm x, y ∈ R2 �→ +��(x, y) +�� +∞ = +max{|x|,|y|}; we also note that we will often write elements of Rd as simple d-tuples. +Lemma 4.3. With the notation and assumptions of this section, the following identities +hold. +(1) For all g ∈ G∞: +F(g −1) = F(g); +(2) For all g,h ∈ G∞: +F(gh) � max +�F(g),F(h) +� +� F(g)+F(h). +Moreover, if ∥·∥R2 is any monotone norm on R2, then g ∈ G∞ �→ +��(LH(g),F(g)) +��R2 is a +proper, unbounded length function over G∞. +Proof. Let g ∈ G∞, and let n ∈ N be the unique natural number such that F(g) = scale(n), +or n = 0 if F(g) < scale(0). If n = 0 then F(g) = F(g −1) by assumption. If n > 0, then +g ∈ Gn and g ∉ Gp for p < n; therefore, g −1 ∈ Gn and g −1 ∉ Gp if p < n; hence, F(g −1) = +scale(n) = F(g). +Now, take h ∈ G∞. Again, let m ∈ N be uniquely defined by F(h) = scale(m) or m = 0 +otherwise. Let k = max{m,n}. Thus g,h ∈ Gk and therefore, gh ∈ Gk. First, if g,h,gh ∈ G0, +then F(gh) � max{F(g),F(h)} by assumption on F. Otherwise, k > 0, and we simply +observe that either gh ∈ G0 and then F(gh) � scale(0) < scale(k), or gh ∉ G0, and again +F(gh) � scale(k); either way we observe: +F(gh) � scale(k) = scale(max{n,m}) = max{scale(n),scale(m)} = max{F(g),F(h)}. +Fix a monotone norm ∥·∥R2 on R2 and let +L : g ∈ G∞ �−→ +��(LH(g),F(g)) +��R2 . + +35 +It is then immediate to check that if g,h ∈ G∞, then, since ∥·∥R2 is monotone: +��(LH(gh),F(gh)) +��R2 � +��(LH(g)+LH(h),F(g)+F(h)) +��R2 +� +��(LH(g),F(g)) +��R2 +∥(LH(h),F(h))∥R2 . +Moreover +��(LH(g −1),F(g −1)) +��R2 = +��(LH(g),F(g)) +��R2 for all g ∈ G∞. +Finally, if +��(LH(g),F(g)) +��R2 = 0, then LH(g) = 0, which in turns implies g = 1. On the +other hand, F(1) = 0 and LH(1) = 0, so L(1) = 0. Thus as claimed, L is a length function +on G∞. +Now, let be more specific in our choice of ∥·∥R2, and fix it to be the usual max norm +∥·∥∞; we then rename our length L∞; so +L∞(g) := max +�LH(g),F(g) +� +. +Fix n ∈ N. By definition, the following equality between closed balls hold: +� +g ∈ G∞ : L(g) � scale(n) +� += +� +g ∈ Gn : LH(g) � scale(n) +� +. +Since LH is proper on Gn, this set is finite. So L is indeed proper on G∞. +By assumption, the function scale is unbounded on N and, for all n ∈ N, there exists +g ∈ G∞ \Gn (since (Gn)n∈N is assumed to be strictly increasing), i.e. F(g) � scale(n), so +L is unbounded. +We now return to a general monotone norm ∥·∥R2 on R2. Since all norms on R2 are +equivalent, there exists c > 0 such that 1 +c ∥·∥∞ � ∥·∥R2 � c ∥·∥∞. Therefore, +1 +c L∞ � L � cL∞. +It is now easy to check that L is again proper and unbounded on G∞. This concludes our +proof. +□ +Remark 4.4. It is quite natural to simply set F(g) = scale(0) for all g ∈ G0 \ {1}. The +difference between such a choice of F, vs any other F′, which meets our assumptions over +G0, is a bounded perturbation. We refer to [36] for a discussion on bounded perturbations +of spectral triples from the metric perspective. +As seen in the above discussion, the above length function LH will not be proper, so it +won’t define a spectral triple by itself, however L is proper, and thus can be used to define +a spectral triple on C ∗(G∞,σ). However, we take a slightly different route by working with +what we shall prove is an even spectral triple, replacing the linear geometry of G∞ with a +sort of “two-dimensional” geometry (see Figure (3) for the noncommutative solenoid +case). +We now prove that in the above hypotheses we can indeed define spectral triples. We +begin with a computation of the domain of the proposed Dirac operators defined in +Equation (4.3). +Lemma 4.5. With the notation and assumptions of this section, the following assertion +holds; for all ξ ∈ E and for all a,b ∈ R: +��(aγ1 +bγ2)ξ +��2 +E = +� +a2 +b2� +∥ξ∥2 +E . +In particular, for all n ∈ N, the domain dom( /Dn) of the Dirac operator /Dn is given by +� +ξ ∈ ℓ2(Gn,E) : +� +g∈Gn +(LH(g)2 +F(g)2) +��ξ(g) +��2 +E < ∞ +� +. + +36 +CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER +Proof. Let ξ ∈ E. The following identity holds for all a,b ∈ R: +��aγ1ξ+bγ2ξ +��2 +E = a2〈γ1ξ,γ1ξ〉E + ab〈γ1ξ,γ2ξ〉E + ab〈γ2ξ,γ1ξ〉E +b2〈γ2ξ,γ2ξ〉E += a2〈γ2 +1ξ,ξ〉E + ab〈(γ1γ2 +γ2γ1)ξ,ξ〉E +b2〈γ2 +2ξ,ξ〉E += (a2 +b2)∥ξ∥2 +E . +as claimed. +The computation of the dom( /Dn), for all n ∈ N, follows immediately. +□ +We now prove that our Dirac operators are indeed self-adjoint with compact resolvent, +and that they can be used to define spectral triples. We also establish some useful +estimates which will later allow us to prove that our construction gives metric spectral +triples over noncommutative solenoids. +Definition 4.6. If a is a bounded operator on ℓ2(G∞), we denote by a◦ the operator a⊗1E +acting on ℓ2(G∞,E). We also define the representation λ of C ∗(G∞,σ) on ℓ2(G∞,E) by +setting λE := λ⊗1E, so for all f ∈ Cc(G∞), we have λ(f )◦ := λE(f ). Moreover +(1) For each n ∈ N, define: +dom(Ln) := +� +a ∈ sa +� +C ∗ +red(Gn,σ) +� +: a◦dom( /Dn) ⊆ dom( /Dn) and [ /Dn,a◦] is bounded +� +. +(2) For all a ∈ dom(Ln) define: +Ln(a) := +������[ /Dn,a◦] +������ +ℓ2(Gn,E). +We conclude this subsection by proving that we indeed defined even spectral triples, +and lay the groundwork for our third main theorem in the next subsection. Recall that, +by Lemma (4.3), LH +F is proper and unbounded on G∞. +Lemma 4.7. With the notation and assumptions of this section, for any fixed n ∈ N, the +ordered triple +(C ∗ +red(Gn,σ),ℓ2(Gn,E), /Dn) +is an even spectral triple, where the grading on ℓ2(Gn,E) is given by 1ℓ2(Gn) ⊗iγ1γ2. More- +over, for all a ∈ dom(Ln): +������[MLH ,a] +������ +ℓ2(Gn) � +������[ /Dn,a◦] +������ +ℓ2(Gn,E), +together with: +|||[MF,a]|||ℓ2(Gn) � +������[ /Dn,a◦] +������ +ℓ2(Gn,E). +In particular, if we define L := LH +F, then for all n ∈ N and all a ∈ dom(Ln): +|||[ML,a]|||ℓ2(Gn) � 2 +������[ /Dn,a◦] +������ +ℓ2(Gn,E). +If, for any n ∈ N, the spectral triple (C ∗ +red(Gn,σ),ℓ2(Gn), /DL) is metric, then so is (C ∗ +red(Gn,σ), +ℓ2(Gn,E), /Dn). +Proof. We will start by showing that, for any fixed n ∈ N, /Dn is self-adjoint with compact +resolvent. Fixed any n ∈ N, note that the domain of /Dn contains all finitely supported +functions in ℓ2(Gn,E) and is therefore dense. Moreover, since γ1 and γ2 are self-adjoint, + +37 +if ξ,η ∈ dom( /Dn), it follows that: +〈 /Dnξ,η〉ℓ2(Gn,E) = +� +g∈Gn +〈 +�LH(g)γ1 +F(g)γ2 +� +ξ,η〉E += +� +g∈Gn +〈ξ, +�LH(g)γ1 +F(g)γ2 +� +η〉E += 〈ξ, /Dnη〉ℓ2(Gn,E), +so /Dn is also a symmetric operator. By using Lemma (4.5), we now note that: +dom +� +/D2 +n +� += +� +ξ ∈ ℓ2(Gn,E) : +� +g∈Gn +�LH(g)2 +F(g)2�2 ��ξ(g) +��2 +E < ∞ +� +and, over dom +� +/D2 +n +� +, the Clifford algebra relations imply: +/D2 +n +1 = +� +M2 +LH + M2 +F +1 +� +⊗1E. +Now define an operator K on ℓ2(Gn,E) by setting, for all ξ ∈ ℓ2(Gn,E): +K ξ : g ∈ Gn �→ +1 +� +LH(g)2 +F(g)2 +1 +ξ(g). +By construction, K is positive. Moreover, if n ∈ N, then LH restricted to Gn is proper and +F is bounded over Gn by our hypotheses, so K is compact. If n = ∞, by our hypotheses, +for all r � 0, the set {g ∈ G∞ : F(g) � r} is a subset of Gk for some k ∈ N. Since LH is +proper on Gk, the set {g ∈ G∞ : L2 +H(g)+F2(g) � r} is finite. Thus, the eigenspaces of K +are all finite dimensional. It follows easily that K is compact, as well. +In any case, i.e., for all n ∈ N, ( /D2 +n +1)K 2ξ = ξ for all ξ ∈ ℓ2(Gn,E), while K 2( /D2 +n +1)ξ = +ξ for all ξ ∈ dom +� +/D2 +n +� +, as seen by a direct computation; in particular, we note that +K ℓ2(Gn,E) = dom( /Dn) by construction. +By Lemma (4.5), for all ξ ∈ ℓ2(Gn,E), we obtain: +� +g∈Gn +�� /DnK ξ(g) +��2 +E += +� +g∈Gn +����� +LH(g) +� +LH(g)2 +F(g)2 +1 +(γ1ξ(g))+ +F(g) +� +LH(g)2 +F(g)2 +1 +(γ2ξ(g)) +����� +2 +E += +� +g∈Gn +LH(g)2 +F(g)2 +LH(g)2 +F(g)2 +1 +��ξ(g) +��2 +E +� ∥ξ∥2 +ℓ2(Gn,E) . +Thus, /DnK is bounded, of norm at most 1. Consequently, ( /Dn ± i)K is also bounded +on ℓ2(Gn,E). Therefore, ( /D ±i)K 2 is compact. It follows that /D ±i both have compact +inverse ( /D ∓i)K 2. Specifically for our purpose, if ξ ∈ ℓ2(Gn,E), then: +( /Dn +i) +� +( /Dn −i)K 2� +ξ = ( /D2 +n +1)K 2ξ = ξ. +Therefore, the range of /Dn +i is ℓ2(Gn,E). Similarly, the range of /Dn −i is also ℓ2(Gn,E). +As /Dn is also a symmetric operator defined on a dense domain, we conclude by [53, Sec. +VIII.2] and [45, Lemma 2.48] that /Dn is indeed self-adjoint, with compact resolvent (since +the inverse of /Dn +i is the compact ( /Dn −i)K 2). +We will now verify the commutator spectral triples condition. Note that if g ∈ Gn, then +������[ /Dn,λE(g)] +������ +ℓ2(Gn,E) � LH(g)+F(g) = L(g). + +38 +CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER +Therefore, if f ∈ Cc(Gn), then the operator [ /Dn,λE(f )] is bounded, and in fact, +������[ /Dn,λE(f )] +������ +ℓ2(Gn,E) � +� +g∈Gn +|f (g)|L(g). +We conclude that (C ∗ +red(G∞,σ),ℓ2(G∞), /D) is a spectral triple for all n ∈ N. +We will now prove that our spectral triple is metric. Let a ∈ dom(Ln) for some n ∈ N. +We then note that, +(1⊗γ1)[ /Dn,a◦]+[ /Dn,a◦](1⊗γ1) = [MLH ,a]⊗2, +which implies: +������[MLH ,a] +������ +ℓ2(Gn) � 1 +2 +������(1⊗γ1)[ /Dn,a◦]+[ /Dn,a◦](1⊗γ1) +������ +ℓ2(Gn,E) +� 1 +2 +�������(1⊗γ1)[ /Dn,a◦] +������ +ℓ2(Gn,E) + +������[ /Dn,a◦](1⊗γ1) +������ +ℓ2(Gn,E) +� +� 1 +2 +�������[ /Dn,a◦] +������ +ℓ2(Gn,E) + +������[ /Dn,a◦] +������ +ℓ2(Gn,E) +� += +������[ /Dn,a◦] +������ +ℓ2(Gn,E). +The same reasoning, with 1⊗γ2 in place of 1⊗γ1, leads to +|||[MF,a]|||ℓ2(Gn) � +������[ /Dn,a◦] +������ +ℓ2(Gn,E). +Therefore, for all a ∈ dom(Ln), we obtain: +|||[ML,a]|||ℓ2(Gn) � +������[MLF ,a] +������ +ℓ2(Gn) +|||[MF,a]|||ℓ2(Gn) � 2 +������[ /Dn,a◦] +������ +ℓ2(Gn,E). +In particular, if (C ∗ +red(Gn,σ),ℓ2(Gn), /DL) is a metric spectral triple, then, by [55, Lemma +1.10], so is (C ∗ +red(Gn,σ),ℓ2(Gn), /Dn). +Finally, we will show that our spectral triples are in fact even, with grading given by +1ℓ2(Gn) ⊗ γ where γ := iγ1γ2. By construction, γ2 is the identity, and γ∗ = γ, so γ is a +self-adjoint unitary; therefore so is 1ℓ2(Gn) ⊗γ, which splits ℓ2(Gn,E) in its two spectral +subspaces for 1 and −1, in such a way that λE commutes with 1⊗γ, while /Dn(1⊗γ) = +−(1⊗γ) /Dn. So (C ∗ +red(Gn,σ),ℓ2(Gn,E), /Dn) is an even spectral triple. +□ +Remark 4.8. With the notation of Lemma (4.7), we note that for each finite n ∈ N, the +spectral triple (C ∗ +red(Gn),ℓ2(Gn,E), /Dn) is, in some sense, a bounded perturbation of the +odd spectral triple (C ∗ +red(Gn),ℓ2(Gn),ML), since F is bounded on Gn. The situation is +quite different when n = ∞, of course. +Remark 4.9. Suppose ρ is some other 2-cocycle of G∞, which is equivalent to σ, i.e., for +some function f : G∞ → T, the following holds: +∀g,h ∈ G∞ +ρ(g,h) = f (g)f (h)f (gh)σ(g,h). +The operator M f is then a unitary which intertwines the left regular σ and ρ projective +representation of G∞. Thus, (AdM f )◦ implements a *-isomorphism from λE(C ∗(G∞,ρ)) +onto λE(C ∗(G∞,σ)). Furthermore, M◦ +f commutes with /D∞. Therefore, the spectral +triples (C ∗(G∞,σ),ℓ2(G∞,E), /D∞) and (C ∗(G∞,ρ),ℓ2(G∞,E), /D∞) are unitarily equiva- +lent. In particular, whenever one is metric, so is the other, and then they are at distance +zero from each others for the spectral propinquity. + +39 +4.3. Main result. We begin this section by making some basic identifications that will +be used throughout the rest of the paper. We will use the notation introduced in the +above sections. Fixed n ∈ N, the C*-algebra C ∗ +red(Gn,σ) is technically the closure, in +the operator norm, of the linear span of the operators λn(g) defined on ℓ2(Gn) by +λn(g)ξ : h ∈ ℓ2(Gn) �→ σ(g,g −1h)ξ(g −1h). On the other hand, since Gn ⊆ G∞, we obtain a +different unitary σ-projective representation of Gn, via the restriction of the σ-projective +representation λ of G∞ to Gn on ℓ2(G∞), giving us an alternative C*-algebra generated +by {λ(h) : h ∈ Gn}. If S ⊆ G∞ is any nonempty subset of G∞, we identify the space ℓ2(S) +with +{ξ ∈ ℓ2(G∞) : ∀g ∈ G∞ \S +ξ(g) = 0}. +Let Qn ⊆ G∞ be a subset of G∞ such that every right coset of Gn in G∞ is of the form Gnk +for a unique k ∈ Qn. Of course, +ℓ2(G∞) = +� +k∈Qnℓ2(Gnk), +where ⊕ is the Hilbert sum, i.e. the closure of the direct sum. +Now, we set, for all k ∈ G∞ and ξ ∈ ℓ2(G∞): +(4.4) +ρ(k)ξ : h ∈ ℓ2(G∞) �→ σ(hk,k−1)ξ(hk). +Thus defined, ρ is the right regular ˘σ-projective representation of G∞ on ℓ2(G∞), where +˘σ : g,h ∈ G∞ �→ σ(h−1,g −1) is indeed a 2-cocycle of G∞. +Remark 4.10. If the 2-cocycle σ is normalized, i.e. σ(g,g −1) = 1 for all g ∈ G∞, then ˘σ = σ; +we will however not need to work with normalized cocycles here. +Since σ is a 2-cocycle, we obtain, for all g,h,k ∈ G∞ and ξ ∈ ℓ2(G∞): +λ(g)ρ(k)ξ(h) = σ(g,g −1h)ρ(k)ξ(g −1h) += σ(g,g −1h)σ(g −1hk,k−1)ξ(g −1hk) += σ( g +=:x +,g −1hk +=:y +k−1 +=:z +)σ(g −1hk +=y +,k−1 +=z +)ξ(g −1hk) += σ( g +=x +,g −1hk +=y +)σ(hk +=xy +,k−1 +=z +)ξ(g −1hk) += σ(hk,k−1)(λ(g)ξ)(hk) += ρ(k)λ(g)ξ(h). +Therefore, λ(g) and ρ(k) commute, for all g,k ∈ G∞. It is moreover immediate that ρ(k−1) +maps ℓ2(Gnk) onto ℓ2(Gn). +We now define the unitary V from ℓ2(G∞) = � +k∈Qnℓ2(Gnk) to � +k∈Qnℓ2(Gn) by setting, +for all ξ = (ξk)k∈Qn ∈ � +k∈Qnℓ2(Gnk): +V ξ = +� +ρ(k−1)ξk +� +k∈Qn ∈ +� +k∈Qnℓ2(Gn). +By construction, V is unitary, and moreover, for any g ∈ Gn: +V λ(g)V ∗(ξk)k∈Qn = (λn(g)ξk)k∈Qn. +Thus, AdV is a ∗-isomorphism from the C*-subalgebra generated by {λ(g) : g ∈ Gn} and +the C*-algebra C ∗ +red(Gn,σ) which maps λ(g) to λn(g) for all g ∈ Gn. +From now on, we thus identify C ∗ +red(Gn,σ) with the C*-algebra generated by {λ(g) : g ∈ +Gn} in C ∗ +red(G∞,σ) and work exclusively in the latter. We will also identify ℓ2(Gn,E) with +� +ξ ∈ ℓ2(G∞,E) : ∀g ∈ G∞ \Gn +ξ(g) = 0 +� +. + +40 +CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER +To complete our picture, we also identify /Dn with the operator defined for ξ = ξn + +ξ⊥ +n , with ξn ∈ ℓ2(Gn,E)2 and ξ⊥ +n ∈ ℓ2(Gn.E) = � +k∈Qn\Gnℓ2(Gnk,E), by /Dnξ = /Dnξn ∈ +ℓ2(Gn,E). We then observe that if Pn is the orthogonal projection from ℓ2(G∞) onto +ℓ2(Gn), we have, for all ξ ∈ dom( /Dn) and for all g ∈ G∞: +P◦ +n /Dnξ(g) = +� +(LH(g)⊗γ1 +F(g)⊗γ2)ξ(g) if g ∈ Gn, +0 otherwise, += /D∞P◦ +nξ(g). +We thus have shown that P◦ +ndom( /Dn) ⊆ dom( /D∞) and P◦ +n /Dn = /D∞P◦ +n. Moreover, P◦ +n /D∞P◦ +n = +/Dn and thus, for all a ∈ dom(Ln) we compute the following expression, using the fact +that [Pn,a] = 0,: +P◦ +n[ /D∞,a◦]P◦ +n = P◦ +n /D∞a◦P◦ +n −P◦ +na◦ /D∞P◦ +n += P◦ +n /D∞P◦ +na◦ − a◦P◦ +n /D∞P◦ +n += /Dna◦ − a◦ /Dn. +So we have, for all a ∈ dom(L∞): +(4.5) +Ln(a) = +������[ /Dn,a◦] +������ +ℓ2(Gn,E) = +������P◦ +n[ /D∞,a◦]P◦ +n +������ +ℓ2(G∞,E) � L∞(a). +With all of the above identifications, we thus have a natural unital ∗-morphism from +C ∗ +red(Gn,σ) into C ∗ +red(G∞,σ) which becomes just the natural inclusion, and +λ(g)ℓ2(Gnk) ⊆ ℓ2(Gnk) +for each g ∈ Gn and k ∈ G∞. By linearity and continuity, we conclude that if a ∈ +C ∗ +red(Gn,σ), then aℓ2(Gnk) ⊆ ℓ2(Gnk) for all k ∈ G∞. We also note that [ /D∞,a◦]ℓ2(Gnk,E) ⊆ +ℓ2(Gnk,E) for all k ∈ G∞ and a ∈ dom(Ln). +We will work for the rest of this section with the above identifications and their basic +properties without further mention. +Our main theorem in this section involves, in particular, a strong result about the +convergence of some of the quantum compact metric spaces induced by our spectral +triples: namely, we obtain some convergence in the sense of the Lipschitz distance. +The Lipschitz distance LipD, extended to noncommutative metric geometry in [37], is +defined between any two quantum compact metric spaces (A,LA) and (B,LB), by +LipD((A,LA),(B,LB)) := +inf +� +ln(k) : ∃π : (A,LA) → (B,LB) Lipschitz *-isomorphism with 1 +k LA � LB ◦π � kLA +� +, +with the convention that inf� = ∞. Thus LipD is finite only between quantum compact +metric spaces built over isomorphic C*-algebras. As shown in [37], the Lipschitz distance +dominates the Gromov-Hausdorff propinquity; in fact, closed balls for the Lipschitz +distance are compact in the propinquity. +In particular, if A is a unital C*-algebra, and if L1 and L2 are two Lipschitz seminorms +over A with the same domain, then the identity is bi-Lipschitz, and we do obtain, by +definition: +LipD((A,L1),(A,L2)) � ln(C) if 1 +C L1 � L2 � CL1. +We now prove our main result about inductive limits of discrete groups and the +convergence, for the spectral propinquity, of their spectral triples. Note that below we +use the notation established in Definition (4.6). + +41 +Theorem 4.11. With the notation and assumptions of Subsection 4.2, if +(C ∗ +red(Gn,σ),ℓ2(Gn,E), /Dn) +is a metric spectral triple for all n ∈ N, and if +{a ∈ dom(Ln) : Ln(a) � 1} = cl({a ∈ Cc(Gn) : Ln(a) � 1}), +then +lim +n→∞Λspec � +(C ∗ +red(Gn,σ),ℓ2(Gn,E), /Dn),(C ∗ +red(G∞,σ),ℓ2(G∞,E), /D∞) +� += 0. +Moreover, for any fixed k ∈ N, the sequence (C ∗ +red(Gk,σ),Ln)n�k converges in the Lips- +chitz distance LipD to the quantum compact metric space (C ∗ +red(Gk,σ),L∞). +Proof. We shall check that the identity automorphism of C ∗ +red(G∞,σ) satisfies the hypoth- +esis of Theorem (3.17). +Obviously, the identity is a full quantum isometry of (C ∗ +red(G∞,σ),L∞). +Let C = 2qdiam(C ∗(G∞,σ),L∞) — note that since G∞ ̸= {1}, we have C > 0. Let tr : a ∈ +C ∗ +red(G∞,σ) �→ 〈aδ1,δ1〉ℓ2(G∞); tr is a tracial state of C ∗(G∞,σ) which maps a ∈ Cc(G∞) to +a(1). +Fix ε ∈ +� +0, C +2 +� +. Since (C ∗ +red(G∞,σ),L∞) is a quantum compact metric space by assump- +tion, the set X∞ := {a ∈ dom(L∞) : L∞(a) � 1,tr(a) = 0} is compact. Thus, there exists +a finite ε-dense subset X ε +∞ ⊆ X∞. Since X∞ = cl({a ∈ Cc(G∞) : L∞(a) � 1,tr(a) = 0}), we +can moreover assume that X ε +∞ ⊆ Cc(G∞) as well. +Since X ε +∞ is finite and each of its element has finite support, there exists a finite subset +S ⊆ G∞ which contains the support of all the elements in X ε +∞. Since G∞ = � +n∈NGn and +(Gn)n∈N is increasing, there exists N1 ∈ N such that, for all n � N1, we have S ⊆ Gn. Thus +X ε +∞ ⊆ Cc(Gn). Moreover, by Expression (4.5), we also obtain Ln(a) � L∞(a) for all a ∈ X ε +∞. +In summary, +∀a ∈ X∞ +∃b ∈ X ε +∞ ⊆ Cc(Gn) ⊆ C ∗ +red(Gn,σ) : +∥a −b∥C∗ +red(G∞,σ) < ε and Ln(a) � L∞(a) � 1. +If a ∈ dom(L∞), then there exists b ∈ X ε +∞ such that ∥a −tr(a)−b∥C∗ +red(G∞,σ) < ε. Of course, +b +tr(a) ∈ C ∗ +red(Gn,σ) and Ln(b +tr(a)) = Ln(b) � 1. By homogeneity, it follows that for all +a ∈ dom(L∞), and for all n � N1, there exists b ∈ dom(Ln) such that ∥a −b∥C∗ +red(G∞,σ) < +εL∞(a) and Ln(b) � L∞(a). +Now, using our assumption of Equation (4.2), there exists N2 ∈ N, with N2 � N1, such +that +Haus[LH](G∞,Gn) < ε +C 2 . +For each right coset c of Gn in G∞, let k ∈ c. Since the distance for LH from k ∈ G∞ to +Gn is strictly less than +ε +C2 , there exists g ∈ Gn such that LH(g −1k) < ε +C2 . Setting kc = g −1k, +we have by definition of right cosets that c = Gnkc. Therefore, there exists a subset +Qn ⊆ G∞ of G∞ such that, if k ∈ Qn then LH(k) < ε +C2 , and if c is a right coset of Gn in G∞, +then there exists a unique k ∈ Qn such that c = Gnk. +Let n � N2 and let b ∈ Cc(Gn) ⊆ C ∗ +red(Gn,σ) with b(1) = tr(b) = 0. Note that b ∈ +dom(L∞)∩dom(Ln) so, in particular, both Ln(b) and L∞(b) are finite. +We thus have ℓ2(G∞) = ⊕k∈Qnℓ2(Gnk), where ⊕ is the Hilbert sum (the closure of +the sum). If h ∈ Gn, then, by definition of a right coset, λ(h)ℓ2(Gnk) ⊆ ℓ2(Gnk) for +all k ∈ Qn. As /D∞ (dom( /Dn)) ⊆ ℓ2(Gnk,E) as well for all k ∈ Qn, we conclude that + +42 +CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER +[ /D∞,b◦] +� +ℓ2(Gnk,E) +� +⊆ ℓ2(Gnk,E) — i.e. b, /D∞ and its commutators are all block di- +agonal in this decomposition of ℓ2(G∞). It follows that +(4.6) +������[ /D∞,b◦] +������ +ℓ2(G∞,E) = sup +k∈Qn +������[ /Dn,b◦] +������ +ℓ2(Gnk,E), +allowing for any of the above norm to be infinite. +Now, the restriction of /D∞ to dom( /Dn) is exactly /Dn, so: +������[ /D∞,b◦] +������ +ℓ2(Gn,E) = +������[ /Dn,b◦] +������ +ℓ2(Gn,E) = Ln(b). +Now, fix k ∈ Qn and k ∉ Gn. By assumption, and using repeatedly that (Gp)p∈N +is increasing, we observe that F(gk) = F(k) for all g ∈ Gn: Lemma (4.3) implies that +F(gk) � F(k) since F(g) � n < F(k); on the other hand, if p ∈ {0,...,m −1} where F(k) = +scale(m), noting that m > 0 since k ∉ G0, then gk ∈ Gp implies k = g −1gk ∈ Gn, which is +a contradiction; hence F(kg) = scale(m), as claimed. +Therefore, the operator MF is constant on ℓ2(Gnk), and thus [MF,b] = 0 on ℓ2(Gnk). +So, +������[ /D∞,b◦] +������ +ℓ2(Gnk,E) = +������[MLH ,b] +������ +ℓ2(Gnk). +We will use the ˘σ-projective right representation of G∞ on ℓ2(G∞), as defined in +Expression (4.4). By construction, the restriction of ρ(k) to ℓ2(Gn) (which we will keep +denoting by ρ(k)) is a unitary onto ℓ2(Gnk) (with inverse the restriction to ℓ2(Gnk) of its +adjoint ρ(k)∗ = ρ(k−1)). Therefore, +(4.7) +������[MLH ,b] +������ +ℓ2(Gnk) = +������[MLH ,b]ρ(k) +������ℓ2(Gnk) +ℓ2(Gn) . +Next, a simple computation shows (like with λ) that the unitary ρ(k) maps dom +� +MLH +� +to itself, and for all ξ ∈ ℓ2(G∞) and h ∈ G∞: +[MLH ,ρ(k)]ξ(h) = (LH(h)−LH(hk))σ(hk,k−1)ξ(hk) +so +������[MLH ,ρ(k)]ξ +������ +ℓ2(Gn) � suph∈Gn |LH(h)−LH(hk)|∥ξ∥ℓ2(Gn) � LH(k)∥ξ∥ℓ2(Gn). Choos- +ing ξ = δ1, we obtain +(4.8) +������[MLH ,ρ(k)] +������ +ℓ2(Gn) = LH(k). +Now, since ρ(k) commutes with λ(g) for all g ∈ G∞, we conclude [b,ρ(k)] = 0, and +thus, on dom +� +MLH +� +[MLH ,b]ρ(k) = MLH bρ(k)−bMLH ρ(k) +(4.9) += MLH ρ(k)b +[b,ρ(k)]=0 +−bρ(k)MLH −b[MLH ,ρ(k)] += [MLH ,ρ(k)]b +ρ(k)MLH b − ρ(k)b +[ρ(k),b]=0 +MLH −b[MLH ,ρ(k)] += [MLH ,ρ(k)]b +ρ(k)[MLH ,b]−b[MLH ,ρ(k)]. + +43 +Therefore, by Equation (4.7), +������[ /D∞,b◦] +������ +ℓ2(Gnk,E) += +������[MLH ,b]ρ(k) +������ℓ2(Gnk) +ℓ2(Gn) +� +������[MLH ,ρ(k)]b +������ℓ2(Gnk) +ℓ2(Gn) + +������ρ(k)[MLH ,b] +������ℓ2(Gnk) +ℓ2(Gn) + +������b[MLH ,ρ(k)] +������ℓ2(Gnk) +ℓ2(Gn) +by Eq. (4.9) +� +������[MLH ,ρ(k)] +������ℓ2(Gnk) +ℓ2(Gn) +�LH (k) by Eq. (4.8) +∥b∥C∗(Gn,σ) + +������ρ(k) +������ℓ2(Gnk) +ℓ2(Gn) +=1 as ρ(k) is unitary +������[MLH ,b] +������ +ℓ2(Gn) +�Ln(b) by Lemma (4.7) ++∥b∥C∗(Gn,σ) +������[MLH ,ρ(k)] +������ℓ2(Gnk) +ℓ2(Gn) +�LH (k) by Eq. (4.8) +� LH(k)∥b∥C∗ +red(Gn,σ) +� C +2 L∞(b) ++Ln(b)+∥b∥C∗ +red(Gn,σ)LH(k) +� ε +C 2 +C +2 L∞(b)+Ln(b)+ C +2 L∞(b) ε +C 2 +� Ln(b)+ ε +C L∞(b). +By Expression (4.6), we thus get +L∞(b) � Ln(b)+ ε +C L∞(b). +Therefore, we have shown that since ε ∈ +� +0, C +2 +� +, +(4.10) +∀b ∈ Cc(Gn) +tr(b) = 0 =⇒ L∞(b) � +1 +1− ε +C +Ln(b). +Now, let b ∈ Cc(Gn). We then easily compute: +L∞(b) = L∞(b −tr(b)1) � +1 +1− ε +C +Ln(b −tr(b)1) = +1 +1− ε +C +Ln(b). +Now, let a ∈ dom(Ln) with Ln(a) � 1. By assumption, there exists a sequence (ak)k∈N +converging in C ∗ +red(Gn,σ) to a such that Ln(ak) � 1 and ak ∈ Cc(Gn) for all k ∈ N. We thus +have, by lower semicontinuity of Ln, and Expression (4.10): +L∞(a) � liminf +k→∞ L∞(ak) � +1 +1− ε +C +liminf +k→∞ Ln(ak) � +1 +1− ε +C +. +Thus, we have shown that, for all n � N, if a ∈ dom(Ln), then a ∈ dom(L∞), and more- +over, +∀a ∈ dom(Ln) +L∞(a) � +1 +1− ε +C +Ln(a). +It is immediate by construction that Ln � L∞ on dom(Ln). Thus we have proven that +for all n � N and k � n, we have Lk � L∞ � +1 +1− ε +C Lk(a). As a byproduct of this, we have +shown that limk→∞LipD((C ∗(Gn,σ),Lk),(C ∗(Gn,σ),L∞) = 0. +We now pause to note that, thanks to our identifications discussed prior to this theo- +rem, and the observation that dom(Ln) ⊆ dom(L∞) which we have just now established, +(C ∗ +red(Gn,σ),ℓ2(Gn)⊗E, /Dn)n∈N is an inductive sequence of spectral triples in the sense +of [20], where the ∗-morphisms from C ∗ +red(Gn,σ) to C ∗ +red(Gn+1,σ) and the linear isometry + +44 +CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER +from ℓ2(Gn) to ℓ2(Gn+1) are just the inclusion maps. Moreover (C ∗ +red(G∞,σ),ℓ2(G∞,E), /D∞) +is indeed the inductive limit of this system. +We now note that since L∞ � +� +1 +1− ε +C +� +Ln and ε ∈ +� +0, C +2 +� +, we have +qdiam +� +C ∗ +red(Gn,σ),Ln +� +� +� +1 +1− ε +C +� +qdiam +� +C ∗ +red(G∞,σ),L∞ +� += +C 2 +2(C −ε) � C. +Let b ∈ dom(Ln), and let a = +� +1− ε +C +� +b ∈ dom(L∞). We then compute: +∥b − a∥C∗ +red(G∞,σ) = +���b − +� +1− ε +C +� +b +��� +C∗ +red(G∞,σ) +� ε +C ∥b∥C∗ +red(G∞,σ) +� ε +C qdiam +� +C ∗ +red(Gn,σ),Ln +�Ln(b) +� ε +C C Ln(b) = εLn(b), +while +L∞(a) = L∞ +�� +1− ε +C +� +b +� +� +1 +1− ε +C +Ln +�� +1− ε +C +� +b +� += Ln(b). +Hence, if n � N2, then: +• ∀a ∈ dom(L∞) +∃b ∈ dom(Ln) : +Ln(b) � L∞(a) and ∥b − a∥C∗ +red(G∞,σ) < εL∞(a), +• ∀b ∈ dom(Ln) +∃a ∈ dom(L∞) : +L∞(a) � Ln(b) and ∥a −b∥C∗ +red(G∞,σ) < εLn(b). +Therefore, by Theorem (3.17), we conclude that +lim +n→∞Λspec((C ∗ +red(Gn,σ),ℓ2(Gn,E), /Dn),(C ∗ +red(G∞,σ),ℓ2(G∞,E), /D∞)) = 0, +as claimed. +□ +We now wish to apply Theorem (4.11) to the family in Example (4.1), as well as to the +Bunce-Deddens algebras. Thus, we shall now focus on Abelian groups. +So from now on we assume that G∞ is Abelian. Therefore we will employ the additive +notation for the groups Gn (n ∈ N). Since Abelian groups are amenable, we will also from +now on identify C ∗ +red(Gn,σ) with C ∗(Gn,σ) for all n ∈ N. +A key condition for Theorem (4.11) is always met when working with Abelian groups, +as seen in the following lemma. +Lemma 4.12. With the assumptions and notation of Subsection (4.2), for any n ∈ N, if Gn +is Abelian, then we have that +{a ∈ dom(Ln) : Ln(a) � 1} = cl({a ∈ Cc(Gn) : Ln(a) � 1}). +Proof. Fix n ∈ N. Since Ln is lower semicontinuous, we get +cl({a ∈ dom(Ln)∩Cc(Gn) : Ln(a) � 1}) ⊆ {a ∈ dom(Ln) : Ln(a) � 1}. +We now prove that when Gn is Abelian, the converse inclusion holds. +Let � +Gn be the Pontryagin dual of Gn (we will use the multiplicative notation for � +Gn). +The dual action β of � +Gn on C ∗(Gn,σ) is unitarily implemented by defining, for each +z ∈ � +Gn, the unitary vz of ℓ2(Gn,E) which is given by, for all ξ ∈ ℓ2(Gn)⊗E: +vzξ : g ∈ Gn �−→ z(g)ξ(g)(= z(−g)ξ(g)). + +45 +It is easily checked that z ∈ � +Gn �→ vz is a unitary representation of � +Gn. We then note +that: +∀z ∈ � +Gn +vzλE(g)(vz)∗ = βzλE(g). +By construction, /Dn commutes with vz for all z ∈ � +Gn, so β acts by full quantum +isometries on (C ∗(Gn,σ),Ln). +Let µ be the Haar probability measure on � +Gn. As seen in [32, Lemma 3.1],[57, Theorem +8.2], there exists a sequence (ϕk)k∈N of non-negative functions over � +Gn, each obtained as +a linear combination of characters of � +Gn (i.e. of the form z ∈ � +Gn �→ z(g) for some g ∈ Gn, +by Pontryagin duality), such that +� +� +Gn ϕk dµ = 1 for all k ∈ N, and (ϕk)k∈N converges, in +the sense of distributions, to the Dirac measure at 1 ∈ � +Gn, i.e., for all f ∈ C(� +Gn), +lim +k→∞ +� +� +Gn +f (z)ϕk(z)dµ(z) = f (1). +We define, for each k ∈ N, the continuous linear endomorphism: +βϕk : a ∈ C ∗(Gn,σ) �→ +� +� +Gn +βz(a)ϕk(z)dµ(z), +acting on C ∗(Gn,σ). Since the dual action is strongly continuous, we conclude that, for +all a ∈ C ∗(Gn,σ): +lim +k→∞ +��βϕk (a)− a +�� +C∗(Gn) = 0. +Since Ln is lower semicontinuous, ϕk � 0 and +� +� +G∞ ϕk dµ = 1 for all k ∈ N, and β acts +by quantum isometries, we also get, for all a ∈ dom(Ln), +Ln +� +βϕk (a) +� +� +� +� +Gn +ϕ(z)Ln(a)dµ(z) = Ln(a). +As a quick digression, lower semicontinuity also implies that Ln(a) � liminfk→∞Ln(βϕk(a)), +so altogether we have shown that Ln(a) = liminfk→∞Ln(βϕk (a))). +For each k ∈ N, as ϕk is a linear combination of characters of � +Gn, there exists a +finite subset F ⊆ Gn and a function t : F → C such that ϕk : z ∈ � +Gn �→ � +g∈F t(g)z(g); +the range of βϕk is then the finite dimensional subspace of Cc(Gn) consisting of the +functions supported on F. For our purpose, the main observations here are that, given +a ∈ dom(Ln), and ε > 0, there exists K ∈ N such that if k � K , then +��a −βϕk (a) +�� +C∗(Gn,σ) < +ε and Ln(βϕk (a)) � Ln(a). In particular, again since Ln is lower semi-continuous, it +follows that: +(4.11) +{a ∈ dom(L /D) : L /D(a) � 1} = cl({a ∈ dom(L /D)∩Cc(Gn) : L /D(a) � 1}), +as claimed. +□ +Remark 4.13. With the notation of the proof of Lemma (4.12), fix ϕ ∈ S (C ∗(Gn,σ)). Since, +for all k ∈ N, we have +� +� +Gn ϕk dµ = 1, we conclude that βϕk is a unital map, and thus +sup +���a −βϕk (a) +�� +C∗(Gn) : a ∈ dom(Ln),Ln(a) � 1 +� += sup +���a −βϕk (a) +�� +C∗(Gn) : a ∈ dom(Ln),Ln(a) � 1,µ(a) = 0 +� +where the second supremum is indeed finite since X = {a ∈ dom(Ln) : Ln(a) � 1,µ(a) = 0} +is compact and we take the supremum of a continuous function over this set. In fact, +Arzelà-Ascoli theorem can be applied here to prove that the convergence of (βϕk )k∈N to + +46 +CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER +the identity on X is uniform, though we here offer a simple ε +3-type argument. First, note +that for all a,b ∈ C ∗(G∞), and for all k ∈ N, +��βϕk (a)−βϕk (b) +�� +C∗(G∞) � +� +� +G∞ +∥a −b∥C∗(G∞) ϕk(z)dµ(z) = ∥a −b∥C∗(G∞) . +Moreover, for all ε > 0, there exists a finite ε +3-dense subset Xε of X ; as Xε is finite, there +exists K ∈ N such that, for all k � K and for all a ∈ Xε, then +��a −βϕk (a) +�� +C∗(G∞) < ε +3, as +seen above; therefore for all k � K , we have +��a −βϕk (a) +�� +C∗(G∞) � +��a − a′�� +C∗(G∞) + +��a′ −βϕk (a′) +�� +C∗(G∞) + +��βϕk (a′ − a) +�� +C∗(G∞) +< ε +3 + ε +3 + ε +3 = ε. +This proves that indeed, (βϕk )k∈N converges uniformly to the identity over X . +We will prove that some of the spectral triples introduced in Subsection (4.2) are +metric by invoking a property central to the work in [9, 50], called bounded doubling, +which we now recall in the formulation of [50]. +Definition 4.14 ([9, 50]). A proper length function L on a discrete group G satisfies the +bounded doubling property when there exists θ > 1 and c > 0 such that, for all r � 1: +��� +g ∈ G : L(g) � θ ·r +��� � c +��� +g ∈ G : L(g) � r +���. +The bounded doubling property indeed ensures the following result. +Lemma 4.15. The spectral triples constructed in Subsection (4.2) are metric if the proper +length function L := max{LH,F} has the bounded doubling property. +Proof. We note that Lemma (4.3) proves that L is a proper unbounded length function. +By [9, 50], since all our groups are Abelian hence nilpotent, for any µ ∈ S (C ∗(Gn),σ), +the set +� +a ∈ Cc(Gn) : |||[ML,a]|||ℓ2(Gn) � 1,µ(a) = 0 +� +is totally bounded. Since |||[ML,·]|||ℓ2(Gn) � Ln on Cc(Gn), we thus conclude that +� +a ∈ Cc(Gn) : Ln(a) � 1,µ(a) = 0 +� +⊆ +� +a ∈ Cc(Gn) : |||[ML,a]|||ℓ2(Gn) � 1,µ(a) = 0 +� +and thus +� +a ∈ Cc(Gn) : Ln(a) � 1,µ(a) = 0 +� +is also totally bounded. By Lemma (4.12), we +also have: +{a ∈ dom(Ln) : Ln(a) � 1,µ(a) = 0} = cl +�� +a ∈ Cc(Gn) : Ln(a) � 1,µ(a) = 0 +�� +so {a ∈ dom(Ln) : Ln(a) � 1,µ(a) = 0} is compact. Thus by Theorem (2.9), Ln is a Lipschitz +seminorm, i.e. our spectral triples are metric. +□ +We are now ready to establish the following theorem. +Theorem 4.16. Let G = � +n∈NGn be an Abelian discrete group, arising as the union of a +strictly increasing sequence (Gn)n∈N of subgroups of G. Let σ be a 2-cocycle of G and LH a +length function on G such that +lim +n→∞Haus[LH](Gn,G) = 0, +and whose restriction to Gn is proper for all n ∈ N. Assume scale : N → [0,∞) is a strictly +increasing, unbounded function such that, if we set +F : g ∈ G �−→ scale(min{n ∈ N : g ∈ Gn}) + +47 +then the proper length function L := max{LH,F} has the bounded doubling property. +Then, for any Hermitian space E, +lim +n→∞Λspec((C ∗(G,σ),ℓ2(G)⊗E, /D),(C ∗(Gn,σ),ℓ2(Gn)⊗E, /Dn)) = 0, +where +• +/D = MLH ⊗γ1 +MF ⊗γ2 on +� +ξ ∈ ℓ2(G)⊗E : � +g∈G(LH(g)2 +F(g)2) +��ξ(g) +��2 +E < ∞ +� +, +with γ1,γ2 unitaries of E such that, for all j,k ∈ {1,2}: +γj γk +γkγj = +� +2 if j = k, +0 otherwise. +• ℓ2(Gn)⊗E is identified with the subspace of Gn-supported vectors in ℓ2(G)⊗E, +• +/Dn is the restriction of /D to dom( /D)∩ +� +ℓ2(Gn)⊗E +� +, +• C ∗(G,σ) and C ∗(Gn,σ) act via their left regular σ-projective representations. +Proof. Our theorem follows from Theorem (4.11). We first note that Lemma (4.15) proves +that all our spectral triples are metric. By Lemma (4.12), since G∞ is Abelian, we conclude +that, for all n ∈ N, +{a ∈ dom(Ln) : Ln(a) � 1} = cl({a ∈ Cc(Gn) : Ln(a) � 1}). +Since all hypotheses of Theorem (4.11) are met, the result follows. +□ +In particular, for the noncommutative solenoids of Example (4.1), we obtain the +following. +Corollary 4.17. Fix a prime number p ∈ N and d ∈ N\{0,1}. For each n ∈ N, let +Gn := +� 1 +pn Z +�d +and +G∞ := +� +Z +� 1 +p +��d +. +Fix a 2-cocycle σ on G∞ such that ∀g ∈ G∞ +σ(g,−g) = 1. +Let LH be the restriction to G∞ of some norm on R2. We define F by setting, for all +g ∈ G∞: +F(g) := min +� +pn : g ∈ +� 1 +pn +�d� +. +Let E be an even dimensional hermitian space, with γ1,γ2 be two unitaries on E such +that, for all j,k ∈ {1,2}: +γj γk +γkγj = +� +2 if j = k, +0 otherwise. +If we define, for all n ∈ N, the operator +/Dn := MLH ⊗γ1 + MF ⊗γ2 on dom( /Dn) +on the domain +dom( /Dn) := +� +ξ ∈ ℓ2(Gn,E) : +� +g∈Gn +(LH(g)2 +F(g)2) +��ξ(g) +��2 +E < ∞ +� +, +then, for all n ∈ N, the triple (C ∗(Gn,σ),ℓ2(Gn,E), /Dn) is a metric spectral triple, and: +lim +n→∞Λspec((C ∗(Gn,σ),ℓ2(Gn,E), /Dn),(C ∗(G∞,σ),ℓ2(G∞,E), /D∞)) = 0. + +48 +CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER +Moreover, for each n ∈ N, the sequence (C ∗(Gn,σ),Lk)k�n of quantum compact metric +spaces converge to (C ∗(Gn,σ),L∞) in the Lipschitz distance. +Proof. We first establish the bounded doubling property of certain related length func- +tions. +Fix a prime number p and d � 2. For all g ∈ G∞, let +L′(g) = max +� +��g +��Rd ,p +min +� +n∈N:g∈ +� +1 +pn Z +�d �� +, +where the norm we choose on Rd for this proof is the max norm. By Lemma (4.3), the +function L′ is an unbounded proper length function. By Lemma (4.7), we have that +|||[ML′,·]|||ℓ2(Gn) � Ln on C(Gn) for all n ∈ N. By [11], the triple (C ∗(Gn,σ),ℓ2(Gn),ML′) is +a spectral triple. +Assume L′(g) � pn. Since g ∈ +� +1 +pn Z +�d +, we can write g = +� aj +pn +� +1�j�d for a1,...,ad ∈ Z. +Since +��g +��Rd � pn, we also have a1,...,ad ∈ [−p2n,p2n]. Conversely, if g = +� aj +pn +� +1�j�d +with −p2n � a j � p2n for all j ∈ {1,...,d}, then L′(g) � pn by definition. Hence, the closed +ball of center (0,0) and radius pn has cardinal (2p2n +1)d. +Consequently: +��� +g ∈ G∞ : L′(g) � pn+1��� = (2p2n+2 +1)d +� (2p2n+2 + p2)d += p2d(2p2n +1)d +� p2d ��� +g ∈ G∞ : L′(g) � pn���. +Therefore, L′ is a proper unbounded length with the bounded doubling property. +Let LH be any norm on Rd. Since all the norms on Rd are equivalent, there exists +C > 0 such that 1 +C LH � ∥·∥Rd � CLH. Then +1 +C (max{LH,F}) � L′ � C max{LH,F}. +Therefore, +��� +g ∈ G∞ : max +�LH(g),F(g) +� +� pn+1��� � C 2p2d ��� +g ∈ G∞ : max +�LH(g),F(g) +� +� pn���. +Write L := max{LH,F} on Cc(Gn). We thus have shown that L, which is unbounded +and proper by Lemma (4.3), also has the bounded doubling property. +By Lemma (4.12), since G∞ is Abelian, we conclude that +∀n ∈ N +{a ∈ dom(Ln) : Ln(a) � 1} = cl({a ∈ Cc(Gn) : Ln(a) � 1}). +Thus, our corollary follows from Theorem (4.11). +□ +We can choose somewhat different length functions over +� +Z +� +1 +p +��d +, by varying not +only LH, but also F. For instance, Corollary (4.17) remains valid if we replace F by +F′ : (g1,...,gd) ∈ G∞ �→ maxd +j=1 |g j |p, where |·|p is now the p-norm. The resulting length +function max{LH,F′} has the bounded doubling property, as seen by applying [19, Propo- +sition 3.17] up to an equivalence of metrics. We also note that for this construction to +give us something different from Corollary (4.17), we require that LH(g) < F′(g) for at +least one g ∈ Zd \{0}. In general, the difference is only up to a bounded perturbation of +the underlying Dirac operator. + +49 +Another interesting family of C*-algebras to which our work applies are certain Bunce- +Deddens algebras. +Notation 4.18. Let P be the set of all sequences (αn)n∈N of nonzero natural numbers +such that αn+1 +αn +is a prime number for all n ∈ N. +Notation 4.19. For any integer m ∈ Z, we denote the quotient group Z⧸mZ simply by +Z⧸m. +Notation 4.20. Let α := (αn)n∈N ∈ P. If n ∈ N, then αn divides αn+1, and thus the map +ρn : (m +mod αn+1) ∈ Z⧸αn+1 → (m +mod αn) ∈ Z⧸αn +where x mod y is the equivalence class of x ∈ Z modulo y ∈ Z \ {0}, is a well-defined +surjective group morphism. The projective limit of the projective sequence +Z⧸α0 +ρ0 +←−−− +Z⧸α1 +ρ1 +←−−− +Z⧸α2 +ρ2 +←−−− +Z⧸α3 +ρ4 +←−−− +··· +is denoted by Z⧸α. By construction, we observe that: +Z⧸α = +� +(zn)n∈N ∈ +∞ +� +j=0 +Z⧸αn : ρn(zn+1) = zn +� +. +We endow Z⧸α with its topology as a projective space of compact spaces, i.e. with the +topology induced by the product topology on �∞ +j=0Z⧸αn, which is compact by Tychonoff +theorem. +We identify, for any m ∈ N\{0}, the Pontryagin dual � +Z⧸m of Z⧸m with the subgroup +of T of m-th roots of unity in the obvious manner — while of course, Z⧸m is self-dual, +this identification will be helpful to our presentation. The Pontryagin dual Z(α) := � +Z⧸α +of Z⧸α is thus, by contravariant functoriality, the limit of the inductive sequence: +� +Z⧸α0 +j0 +−−−→ +� +Z⧸α1 +j1 +−−−→ � +Z⧸α2 +j2 +−−−→ +� +Z⧸α3 +j3 +−−−→ +··· +where j1,j2,..., are simply the injection maps. Of course, by construction: +Z(α) = +� +ζ ∈ T : ∃n ∈ N +ζαn = 1 +� +, +where T = {u ∈ C : |u| = 1} is the circle group; moreover Z(α) is a discrete group as the +dual of a compact group (i.e. we do not endow it with the topology inherited as a subset +of T). +The Pontryagin duality pairing between Z(α) and its dual Z⧸α is given for all ζ ∈ Z(α) +and for all z := (zn)n∈N ∈ Z⧸α by ζz := limn→∞ ζzn, noting that the sequence (ζzn)n∈N is +eventually constant, by construction. +In the special case when α = (p,p2,p3,...), the group Z(α) is the Prüfer group Z(p∞) +and the group Z⧸α is the group Zp of p-adic integers. +Lemma 4.21. Let α := (αn)n∈N ∈ P. Let LH be a length function over the circle group T +restricted to Z(α) such that limn→∞Haus[LH] +� +� +Z⧸αn ,Z(α) +� += 0. +For all ζ ∈ Z(α), we define +F(ζ) := min +� +p ∈ N : ζp = 1 +� +. +Let ∥·∥R2 be any monotone norm on R2. The function +L : ζ ∈ Z(α) �→ ∥(LH(ζ),F(ζ))∥R2 + +50 +CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER +is a proper unbounded length function over Z(α). +Moreover, L has the bounded doubling property if, and only if, the sequence +� +αn+1 +αn +� +n∈N +is bounded. +Proof. First, it is easy to see that, for all ζ ∈ Z(α)\{1}, +F(ζ) = p +min +� +n∈N:ζ∈� +Z⧸αn +� +, +while F(1) = 0. Therefore, by Lemma (4.3), we already know that L is a proper unbounded +length function on Z(α). +For now, let us assume ∥·∥R2 is the max norm. +For any ρ > 0, we write B[ρ] the cardinality of the closed ball centered at (1,0) ∈ +Z(α)×Z of radius ρ. For any d ∈ N, we compute the following expression: +B [αd] = |{ζ ∈ Z(α) : L(ζ) � αd}| = +���� +� +ζ ∈ � +Z⧸αd +����� = αd. +Now, let R � 1. Then, there exists d ∈ N such that αd � R � αd+1. We note that since +B[R] � B[αd+1] < ∞, our length function L is indeed proper; we also note that since +B[R] � B[αd] = αd � 2d, the length function L is also unbounded. +Now, assume that M := supn∈N +αn+1 +αn < ∞. We then compute: +B[2R] � B[2αd+1] � B[αd+2] = αd+2 += αd+2 +αd+1 +αd+1 +αd +αd � M2αd = M2B[αd] � M2B[R]. +Therefore, our length L has the bounding doubling property. Now, if we allow for a +different choice of monotone norm for ∥·∥R2, then, as all norms on R2 are equivalent, +the resulting length function still has the property of bounded doubling. +Now, assume instead that supn∈N +αn+1 +αn = ∞. Let n ∈ N, and let rn = αn+1/2. We then +note, using our above computation, that +B[2rn] = αn+1 = αn+1 +αn +·B[rn], +and thus αn+1 +αn += B[2rn] +B[rn] for all n ∈ N; therefore, our length L does not actually have the +bounded doubling property. +□ +Corollary 4.22. Let α = (αn)n∈N be a sequence of nonzero natural numbers such that +� +αn+1 +αn +� +n∈N is a bounded sequence of prime numbers, and let +Z(α) := +� +ζ ∈ C : ∃n ∈ N +ζαn = 1 +� +. +Define: +G∞ := Z(α)×Z and ∀n ∈ N +Gn := � +Z⧸αn ×Z, +i.e. Gn = {(ζ,z) ∈ G∞ : z ∈ Z,ζαn = 1}. Let σ be a 2-cocycle of G∞. +Let LZ be the restriction of any continuous length function on T to Z(α), and define +LH : (u,z) ∈ G∞ �→ LZ (u)+|z|. +For all ζ ∈ Z(α), set: +F(ζ) := min{n ∈ N : un = 1}. +Let E be a Hermitian vector space, and let γ1,γ2 be unitaries such that γ1γ2 = −γ2γ1 +and γ2 +1 = γ2 +2 = 1E. +If we set, for all n ∈ N, +/Dn := MLH ⊗γ1 + MF ⊗γ2, + +51 +then for all n ∈ N, the spectral triple (C ∗(Gn,σ),ℓ2(Gn)⊗E, /Dn) is metric, and +lim +n→∞Λspec �� +C ∗(Gn,σ),ℓ2(Gn)⊗E, /Dn +� +, +� +C ∗(Z(α)×Z,σ),ℓ2(Z(α)×Z)⊗E, /D∞ +�� += 0. +Proof. A straightforward computation shows that |·| is proper with the bounded doubling +property. +By [19, Proposition 3.7] applied to the proper unbounded lengths | · | and LZ , we +conclude that L := (ζ,z) ∈ G∞ �→ LZ (ζ)+F(ζ)+|m| has the bounded doubling property. +Since LZ is continuous on T, it induces the usual topology on T (as a subset of C). +Therefore, the topology of the Hausdorff distance Haus[LH] is the Vietoris topology for +the usual topology of T, and thus the same as the topology induced by Haus[T], when T +is endowed with the restriction of the usual metric on C. It then follows that: +lim +n→∞Haus[LH] +� +� +Z⧸αn,Z(α) +� += 0. +As all the other assumptions are now met, we conclude that our corollary holds, by +Theorem (4.16). +□ +The map +ϖ : z ∈ Z �→ (z +mod αn)n∈N ∈ Z⧸α +is an injective *-morphism of group with dense range. Now, we define the following +automorphism of Z(α): +τ : u ∈ Z(α) �→ u +ϖ(1). +The C*-crossed-product C(Z(α))⋊τ Z is the Bunce-Deddens algebra associated to the +“supernatural” number +n := +� +p|{n∈N: αn+1 +αn =p}|� +p prime . +It is also *-isomorphic to C ∗(Z(α) × Z,σ), as defined above, when σ is the 2-cocycle +defined by setting, for all (ζ,z),(η, y) ∈ G∞: +σ((ζ,z),(η, y)) := ηz. +Indeed, this isomorphism can be obtained by using [52]. We begin with the observa- +tion that Bunce-Deddens algebras [8] are C*-crossed products [54, 18]. Now, let us briefly +explain the construction of this isomorphism. Since the natural inclusion j : Z(α) → T +is a character of Z(α), it is given by the pairing with an element in Z⧸α; this element is +precisely our ϖ(1) defined above. In our case, we note that λ(1,1)λζ,0λ∗ +(1,1) = ζ−1λζ,0 for all +ζ ∈ Z(α). If f ∈ Cc +�Z⧸α +� +, we denote its Fourier transform by �f ; specifically +�f : ζ ∈ Z(α) �→ +� +z∈Z⧸α +f (z)ζ−z. +A straightforward computation shows that � +τ(f )(ζ) = ζ−1 �f (ζ). Thus, we conclude that +λ(1,1)λ( �f )λ∗ +(1,1) = λ +� +� +τ(f ) +� +. A similar computation invoking the inverse Fourier transform +can be done by using the canonical generators of the C*-crossed product C +�Z⧸α +� +⋊τ +Z. By universality of the C*-crossed-product and the twisted group C*-algebra (here, +since our groups are Abelian, these algebras agree with their image by their left regular +representations), we conclude the description of our isomorphism. +Thus, we have constructed metric spectral triples over Bunce-Deddens algebra for +bounded supernatural numbers, and these triples are limits of sequences of metric +spectral triples for the spectral propinquity. + +52 +CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER +In particular, C ∗(Z(α)×Z,σ) is seen to be the inductive limit and the limit for the +propinquity, with the quantum metrics described here, of the C*-algebras C ∗ +� +� +Z⧸αn +×Z,σ +� +as n ∈ N approaches ∞. Notably, C ∗ +� +� +Z⧸αn ×Z,σ +� +is actually *-isomorphic to +the C*-algebra of continuous sections of a vector bundle over the circle T with fibers +the algebras of square αn-matrices. This situation is of course reminiscent of the fact +that in particular, Bunce-Deddens algebras are AT algebras. However, starting from the +usual description of Bunce-Deddens algebras as AT algebras led to difficulties in [6], +where the quantum metrics on the Bunce-Deddens algebra do not arise from a spectral +triple, and the convergence is only proven in the sense of Rieffel’s quantum Gromov- +Hausdorff distance. Thus, for Bunce-Deddens algebras associated with supernatural +numbers consisting of only finitely many prime numbers, we have now constructed +metric spectral triples which actually capture their inductive limit structure within our +geometric framework. We hope that Theorems (4.11) and (4.16) will prove useful in +constructing other examples of metric spectral triples over twisted group C*-algebras for +interesting inductive limits of groups. +REFERENCES +[1] V. Aiello, D. Guido, T. Isola, Spectral triples for noncommutative solenoidal spaces from self-coverings, 448 +(2017), 1378–1412. +[2] A. Austad and F. Luef, Modulation spaces as a smooth structure in noncommutative geometry, Banach J. +Math. Anal. 15 (2021) 15–35. +[3] K. Aguilar and J. Kaad, The Podle´s sphere as a spectral metric space., J. Geom. Phys. 133 (2018), 260–278. +[4] K. Aguilar, F. Latrèmolière, and T. Rainone, Bunce-Deddens algebras as quantum Gromov-Hausdorff +distance limits of circle algebras, Integral Equations Operator Theory 94 (2022), no. 1, Paper No. 2, 42 pp. +[5] K. Aguilar and F. Latrémolière, Quantum ultrametrics on AF algebras and the Gromov-Hausdorff propin- +quity, Studia Math. 231 (2015), no. 2, 149–194, ArXiv: 1511.07114. +[6] K. Aguilar, F. Latrémolière, and T. Rainone, Bunce-Deddens algebras as quantum Gromov-Hausorff distance +limits of circle algebras, Integral Equations Operator Theory 94 (2022), no. 1, Paper no. 2, 42pp, ArXiv: +2008.07676. +[7] C. Antonescu and E. Christensen, Spectral triples for af C∗-algebras and metrics on the Cantor set, J. Oper. +Theory 56 (2006), no. 1, 17–46, arXiv: 0309044. +[8] J. W. Bunce and J. Deddens, A family of simple C∗-algebras related to weighted shift operators, J. Functional +Analysis 19 (1975), 13–24. +[9] M. Christ and M. A. Rieffel, Nilpotent group C∗-algebras-algebras as compact quantum metric spaces, +Canad. Math. Bull. 60 (2017), no. 1, 77–94, arXiv: 1508.00980. +[10] E. Christensen, C. Ivan, and M. Lapidus, Dirac operators and spectral triples for some fractal sets built on +curves, Adv. Math. 217 (2008), no. 1, 42–78. +[11] A. Connes, Compact metric spaces, Fredholm modules and hyperfiniteness, Ergodic Theory Dynam. Systems +9 (1989), no. 2, 207–220. +[12] +, Noncommutative geometry, Academic Press, San Diego, 1994. +[13] L. Dabrowski, G. Landi, A. Sitarz, W. van Suijlekom, and J. C. Varilly, The Dirac operator on SUq(2), Comm. +Math. Phys. 259 (2005), 729–759. +[14] K. R. Davidson, C∗−Algebras by example, Fields Institute Monographs, American Mathematical Society, +1996. +[15] L. Da¸browski and A. Sitarz, Curved noncommutative torus and Gauß-Bonnet, J. Math. Phys. 013518 (2013). +[16] +, An asymmetric noncommutative torus, SIGMA 11 (2015), 11 pages, arXiv: 1406.4645. +[17] David A. Edwards, The structure of superspace, Studies in topology (Proc. Conf., Univ. North Carolina, +Charlotte, N. C., 1974; dedicated to Math. Sect. Polish Acad. Sci.), 1975, p. 121–133. MR 0401069 +[18] R. Exel, The Bunce-Deddens algebras as crossed products by partial automorphisms, Bol. Soc. Brasil. Mat. +(N.S.) 25 (1994), 173–179. +[19] C. Farsi, T. Basa Landry, N. S. Larsen, and J. Packer, Spectral triples for noncommutative solenoids and a +Wiener’s lemma, (2022), ArXiv: 2212.07470. + +53 +[20] R. Floricel and A. Ghorbanpour, On inductive limit spectral triples, Proc. Amer. Math. Soc. 147 (2019), no. 8, +3611–3619, ArXiv: 1712.09621. +[21] O. Gabriel and M. Grensing, Ergodic actions and spectral triples, J. Oper. Theory 76 (2016), no. 2, 307–334. +[22] M. Gromov, Groups of polynomial growth and expanding maps, Publ. Math. Inst. Hautes Études Sci. 53 +(1981), 53–78. +[23] +, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, +BirkhÀuser, 1999. +[24] A. Hawkins, A. Skalski, S. White, and J. Zacharias, On spectral triples on crossed products arising from +equicontinuous actions, Math. Scand. 113 (2013), no. 2, 262–291. +[25] D. A. Herron, Gromov-Hausdorff distance for pointed metric spaces, J. Anal. 24 (2016), no. 1, 1–38. +[26] Antoine Julien and I. Putnam, Spectral triples for subshifts, J. Funct. Anal. 270 (2016), no. 3, 1031–1063, +arXiv: 1411.6800. +[27] L. V. Kantorovich, On one effective method of solving certain classes of extremal problems, Dokl. Akad. Nauk. +USSR 28 (1940), 212–215. +[28] L. V. Kantorovich and G. Sh. Rubinstein, On the space of completely additive functions, Vestnik Leningrad +Univ., Ser. Mat. Mekh. i Astron. 13 (1958), no. 7, 52–59, In Russian. +[29] T. Landry, M. Lapidus, and F. Latrémolière, Metric approximations of the spectral triple on the Sierpinki +gasket and other fractals, Adv. Math. 385 (2021), Paper No. 107771, 43 pp. +[30] M. Lapidus and J. Sarhad, Dirac operators and geodesic metric on the harmonic Sierpi´nskigasket and other +fractal sets, J. Noncommut. Geom. 8 (2014), no. 4, 947–985. +[31] F. Latrémolière, Continuity of the spectrum of Dirac operators of spectral triples for the spectral propinquity, +Submitted (2022), 49 pages. +[32] F. Latrémolière, Approximation of the quantum tori by finite quantum tori for the quantum Gromov- +Hausdorff distance, J. Funct. Anal. 223 (2005), 365–395, math.OA/0310214. +[33] +, Convergence of fuzzy tori and quantum tori for the quantum Gromov-Hausdorff propinquity: an +explicit approach., Münster J. Math. 8 (2015), no. 1, 57–98, arXiv: math/1312.0069. +[34] +, Curved noncommutative tori as Leibniz compact quantum metric spaces, J. Math. Phys. 56 (2015), +no. 12, 123503, 16 pages, arXiv: 1507.08771. +[35] +, The dual Gromov-Hausdorff propinquity, J. Math. Pures Appl. 103 (2015), no. 2, 303–351, arXiv: +1311.0104. +[36] +, Quantum metric spaces and the Gromov-Hausdorff propinquity, Noncommutative geometry and +optimal transport, Contemp. Math., no. 676, Amer. Math. Soc., 2015, arXiv: 150604341, p. 47–133. +[37] +, Equivalence of quantum metrics with a common domain, J. Math. Anal. Appl. 443 (2016), 1179– +1195, arXiv: 1604.00755. +[38] +, The quantum Gromov-Hausdorff propinquity, Trans. Amer. Math. Soc. 368 (2016), no. 1, 365–411. +[39] +, A compactness theorem for the dual Gromov-Hausdorff propinquity, Indiana Univ. Math. J. 66 +(2017), no. 5, 1707–1753, arXiv: 1501.06121. +[40] +, The triangle inequality and the dual Gromov-Hausdorff propinquity, Indiana Univ. Math. J. 66 +(2017), no. 1, 297–313, arXiv: 1404.6633. +[41] +, Convergence of Cauchy sequences for the covariant Gromov-Hausdorff propinquity, J. Math. Anal. +Appl. 469 (2019), no. 1, 378–404, arXiv: 1806.04721. +[42] +, The modular Gromov-Hausdorff propinquity, Dissertationes Math. 544 (2019), 1–70, arXiv: +1608.04881. +[43] +, Convergence of Heisenberg modules for the modular Gromov-Hausdorff propinquity, J. Operator +Theory 84 (2020), no. 1, 211–237. +[44] +, The covariant Gromov-Hausdorff propinquity, Studia Math. 251 (2020), no. 2, 135–169, arXiv: +1805.11229. +[45] +, Convergence of spectral triples on fuzzy tori to spectral triples on quantum tori, Comm. Math. Phys. +388 (2021), no. 2, 1049–1128, arXiv: 2102.03729. +[46] +, The dual-modular Gromov-Hausdorff propinquity and completeness, J. Noncomm. Geometry 115 +(2021), no. 1, 347–398. +[47] +, The Gromov-Hausdorff propinquity for metric spectral triples, Adv. Math. 404 (2022), Paper No. +108393, 56. +[48] F. Latrémolière and J. Packer, Noncommutative solenoids and the Gromov-Hausdorff propinquity, Proc. +Amer. Math. Soc. 145 (2017), no. 5, 1179–1195, arXiv: 1601.02707. +[49] +, Noncommutative solenoids, New York J. Math. 24A (2018), 155–191, arXiv: 1110.6227. +[50] B. Long and W. Wu, Twisted bounded-dilation group C∗-algebras as C∗-metric algebras, Sci. China Math. +64 (2021), no. 3, 547–572. + +54 +CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER +[51] N. Ozawa and M. A. Rieffel, Hyperbolic group C∗-algebras and free product C∗-algebras as compact +quantum metric spaces, Canad. J. of Math. 57 (2005), 1056–1079, arXiv: math/0302310. +[52] J. Packer, Twisted group C∗-algebras corresponding to nilpotent discrete groups, Mathematica Scandinavica +64 (1989), no. 1, 109–122. +[53] M. Reed and B. Simon, Functional analysis, Methods of modern Mathematical Physics, Academic Press, +San Diego, 1980. +[54] N. Riedel, Classification of the C∗-algebras associated with minimal rotations, Pacific J. Math. 101 (1982), +153–161. +[55] M. A. Rieffel, Metrics on states from actions of compact groups, Doc. Math. 3 (1998), 215–229, +math.OA/9807084. +[56] +, Metrics on state spaces, Doc. Math. 4 (1999), 559–600, math.OA/9906151. +[57] +, Gromov-Hausdorff distance for quantum metric spaces, Mem. Amer. Math. Soc. 168 (2004), no. 796, +1–65, math.OA/0011063. +[58] +, Leibniz seminorms for "matrix algebras converge to the sphere", Clay Mathematics Proceedings 11 +(2010), 543–578, arXiv: 0707.3229. +Email address: carla.farsi@colorado.edu +DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO AT BOULDER, BOULDER CO 80309-0395 +Email address: frederic@math.du.edu +URL: http://www.math.du.edu/~frederic +DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DENVER, DENVER CO 80208 +Email address: judith.jesudason@colorado.edu +DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO AT BOULDER, BOULDER CO 80309-0395 + diff --git a/3NAyT4oBgHgl3EQfb_eW/content/tmp_files/load_file.txt b/3NAyT4oBgHgl3EQfb_eW/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..437e1194e1baca0a5b238e4a64096707062a304d --- /dev/null +++ b/3NAyT4oBgHgl3EQfb_eW/content/tmp_files/load_file.txt @@ -0,0 +1,1903 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf,len=1902 +page_content='CONVERGENCE OF INDUCTIVE SEQUENCES OF SPECTRAL TRIPLES FOR THE SPECTRAL PROPINQUITY CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER ABSTRACT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In the context of metric geometry, we introduce a new necessary and suf- ficient condition for the convergence of an inductive sequence of quantum compact metric spaces for the Gromov-Hausdorff propinquity, which is a noncommutative ana- logue of the Gromov-Hausdorff distance for compact metric spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' This condition is easy to verify in many examples, such as quantum compact metric spaces associated to AF algebras or certain twisted convolution C*-algebras of discrete inductive limit groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Our condition also implies the convergence of an inductive sequence of spectral triples in the sense of the spectral propinquity, a generalization of the Gromov-Hausdorff propinquity on quantum compact metric spaces to the space of metric spectral triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In particular we show the convergence of the state spaces of the underlying C*-algebras as quantum compact metric spaces, and also the convergence of the quantum dynamics induced by the Dirac operators in the spectral triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We apply these results to new classes of inductive limit of even spectral triples on noncommutative solenoids and Bunce-Deddens C*-algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Our construction, which involves length functions with bounded doubling, adds geometric information and highlights the structure of these twisted C*-algebras as inductive limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' CONTENTS 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Introduction 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' A Characterization of Convergence in the Propinquity for Inductive Sequences 6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Preliminaries: the Gromov-Hausdorff Propinquity 7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Main result 10 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Convergence of Inductive Sequences of Metric Spectral Triples for the Spectral Propinquity 21 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Preliminaries: The Spectral Propinquity 21 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Preliminaries: Inductive Limits of Spectral Triples 25 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Main result 26 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Even Spectral Triples on Twisted Group C ∗-algebras 31 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Discrete Groups, Proper Length Functions, 2-Cocycles, and Classical Spectral Triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 31 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The Spectral Triples 32 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Main result 39 References 52 Date: January 3, 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 2000 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Primary: 46L89, 46L30, 58B34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Spectral triples, Noncommutative metric geometry, quantum Gromov-Hausdorff distance, Monge-Kantorovich distance, Quantum Metric Spaces, Quantum Tori, Noncommutative solenoids, Bunce-Deddens algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='00274v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='OA] 31 Dec 2022 2 CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' INTRODUCTION Spectral triples, introduced by Connes in 1985 as a noncommutative generalization of Dirac operators acting on bundles over manifolds [11, 12], have emerged as a powerful means to encode geometric information over noncommutative operator algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Mo- tivated in part by ideas from mathematical physics, and by the recurrent usefulness of various notions of limits of C*-algebras, the second author introduced in [47] a distance on metric spectral triples, up to an obvious notion of unitary equivalence, thus enabling the discussion of approximations of certain spectral triples by others, in a geometric sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' This distance is named the spectral propinquity, and is built from a noncommuta- tive analogue of the Gromov-Hausdorff distance for noncommutative geometry, called the Gromov-Hausdorff propinquity [35, 38, 39, 40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus, convergence of spectral triples is defined as part of a larger framework for convergence of quantum compact metric spaces, which are noncommutative analogues of algebras of Lipschitz functions over compact metric spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Within this framework, the propinquity was extended to certain modules over quantum compact metric spaces [48], and even C*-correspondences [46] with additional metric data inspired by metric connections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The propinquity also was extended to various dynamical systems [41, 44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' These extensions have been used by the second author to define the spectral propinquity over metric spectral triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The spectral propinquity Λspec has been applied to approximations of spectral triples on fractals [29] and on quantum tori [45], with the latter example rooted in matrix mod- els in physics and the problem of their convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Indeed, the spectral propinquity endows the space of all metric spectral triples with its own geometry, and it allows to cap- ture some geometric intuition within the well understood framework of a topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For instance, while quantum tori are not inductive limits of finite dimensional C*-algebras, spectral triples over quantum tori can now be approximated by spectral triples over full matrix algebras to arbitrary precision using the spectral propinquity — a common heuris- tics in mathematical physics, now formalized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Convergence for the spectral propinquity implies convergence of the state spaces of the underlying algebras for a form of Gromov- Hausdorff distance, convergence of the quantum dynamics obtained by exponentiating the Dirac operators, and implies convergence of the spectra and the bounded continuous functional calculus for the Dirac operators, with implications for the convergence of physically important quantities such as the spectral actions [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In this paper, we consider the question of when an inductive sequence of metric spectral triples [20] converges, in the sense of the spectral propinquity, to its inductive limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' To illustrate the power of our result, besides the class of AF algebras, we construct even metric spectral triples on noncommutative solenoids [49] and on some Bunce-Deddens algebras [8, 14] and show that they are limits of metric spectral triples on, respectively, quantum tori and bundles of full matrix algebras over the circle, in the sense of the spectral propinquity Λspec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In this way, we provide a noncommutative geometric version of the fact that solenoid groups can be seen as metric limits of tori, and Bunce-Deddens algebras are metric limits of algebras of matrix valued functions over the circle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' A spectral triple (A,H , /D) is given by a unital C*-algebra A acting on a Hilbert space H and a (usually unbounded) self-adjoint operator /D on H , which has bounded com- mutator with the elements of a dense ∗-subalgebra of A, and has compact resolvent (see Definition (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='1)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Spectral triples contain much geometric information, including metric data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Indeed, Connes noted in [12] that spectral triples define a canonical extended pseudo-distance on the state space of their underlying C*-algebras, which, in particular, 3 recovers the geodesic distance when working with the usual spectral triple given by the Dirac operator acting on the square integrable sections of the spinor bundle of a compact connected Riemannian spin manifold without boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Rieffel in [55, 56] then cast this metric aspect of noncommutative geometry under a new light, starting from the observation that Connes’ distance induced by a spectral triple is a noncommutative analogue of the Monge-Kantorovich metric [27, 28];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' it was thus natural to define a quantum compact metric space as an ordered pair (A,L) of a unital C*-algebra A and a noncommutative analogue of a Lipschitz seminorm L such that, in particular, if we set, for any two states ϕ,ψ of A, mkL(ϕ,ψ) := sup � |ϕ(a)−ψ(a)| : L(a) � 1 � then mkL is a distance inducing the weak-∗ topology on the state space of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The exact list of requirements on the seminorm L have evolved as the study of noncommutative metric geometry matured, and we will use the definition of a quantum compact metric space given in [38, 39] and recalled in Definition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Indeed, a spectral triple whose Connes’ metric induces the weak-∗ topology on the state space of its underlying C*- algebra then automatically gives a quantum compact metric space;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' such a spectral triple is called a metric spectral triple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Metric spectral triples may thus be studied within the context of noncommutative metric geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' As a result, the second author introduced a distance on the space of metric spectral triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The first step in defining this distance, called the spectral propinquity, is the construction of a noncommutative geometric analogue of the Gromov- Hausdorff distance [17, 22, 23] between quantum compact metric spaces, which we will recall in subsection (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The first such analogue was introduced by Rieffel [57], motivated by the possibility of formalizing certain convergence results found in the mathematical physics literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' While several such analogues have been offered, we will work with the Gromov-Hausdorff propinquity Λ∗, introduced by the second author in [35, 38, 39, 40] precisely to be well adapted to C*-algebras theory and the type of seminorms given by spectral triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The propinquity in general is designed precisely to enable distance computations between quantum compact metric spaces defined on unrelated C*-algebras, such as between matrix algebra and quantum tori.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' However, in this work, we investigate what additional properties of the propinquity we can derive when we work with inductive limits of C*-algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We begin this work by establishing a characterization of convergence of inductive limits of quantum compact metric spaces to their inductive limit, in terms of bridge builders, a type of ∗-automorphism with a natural relation to quantum metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Definition (Definition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='20)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For each n ∈ N ∪ {∞}, let (An,Ln) be a quantum com- pact metric space, such that A∞ = cl(� n∈NAn), where (An)n∈N is an increasing (for ⊆) sequence of C*-subalgebras of A∞, with the unit of A∞ in A0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' A ∗-automorphism π : A∞ → A∞ is a bridge builder for ((An,Ln)n∈N,(A∞,L∞)) when, for all ε > 0, there exists N ∈ N such that if n � N, then ∀a ∈ dom(L∞) ∃b ∈ dom(Ln) : Ln(b) � L∞(a) and ∥π(a)−b∥A∞ < εL∞(a) and ∀b ∈ dom(Ln) ∃a ∈ dom(L∞) : L∞(a) � Ln(b) and ∥π(a)−b∥A∞ < εLn(b), where ∥·∥A∞ is the C*-norm on A∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 4 CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER Bridge builders are powerful means to prove metric convergence for the propinquity and notable because it is usually very difficult to find necessary conditions for metric convergence in the sense of the propinquity (besides the trivial convergence for the diameters).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus, this theorem is of independent interest from our study of spectral triples, and addresses the relationship between inductive limits and limits in a metric sense as in [47, 35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Our first main result is therefore the following theorem about convergence for the propinquity Λ∗ of certain inductive sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Theorem (Theorem (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='22)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For each n ∈ N ∪{∞}, let (An,Ln) be a quantum compact metric space, where (An)n∈N is an increasing (for ⊆) sequence of C*-subalgebras of A∞ such that A∞ = cl(� n∈NAn), with the unit of A∞ in A0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We assume that there exists ∃M > 0 such that for all n ∈ N: 1 M Ln � L∞ � M ·Ln on dom(Ln).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Then lim n→∞Λ∗ ((An,Ln),(A∞,L∞)) = 0, if, and only if, for any subsequence (Ag(n),Lg(n))n∈N of (An,Ln)n∈N, there exists a strictly increasing function f : N → N and a bridge builder π for ((Ag◦f (n),Lg◦f (n))n∈N,(A∞,L∞)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The second step in the construction of the spectral propinquity Λspec on the space of metric spectral triples is the extension of the Gromov-Hausdorff propinquity to a distance on the class of C*-correspondences over quantum compact metric spaces endowed with a form of quantum metric, and with a compatible action of some monoid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The C*- correspondence associated with a metric spectral triple (A,H , /D) is the Hilbert space H , seen as a A-C-C*-correspondence, with the quantum metric given by the graph norm of /D, and with the action of [0,∞) on H given by t ∈ [0,∞) �→ exp(it /D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Convergence for the spectral propinquity, by design, implies the convergence of the underlying quantum compact metric spaces, but the converse does not hold in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' These matters will be recalled in detail in Subsection (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We then turn to the more specific context of inductive sequences of metric spectral triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Inductive sequences of spectral triples were introduced in [20], and are a natural source of spectral triples;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' our interest is in the convergence of such sequences for the spectral propinquity, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' in the sense of an actual metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We establish in the present work, as our second main result, that an inductive sequence of metric spectral triples converges for the spectral propinquity when there exists a fully quantum isometric bridge builder for the underlying sequence of quantum compact metric spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Again, it is a surprising result that a mild strengthening of convergence for the Gromov-Hausdorff propinquity implies the much stronger convergence for the spectral propinquity, a fact which does not hold for arbitrary sequences of metric spectral triples, but holds thanks to the structure of inductive limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Our second main theorem is given as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Theorem (Theorem (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='17)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let (A∞,H∞, /D∞) be a metric spectral triple which is the inductive limit of a sequence (An,Hn, /Dn)n∈N of metric spectral triples, in the sense of Definition (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For each n ∈ N∪{∞}, let dom(Ln) := � a ∈ An : a = a∗,a dom( /Dn) ⊆ dom( /Dn) and [ /Dn,a] is bounded � , and, for all a ∈ dom(Ln), let Ln(a) be the operator norm of [ /Dn,a].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 5 If there exists a bridge builder π : (A∞,L∞) → (A∞,L∞) for ((An,Ln)n∈N,(A∞,L∞)) which is a full quantum isometry of (A∞,L∞), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' such that π(dom(L∞)) ⊆ dom(L∞) and L∞ ◦π = L∞ on dom(L∞), then lim n→∞Λspec((An,Hn, /Dn),(A∞,H∞, /D∞)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We conclude our paper with the construction of new even spectral triples on certain twisted group C*-algebras C ∗(G,σ) where the discrete group G = � n∈NGn is the union of a strictly increasing sequence of subgroups Gn of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' These examples include noncom- mutative solenoids [49] and certain Bunce-Deddens algebras [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Our construction is motivated by the desire to see our new spectral triples over C ∗(G,σ) as limits, for the spectral propinquity, of an inductive sequence of metric spectral triples constructed over the inductive sequence (C ∗(Gn,σ))n∈N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' This metric aspect distinguishes our spectral triples from other spectral triples on noncommutative solenoids [1, 2] or Bunce-Deddens algebras [24], and is applicable, in principle, to many other examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Moreover, non- commutative solenoids were shown in [48] to be limits, for the propinquity, of quantum tori, for a different family of quantum metrics which did not come from a spectral triple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In general, it is difficult to prove that a given spectral triple is metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Examples of metric spectral triples can be found over certain manifolds, quantum tori [12, 15, 16, 34, 45], or more generally, over unital C*-algebras endowed with ergodic actions of compact Lie groups [21, 55], over certain C*-crossed-products [24], over quantum groups [13], over Podle´s spheres [3], over AF algebras [7], over certain fractals [10, 30], and more.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We note that there are known examples of spectral triples which are not metric [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' It is therefore quite interesting to obtain new examples of metric spectral triples, and moreover, to prove that they are interesting limits of spectral triples for the spectral propinquity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We thus establish the following third main result of this paper, which draws on the first two in its proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Theorem (Simplified form of Theorem (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='16)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let G = � n∈NGn be an Abelian discrete group, with (Gn)n∈N a strictly increasing sequence of subgroups of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let σ be a 2-cocycle of G, with values in T := {z ∈ C : |z| = 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let LH be a length function over G whose restriction to Gn is proper for all n ∈ N, such that the sequence (Gn)n∈N converges to G for the Hausdorff distance induced on the closed subsets of G by LH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let F : g ∈ G �−→ scale(min{n ∈ N : g ∈ Gn}), where scale : N → [0,∞) is a strictly increasing function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If the proper length function L := max{LH,F} satisfies that, for some θ > 1, there exists c > 0 such that for all r � 1: ��� g ∈ G : L(g) � θ ·r ��� � c ��� g ∈ G : L(g) � r ���, then lim n→∞Λspec((C ∗(G,σ),ℓ2(G)⊗C2, /D),(C ∗(Gn,σ),ℓ2(Gn)⊗C2, /Dn)) = 0, where for all n ∈ N∪{∞} and for all (ξ1,ξ2) in � ξ ∈ ℓ2(Gn)⊗C2 : � g∈Gn (LH(g)2 +F(g)2) ��ξ(g) ��2 C2 < ∞ � , we set /Dξ : g ∈ G �−→ �F(g)ξ2(g)+LH(g)ξ1(g) F(g)ξ2(g)−LH(g)ξ1(g) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 6 CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER In the above spectral triples, C ∗(G,σ) and C ∗(Gn,σ) act via their left regular σ-projective representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We then apply this theorem to construct metric spectral triples on noncommutative solenoids, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' the twisted group C*-algebras C ∗ �� Z � 1 p ��2 ,σ � where Z � 1 p � := � k pn : k ∈ Z,n ∈ N � , with p a prime natural number, and where σ is a 2-cocycle of � Z � 1 p ��2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In this case, using the notation of the above theorem, we choose LH to be the restriction to � Z � 1 p ��2 of any norm on R2, while F can be chosen by setting F(g) := p min � n∈N:g∈ � 1 pn Z �2� for all g = (g1,g2) ∈ � Z � 1 p ��2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Alternatively, following the ideas of [19], which motivated the present work, we can choose F(g1,g2) := max{|g1|p,|g2|p} for all g1,g2 ∈ Z � 1 p � , where |·|p is the p-adic absolute value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Similarly, we can apply [52] to see that the Bunce-Deddens algebras are given as the twisted group C*-algebra C ∗ (Z(α)×Z,σ) for an appropriate choice of a 2-cocycle σ and a sequence α = (αn)n∈N of nonzero natural numbers such that αn+1 αn is a prime number for all n ∈ N, where the group Z(α) is the subgroup of the circle group T given by all roots of unity of order αn for n ranging over N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We endow Z(α) with the discrete topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The supernatural number number describing the ∗-isomorphism class of the Bunce- Deddens algebra thus obtained is � p|{n∈N: αn+1 αn =p}|� p prime .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For our purpose, we will work with sequences α for which � αn+1 αn � n∈N is bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In this case, we will choose LH to be the sum or the max (or one of many other choices) of the restriction of a length function over T to Z(α), and the absolute value on Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Observing that Z(α) = � n∈N � Z⧸αn, where � Z⧸m is the group of all m-th roots of unity, we then set F(ζ,z) := min{αn : ζ ∈ � Z⧸αn} for all (ζ,z) ∈ Z(α)×Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' This provides a new way to look at Bunce-Deddens algebras as limits of algebras of continuous sections of bundles of matrix algebras over circles in a geometric sense, as an echo of the topological fact that they are AT algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' This work thus provides an approach to endowing Bunce-Deddens algebras with a different quantum metric from [29], with the advantage that our quantum metrics are induced by spectral triples — solving the main difficulty in [29], at least for these Bunce-Deddens algebras to which our present work applies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Acknowledgements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' This work was partially supported by the Simons Foundation (Si- mons Foundation collaboration grant #523991 [C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Farsi] and # 31698 [J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Packer].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=') 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' A CHARACTERIZATION OF CONVERGENCE IN THE PROPINQUITY FOR INDUCTIVE SEQUENCES We introduce in this section the notion of bridge builders associated with inductive sequences of quantum compact metric spaces, which can be used to characterize the 7 convergence of such sequences to their inductive limits in the sense of the Gromov- Hausdorff propinquity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We begin with a review of the notions of quantum compact metric spaces and propinquity, and then we prove our main theorem, which underlies all the rest of our work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Preliminaries: the Gromov-Hausdorff Propinquity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Our work is concerned with quantum compact metric spaces, which are noncommutative analogues of the algebras of Lipschitz functions over a compact metric space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Our definition is the result of a natural evolution from the notion of compact quantum metric spaces introduced in [55] by Rieffel, designed as the natural context for the construction of the propinquity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' This subsection will also set some of the basic notation which we will use throughout this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Notation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By default, we denote the norm of a normed vector space E by ∥·∥E , and for us, the set N of natural numbers always contains zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Notation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If A is a unital C*-algebra, then the unit of A will simply be denoted by 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The state space of the C*-algebra A is denoted by S (A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For any a ∈ A, we write ℜa = a+a∗ 2 and ℑa = a−a∗ 2i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The space {a ∈ A : a = a∗} is denoted by sa(A) and is closed under the Jordan product a,b ∈ sa(A) �→ ℜ(ab) and the Lie product a,b ∈ sa(A) �→ ℑ(ab), making sa(A) a Jordan-Lie algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='3 ([11, 38, 39, 55, 57, 58]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Fix Ω � 1 and Ω′ � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' An (Ω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='Ω′)-quantum com- pact metric space (A,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='L) is given by a unital C*-algebra A and a seminorm L defined on a dense Jordan-Lie subalgebra dom(L) of sa(A) such that: (1) {a ∈ dom(L) : L(a) = 0} = R1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' (2) the Monge-Kantorovich metric mkL,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' defined on the state space S (A) of A,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' by,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' for all ϕ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='ψ ∈ S (A): mkL(ϕ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='ψ) := sup � |ϕ(a)−ψ(a)| : a ∈ dom(L),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='L(a) � 1 � is a metric which induces the weak-∗ topology on S (A),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' (3) for all a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='b ∈ sa(A),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' max{L(ℜ(ab)),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='L(ℑ(ab))} � Ω(∥a∥AL(b)+L(a)∥b∥A)+Ω′L(a)L(b);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' this inequality being referred to as the (Ω,Ω′)-Leibniz inequality, (4) the set {a ∈ dom(L) : L(a) � 1} is closed in A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Any such a seminorm L is called a Lipschitz seminorm on A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Convention 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By convention, if L is a Lipschitz seminorm on some unital C*-algebra A, we will write L(a) = ∞ whenever a ∉ dom(L), with the convention that 0∞ = 0 and ∞+x = x+∞ = ∞ for all x ∈ [0,∞].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' With this convention, L is lower semicontinuous over sa(A) as a [0,∞]-valued function (not just on dom(L) but on the entire space sa(A)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Convention 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Throughout this paper, we fix Ω � 1 and Ω′ � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' These parameters will be implicit in our notation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' when working with spectral triples, one may always assume Ω = 1 and Ω′ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If (A,L) is a quantum compact metric space, then we record the following fact which we shall use repeatedly: if a ∈ dom(L), then L(a +t1) = L(a) for all t ∈ R, since L(a) = L(a+t1−t1) � L(a+t1)+L(t1) = L(a+t1)+t L(1) =0 = L(a+t1) � L(a)+tL(1) = L(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 8 CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER Since the state space of a quantum compact metric space is a compact metric space for the Monge-Kantorovich metric, it has bounded diameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Moreover, its diameter can used to obtain a natural bound on the norm of some self-adjoint elements, which is a simple but very useful result, which we now recall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Notation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The diameter of a metric space (E,d) is denoted by diam(E,d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If (A,L) is a quantum compact metric space, then we will write qdiam(A,L) for diam �S (A),mkL � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If E is actually a normed vector space, then we simply write diam(A,E) for the diameter of any subset A of E for the norm ∥·∥E of E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We recall the following fact, which we will use repeatedly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='8 ([55, Propostion 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='6]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If (A,L) is a quantum compact metric space, and if µ ∈ S (A), then ��a −µ(a)1 ��A � L(a) qdiam(A,L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For all ϕ ∈ S (A), we note that |ϕ(a −µ(a)1)| = |ϕ(a)−µ(a)| � L(a)qdiam(A,L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since a −µ(a)1 is self-adjoint, we conclude that ��a −µ(a)1 ��A � L(a)qdiam(A,L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' □ The property difficult to establish when working with quantum compact metric spaces is, of course, that the Monge-Kantorovich metric induces the weak-∗ topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Rieffel provided various characterizations;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' we will find the following helpful in this paper: Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='9 ([51]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let L be a seminorm defined on some dense subspace dom(L) of sa(A) for some unital C*-algebra A such that {a ∈ dom(L) : L(a) = 0} = R1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If we set mkL(ϕ,ψ) = sup � |ϕ(a)−ψ(a)| : a ∈ dom(L),L(a) � 1 � , for all ϕ,ψ ∈ S (A), then the fol- lowing assertions are equivalent: mkL is a metric on the state space S (A) of A inducing the weak-∗ topology, there exists a state µ ∈ S (A) such that {a ∈ dom(L) : L(a) � 1,µ(a) = 0} is totally bounded in sa(A), for all states µ ∈ S (A), the set {a ∈ dom(L) : L(a) � 1,µ(a) = 0} is totally bounded in sa(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We record the following helpful result, which we will also use often.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='10 ([55]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If (A,L) is a quantum compact metric space, µ ∈ S (A), and if K > 0, then the set � a ∈ dom(L) : L(a) � 1,|µ(a)| � K � is compact in A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We first note that the set � a ∈ dom(L) : L(a) � 1,|µ(a)| � K � is closed since L is lower semicontinuous and µ is continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let (an)n∈N be a sequence in dom(L) such that L(an) � 1 and |µ(an)| � K for all n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since (|µ(an)|)n∈N is bounded in R, it has a convergent subsequence (|µ(a f (n))|)n∈N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' On the other hand, (a f (n) −µ(a f (n))1)n∈N has a convergent subsequence (a f (g(n)) − µ(a f (g(n))))n∈N by Theorem (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' It now follows that (a f (g(n)))n∈N is a convergent se- quence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' □ Quantum compact metric spaces are the points of a (pseudo-)metric space, where the metric is the Gromov-Hausdorff propinquity, an analogue of the Gromov-Hausdorff distance in noncommutative geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The construction of the propinquity thus relies on an appropriate notion of quantum isometries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 9 Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let (A1,L1) and (A2,L2) be two quantum compact metric spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' A Lips- chitz morphism π : (A1,L1) → (A2,L2) from (A1,L1) to (A2,L2) is a surjective ∗-morphism π from A1 to A2 such that π(dom(L1)) ⊆ dom(L2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Moreover, if, for all b ∈ dom(L2): L2(b) = inf{L1(a) : π(a) = b}, then π is called a quantum isometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If π is a quantum isometry and a bijection whose inverse is also a quantum isometry, then π is called a full quantum isometry;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' in this case π is a ∗-isomorphism such that for all a ∈ sa(A1): L2 ◦π(a) = L1(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The propinquity is a metric computed by isometrically “embedding” two quantum compact metric spaces into an arbitrary third one, which in the contravariant picture of noncommutative geometry, leads us to the following definition for a tunnel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Crucially, a non-negative number can be associated to a tunnel using the Hausdorff distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Notation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The Hausdorff distance induced by the distance function of a metric space (X ,d) on the hyperspace of closed subsets of X is denoted by Haus[d].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If N is a norm on a vector space, we denote by Haus[N] the Hausdorff distance induced by the metric given by the norm N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By default, if E is a normed vector space, we simplify our notation and simply write Haus[E] for the Hausdorff distance induced by the distance defined by the norm ∥·∥E of E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Notation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If π : A → B is a unital ∗-morphism, then we define π∗ : ϕ ∈ S (B) �−→ ϕ◦π ∈ S (A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='14 ([35, Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='1],[40, Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='11,Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='6]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let (A1,L1) and (A2,L2) be two quantum compact metric spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' A tunnel τ = (D,LD,π1,π2) is given by a quantum compact metric space (D,LD) and two quantum isometries π1 : (D,LD) → (A1,L1) and π2 : (D,LD) → (A2,L2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The domain dom(τ) of τ is (A1,L1) and the codomain codom(τ) of τ is (A2,L2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The extent χ(τ) of τ is the non-negative number: χ(τ) := max j∈{1,2}Haus �mkLD � � π∗ j (S (Aj )),S (D) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We emphasize that all quantum compact metric spaces involved in our tunnels in this paper must satisfy the same (Ω,Ω′)-Leibniz inequality for our fixed Ω,Ω′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' There always exists a tunnel between any two quantum compact metric spaces, and the extent of a tunnel is always finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We thus define: Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The (dual) Gromov-Hausdorff propinquity Λ∗((A,LA),(B,LB)) be- tween any two quantum compact metric spaces (A,LA) to (B,LB) is defined by: Λ∗((A,LA),(B,LB)) := inf � χ(τ) : τ tunnel from (A,LA) to (B,LB) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The (dual) propinquity is well-behaved, as summarized in the following theorem: Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='17 ([38, 35]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The dual propinquity is a complete metric up to full quantum isometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Moreover, if (Xn,dn)n∈N is a sequence of compact metric spaces, then (Xn,dn)n∈N converges to a compact metric space (X ,d) for the Gromov-Hausdorff distance if, and only if limn→∞ Λ∗((C(Xn),Ldn),(C(X ),Ld)) = 0, where Ld denotes the Lipschitz seminorm induced by any metric d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 10 CARLA FARSI,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' FRÉDÉRIC LATRÉMOLIÈRE,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' AND JUDITH PACKER There are several interesting known examples of convergence for the propinquity,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' in- cluding approximations of quantum tori by fuzzy tori [33],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' approximations of spheres by matrix algebras [9],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' continuity of quantum tori in their cocycle parameter [33],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' continuity of UHF algebras with respect to the Baire space seen as their natural parameter space,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' continuity of the Effros-Shen algebras in their irrational parameters [5],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' and more.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Main result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We begin with a simple sufficient condition to ensure that a seminorm is indeed a Lipschitz seminorm on an inductive limit of unital C*-algebras, when each of the C*-subalgebra in the inductive sequence is already equipped with a Lipschitz seminorm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' This condition is quite natural and generalizes, for instance, the idea behind the construction of Lipschitz seminorms on AF algebras in [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let A∞ be a unital C*-algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For each n ∈ N, let (An,Ln) be a quan- tum compact metric space, where (An)n∈N is an increasing sequence of C*-subalgebras of A∞ with the unit of A∞ in A0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Assume moreover that A∞ = cl(� n∈NAn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let L∞ be a seminorm defined on a dense Jordan-Lie subalgebra dom(L∞) of sa(A∞), such that: (1) {a ∈ dom(L∞) : L∞(a) = 0} = R1, (2) the unit ball of L∞ is closed in A∞, (3) L∞ is (Ω,Ω′)-Leibniz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If there exists a unital isometric positive linear map π : A∞ → A∞ such that, for all ε > 0, there exists N ∈ N with the property that: ∀a ∈ dom(L∞) ∃b ∈ dom(LN) : LN(b) � L∞(a) and ∥π(a)−b∥A∞ < εL∞(a), then (A∞,L∞) is a quantum compact metric space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let µ ∈ S (A∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By assumption, µ ∈ S (An) for all n ∈ N — where we use the same symbol µ to denote the restriction of µ to An.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let B∞ := � a ∈ dom(L∞) : µ◦π(a) = 0,L∞(a) � 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, let ε > 0 and let n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We set Bn := � a ∈ dom(Ln) : |µ(a)| < ε 4,Ln(a) � 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let a ∈ Bn, and let ϕ ∈ S (An).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By Theorem (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='8), we have the following inclusion: Bn ⊆ � a ∈ dom(Ln) : Ln(a) � 1,∥a∥An � qdiam(An,Ln)+ ε 4 � and the latter set is compact since Ln is a Lipschitz seminorm, by Corollary (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' So Bn is totally bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In fact, since Ln is lower semicontinuous and µ is continuous, the set Bn is also closed in the complete space A∞, so Bn is compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By assumption on π, there exists N ∈ N such that ∀a ∈ B∞ ∃b ∈ dom(LN) : LN(b) � 1 and ∥π(a)−b∥A∞ < ε 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In particular, if a ∈ B∞ and b ∈ dom(LN) with LN(b) � 1 and ∥π(a)−b∥A∞ < ε 4, then |µ(b)| � ∥b −π(a)∥A∞ +|µ(π(a))| < ε 4, so b ∈ BN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since BN is compact in sa(AN) by Corollary (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='10), there exists a ε 4-dense subset F ⊆ BN of BN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' So Haus[A∞](π(B∞),F) � Haus[A∞](π(B∞),BN)+Haus[A∞](BN,F) < ε 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 11 The domain dom(L∞) is dense in sa(A), so it is not empty and thus {a ∈ dom(L∞) : L∞(a) � 1} is not empty, since L is a seminorm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus, by Remark (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='6), the set B∞ is not empty as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We thus obtain: � ̸= B∞ = � b∈F � a ∈ B∞ : ∥π(a)−b∥A∞ < ε 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, if we define G := � b ∈ F : � a ∈ B∞ : ∥π(a)−b∥A∞ < ε 2 � ̸= � � , then G ̸= � and B∞ = � b∈G � a ∈ B∞ : ∥π(a)−b∥A∞ < ε 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For each b ∈ G, we pick t(b) ∈ B∞ such that ∥π(t(b))−b∥A∞ < ε 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let now a ∈ B∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' There exists b ∈ G such that ∥π(a)−b∥A∞ < ε 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Then ∥a − t(b)∥A∞ = ∥π(a − t(b))∥A∞ � ∥π(a)−b∥A∞ +∥b −π(t(b))∥A∞ < ε 2 + ε 2 = ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus, t(G) is a ε-dense subset of B∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' So B∞ is totally bounded in A∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, noting that µ◦π is a state of A∞, we conclude by Theorem (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='9) that mkL∞ induces the weak-∗ topology on S (A∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since all other required properties are assumed, L∞ is indeed a Lipschitz seminorm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' □ The next natural question is to find a sufficient condition to strengthen Proposition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='18) and obtain convergence of the sequence (An,Ln)n∈N to (A∞,L∞) in the sense of the propinquity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' To this end, we introduce the notion of a bridge builder — a map which, among other things, satisfy the condition in Proposition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In fact, we basically “sym- metrize” the condition in Proposition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='18) and require that we work with ∗-morphism (which will allow us to construct seminorms with the Leibniz property), rather than just positive linear maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Notation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We will write N := N∪{∞} for the one point compactification of N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For each n ∈ N∪{∞}, let (An,Ln) be a quantum compact metric space, where (An)n∈N is an increasing (for ⊆) sequence of C*-subalgebras of A∞ such that A∞ = cl(� n∈NAn) and the unit of A∞ is in A0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' A ∗-automorphism π : A∞ → A∞ is a bridge builder for ((An,Ln)n∈N,(A∞,L∞)) when, for all ε > 0, there exists N ∈ N such that if n � N, then ∀a ∈ dom(L∞) ∃b ∈ dom(Ln) : Ln(b) � L∞(a) and ∥π(a)−b∥A∞ < εL∞(a) and ∀b ∈ dom(Ln) ∃a ∈ dom(L∞) : L∞(a) � Ln(b) and ∥π(a)−b∥A∞ < εLn(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For each n ∈ N∪{∞}, let (An,Ln) be a quantum compact metric space, where (An)n∈N is an increasing (for ⊆) sequence of C*-subalgebras of A∞ such that A∞ = cl(� n∈NAn) and the unit of A∞ is in A0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If there exists a bridge builder for ((An,Ln)n∈N,(A∞,L∞)), then lim n→∞Λ∗((An,Ln),(A∞,L∞)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let π : A∞ → A∞ be the given bridge builder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' There exists N ∈ N such that if n � N, then ∀a ∈ dom(L∞) ∃b ∈ dom(Ln) : Ln(b) � L∞(a)∧∥π(a)−b∥A∞ < εL∞(a), 12 CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER ∀b ∈ dom(Ln) ∃a ∈ dom(L∞) : L∞(a) � Ln(b)∧∥π(a)−b∥A∞ < εLn(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Fix n � N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We define, for all a ∈ dom(L∞) and b ∈ dom(Ln): Tn(a,b) := max � L∞(a),Ln(b), 1 ε ∥π(a)−b∥A∞ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' It is a standard argument that (A∞ ⊕An,Tn) is a quantum compact metric space: (1) the domain dom(Tn) = dom(L∞)⊕dom(Ln) of Tn is dense in sa(A∞ ⊕An) since dom(L∞) is dense in sa(A∞) and dom(Ln) is dense in sa(An), (2) if Tn(a,b) = 0 for some (a,b) ∈ dom(Tn), then L∞(a) = 0 so a = t1 for some t ∈ R, and Ln(b) = 0 so b = s1 for some s ∈ R (it matters here that the unit is the same in A∞ and An), and 0 = ∥π(a)−b∥A∞ = |t − s| so (a,b) = t(1,1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' (3) Tn is the maximum of two lower semicontinuous functions and one continuous function, so it is lower semicontinuous over sa(A∞ ⊕An);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' (4) a direct computation shows that Tn is (Ω,Ω′)-Leibniz since L∞ and Ln both are, and π is a ∗-morphism;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' (5) fixing any state µ of A∞ and setting ϕ : (a,b) ∈ A∞⊕An �→ µ(a), then ϕ ∈ S (A∞⊕ An), and � (a,b) ∈ dom(Tn) : Tn(a,b) � 1,ϕ(a,b) = 0 � ⊆ � a ∈ dom(L∞) : L∞(a),µ(a) = 0 � × � b ∈ dom(Ln) : Ln(b) � 1,|µ◦π−1(b)| � ε � and, as seen in the proof of Proposition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='18), the set on the right hand side is a product of two compact set, and thus compact;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' thus the set on the left hand side is compact (closed in a compact set) and thus, Tn is indeed a Lipschitz seminorm, invoking Theorem (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We now check that τn := (A∞ ⊕An,Tn,ψn,θn), with ψn : (a,b) ∈ A∞ ⊕An �→ a ∈ A∞ and θn : (a,b) ∈ A∞ ⊕An �→ b ∈ An, is a tunnel, in the sense of Definition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let a ∈ dom(L∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By assumption, there exists b ∈ dom(Ln) with Ln(b) � L∞(a) and ∥π(a)−b∥A∞ < εL∞(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, Tn(a,b) = L∞(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since by construction, Tn(a,c) � L∞(a) for all a ∈ dom(L∞) and c ∈ dom(Ln), we have shown that ψn is a quantum isometry by Definition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let now b ∈ dom(Ln).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Again by assumption on π, there exists a ∈ dom(L∞) such that ∥π(a)−b∥A∞ < εLn(b) and L∞(a) � Ln(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus Tn(a,b) = Ln(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Once again, Tn(c,b) � Ln(b) by construction for all c ∈ dom(L∞), so θn is indeed a quantum isometry, so τn is a tunnel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We now compute the extent of τn, in the sense of Definition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let ϕ ∈ S (A∞ ⊕ An).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Using Hahn-Banach theorem, we extend ϕ to a state ϕ′ of A∞ ⊕A∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let µ : a ∈ A∞ �→ ϕ′(a,π(a));' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' since π is a unital ∗-morphism, µ is a state of A∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By construction, if Tn(a,b) � 1 then ∥π(a)−b∥A∞ � ε and thus |ϕ(a,b)−µ◦ψn(a,b)| = |ϕ′(a,b)−ϕ′(a,π(a))| � |ϕ′(0,b −π(a))| � ∥b −π(a)∥A∞ � ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus Haus �mkTn � (ψ∗ n(S (A∞)),S (A∞ ⊕An)) � ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 13 Let now µ′ : b ∈ An �→ ϕ(π−1(b),b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since π is a ∗-automorphism of A∞, the map µ′ is a state of An.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Moreover: |ϕ(a,b)−µ′ ◦θn(a,b)| = |ϕ(a,b)−ϕ(π−1(b),b)| = |ϕ(a −π−1(b),0)| � ��a −π−1(b) ��A∞ = ∥π(a)−b∥A∞ � ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus Haus �mkTn � (θ∗ n(S (An)),S (A∞)) � ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Hence, the extent χ(τn) of τn is at most ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By Definition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='16), we thus have shown that for all n � N, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='1) Λ∗((An,Ln),(A∞,L∞)) � ε, which concludes our proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' □ Our main result in this section is the following theorem, which shows that the natural sufficient condition in Definition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='20) and Proposition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='21) is, in fact, very close to necessary, under a mild and natural condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' This is notable because in general, it is difficult to exhibit nontrivial necessary conditions for convergence in the sense of the propinquity (besides, say, the fact that diameters must converge).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' It also shows that the existence of bridge builders is the natural setup for establishing convergence of inductive limits in the sense of the propinquity, thus providing a complete answer for the relationship between convergence of inductive sequences of quantum compact metric spaces in the categorical sense and the propinquity sense, under a commonly met condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For each n ∈ N∪{∞}, let (An,Ln) be a quantum compact metric space, where (An)n∈N is an increasing (for ⊆) sequence of C*-subalgebras of A∞ such that A∞ = cl(� n∈NAn) and the unit of A∞ is in A0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We assume that there exists M > 0 such that for all n ∈ N: 1 M Ln � L∞ � M ·Ln on dom(Ln).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Then lim n→∞Λ∗ ((An,Ln),(A∞,L∞)) = 0, if, and only if, for any subsequence (Ag(n),Lg(n))n∈N of (An,Ln)n∈N, there exists a strictly increasing function f : N → N and a bridge builder π for ((Ag◦f (n),Lg◦f (n))n∈N,(A∞,L∞)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' First, assume that for any subsequence (Ag(n),Lg(n))n∈N, there exists a strictly increasing function f : N → N and a bridge builder π for ((Ag◦f (n),Lg◦f (n))n∈N,(A∞,L∞)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By Proposition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='21), we conclude that every subsequence of (An,Ln)n∈N has a subse- quence converging to (A∞,L∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, (An,Ln)n∈N converges to (A∞,L∞) since the propinquity is, indeed, a metric (up to full quantum isometry).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let us now assume that (An,Ln)n∈N converges to (A∞,L∞) for the propinquity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since any subsequence will converge as well, it is sufficient to prove our statement for g being the identity, and this will simplify our notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since (An,Ln)n∈N converges to (A∞,L∞), there exists a sequence (τn)n∈N := (Dn,Tn,ψn,θn)n∈N of tunnels, as in Definition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='14), with limn→∞ χ(τn) = 0, while, for each n ∈ N, we have dom(τn) = (A∞,L∞) and codom(τn) = (An,Ln).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' To ease notation, the target set 14 CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER of a ∈ dom(L∞) with l � L∞(a) defined by τn will be denoted by tn (a|l), rather than tτn (a|l);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' we recall from [35, 38] that: tn (a|l) = � θn(d) : d ∈ ψ−1 n ({a}),Tn(d) � l � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' This proof heavily relies on the properties of target sets, as discussed in [35, 38, 39, 40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In [35], various estimates which we will refer to in this proof are expressed using the length λ(τ) of a tunnel τ, rather than the extent χ(τ);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' however as seen in [40, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='12], for any tunnel τ, we have λ(τ) � χ(τ) � 2λ(τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We will use this inequality without further mention to express all our results here in terms of extents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Claim 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For all a ∈ dom(L∞), there exists a strictly increasing function f : N → N and an element π(a) ∈ dom(L∞) such that, for all l � L∞(a), lim n→∞Haus[A∞] �tf (n) (a|l),{π(a)} � = 0, and ∥π(a)∥A∞ = ∥a∥A∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Proof of Claim (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='23).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' First, since the sequence (χ(τn))n∈N converges (to 0), it is bounded;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' let K ′ > 0 such that χ(τn) � K ′ for all n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let a ∈ dom(L∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let l = L∞(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For any K > 0, let A∞[K ] := � b ∈ dom(L∞) : L∞(b) � K ,∥b∥A∞ � ∥a∥A∞ +K K ′� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The set A∞[K ] is compact in sa(A∞) by Corollary (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By [35, Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='5] and since L∞ � MLn on dom(Ln), the sequence (tn (a|l))n∈N is a sequence of compact subsets of A∞[Ml], and lim n→∞diam(tn (a|l),A∞) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since A∞[Ml] is compact in A∞, the Hausdorff distance Haus[A∞] induced on the set of closed subsets of A∞[Ml] by the norm ∥·∥A∞ of A∞ gives a compact topology as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, there exists a subsequence (tf (n) (a|l))n∈N of (tn (a|l))n∈N which converges, for Haus[A∞], to a singleton {π(a)} of A∞[Ml].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In particular, L∞(π(a)) � Ml = ML∞(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let now L � l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By definition, tf (n) (a|l) ⊆ tf (n) (a|L) for all n ∈ N and lim n→∞diam �tf (n) (a|L),A∞ � = 0, so we conclude easily as well that lim n→∞Haus[A∞] �tf (n) (a|L),{π(a)} � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By [35, Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='4], we also note that if bn ∈ tf (n) (a|l) for each n ∈ N, then ∥π(a)∥A∞ = lim n→∞∥bn∥A∞ � limsup n→∞ � ∥a∥A∞ +χ � τf (n) � l � = ∥a∥A∞ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Similarly, since a ∈ tτ−1 f (n) (bn|l), we also have ∥a∥A∞ � limsup n→∞ � ∥bn∥A∞ +lχ � τf (n) �� = ∥π(a)∥A∞ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' So indeed, ∥π(a)∥A∞ = ∥a∥A∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' This proves our claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Claim 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' There exists a unital ∗-endomorphism π of A∞ such that π(dom(L∞)) ⊆ dom(L∞), and a strictly increasing function f : N → N such that, for all a ∈ dom(L∞), and for all l � L∞(a), lim n→∞Haus[A∞] �tf (n) (a|l),{π(a)} � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 15 Proof of Claim (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since A∞ is separable, there exists a countable dense subset S∞ of sa(A∞) with S∞ ⊆ dom(L∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Using Claim (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='23), a diagonal argument shows that there exists a strictly increasing sequence f : N → N such that, for all a ∈ S∞ and for all l � L∞(a), we have limn→∞Haus[A∞] �tf (n) (a|l),{π(a)} � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let now a ∈ dom(L∞), and let l � L∞(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since S∞ is dense in dom(L∞), there exists aε ∈ dom(L∞) such that ∥a − aε∥A∞ < ε 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Note that L∞(aε) < ∞ but in general, there is no relation between L∞(aε) and L∞(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let l = max{L∞(a),L∞(aε)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since it is convergent for the Hausdorff distance Haus[A∞], the sequence �tf (n) (aε|l) � n∈N is Cauchy for Haus[A∞].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, there exists N ∈ N such that, for all p,q � N, we have Haus[A∞] �tf (p) (aε|l),tf (q) (aε|l) � < ε 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since limn→∞ χ � τf (n) � = 0, there exists N ′ ∈ N such that if n � N ′ then χ � τf (n) � < ε 5(l+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, if n � N ′, then by [35, Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='5], Haus[A∞] �tf (n) (a|l),tf (n) (aε|l) � � ∥a − aε∥A∞ +lχ � τf (n) � < 2ε 5 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let now p,q � max{N,N ′}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We compute: Haus[A∞] �tf (p) (a|l),tf (q) (a|l) � � Haus[A∞] �tf (p) (a|l),tf (p) (aε|l) � +Haus[A∞] �tf (p) (aε|l),tf (q) (aε|l) � +Haus[A∞] �tf (q) (aε|l),tf (q) (a|l) � < 2ε 5 + ε 5 + 2ε 5 = ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus, �tf (n) (a|l) � n∈N is Cauchy for Haus[A∞].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since sa(A∞) is complete, so is the set of all closed subsets of sa(A∞) with the Hausdorff distance Haus[A∞].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, �tf (n) (a|l) � n∈N converges to some compact subset in sa(A∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In fact, since lim n→∞diam �tf (n) (a|l),A∞ � = 0 by [35, Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='5], the sequence �tf (n) (a|l) � n∈N converges to some singleton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' As observed in Claim (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='23), this limit does not depend on l;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' we denote it by {π(a)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Again using the same argument, we also note that ∥π(a)∥A∞ = ∥a∥A∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since L∞ is lower semicontinuous over A∞, and since by construction, π(a) is the limit in A∞ of any sequence (bn)n∈N with bn ∈ tf (n) (a|L∞(a)) for all n ∈ N, we also conclude that L∞(π(a)) � liminf n→∞ L∞(bn) by lower semicontinuity of L∞, � liminf n→∞ M ·Ln(b) since L∞ � M ·Ln for all n ∈ N, � M ·L∞(a) since Ln(b) � L∞(a), as b ∈ tf (n) (a|L∞(a)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let a,a′ ∈ dom(L∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let t ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since tf (n) (a|l)+t ·tf (n) � a′��l � ⊆ tf (n) � a + ta′��(1+|t|)l � for all n ∈ N by [35, Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='5], we immediately conclude that {π(a)} + t · {π(a′)} ⊆ {π(a + ta′)}, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' π is linear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' A similar argument shows that π is a Jordan-Lie morphism over dom(L∞), using [35, Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' As a linear map π with ∥π(a)∥A∞ = ∥a∥A∞ for all a ∈ dom(L∞), we can uniquely extend π to sa(A∞) as a uniformly continuous map over sa(A∞);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' this map is of course again a Jordan-Lie morphism from sa(A∞) to sa(A∞) and an isometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 16 CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER A straightforward argument shows that we can uniquely extent π to a continuous Jordan-Lie algebra endomorphism of A∞, and thus π thus extended is a unital ∗-endo- morphism with L∞ ◦π � L∞ over dom(L∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We already know that π is an isometry on sa(A∞) and a ∗-morphism, so it is injective on A∞: if π(a) = 0 then π(ℜa) = 0 so ℜa = 0, and π(ℑa) = 0 so ℑa = 0, and thus a = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In particular, since π is now an injective ∗-morphism, it is an isometry on A∞ (rather than just sa(A∞)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' This proves our claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Claim 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For all ε > 0, there exists N ∈ N such that for all n � N, and for all a ∈ dom(L∞) with L∞(a) � 1, we have Haus[A∞] � {π(a)},tf (n) (a|1) � < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Proof of Claim (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='25).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Fix µ ∈ S (A∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The set B := � a ∈ dom(L∞) : L∞(a) � 1,µ(a) = 0 � is compact in sa(A∞) by Theorem (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, there exists a finite subset F ⊆ B such that Haus[A∞](F,B) < ε 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since F is finite, by Claim (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='24), there exists N ∈ N such that, for all a ∈ F and for all n � N, we have Haus[A∞] � {π(a)},tf (n) (a|L∞(a)) � < ε 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Moreover, there exists N ′ ∈ N such that, if n � N ′, then χ(τn) < ε 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, let n � max{N,N ′}, a ∈ B and b ∈ tf (n) (a|1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' There exists a′ ∈ F such that ��a − a′��A∞ < ε 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let b′ ∈ tf (n) � a′��1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By [35, Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='5], we compute the following expression: ∥π(a)−b∥A∞ � ��π(a)−π(a′) ��A∞ + ��π(a′)−b′��A∞ + ��b′ −b ��A∞ � ��π(a − a′) ��A∞ π is linear + ε 4 by choice of N + ��a − a′��A∞ +χ(τn) by [35] � 2 ��a − a′��A∞ + ε 4 + ε 4 � ε 2 + ε 4 + ε 4 = ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We thus have proven our uniform convergence claim over B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let now a ∈ dom(L∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Then of course, a − µ(a)1 ∈ B, since L∞(a − µ(a)1) � L∞(a) + L∞(µ(a)1) = L∞(a) � 1 (in fact, L∞(a) = L∞(a − µ(a)1)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If b ∈ tf (n) (a|1) then b − µ(a)1 ∈ tf (n) � a −µ(a)1 ��1 � by construction, and thus ∥π(a)−b∥A∞ = ��π(a −µ(a)1)−(b −µ(a)1) ��A∞ < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus, as claimed, Haus[A∞] � {π(a)},tf (n) (a|1) � < ε for all n � max{N,N ′} and for all a ∈ B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' This proves our claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Claim 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For all ε > 0, there exists N ∈ N such that, if n � N, then ∀a ∈ dom(L∞) ∃b ∈ dom(Ln) : Ln(b) � L∞(a) and ∥π(a)−b∥A∞ < εL∞(a), ∀b ∈ dom(Ln) ∃a ∈ dom(L∞) : L∞(a) � Ln(b) and ∥π(a)−b∥A∞ < εLn(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Proof of Claim (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='26).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let N ∈ N be chosen as in Claim (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='25), so that for all a ∈ dom(L∞) with L∞(a) � 1, and for all n � N, we have Haus[A∞]({π(a)},tf (n) (a|1)) < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let now n � N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If a ∈ dom(L∞)\\R1A∞, and if b ∈ tf (n) (a|L∞(a)), then L∞(a) > 0, Ln(b) � L∞(a), and b L∞(a) ∈ tf (n) � a L∞(a) ���1 � and thus ���π � a L∞(a) � − b L∞(a) ���A∞ < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' So ∥π(a)−b∥A∞ < εL∞(a), as needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, let b ∈ dom(Ln) \\ R1A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let b′ = b Ln(b), so Ln(b′) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let a′ ∈ tτ−1 f (n) � b′��1 � , so in particular L∞(a′) � 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By symmetry, b′ ∈ tf (n) � a′��1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, ��π(a′)−b′��A∞ < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 17 Hence, letting a = Ln(b)a′, we conclude that ∥π(a)−b∥A∞ � Ln(b)ε and L∞(a) � Ln(b), as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Last, it is immediate that since π(1) = 1, our claim holds whenever L∞(a) = 0 or Ln(b) = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=', for any a,b ∈ R1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' This proves our claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Claim 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The map π constructed in Claim (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='24) is a ∗-automorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Proof of Claim (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='27).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The map isometry of A∞, hence it is a ∗-monomorphism of A∞, via Claim (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='24), Now, let b ∈ � n∈N dom(Ln), so b ∈ dom(Lm) for some m ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus b ∈ dom(L∞) by assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let l = Lm(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By assumption, L∞(b) � MLm(b) = Ml.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let ε > 0 and let N ∈ N given by Claim (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='26).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since Ln(b) � ML∞(b) � M2l, for all n � max{N,m}, and there exists an ∈ A∞ with ∥π(an)−b∥A∞ < εM2l (and L∞(a) � Ln(b), which we do not need for this claim).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' As ε > 0 was arbitrary, the element b lies in the closure of the range of π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since A∞ is complete and π is an isometry, the range of π is closed, and we now have shown that the range of π is a closed set containing the total subspace � n∈N dom(Ln) of A∞;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' consequently, π is a surjection as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus as claimed, π is a ∗-automorphism of A∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Moreover, by construction, for all a ∈ dom(L∞), as noted in Claim (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='23), we have L∞(π(a)) � ML∞(a) — in particular, π(a) ∈ dom(L∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' So π(dom(L∞)) ⊆ dom(L∞) and thus π is a Lipschitz morphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' This proves our claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' This concludes the proof of our theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' □ Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Limits, for the propinquity, are unique up to full quantum isometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' There- fore, the appearance of some map π in Theorem (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='22) is to be expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' However, the map π in Theorem (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='22) is quite a bit more general than a full quantum isometry — in fact, it need not be Lipschitz for us to use Proposition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='21) — even though Theorem (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='22) shows that it can always be chosen to be so.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The map π is really used here as a tool to construct a special kind of bridge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In general, the function π is not expected to be unique: if Ln is just the restriction to An of L∞ for all n ∈ N, and if θ is a full quantum isometry of (A∞,L∞), then π ◦ θ can be used in place of π, of course.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The situation is more delicate when Ln varies, but there will usually be many maps π if there is one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Theorem (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='22) characterizes the convergence of inductive sequences in the sense of the propinquity, under the condition of uniform equivalence of the Lipschitz seminorms on the sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The condition of uniform equivalence of Lipschitz seminorms is in essence our compatibility condition between the Lipschitz seminorms and the inductive limit structure in Theorem (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='22): using the notation of Theorem (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='22), as seen in [37], under the hypothesis that dom(Ln) = An ∩dom(L∞), the Lipschitz seminorms Ln and L∞ are equivalent for each n ∈ N, and we require, in the assumptions of Theorem (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='22), that we want this equivalence be uniform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' This leads us to several natural questions: does convergence of (An,Ln)n∈N imply some uniform equivalence of the Lipschitz semi- norms Ln (n ∈ N) (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' is our assumption redundant)?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Does the existence of a bridge builder imply uniform equivalence of the Lipschitz seminorms?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Does convergence of an inductive limit for the propinquity imply the existence of a bridge builder without the assumption of uniform equivalence of the Lipschitz seminorms?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Moreover, does the convergence of (An,Ln)n∈N to (A∞,L∞) for the propinquity imply the convergence of (An,Lk)k�n to (An,L∞) for a fixed n ∈ N, for the propinquity?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We now will show with two examples that all of the above questions have negative answers, so there is no obvious generalization of Theorem (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' First, we see that it is possible to have convergence for the propinquity of an inductive sequence of quantum 18 CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER 0 dist 1 n ·dist 1−n−2 0 dist 1 (n +1)·dist 1−(n +1)−2 ··· n → ∞ 0 dist 1 X with dist : x, y ∈ X �→ |x − y| FIGURE 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Approximating [0,1] with itself by modifying the metric on a small interval at the end (red) compact metric spaces, using the identity as a bridge builder, and yet, not have uniform equivalence of the Lipschitz seminorms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let X = [0,1] with its usual metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If Y ⊆ X with at least two points, then we set LY (f ) = sup � |f (x)−f (y)| |x−y| : x ̸= y,x, y ∈ Y � for all f ∈ C(X ), allowing for ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For each n ∈ N, and for all f ∈ C(X ), we set: Ln(f ) = L� 0,1− 1 n2 �(f )+ 1 n L� 1− 1 n2 ,1 �(f ), allowing again for ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let fn : x ∈ [0,1] �−→ � 0 if x � 1− 1 n2 , x −(1− 1 n2 ) otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By construction, L[0,1](fn) = 1 for all n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' On the other hand, Ln(f ) = 0+ 1 n ·1 = 1 n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' So there does not exists M > 0 such that L[0,1] � MLn on the common domain of these Lipschitz seminorms (the algebra of Lipschitz functions for the usual metric).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We now prove that (C(X ),Ln)n∈N converges for the propinquity to (C(X ),L[0,1]) — this could be done here just as easily by proving the convergence for the Gromov-Hausdorff distance of X with a sequence of distances which agree with the usual distance on [0,1− 1 n2 ] and is a dilation by a factor n of the usual distance on [1− 1 n2 ,1], but we will keep with our functional analytic perspective here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We thus define, for all n ∈ N, and for all f ,g Lipschitz functions over [0,1] with its usual metric: Tn(f ,g) := max � L[0,1](f ),Ln(g),(n +1) ��f − g �� C(X ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let f ∈ C(X ) with L[0,1](f ) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Then Ln(f ) � 1+ 1 n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' From this, we see that Tn � f , 1 1+ 1 n f − 1 n +1 f (0) � � max � 1, n +1 n +1 ��f − f (0)1 �� C(X ) � � 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let now g ∈ C(X ) with Ln(g) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus L� 0,1− 1 n2 �(g) � 1 and L� 1− 1 n2 ,1 �(g) � n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In particular, for all x ∈ [1− 1 n2 ,1], we have ���g(x)− g � 1− 1 n2 ���� < n|x −1+ 1 n2 | � 1 n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let h ∈ C(X ) defined by h(x) = g(x) if x ∈ � 0,1− 1 n2 � , and h(x) = g � 1− 1 n2 � otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By construction, L[0,1](h) � 1 and ��g −h �� C(X ) < 1 n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus Tn(h,g) = 1 = Ln(g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 19 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 1 n+1 1 2 3 4 5 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 1 n+2 1 2 3 4 5 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 1 n+3 ··· n → ∞ 0 1 2 3 4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' FIGURE 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Approximating N by itself, by merging the first two points at ∞ Therefore, (C(X )⊕C(X ),Tn,p1,p2), with p1 : (f ,g) ∈ C(X )⊕C(X ) �→ f and p2 : (f ,g) ∈ C(X )⊕C(X ) �→ g, is easily seen to be a tunnel whose extent is at most 1 n (the method is analogous to Proposition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='21)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Hence (C(X ),Ln)n∈N converges to (C(X ),L[0,1])n∈N for the propinquity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Moreover, the identity map satisfies Condition (2) of Theorem (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Nonetheless, there is no M > 0 such that ∀n ∈ N L[0,1] � MLn on the common domain of these seminorms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' So convergence in the propinquity does not imply uniform equivalence of the Lipschitz seminorms, even when working with a fixed, Abelian C*-algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, we can also ask whether convergence for the propinquity of an inductive se- quence, implies the existence of a bridge builder, and as we shall see in the next example, this is not the case: once again, convergence occurs without uniform equivalence of Lipschitz seminorms (and we prove that we have neither uniform dominance or uniform domination using both examples).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Moreover, we see that (An,Lm)m�n does not converge to (An,L∞) in this case, for any n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let A∞ be the C*-algebra of convergent sequences with values in C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For each n ∈ N, let An = {(xk)k∈N : (xk)k�n is constant }, so An is a C*-subalgebra of A∞ sharing the unit (1)n∈N of A∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For all n ∈ N, and for all (xk)k∈N ∈ An, we set Ln((xk)k∈N) := sup � |xp − xq| |ϕn(p)−ϕn(q)| : p,q ∈ N,p ̸= q � where: ϕn : m ∈ N �→ � 1 m if m > 0, 1+ 1 n if m = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Of course, Ln is indeed a seminorm on the finite dimensional C*-subalgebra An of A∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We also set L∞((xk)k∈N) = sup � |xp−xq| ��� 1 p+1 − 1 q+1 ��� : p,q ∈ N,p ̸= q � for all (xk)k∈N ∈ A∞, al- lowing for the value ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Of course, � n∈NAn ⊆ dom(L∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, let x : n ∈ N �→ � 1 if n = 0, 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 20 CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER By construction, L∞(x) = 2, yet Ln(x) = n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' So there is no M > 0 such that, for all n ∈ N, the inequality MLn � L∞ on dom(Ln) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' On the other hand, limn→∞ Λ∗((An,Ln),(A∞,L∞)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Indeed, let π : (xk)k∈N �→ (x0,x0,x1,x2,x3,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=') ∈ A∞, B = π(A∞), and let θ : (xk)k∈N ∈ B �→ (xk+1)k∈N ∈ A∞ — of course, θ is a ∗-isomorphism from B onto A∞ such that π = θ−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We define LB(π(x)) = L∞(x) for all x ∈ dom(L∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' This way, π is easily checked to be a full quantum isometry from (A∞,L∞) to (B,LB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let ε > 0 and let N ∈ N be such that if n � N, then 1 n+1 < ε 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If x = (xk)k∈N with L∞(x) � 1, and if l = lims→∞ xs, then by construction, |xk −l| 1 k+1 = lim s→∞ |xk − xs| 1 k+1 − 1 s+1 � 1 so |xk −l| � 1 k+1 < ε 2 for all k � N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, if k � N then |xk − xN| < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, let n � N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let Dn = An ⊕B, and for all (a,b) ∈ dom(An)⊕dom(B), we set: Tn(a,b) := max � Ln(a),LB(b), 1 ε ∥π(a)−b∥B � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We also set pn : (a,b) ∈ Dn �→ a ∈ An and qn : (a,b) ∈ Dn �→ θ(b) ∈ A∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We are now going to prove that τn := (Dn,TNn,pn,qn) is indeed a tunnel from (An,Ln) to (A∞,L∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let a := (xk)k∈N ∈ dom(L∞) with L∞(a) = 1, and let a′ := (x0,x0,x1,x2,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=',xN−1,xN,xN,xN .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=') ∈ An.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By construction, Ln(a′) � 1 and ��π(a)− a′��A∞ < ε by our choice of N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Also by construc- tion, LB(π(a)) = L∞(a) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus Tn(a′,π(a)) � L∞(a) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' So, we have shown that, for any a ∈ dom(L∞) with L∞(a) = 1, there exists an element d := (a′,π(a)) ∈ Dn such that TNn(d) = 1 = L∞(a) and qn(d) = θ(π(a)) = a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, the map qn is indeed a quantum isometry from (Dn,Tn) to (A∞,L∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let now a = (xk)k∈N ∈ dom(Ln) with Ln(a) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By definition, |x1 − x0| � 1 n < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let b = (x1,x1,x2,x3,x4,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By construction, b ∈ dom(LB) with LB(b) � Ln(b), and ∥a −b∥A∞ = |x1 − x0| < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus again Tn(a,b) = Ln(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' So pn : (a,b) ∈ Dn �→ a ∈ An is a quantum isometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, (Dn,Tn,pn,qn) is indeed a tunnel from (An,Ln) to (A∞,L∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We now compute an upper bound on its extent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let ϕ ∈ S (Dn) be a state of Dn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If we set µ : a ∈ An �→ ϕ(a,π(a)), then µ ∈ S (An) is again a state of An.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If (a,b) ∈ dom(Tn) with Tn(a,b) � 1, then |ϕ(a,b)−µ◦ pn(a,b)| = |ϕ(a,b)−ϕ(a,π(a))| = |ϕ(0,b −π(a))| � ∥b −π(a)∥A∞ < ε, so indeed Haus �mkTn � (S (Dn),p∗ nS (An)) < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' On the other hand, let ν : a ∈ A∞ �→ ϕ′(a,π(a)) where ϕ′ is an extension of ϕ to a state of A∞ ⊕B by the Hahn-Banach theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Once again, it is immediate that mkTn(ϕ,ν◦ qn) < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' So Haus �mkTn � (S (D),q∗ nS (A∞)) < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus, for all n � N, the extend of χ(τn) is at most ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We conclude: lim n→∞Λ∗((An,Ln),(A∞,L∞)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' However, for any fixed p ∈ N, it is easy to check, by a similar method, that lim n→∞Λ∗((Ap,Ln),(Ap−1,L∞)) = 0, 21 and since dimAp−1 < dimAp, the sequence (Ap,Ln)n�p does not converge to (Ap,L∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The map π we have used here is not surjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In fact, there is no bridge builder in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Indeed, assume that we have a unital ∗-morphism π : A∞ → A∞ such that for all ε > 0, there exists Nπ(ε) ∈ N with the property that if n � Nπ(ε), and if a ∈ dom(L∞), then there exists b ∈ dom(Ln) with Ln(b) � L∞(a) and ∥π(a)−b∥A∞ < ε 2L∞(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Fix a ∈ dom(L∞) with L∞(a) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let ε > 0 and let n � Nπ(ε) such that 1 n < ε 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' De- fine (yk)k∈N := π(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Then there exists b := (bk)k∈N ∈ dom(Ln) such that Ln(b) � 1 and ∥π(a)−b∥A∞ < ε 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By definition of Ln, we thus conclude that |b1 − b0| � 1 n < ε 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus, |y1−y0| < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' As ε > 0 is arbitrary, we conclude that y1 = y0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus π can never be surjective — in fact, it is valued in B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' So no bridge builder exists for this example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' As seen in Example (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='30), convergence of (An,Ln)n∈N to (A∞,L∞) for the propinquity does not imply the convergence of (An,Lp)p∈N to (An,L∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We have the following immediate consequence of our work: Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let A∞ be a unital separable C*-algebra, such that A∞ = cl(� n∈NAn), where (An)n∈N is an increasing (for ⊆) sequence of C*-subalgebras of A∞, with the unit of A∞ in A0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For each n ∈ N, let Ln be a Lipschitz seminorm on An.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If there exists a bridge builder π : A∞ → A∞ for ((An,Ln)n∈N,(A∞,L∞)) such that π(An) ⊆ An for each n ∈ N, then for all n ∈ N, lim p→∞ p�n Λ∗((An,Lp),(An,L∞)) = 0, and limn→∞ Λspec((An,Ln),(A∞,L∞)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' This follows by observing that the restriction of π to An is a bridge builder for ((An,Lp)p�n,(An,L∞)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Our result then follows from Proposition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' □ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' CONVERGENCE OF INDUCTIVE SEQUENCES OF METRIC SPECTRAL TRIPLES FOR THE SPECTRAL PROPINQUITY We now study the convergence of certain families of metric spectral triples for the spectral propinquity [47], whose construction we will recall below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We thus begin this section with the definition of a spectral triple, due to Connes, and the foundational concept for noncommutative Riemannian geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='1 ([12, 11]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' A spectral triple (A,H , /D) is given by a unital C*-algebra A of bounded linear operators on a Hilbert space H , and a self-adjoint operator /D defined on some dense subspace dom( /D) of H , such that: (1) {a ∈ A : a ·dom( /D) ⊆ dom( /D),[ /D,a] is bounded } is a dense ∗-algebra in A, (2) /D has compact resolvent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The operator /D is referred to as the Dirac operator of the spectral triple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Preliminaries: The Spectral Propinquity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The spectral propinquity is a distance, up to unitary equivalence, on the class of metric spectral triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Notation 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If T : D ⊆ E → F is a linear operator defined from a dense subspace D of a normed vector space E to a normed vector space F, then we write: |||T |||F E := sup � ∥T ξ∥F : ξ ∈ D,∥ξ∥E � 1 � allowing for the value ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If F = E, then |||T |||F E is simply denoted by |||T |||E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 22 CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' A spectral triple (A,H , /D) is metric if the Connes extended pseudo- distance, defined on the state space S (A) of A by: mk /D : ϕ,ψ ∈ S (A) �→ sup � |ϕ(a)−ψ(a)| : a dom( /D) ⊆ dom( /D) and |||[ /D,a]|||H � 1 � is in fact a metric on S (A), which induces the weak-∗ topology on S (A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' As soon as a spectral triple is metric, it induces a structure of quantum compact metric space on its underlying C*-algebra in a natural manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='4 ([47, Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='10]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let (A,H , /D) be a spectral triple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We set: dom(L /D) := {a ∈ sa(A) : a dom( /D) ⊆ dom( /D) and [ /D,a] is bounded } and for all a ∈ dom(L /D): L /D(a) := |||[ /D,a]|||H .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The spectral triple (A,H , /D) is metric if, and only if, (A,L /D) is a quantum compact metric space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The construction of the spectral propinquity begins with the following observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Recall from [47] that if (A,H , /D) is a metric spectral triple, and if we set for all ξ ∈ dom( /D): (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='1) DN /D(ξ) := ∥ξ∥H +∥ /Dξ∥H , dom(L /D) := {a ∈ sa(A) : a dom( /D) ⊆ dom( /D), [ /D,a] is bounded } for all a ∈ dom(L /D): L /D(a) := |||[ /D,a]|||H , then metCor(A,H , /D) := (H ,DN /D,A,L /D,C,0) is an example of a metrical C*-correspondence, in the following sense: Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' An A-B-C ∗-correspondence (M ,A,B), for two C*-algebras A and B, is a right Hilbert module M over B (whose B-valued inner product is denoted by 〈·,·〉M ), together with a unital ∗-morphism from A to the C*-algebra of adjoinable B-linear operators over M .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='6 ([47, Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' An (Ω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='Ω′,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='Ωmod,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='Ωinner)-metrical C*-correspondence (M ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='DN,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='A,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='B,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='S),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' where Ω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='Ωinner � 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Ωmod � 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' and Ω′ � 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' is given by two (Ω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='Ω′)- quantum compact metric spaces (A,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='L) and (B,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='S),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' an A-B C*-correspondence (M ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='A,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='B),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' and a norm DN defined on a dense C-subspace dom(TN) of M ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' such that (1) ∀ω ∈ dom(DN) DN(ω) � ∥ω∥M := ���〈ω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='ω〉M ��B,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' (2) {ω ∈ dom(DN) : DN(ω) � 1} is compact in (M ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='∥·∥M ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' (3) for all a ∈ dom(L) and ω ∈ dom(TN),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' DN(aω) � Ωmod(∥a∥A +L(a))DN(ω),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' (4) for all ω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='η ∈ dom(DN),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' max{S(ℜ〈ω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='η〉M ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='S(ℑ〈ω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='η〉M )} � ΩinnerDN(ω)DN(η).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In particular, the norm DN is called a D-norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Convention 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In this work, we fix Ωmod � 2 and Ωinner � 1 all throughout the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' All quantum compact metric spaces will be assumed to be in the class of (Ω,Ω′)-quantum compact metric spaces and all metrical C*-correspondences will be assume to be in the class of (Ω,Ω′,Ωmod,Ωinner)-metrical C*-correspondences, unless otherwise specified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 23 Note that the compactness condition in Definition (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='6) borrows and extends on Theorem (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The importance of Definition (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='6) is that one can extend the propinquity to metrical C*-correspondences as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' First, we employ a natural notion of morphism between metrical C*-correspondences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='8 ([47, Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='13]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For each j ∈ {1,2}, let Mj = �Mj ,DNj ,Aj ,Lj ,Bj ,Sj � be a metrical C*-correspondence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' A metrical quantum isometry (Π,π,θ) from M1 to M2 is a given by: (1) a continuous, surjective C-linear map Π : M1 → M2, (2) a quantum isometry π : (A1,L1) → (A2,L2), (3) a quantum isometry θ : (B1,S1) → (B2,S2), such that (1) ∀a ∈ A ∀ω ∈ M1 Π(aω) = π(a)Π(ω), (2) ∀b ∈ B ∀ω ∈ M2 Π(ω·b) = Π(ω)θ(b), (3) ∀ω,η ∈ M1 θ(〈ω,η〉M1) = 〈Π(ω),Π(η)〉M2, (4) Π(dom(DN1)) ⊆ dom(DN2) and, for all ω ∈ dom(DN2), the equality DN2(ω) = inf �DN1(η) : η ∈ dom(DN1),Π(η) = ω � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The definition of a distance between metrical C*-correspondences, called the metrical propinquity, relies on a notion of isometric embedding called a tunnel, and is defined as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='9 ([47, Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='19]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let M1 and M2 be two metrical C*-correspondences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' A (metrical) tunnel τ = (J,Π1,Π2) from M1 to M2 is a triple given by a metrical C*- correspondence J, and for each j ∈ {1,2}, a metrical quantum isometry Πj : J �→ Mj .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' It is important to note that our tunnels involve (Ω,Ω′,Ωmod,Ωinner)-C*- metrical correspondences only (as per Convention (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='7)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We will dispense calling our tun- nels (Ω,Ω′,Ωmod,Ωinner)-tunnels, to keep our notation simple, but it should be stressed that fixing (Ω,Ω′,Ωmod,Ωinner) and staying within the class of (Ω,Ω′,Ωmod,Ωinner)-C*- metrical correspondences is crucial to obtain a metric from tunnels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We now proceed by defining the extent of a metrical tunnel;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' remarkably this only involves our previous notion of extent of a tunnel between quantum compact metric spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='11 ([47, Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='21]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let Mj = (Mj ,DNj ,Aj ,Lj ,Bj ,Sj ) be a metrical C*-correspondence, for each j ∈ {1,2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let τ = (P,(Π1,π1,θ1),(Π2,π2,θ2)) be a metrical tunnel from M1 to M2, with P = (P,TN,D,LD,E,LE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The extent χ(τ) of a metrical tunnel τ is χ(τ) := max � χ(D,LD,π1,π2),χ(E,TE,θ1,θ2) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Given two metric spectral triples, we can thus either take the Gromov-Hausdorff distance between their underlying quantum compact metric spaces, or take the metri- cal propinquity [42, 46] between the metrical C*-correspondence they define, which is defined as the infimum of the extent of every possible metrical tunnels between them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' However, the spectral propinquity involves our work on the geometry of quantum dy- namics [43, 44, 47] as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We recall the construction of the spectral propinquity;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' the new 24 CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER quantity called the ε-magnitude was introduced in [47, Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='31], but is simpler to express for spectral triples, based on [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='12 ([31, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='6]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let (A1,H1, /D1) and (A2,H2, /D2) be two metric spectral triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let τ := � � (P,TN,D,LD,E,S) metrical C*-correspondence , (Π1,π1,θ1) metrical quantum isometry , (Π2,π2,θ2) metrical quantum isometry � � be a metrical tunnel from metCor(A1,H1, /D1) to metCor(A2,H2, /D2), We define the ε-magnitude µ(τ|ε) of τ as the maximum of the extent χ(τ) of τ, and the ε-reach of τ, which is the number: (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='2) sup ξ∈dom � /D j � DNj (ξ)�1 inf η∈dom( /Dk) DNk(η)�1 sup ω∈dom(TN) TN(ω)�1 0�t� 1 ε ���〈exp(it /D j )ξ,Πj (ω)〉Hj −〈exp(it /Dk)η,Πk(ω)〉Hk ���, for {j,k} = {1,2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='13 ([47, Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The spectral propinquity between two metric spectral triples (A1,H1, /D1) and (A2,H2, /D2) is Λspec((A1,H1, /D1),(A2,H2, /D2)) := inf �� 2 2 ,ε > 0 : µ(τ|ε) < ε for τ a tunnel from metCor(A1,H1, /D1) to metCor(A2,H2, /D2) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The key property of the spectral propinquity is that, for any two metric spectral triples (A1,H1, /D1) and (A2,H2, /D2), we have the following equivalence: Λspec((A1,H1, /D1),(A2,H2, /D2)) = 0 if, and only if, there exists a unitary U : H1 → H2 such that Udom( /D1) = dom( /D2), U /D1 = /D2U on dom( /D1), a ∈ A1 �→UaU ∗ is a ∗-isomorphism from A1 onto A2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' A nontrivial example of convergence in the sense of the spectral propinquity is pro- vided in [45] with the approximation of spectral triples on quantum tori by spectral triples of certain matrix algebras known as fuzzy tori.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' These examples include many examples of previously informally stated convergences in mathematical physics, dealing with matrix models and their limits as the dimension of the algebra grows to infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Such examples are a major motivation for the construction of the spectral propinquity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Another example on fractals is presented in [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Moreover, convergence for the spec- tral propinquity implies convergence of the spectra of the Dirac operators and, in an appropriate sense, the convergence of the bounded functional calculi of these operators, among other properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Of course, convergence for the spectral propinquity implies convergence of the underlying quantum compact metric spaces for the propinquity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In this paper, we will construct new examples of convergence for new spectral triples defined over noncommutative solenoids and over Bunce-Deddens algebras, seen as limits of spectral triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 25 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Preliminaries: Inductive Limits of Spectral Triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' While the spectral propinquity allows the discussion of convergence of spectral triples defined on vastly different C*- algebras, there are certain more restricted situations where the C*-algebras of a sequence of spectral triples may be related in a manner compatible with the spectral triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In [20], a simple notion of inductive limit for spectral triples is introduced, based on the following encoding of such a compatibility via a natural, and rigid, notion of morphism between spectral triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='14 ([20]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' An isometric morphism (π,S) from (A1,H1, /D1) to (A2,H2, /D2) is given by a unital ∗-morphism π : A1 → A2 and a linear isometry S : H1 → H2 such that: (1) π(dom(L1)) ⊆ dom(L2), (2) Sdom( /D1) ⊆ dom( /D2) and S /D1 = /D2S on dom( /D1), (3) ∀a ∈ A1 Sa = π(a)S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since S is a linear isometry, H1 can be identified with the closed subspace SH1 of H2 via S at no cost in our definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In that case, /D1 is only defined on H1 ⊆ H2, and we simply require that /D1 is the restriction of /D2 to dom( /D1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We also note that if π(a) = 0 for some a ∈ A1, then π(a)S = Sa = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since S is an isometry, a = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' So π is actually automatically a ∗-monomorphism, and we thus can also identify A1 with the C*-subalgebra π(A1) of A2, since Definition (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='14) ensures that aH1 ⊆ H1 and [ /D1,a] is identified with P[ /D2,π(a)]P = P[ /D2,π(a)] = [ /D2,π(a)]P where P is the orthogonal projection of H2 onto H1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Furthermore, since π is unital, the unit of A2 is contained in A1 with this identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' An inductive sequence of spectral triples, as defined in [20], with a somewhat more involved notation, is simply a sequence of the form ((An,Hn, /Dn),(πn,Sn))n∈N where (An,Hn, /Dn) is a spectral triple and (πn,Sn) is an isometric morphism from (An,Hn, /Dn) to (An+1,Hn+1, /Dn+1), for each n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' As we have seen above, we can identify such a sequence with one of the following type, which we will take as our notion of inductive limit of spectral triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let A∞ = cl(� n∈NAn) be a C*-algebra which is the closure of an increas- ing sequence of C*-subalgebras (An)n∈N in A∞, with the unit of A∞ in A0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' A spectral triple (A∞,H∞, /D∞) is the inductive limit of a sequence (An,Hn, /Dn)n∈N of spectral triples when: (1) H∞ = cl(� n∈N)Hn, where each Hn is a Hilbert subspace of H∞, (2) for each n ∈ N, the restriction of /D∞ to dom( /Dn) is /Dn, (3) for each n ∈ N, the subspace Hn is reducing for An, which is equivalent to AnHn ⊆ Hn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We note, using the notation of Definition (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='15), that the operator which, to any ξ ∈ � n∈N dom( /Dn), associates /Dnξ whenever ξ ∈ dom( /Dn) for any n ∈ N, is indeed well- defined, and shown in [20] to be essentially self-adjoint, so /D∞ is the closure of this operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For our purpose, the following result from [20] will play an important role.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='16 ([20, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='1, partial]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If (An,Hn, /Dn)n∈N is an inductive sequence of spectral triples converging to a spectral triple (A∞,H∞, /D∞), then for any C-valued continuous function f ∈ C0(R) which vanishes at infinity, the sequence (Pn f ( /Dn)Pn)n∈N converges to f ( /D∞) in norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' This section is concerned with the question: if a spectral triple is an inductive limit of spectral triples, then what additional assumptions should be made to get a more 26 CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER geometric convergence, specifically in the sense of the spectral propinquity?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In order to make sense of this question, we will work with metric spectral triples, which give rise to quantum compact metric spaces, and lie within the realm of noncommutative metric geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Main result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The notion of inductive limit of spectral triples is simpler to define than the spectral propinquity but only applies to rather narrow examples — it is not applicable to fuzzy and quantum tori [45] or the fractals in [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' It is certainly interesting to wonder how much metric information from the spectral triples are continuous with respect to the inductive limit process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In this section, we establish a sufficient condition for the convergence, in the sense of the spectral propinquity, of a sequence of metric spectral triples which already converges to a metric spectral triple in the categorical sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' This sufficient condition is simply the existence of an appropriate bridge builder which is also a full quantum isometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus, the main difficulty in establishing convergence for the spectral propinquity, in this context, reduces to proving metric convergence for the propinquity using adequate tunnels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let (A∞,H∞, /D∞) be a metric spectral triple which is the inductive limit of a sequence of metric spectral triples (An,Hn, /Dn), in the sense of Definition (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For each n ∈ N, let dom(Ln) := {a ∈ sa(An) : a dom( /Dn) ⊆ dom( /Dn) and [ /Dn,a] is bounded}, and for all a ∈ dom(Ln), define Ln(a) := |||[ /Dn,a]|||Hn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If there exists a full quantum isometry π : (A∞,L∞) → (A∞,L∞) which is also a bridge builder for ((An,Ln)n∈N,(A∞,L∞)), then lim n→∞Λspec((An,Hn, /Dn),(A∞,H∞, /D∞)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Fix ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By Proposition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='21), the sequence (An,Ln)n∈N converges to (A∞,L∞) for the propinquity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' More specifically, set, for convenience, ˜ε = ε 2 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let Nπ ∈ N be given so that, for all n � Nπ, we have: ∀a ∈ dom(L∞) ∃b ∈ dom(Ln) : Ln(b) � L∞(a) and ∥π(a)−b∥A∞ < ˜εL∞(a), ∀b ∈ dom(Ln) ∃a ∈ dom(L∞) : L∞(a) � Ln(b) and ∥π(a)−b∥A∞ < ˜εLn(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For each n ∈ N, we constructed in Proposition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='21) a tunnel τn = (Dn,Tn,ψn,θn) with Dn = A∞ ⊕An, and for all (a,b) ∈ dom(L∞)⊕dom(Ln), Tn(a,b) := max � L∞(a),Ln(b), 1 ˜ε ∥π(a)−b∥A∞ � , while ψn : (a,b) ∈ Dn �→ a, θn : (a,b) ∈ Dn �→ b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We proved that χ(τn) < ˜ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' It is immediate, since π is a full quantum isometry, that τ′ n := (Dn,Tn,π◦ψn,θn) is also a tunnel with the same extent as τn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For each n ∈ N and for all ξ ∈ dom( /Dn), we define DNn(ξ) := ∥ξ∥Hn +∥ /Dnξ∥Hn , following Expression (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, since DN∞ is a D-norm, the set X∞ = {ξ ∈ dom( /D∞) : DN∞(ξ) � 1} is compact in H∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus, there exists a finite subset F ⊆ X∞ of X∞ such that Haus[H∞](X∞,F) < ˜ε 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' As /D∞ is the closure of an operator on � n∈NHn by [20], for any ξ ∈ F, there exists a sequence (ξn)n∈N, with ξn ∈ � j∈NHj for all n ∈ N, such that limn→∞ ξn = ξ, and 27 limn→∞ /D∞ξn = /D∞ξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since F is finite, there exists NF ∈ N such that if n � NF and ξ ∈ F, then ∥ξ−ξn∥H∞ < ˜ε 3 and ∥ /D∞ξ− /D∞ξn∥H∞ < ˜ε 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Again by Definition (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='15), we also have /D∞ξn = /Dnξn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Fix n ∈ N,n � N := max{Nπ,NF }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let Mn := H∞ ⊕ Hn, seen as a Dn-(C ⊕ C) C*- correspondence, with the C*-correspondence structure: ∀(a,b) ∈ Dn ∀(ξ,η) ∈ Mn (a,b)◁(ξ,η) := (π(a)ξ,bη), and ∀(ξ,η),(ξ′,η′) ∈ Mn 〈(ξ,ξ′),(η,η′)〉n := � 〈ξ,ξ′〉H∞,〈η,η′〉Hn � ∈ C⊕C, while ∀(t,s) ∈ C⊕C ∀(ξ,η) ∈ Mn (ξ,η)·(t,s) := (tξ,sη).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We note that here, C2 is the C*-algebra of C-valued functions over a two points set, and in particular, the norm of (z,w) ∈ C2 is max{|z|,|w|}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We then define, for all (ξ,η) ∈ dom( /D∞)⊕dom( /Dn): TNn(ξ,η) := max � DN∞(ξ),DNn(η), 1 ˜ε ��ξ−η ��H∞ � , while we also set Q : (z,w) ∈ C⊕C �→ 1 ˜ε|z − w|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' It is immediate to see that Q is a Lipschitz seminorm on C ⊕ C (it is, in fact, the Lipschitz seminorm for the metric on the two point set which places these two points exactly ˜ε apart).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, we check that TNn is a D-norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Of course, for all (ξ,η) ∈ Mn: TNn(ξ,η) � max{DN∞(ξ),DNn(η)} � max � ∥ξ∥H∞ , ��η ��Hn � = ��(ξ,η) ��Mn .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We observe that {(ξ,η) ∈ Mn : TNn(ξ,η) � 1} ⊆ {ξ ∈ dom( /D∞) :DN∞(ξ) � 1}×{η ∈ dom( /Dn) : DNn(η) � 1}, the latter set being compact as a product of two compact sets – since DNn and DN∞ are indeed D-norms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since in addition, TNn is lower semicontinuous over Mn as the maximum of three lower semicontinuous functions over this space, the unit ball of TNn is indeed closed, hence compact, in Mn (which is complete).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We now check the Leibniz inequalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If (a,b) ∈ dom(Tn) and (ξ,η) ∈ dom(TNn), then we compute: ��(a,b)◁(ξ,η) ��H∞ = ��π(a)ξ−bη ��H∞ � ∥π(a)−b∥A∞ ∥ξ∥H∞ +∥b∥A∞ ��ξ−η ��H∞ � ˜εTn(a,b)DNn(ξ)+∥(a,b)∥Dn ˜εTNn(ξ,η) � ˜ε �Tn(a,b)+∥(a,b)∥Dn �TNn(ξ,η).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' From this, it follows that for all (a,b) ∈ dom(Tn) and for all (ξ,η) ∈ dom(TNn), TNn((a,b)◁(ξ,η)) � �Tn(a,b)+∥(a,b)∥Dn �TNn(ξ,η).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 28 CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER On the other hand, if (ξ,η),(ξ′,η′) ∈ dom(TNn), we have: Q(〈(ξ,η),(ξ′,η′)〉Mn) = 1 ˜ε ��〈ξ,ξ′〉H∞ −〈η,η′〉H∞ �� � 1 ˜ε ���〈ξ−η,ξ′〉H∞ ��+ ��〈η,ξ′ −η′〉H∞ ��� � 1 ˜ε ���ξ−η ��H∞ ��ξ′��H∞ + ��η ��H∞ ��ξ′ −η′��H∞ � � TNn(ξ,η) ��ξ′��H∞ + ��η ��H∞ TNn(ξ′,η′) � 2TNn(ξ,η)TNn(ξ′,η′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We now define the maps: Πn : (ξ,η) ∈ Mn �→ ξ ∈ H∞, and Θn : (ξ,η) ∈ Mn �→ η ∈ Hn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Our goal is to show that Υn := �Mn,(Πn,π◦ψn),(Θn,θn) � where Mn := (Mn,TNn,Dn,Tn,C⊕C,Q) is a metrical tunnel, using Definition (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By construction, Πn(a ·ξ,b ·η) = π(a)ξ = π◦ψn(a,b)Πn(ξ,η) and Θn(a ·ξ,b ·η) = bη = θn(a,b)Θn(ξ,η), for all (a,b) ∈ Dn and (ξ,η) ∈ Mn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, let ξ ∈ H∞ with DN∞(ξ) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By construction of F, there exists ξ′ ∈ F such that ��ξ−ξ′��H∞ < ˜ε 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By our choice of N, there exists η(= ξ′ n) ∈ Hn such that DNn(η) � 1+ ˜ε 3 and ��ξ′ −η ��H∞ < ˜ε 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let χ = 1 1+ ˜ε 3 η ∈ Hn, so that DNn(χ) � 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Moreover, ��ξ−χ ��H∞ � ��ξ−η ��H∞ + ˜ε 3 1+ ˜ε 3 ��η ��H∞ � ��ξ−η ��H∞ + ˜ε 3 1+ ˜ε 3 DNn(η) � ��ξ−ξ′��H∞ + ��ξ′ −η ��H∞ + ˜ε 3 < ˜ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus TNn(ξ,χ) = 1, and therefore, (Πn,π◦ψn) is indeed a metrical quantum isometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, let η ∈ Hn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By construction, /D∞η = /Dnη, so DN∞(η) = DNn(η).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, TNn(η,η) = DNn(η).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Again, we conclude that (Θn,θn) is a metrical quantum isometry as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, Υn is a metrical tunnel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' It is immediate, of course, that the canonical surjections from C⊕C to C are quantum isometries — the only Lipschitz seminorm on C being the 0 function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' So Υn is a metrical tunnel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We now compute the extent of Υn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' It is, by Definition (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='11), the maximum of the extent of the tunnel τ′ n, which is at most ˜ε, and the extent of the tunnel (C,0) ←− (C ⊕ C,Q) −→ (C,0), which is immediately computed to be ˜ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' So the extent of Υn is ˜ε as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, for all n � N, we have Λ∗met((Hn,DNn,An,Ln,C,0),(H∞,DN∞,A∞,L∞,C,0)) � χ(Υn) = ˜ε < ε, and therefore, lim n→∞Λ∗met((Hn,DNn,An,Ln,C,0),(H∞,DN∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='A∞,L∞,C,0)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 29 It remains to compute an upper bound for the ε-reach of our tunnels Υn (see Defini- tion 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We will once again use our finite set F with Haus[H∞](F,X∞) < ˜ε 3 where X∞ is the closed unit ball of DN∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, let (vk)k∈N be a sequence of continuous functions on R vanishing at ∞, valued in [0,1], and converging pointwise to 1 over R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, (vk( /D∞))k∈N converges to /D∞ in the strong operator topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since F is finite, there exists k ∈ N such that, for all ξ ∈ F (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='3) ∥vk( /D∞)ξ−ξ∥H∞ < ˜ε 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We identify, from now on, /Dn with the linear operator on H∞ whose restriction to Hn is /Dn, and whose restriction to H ⊥ n is 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' thus dom( /Dn) is replaced with dom( /Dn)⊕H ⊥ n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We denote by Pn the orthogonal projection of H∞ onto Hn, so that Pn /Dn = /DnPn = /Dn on dom( /Dn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For each t ∈ [0,∞), let ut : s ∈ R �→ exp(its), and for each n ∈ N, we denote ut( /Dn) by U t n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Fix t ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The function ut vk is continuous over R and vanishes at infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By Theorem (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='16), since (A∞,H∞, /D∞) is a spectral triple, and the inductive limit of the sequence (An,Hn, /Dn)n∈N of spectral triples, the sequence of operators (Pnut vk( /Dn)Pn)n∈N con- verges in norm to ut vk( /D∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Moreover, ut vk( /Dn)Pn = Pnut vk( /Dn)Pn for all n ∈ N by construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let F ′ be a finite subset of the compact set � 0, 1 ε � such that Haus[R](F ′, � 0, 1 ε � ) < ˜ε 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since F ′ is finite, there exists Nν ∈ N such that if n � Nν, then for all t ∈ F ′: (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='4) ������U t n(vk( /Dn))Pn −U t ∞(vk( /D∞)) ������H∞ < ˜ε 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, we note that if ξ ∈ dom(DNn) with DNn(ξ) � 1, then for all s < t ∈ R: ��U t nξ−U s nξ ��Hn � �t s ���� d dr U r nξ ����Hn dr � �t s ��U r n /Dnξ ��Hn dr � |s − t|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus, for all s,t ∈ R and ξ ∈ dom(DNn) with DNn(ξ) � 1, we have ��U t nξ−U s nξ ��Hn � |s − t|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, let n � N ′ := max{Nν,NF }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since /Dn and Pn commute, if ξ ∈ X∞, then DNn(ξ) � DN∞(ξ) and: DNn(νk( /Dn)Pnξ) = ∥vk( /Dn)Pnξ∥H∞ +∥ /Dnvk( /Dn)Pnξ∥H∞ � ∥vk∥C0(R) |||Pn|||H∞DNn(ξ) � 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 30 CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER For all ξ ∈ X∞ and t ∈ � 0, 1 ˜ε � , let s ∈ F ′ and ξ′ ∈ F such that |s − t| < ˜ε 12, ��ξ−ξ′��H∞ < ˜ε 3, then: ��U t nνk( /Dn)Pnξ−U t ∞ξ ��H∞ � ��U t nνk( /Dn)Pnξ−U s nνk( /Dn)Pnξ ��H∞ �|t−s|< ˜ε 12 since DNn(νk( /Dn)Pnξ)�1 + ��U s nνk( /Dn)Pnξ−U s ∞νk( /D∞)ξ ��H∞ �|||U snνk( /Dn)Pn−U s∞νk( /D∞)|||H∞< ˜ε 12 by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='4) + ��U s ∞νk( /D∞)(ξ−ξ′) ��H∞ �∥ξ−ξ′∥H∞< ˜ε 3 by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='3) + ��U s ∞νk( /D∞)ξ′ −U s ∞ξ′��H∞ �∥νk( /D∞)ξ′−ξ′∥H∞< ˜ε 12 + ��U s ∞ξ′ −U t ∞ξ′��H∞ �|s−t|< ˜ε 12 + ��U t ∞ξ′ −U t ∞ξ ��H∞ �∥ξ−ξ′∥H∞< ˜ε 3 < ˜ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let ξ ∈ dom( /D∞) with DN∞(ξ) � 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let n � N ′, and set η = νk( /D∞)Pnξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For all t ∈ � 0, 1 ˜ε � , we have, η ∈ dom( /Dn) and DNn(η) � 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, inf η∈dom(DNn) DNn(η)�1 sup ω∈dom(TNn) TNn(ω)�1 ���〈U t nη,Θn(ω)〉Hn −〈U t ∞ξ,Πn(ω)〉H∞ ��� � sup ω∈dom(TNn) TNn(ω)�1 ���〈U t nνk( /Dn)Pnξ,Θn(ω)〉Hn −〈U t ∞ξ,Πn(ω)〉H∞ ��� � sup ω∈dom(TNn) TNn(ω)�1 � �� ��U t nνk( /Dn)ξ−U t ∞ξ ��H∞ ∥ω∥Mn + ��U t ∞ξ ��H∞ ∥Θn(ω)−Πn(ω)∥H∞ <˜ε since TNn(ω)�1 � �� < ˜ε+ ˜ε = ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, take ξ ∈ Hn, with DNn(ξ) � 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By construction, ∥ /D∞ξ∥H∞ = ∥ /Dnξ∥Hn, and U t nξ =U t ∞ξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' So for all ξ ∈ dom(DNn) with DNn(ξ) � 1, we have, for all t ∈ R: inf η∈dom( /D∞) DN∞(η)�1 sup ω∈dom(TNn) TNn(ω)�1 ���〈U t ∞η,Πn(ω)〉H∞ −〈U t nξ,Θn(ω)〉Hn ��� � ���〈U t ∞ξ,Πn(ω)〉H∞ −〈U t nξ,Θn(ω)〉Hn ��� = 0 < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, for all n � max{N,N ′}, the ε-reach of Υn is no more than ε, and thus the ε-magnitude µ(Υn|ε) of Υn is no more than ε (by Definition (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='12)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore for all n � N: Λspec((An,Hn, /Dn),(A∞,H∞, /D∞)) � µ(Υn|ε) < ε, and thus lim n→∞Λspec((An,Hn, /Dn),(A∞,H∞, /D∞)) = 0, as claimed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' □ 31 Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' A corollary of Theorem (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='17) is that we obtain convergence for the bounded continuous functional calculus for the Dirac operators from the work in [31], which extends Theorem (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' EVEN SPECTRAL TRIPLES ON TWISTED GROUP C ∗-ALGEBRAS We now apply our results of the previous sections to the construction of inductive limits of spectral triples for the spectral propinquity on twisted C*-algebras of discrete groups endowed with length functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In particular we will prove in this section our third main theorem, Theorem (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Our approach introduces new metric spectral triples on certain twisted group C*-algebras which generalize the related, though distinct, past constructions using length functions over discrete groups such as the ones in [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Our main applications would be the construction of new spectral triples over noncom- mutative solenoids and some Bunce-Deddens algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In particular, we shall prove that the noncommutative solenoids spectral triples are limits of spectral triples over quantum 2-tori for the spectral propinquity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We will start with detailing in the next two subsections some background material that will be used to state and prove our main result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Discrete Groups, Proper Length Functions, 2-Cocycles, and Classical Spectral Triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let G∞ be a discrete group, and let σ be a 2-cocycle over G∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let λ be the left regular σ-projective representation of G∞ on ℓ2(G∞), defined by, for all g ∈ G∞ and for all ξ ∈ ℓ2(G∞): λ(g)ξ : h ∈ G∞ �−→ σ(g,g −1h)ξ(g −1h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Of course, each operator λ(g) is unitary for each g ∈ G∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let C ∗ red(G∞,σ) be the re- duced C*-algebra of G∞ twisted by σ, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' the C*-algebra of operators on ℓ2(G∞) gener- ated by � λ(g) : g ∈ G∞ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For any f ∈ ℓ1(G∞), the operator λ(f ) on ℓ2(G∞) is defined as � g∈G∞ f (g)λ(g) — it is easily checked that ������λ(f ) ������ ℓ2(G∞) � ��f �� ℓ1(f ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The reduced group C*-algebra C ∗ red(G) is, in particular, C ∗ red(G∞,1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In [11], Connes introduced spectral triples (C ∗ red(G∞),ℓ2(G∞),ML) using any proper length function L overG∞, where ML is the operator of multiplication by L, defined on its natural domain in the Hilbert space ℓ2(G∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Connes proved that ������[ML,λ(g)] ������ ℓ2(G∞) = L(g) — which immediately follows from the triangle inequality and the fact that [ML,λ(g)]δe = L(g)σ(g,1)δg , where, for all g ∈ G∞: δg : h ∈ G∞ �→ � 1 if g = h, 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' It then follows that for the ∗-algebra Cc(G∞) of C-valued functions with finite support, we obtain the inequality, for all f ∈ Cc(G∞): (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='1) ������� ML,λ(g) ������� ℓ2(G∞) � � g∈G∞ |f (g)|L(g), since λ(g) is unitary for all g ∈ G∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Note that by construction, for the multiplication operator by L to have compact resolvent, the spectral projection of this operator on any compact interval must have finite rank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus, in particular, the set {δh ∈ ℓ2(G∞) : L(h) � r} must be finite for all r � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In other words, all closed balls in G∞ for L must be finite, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=', L must indeed be proper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' However, natural length functions on G∞ may not be proper, or even give the discrete topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' An example of this situation is given when G∞ is the additive group � Z � 1 p ��2 32 CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER where: Z � 1 p � := � a pn : n ∈ N,a ∈ Z � , and where p ∈ N is prime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' It is natural to regard Z � 1 p � as a subgroup of Q, and thus equip it with the induced length function from the usual absolute value on Q (see Figure (3)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' However, this length function is not proper — and induces a non-discrete topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We moreover note that Z � 1 p � = � n∈N 1 pn Z, and we would like to capture this inductive limit structure metrically;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' while the sequence � 1 pn Z � n∈N converges to Z � 1 p � for the Hausdorff distance induced by | · |, we can not apply this observation directly to the associated twisted C*-algebras since |·| does not define a spectral triple using Connes’ methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let us discuss this situation by returning to a general discrete group G∞ and some 2-cocycle σ on G∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We now assume that we are given a strictly increasing sequence (Gn)n∈N of subgroups of G∞ such that G∞ = � n∈NGn — in fancier terms, G∞ is the inductive limit of the sequence of groups (Gn)n∈N, which we identify with a sequence of subgroups of G∞ from now on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We also identify σ with its restriction to Gn for all n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We now have a conundrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If we choose a proper length function L on G∞, then, since G∞ = � n∈NGn with (Gn)n∈N increasing, any finite subset of G∞ is contained in some GN (and thus in all Gn with n � N).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' This implies that (Gn)n∈N converges to G∞ for the pointed Gromov-Hausdorff distance for proper metric space, where we always use 1 as our base point, and the metrics are induced by L (see [22]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' On the other hand, as soon as G∞ is infinite — which is the only interesting case to consider when G∞ is the union of countably many groups, otherwise of course G∞ is just Gn for n large enough — not only the diameter of G∞ is infinite — it can not be a closed ball as these are finite — but the subgroups Gn are not close to G∞ for the Hausdorff distance induced by L in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' So, we can define the spectral triples (C ∗ red(Gn,σ),ℓ2(Gn),ML) as before since L is proper, but in general, there is no apparent reason why |||[ML,a]|||ℓ2(G∞) is particularly close to |||[ML,a]|||ℓ2(Gn) for a ∈ C ∗ red(Gn,σ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' On the other hand, there may be length functions on G∞ for which (Gn)n∈N does converge in the Hausdorff distance for these length functions, but these length functions are not proper whenever G∞ is infinite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We are thus led to build a new type of spectral triples which combine these two apparently opposite situations: one where we do not know how to build a spectral triple using a non-proper length with otherwise good metric properties for our purpose, and one with a proper length function which has bad metric property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The following construction is inspired, but different from [19], where a proper length function is constructed as a sum of a non-proper length function with a p-norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The Spectral Triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We now define our new spectral triples on a particular type of twisted group C*-algebras, which are the subject of our main third theorem, Theorem (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='11), and its corollaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' From now on we assume that G∞ is a discrete group endowed with a 2-cocycle σ with values in T := {z ∈ C : |z| = 1}, and that G∞ is the union of a strictly increasing sequence for inclusion, (Gn), of subgroups of G∞ such that G∞ = � n∈NGn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We also assume that we are given a length function LH on G∞, whose restriction to each Gn is proper for each n ∈ N, and with the property that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='2) lim n→∞Haus[LH](G∞,Gn) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 33 Z � 1 2 � ⊆ Q 3 2 1 0 1 2 3 (A) The geometry of Z � 1 2 � for |·| in Q LH log2 ◦F 0 1 2 3 3 2 1 0 1 2 3 (B) The geometry of Z � 1 2 � using F FIGURE 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The geometry of Z � 1 2 � In addition we require that we are given a strictly increasing unbounded function scale : N → [0,∞), together with F : G∞ → [0,∞) such that for all g ∉ G0: F(g) = scale(min{n ∈ N : g ∈ Gn}), while F restricted to G0 satisfies: ∀g ∈ G0 F(g) = F(g −1), ∀g,h ∈ G0 F(gh) � max{F(g),F(h)}, ∀g ∈ G0 F(g) ∈ [0,scale(0)], F(1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Clearly, the above assumptions provide us with many length functions on G∞ and Gn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' we will use them in our spectral triples constructions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' One of our main examples for this section will be the noncommutative solenoids, whose fundamental components are described below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We will give more details on this example later in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let d � 2 and p a prime number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let G∞ = � Z � 1 p ��d , and let Gn = � 1 pn Z �d for all n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We note that G∞ = � n∈NGn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We can then choose LH to be the restriction of any norm on Rd, and scale : n ∈ N → pn ∈ [0,∞), so that: F : g ∈ G∞ �→ scale � min � n ∈ N : g ∈ � 1 pn Z �d�� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, for any function f : Gn → C, we denote by M f the operator of multiplication by f on the subspace: dom � M f � := � ξ ∈ ℓ2(Gn) : (h ∈ Gn �→ f (h)ξ(h)) ∈ ℓ2(Gn) � of ℓ2(Gn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Of course, M f is bounded by ��f �� C(Gn) if f is bounded, and unbounded otherwise;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' nonetheless dom � M f � always contains Cc(Gn) and thus is always dense in ℓ2(Gn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let E be a finite dimensional Hilbert space with inner product 〈·,·〉E and dimE ∈ 2N\\{0}, and let c be a ∗-representation of the Clifford algebra of C2 on E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let γ1 = c ��1 0 �� 34 CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER and γ2 = c ��0 1 �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For our purpose, we record that for all j,k ∈ {1,2}: γj γk +γkγj = � 2 if j = k, 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' There is no particular reason to restrict ourselves to E = C2, though it is the natural choice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In this case, we can choose the usual Weyl matrices: γ1 = �1 0 0 −1 � and γ2 = �0 1 1 0 � as the most natural choice for our construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For each n ∈ N := N∪{∞}, we identify the Hilbert space ℓ2(Gn,E) of E-valued func- tions over Gn (with inner product 〈ξ,η〉ℓ2(Gn,E) := � g∈Gn 〈ξ(g),η(g)〉E) with ℓ2(Gn)⊗E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We then let dom( /Dn) := � ξ ∈ ℓ2(Gn,E) : (LH(g)γ1ξ(g)+F(g)γ2ξ(g))g∈Gn ∈ ℓ2(Gn,E) � and on dom( /Dn), we define the Dirac operator: (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='3) /Dn := MLH ⊗γ1 + MF ⊗γ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We now prove that (C ∗(Gn,σ),ℓ2(Gn)⊗E, /Dn), as defined above, are indeed spectral triples, for all n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' A first step is the computation of the domain of our Dirac operators of Equation (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' To do so, we will need the following lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Recall that a norm ∥·∥R2 on R2 is monotone when it is increasing with respect to the product order on R2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' the most important such norm for our purpose will be the max norm x, y ∈ R2 �→ ��(x, y) �� ∞ = max{|x|,|y|};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' we also note that we will often write elements of Rd as simple d-tuples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' With the notation and assumptions of this section, the following identities hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' (1) For all g ∈ G∞: F(g −1) = F(g);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' (2) For all g,h ∈ G∞: F(gh) � max �F(g),F(h) � � F(g)+F(h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Moreover, if ∥·∥R2 is any monotone norm on R2, then g ∈ G∞ �→ ��(LH(g),F(g)) ��R2 is a proper, unbounded length function over G∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let g ∈ G∞, and let n ∈ N be the unique natural number such that F(g) = scale(n), or n = 0 if F(g) < scale(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If n = 0 then F(g) = F(g −1) by assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If n > 0, then g ∈ Gn and g ∉ Gp for p < n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' therefore, g −1 ∈ Gn and g −1 ∉ Gp if p < n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' hence, F(g −1) = scale(n) = F(g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, take h ∈ G∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Again, let m ∈ N be uniquely defined by F(h) = scale(m) or m = 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let k = max{m,n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus g,h ∈ Gk and therefore, gh ∈ Gk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' First, if g,h,gh ∈ G0, then F(gh) � max{F(g),F(h)} by assumption on F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Otherwise, k > 0, and we simply observe that either gh ∈ G0 and then F(gh) � scale(0) < scale(k), or gh ∉ G0, and again F(gh) � scale(k);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' either way we observe: F(gh) � scale(k) = scale(max{n,m}) = max{scale(n),scale(m)} = max{F(g),F(h)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Fix a monotone norm ∥·∥R2 on R2 and let L : g ∈ G∞ �−→ ��(LH(g),F(g)) ��R2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 35 It is then immediate to check that if g,h ∈ G∞, then, since ∥·∥R2 is monotone: ��(LH(gh),F(gh)) ��R2 � ��(LH(g)+LH(h),F(g)+F(h)) ��R2 � ��(LH(g),F(g)) ��R2 +∥(LH(h),F(h))∥R2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Moreover ��(LH(g −1),F(g −1)) ��R2 = ��(LH(g),F(g)) ��R2 for all g ∈ G∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Finally, if ��(LH(g),F(g)) ��R2 = 0, then LH(g) = 0, which in turns implies g = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' On the other hand, F(1) = 0 and LH(1) = 0, so L(1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus as claimed, L is a length function on G∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, let be more specific in our choice of ∥·∥R2, and fix it to be the usual max norm ∥·∥∞;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' we then rename our length L∞;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' so L∞(g) := max �LH(g),F(g) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Fix n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By definition, the following equality between closed balls hold: � g ∈ G∞ : L(g) � scale(n) � = � g ∈ Gn : LH(g) � scale(n) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since LH is proper on Gn, this set is finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' So L is indeed proper on G∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By assumption, the function scale is unbounded on N and, for all n ∈ N, there exists g ∈ G∞ \\Gn (since (Gn)n∈N is assumed to be strictly increasing), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' F(g) � scale(n), so L is unbounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We now return to a general monotone norm ∥·∥R2 on R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since all norms on R2 are equivalent, there exists c > 0 such that 1 c ∥·∥∞ � ∥·∥R2 � c ∥·∥∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, 1 c L∞ � L � cL∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' It is now easy to check that L is again proper and unbounded on G∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' This concludes our proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' □ Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' It is quite natural to simply set F(g) = scale(0) for all g ∈ G0 \\ {1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The difference between such a choice of F, vs any other F′, which meets our assumptions over G0, is a bounded perturbation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We refer to [36] for a discussion on bounded perturbations of spectral triples from the metric perspective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' As seen in the above discussion, the above length function LH will not be proper, so it won’t define a spectral triple by itself, however L is proper, and thus can be used to define a spectral triple on C ∗(G∞,σ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' However, we take a slightly different route by working with what we shall prove is an even spectral triple, replacing the linear geometry of G∞ with a sort of “two-dimensional” geometry (see Figure (3) for the noncommutative solenoid case).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We now prove that in the above hypotheses we can indeed define spectral triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We begin with a computation of the domain of the proposed Dirac operators defined in Equation (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' With the notation and assumptions of this section, the following assertion holds;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' for all ξ ∈ E and for all a,b ∈ R: ��(aγ1 +bγ2)ξ ��2 E = � a2 +b2� ∥ξ∥2 E .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In particular, for all n ∈ N, the domain dom( /Dn) of the Dirac operator /Dn is given by � ξ ∈ ℓ2(Gn,E) : � g∈Gn (LH(g)2 +F(g)2) ��ξ(g) ��2 E < ∞ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 36 CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let ξ ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The following identity holds for all a,b ∈ R: ��aγ1ξ+bγ2ξ ��2 E = a2〈γ1ξ,γ1ξ〉E + ab〈γ1ξ,γ2ξ〉E + ab〈γ2ξ,γ1ξ〉E +b2〈γ2ξ,γ2ξ〉E = a2〈γ2 1ξ,ξ〉E + ab〈(γ1γ2 +γ2γ1)ξ,ξ〉E +b2〈γ2 2ξ,ξ〉E = (a2 +b2)∥ξ∥2 E .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' as claimed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The computation of the dom( /Dn), for all n ∈ N, follows immediately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' □ We now prove that our Dirac operators are indeed self-adjoint with compact resolvent, and that they can be used to define spectral triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We also establish some useful estimates which will later allow us to prove that our construction gives metric spectral triples over noncommutative solenoids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If a is a bounded operator on ℓ2(G∞), we denote by a◦ the operator a⊗1E acting on ℓ2(G∞,E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We also define the representation λ of C ∗(G∞,σ) on ℓ2(G∞,E) by setting λE := λ⊗1E, so for all f ∈ Cc(G∞), we have λ(f )◦ := λE(f ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Moreover (1) For each n ∈ N, define: dom(Ln) := � a ∈ sa � C ∗ red(Gn,σ) � : a◦dom( /Dn) ⊆ dom( /Dn) and [ /Dn,a◦] is bounded � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' (2) For all a ∈ dom(Ln) define: Ln(a) := ������[ /Dn,a◦] ������ ℓ2(Gn,E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We conclude this subsection by proving that we indeed defined even spectral triples, and lay the groundwork for our third main theorem in the next subsection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Recall that, by Lemma (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='3), LH +F is proper and unbounded on G∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' With the notation and assumptions of this section, for any fixed n ∈ N, the ordered triple (C ∗ red(Gn,σ),ℓ2(Gn,E), /Dn) is an even spectral triple, where the grading on ℓ2(Gn,E) is given by 1ℓ2(Gn) ⊗iγ1γ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' More- over, for all a ∈ dom(Ln): ������[MLH ,a] ������ ℓ2(Gn) � ������[ /Dn,a◦] ������ ℓ2(Gn,E), together with: |||[MF,a]|||ℓ2(Gn) � ������[ /Dn,a◦] ������ ℓ2(Gn,E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In particular, if we define L := LH +F, then for all n ∈ N and all a ∈ dom(Ln): |||[ML,a]|||ℓ2(Gn) � 2 ������[ /Dn,a◦] ������ ℓ2(Gn,E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If, for any n ∈ N, the spectral triple (C ∗ red(Gn,σ),ℓ2(Gn), /DL) is metric, then so is (C ∗ red(Gn,σ), ℓ2(Gn,E), /Dn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We will start by showing that, for any fixed n ∈ N, /Dn is self-adjoint with compact resolvent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Fixed any n ∈ N, note that the domain of /Dn contains all finitely supported functions in ℓ2(Gn,E) and is therefore dense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Moreover, since γ1 and γ2 are self-adjoint, 37 if ξ,η ∈ dom( /Dn), it follows that: 〈 /Dnξ,η〉ℓ2(Gn,E) = � g∈Gn 〈 �LH(g)γ1 +F(g)γ2 � ξ,η〉E = � g∈Gn 〈ξ, �LH(g)γ1 +F(g)γ2 � η〉E = 〈ξ, /Dnη〉ℓ2(Gn,E), so /Dn is also a symmetric operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By using Lemma (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='5), we now note that: dom � /D2 n � = � ξ ∈ ℓ2(Gn,E) : � g∈Gn �LH(g)2 +F(g)2�2 ��ξ(g) ��2 E < ∞ � and, over dom � /D2 n � , the Clifford algebra relations imply: /D2 n +1 = � M2 LH + M2 F +1 � ⊗1E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now define an operator K on ℓ2(Gn,E) by setting, for all ξ ∈ ℓ2(Gn,E): K ξ : g ∈ Gn �→ 1 � LH(g)2 +F(g)2 +1 ξ(g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By construction, K is positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Moreover, if n ∈ N, then LH restricted to Gn is proper and F is bounded over Gn by our hypotheses, so K is compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If n = ∞, by our hypotheses, for all r � 0, the set {g ∈ G∞ : F(g) � r} is a subset of Gk for some k ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since LH is proper on Gk, the set {g ∈ G∞ : L2 H(g)+F2(g) � r} is finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus, the eigenspaces of K are all finite dimensional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' It follows easily that K is compact, as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In any case, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=', for all n ∈ N, ( /D2 n +1)K 2ξ = ξ for all ξ ∈ ℓ2(Gn,E), while K 2( /D2 n +1)ξ = ξ for all ξ ∈ dom � /D2 n � , as seen by a direct computation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' in particular, we note that K ℓ2(Gn,E) = dom( /Dn) by construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By Lemma (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='5), for all ξ ∈ ℓ2(Gn,E), we obtain: � g∈Gn �� /DnK ξ(g) ��2 E = � g∈Gn ����� LH(g) � LH(g)2 +F(g)2 +1 (γ1ξ(g))+ F(g) � LH(g)2 +F(g)2 +1 (γ2ξ(g)) ����� 2 E = � g∈Gn LH(g)2 +F(g)2 LH(g)2 +F(g)2 +1 ��ξ(g) ��2 E � ∥ξ∥2 ℓ2(Gn,E) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus, /DnK is bounded, of norm at most 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Consequently, ( /Dn ± i)K is also bounded on ℓ2(Gn,E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, ( /D ±i)K 2 is compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' It follows that /D ±i both have compact inverse ( /D ∓i)K 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Specifically for our purpose, if ξ ∈ ℓ2(Gn,E), then: ( /Dn +i) � ( /Dn −i)K 2� ξ = ( /D2 n +1)K 2ξ = ξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, the range of /Dn +i is ℓ2(Gn,E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Similarly, the range of /Dn −i is also ℓ2(Gn,E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' As /Dn is also a symmetric operator defined on a dense domain, we conclude by [53, Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' VIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='2] and [45, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='48] that /Dn is indeed self-adjoint, with compact resolvent (since the inverse of /Dn +i is the compact ( /Dn −i)K 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We will now verify the commutator spectral triples condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Note that if g ∈ Gn, then ������[ /Dn,λE(g)] ������ ℓ2(Gn,E) � LH(g)+F(g) = L(g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 38 CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER Therefore, if f ∈ Cc(Gn), then the operator [ /Dn,λE(f )] is bounded, and in fact, ������[ /Dn,λE(f )] ������ ℓ2(Gn,E) � � g∈Gn |f (g)|L(g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We conclude that (C ∗ red(G∞,σ),ℓ2(G∞), /D) is a spectral triple for all n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We will now prove that our spectral triple is metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let a ∈ dom(Ln) for some n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We then note that, (1⊗γ1)[ /Dn,a◦]+[ /Dn,a◦](1⊗γ1) = [MLH ,a]⊗2, which implies: ������[MLH ,a] ������ ℓ2(Gn) � 1 2 ������(1⊗γ1)[ /Dn,a◦]+[ /Dn,a◦](1⊗γ1) ������ ℓ2(Gn,E) � 1 2 �������(1⊗γ1)[ /Dn,a◦] ������ ℓ2(Gn,E) + ������[ /Dn,a◦](1⊗γ1) ������ ℓ2(Gn,E) � � 1 2 �������[ /Dn,a◦] ������ ℓ2(Gn,E) + ������[ /Dn,a◦] ������ ℓ2(Gn,E) � = ������[ /Dn,a◦] ������ ℓ2(Gn,E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The same reasoning, with 1⊗γ2 in place of 1⊗γ1, leads to |||[MF,a]|||ℓ2(Gn) � ������[ /Dn,a◦] ������ ℓ2(Gn,E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, for all a ∈ dom(Ln), we obtain: |||[ML,a]|||ℓ2(Gn) � ������[MLF ,a] ������ ℓ2(Gn) +|||[MF,a]|||ℓ2(Gn) � 2 ������[ /Dn,a◦] ������ ℓ2(Gn,E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In particular, if (C ∗ red(Gn,σ),ℓ2(Gn), /DL) is a metric spectral triple, then, by [55, Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='10], so is (C ∗ red(Gn,σ),ℓ2(Gn), /Dn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Finally, we will show that our spectral triples are in fact even, with grading given by 1ℓ2(Gn) ⊗ γ where γ := iγ1γ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By construction, γ2 is the identity, and γ∗ = γ, so γ is a self-adjoint unitary;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' therefore so is 1ℓ2(Gn) ⊗γ, which splits ℓ2(Gn,E) in its two spectral subspaces for 1 and −1, in such a way that λE commutes with 1⊗γ, while /Dn(1⊗γ) = −(1⊗γ) /Dn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' So (C ∗ red(Gn,σ),ℓ2(Gn,E), /Dn) is an even spectral triple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' □ Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' With the notation of Lemma (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='7), we note that for each finite n ∈ N, the spectral triple (C ∗ red(Gn),ℓ2(Gn,E), /Dn) is, in some sense, a bounded perturbation of the odd spectral triple (C ∗ red(Gn),ℓ2(Gn),ML), since F is bounded on Gn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The situation is quite different when n = ∞, of course.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Suppose ρ is some other 2-cocycle of G∞, which is equivalent to σ, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=', for some function f : G∞ → T, the following holds: ∀g,h ∈ G∞ ρ(g,h) = f (g)f (h)f (gh)σ(g,h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The operator M f is then a unitary which intertwines the left regular σ and ρ projective representation of G∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus, (AdM f )◦ implements a *-isomorphism from λE(C ∗(G∞,ρ)) onto λE(C ∗(G∞,σ)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Furthermore, M◦ f commutes with /D∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, the spectral triples (C ∗(G∞,σ),ℓ2(G∞,E), /D∞) and (C ∗(G∞,ρ),ℓ2(G∞,E), /D∞) are unitarily equiva- lent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In particular, whenever one is metric, so is the other, and then they are at distance zero from each others for the spectral propinquity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 39 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Main result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We begin this section by making some basic identifications that will be used throughout the rest of the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We will use the notation introduced in the above sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Fixed n ∈ N, the C*-algebra C ∗ red(Gn,σ) is technically the closure, in the operator norm, of the linear span of the operators λn(g) defined on ℓ2(Gn) by λn(g)ξ : h ∈ ℓ2(Gn) �→ σ(g,g −1h)ξ(g −1h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' On the other hand, since Gn ⊆ G∞, we obtain a different unitary σ-projective representation of Gn, via the restriction of the σ-projective representation λ of G∞ to Gn on ℓ2(G∞), giving us an alternative C*-algebra generated by {λ(h) : h ∈ Gn}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If S ⊆ G∞ is any nonempty subset of G∞, we identify the space ℓ2(S) with {ξ ∈ ℓ2(G∞) : ∀g ∈ G∞ \\S ξ(g) = 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let Qn ⊆ G∞ be a subset of G∞ such that every right coset of Gn in G∞ is of the form Gnk for a unique k ∈ Qn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Of course, ℓ2(G∞) = � k∈Qnℓ2(Gnk), where ⊕ is the Hilbert sum, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' the closure of the direct sum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, we set, for all k ∈ G∞ and ξ ∈ ℓ2(G∞): (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='4) ρ(k)ξ : h ∈ ℓ2(G∞) �→ σ(hk,k−1)ξ(hk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus defined, ρ is the right regular ˘σ-projective representation of G∞ on ℓ2(G∞), where ˘σ : g,h ∈ G∞ �→ σ(h−1,g −1) is indeed a 2-cocycle of G∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If the 2-cocycle σ is normalized, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' σ(g,g −1) = 1 for all g ∈ G∞, then ˘σ = σ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' we will however not need to work with normalized cocycles here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since σ is a 2-cocycle, we obtain, for all g,h,k ∈ G∞ and ξ ∈ ℓ2(G∞): λ(g)ρ(k)ξ(h) = σ(g,g −1h)ρ(k)ξ(g −1h) = σ(g,g −1h)σ(g −1hk,k−1)ξ(g −1hk) = σ( g =:x ,g −1hk =:y k−1 =:z )σ(g −1hk =y ,k−1 =z )ξ(g −1hk) = σ( g =x ,g −1hk =y )σ(hk =xy ,k−1 =z )ξ(g −1hk) = σ(hk,k−1)(λ(g)ξ)(hk) = ρ(k)λ(g)ξ(h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, λ(g) and ρ(k) commute, for all g,k ∈ G∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' It is moreover immediate that ρ(k−1) maps ℓ2(Gnk) onto ℓ2(Gn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We now define the unitary V from ℓ2(G∞) = � k∈Qnℓ2(Gnk) to � k∈Qnℓ2(Gn) by setting, for all ξ = (ξk)k∈Qn ∈ � k∈Qnℓ2(Gnk): V ξ = � ρ(k−1)ξk � k∈Qn ∈ � k∈Qnℓ2(Gn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By construction, V is unitary, and moreover, for any g ∈ Gn: V λ(g)V ∗(ξk)k∈Qn = (λn(g)ξk)k∈Qn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus, AdV is a ∗-isomorphism from the C*-subalgebra generated by {λ(g) : g ∈ Gn} and the C*-algebra C ∗ red(Gn,σ) which maps λ(g) to λn(g) for all g ∈ Gn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' From now on, we thus identify C ∗ red(Gn,σ) with the C*-algebra generated by {λ(g) : g ∈ Gn} in C ∗ red(G∞,σ) and work exclusively in the latter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We will also identify ℓ2(Gn,E) with � ξ ∈ ℓ2(G∞,E) : ∀g ∈ G∞ \\Gn ξ(g) = 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 40 CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER To complete our picture, we also identify /Dn with the operator defined for ξ = ξn + ξ⊥ n , with ξn ∈ ℓ2(Gn,E)2 and ξ⊥ n ∈ ℓ2(Gn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='E) = � k∈Qn\\Gnℓ2(Gnk,E), by /Dnξ = /Dnξn ∈ ℓ2(Gn,E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We then observe that if Pn is the orthogonal projection from ℓ2(G∞) onto ℓ2(Gn), we have, for all ξ ∈ dom( /Dn) and for all g ∈ G∞: P◦ n /Dnξ(g) = � (LH(g)⊗γ1 +F(g)⊗γ2)ξ(g) if g ∈ Gn, 0 otherwise, = /D∞P◦ nξ(g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We thus have shown that P◦ ndom( /Dn) ⊆ dom( /D∞) and P◦ n /Dn = /D∞P◦ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Moreover, P◦ n /D∞P◦ n = /Dn and thus, for all a ∈ dom(Ln) we compute the following expression, using the fact that [Pn,a] = 0,: P◦ n[ /D∞,a◦]P◦ n = P◦ n /D∞a◦P◦ n −P◦ na◦ /D∞P◦ n = P◦ n /D∞P◦ na◦ − a◦P◦ n /D∞P◦ n = /Dna◦ − a◦ /Dn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' So we have, for all a ∈ dom(L∞): (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='5) Ln(a) = ������[ /Dn,a◦] ������ ℓ2(Gn,E) = ������P◦ n[ /D∞,a◦]P◦ n ������ ℓ2(G∞,E) � L∞(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' With all of the above identifications, we thus have a natural unital ∗-morphism from C ∗ red(Gn,σ) into C ∗ red(G∞,σ) which becomes just the natural inclusion, and λ(g)ℓ2(Gnk) ⊆ ℓ2(Gnk) for each g ∈ Gn and k ∈ G∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By linearity and continuity, we conclude that if a ∈ C ∗ red(Gn,σ), then aℓ2(Gnk) ⊆ ℓ2(Gnk) for all k ∈ G∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We also note that [ /D∞,a◦]ℓ2(Gnk,E) ⊆ ℓ2(Gnk,E) for all k ∈ G∞ and a ∈ dom(Ln).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We will work for the rest of this section with the above identifications and their basic properties without further mention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Our main theorem in this section involves, in particular, a strong result about the convergence of some of the quantum compact metric spaces induced by our spectral triples: namely, we obtain some convergence in the sense of the Lipschitz distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The Lipschitz distance LipD, extended to noncommutative metric geometry in [37], is defined between any two quantum compact metric spaces (A,LA) and (B,LB), by LipD((A,LA),(B,LB)) := inf � ln(k) : ∃π : (A,LA) → (B,LB) Lipschitz *-isomorphism with 1 k LA � LB ◦π � kLA � , with the convention that inf� = ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus LipD is finite only between quantum compact metric spaces built over isomorphic C*-algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' As shown in [37], the Lipschitz distance dominates the Gromov-Hausdorff propinquity;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' in fact, closed balls for the Lipschitz distance are compact in the propinquity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In particular, if A is a unital C*-algebra, and if L1 and L2 are two Lipschitz seminorms over A with the same domain, then the identity is bi-Lipschitz, and we do obtain, by definition: LipD((A,L1),(A,L2)) � ln(C) if 1 C L1 � L2 � CL1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We now prove our main result about inductive limits of discrete groups and the convergence, for the spectral propinquity, of their spectral triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Note that below we use the notation established in Definition (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 41 Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' With the notation and assumptions of Subsection 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='2, if (C ∗ red(Gn,σ),ℓ2(Gn,E), /Dn) is a metric spectral triple for all n ∈ N, and if {a ∈ dom(Ln) : Ln(a) � 1} = cl({a ∈ Cc(Gn) : Ln(a) � 1}), then lim n→∞Λspec � (C ∗ red(Gn,σ),ℓ2(Gn,E), /Dn),(C ∗ red(G∞,σ),ℓ2(G∞,E), /D∞) � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Moreover, for any fixed k ∈ N, the sequence (C ∗ red(Gk,σ),Ln)n�k converges in the Lips- chitz distance LipD to the quantum compact metric space (C ∗ red(Gk,σ),L∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We shall check that the identity automorphism of C ∗ red(G∞,σ) satisfies the hypoth- esis of Theorem (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Obviously, the identity is a full quantum isometry of (C ∗ red(G∞,σ),L∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let C = 2qdiam(C ∗(G∞,σ),L∞) — note that since G∞ ̸= {1}, we have C > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let tr : a ∈ C ∗ red(G∞,σ) �→ 〈aδ1,δ1〉ℓ2(G∞);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' tr is a tracial state of C ∗(G∞,σ) which maps a ∈ Cc(G∞) to a(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Fix ε ∈ � 0, C 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since (C ∗ red(G∞,σ),L∞) is a quantum compact metric space by assump- tion, the set X∞ := {a ∈ dom(L∞) : L∞(a) � 1,tr(a) = 0} is compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus, there exists a finite ε-dense subset X ε ∞ ⊆ X∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since X∞ = cl({a ∈ Cc(G∞) : L∞(a) � 1,tr(a) = 0}), we can moreover assume that X ε ∞ ⊆ Cc(G∞) as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since X ε ∞ is finite and each of its element has finite support, there exists a finite subset S ⊆ G∞ which contains the support of all the elements in X ε ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since G∞ = � n∈NGn and (Gn)n∈N is increasing, there exists N1 ∈ N such that, for all n � N1, we have S ⊆ Gn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus X ε ∞ ⊆ Cc(Gn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Moreover, by Expression (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='5), we also obtain Ln(a) � L∞(a) for all a ∈ X ε ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In summary, ∀a ∈ X∞ ∃b ∈ X ε ∞ ⊆ Cc(Gn) ⊆ C ∗ red(Gn,σ) : ∥a −b∥C∗ red(G∞,σ) < ε and Ln(a) � L∞(a) � 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If a ∈ dom(L∞), then there exists b ∈ X ε ∞ such that ∥a −tr(a)−b∥C∗ red(G∞,σ) < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Of course, b +tr(a) ∈ C ∗ red(Gn,σ) and Ln(b +tr(a)) = Ln(b) � 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By homogeneity, it follows that for all a ∈ dom(L∞), and for all n � N1, there exists b ∈ dom(Ln) such that ∥a −b∥C∗ red(G∞,σ) < εL∞(a) and Ln(b) � L∞(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, using our assumption of Equation (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='2), there exists N2 ∈ N, with N2 � N1, such that Haus[LH](G∞,Gn) < ε C 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For each right coset c of Gn in G∞, let k ∈ c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since the distance for LH from k ∈ G∞ to Gn is strictly less than ε C2 , there exists g ∈ Gn such that LH(g −1k) < ε C2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Setting kc = g −1k, we have by definition of right cosets that c = Gnkc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, there exists a subset Qn ⊆ G∞ of G∞ such that, if k ∈ Qn then LH(k) < ε C2 , and if c is a right coset of Gn in G∞, then there exists a unique k ∈ Qn such that c = Gnk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let n � N2 and let b ∈ Cc(Gn) ⊆ C ∗ red(Gn,σ) with b(1) = tr(b) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Note that b ∈ dom(L∞)∩dom(Ln) so, in particular, both Ln(b) and L∞(b) are finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We thus have ℓ2(G∞) = ⊕k∈Qnℓ2(Gnk), where ⊕ is the Hilbert sum (the closure of the sum).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If h ∈ Gn, then, by definition of a right coset, λ(h)ℓ2(Gnk) ⊆ ℓ2(Gnk) for all k ∈ Qn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' As /D∞ (dom( /Dn)) ⊆ ℓ2(Gnk,E) as well for all k ∈ Qn, we conclude that 42 CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER [ /D∞,b◦] � ℓ2(Gnk,E) � ⊆ ℓ2(Gnk,E) — i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' b, /D∞ and its commutators are all block di- agonal in this decomposition of ℓ2(G∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' It follows that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='6) ������[ /D∞,b◦] ������ ℓ2(G∞,E) = sup k∈Qn ������[ /Dn,b◦] ������ ℓ2(Gnk,E), allowing for any of the above norm to be infinite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, the restriction of /D∞ to dom( /Dn) is exactly /Dn, so: ������[ /D∞,b◦] ������ ℓ2(Gn,E) = ������[ /Dn,b◦] ������ ℓ2(Gn,E) = Ln(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, fix k ∈ Qn and k ∉ Gn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By assumption, and using repeatedly that (Gp)p∈N is increasing, we observe that F(gk) = F(k) for all g ∈ Gn: Lemma (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='3) implies that F(gk) � F(k) since F(g) � n < F(k);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' on the other hand, if p ∈ {0,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=',m −1} where F(k) = scale(m), noting that m > 0 since k ∉ G0, then gk ∈ Gp implies k = g −1gk ∈ Gn, which is a contradiction;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' hence F(kg) = scale(m), as claimed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, the operator MF is constant on ℓ2(Gnk), and thus [MF,b] = 0 on ℓ2(Gnk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' So, ������[ /D∞,b◦] ������ ℓ2(Gnk,E) = ������[MLH ,b] ������ ℓ2(Gnk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We will use the ˘σ-projective right representation of G∞ on ℓ2(G∞), as defined in Expression (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By construction, the restriction of ρ(k) to ℓ2(Gn) (which we will keep denoting by ρ(k)) is a unitary onto ℓ2(Gnk) (with inverse the restriction to ℓ2(Gnk) of its adjoint ρ(k)∗ = ρ(k−1)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='7) ������[MLH ,b] ������ ℓ2(Gnk) = ������[MLH ,b]ρ(k) ������ℓ2(Gnk) ℓ2(Gn) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Next, a simple computation shows (like with λ) that the unitary ρ(k) maps dom � MLH � to itself, and for all ξ ∈ ℓ2(G∞) and h ∈ G∞: [MLH ,ρ(k)]ξ(h) = (LH(h)−LH(hk))σ(hk,k−1)ξ(hk) so ������[MLH ,ρ(k)]ξ ������ ℓ2(Gn) � suph∈Gn |LH(h)−LH(hk)|∥ξ∥ℓ2(Gn) � LH(k)∥ξ∥ℓ2(Gn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Choos- ing ξ = δ1, we obtain (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='8) ������[MLH ,ρ(k)] ������ ℓ2(Gn) = LH(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, since ρ(k) commutes with λ(g) for all g ∈ G∞, we conclude [b,ρ(k)] = 0, and thus, on dom � MLH � [MLH ,b]ρ(k) = MLH bρ(k)−bMLH ρ(k) (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='9) = MLH ρ(k)b [b,ρ(k)]=0 −bρ(k)MLH −b[MLH ,ρ(k)] = [MLH ,ρ(k)]b +ρ(k)MLH b − ρ(k)b [ρ(k),b]=0 MLH −b[MLH ,ρ(k)] = [MLH ,ρ(k)]b +ρ(k)[MLH ,b]−b[MLH ,ρ(k)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 43 Therefore, by Equation (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='7), ������[ /D∞,b◦] ������ ℓ2(Gnk,E) = ������[MLH ,b]ρ(k) ������ℓ2(Gnk) ℓ2(Gn) � ������[MLH ,ρ(k)]b ������ℓ2(Gnk) ℓ2(Gn) + ������ρ(k)[MLH ,b] ������ℓ2(Gnk) ℓ2(Gn) + ������b[MLH ,ρ(k)] ������ℓ2(Gnk) ℓ2(Gn) by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='9) � ������[MLH ,ρ(k)] ������ℓ2(Gnk) ℓ2(Gn) �LH (k) by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='8) ∥b∥C∗(Gn,σ) + ������ρ(k) ������ℓ2(Gnk) ℓ2(Gn) =1 as ρ(k) is unitary ������[MLH ,b] ������ ℓ2(Gn) �Ln(b) by Lemma (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='7) +∥b∥C∗(Gn,σ) ������[MLH ,ρ(k)] ������ℓ2(Gnk) ℓ2(Gn) �LH (k) by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='8) � LH(k)∥b∥C∗ red(Gn,σ) � C 2 L∞(b) +Ln(b)+∥b∥C∗ red(Gn,σ)LH(k) � ε C 2 C 2 L∞(b)+Ln(b)+ C 2 L∞(b) ε C 2 � Ln(b)+ ε C L∞(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By Expression (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='6), we thus get L∞(b) � Ln(b)+ ε C L∞(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, we have shown that since ε ∈ � 0, C 2 � , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='10) ∀b ∈ Cc(Gn) tr(b) = 0 =⇒ L∞(b) � 1 1− ε C Ln(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, let b ∈ Cc(Gn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We then easily compute: L∞(b) = L∞(b −tr(b)1) � 1 1− ε C Ln(b −tr(b)1) = 1 1− ε C Ln(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, let a ∈ dom(Ln) with Ln(a) � 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By assumption, there exists a sequence (ak)k∈N converging in C ∗ red(Gn,σ) to a such that Ln(ak) � 1 and ak ∈ Cc(Gn) for all k ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We thus have, by lower semicontinuity of Ln, and Expression (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='10): L∞(a) � liminf k→∞ L∞(ak) � 1 1− ε C liminf k→∞ Ln(ak) � 1 1− ε C .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus, we have shown that, for all n � N, if a ∈ dom(Ln), then a ∈ dom(L∞), and more- over, ∀a ∈ dom(Ln) L∞(a) � 1 1− ε C Ln(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' It is immediate by construction that Ln � L∞ on dom(Ln).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus we have proven that for all n � N and k � n, we have Lk � L∞ � 1 1− ε C Lk(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' As a byproduct of this, we have shown that limk→∞LipD((C ∗(Gn,σ),Lk),(C ∗(Gn,σ),L∞) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We now pause to note that, thanks to our identifications discussed prior to this theo- rem, and the observation that dom(Ln) ⊆ dom(L∞) which we have just now established, (C ∗ red(Gn,σ),ℓ2(Gn)⊗E, /Dn)n∈N is an inductive sequence of spectral triples in the sense of [20], where the ∗-morphisms from C ∗ red(Gn,σ) to C ∗ red(Gn+1,σ) and the linear isometry 44 CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER from ℓ2(Gn) to ℓ2(Gn+1) are just the inclusion maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Moreover (C ∗ red(G∞,σ),ℓ2(G∞,E), /D∞) is indeed the inductive limit of this system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We now note that since L∞ � � 1 1− ε C � Ln and ε ∈ � 0, C 2 � , we have qdiam � C ∗ red(Gn,σ),Ln � � � 1 1− ε C � qdiam � C ∗ red(G∞,σ),L∞ � = C 2 2(C −ε) � C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let b ∈ dom(Ln), and let a = � 1− ε C � b ∈ dom(L∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We then compute: ∥b − a∥C∗ red(G∞,σ) = ���b − � 1− ε C � b ��� C∗ red(G∞,σ) � ε C ∥b∥C∗ red(G∞,σ) � ε C qdiam � C ∗ red(Gn,σ),Ln �Ln(b) � ε C C Ln(b) = εLn(b), while L∞(a) = L∞ �� 1− ε C � b � � 1 1− ε C Ln �� 1− ε C � b � = Ln(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Hence, if n � N2, then: ∀a ∈ dom(L∞) ∃b ∈ dom(Ln) : Ln(b) � L∞(a) and ∥b − a∥C∗ red(G∞,σ) < εL∞(a), ∀b ∈ dom(Ln) ∃a ∈ dom(L∞) : L∞(a) � Ln(b) and ∥a −b∥C∗ red(G∞,σ) < εLn(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, by Theorem (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='17), we conclude that lim n→∞Λspec((C ∗ red(Gn,σ),ℓ2(Gn,E), /Dn),(C ∗ red(G∞,σ),ℓ2(G∞,E), /D∞)) = 0, as claimed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' □ We now wish to apply Theorem (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='11) to the family in Example (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='1), as well as to the Bunce-Deddens algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus, we shall now focus on Abelian groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' So from now on we assume that G∞ is Abelian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore we will employ the additive notation for the groups Gn (n ∈ N).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since Abelian groups are amenable, we will also from now on identify C ∗ red(Gn,σ) with C ∗(Gn,σ) for all n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' A key condition for Theorem (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='11) is always met when working with Abelian groups, as seen in the following lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' With the assumptions and notation of Subsection (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='2), for any n ∈ N, if Gn is Abelian, then we have that {a ∈ dom(Ln) : Ln(a) � 1} = cl({a ∈ Cc(Gn) : Ln(a) � 1}).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Fix n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since Ln is lower semicontinuous, we get cl({a ∈ dom(Ln)∩Cc(Gn) : Ln(a) � 1}) ⊆ {a ∈ dom(Ln) : Ln(a) � 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We now prove that when Gn is Abelian, the converse inclusion holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let � Gn be the Pontryagin dual of Gn (we will use the multiplicative notation for � Gn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The dual action β of � Gn on C ∗(Gn,σ) is unitarily implemented by defining, for each z ∈ � Gn, the unitary vz of ℓ2(Gn,E) which is given by, for all ξ ∈ ℓ2(Gn)⊗E: vzξ : g ∈ Gn �−→ z(g)ξ(g)(= z(−g)ξ(g)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 45 It is easily checked that z ∈ � Gn �→ vz is a unitary representation of � Gn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We then note that: ∀z ∈ � Gn vzλE(g)(vz)∗ = βzλE(g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By construction, /Dn commutes with vz for all z ∈ � Gn, so β acts by full quantum isometries on (C ∗(Gn,σ),Ln).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let µ be the Haar probability measure on � Gn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' As seen in [32, Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='1],[57, Theorem 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='2], there exists a sequence (ϕk)k∈N of non-negative functions over � Gn, each obtained as a linear combination of characters of � Gn (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' of the form z ∈ � Gn �→ z(g) for some g ∈ Gn, by Pontryagin duality), such that � � Gn ϕk dµ = 1 for all k ∈ N, and (ϕk)k∈N converges, in the sense of distributions, to the Dirac measure at 1 ∈ � Gn, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=', for all f ∈ C(� Gn), lim k→∞ � � Gn f (z)ϕk(z)dµ(z) = f (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We define, for each k ∈ N, the continuous linear endomorphism: βϕk : a ∈ C ∗(Gn,σ) �→ � � Gn βz(a)ϕk(z)dµ(z), acting on C ∗(Gn,σ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since the dual action is strongly continuous, we conclude that, for all a ∈ C ∗(Gn,σ): lim k→∞ ��βϕk (a)− a �� C∗(Gn) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since Ln is lower semicontinuous, ϕk � 0 and � � G∞ ϕk dµ = 1 for all k ∈ N, and β acts by quantum isometries, we also get, for all a ∈ dom(Ln), Ln � βϕk (a) � � � � Gn ϕ(z)Ln(a)dµ(z) = Ln(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' As a quick digression, lower semicontinuity also implies that Ln(a) � liminfk→∞Ln(βϕk(a)), so altogether we have shown that Ln(a) = liminfk→∞Ln(βϕk (a))).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For each k ∈ N, as ϕk is a linear combination of characters of � Gn, there exists a finite subset F ⊆ Gn and a function t : F → C such that ϕk : z ∈ � Gn �→ � g∈F t(g)z(g);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' the range of βϕk is then the finite dimensional subspace of Cc(Gn) consisting of the functions supported on F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For our purpose, the main observations here are that, given a ∈ dom(Ln), and ε > 0, there exists K ∈ N such that if k � K , then ��a −βϕk (a) �� C∗(Gn,σ) < ε and Ln(βϕk (a)) � Ln(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In particular, again since Ln is lower semi-continuous, it follows that: (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='11) {a ∈ dom(L /D) : L /D(a) � 1} = cl({a ∈ dom(L /D)∩Cc(Gn) : L /D(a) � 1}), as claimed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' □ Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' With the notation of the proof of Lemma (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='12), fix ϕ ∈ S (C ∗(Gn,σ)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since, for all k ∈ N, we have � � Gn ϕk dµ = 1, we conclude that βϕk is a unital map, and thus sup ���a −βϕk (a) �� C∗(Gn) : a ∈ dom(Ln),Ln(a) � 1 � = sup ���a −βϕk (a) �� C∗(Gn) : a ∈ dom(Ln),Ln(a) � 1,µ(a) = 0 � where the second supremum is indeed finite since X = {a ∈ dom(Ln) : Ln(a) � 1,µ(a) = 0} is compact and we take the supremum of a continuous function over this set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In fact, Arzelà-Ascoli theorem can be applied here to prove that the convergence of (βϕk )k∈N to 46 CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER the identity on X is uniform, though we here offer a simple ε 3-type argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' First, note that for all a,b ∈ C ∗(G∞), and for all k ∈ N, ��βϕk (a)−βϕk (b) �� C∗(G∞) � � � G∞ ∥a −b∥C∗(G∞) ϕk(z)dµ(z) = ∥a −b∥C∗(G∞) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Moreover, for all ε > 0, there exists a finite ε 3-dense subset Xε of X ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' as Xε is finite, there exists K ∈ N such that, for all k � K and for all a ∈ Xε, then ��a −βϕk (a) �� C∗(G∞) < ε 3, as seen above;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' therefore for all k � K , we have ��a −βϕk (a) �� C∗(G∞) � ��a − a′�� C∗(G∞) + ��a′ −βϕk (a′) �� C∗(G∞) + ��βϕk (a′ − a) �� C∗(G∞) < ε 3 + ε 3 + ε 3 = ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' This proves that indeed, (βϕk )k∈N converges uniformly to the identity over X .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We will prove that some of the spectral triples introduced in Subsection (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='2) are metric by invoking a property central to the work in [9, 50], called bounded doubling, which we now recall in the formulation of [50].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='14 ([9, 50]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' A proper length function L on a discrete group G satisfies the bounded doubling property when there exists θ > 1 and c > 0 such that, for all r � 1: ��� g ∈ G : L(g) � θ ·r ��� � c ��� g ∈ G : L(g) � r ���.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The bounded doubling property indeed ensures the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The spectral triples constructed in Subsection (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='2) are metric if the proper length function L := max{LH,F} has the bounded doubling property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We note that Lemma (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='3) proves that L is a proper unbounded length function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By [9, 50], since all our groups are Abelian hence nilpotent, for any µ ∈ S (C ∗(Gn),σ), the set � a ∈ Cc(Gn) : |||[ML,a]|||ℓ2(Gn) � 1,µ(a) = 0 � is totally bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since |||[ML,·]|||ℓ2(Gn) � Ln on Cc(Gn), we thus conclude that � a ∈ Cc(Gn) : Ln(a) � 1,µ(a) = 0 � ⊆ � a ∈ Cc(Gn) : |||[ML,a]|||ℓ2(Gn) � 1,µ(a) = 0 � and thus � a ∈ Cc(Gn) : Ln(a) � 1,µ(a) = 0 � is also totally bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By Lemma (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='12), we also have: {a ∈ dom(Ln) : Ln(a) � 1,µ(a) = 0} = cl �� a ∈ Cc(Gn) : Ln(a) � 1,µ(a) = 0 �� so {a ∈ dom(Ln) : Ln(a) � 1,µ(a) = 0} is compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus by Theorem (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='9), Ln is a Lipschitz seminorm, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' our spectral triples are metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' □ We are now ready to establish the following theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let G = � n∈NGn be an Abelian discrete group, arising as the union of a strictly increasing sequence (Gn)n∈N of subgroups of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let σ be a 2-cocycle of G and LH a length function on G such that lim n→∞Haus[LH](Gn,G) = 0, and whose restriction to Gn is proper for all n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Assume scale : N → [0,∞) is a strictly increasing, unbounded function such that, if we set F : g ∈ G �−→ scale(min{n ∈ N : g ∈ Gn}) 47 then the proper length function L := max{LH,F} has the bounded doubling property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Then, for any Hermitian space E, lim n→∞Λspec((C ∗(G,σ),ℓ2(G)⊗E, /D),(C ∗(Gn,σ),ℓ2(Gn)⊗E, /Dn)) = 0, where /D = MLH ⊗γ1 +MF ⊗γ2 on � ξ ∈ ℓ2(G)⊗E : � g∈G(LH(g)2 +F(g)2) ��ξ(g) ��2 E < ∞ � , with γ1,γ2 unitaries of E such that, for all j,k ∈ {1,2}: γj γk +γkγj = � 2 if j = k, 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' ℓ2(Gn)⊗E is identified with the subspace of Gn-supported vectors in ℓ2(G)⊗E, /Dn is the restriction of /D to dom( /D)∩ � ℓ2(Gn)⊗E � , C ∗(G,σ) and C ∗(Gn,σ) act via their left regular σ-projective representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Our theorem follows from Theorem (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We first note that Lemma (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='15) proves that all our spectral triples are metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By Lemma (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='12), since G∞ is Abelian, we conclude that, for all n ∈ N, {a ∈ dom(Ln) : Ln(a) � 1} = cl({a ∈ Cc(Gn) : Ln(a) � 1}).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since all hypotheses of Theorem (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='11) are met, the result follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' □ In particular, for the noncommutative solenoids of Example (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='1), we obtain the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Fix a prime number p ∈ N and d ∈ N\\{0,1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For each n ∈ N, let Gn := � 1 pn Z �d and G∞ := � Z � 1 p ��d .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Fix a 2-cocycle σ on G∞ such that ∀g ∈ G∞ σ(g,−g) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let LH be the restriction to G∞ of some norm on R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We define F by setting, for all g ∈ G∞: F(g) := min � pn : g ∈ � 1 pn �d� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let E be an even dimensional hermitian space, with γ1,γ2 be two unitaries on E such that, for all j,k ∈ {1,2}: γj γk +γkγj = � 2 if j = k, 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If we define, for all n ∈ N, the operator /Dn := MLH ⊗γ1 + MF ⊗γ2 on dom( /Dn) on the domain dom( /Dn) := � ξ ∈ ℓ2(Gn,E) : � g∈Gn (LH(g)2 +F(g)2) ��ξ(g) ��2 E < ∞ � , then, for all n ∈ N, the triple (C ∗(Gn,σ),ℓ2(Gn,E), /Dn) is a metric spectral triple, and: lim n→∞Λspec((C ∗(Gn,σ),ℓ2(Gn,E), /Dn),(C ∗(G∞,σ),ℓ2(G∞,E), /D∞)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 48 CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER Moreover, for each n ∈ N, the sequence (C ∗(Gn,σ),Lk)k�n of quantum compact metric spaces converge to (C ∗(Gn,σ),L∞) in the Lipschitz distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We first establish the bounded doubling property of certain related length func- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Fix a prime number p and d � 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For all g ∈ G∞, let L′(g) = max � ��g ��Rd ,p min � n∈N:g∈ � 1 pn Z �d �� , where the norm we choose on Rd for this proof is the max norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By Lemma (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='3), the function L′ is an unbounded proper length function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By Lemma (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='7), we have that |||[ML′,·]|||ℓ2(Gn) � Ln on C(Gn) for all n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By [11], the triple (C ∗(Gn,σ),ℓ2(Gn),ML′) is a spectral triple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Assume L′(g) � pn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since g ∈ � 1 pn Z �d , we can write g = � aj pn � 1�j�d for a1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=',ad ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since ��g ��Rd � pn, we also have a1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=',ad ∈ [−p2n,p2n].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Conversely, if g = � aj pn � 1�j�d with −p2n � a j � p2n for all j ∈ {1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=',d}, then L′(g) � pn by definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Hence, the closed ball of center (0,0) and radius pn has cardinal (2p2n +1)d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Consequently: ��� g ∈ G∞ : L′(g) � pn+1��� = (2p2n+2 +1)d � (2p2n+2 + p2)d = p2d(2p2n +1)d � p2d ��� g ∈ G∞ : L′(g) � pn���.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, L′ is a proper unbounded length with the bounded doubling property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let LH be any norm on Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since all the norms on Rd are equivalent, there exists C > 0 such that 1 C LH � ∥·∥Rd � CLH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Then 1 C (max{LH,F}) � L′ � C max{LH,F}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, ��� g ∈ G∞ : max �LH(g),F(g) � � pn+1��� � C 2p2d ��� g ∈ G∞ : max �LH(g),F(g) � � pn���.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Write L := max{LH,F} on Cc(Gn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We thus have shown that L, which is unbounded and proper by Lemma (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='3), also has the bounded doubling property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By Lemma (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='12), since G∞ is Abelian, we conclude that ∀n ∈ N {a ∈ dom(Ln) : Ln(a) � 1} = cl({a ∈ Cc(Gn) : Ln(a) � 1}).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus, our corollary follows from Theorem (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' □ We can choose somewhat different length functions over � Z � 1 p ��d , by varying not only LH, but also F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For instance, Corollary (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='17) remains valid if we replace F by F′ : (g1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=',gd) ∈ G∞ �→ maxd j=1 |g j |p, where |·|p is now the p-norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The resulting length function max{LH,F′} has the bounded doubling property, as seen by applying [19, Propo- sition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='17] up to an equivalence of metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We also note that for this construction to give us something different from Corollary (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='17), we require that LH(g) < F′(g) for at least one g ∈ Zd \\{0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In general, the difference is only up to a bounded perturbation of the underlying Dirac operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 49 Another interesting family of C*-algebras to which our work applies are certain Bunce- Deddens algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Notation 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let P be the set of all sequences (αn)n∈N of nonzero natural numbers such that αn+1 αn is a prime number for all n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Notation 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For any integer m ∈ Z, we denote the quotient group Z⧸mZ simply by Z⧸m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Notation 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let α := (αn)n∈N ∈ P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If n ∈ N, then αn divides αn+1, and thus the map ρn : (m mod αn+1) ∈ Z⧸αn+1 → (m mod αn) ∈ Z⧸αn where x mod y is the equivalence class of x ∈ Z modulo y ∈ Z \\ {0}, is a well-defined surjective group morphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The projective limit of the projective sequence Z⧸α0 ρ0 ←−−− Z⧸α1 ρ1 ←−−− Z⧸α2 ρ2 ←−−− Z⧸α3 ρ4 ←−−− ··· is denoted by Z⧸α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By construction, we observe that: Z⧸α = � (zn)n∈N ∈ ∞ � j=0 Z⧸αn : ρn(zn+1) = zn � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We endow Z⧸α with its topology as a projective space of compact spaces, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' with the topology induced by the product topology on �∞ j=0Z⧸αn, which is compact by Tychonoff theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We identify, for any m ∈ N\\{0}, the Pontryagin dual � Z⧸m of Z⧸m with the subgroup of T of m-th roots of unity in the obvious manner — while of course, Z⧸m is self-dual, this identification will be helpful to our presentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The Pontryagin dual Z(α) := � Z⧸α of Z⧸α is thus, by contravariant functoriality, the limit of the inductive sequence: � Z⧸α0 j0 −−−→ � Z⧸α1 j1 −−−→ � Z⧸α2 j2 −−−→ � Z⧸α3 j3 −−−→ ··· where j1,j2,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=', are simply the injection maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Of course, by construction: Z(α) = � ζ ∈ T : ∃n ∈ N ζαn = 1 � , where T = {u ∈ C : |u| = 1} is the circle group;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' moreover Z(α) is a discrete group as the dual of a compact group (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' we do not endow it with the topology inherited as a subset of T).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The Pontryagin duality pairing between Z(α) and its dual Z⧸α is given for all ζ ∈ Z(α) and for all z := (zn)n∈N ∈ Z⧸α by ζz := limn→∞ ζzn, noting that the sequence (ζzn)n∈N is eventually constant, by construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In the special case when α = (p,p2,p3,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='), the group Z(α) is the Prüfer group Z(p∞) and the group Z⧸α is the group Zp of p-adic integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let α := (αn)n∈N ∈ P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let LH be a length function over the circle group T restricted to Z(α) such that limn→∞Haus[LH] � � Z⧸αn ,Z(α) � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For all ζ ∈ Z(α), we define F(ζ) := min � p ∈ N : ζp = 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let ∥·∥R2 be any monotone norm on R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The function L : ζ ∈ Z(α) �→ ∥(LH(ζ),F(ζ))∥R2 50 CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER is a proper unbounded length function over Z(α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Moreover, L has the bounded doubling property if, and only if, the sequence � αn+1 αn � n∈N is bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' First, it is easy to see that, for all ζ ∈ Z(α)\\{1}, F(ζ) = p min � n∈N:ζ∈� Z⧸αn � , while F(1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, by Lemma (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='3), we already know that L is a proper unbounded length function on Z(α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For now, let us assume ∥·∥R2 is the max norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For any ρ > 0, we write B[ρ] the cardinality of the closed ball centered at (1,0) ∈ Z(α)×Z of radius ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For any d ∈ N, we compute the following expression: B [αd] = |{ζ ∈ Z(α) : L(ζ) � αd}| = ���� � ζ ∈ � Z⧸αd ����� = αd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, let R � 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Then, there exists d ∈ N such that αd � R � αd+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We note that since B[R] � B[αd+1] < ∞, our length function L is indeed proper;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' we also note that since B[R] � B[αd] = αd � 2d, the length function L is also unbounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, assume that M := supn∈N αn+1 αn < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We then compute: B[2R] � B[2αd+1] � B[αd+2] = αd+2 = αd+2 αd+1 αd+1 αd αd � M2αd = M2B[αd] � M2B[R].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, our length L has the bounding doubling property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, if we allow for a different choice of monotone norm for ∥·∥R2, then, as all norms on R2 are equivalent, the resulting length function still has the property of bounded doubling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, assume instead that supn∈N αn+1 αn = ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let n ∈ N, and let rn = αn+1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We then note, using our above computation, that B[2rn] = αn+1 = αn+1 αn B[rn], and thus αn+1 αn = B[2rn] B[rn] for all n ∈ N;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' therefore, our length L does not actually have the bounded doubling property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' □ Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let α = (αn)n∈N be a sequence of nonzero natural numbers such that � αn+1 αn � n∈N is a bounded sequence of prime numbers, and let Z(α) := � ζ ∈ C : ∃n ∈ N ζαn = 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Define: G∞ := Z(α)×Z and ∀n ∈ N Gn := � Z⧸αn ×Z, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Gn = {(ζ,z) ∈ G∞ : z ∈ Z,ζαn = 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let σ be a 2-cocycle of G∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let LZ be the restriction of any continuous length function on T to Z(α), and define LH : (u,z) ∈ G∞ �→ LZ (u)+|z|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' For all ζ ∈ Z(α), set: F(ζ) := min{n ∈ N : un = 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Let E be a Hermitian vector space, and let γ1,γ2 be unitaries such that γ1γ2 = −γ2γ1 and γ2 1 = γ2 2 = 1E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If we set, for all n ∈ N, /Dn := MLH ⊗γ1 + MF ⊗γ2, 51 then for all n ∈ N, the spectral triple (C ∗(Gn,σ),ℓ2(Gn)⊗E, /Dn) is metric, and lim n→∞Λspec �� C ∗(Gn,σ),ℓ2(Gn)⊗E, /Dn � , � C ∗(Z(α)×Z,σ),ℓ2(Z(α)×Z)⊗E, /D∞ �� = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' A straightforward computation shows that |·| is proper with the bounded doubling property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By [19, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='7] applied to the proper unbounded lengths | · | and LZ , we conclude that L := (ζ,z) ∈ G∞ �→ LZ (ζ)+F(ζ)+|m| has the bounded doubling property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since LZ is continuous on T, it induces the usual topology on T (as a subset of C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Therefore, the topology of the Hausdorff distance Haus[LH] is the Vietoris topology for the usual topology of T, and thus the same as the topology induced by Haus[T], when T is endowed with the restriction of the usual metric on C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' It then follows that: lim n→∞Haus[LH] � � Z⧸αn,Z(α) � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' As all the other assumptions are now met, we conclude that our corollary holds, by Theorem (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' □ The map ϖ : z ∈ Z �→ (z mod αn)n∈N ∈ Z⧸α is an injective *-morphism of group with dense range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, we define the following automorphism of Z(α): τ : u ∈ Z(α) �→ u +ϖ(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' The C*-crossed-product C(Z(α))⋊τ Z is the Bunce-Deddens algebra associated to the “supernatural” number n := � p|{n∈N: αn+1 αn =p}|� p prime .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' It is also *-isomorphic to C ∗(Z(α) × Z,σ), as defined above, when σ is the 2-cocycle defined by setting, for all (ζ,z),(η, y) ∈ G∞: σ((ζ,z),(η, y)) := ηz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Indeed, this isomorphism can be obtained by using [52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We begin with the observa- tion that Bunce-Deddens algebras [8] are C*-crossed products [54, 18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Now, let us briefly explain the construction of this isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Since the natural inclusion j : Z(α) → T is a character of Z(α), it is given by the pairing with an element in Z⧸α;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' this element is precisely our ϖ(1) defined above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' In our case, we note that λ(1,1)λζ,0λ∗ (1,1) = ζ−1λζ,0 for all ζ ∈ Z(α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' If f ∈ Cc �Z⧸α � , we denote its Fourier transform by �f ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' specifically �f : ζ ∈ Z(α) �→ � z∈Z⧸α f (z)ζ−z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' A straightforward computation shows that � τ(f )(ζ) = ζ−1 �f (ζ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus, we conclude that λ(1,1)λ( �f )λ∗ (1,1) = λ � � τ(f ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' A similar computation invoking the inverse Fourier transform can be done by using the canonical generators of the C*-crossed product C �Z⧸α � ⋊τ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' By universality of the C*-crossed-product and the twisted group C*-algebra (here, since our groups are Abelian, these algebras agree with their image by their left regular representations), we conclude the description of our isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus, we have constructed metric spectral triples over Bunce-Deddens algebra for bounded supernatural numbers, and these triples are limits of sequences of metric spectral triples for the spectral propinquity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 52 CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER In particular, C ∗(Z(α)×Z,σ) is seen to be the inductive limit and the limit for the propinquity, with the quantum metrics described here, of the C*-algebras C ∗ � � Z⧸αn ×Z,σ � as n ∈ N approaches ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Notably, C ∗ � � Z⧸αn ×Z,σ � is actually *-isomorphic to the C*-algebra of continuous sections of a vector bundle over the circle T with fibers the algebras of square αn-matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' This situation is of course reminiscent of the fact that in particular, Bunce-Deddens algebras are AT algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' However, starting from the usual description of Bunce-Deddens algebras as AT algebras led to difficulties in [6], where the quantum metrics on the Bunce-Deddens algebra do not arise from a spectral triple, and the convergence is only proven in the sense of Rieffel’s quantum Gromov- Hausdorff distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Thus, for Bunce-Deddens algebras associated with supernatural numbers consisting of only finitely many prime numbers, we have now constructed metric spectral triples which actually capture their inductive limit structure within our geometric framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' We hope that Theorems (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='11) and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='16) will prove useful in constructing other examples of metric spectral triples over twisted group C*-algebras for interesting inductive limits of groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' REFERENCES [1] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Aiello, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Guido, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Isola, Spectral triples for noncommutative solenoidal spaces from self-coverings, 448 (2017), 1378–1412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Austad and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Luef, Modulation spaces as a smooth structure in noncommutative geometry, Banach J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 15 (2021) 15–35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [3] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Aguilar and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Kaad, The Podle´s sphere as a spectral metric space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 133 (2018), 260–278.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [4] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Aguilar, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Latrèmolière, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Rainone, Bunce-Deddens algebras as quantum Gromov-Hausdorff distance limits of circle algebras, Integral Equations Operator Theory 94 (2022), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 1, Paper No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 2, 42 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [5] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Aguilar and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Latrémolière, Quantum ultrametrics on AF algebras and the Gromov-Hausdorff propin- quity, Studia Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 231 (2015), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 2, 149–194, ArXiv: 1511.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='07114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [6] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Aguilar, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Latrémolière, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Rainone, Bunce-Deddens algebras as quantum Gromov-Hausorff distance limits of circle algebras, Integral Equations Operator Theory 94 (2022), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 1, Paper no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 2, 42pp, ArXiv: 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='07676.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [7] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Antonescu and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Christensen, Spectral triples for af C∗-algebras and metrics on the Cantor set, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Oper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Theory 56 (2006), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 1, 17–46, arXiv: 0309044.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [8] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Bunce and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Deddens, A family of simple C∗-algebras related to weighted shift operators, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Functional Analysis 19 (1975), 13–24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [9] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Christ and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Rieffel, Nilpotent group C∗-algebras-algebras as compact quantum metric spaces, Canad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Bull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 60 (2017), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 1, 77–94, arXiv: 1508.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='00980.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [10] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Christensen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Ivan, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Lapidus, Dirac operators and spectral triples for some fractal sets built on curves, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 217 (2008), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 1, 42–78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Connes, Compact metric spaces, Fredholm modules and hyperfiniteness, Ergodic Theory Dynam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Systems 9 (1989), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 2, 207–220.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [12] , Noncommutative geometry, Academic Press, San Diego, 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [13] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Dabrowski, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Landi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Sitarz, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' van Suijlekom, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Varilly, The Dirac operator on SUq(2), Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 259 (2005), 729–759.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [14] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Davidson, C∗−Algebras by example, Fields Institute Monographs, American Mathematical Society, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [15] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Da¸browski and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Sitarz, Curved noncommutative torus and Gauß-Bonnet, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 013518 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [16] , An asymmetric noncommutative torus, SIGMA 11 (2015), 11 pages, arXiv: 1406.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='4645.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [17] David A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Edwards, The structure of superspace, Studies in topology (Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=', Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' North Carolina, Charlotte, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=', 1974;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' dedicated to Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Polish Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' ), 1975, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 121–133.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' MR 0401069 [18] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Exel, The Bunce-Deddens algebras as crossed products by partial automorphisms, Bol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Brasil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' (N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=') 25 (1994), 173–179.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [19] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Farsi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Basa Landry, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Larsen, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Packer, Spectral triples for noncommutative solenoids and a Wiener’s lemma, (2022), ArXiv: 2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='07470.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 53 [20] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Floricel and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Ghorbanpour, On inductive limit spectral triples, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 147 (2019), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 8, 3611–3619, ArXiv: 1712.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='09621.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [21] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Gabriel and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Grensing, Ergodic actions and spectral triples, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Oper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Theory 76 (2016), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 2, 307–334.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [22] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Gromov, Groups of polynomial growth and expanding maps, Publ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Hautes Études Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 53 (1981), 53–78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [23] , Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, BirkhÀuser, 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [24] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Hawkins, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Skalski, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' White, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Zacharias, On spectral triples on crossed products arising from equicontinuous actions, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Scand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 113 (2013), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 2, 262–291.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [25] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Herron, Gromov-Hausdorff distance for pointed metric spaces, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 24 (2016), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 1, 1–38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [26] Antoine Julien and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Putnam, Spectral triples for subshifts, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 270 (2016), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 3, 1031–1063, arXiv: 1411.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='6800.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [27] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Kantorovich, On one effective method of solving certain classes of extremal problems, Dokl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Akad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Nauk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' USSR 28 (1940), 212–215.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [28] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Kantorovich and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Sh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Rubinstein, On the space of completely additive functions, Vestnik Leningrad Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=', Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Mekh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' i Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 13 (1958), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 7, 52–59, In Russian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [29] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Landry, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Lapidus, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Latrémolière, Metric approximations of the spectral triple on the Sierpinki gasket and other fractals, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 385 (2021), Paper No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 107771, 43 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [30] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Lapidus and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Sarhad, Dirac operators and geodesic metric on the harmonic Sierpi´nskigasket and other fractal sets, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Noncommut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 8 (2014), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 4, 947–985.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [31] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Latrémolière, Continuity of the spectrum of Dirac operators of spectral triples for the spectral propinquity, Submitted (2022), 49 pages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [32] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Latrémolière, Approximation of the quantum tori by finite quantum tori for the quantum Gromov- Hausdorff distance, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 223 (2005), 365–395, math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='OA/0310214.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [33] , Convergence of fuzzy tori and quantum tori for the quantum Gromov-Hausdorff propinquity: an explicit approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=', Münster J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 8 (2015), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 1, 57–98, arXiv: math/1312.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='0069.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [34] , Curved noncommutative tori as Leibniz compact quantum metric spaces, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 56 (2015), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 12, 123503, 16 pages, arXiv: 1507.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='08771.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [35] , The dual Gromov-Hausdorff propinquity, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Pures Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 103 (2015), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 2, 303–351, arXiv: 1311.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='0104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [36] , Quantum metric spaces and the Gromov-Hausdorff propinquity, Noncommutative geometry and optimal transport, Contemp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=', no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 676, Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=', 2015, arXiv: 150604341, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 47–133.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [37] , Equivalence of quantum metrics with a common domain, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 443 (2016), 1179– 1195, arXiv: 1604.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='00755.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [38] , The quantum Gromov-Hausdorff propinquity, Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 368 (2016), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 1, 365–411.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [39] , A compactness theorem for the dual Gromov-Hausdorff propinquity, Indiana Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 66 (2017), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 5, 1707–1753, arXiv: 1501.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='06121.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [40] , The triangle inequality and the dual Gromov-Hausdorff propinquity, Indiana Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 66 (2017), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 1, 297–313, arXiv: 1404.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='6633.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [41] , Convergence of Cauchy sequences for the covariant Gromov-Hausdorff propinquity, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 469 (2019), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 1, 378–404, arXiv: 1806.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='04721.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [42] , The modular Gromov-Hausdorff propinquity, Dissertationes Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 544 (2019), 1–70, arXiv: 1608.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='04881.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [43] , Convergence of Heisenberg modules for the modular Gromov-Hausdorff propinquity, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Operator Theory 84 (2020), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 1, 211–237.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [44] , The covariant Gromov-Hausdorff propinquity, Studia Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 251 (2020), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 2, 135–169, arXiv: 1805.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='11229.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [45] , Convergence of spectral triples on fuzzy tori to spectral triples on quantum tori, Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 388 (2021), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 2, 1049–1128, arXiv: 2102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='03729.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [46] , The dual-modular Gromov-Hausdorff propinquity and completeness, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Noncomm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Geometry 115 (2021), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 1, 347–398.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [47] , The Gromov-Hausdorff propinquity for metric spectral triples, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 404 (2022), Paper No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 108393, 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [48] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Latrémolière and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Packer, Noncommutative solenoids and the Gromov-Hausdorff propinquity, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 145 (2017), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 5, 1179–1195, arXiv: 1601.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='02707.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [49] , Noncommutative solenoids, New York J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 24A (2018), 155–191, arXiv: 1110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='6227.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [50] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Long and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Wu, Twisted bounded-dilation group C∗-algebras as C∗-metric algebras, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' China Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 64 (2021), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 3, 547–572.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 54 CARLA FARSI, FRÉDÉRIC LATRÉMOLIÈRE, AND JUDITH PACKER [51] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Ozawa and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Rieffel, Hyperbolic group C∗-algebras and free product C∗-algebras as compact quantum metric spaces, Canad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' of Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 57 (2005), 1056–1079, arXiv: math/0302310.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [52] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Packer, Twisted group C∗-algebras corresponding to nilpotent discrete groups, Mathematica Scandinavica 64 (1989), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 1, 109–122.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [53] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Reed and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Simon, Functional analysis, Methods of modern Mathematical Physics, Academic Press, San Diego, 1980.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [54] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Riedel, Classification of the C∗-algebras associated with minimal rotations, Pacific J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 101 (1982), 153–161.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [55] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Rieffel, Metrics on states from actions of compact groups, Doc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 3 (1998), 215–229, math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='OA/9807084.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [56] , Metrics on state spaces, Doc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 4 (1999), 559–600, math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='OA/9906151.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [57] , Gromov-Hausdorff distance for quantum metric spaces, Mem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 168 (2004), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' 796, 1–65, math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='OA/0011063.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' [58] , Leibniz seminorms for "matrix algebras converge to the sphere", Clay Mathematics Proceedings 11 (2010), 543–578, arXiv: 0707.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='3229.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content=' Email address: carla.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='farsi@colorado.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='edu DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO AT BOULDER, BOULDER CO 80309-0395 Email address: frederic@math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='du.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='edu URL: http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='du.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='edu/~frederic DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DENVER, DENVER CO 80208 Email address: judith.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='jesudason@colorado.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} +page_content='edu DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO AT BOULDER, BOULDER CO 80309-0395' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAyT4oBgHgl3EQfb_eW/content/2301.00274v1.pdf'} diff --git a/3NE1T4oBgHgl3EQflwRz/vector_store/index.faiss b/3NE1T4oBgHgl3EQflwRz/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..96fa843dcac77d030070a940cb60cf47c3df1496 --- /dev/null +++ b/3NE1T4oBgHgl3EQflwRz/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b11cdb8e966c011453c24d964a8d22bf973da6f7d92481610a333ff40fdc7453 +size 6750253 diff --git a/3NE1T4oBgHgl3EQflwRz/vector_store/index.pkl b/3NE1T4oBgHgl3EQflwRz/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..a533f236ae86f6ff3634342a2bcb79a2ca488aba --- /dev/null +++ b/3NE1T4oBgHgl3EQflwRz/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:116ee11a7bef0476a358532ac17497411d0cbcc5ca11772cf93c8c089567bd8c +size 246075 diff --git a/3tFKT4oBgHgl3EQfRC0N/content/2301.11769v1.pdf b/3tFKT4oBgHgl3EQfRC0N/content/2301.11769v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..d32e65171ff467680f79ce7b5ddb211db1c57e9e --- /dev/null +++ b/3tFKT4oBgHgl3EQfRC0N/content/2301.11769v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0ed5faf9e5686175a84c8ed46077323c9b7775c22a58b03def2b50114c4e4e9f +size 1044733 diff --git a/3tFKT4oBgHgl3EQfRC0N/vector_store/index.pkl b/3tFKT4oBgHgl3EQfRC0N/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..b901f9438ecdd6cbab32a716bb43031746b0d413 --- /dev/null +++ b/3tFKT4oBgHgl3EQfRC0N/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f717faa835a2a6d6b46e6513fbd646a2383a0f3f4eb69a4d10e84747a50837e1 +size 201682 diff --git a/49AyT4oBgHgl3EQfQPZI/content/tmp_files/2301.00040v1.pdf.txt b/49AyT4oBgHgl3EQfQPZI/content/tmp_files/2301.00040v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..71049a6bcc2735d4fb9e905e18a758f28d38d23f --- /dev/null +++ b/49AyT4oBgHgl3EQfQPZI/content/tmp_files/2301.00040v1.pdf.txt @@ -0,0 +1,4021 @@ +Sensitivity Analysis with the R2-calculus +Tobias Freidling and Qingyuan Zhao +Statistical Laboratory, DPMMS, University of Cambridge, United Kingdom. +E-mail: taf40@cam.ac.uk +Summary. Causal inference necessarily relies upon untestable assumptions; hence, +it is crucial to assess the robustness of obtained results to violations of identification +assumptions. However, such sensitivity analysis is only occasionally undertaken in +practice, as many existing methods only apply to relatively simple models and their +results are often difficult to interpret. We take a more flexible approach to sensitivity +analysis and view it as a constrained stochastic optimization problem. +We focus +on linear models with an unmeasured confounder and a potential instrument. We +show how the R2-calculus—a set of algebraic rules that relates different (partial) R2- +values and correlations—can be applied to identify the bias of the k-class estimators +and construct sensitivity models flexibly. We further show that the heuristic “plug-in” +sensitivity interval may not have any confidence guarantees; instead, we propose a +boostrap approach to construct sensitivity intervals which perform well in numerical +simulations. We illustrate the proposed methods with a real study on the causal effect +of education on earnings and provide user-friendly visualization tools. +Keywords: Causal inference; Instrumental variables; k-class estimator; Linear +models; Partial identification; Stochastic optimization +1. +Introduction +In many scientific disciplines, provisional causal knowledge is predominantly gen- +erated from observational data as randomized controlled experiments are often in- +feasible or too costly. Because the treatment is not randomly assigned in an obser- +vational study, any causal conclusions must rely on untestable assumptions, such +as absence of unmeasured confounders or validity of instrumental variables. Hence, +the causal inference is inherently sensitive to violations of any identification and +modelling assumptions, so reseachers are advised to investigate the robustness of +their results. +The importance of sensitivity analysis has been emphasized in guidelines for +designing and reporting observational studies (Vandenbroucke et al., 2007; PCORI +Methodology Committee, 2021). +For instance, the STROBE guidelines caution +that “taking [observed] confounders into account is crucial in observational studies, +but readers should not assume that analyses adjusted for [observed] confounders +establish the ‘causal part’ of an association” (p. 1638). They recommend to conduct +sensitivity analyses as they are “helpful to investigate the influence of choices made +in the statistical analysis, or to investigate the robustness of the findings to missing +data or possible biases” (p. 1647). +arXiv:2301.00040v1 [stat.ME] 30 Dec 2022 + +Sensitivity Analysis with the R2-calculus +2 +However, sensitivity analysis is still rarely being conducted in actual studies, +leaving other researchers difficult to assess the robustness of their empirical findings. +In medicine, Thabane et al. (2013) did a spot check on the January 2012 editions of +major medical journals and found that only 26.7% (36 out of 135) of the articles that +included some statistical analysis also performed sensitivity analysis. In nutrition +research, de Souza et al. (2016) found that, in a representative sample of 100 articles +from 2013 to 2015, merely 18% of them conducted some sensitivity analysis. In +political science, Cinelli and Hazlett (2020) found that only 4 out of 64 observational +studies published in three leading journals in 2017 conducted a formal sensitivity +analysis beyond just some model specification checks. +There are several reasons for the hesitant uptake of sensitivity analysis in prac- +tice. First, it is not straightforward to define a reasonable model for sensitivity +analysis, even for the familiar setting of one treatment variable, one outcome vari- +able, and multiple baseline covariates that has been studied since the seminal work +of Cornfield et al. (1959). For example, Lin et al. (1998) assume an unmeasured +confounder U independent of the measured covariates X conditional on the treat- +ment. However, Hernan and Robins (1999) point out that this cannot be generally +true as conditioning on the treatment opens a collider path between U and X. For +more complicated settings such as instrumental variables (IV), specifying a good +sensitivity model is even more difficult and the literature on sensitivity analysis is +considerably smaller. Second, many methods for sensitivity analysis were devel- +oped under simple settings where closed-form solutions are available. This results +in a limited scope of applicability. Finally, it is often not easy for practitioners to +understand and communicate the results of a sensitivity analysis. +In general, (non-Bayesian) sensitivity analysis can be broadly categorized into +point identified and partially identified approaches. The former requires a precise +specification of the confounding mechanism, so that the causal effect of interest is +still identified; see for instance Rosenbaum and Rubin (1983), Imbens (2003), and +VanderWeele and Arah (2011) for the usual observational study design, Scharfstein +et al. (1999) for longitudinal studies with dropouts, and Altonji et al. (2005) for +instrumental variables. On the other hand, the partially identified approach con- +siders the union of many point identified sensitivity models, so the causal effect is +only partially identified. Examples include the first sensitivity analysis by Corn- +field et al. (1959), the approach developed by Rosenbaum (1987, 2002) based on +randomization tests, the E-value proposed by Ding and VanderWeele (2016) that +generalizes the Cornfield bound, the generalization of Scharfstein et al. (1999) by +Vansteelandt et al. (2006), bounds on the average treatment effect under Rosen- +baum’s sensitivity model by Yadlowsky et al. (2022) and the marginal sensitivity +model studied in Zhao et al. (2019) and Dorn and Guo (2022). +In our experience, the partially identified approach is more flexible and usually +aligns with practical demand better. This is why we adopt it in this article. We +limit our discussion to linear regression and linear instrumental variable models, +but the methodology we develope below is quite general and can potentially be ex- +tended to other models. Compared with previous work, a crucial distinction is that +we do not require the partially identified region (or, as in Rosenbaum’s sensitivity + +Sensitivity Analysis with the R2-calculus +3 +analysis, an upper bound of the randomization p-value) to have a closed form so- +lution. Instead, we leverage a novel perspective on sensitivity analysis through the +lens of constrained stochastic optimization. This is elaborated next. +1.1. +A General Framework for Sensitivity Analysis +Consider an i.i.d. sample (Vi, Ui)n +i=1 from some population, but only the vari- +ables (Vi)n +i=1 are observed. +Denote the joint probability distribution of (Vi, Ui) +as P = PV,U. Depending on the assumptions on the data generating process, the +distribution P may be restricted to be within a parametric, semi-parametric or +non-parametric family. The marginal distribution of V and the distribution of U +conditional on V are denoted by PV and PU|V , respectively. +We are interested in estimating and conducting inference for some functional +β = β(PV,U). For example, suppose V = (D, Y, X) includes a treatment variable +D, an outcome Y , and some covariates X. We may be interested in estimating +the causal effect of D on Y , which would be point identified if there are no other +confounders given (X, U) and U is observed. However, since U is not observed, β +may only be partially identified if we restrict the “strength of confounding” for U +in some sense. +In many cases, β can be expressed as a function of two types of parameters, +θ = θ(PV ) and ψ = ψ(PV,U). The former only depends on the marginal distribution +of V and can therefore be estimated from the observed variables; the latter addi- +tionally depends on the distribution of U and thus cannot be directly estimated. +Adopting a Bayesian perspective, Gustafson (2005) and Daniels and Hogan (2008) +advocate the use of a separable parameterization, meaning that ψ = ψ(PU|V ) only +depends on the conditional distribution PU|V . In this set-up, no information about +ψ can be learnt from the observed data, which has several advantages in deriving +bounds or making Bayesian inference. However, requiring a separable parameteriza- +tion could be too restrictive in our experience and we will not make this assumption +below. +Since U is unobserved, the parameter ψ and thus the functional β cannot be +identified from the observed data. A point identified sensitivity analysis assumes +that ψ is given, for example by eliciting the opinion of a domain expert. In this +sense, the primary analysis can be viewed as a special case of a point identified +sensitivity analysis, where ψ takes the value (conventionally 0) that corresponds to +the unobserved variable U being ”ignorable”. +To assess the robustness of the primary analysis, a partially identified sensitivity +analysis assumes that ψ belongs to a set Ψ = Ψ(θ). Comparing to point identified +models, this is appealing because it is much easier for domain experts to specify +a possible range of ψ than a specific value. However, under the weaker condition +ψ ∈ Ψ, the functional β is only partially identified; we call the corresponding set of +β-values the partially identified region (PIR): +PIR(PV ) := +� +β(θ(PV ), ψ): ψ ∈ Ψ(θ(PV )) +� +. +(1) +The condition ψ ∈ Ψ(θ) in (1) implies a constraint on the joint distribution PV,U. + +Sensitivity Analysis with the R2-calculus +4 +For this reason, we will refer to Ψ as the sensitivity model. +In general, the partially identified region can be quite complicated and difficult +to infer. However, this can be simplified in the case where β is real-valued and +one-dimensional by seeking to solve the following optimization problems: +min / max β(θ(PV ), ψ), +subject to ψ ∈ Ψ(θ(PV )), +(2) +where the distribution PV is fixed. As both the objective and the feasible set in (2) +depend on the unknown PV we can sample from, this is an instance of stochastic +optimization or stochastic programming (Shapiro et al., 2009). A natural, plug-in +estimator of the optimal values of this problem can be obtained by solving +min / max β(ˆθ, ψ), +subject to ψ ∈ Ψ(ˆθ), +(3) +where ˆθ is an estimator of θ based on the observed data. This can be viewed as a +generalization of the sample average approximation (SAA) estimator in stochastic +optimization (Shapiro et al., 2009, chap. 5). Thus, a general recipe for partially +identified sensitivity analysis is the following: +(i) The functional β of interest is expressed in terms of the identifiable parameters +θ = θ(PV ) and the sensitivity parameters ψ = ψ(PV,U); +(ii) The set of constraints ψ ∈ Ψ(θ) is specified by consulting domain experts; +(iii) The optimal values of the stochastic program (2) are estimated either by first +obtaining a closed-form solution to (2) and then estimating that quantity, or +by directly solving the plug-in problem (3); +(iv) Suitable methods are then used to quantify the uncertainty of the estimators +in the previous step. +In this article, we will focus on sensitivity analysis for linear regression and linear +instrumental variables models in which θ and ψ are low-dimensional. Nevertheless, +the general framework outlined above may also be suitable for problems involving +high- or infinite-dimensional parameters; see Section 8 for more discussion. +1.2. +Interpretable Sensitivity Models using the R2-Calculus +In practice, the usefulness of the partially identified region in (1) or the optimal +values of (2) depends crucially on the interpretability of the sensitivity model Ψ. +This is where the R2-calculus can be extremely useful. In short, the R2-value R2 +Y ∼X, +also known as coefficient of determination, measures how much variance of Y can +be explained by linear combinations of X. An R2-value close to 1 indicates that +X can explain a large degree of the variance of Y ; on the other hand, values close +to 0 indicate that the linear dependence between Y and X is weak. The partial +R2-value R2 +Y ∼X|Z naturally extends this idea and measures how much variance of +Y can be explained by X given Z. +Due to their straightforward interpretation, R2- and partial R2-values are widely +used to help practitioners interpret the results of sensitivity analyses. For instance, + +Sensitivity Analysis with the R2-calculus +5 +Imbens (2003) uses them in sensitivity analysis for regression models with a discrete +treatment variable and this idea is recently extended by Veitch and Zaveri (2020); +Small (2007) measures the amount of violations to the instrumental variable as- +sumptions by using R2-values. Cinelli and Hazlett (2020) take this idea further and +parameterize the bias of the linear regression estimator by solely using R2-values. +Other parameterizations that are not fully based on R2-values can be found in +Hosman et al. (2010) and Oster (2019). +In this article, we extend this line of work and make several novel contributions: +• We use partial correlations (or R-values) instead of R2-values (which are just +squared R-values) to parameterize the sensitivity model, so the direction of the +confounder effect is naturally captured. In contrast, previous works either use +worst-case bounds implied by R2-values (Cinelli and Hazlett, 2020) or directly +specify the sign of the bias in an additional sensitivity parameter (Zhang and +Ding, 2022). +• We provide a list of algebraic relations between R- and R2- values. We give a +proof of this R2-calculus from a general Hilbert space perspective which may +be of independent interest. +• We give a general bias formula for the family of k-class estimators which in- +cludes the ordinary least squares estimator and the two-stage least squares +estimator. This allows us to provide a unified framework of sensitivity analy- +sis for linear regression and instrumental variables models. +• Facilitated by the R2-calculus and the general bias formula, we allow users to +specify very flexible constraints Ψ on the sensitivity parameters. For example, +we allow constraints that compare explanatory capability (in terms of the R2- +value) of some unmeasured confounder U with that of a measured covariate. +• We show that the simple method of fixing the sample R2-value related to the +unmeasured variable U in the sensitivity analysis, as proposed by Cinelli and +Hazlett (2020), may not provide confidence statements in the frequentist sense. +Instead, we propose a bootstrap approach to obtain sensitivity intervals. +• We provide a suite of user-friendly plots to visualize the results of the sensi- +tivity analysis. +1.3. +Organization of the Paper +Section 2 describes the R2-calculus, a collection of algebraic rules that relate (par- +tial) R2-values and correlations. Section 3 provides a general bias formula for the +k-class estimator in presence of one unmeasured confounder and discusses extensions +to multiple unmeasured confounders. +Section 4 uses the R2-calculus to develop multiple ways for practitioners to spec- +ify the constraints in Ψ(θ) based on domain knowledge. Specifically, we provide +comparative bounds on the sensitivity parameters that correspond to deviations +from the no unmeasured confounders and the instrumental variable assumptions. + +Sensitivity Analysis with the R2-calculus +6 +Section 5 reviews some approaches to construct sensitivity intervals that contains +β or the PIR with high probability. We show that directly specifying sample R2- +values as sensitivity parameter may not provide frequentist guarantees and propose +an approach based on the bootstrap. +Section 6 applies our proposed sensitivity analysis method to a famous study +in labour economics by Card (1993). We consider both the linear regression and +instrumental variable estimators and compare the results obtained by imposing +different sensitivity models. +Section 7 introduces sensitivity contour plots that +help to investigate how the choice of constraints affects the PIR. These plots are +illustrated with the real data example. Finally, Section 8 concludes this article with +a discussion of our method and an outlook on future research. +Readers who are more interested in applying the proposed method and interpret- +ing its results may wish to skip Sections 2 to 5 initially. Proofs for some theoretical +results in this article and a detailed description of the optimization algorithm can +be found in the Appendix. +2. +R2-calculus +We first give a summary of the R2-calculus – a set of widely used algebraic rules +which concern the coefficient of determination (also called R2-value) and related +quantities. Although these rules are often introduced together with the multivariate +normal distribution (see e.g. Anderson, 1958, sec. 2.5), they are purely algebraic and +rely on no distributional assumptions. In fact, this calculus not only applies to the +R2- and R-values in the population but also to their counterparts in the sample, +which will be denoted by ˆR2 and ˆR below; see Appendix A.3. For brevity, we will +only state the definitions and results for the population values. +Let Y be a random variable, let X and Z be two random vectors, and suppose +they all have finite variances. Without loss of generality, we suppose that all random +variables and vectors have mean equal to zero. Otherwise, we can replace them with +their centred versions; see Appendix A.3. We use Y ⊥⊥ X | Z to denote that Y and +X are independent conditional on Z as defined in Dawid (1979). Furthermore, the +residual of Y after partialing/regressing out X is given by +Y ⊥X := Y − XT var(X)−1 cov(X, Y ). +The variance of Y ⊥X equals that of the residual in the linear regression of Y on X, +which motivates the notation σ2 +Y ∼X = var(Y ⊥X); let σY ∼X denote its square root. +Definition 1. Suppose σ2 +Y ∼Z > 0. The R2-value of Y on X is defined as +R2 +Y ∼X := 1 − σ2 +Y ∼X +σ2 +Y +. +The partial R2-value and f2-value of Y on X given Z are defined as +R2 +Y ∼X|Z := R2 +Y ∼X+Z − R2 +Y ∼Z +1 − R2 +Y ∼Z +and +f2 +Y ∼X|Z := +R2 +Y ∼X|Z +1 − R2 +Y ∼X|Z +, + +Sensitivity Analysis with the R2-calculus +7 +respectively. If X is one-dimensional and σ2 +X∼Z > 0, the partial R- and f-value +(Cohen, 1977) are defined as +RY ∼X|Z := corr(Y ⊥Z, X⊥Z), +and +fY ∼X|Z := +RY ∼X|Z +� +1 − R2 +Y ∼X|Z +. +The marginal f2-, R- and f-values can be further defined by using an “empty” Z +in the definitions above; details are omitted. +The partial R2 takes values in [0, 1] and is a measure of how well the variables in +X can be linearly combined to explain the variation in Y after already using linear +combinations of Z. Values close to 1 indicate high explanatory capability. This +simple interpretation makes the R2-value a popular tool to assess the goodness of +fit of a linear model. The partial f2 is a monotone transformation of the partial R2 +and takes values in [0, ∞]. The partial R-value captures not only the strength but +also the direction of dependence between Y and X after partialing out Z. +The next result justifies calling R2 +Y ∼X|Z a partial R2-value and shows that the +definitions of R2- and R-value are consistent. It follows from the Gram-Schmidt +orthogonalization. +Lemma 1. In the setting of Definition 1, R2 +Y ∼X|Z = R2 +Y ⊥Z∼X⊥Z holds true. More- +over, if X is one-dimensional, then R2 +Y ∼X|Z = (RY ∼X|Z)2. +The next Proposition collects several useful results about R2-values. +Proposition 1 (R2-calculus). In the setting above, let W be another random vector. +Assume σ2 +Y ∼X+W+Z > 0. Further, suppose σ2 +X∼W+Z > 0 and σ2 +W∼X+Z > 0 when +X and/or W are one-dimensional. Then, the following rules hold: +[i] Independence: if Y ⊥⊥ X, then R2 +Y ∼X = 0; +[ii] Independent additivity: if X ⊥⊥ W, then R2 +Y ∼X+W = R2 +Y ∼X + R2 +Y ∼W ; +[iii] Decomposition of unexplained variance: +1 − R2 +Y ∼X+W = (1 − R2 +Y ∼X)(1 − R2 +Y ∼W|X); +[iv] Recursion of partial correlation: if X and W are one-dimensional, then +RY ∼X|W = +RY ∼X − RY ∼W RX∼W +� +1 − R2 +Y ∼W +� +1 − R2 +X∼W +; +[v] Reduction of partial correlation: if X is one-dimensional and Y ⊥⊥ W, then +RY ∼X|W = +RY ∼X +� +1 − R2 +X∼W +; + +Sensitivity Analysis with the R2-calculus +8 +[vi] Three-variable identity: if both X and W are one-dimensional, then +fY ∼X|W +� +1 − R2 +Y ∼W|X = fY ∼X +� +1 − R2 +X∼W − RY ∼W|XRX∼W . +Remark 1. All of the relationships above also hold when Z is partialed out (i.e. +if “ |Z” is appended to the subscripts of all R-, R2-, and f-values) and the inde- +pendence assumptions are conditional on Z. Rules [i], [ii] and [v] remain true if +(conditional) independence condition is replaced by (partial) uncorrelatedness. A +more succint sufficient condition for the positive partial variance requirements is +that the covariance matrix of (Y, X, Z, W) has full rank. +Remark 2. Rule [vi] may appear unintuitive at first. To see how this identity may +come up, consider three random variables Y , X and W. There are in total three +marginal R-values, RY ∼X, RY ∼W and RX∼W , and three partial R-values, RY ∼X|W , +RY ∼W|X and RX∼W|Y . Rule [iv] shows that the partial R-values can be determined +by all the marginal values. In other words, there are only three degrees of freedom +among the six R-values. This implies that there must be an equality constraint +relating RY ∼X, RX∼W , RY ∼X|W , and RY ∼W|X. +Remark 3. The (partial) R2- and R-value can be defined in a more general Hilbert +space setting. The corresponding rules of the R2-calculus also hold true, yielding +Proposition 1 as a corollary. See Appendix A. +3. +Bias of the k-class Estimator +Our main goal in this article is to outline a unified approach to sensitivity analysis +in linear structural equation models that leverages the R2-calculus. To this end, +we will focus on the case with a one-dimensional treatment D and a continuous +outcome Y . We would like to estimate the causal effect of D on Y , which will be +denoted as β. We may also observe some covariates X and a potential instrumental +variable Z. Let V = (D, Y, X, Z) be the observed variables. +In a sensitivity analysis, we are worried about some unmeasured variables U +that confound the causal effect of D on Y . This can potentially be addressed by +finding an instrumental variable Z for the treatment D, but this instrumental vari- +able may itself be invalid; readers who are unfamiliar with instrumental variables +are referred to Section 4.2 for its definition in the context of linear models. Below +we will derive a bias formula for the usual linear regression and instrumental vari- +able estimators, which essentially determines the objective functional β(θ, ψ) in the +stochastic optimization problem (2). +3.1. +A Single Unmeasured Confounder +We start with the case of a one-dimensional unmeasured confounder U and work +with the so-called k-class estimators as defined below. + +Sensitivity Analysis with the R2-calculus +9 +Definition 2. Suppose var(D⊥X) > var(D⊥X,Z) > 0. +The k-class estimand is +given by +βk := +� +� +� +� +� +� +� +� +� +cov(D⊥X, Y ⊥X) − k cov(D⊥X,Z, Y ⊥X,Z) +var(D⊥X) − k var(D⊥X,Z) +, +if − ∞ < k ≤ 1, +cov(D⊥X,Z, Y ⊥X,Z) +var(D⊥X,Z) +, +if k = −∞. +The k-class estimator is defined by replacing variance/covariance and the residuals +in the equation above by their sample counterparts. +The family of k-class estimators was introduced by Theil (1958) and Nagar (1959) +to interpolate the ordinary least squares (OLS) estimator and the two-stage least +squares (TSLS) estimator. +It provides a convenient representation for a unified +analysis. To see the interpolation, the OLS estimand that adjusts for X is given by +βY ∼D|X := cov(Y ⊥X, D⊥X) +var(D⊥X) +. +The TSLS estimand (also called the Wald ratio) that uses Z as an instrumental +variable and X as exogenous covariates is given by +βD∼Z|X, Y ∼Z|X := cov(Y ⊥X, Z⊥X) +cov(D⊥X, Z⊥X). +They are special cases of the k-class estimands according to the following result. +Proposition 2. In the setting of Definition 2, +β1 = βD∼Z|X, Y ∼Z|X, +β0 = βY ∼D|X, +and +lim +k→−∞ βk = β−∞ = βY ∼D|X,Z. +Remark 4. Another important estimator contained in the k-class is the limited +information maximum likelihood of Anderson and Rubin (1949), where k needs +to be estimated from the data. +Other examples can be found in Davidson and +MacKinnon (1993, p. 649) and Koles´ar et al. (2015). Also related is the anchor +regression estimator recently introduced by Rothenh¨ausler et al. (2021) that aims +to gain robustness under distributional shifts. +The target functional β = β(PV,U) we consider is the OLS estimand βY ∼D|X,Z,U +which adjusts for X, Z, and the unmeasured confounder U. When Y is causally +determined by a linear structural equation containing D, X, Z and U, the causal +effect of D on Y is precisely given by β = βY ∼D|X,Z,U; see Figure 1 for an illustration +of the data-generating process. When the true structural relationship is not linear, +βY ∼D|X,Z,U may still be interpreted as a kind of weighted average treatment effect +under additional assumptions (Angrist and Pischke, 2009, p. 75). +Because U is not observed, β cannot be consistently estimated without further +assumptions on the relationship between U and V . +The difference between the +estimand βk and the target β is quantified by the next result. + +Sensitivity Analysis with the R2-calculus +10 +Theorem 1. Suppose σ2 +D∼X > σ2 +D∼X+Z > σ2 +D∼X+Z+U > 0 and let k ∈ (−∞, 1] be +fixed. Then, +βk − β = +� +fY ∼Z|X,D RD∼Z|X +1 − k + k R2 +D∼Z|X ++ RY ∼U|X,Z,D fD∼U|X,Z +� +σY ∼X+Z+D +σD∼X+Z +. +(4) +For k = −∞, equation (4) holds by taking the limit k → −∞ on the right-hand +side. +Equation (4) generalizes previous bias formulas for the OLS estimator to the +entire family of k-class estimators; see Remark 5 below. Interestingly, this more +general formula can be easily derived by applying the OLS bias formula twice; see +equation (5) below. Because the bias of any k-class estimand can be written as +a function of RY ∼U|X,Z,D and RD∼U|X,Z, we will refer to them as the primitive +sensitivity parameters. +Corollary 1 in the appendix contains specialized bias formulas for the common +estimands in Proposition 2. The next proposition states the causal identification +assumption under which these estimands are unbiased. +Proposition 3. In the setting of Theorem 1, the following statements are true: +(i) If RD∼U|X,Z = 0 or RY ∼U|X,Z,D = 0, then β = βY ∼D|X,Z. +(ii) If R2 +D∼U+Z|X = 0 or R2 +Y ∼U+Z|X,D = 0, then β = βY ∼D|X,Z = βY ∼D|X. +(iii) If RZ∼U|X = 0 and RY ∼Z|X,D,U = 0, then β = βD∼Z|X, Y ∼Z|X. +3.2. +Proof Sketch of Theorem 1 +By expanding the difference between the k-class and the target estimands and ap- +plying the R2-calculus to the first term, we deduce +βk − βY ∼D|X,Z,U = βk − βY ∼D|X,Z + βY ∼D|X,Z − βY ∼D|X,Z,U +(5) += +� +βY ∼D|X − βY ∼D|X,Z +� +1 − k +� +1 − R2 +D∼Z|X +� ++ +� +βY ∼D|X,Z − βY ∼D|X,Z,U +� +. +Equation (4) can then be derived by applying the following Lemma twice; see Ap- +pendix B.1. +Lemma 2. Let Y, D and W be random variables, X be a random vector, and +suppose σ2 +D∼X+W > 0. Then +βY ∼D|X − βY ∼D|X,W = RY ∼W|X,D fD∼W|X +σY ∼X+D +σD∼X +. +Remark 5. To our knowledge, Lemma 2 first appeared in Cochran (1938) and was +later generalized by Cox (2007). In the context of sensitivity analysis, it has already +been used by Frank (2000), Hosman et al. (2010) and Cinelli and Hazlett (2020). +The bias formula in the last paper can be obtained by taking k → −∞ in (4). +Remark 6. Heuristically, the true causal effect β should not depend on the choice +of k. This can also been seen from equation (5). + +Sensitivity Analysis with the R2-calculus +11 +3.3. +Multiple Unmeasured Confounders +The assumption that the unmeasured confounder U is one-dimensional has kept +the algebra tractable thus far. +In order to obtain a bias formula with multiple +confounders, a generalization of Lemma 2 is required. For instance, when W is +l-dimensional, we can repeatedly apply Lemma 2 to the following telescoping series: +βY ∼D|X − βY ∼D|X,W = +l +� +j=1 +βY ∼D|X,W[j−1] − βY ∼D|X,W[j] += +l +� +j=1 +RY ∼Wj|X,D,W[j−1] fD∼Wj|X,W[j−1] +� +� +� +�1 − R2 +Y ∼W[j−1]|X,D +1 − R2 +D∼W[j−1]|X +σY ∼X+D +σD∼X +, +(6) +where [j] := {1, . . . , j} and [0] := ∅. +By using an expansion similar to (5), we +may identify the bias in linear regression and instrumental variables models with +multiple unmeasured confounders; of course, more sensitivity parameters will be +required. Such extensions are explored in Appendix B.2. +Alternatively, Lemma 2 provides an upper bound on |βY ∼D|X − βY ∼D|X,W | that +can be immediately generalized to multi-dimensional W as stated in the next re- +sult. Heuristically, this is because the confounding effects of several unmeasured +variables can negate each other; see Cinelli and Hazlett (2020, sec. 4.5). To our +knowledge, this result is first obtained by Hosman et al. (2010); we simplify their +proof substantially using the R2-calculus in Appendix B.2. +Lemma 3. Let Y and D be random variables, let X and W be random vectors. +Assume that σ2 +D∼X+W > 0 and that the covariance matrix var(W ⊥X,D) is positive +definite. Then, +��βY ∼D|X − βY ∼D|X,W +�� ≤ +� +R2 +Y ∼W|D,X f2 +D∼W|X +σ2 +Y ∼X+D +σ2 +D∼X +. +(7) +Returning to the k-class estimator, when the unmeasured confounder U is multi- +dimensional, we may still apply the expansion in equation (5). The first term on +its right-hand side does not involve U and the second term is bounded by (7). This +immediately implies a bound on the bias of the k-class estimand. +4. +Interpretable and Flexible Constraints +Theorem 1 in the previous section has established the dependece of the objective β +on two primitive sensitivity parameters: RD∼U|X,Z and RY ∼U|X,Z,D. In this section, +we develop different ways to specify interpretable constraints on these parameters +by extending ideas in previous work, most notably Cinelli and Hazlett (2020). +The key idea is to compare the R2-value of the unmeasured confounder with that +of an observed covariate. To facilitate this comparison, we assume that the random +vector X ∈ Rp can be partitioned into +X = ( ˙X, ˜X), +˙X ∈ R ˙p, ˜X ∈ R˜p such that ˙X ⊥⊥ U | ˜X, Z. +(8) + +Sensitivity Analysis with the R2-calculus +12 +Z +D +U +˙X +Y +˜X +1 +2 +3 +4 +Fig. 1. Causal diagram for regression and instrumental variables. Directed edges repre- +sent causal effects and bidirected edges represent dependence due to unmeasured com- +mon causes. +In Figure 1, we give a causal graphical model that fulfills (8); other possibilities +may be verified by the familiar d-sepration (Pearl, 2009). We further denote [ ˙p] := +{1, . . . , ˙p}. For I ⊆ [ ˙p] and ˙X ∈ R ˙p, define ˙XI := ( ˙Xi)i∈I and Ic := [ ˙p] \ I. Finally, +let ˙X−j := ˙X{j}c for any j ∈ [ ˙p]. +Table 1 summarizes the constraints on sensitivity parameters considered in this +work; it may be helpful to visualize the relations parameterized by these constraints +using the causal diagram in Figure 1. In principle, the constraints in Table 1 can +be combined arbitrarily. In particular, one may specify several comparative bounds +using different sets of covariates, although specifying too many bounds may leave +the sensitivity model infeasible. Next, we show how these bounds naturally arise +from the sensitivity analysis for the OLS and TSLS estimators. +4.1. +Ordinary Least Squares +The OLS estimand β−∞ = βY ∼D|X,Z identifies the causal effect β = βY ∼D|X,Z,U if +the causal diagram in Figure 1 does not contain U → D or U → Y , or equivalent, +if RD∼U|X,Z = 0 or RY ∼U|X,Z,D = 0. Some of the sensitivity models in Table 1 +directly bound them; others bound related R2-values that can be linked to the +primitive parameters by the R2-calculus. Such relations are elaborated below. +4.1.1. +Constraints on U → D +First of all, we may directly specify a bound on the primitive sensitivity parameter +RD∼U|X,Z ∈ [Bl +UD, Bu +UD] ⊆ [−1, 1]. +(9) +This constraint means that the correlation between D and U, after accounting for +linear effects of X and Z, lies within the interval [Bl +UD, Bu +UD]. + +Sensitivity Analysis with the R2-calculus +13 +Table 1. Specification of constraints: When the user specifies bounds on the sensi- +tivity parameters, the corresponding constraints in the last column are added to the +stochastic optimization (2). When bounds on U ↔ Z and/or Z → Y are chosen, the +TSLS-related equality constraints (17) and (18) also need to be included. +Edge +Sensitivity model +Optimization constraint +1 U → D +1. +RD∼U|X,Z ∈ [Bl +UD, Bu +UD] +(9) +2. +R2 +D∼U| ˜ +X, ˙XI,Z ≤ bUDR2 +D∼ ˙XJ| ˜ +X, ˙XI,Z +(10) +2 U → Y +1. +RY ∼U|X,Z,D ∈ [Bl +UY , Bu +UY ] +(11) +2. +R2 +Y ∼U| ˜ +X, ˙XI,Z ≤ bUY R2 +Y ∼ ˙XJ| ˜ +X, ˙XI,Z +(14), (15) +3. +R2 +Y ∼U| ˜ +X, ˙XI,Z,D ≤ bUY R2 +Y ∼ ˙XJ| ˜ +X, ˙XI,Z,D +(13), (15), (16) +3 U ↔ Z +1. +RZ∼U|X ∈ [Bl +UZ, Bu +UZ] +(19) +2. +R2 +Z∼U| ˜ +X, ˙X−j ≤ bUZR2 +Z∼ ˙Xj| ˜ +X, ˙X−j +(20) +4 Z → Y +1. +RY ∼Z|X,U,D ∈ [Bl +ZY , Bu +ZY ] +(21) +2. +R2 +Y ∼Z|X,U,D ≤ bZY R2 +Y ∼ ˙Xj| ˜ +X, ˙X−j,Z,U,D +(22), (23) +Alternatively (or in addition to the previous bound), we can specify the following +comparative bound that is arguably more interpretable: +R2 +D∼U| ˜ +X, ˙XI,Z ≤ bUDR2 +D∼ ˙XJ| ˜ +X, ˙XI,Z, I ⊂ [ ˙p], J ⊆ Ic, bUD ≥ 0. +This inequality means that the unmeasured confounder U can explain at most +bUD times as much variance of D as +˙XJ does, after accounting for the effect of +( ˜X, ˙XI, Z) on D. For practical purposes, a good choice of the comparison sets is +J = {j} and I = Jc. We can relate RD∼U| ˜ +X, ˙XI,Z in the last bound to RD∼U|X,Z via +the R2-calculus. By using ˙XIc ⊥⊥ U | ˜X, ˙XI, Z (which follows from the assumption +in (8)) and applying the reduction of partial correlation with Y ≡ U, X ≡ D, +Z ≡ ( ˜X, ˙XI, Z) and W ≡ ˙XIc, we have +R2 +D∼U|X,Z +[v] += +R2 +D∼U| ˜ +X, ˙XI,Z +1 − R2 +D∼ ˙XIc| ˜ +X, ˙XI,Z +≤ bUD +R2 +D∼ ˙XJ| ˜ +X, ˙XI,Z +1 − R2 +D∼ ˙XIc| ˜ +X, ˙XI,Z +. +(10) +4.1.2. +Constraints on U → Y +Similarly to U → D, we may specify a direct bound: +RY ∼U|X,Z,D ∈ [Bl +UY , Bu +UY ] ⊆ [−1, 1]. +(11) +Alternatively, we may use comparative bounds. +Here we consider two types of +bounds depending on whether D is regressed out: +R2 +Y ∼U| ˜ +X, ˙XI,Z ≤ bUY R2 +Y ∼ ˙XJ| ˜ +X, ˙XI,Z, +(12) +R2 +Y ∼U| ˜ +X, ˙XI,Z,D ≤ bUY R2 +Y ∼ ˙XJ| ˜ +X, ˙XI,Z,D, +(13) + +Sensitivity Analysis with the R2-calculus +14 +where I ⊂ [ ˙p], J ⊆ Ic, bUY ≥ 0. When comparing the explanatory capability of +the variables U and ˙XJ, it is natural to regress out all other variables. However, +regressing out D, a potential common child of X and U, may introduce dependence +between U and Y ; this is essentially the point made by Hernan and Robins (1999) in +their criticism of Lin et al. (1998). Thus, we consider both the comparative bound +(12) without D and the bound (13) with D. For (12), we may apply rule [v] as in +(10) and obtain +R2 +Y ∼U|X,Z +[v] += +R2 +Y ∼U| ˜ +X, ˙XI,Z +1 − R2 +Y ∼ ˙XIc| ˜ +X, ˙XI,Z +≤ bUY +R2 +Y ∼ ˙XJ| ˜ +X, ˙XI,Z +1 − R2 +Y ∼ ˙XIc| ˜ +X, ˙XI,Z +. +(14) +However, we cannot regress out D in (14) because D may be a collider in the path +˙XIc → D ← U. Instead, we can link it to RY ∼U|X,Z,D via the R2-calculus: +RY ∼U|X,Z,D +[iv] += RY ∼U|X,Z − RY ∼D|X,Z RD∼U|X,Z +� +1 − R2 +Y ∼D|X,Z +� +1 − R2 +D∼U|X,Z +. +(15) +Hence, the first type of comparative bound can be represented as the inequality +constraint (14) and the equality constraint (15) in the optimization problem (2). +The second type of comparative bounds partials out D and involves two addi- +tional sensitivity parameters: RY ∼U|X,Z and RY ∼U| ˜ +X, ˙XI,Z,D. To link them to the +primitive sensitivity parameters, we may use equation (15) and +RY ∼U|X,Z = +1 +� +1 − R2 +Y ∼ ˙XIc| ˜ +X, ˙XI,Z +� +RY ∼D| ˜ +X, ˙XI,ZRD∼U|X,Z +� +1 − R2 +D∼ ˙XIc| ˜ +X, ˙XI,Z ++ RY ∼U| ˜ +X, ˙XI,Z,D +� +1 − R2 +Y ∼D| ˜ +X, ˙XI,Z +� +1 − R2 +D∼U|X,Z(1 − R2 +D∼ ˙XIc| ˜ +X, ˙XI,Z) +� +(16) +as an equality constraint. The derivation of (16) is deferred to Appendix C.1. +4.2. +Two-stage Least Squares +The method of instrumental variables (IV) is commonly used to overcome unmea- +sured confounding. Here we only provide a very brief introduction to it; the reader +is referred to Wooldridge (2010) for a more comprehensive discussion. +A variable Z is called an instrument for D if (i) it is an independent predictor +of D, (ii) it is exogenous in the sense that Z is conditionally independent of the +unmeasured confounder U and (iii) it has no direct effect on the outcome Y that is +not mediated by D. In linear models, these conditions can be expressed as +(i) RZ∼D|X ̸= 0, +(ii) RZ∼U|X = 0, +(iii) RY ∼Z|X,U,D = 0. +Proposition 3(iii) suggests that under these conditions, the target β = βY ∼D|X,Z,U +is identified by the TSLS estimand β1 = βD∼Z|X, Y ∼Z|X. + +Sensitivity Analysis with the R2-calculus +15 +As the last two conditions above involve the unmeasured confounder U and +thus cannot be verified, a sensitivity analysis for TSLS would specify bounds on +the sensitivity parameters RZ∼U|X and RY ∼Z|X,U,D. To use the bias formula in +Theorem 1, we need to link them to the primitive sensitivity parameters RD∼U|X,Z +and RY ∼U|X,Z,D. +To achieve this, we apply the three-variable identity [vi] with +Y ≡ Y , X ≡ Z, W ≡ U and Z ≡ (X, D) to obtain +fY ∼Z|X,U,D +� +1 − R2 +Y ∼U|X,Z,D = fY ∼Z|X,D +� +1 − R2 +Z∼U|X,D − RY ∼U|X,Z,DRZ∼U|X,D, +(17) +and with Y ≡ U, X ≡ Z, W ≡ D and Z ≡ X to obtain +fZ∼U|X,D +� +1 − R2 +D∼U|X,Z = fZ∼U|X +� +1 − R2 +D∼Z|X − RD∼Z|XRD∼U|X,Z. +(18) +These are then added to the stochastic program (2) as equality constraints. +4.2.1. +Constraints on U ↔ Z +The sensitivity parameter RZ∼U|X can be constrained by directly providing a range +of plausible values, i.e. +RZ∼U|X ∈ [Bl +UZ, Bu +UZ] ⊆ [−1, 1]. +(19) +Alternatively, we allow practitioners to specify the following comparative bound +R2 +Z∼U| ˜ +X, ˙X−j ≤ bUZR2 +Z∼ ˙Xj| ˜ +X, ˙X−j, j ∈ [ ˙p], bUZ ≥ 0. +Using the conditional independence assumption (8), this can be shown to be equiv- +alent to (see Appendix C.2) +R2 +Z∼U|X ≤ bUZ R2 +Z∼ ˙Xj| ˜ +X, ˙X−j +1 − R2 +Z∼ ˙Xj| ˜ +X, ˙X−j +1 − bUZ R4 +Z∼ ˙Xj| ˜ +X, ˙X−j +. +(20) +4.2.2. +Constraints on Z → Y +We can bound the sensitivity parameter RY ∼Z|X,U,D by specifying the direct bound +RY ∼Z|X,U,D ∈ [Bl +ZY , Bu +ZY ] ⊆ [−1, 1]. +(21) +Furthermore, we allow the following comparative bound +R2 +Y ∼Z|X,U,D ≤ bZY R2 +Y ∼ ˙Xj| ˜ +X, ˙X−j,Z,U,D, j ∈ [ ˙p], bZY ≥ 0. +(22) +This last bound is unusual in the sense that the sets of variables that are regressed +out are different in the two partial R2-values. It is difficult to specify compara- +tive bounds for the exclusion restriction as the corresponding sensitivity parame- +ter RY ∼Z|X,U,D partials out U. Therefore, we cannot directly compare U to an + +Sensitivity Analysis with the R2-calculus +16 +observed covariate, e.g. ˙Xj, and the right-hand side of the bound cannot be esti- +mated. For this reason, we resort to the adjustment set in (22) because we can +connect RY ∼ ˙Xj| ˜ +X, ˙X−j,Z,U,D to the primitive sensitivity parameters via the following +equality constraint +fY ∼ ˙Xj| ˜ +X, ˙X−j,Z,U,D +� +1 − R2 +Y ∼U|X,Z,D = +� +fY ∼ ˙Xj| ˜ +X, ˙X−j,Z,D +� +1 − R2 +D∼U|X,Z ++ RY ∼U|X,Z,D RD∼ ˙Xj| ˜ +X, ˙X−j,Z RD∼U|X,Z +��� +1 − R2 +D∼U|X,Z(1 − R2 +D∼ ˙Xj| ˜ +X, ˙X−j,Z). +(23) +See Appendix C.2 for the derivation. +5. +Sensitivity Intervals +So far, we have derived the objective function β = β(θ, ψ) of the stochastic program +(2) in Section 3 and a rich set of constraints ψ ∈ Ψ(θ) in Section 4. As θ only involves +partial correlations and the standard deviation of regression residuals, we can plug +in an empirical estimator of θ to obtain a point estimator of the optimal value of (2). +In other words, we only need to solve the optimization problem in (3) to estimate +the lower and upper bounds of the partially identified region. +Complications arise when we would like to construct an interval estimator S of +β with certain statistical guarantees. In the general setup presented in Section 1.1 +and for a given 0 < α < 1, we call S a (1 − α)-sensitivity interval of β if +PV +� +β(θ(PV ), ψ) ∈ S +� +≥ 1 − α +for all +PV and ψ ∈ Ψ(θ(PV )), +and S a (1 − α)-sensitivity interval of the partially identified region if +PV +� +PIR(PV ) ⊆ S +� +≥ 1 − α +for all +PV . +Obviously, the second notion of confidence is stronger. For a more detailed discus- +sion on confidence statements in partially identified problems including issues with +asymptotic sensitivity intervals, the reader is referred to Imbens and Manski (2004), +Stoye (2009) and Molinari (2020). +Next we review several methods to construct sensitivity intervals. To obtain an +interval estimator of β in a sensitivity analysis of the OLS, a heuristic approach, as +suggested by Cinelli and Hazlett (2020), is to treat U as observed and use the usual +confidence interval +� +�ˆβY ∼D|X,Z + +� +− ˆRY ∼U|X,Z,D ˆfD∼U|X,Z ± qα +√n +� +� +� +�1 − ˆR2 +Y ∼U|X,Z,D +1 − ˆR2 +D∼U|X,Z +� +ˆσY ∼X+Z+D +ˆσD∼X+Z +� +�, +where qα is the (1 − α/2)-quantile of the standard normal distribution. Here it is +assumed that a domain expert can specify ˆψ = ( ˆRY ∼U|X,Z,D ˆRD∼U|X,Z) even though + +Sensitivity Analysis with the R2-calculus +17 +U cannot observed. For the partially identified problem, a seemingly reasonable idea +is to minimize/maximize the confidence bounds over ˆψ ∈ Ψ(ˆθ). +However, a closer look at this heuristic shows that it achieves no obvious confi- +dence guarantees. This is because the sensitivity parameter ˆψ depends on the data +and thus its value changes when another sample is drawn. If ˆψ is almost certainly +contained in Ψ(ˆθ), i.e. P( ˆψ ∈ Ψ(ˆθ)) = 1, this heuristic interval would actually be a +sensitivity interval for β. However, this is only possible if the sensitivity model Ψ +is non-informative (e.g. RD∼U|X,Z ∈ [−1, 1]). Numerical simulations in Appendix +E confirm this intuitive argument; in particular, the heuristic interval has cover- +age 50% in one setting and above 99% in another, where the nominal coverage is +1 − α = 90%. +To account for the uncertainty in estimating the feasible set Ψ(θ), Tudball et al. +(2022) propose to solve the optimization problem (3) with a relaxed constraint +ψ ∈ ˜Ψ(ˆθ), where ˜Ψ(ˆθ) is constructed to contain Ψ(θ) with high probability. However, +several technical difficulties prevent us from directly applying their method to our +problem. +A third approach to construct sensitivity interval is to use the bootstrap (Efron +and Tibshirani, 1994). More specifically, we can compute a collection of estimators +ˆˆθ using resamples of the observable data, solve the plug-in optimization problem +(3) with ˆθ = ˆˆθ, and then use the bootstrap distribution to construct one-sided +confidence intervals [βl +min, ∞) and (−∞, βu +max] with level (1 − α/2) for the minimal +and maximal values, respectively. Different procedures may be employed in the +last step. For instance, percentile bootstrap takes the α/2 and 1 − α/2 quantile +of the bootstrap distribution to construct the respective confidence interval. Other +options include the basic (or reverse percentile) bootstrap, studentized bootstrap, +and bias-corrected bootstrap; see Davison and Hinkley (1997, chap. 5) for more +detail. Finally, a sensitivity interval with nominal confidence level (1 − α) may be +constructed as [βl +min, βu +max]. +For the sensitivity analysis problems described in this article, simulation studies +in Appendix E suggest that the percentile bootstrap performs better than the basic +boostrap. In two simulation studies with nominal confidence level 90%, we found +that the percentile bootstrap intervals covers the partially identified region around +90% and the true parameter, which equals the lower end of the PIR under the +specified sensitivity model, around 95% of the time. +The empirical coverage of +basic bootstrap intervals is about 10% below the nominal level when the sample +size is n = 200; this gap closes as n increases. +Although a rigorous asymptotic analysis of the different bootstrap procedures is +beyond the scope of this article, we offer some heuristics on why the boostrap is +expected to “work” here. First, Shapiro (1991) provides an asymptotic theory for +stochastic optimization and shows that the plug-in estimator of the optimal value +of certain stochastic programs is asymptotically linear; see also Shapiro et al. (2009, +chap. 5). Although our optimization problem (2) involves unknown parameters θ in +the constraints and thus does not fall in the class of problems considered by Shapiro +(1991), one may hope that the theory there extends to the problem considered here. + +Sensitivity Analysis with the R2-calculus +18 +Second, due to optimization over the sample, the plug-in estimator is always biased, +even though the bias may be small asymptotically. With just a moderate sample +size, our simulations also show that the bootstrap distribution of the optimal value +estimators is quite skewed; see Figure 7 in Appendix E. It is plausible that the finite +sample effects of bias and skewness in the bootstrap distribution cancel out each +other for the percentile bootstrap. Finally, Zhao et al. (2019) provide an alternative +justification for the percentile bootstrap in partially identified sensitivity analysis +by using the generalized minimax inequality. However, their proof requires a fixed +constraint set Ψ and thus cannot be directly applied to the problem here. +Remark 7. Although the probability of the estimated constraint set Ψ(ˆθ) being +empty should converge to zero as the sample size grows, this can occasionally occur +with moderate sample sizes. Our implementation of the bootstrap procedures takes +a conservative approach and sets the optimal value to ∞ or −∞ depending on which +end of the PIR is considered. +6. +Data Example +We demonstrate the practicality of the proposed method using a prominent study +of the economic return of schooling. +The dataset was compiled by Card (1993) +from the National Longitudinal Survey of Young Men (NLSYM) and contains a +sample of 3010 young men at the age of 14 to 24 in 1966 who were followed up until +1981. Card uses several linear models to estimate the causal effect of education, +measured by years of schooling and denoted as D, on the logarithm of earnings, +denoted as Y . For brevity, we only consider the most parsimonious model used by +Card which includes, as covariates for adjustment and denoted as X, years of labour +force experience and its square, and indicators for living in the southern USA, being +black and living in a metropolitan area. +Card (1993) recognizes that many researchers are reluctant to interpret the es- +tablished positive correlation between education and earnings as a positive causal +effect due to the large number of potential unmeasured confounders. In our analysis, +we will consider the possibility that an unmeasured variable U, which represents the +motivation of the young men, may influence both schooling and salary. To address +this issue, Card suggests to use an instrumental variable, namely the indicator for +growing up in proximity to a 4-year college; this is denoted as Z below. Nonethe- +less, proximity to college may not be a valid instrumental variable. For example, +growing up near a college may be correlated with a higher socioeconomic status, +more career opportunities, or stronger motivation. A more detailed discussion of +the identification assumptions can be found in Card (1993). +For the purpose of sensitivity analysis, we assume that being black and living in +the southern USA are not directly related with motivation and treat them as ˙X; +the remaining covariates are regarded as ˜X in the sensitivity analysis. We assume +that this partition satisfies the conditional independence in (8). In this example, we +use comparative bounds to express our beliefs about the effects of the unmeasured +confounder U on Y and D. +We assume that motivation can explain at most 4 +times as much variation in the level of education as being black (denoted as ˙Xj) + +Sensitivity Analysis with the R2-calculus +19 +does after accounting for all other observed covariates, and that motivation can +explain at most 5 times as much variation in log-earnings as being black does after +accounting for the other covariates and education: +(B1) +R2 +D∼U| ˜ +X, ˙X−j,Z ≤ 4 R2 +D∼ ˙Xj| ˜ +X, ˙X−j,Z, +(B2) R2 +Y ∼U| ˜ +X, ˙X−j,Z,D ≤ 5 R2 +Y ∼ ˙Xj| ˜ +X, ˙X−j,Z,D. +The bounds (B1) and (B2) address deviations from the identification assumptions of +a linear regression. Likewise, we can also specify deviations from the instrumental +variable assumptions. We suppose that motivation U can explain at most half as +much variation in Z (college proximity) as ˙Xj (black) can after accounting for the +effects of ( ˜X, ˙X−j). Furthermore, we assume that college proximity Z can explain +at most 10 % as much variance in log-earnings after excluding effects of (X, U, D) as +being black can explain log-earnings after excluding the effects of ( ˜X, ˙X−j, Z, U, D). +These assumptions translate to +(B3) R2 +Z∼U| ˜ +X, ˙X−j ≤ 0.5 R2 +Z∼ ˙Xj| ˜ +X, ˙X−j, +(B4) R2 +Y ∼Z|X,U,D ≤ 0.1 R2 +Y ∼ ˙Xj| ˜ +X, ˙X−j,Z,U,D. +When the bound (B1) is not part of the constraints, we additionally require +RD∼U|X,Z ∈ [−0.98, 0.98]. +(24) +This ensures that RD∼U|X,Z is bounded away from −1 and 1 and that the partially +identified range has finite length. +Figure 2 shows the OLS estimates that adjust/do not adjust for Z, the TSLS +estimate, and their corresponding 95% confidence intervals. The same plot shows +the estimated partially identified regions and 95% sensitivity intervals (obtained by +the percentile bootstrap) for five different sensitivity models that involve different +combinations of the bounds (B1) to (B4). +Both the OLS and the TSLS estimates suggest a statistically significant positive +effect of education on earnings. In the first sensitivity model in Figure 2, we relax +the assumption of no unmeasured confounders, which would be required if the OLS +estimate is interpreted causally, and assume that the effects of U on D and Y are +bounded by (B1) and (B2), respectively. The sensitivity interval remains positive in +this case. In other cases, the estimated partially identified regions and the sensitivity +intervals become very wide whenever (B1) is not part of the constraints. +This +is because the other constraints, except the loose bound in (24), do not bound +|RD∼U|X,Z| away from 1, so the association between D and Y may be entirely +driven by the unmeasured confounder U. In fact, the PIR would have an infinite +length if (24) was not imposed. Therefore, just specifying deviations from the IV- +assumptions, as in (B3) and (B4), is not sufficient to ensure that the PIR is finite in +this dataset. Moreover, comparing the first and last sensitivity model in Figure 2, +we notice that imposing the IV-related bounds (B3) and (B4) on top of (B1) and +(B2) does not shorten the estimated PIR and sensitivity intervals. These findings +suggest that the results of Card (1993) are more robust towards deviations from the +OLS than from the IV assumptions. + +Sensitivity Analysis with the R2-calculus +20 +-0.5 +0.0 +0.5 +1.0 +OLS adj. +OLS unadj. +TSLS +(B1), (B2) +(B3), (B4) +(B1), (B3), (B4) +(B2), (B3), (B4) +(B1) - (B4) +Fig. 2. +Three estimation strategies and five sensitivity models for the causal effect β: +Point estimates/estimates of the PIR (blue); 95% confidence/sensitivity intervals (black). +7. +Sensitivity Contour Plots +This section presents graphical tools to further aid the interpretation of sensitivity +analysis. The main idea is to plot the estimated lower or upper bound of the PIR +against the sensitivity parameters or the parameters in the comparative bounds. +Contour lines in this plot allow practitioners to identify the magnitude of unmea- +sured confounding (or violations of the instrumental variables assumptions) needed +to alter the conclusion of the study qualitatively. This idea dates back at least to +Imbens (2003); our method below refines the proposal in Cinelli and Hazlett (2020) +and Zhang and Ding (2022). The contour plots will be illustrated using the real +data example in the previous section. +7.1. +b-contour Plot +For comparative bounds, the b-factor (such as bUD in (10)) controls how tightly the +corresponding sensitivity parameter is constrained. Hence, it is important to gain +a practical understanding of b. The b-sensitivity contour plot shows the estimated +lower/upper end of the PIR on a grid of b-factors. +In Figure 3, we consider the sensitivity model with the bounds (B1) and (B2) +and investigate our choice (bUD, bUY ) = (4, 5) above. +The plot shows that the +estimated lower end of the PIR is still positive even for more conservative values +such as (bUD, bUY ) = (6, 10) or (bUD, bUY ) = (10, 5). Thus, a substantial deviation +from the OLS-related assumptions is needed to alter the sign of the estimate. + +Sensitivity Analysis with the R2-calculus +21 +-0.04 +-0.02 +0.01 +0.03 +0.05 +0.07 +0 +(4, 5) +0 +5 +10 +15 +0 +2 +4 +6 +8 +10 +12 +bUD +bUY +Fig. 3. b-sensitivity contours for (B1), (B2). +0.03 +0.04 +0.05 +0.06 +0.07 +(4, 0.1) +0.02 +0.04 +0.06 +0.08 +0.10 +0.12 +0 +2 +4 +6 +8 +bUD +bZY +Fig. 4. b-sensitivity contours for (B1)-(B4). +Figure 4 considers the sensitivity model using the constraints (B1) to (B4) with +changing (bUD, bZY ). This plot confirms our observation in Section 6 that imposing +the IV-related bounds (B3) and (B4) does not change the estimated lower bound +substantially when (B1) and (B2) are already present. In the terminology of con- +strained optimization, this means that the “shadow prices” for (B3) and (B4) are +small. +7.2. +R-contour Plot +We may also directly plot the estimated lower/upper end of the PIR against the +sensitivity parameters RD∼U|X,Z and RY ∼U|X,Z,D. This idea has been adopted in +several previous articles already (Imbens, 2003; Blackwell, 2014; Veitch and Zaveri, +2020). +For such R-contour plots, the key challenge is to benchmark or calibrate the +R-values. This was often done informally. For example, Cinelli and Hazlett (2020) +consider a model without potential instrument Z, use sensitivity contours parame- +terized by R2 +D∼U|X and R2 +Y ∼U|X,D and add (a ˆR2 +D∼Xj|X−j, a ˆR2 +Y ∼Xj|X−j,D) for certain +choices of a > 0 and j ∈ [p] to the plot. Thus, they aim to provide context for +plausible values of the sensitivity parameters; the underlying idea is similar to the +comparative bounds in Section 4. However, this method of benchmarking is not +entirely honest because different sets of covariates are conditioned on. Moreover, +regressing out a potential collider D may leave ˆR2 +Y ∼Xj|X−j,D difficult to interpret. +Here, we revise the contour plot in Cinelli and Hazlett (2020) by using the +R2-calculus. +To this end, we first construct benchmarking points for RD∼U|X,Z +and RY ∼U|X,Z. +Applying the reduction of partial correlation (rule [v]) and the + +Sensitivity Analysis with the R2-calculus +22 +black +2x black +5x black +south +2x south +5x south +-0.8 +-0.4 +0.0 +0.4 +0.8 +-0.8 +-0.4 +0.0 +0.4 +0.8 +RD~U|X,Z +RY~U|X,Z,D +-0.08 +-0.06 +-0.04 +-0.02 +0.00 +0.02 +0.04 +0.06 +0.08 +0.10 +0.12 +0.14 +0.16 +0.18 +0.20 +0.22 +Fig. 5. R-sensitivity contours for the lower end of the estimated PIR: Our comparison +points (black dots) and Cinelli and Hazlett’s comparison points (green triangles). +conditional independence U ⊥⊥ ˙Xj | ˜X, ˙X−j, Z, j ∈ [ ˙p], we obtain +RD∼U|X,Z = +RD∼U| ˜ +X, ˙X−j,Z +� +1 − R2 +D∼ ˙Xj| ˜ +X, ˙X−j,Z +and +RY ∼U|X,Z = +RY ∼U| ˜ +X, ˙X−j,Z +� +1 − R2 +Y ∼ ˙Xj| ˜ +X, ˙X−j,Z +, +which can be directly compared to, for any j ∈ [ ˙p], +ˆRD∼ ˙Xj| ˜ +X, ˙X−j,Z +� +1 − ˆR2 +D∼ ˙Xj| ˜ +X, ˙X−j +and +ˆRY ∼ ˙Xj| ˜ +X, ˙X−j +� +1 − ˆR2 +Y ∼ ˙Xj| ˜ +X, ˙X−j,Z +. +Moreover, we can multiply these values by a factor of √bR to compare the ex- +planatory capability of U (in terms of its R2-value) to bR times the explanatory +capability of the measured covariate ˙Xj. Finally, we may use the bijection between +(RD∼U|X,Z, RY ∼U|X,Z) and (RD∼U|X,Z, RY ∼U|X,Z,D) in (15) to map the benchmarks +to the scale used by the R-contour plot. +To illustrate the proposal, Figure 5 shows the R-contour plot for the estimated +lower end of the PIR and adds benchmarks corresponding to black and living in the +southern USA. We observe that, even if the unmeasured confounder was five times +as strong as black in terms of their capability of explaining the variation of D and +Y , the estimator would still be positive. Figure 5 further contrasts our comparison +points with the benchmarks proposed in Cinelli and Hazlett; in our experience, the +difference between the two methods is usually not significant. +Finally, we illustrate the utility of the R-contour plot as a way to visualize +the feasible set Ψ. Sensitivity analysis with multiple bounds often entails a non- + +Sensitivity Analysis with the R2-calculus +23 +RZ~U|X , RY~Z|X,U,D ∈ [-0.03 , 0.03] +RZ~U|X , RY~Z|X,U,D ∈ [-0.04 , 0.04] +RZ~U|X , RY~Z|X,U,D ∈ [-0.01 , 0.01] +RZ~U|X , RY~Z|X,U,D ∈ [-0.02 , 0.02] +-1.0 +-0.5 +0.0 +0.5 +1.0 +-1.0 +-0.5 +0.0 +0.5 +1.0 +-0.5 +0.0 +0.5 +1.0 +-0.5 +0.0 +0.5 +1.0 +RD~U|X,Z +RY~U|X,Z,D +0.00 +0.05 +0.10 +0.15 +0.20 +0.25 +0.30 +0.35 +0.40 +Fig. 6. R-sensitivity contours for the lower end of the estimated PIR: The red lines corre- +spond to the values of RD∼U|X,Z and RY ∼U|X,Z,D that conform with the IV-assumptions. +intuitive, complex set of constraints. Consider the following sensitivity model +RZ∼U|X, RY ∼Z|X,U,D ∈ [−r, r], +r ∈ {0.01, 0.02, 0.03, 0.04}, +R2 +Y ∼U| ˜ +X, ˙X−j,Z,D ≤ 5 R2 +Y ∼ ˙Xj| ˜ +X, ˙X−j,Z,D, +RD∼U|X,Z ∈ [−0.99, 0.99], +where r parameterizes the degree of deviation from the instrumental variables as- +sumptions; the covariate ˙Xj is the indicator for black. +Figure 6 shows the estimated feasible set Ψ(ˆθ) for different values of r. +For +r = 0.01, the feasible set is small and concentrated around the lines that correspond +to RD∼U|X,Z = RY ∼U|X,Z,D = 0 (the instrumental variable is valid). As r increases, +the feasible set becomes larger as expected. +The curved shape of the region of +feasible values is a result of the comparative bound on U → Y and the associated +constraints (15) and (16). Moreover, we observe that β assumes its most extreme +values as RD∼U|X,Z approaches 1. +This highlights the importance of bounding +RD∼U|X,Z away from −1 and 1 to ensure that the PIR has finite length. +8. +Discussion and Outlook +Thus far, we have sidestepped the issue of numerically computing the solution to the +constrained stochastic optimization problem (3). In fact, standard algorithms fail +to reliably solve the problem due to the complexity of the constraints. Therefore, +we develop a grid search algorithm which leverages the structure of the objective +and the equality constraints. The details can be found in Appendix D. + +Sensitivity Analysis with the R2-calculus +24 +Two insights underlie the methodological development in this article. First, sen- +sitivity analysis (or more generally, any one-dimensional partially identified prob- +lem) may be viewed as a constrained stochastic program and we can leverage meth- +ods developed in stochastic optimization. Second, the R2-calculus provides a pa- +rameterization of the bias of any k-class estimator and a systematic approach to +specify interpretable sensitivity models. +Partial identification has attracted considerable attention in econometrics and +causal inference since Manski (1990) and Balke and Pearl (1997); see Manski (2003); +Imbens and Manski (2004); Vansteelandt et al. (2006); Chernozhukov et al. (2007); +Aronow and Lee (2013); Richardson et al. (2014); Miratrix et al. (2018); Molinari +(2020). Existing methods typically assume a closed-form solution to the stochas- +tic program (2) (the lower/upper end of the PIR) and that the plug-in estimator is +asymptotically normal. As such results are only known for relatively simple models, +these methods only have limited utility in practice. The constrained optimization +perspective of partial identification is only beginning to get embraced in the litera- +ture (Kaido et al., 2019; Hu et al., 2021; Padh et al., 2022). +Our article further shows the need for a more complete, asymptotic theory of the +optimal value of a general stochastic program. This may allow one to extend the +methodology developed here to sensitivity models with high- or infinite-dimensional +parameters. In particular, a theory for the bootstrap distribution of the optimal +value estimator is required to clarify when and which bootstrap procedures provide +asymptotically correct sensitivity intervals. +The R2-values, R-values and generalizations thereof are popular for the calibra- +tion of sensitivity analysis. They have been recently used in the sensitivity analysis +for linear models with multiple treatments (Zheng et al., 2021), mediation analy- +sis (Zhang and Ding, 2022), missing values (Colnet et al., 2022) and models with +factor-structured outcomes (Zheng et al., 2022). In these works, certain algebraic +relationships about R2-values and benchmarking techniques such as contour plots +and robustness values are frequently used. Thus, the R2-calculus summarized in +this article may also benefit the calibration of other sensitivity models. Our proof of +the R2-calculus in general Hilbert spaces suggests that it may be useful in nonlinear +models, too. See Chernozhukov et al. (2022) for related work in partially linear +and semiparametric models using the Riesz-Frechet representation of certain causal +parameters. +The rules of the R2-calculus are purely algebraic and can therefore be applied in +any linear structural equation model – with or without unmeasured variables. This +raises the question: can sensitivity analysis be automated for reasonable sensitivity +models defined by direct and comparative bounds? Such an algorithm would be +immensely useful in applied research, but given the substantial amount of algebra +needed for the relatively simple models considered here, the required work would +be extremely challenging. + +Sensitivity Analysis with the R2-calculus +25 +Acknowledgments +Tobias Freidling is supported by a PhD studentship from GlaxoSmithKline Re- +search & Development. Qingyuan Zhao is partly supported by the EPSRC grant +EP/V049968/1. +References +Altonji, J. G., Elder, T. E. and Taber, C. R. (2005) An Evaluation of Instrumental +Variable Strategies for Estimating the Effects of Catholic Schooling. Journal of +Human Resources, XL, 791–821. +Anderson, T. W. (1958) An introduction to multivariate statistical analysis. New +York; London: Wiley Publications in Mathematical Statistics, 1st edn. +Anderson, T. W. and Rubin, H. (1949) Estimation of the parameters of a single +equation in a complete system of stochastic equations. The Annals of Mathemat- +ical Statistics, 20, 46–63. +Angrist, J. D. and Pischke, J.-S. (2009) Mostly harmless econometrics: An empiri- +cist’s companion. Princeton University Press. +Aronow, P. M. and Lee, D. K. K. (2013) Interval estimation of population means +under unknown but bounded probabilities of sample selection. Biometrika, 100, +235–240. +Balke, A. and Pearl, J. (1997) Bounds on Treatment Effects from Studies with +Imperfect Compliance. Journal of the American Statistical Association, 92, 1171– +1176. +Blackwell, M. (2014) A Selection Bias Approach to Sensitivity Analysis for Causal +Effects. Political Analysis, 22, 169–182. +Card, D. (1993) Using Geographic Variation in College Proximity to Estimate the +Return to Schooling. Tech. Rep. w4483, National Bureau of Economic Research, +Cambridge, MA. +Chernozhukov, V., Cinelli, C., Newey, W., Sharma, A. and Syrgkanis, V. +(2022) Long Story Short: Omitted Variable Bias in Causal Machine Learning. +arXiv:2112.13398. +Chernozhukov, V., Hong, H. and Tamer, E. (2007) Estimation and Confidence +Regions for Parameter Sets in Econometric Models. +Econometrica, 75, 1243– +1284. +Cinelli, C. and Hazlett, C. (2020) Making sense of sensitivity: extending omit- +ted variable bias. Journal of the Royal Statistical Society: Series B (Statistical +Methodology), 82, 39–67. + +Sensitivity Analysis with the R2-calculus +26 +Cochran, W. G. (1938) The Omission or Addition of an Independent Variate in +Multiple Linear Regression. Supplement to the Journal of the Royal Statistical +Society, 5, 171. +Cohen, J. (1977) Statistical power analysis for the behavioral sciences. New York: +Academic Press, rev. edn. +Colnet, B., Josse, J., Scornet, E. and Varoquaux, G. (2022) Causal effect on a target +population: a sensitivity analysis to handle missing covariates. arXiv:2105.06435. +Cornfield, J., Haenszel, W., Hammond, E. C., Lilienfeld, A. M., Shimkin, M. B. and +Wynder, E. L. (1959) Smoking and lung cancer: recent evidence and a discussion +of some questions. Journal of the National Cancer institute, 22, 173–203. +Cox, D. R. (2007) On a generalization of a result of W. G. Cochran. Biometrika, +94, 755–759. +Daniels, M. J. and Hogan, J. W. (2008) Missing Data in Longitudinal Stud- +ies: Strategies for Bayesian Modeling and Sensitivity Analysis. Chapman and +Hall/CRC. +Davidson, R. and MacKinnon, J. G. (1993) Estimation and inference in economet- +rics. New York: Oxford University Press. +Davison, A. C. and Hinkley, D. V. (1997) Bootstrap Methods and their Application. +Cambridge University Press, 1st edn. +Dawid, A. P. (1979) Conditional independence in statistical theory. Journal of the +Royal Statistical Society: Series B (Statistical Methodology), 41, 1–15. +Ding, P. and VanderWeele, T. J. (2016) Sensitivity Analysis Without Assumptions. +Epidemiology, 27, 368–377. +Dorn, J. and Guo, K. (2022) Sharp Sensitivity Analysis for Inverse Propensity +Weighting via Quantile Balancing. Journal of the American Statistical Associa- +tion, 1–13. +Efron, B. and Tibshirani, R. (1994) An Introduction to the Bootstrap. Chapman +and Hall/CRC. +Frank, K. A. (2000) Impact of a Confounding Variable on a Regression Coefficient. +Sociological Methods & Research, 29, 147–194. +Gustafson, P. (2005) On Model Expansion, Model Contraction, Identifiability and +Prior Information: Two Illustrative Scenarios Involving Mismeasured Variables. +Statistical Science, 20. +Halmos, P. R. (2000) Introduction to Hilbert space and the theory of spectral multi- +plicity. Providence, R.I.: AMS Chelsea, 2nd edn. +Hernan, M. A. and Robins, J. M. (1999) Letter to the editor of biometrics. Biomet- +rics, 55, 1316–1317. + +Sensitivity Analysis with the R2-calculus +27 +Hosman, C. A., Hansen, B. B. and Holland, P. W. (2010) The sensitivity of linear +regression coefficients’ confidence limits to the omission of a confounder. +The +Annals of Applied Statistics, 4. +Hu, Y., Wu, Y., Zhang, L. and Wu, X. (2021) A Generative Adversarial Framework +for Bounding Confounded Causal Effects. Proceedings of the AAAI Conference +on Artificial Intelligence, 35, 12104–12112. +Imbens, G. W. (2003) Sensitivity to exogeneity assumptions in program evaluation. +American Economic Review, 93, 126–132. +Imbens, G. W. and Manski, C. F. (2004) Confidence Intervals for Partially Identified +Parameters. Econometrica, 72, 1845–1857. +Kaido, H., Molinari, F. and Stoye, J. (2019) Confidence intervals for projections of +partially identified parameters. Econometrica, 87, 1397–1432. +Koles´ar, M., Chetty, R., Friedman, J., Glaeser, E. and Imbens, G. W. (2015) Iden- +tification and inference with many invalid instruments. Journal of Business & +Economic Statistics, 33, 474–484. +Lin, D. Y., Psaty, B. M. and Kronmal, R. A. (1998) Assessing the Sensitivity of +Regression Results to Unmeasured Confounders in Observational Studies. Bio- +metrics, 54, 948–963. +Manski, C. F. (1990) Nonparametric Bounds on Treatment Effects. The American +Economic Review, 80, 319–323. +— (2003) Partial Identification of Probability Distributions. +Springer Series in +Statistics. New York: Springer. +Miratrix, L. W., Wager, S. and Zubizarreta, J. R. (2018) Shape-constrained par- +tial identification of a population mean under unknown probabilities of sample +selection. Biometrika, 105, 103–114. +Molinari, F. (2020) Chapter 5 - Microeconometrics with Partial Identification. In +Handbook of Econometrics, vol. 7, 355–486. Elsevier. +Nagar, A. L. (1959) The Bias and Moment Matrix of the General k-Class Estimators +of the Parameters in Simultaneous Equations. Econometrica, 27, 575–595. +Oster, E. (2019) Unobservable Selection and Coefficient Stability: Theory and Ev- +idence. Journal of Business & Economic Statistics, 37, 187–204. +Padh, +K., +Zeitler, +J., +Watson, +D., +Kusner, +M., +Silva, +R. and Kilbertus, +N. (2022) Stochastic Causal Programming for Bounding Treatment Effects. +arXiv:2202.10806. +PCORI Methodology Committee (2021) The PCORI Methodology Report. +https://www.pcori.org/sites/default/files/PCORI-Methodology-Report.pdf. + +Sensitivity Analysis with the R2-calculus +28 +Pearl, J. (2009) Causality: Models, Reasoning, and Inference. Cambridge University +Press, 2 edn. +Richardson, A., Hudgens, M. G., Gilbert, P. B. and Fine, J. P. (2014) Nonparametric +Bounds and Sensitivity Analysis of Treatment Effects. Statistical Science, 29, +596–618. +Rosenbaum, P. R. (1987) Sensitivity analysis for certain permutation inferences in +matched observational studies. Biometrika, 74, 13–26. +— (2002) Observational Studies. Springer Series in Statistics. New York: Springer. +Rosenbaum, P. R. and Rubin, D. B. (1983) Assessing Sensitivity to an Unobserved +Binary Covariate in an Observational Study with Binary Outcome. Journal of +the Royal Statistical Society: Series B (Statistical Methodology), 45, 212–218. +Rothenh¨ausler, D., Meinshausen, N., B¨uhlmann, P. and Peters, J. (2021) Anchor +regression: Heterogeneous data meet causality. Journal of the Royal Statistical +Society: Series B (Statistical Methodology), 83, 215–246. +Scharfstein, D. O., Rotnitzky, A. and Robins, J. M. (1999) Adjusting for Nonig- +norable Drop-Out Using Semiparametric Nonresponse Models. +Journal of the +American Statistical Association, 94, 1096–1120. +Shapiro, A. (1991) Asymptotic analysis of stochastic programs. Annals of Opera- +tions Research, 30, 169–186. +Shapiro, A., Dentcheva, D. and Ruszczy´nski, A. (2009) Lectures on Stochastic Pro- +gramming: Modeling and Theory. Society for Industrial and Applied Mathemat- +ics. +Small, D. S. (2007) Sensitivity Analysis for Instrumental Variables Regression With +Overidentifying Restrictions. +Journal of the American Statistical Association, +102, 1049–1058. +de Souza, R. J., Eisen, R. B., Perera, S., Bantoto, B., Bawor, M., Dennis, B. B., +Samaan, Z. and Thabane, L. (2016) Best (but oft-forgotten) practices: sensitiv- +ity analyses in randomized controlled trials. The American Journal of Clinical +Nutrition, 103, 5–17. +Stoye, J. (2009) More on Confidence Intervals for Partially Identified Parameters. +Econometrica, 77, 1299–1315. +Thabane, L., Mbuagbaw, L., Zhang, S., Samaan, Z., Marcucci, M., Ye, C., Thabane, +M., Giangregorio, L., Dennis, B., Kosa, D., Debono, V. B., Dillenburg, R., Fruci, +V., Bawor, M., Lee, J., Wells, G. and Goldsmith, C. H. (2013) A tutorial on +sensitivity analyses in clinical trials: the what, why, when and how. BMC Medical +Research Methodology, 13, 92. +Theil, H. (1958) Economist Forecasts and Policy. North-Holland Publishing Com- +pany, Amsterdam-London. + +Sensitivity Analysis with the R2-calculus +29 +Tudball, M. J., Hughes, R. A., Tilling, K., Bowden, J. and Zhao, Q. (2022) Sample- +constrained partial identification with application to selection bias. Biometrika, +in press. +Vandenbroucke, J. P., von Elm, E., Altman, D. G., Gøtzsche, P. C., Mulrow, C. D., +Pocock, S. J., Poole, C., Schlesselman, J. J. and Egger, M. (2007) Strengthening +the Reporting of Observational Studies in Epidemiology (STROBE): Explanation +and Elaboration. PLoS Medicine, 4, e297. +VanderWeele, T. J. and Arah, O. A. (2011) Bias Formulas for Sensitivity Analysis of +Unmeasured Confounding for General Outcomes, Treatments, and Confounders. +Epidemiology, 22, 42–52. +Vansteelandt, S., Goetghebeur, E., Kenward, M. G. and Molenberghs, G. (2006) +Ignorance and Uncertainty Regions as Inferential Tools in a Sensitivity Analysis. +Statistica Sinica, 16, 953–979. +Veitch, V. and Zaveri, A. (2020) Sense and Sensitivity Analysis: Simple Post-Hoc +Analysis of Bias Due to Unobserved Confounding. In Advances in Neural Infor- +mation Processing Systems, vol. 33, 10999–11009. Curran Associates, Inc. +Wooldridge, J. M. (2010) Econometric analysis of cross section and panel data. +Cambridge, Mass: MIT Press, 2nd edn. +Yadlowsky, S., Namkoong, H., Basu, S., Duchi, J. and Tian, L. (2022) Bounds on +the conditional and average treatment effect with unobserved confounding factors. +The Annals of Statistics, 50, 2587–2615. +Zhang, M. and Ding, P. (2022) Interpretable sensitivity analysis for the Baron- +Kenny approach to mediation with unmeasured confounding. arXiv:2205.08030. +Zhao, Q., Small, D. S. and Bhattacharya, B. B. (2019) Sensitivity analysis for +inverse probability weighting estimators via the percentile bootstrap. Journal of +the Royal Statistical Society: Series B (Statistical Methodology), 81, 735–761. +Zheng, J., D’Amour, A. and Franks, A. (2021) Copula-based Sensitivity Analy- +sis for Multi-Treatment Causal Inference with Unobserved Confounding. arXiv: +2102.09412. +Zheng, J., Wu, J., D’Amour, A. and Franks, A. (2022) Sensitivity to Unobserved +Confounding in Studies with Factor-structured Outcomes. arXiv: 2208.06552. + +Sensitivity Analysis with the R2-calculus +30 +A. +Hilbert Space R2-calculus and Proofs +The algebraic rules of the R2-calculus – both the population version in Proposition +1 and its sample counterpart – are not specific to linear models. In fact, all rela- +tionships fundamentally stem from the geometry of projections in Hilbert spaces. +For this reason, the definitions of R2- and R-values can be generalized and the +corresponding algebraic rules can be proven in more generality. +This section is organized as follows. +First, we recall some results on Hilbert +space theory (Halmos, 2000, sec. 26-29) and define generalized (partial) R2- and R- +values. Then, we prove Hilbert space generalizations to Lemma 1 and Proposition +1. Finally, in Section A.3, we explain how the R2-calculus for linear models directly +follows from the more general result and provides more details on the assumptions +and notation involved. +A.1. +Hilbert Space R2-value +Let (H, ⟨·, ·⟩) be a Hilbert space over the field K of real or complex numbers; denote +its associated norm as ∥·∥ and let X, Y, Z ⊆ H be closed linear subspaces. The +Minkowski sum of Y and X is given by X + Y := {x + y: x ∈ X, y ∈ Y}. For x ∈ X +and y ∈ Y, we write x ⊥ y, if ⟨x, y⟩ = 0, x ⊥ Y, if x ⊥ y for all y ∈ Y, and X ⊥ Y, if +x ⊥ Y for all x ∈ X. For every element h ∈ H, there are unique x ∈ X and x⊥ ∈ H +such that x ⊥ x⊥ and h = x + x⊥. +Definition 3. The projection on X is the operator PX : H → X defined by the +assignment h = x + x⊥ �→ x. The projection off X is the operator QX : H → H +defined by h = x + x⊥ �→ x⊥. +Clearly, the projection on and off X add up to the identity operator, i.e. PX + +QX = Id. +Furthermore, we introduce the notations y⊥X := QX y and Y⊥X := +{y⊥X : y ∈ Y}. +The space Y⊥X is a closed linear subspace of H; thus, the pro- +jections PY⊥X and QY⊥X are well-defined. They can be used to define conditional +orthogonality: Y ⊥ X | Z ⇔ Y⊥Z ⊥ X ⊥Z. +Lemma 4. +(i) PX and QX are linear, self-adjoint, and idempotent operators. +(ii) If X ⊥ Y, PX+Y = PX + PY and QX+Y = QX QY. +(iii) PX+Y = PX + PY⊥X and QX+Y = QX QY⊥X = QY⊥X QX . +(iv) If h1, h2 ∈ H and h1 ⊥ h2, ∥h1 + h2∥2 = ∥h1∥2 + ∥h2∥2. +Proof. +(i) See Halmos (2000, sec. 26, Thm. 1). +(ii) See Halmos (2000, sec. +28, Thm. +2) for the proof of PX+Y = PX + PY. +According to Halmos (2000, sec. 29, Thm. 1), PX PY = 0 holds due to X ⊥ Y. +Hence, the second statement directly follows +QX+Y = Id − PX − PY = (Id − PX )(Id − PY) = QX QY. + +Sensitivity Analysis with the R2-calculus +31 +(iii) We rewrite the direct sum X + Y as follows +X + Y = {x + y: x ∈ X, y ∈ Y} = {x + PX y + QX y: x ∈ X, y ∈ Y} += {x + QX y: x ∈ X, y ∈ Y} = X + Y⊥X . +Since X and Y⊥X are orthogonal by definition, the statement directly follows +from (ii). +(iv) See Halmos (2000, sec. 4, Thm. 3). +Any one-dimensional linear subspace X can be expressed as X = {λ x: λ ∈ K}, +where x is an arbitrary element in X \{0}. Hence, we can identify a one-dimensional +subspace with any non-zero element contained in it. +Definition 4 (Hilbert space R2- and R-value). Let X, Y, Z ⊆ H be closed linear +subspaces. Assume Y is one-dimensional, let y ∈ Y \ {0} and suppose ∥y⊥Z∥2 > 0. +The R2-value of Y on X is defined as +R2 +Y∼X := 1 − ∥y⊥X ∥2 +∥y∥2 +. +The partial R2-value of Y on X given Z is defined as +R2 +Y∼X|Z := R2 +Y∼X+Z − R2 +Y∼Z +1 − R2 +Y∼Z +. +If X is one-dimensional, x ∈ X \ {0} and ∥x⊥Z∥2 > 0, the partial R-value is defined +as +RY∼X|Z := +⟨y⊥Z, x⊥Z⟩ +∥y⊥Z∥ ∥x⊥Z∥. +The corresponding (partial) f2- and f-values are defined analogously to Defini- +tion 1. The choice of the non-zero elements y and x does not change the (partial) +R2- and R-values due to the normalization. +Therefore, all quantities above are +well-defined. +A.2. +Proofs of Results in Section 2 +In this subsection, we state and prove the generalized versions of Lemma 1 and +Proposition 1. +Lemma 5. In the setting of Definition 4, R2 +Y∼X|Z = R2 +Y⊥Z∼X ⊥Z holds true. More- +over, if X is a one-dimensional subspace, then R2 +Y∼X|Z = (RY∼X|Z)2. + +Sensitivity Analysis with the R2-calculus +32 +Proof. The first statement of the lemma follows from some elementary algebraic +manipulations and Lemma 4 (iii) +R2 +Y∼X|Z = R2 +Y∼X+Z − R2 +Y∼Z +1 − R2 +Y∼Z +� +1 − ∥y⊥X+Z∥2 +∥y∥2 +− 1 + ∥y⊥Z∥2 +∥y∥2 +� �∥y⊥Z∥2 +∥y∥2 += 1 − ∥y⊥X+Z∥2 +∥y⊥Z∥2 +(iii) += 1 − ∥QX ⊥Z y⊥Z∥2 +∥y⊥Z∥2 += R2 +Y⊥Z∼X ⊥Z. +To prove the second part of the lemma, we assume that X is one-dimensional and +choose x ∈ X \ {0}. If X ⊥Z = 0, the projection on X ⊥Z is 0; otherwise, it is given +by +PX ⊥Zh = ⟨h, x⊥Z⟩x⊥Z +∥x⊥Z∥2 +, +for h ∈ H. +(25) +This can be easily checked: PX ⊥Z is linear and its image is contained in X ⊥Z. +Moreover, we compute +�⟨h, x⊥Z⟩ x⊥Z +∥x⊥Z∥2 +, h − ⟨h, x⊥Z⟩ x⊥Z +∥x⊥Z∥2 +� += ⟨h, x⊥Z⟩2 +∥x⊥Z∥2 − ⟨h, x⊥Z⟩2∥x⊥Z∥2 +∥x⊥Z∥4 += 0. +Following from the first part of the proof and Lemma 4 (iv), we infer +R2 +Y∼X|Z = 1 − ∥QX ⊥Z y⊥Z∥2 +∥y⊥Z∥2 +(iv) += ∥PX ⊥Z y⊥Z∥2 +∥y⊥Z∥2 +. +Directly plugging in the formula for the projection on X ⊥Z yields the second state- +ment of the lemma +R2 +Y∼X|Z = ∥⟨y⊥Z, x⊥Z⟩ x⊥Z∥2 +∥y⊥Z∥2 ∥x⊥Z∥4 += ⟨y⊥Z, x⊥Z⟩2∥x⊥Z∥2 +∥y⊥Z∥2 ∥x⊥Z∥4 += +� +RY∼X|Z +�2. +Proposition 4 (Hilbert space R2-calculus). In the setting of Definition 4, let W +be another closed linear subspace. Assume ∥Y⊥X+W+Z∥2 > 0. Further suppose +∥X ⊥W+Z∥2 >0 and ∥W⊥X+Z∥2 > 0 when X and/or W are one-dimensional sub- +spaces. Then, the following rules hold +[i] Orthogonality: if Y ⊥ X, R2 +Y∼X = 0; +[ii] Orthogonal additivity: if X ⊥ W, R2 +Y∼X+W = R2 +Y∼X + R2 +Y∼W; +[iii] Decomposition of unexplained variation: +1 − R2 +Y∼X+W = (1 − R2 +Y∼X )(1 − R2 +Y∼W|X ); +[iv] Recursion of partial R-value: if X and W are one-dimensional, +RY∼X|W = +RY∼X − RY∼WRX∼W +� +1 − R2 +Y∼W +� +1 − R2 +X∼W +; + +Sensitivity Analysis with the R2-calculus +33 +[v] Reduction of partial R-value: if X is one-dimensional and Y ⊥ W, +RY∼X|W = +RY∼X +� +1 − R2 +X∼W +; +[vi] Three-dimensional restriction: if X and W are one-dimensional, +fY∼X|W +� +1 − R2 +Y∼W|X = fY∼X +� +1 − R2 +X∼W − RY∼W|X RX∼W. +All of the relationships above also hold when Z is partialed out (i.e. if “ |Z” is +appended to the subscripts of all R-, R2-, and f-values) and the orthogonality as- +sumptions are conditional on Z. +Proof. +[i] Since Y⊥Z and X ⊥Z are orthogonal, QX ⊥Zy⊥Z = y⊥Z. Hence, +R2 +Y∼X|Z = 1 − ∥y⊥Z∥2 +∥y⊥Z∥2 = 0. +[ii] Lemma 5 and its proof yield +R2 +Y∼X+W|Z = R2 +Y⊥Z∼X ⊥Z+W⊥Z = ∥PX ⊥Z+W⊥Z y⊥Z∥2 +∥y⊥Z∥2 +. +Following from Lemma 4 (ii) and (iv), we get +R2 +Y∼X+W|Z +(ii) += ∥PX ⊥Zy⊥Z + PW⊥Z y⊥Z∥2 +∥y⊥Z∥2 +(iv) += ∥PX ⊥Z y⊥Z∥2 +∥y⊥Z∥2 ++ ∥PW⊥Z y⊥Z∥2 +∥y⊥Z∥2 += R2 +Y∼X|Z + R2 +Y∼W|Z. +[iii] The statement directly follows from the definition of the partial R2-value +� +1 − R2 +Y∼X|Z +� � +1 − R2 +Y∼W|X+Z +� += ∥y⊥X+Z∥2 +∥y⊥Z∥2 +∥y⊥W+X+Z∥2 +∥y⊥X+Z∥2 += ∥y⊥W+X+Z∥2 +∥y⊥Z∥2 += 1 − R2 +Y∼W+X|Z. +[iv] Plugging in the definition of the partial R-value into the right-hand side, we +get +RHS = RY∼X|Z − RY∼W|Z RX∼W|Z +� +1 − R2 +Y∼W|Z +� +1 − R2 +X∼W|Z += +� ⟨y⊥Z, x⊥Z⟩ +∥y⊥Z∥∥x⊥Z∥ − ⟨y⊥Z, w⊥Z⟩ +∥y⊥Z∥∥w⊥Z∥ +⟨x⊥Z, w⊥Z⟩ +∥x⊥Z∥∥w⊥Z∥ +� � �∥y⊥W+Z∥ +∥y⊥Z∥ +∥x⊥W+Z∥ +∥x⊥Z∥ +� += +⟨y⊥Z, x⊥Z⟩ +∥y⊥W+Z∥∥x⊥W+Z∥ − +⟨y⊥Z, w⊥Z⟩ ⟨x⊥Z, w⊥Z⟩ +∥w⊥Z∥2∥y⊥W+Z∥∥x⊥W+Z∥. + +Sensitivity Analysis with the R2-calculus +34 +Recalling the formula (25) for the projection operator on a one-dimensional +subspace, we can reformulate the upper equation further +RHS = +� +y⊥Z, x⊥Z − ⟨x⊥Z,w⊥Z⟩ w⊥Z +∥w⊥Z∥2 +� +∥y⊥W+Z∥∥x⊥W+Z∥ += ⟨y⊥Z, QW⊥Z x⊥Z⟩ +∥y⊥W+Z∥∥x⊥W+Z∥ +(iii) += +⟨y⊥W+Z, x⊥W+Z⟩ +∥y⊥W+Z∥∥x⊥W+Z∥ = RY∼X|W+Z = LHS, +where the third equality follows from Lemma 4 (iii). +[v] Let (w⊥Z +j +)j∈{1,...,J}, be an orthonormal basis of W⊥Z. The subspace spanned +by the first j vectors is denoted by W⊥Z +j +:= span{w⊥Z +1 +, . . . , w⊥Z +j +}. Due to +rule [i] and Y ⊥ W | Z, R2 +Y∼Wj|Z = 0 and R2 +Y∼Wj+1|Wj+Z = 0 hold for all +j ∈ {1, . . . , J − 1}. By induction, we prove the statement +RY∼X|Z+Wj = +RY∼X|Z +� +1 − R2 +X∼Wj|Z +, +for all j ∈ {1, . . . , J}. +For the base case, we apply rule [iv] and RY∼W1|Z = 0 as follows +RY∼X|W1+Z +[iv] += +RY∼X|Z − RY∼W1|Z RX∼W1|Z +� +1 − R2 +Y∼W1|Z +� +1 − R2 +X∼W1|Z += +RY∼X|Z +� +1 − R2 +X∼W1|Z +. +The induction step uses rule [iv] and simplifies the resulting expression via +RY∼Wj+1|Wj+Z = 0, the induction hypothesis and rule [iii]: +RY∼X|Wj+1+Z +[iv] += RY∼X|Wj+Z − RY∼Wj+1|Wj+Z RX∼Wj+1|Wj+Z +� +1 − R2 +Y∼Wj+1|Wj+Z +� +1 − R2 +X∼Wj+1|Wj+Z += +RY∼X|Wj+Z +� +1 − R2 +X∼Wj+1|Wj+Z += +RY∼X|Z +� +1 − R2 +X∼Wj|Z +� +1 − R2 +X∼Wj+1|Wj+Z +[iii] += +RY∼X|Z +� +1 − R2 +X∼Wj+1|Z +. +[vi] First, we apply rule [iv] to RY∼X|W+Z and RY∼W|X+Z +RY∼X|W+Z = RY∼X|Z − RY∼W|Z RX∼W|Z +� +1 − R2 +Y∼W|Z +� +1 − R2 +X∼W|Z +, +RY∼W|X+Z = RY∼W|Z − RY∼X|Z RX∼W|Z +� +1 − R2 +Y∼X|Z +� +1 − R2 +X∼W|Z +, + +Sensitivity Analysis with the R2-calculus +35 +and compute +RY∼X|W+Z +� +1 − R2 +Y∼W|Z + RY∼W|X+ZRX∼W|Z +� +1 − R2 +Y∼X|Z += +1 +� +1 − R2 +X∼W|Z +� +RY∼X|Z − RY∼W|ZRX∼W|Z ++ RY∼W|ZRX∼W|Z − RY∼X|ZR2 +W∼X|Z +� += RY∼X|Z +� +1 − R2 +X∼W|Z. +Next, we divide both sides of the equation by +� +1 − R2 +Y∼X|Z and rearrange it +which results in +RY∼X|W+Z +� +1 − R2 +Y∼W|Z +� +1 − R2 +Y∼X|Z += fY∼X|Z +� +1 − R2 +X∼W|Z − RY∼W|X+ZRX∼W|Z. +According to rule [iii], we obtain +(1−R2 +Y∼X|Z)(1−R2 +Y∼W|X+Z) = 1−R2 +Y∼X+W|Z = (1−R2 +Y∼W|Z)(1−R2 +Y∼X|W+Z) +and thus +1 − R2 +Y∼W|Z +1 − R2 +Y∼X|Z += +1 − R2 +Y∼W|X+Z +1 − R2 +Y∼X|W+Z +. +Plugging this relationship into the left-hand side of the upper equation, we +arrive at +fY∼X|W+Z +� +1 − R2 +Y∼W|X+Z = fY∼X|Z +� +1 − R2 +X∼W|Z − RY∼W|X+Z RX∼W|Z. +A.3. +R2-calculus for Linear Models +The R2-calculus for linear models as presented in the main text is a special case +of the R2-calculus for Hilbert spaces. To be consistent with the standard notation +for R2-values in linear models in the main text, we make two slight changes to +the Hilbert space notation. First, a random vector denotes the linear space that +is spanned by its components. Analogously, for an i.i.d. sample of size n for a +p-dimensional random vector X, we use the matrix X ∈ Rn×p to denote the row- +space. Second, we replace the plus-sign with a comma for partialed out variables. +For instance, we write R2 +Y ∼X|W,Z instead of R2 +Y ∼X|W+Z in the main text. +Denote the space of square-integrable random variables L2 := {X : E[X2] < ∞}. + +Sensitivity Analysis with the R2-calculus +36 +We define the following four Hilbert spaces with associated inner products +H := L2, +⟨X, Y ⟩H := E[XY ], +H0 := +� +X ∈ L2 : E[X] = 0 +� +, +⟨X, Y ⟩H0 := cov(X, Y ), +ˆH := Rn, +⟨x, y⟩ ˆ +H +:= n−1xT y, +ˆH0 := +� +x ∈ Rn : ¯x = 0 +� +, +⟨x, y⟩ ˆ +H0 := � +cov(x, y), +where ¯x denotes the empirical mean of x. The population R2-calculus for linear mod- +els as stated in the main text follows from choosing the Hilbert space (H0, ⟨·, ·⟩H0) +in Lemma 5 and Proposition 4. Likewise, we use ( ˆH0, ⟨·, ·⟩ ˆ +H0) for the empirical R2- +calculus. Since we choose the scaling n−1 in the empirical covariance, the estimators +of covariance, variance and standard deviation are not unbiased. To account for the +loss of degrees of freedom through estimation of the mean and potentially partialing +out a p-dimensional subspace, the factor (n−p−1)−1 must be used. We choose the +scaling n−1 instead to accord with the textbook definition of the empirical R2-value +(Davidson and MacKinnon, 1993, chap. 1). Besides, for a sufficiently large sample +size n the difference will be negligible. +In the main text, we made the assumption that the random variables and the +observations are centred and thus are elements of H0. If this does not hold, we can +redefine the population R2-value via the inner product ⟨·, ·⟩H as follows +R2 +Y ∼X := 1 − E[(Y ⊥X)2] +E[Y 2] +. +Similarly, we replace the inner product in the definition of partial R2-, R-, f2- and +f-values. +This formulation contains the definition of R2-value in the main text +as a special case because, for centred random variables, ⟨·, ·⟩H and the covariance +are equal. Furthermore, if we treat the constant 1 as an additional covariate, the +following relationship holds +R2 +Y −E[Y ]∼X−E[X] = R2 +Y ∼X|1. +Hence, centring random variables is equivalent to partialing out the effect of the +constant, and thus always observed, covariate. As our focus lies on the explanatory +capability of the non-constant covariates, we always partial out 1 or equivalently +centre the observed variables. +The same arguments also apply to the empirical +R2-value and centring the samples. +B. +Proofs of Results in Section 3 +Without loss of generality, we assume that all random variables/vectors are cen- +tred; moreover, we only state and prove the population version of the results. As +explained in Appendix A.3, the sample and non-centred counterparts of the results +and proofs follow by the same arguments but choosing a different Hilbert space and +inner product. + +Sensitivity Analysis with the R2-calculus +37 +B.1. +A Single Unmeasured Confounder +Proof of Proposition 2. First, we rewrite the partialing out of Z in terms of a +projection operation, cf. Lemma 4 (ii); then, we use linearity of the covariance and +Lemma 4 (iv) to simplify the numerator and denominator, respectively: +β1 = cov(D⊥X, Y ⊥X) − cov(D⊥X, QZ⊥XY ⊥X) +var(D⊥X) − var(QZ⊥XD⊥X) += cov(D⊥X, PZ⊥XY ⊥X) +var(PZ⊥XD⊥X) +. +Since Z⊥X is one-dimensional, the projection PZ⊥X is given by (25). Plugging this +relationship into the equation above yields +β1 = +cov +� +D⊥X, cov(Z⊥X,Y ⊥X) +var(⊥X) +Z⊥X� +var +� +cov(D⊥X,Z⊥X) +var(Z⊥X) +Z⊥X +� += cov(Z⊥X, Y ⊥X) +cov(Z⊥X, D⊥X) = βD∼Z|X, Y ∼Z|X +which proves the first result. The second and third statements directly follow from +the definition of the k-class estimand. +Proof of Lemma 2. First, we express the estimands βY ∼D|X and βY ∼D|X,W in +terms of standard deviations and correlations and replace the terms with the R- +and σ-notation +βY ∼D|X − βY ∼D|X,W += corr(Y ⊥X, D⊥X)sd(Y ⊥X)sd(D⊥X) +sd(D⊥X)2 +− corr(Y ⊥X,W, D⊥X,W )sd(Y ⊥X,W )sd(D⊥X,W ) +sd(D⊥X,W )2 += RY ∼D|X +σY ∼X +σD∼X +− RY ∼D|X,W +σY ∼X+W +σD∼X+W +. +Next, we extract the common factor σY ∼X+D/σD∼X by applying the formula for +decomposition of unexplained variance [iii] four times. We then rewrite the differ- +ence so that it is expressed in terms of RY ∼W|X,D instead of RY ∼D|X,W . To this +end, we subsequently replace RY ∼D|X,W and RY ∼W|X via the recursion of partial +correlation formula [iv]. In summary, we get +βY ∼D|X − βY ∼D|X,W +[iii] += +� +� +RY ∼D|X +� +1 − R2 +Y ∼D|X +− RY ∼D|X,W +� +1 − R2 +Y ∼W|X +� +1 − R2 +Y ∼D|X +� +1 − R2 +D∼W|X +� +� σY ∼X+D +σD∼X +[iv] += +� +�fY ∼D|X − RY ∼D|X − RY ∼W|X RD∼W|X +� +1 − R2 +Y ∼D|X +� +1 − R2 +D∼W|X +� +� +� σY ∼X+D +σD∼X +[iv] += +� +fY ∼D|X − +1 +� +1 − R2 +Y ∼D|X +� +1 − R2 +D∼W|X +� +� +RY ∼D|X − RD∼W|X +�� +1 − R2 +Y ∼D|X +� +1 − R2 +D∼W|XRY ∼W|X,D + RY ∼D|X RD∼W|X +��� +σY ∼X+D +σD∼X + +Sensitivity Analysis with the R2-calculus +38 += +� +fY ∼D|X +� +1 − +1 +1 − R2 +D∼W|X ++ +R2 +D∼W|X +1 − R2 +D∼W|X +� ++fD∼W|X RY ∼W|X,D +� +σY ∼X+D +σD∼X += fD∼W|X RY ∼W|X,D +σY ∼X+D +σD∼X +. +Proof of Theorem 1. Throughout this proof, all quantities partial out X which +is indicated by either the subscript “|X” or the superscript “⊥X”. In order to +shorten the notation, we only indicate partialing out X in the estimands and drop +the X-dependence in the other quantities. +First, we focus on the difference between the k-class estimand βk and the OLS +estimand βY ∼D|X,Z that adjusts for X and Z; multiplying the respective denomi- +nators yields +βk − βY ∼D|X,Z = cov(D, Y ) − k cov(D⊥Z, Y ⊥Z) +var(D) − k var(D⊥Z) +− cov(Y ⊥Z, D⊥Z) +var(D⊥Z) += cov(D, Y ) var(D⊥Z) − k cov(D⊥Z, Y ⊥Z) var(D⊥Z) +var(D⊥Z) var(D) − k var(D⊥Z)2 ++ − cov(D⊥Z, Y ⊥Z) var(D) + k cov(D⊥Z, Y ⊥Z) var(D⊥Z) +var(D⊥Z) var(D) − k var(D⊥Z)2 += cov(D, Y ) var(D⊥Z) − cov(D⊥Z, Y ⊥Z) var(D) +var(D⊥Z) var(D) − k var(D⊥Z)2 += cov(D, Y ) var(D⊥Z) − cov(D⊥Z, Y ⊥Z) var(D) +var(D⊥Z) var(D) +� +1 − k var(D⊥Z)/ var(D) +� . +Next, we simplify the last expression by using 1 − R2 +D∼Z = var(D⊥Z)/ var(Z). This +results in a formula which involves the difference of the OLS estimands βY ∼D|X and +βY ∼D|X,Z: +βk − βY ∼D|X,Z = +1 +1 − k +� +1 − R2 +D∼Z +� +�cov(D, Y ) +var(D) +− cov(D⊥Z, Y ⊥Z) +var(D⊥Z) +� += +1 +1 − k +� +1 − R2 +D∼Z +� � +βY ∼D|X − βY ∼D|X,Z +� +. +We can now use the last result to express the difference βk −β as a telescoping sum: +βk − β = βk − βY ∼D|X,Z + βY ∼D|X,Z − βY ∼D|X,Z,U += +1 +1 − k +� +1 − R2 +D∼Z +� � +βY ∼D|X − βY ∼D|X,Z +� ++ +� +βY ∼D|X,Z − βY ∼D|X,Z,U +� +. +This representation includes two differences of OLS estimands; hence, Lemma 2 +can be applied twice. For the first summand, we use X ≡ X and W ≡ Z; for the + +Sensitivity Analysis with the R2-calculus +39 +second, X ≡ (X, Z) and W ≡ U. Thus, we get +βk − β = +1 +1 − k +� +1 − R2 +D∼Z +�RY ∼Z|D fD∼Z +σY ∼D +σD ++ RY ∼U|Z,D fD∼U|Z +σY ∼Z+D +σD∼Z +. +Finally, we can simplify the expression above by extracting a common factor of +σY ∼Z+D/σD∼Z. We use the definition of the (partial) R2-value, e.g. 1 − R2 +Y ∼Z|D = +σ2 +Y ∼Z+D/σ2 +Y ∼D, and deduce that +βk − β = +� +RY ∼Z|D fD∼Z +1 − k +� +1 − R2 +D∼Z +� +� +1 − R2 +D∼Z +� +1 − R2 +Y ∼Z|D ++ RY ∼U|Z,D fD∼U|Z +�σY ∼Z+D +σD∼Z += +� fY ∼Z|D RD∼Z +1 − k + k R2 +D∼Z ++ RY ∼U|Z,D fD∼U|Z +� σY ∼Z+D +σD∼Z +, +which concludes the proof. +Corollary 1. In the setting of Theorem 1, the following are true +(i) Adjusted Regression: +βY ∼D|X,Z − β = RY ∼U|X,Z,D fD∼U|X,Z +σY ∼X+Z+D +σD∼X+Z +; +(ii) Unadjusted Regression: +βY ∼D|X − β = +� +fY ∼Z|X,D RD∼Z|X + RY ∼U|X,Z,D fD∼U|X,Z +� σY ∼X+Z+D +σD∼X+Z +; +(iii) Instrumental Variable: +βD∼Z|X, Y ∼Z|X − β = +�fY ∼Z|X,D +RD∼Z|X ++ RY ∼U|X,Z,D fD∼U|X,Z +� σY ∼X+Z+D +σD∼X+Z +. +Proof. The statements are a direct consequence of Theorem 1 and Proposition 2. +Proof of Proposition 3. +(i) This statement directly follows from taking the limit k → −∞ and setting +RY ∼U|X,Z,DfD∼U|X,Z = 0 in equation (4). +(ii) We apply the decomposition of unexplained variance rule +1 − R2 +D∼U+Z|X +[iii] += +� +1 − R2 +D∼Z|X +�� +1 − R2 +D∼U|X,Z +� +, +1 − R2 +Y ∼U+Z|X,D +[iii] += +� +1 − R2 +Y ∼Z|X,D +�� +1 − R2 +Y ∼U|X,Z,Z +� +, + +Sensitivity Analysis with the R2-calculus +40 +which yields the implications +R2 +D∼U+Z|X = 0 +⇒ +RD∼Z|X = 0, +RD∼U|X,Z = 0; +R2 +Y ∼U+Z|X,D = 0 +⇒ +RY ∼Z|X,D = 0, +RY ∼U|X,Z,D = 0. +Then, the unbiasedness of βY ∼D|X,Z and βY ∼D|X follows from Corollary 1 or +Theorem 1 with k = 0. +(iii) In order to connect the IV-related sensitivity parameters to RD∼U|X,Z and +RY ∼U|X,Z,D, we apply the three-variable identity [vi] with Y ≡ Y , X ≡ Z, +W ≡ U and Z ≡ (X, D) as well as Y ≡ U, X ≡ Z, W ≡ D and Z ≡ X. We +obtain +fY ∼Z|X,U,D +� +1 − R2 +Y ∼U|X,Z,D = fY ∼Z|X,D +� +1 − R2 +Z∼U|X,D +− RY ∼U|X,Z,DRZ∼U|X,D, +fZ∼U|X,D +� +1 − R2 +D∼U|X,Z = fZ∼U|X +� +1 − R2 +D∼Z|X − RD∼Z|XRD∼U|X,Z. +If we set RZ∼U|X = 0 and RY ∼Z|X,U,D = 0 in the equations above and simplify +them, we get the relationship +fD∼U|X,Z RY ∼U|X,Z,D = −fY ∼Z|X,D +RD∼Z|X +. +Due to Corollary 1 or Theorem 1 with k = 1, this implies βD∼Z|X, Y ∼Z|X = β. +B.2. +Multiple Unmeasured Confounders +Proof of Lemma 3. Analogously to the proof of Theorem 1, we only indicate +partialing out X in the estimands and drop the X-dependence in the other quantities +for ease of notation. +We define the vector λ as follows +λ = var(W ⊥D)−1 cov(W ⊥D, Y ⊥D). +It equals the regression coefficients of W in the linear model Y ∼ D + X + W. +In order to reduce the number of dimensions of W, we introduce a new random +variable W ∗ := λT W. Since it captures all linear influence of W on Y , the estimands +βY ∼D|X,W and βY ∼D|X,W ∗ are equal. To formally prove this result, we let A denote +either Y or D and show that A⊥W ∗ = A⊥W . By definition of λ and some algebraic + +Sensitivity Analysis with the R2-calculus +41 +manipulations we derive +A⊥W ∗ = A − (W ∗)T var(W ∗)−1 cov(W ∗, A) += A − W T var(W ⊥D)−1 cov(W ⊥D, Y ⊥D) +� +var(W ⊥D)−1 cov(W ⊥D, Y ⊥D) +�−1 +× var(W)−1� +var(W ⊥D)−1 cov(W ⊥D, Y ⊥D) +�−T +× cov(W ⊥D, Y ⊥D)T var(W ⊥D)−T cov(W, A) += A − W T var(W)−1 cov(W, A) = A⊥W . +Choosing Y and D for A, we get +βY ∼D|X,W ∗ = cov(Y ⊥W ∗, D⊥W ∗) +var(D⊥W ∗) += cov(Y ⊥W , D⊥W ) +var(D⊥W ) += βY ∼D|X,W . +Since W ∗ is one-dimensional, we can use Lemma 2 to find a precise characterization +for the difference between the OLS estimand that does not and does adjust for W: +βY ∼D|X − βY ∼D|X,W = βY ∼D|X − βY ∼D|X,W ∗ = RY ∼W ∗|D fD∼W ∗ σY ∼D +σD +. +(26) +Moreover, the explanatory capabilities of W and W ∗ for Y are identical. According +to Lemma 4 (iii), we infer +Y ⊥D,W = Q(D,W)Y = QD⊥W QW Y = QD⊥W ∗Y ⊥W ∗ = Y ⊥D,W ∗ +which yields +R2 +Y ∼W|D = 1 − var(Y ⊥D,W ) +var(Y ⊥D) += 1 − var(Y ⊥D,W ∗) +var(Y ⊥D) += R2 +Y ∼W ∗|D. +The new random variable W ∗ fully captures the effect of W on Y but does not +capture the entire effect of W on D due to the reduced dimension, i.e. R2 +D∼W ≥ +R2 +D∼W ∗. To prove this result, we rewrite D⊥W using Lemma 4 (iii) as follows +D⊥W = QPW ∗W+QW ∗W D = Q(W ∗,QW ∗W)D = QW ⊥W ∗D⊥W ∗. +Based on this equation, Lemma 4 (iv) yields the inequality +var(D⊥W ) ≤ var(QW ⊥W ∗D⊥W ∗) + var(PW ⊥W ∗D⊥W ∗) = var(D⊥W ∗), +which implies +R2 +D∼W = 1 − var(D⊥W ) +var(D) +≥ 1 − var(D⊥W ∗) +var(D) += R2 +D∼W ∗. +Returning to (26), we use the equality and inequality derived for the R2-values con- +cerning W ∗ → Y and W ∗ → D, respectively. Since f2 is a monotone transformation +of R2, we have +|βY ∼D|X − βY ∼D|X,W |2 ≤ R2 +Y ∼W|D,X f2 +D∼W|X +σ2 +Y ∼D+X +σ2 +D∼X +. + +Sensitivity Analysis with the R2-calculus +42 +In presence of multiple unmeasured confounders, finding an interpretable chara- +terization of the difference βY ∼D|X,Z − βY ∼D|X,Z,U becomes more complicated. In +the main text, we use a telescoping expansion and repeatedly apply Lemma 2 to ob- +tain equation (6). The sensitivity parameters in this characterization, however, are +not symmetric in the set of partialed out variables which impedes their interpreta- +tion. Under the additional assumption that the components of U are conditionally +independent given (X, Z), a symmetric representation can be obtained. +The following result is closely related to Wright’s path analysis. +Our proof, +however, only relies on the algebraic relationships of the R2-calculus and does not +consult the underlying DAG. +Lemma 6. Assume the setting of Lemma 3 and further suppose that all components +of W are conditionally independent given X. Then, +βY ∼D|X − βY ∼D|X,W = +l +� +j=1 +βY ∼Wj|X,D,W−j βWj∼D|X, +(27) +where W−j = (W1, . . . , Wj−1, Wj+1, . . . , Wl). +Proof. For ease of notation, we only indicate partialing out X in the estimands and +drop the X-dependence in the other quantities. +Due to the conditional independence assumption and Lemma 4 (ii), we can +decompose Y as follows +Y = Y ⊥D,W + PD⊥W Y + +l +� +j=1 +PWjY. +Plugging this relationship into the definition of βY ∼D|X, using linearity of the co- +variance and the formula for projections on a one-dimensional space (25) yields +βY ∼D|X = cov(Y, D) +var(D) += 0 + cov(PD⊥W Y, D) +var(D) ++ +l +� +j=1 +cov(PWjY, D) +var(D) += +1 +var(D) +� +�cov +�cov(Y, D⊥W ) +var(D⊥W ) +D⊥W , D +� ++ +l +� +j=1 +cov +�cov(Y, Wj) +var(Wj) +Wj, D +�� +� += cov(Y ⊥W , D⊥W ) +var(D) ++ +l +� +j=1 +cov(Y, Wj) +var(Wj) +cov(D, Wj) +var(D) += βY ∼D|X,W +σ2 +D∼W +σ2 +D ++ +l +� +j=1 +RY ∼Wj +σY +σWj +βWj∼D. +By applying the definition of the R2-value, we derive +βY ∼D|X − βY ∼D|X,W = −βY ∼D|X,W R2 +D∼W + +l +� +j=1 +RY ∼Wj +σY +σWj +βWj∼D. + +Sensitivity Analysis with the R2-calculus +43 +Next, we use rule [ii] of the R2-calculus – independent additivity – on R2 +D∼W and +rewrite βY ∼D|X,W in terms of R-values and σ-values, i.e. standard deviations: +βY ∼D|X − βY ∼D|X,W +[ii] += −RY ∼D|W +σY ∼W +σD∼W +l +� +j=1 +R2 +D∼Wj + +l +� +j=1 +RY ∼Wj +σY +σWj +βWj∼D += +l +� +j=1 +βWj∼D +� +RY ∼Wj +σY +σWj +− +σD +RD∼WjσWj +RY ∼D|W +σY ∼W +σD∼W +R2 +D∼Wj +� +In order to extract the factor σY ∼D+W−j/σWj∼D+W−j, we apply rule [iii] – decom- +position of unexplained variance – six times and arrive at +βY ∼D|X − βY ∼D|X,W +[iii] += +l +� +j=1 +βWj∼D +σY ∼D+W−j +σWj∼D+W−j +� +RY ∼Wj +� +� +� +�1 − R2 +Wj∼D+W−j +1 − R2 +Y ∼D+W−j +− RY ∼D|W RD∼Wj +� +� +� +�(1 − R2 +Wj∼D+W−j)(1 − R2 +Y ∼Wj|W−j) +(1 − R2 +D∼W )(1 − R2 +Y ∼D|W−j) +� +. +(28) +We concentrate on the term in brackets, denoted by Tj. Invoking rule [v] – reduction +of partial correlation – and the (conditional) independence assumption, we infer +RY ∼Wj +[v] += RY ∼Wj|W−j +� +1 − R2 +Y ∼W−j, +RD∼Wj +[v] += RD∼Wj|W−j +� +1 − R2 +D∼W−j, +R2 +Wj∼D+W−j = R2 +Wj∼D|W−j. +We insert these relationships into the expression of Tj and simplify it via rule [iii]. +Then, we apply rule [iv] – recursion of partial correlation – on RY ∼D|W and simplify +the resulting expression +Tj = RY ∼Wj|W−j +� +1 − R2 +Wj∼D|W−j +� +� +� +� 1 − R2 +Y ∼W−j +1 − R2 +Y ∼D+W−j +− RY ∼D|W RD∼Wj|W−j +� +1 − R2 +D∼W−j +� +� +� +�(1 − R2 +Wj∼D|W−j)(1 − R2 +Y ∼Wj|W−j) +(1 − R2 +D∼W )(1 − R2 +Y ∼D|W−j) +[iii] += RY ∼Wj|W−j +� +� +� +�1 − R2 +D∼Wj|W−j +1 − R2 +Y ∼D|W−j +− RY ∼D|W RD∼Wj|W−j +� +� +� +�1 − R2 +Y ∼Wj|W−j +1 − R2 +Y ∼D|W−j +[iv] += RY ∼Wj|W−j +� +� +� +�1 − R2 +D∼Wj|W−j +1 − R2 +Y ∼D|W−j +−RD∼Wj|W−j +RY ∼D|W−j−RY ∼Wj|W−jRD∼Wj|W−j +� +1 − R2 +Y ∼D|W−j +� +1 − R2 +D∼Wj|W−j + +Sensitivity Analysis with the R2-calculus +44 += +RY ∼Wj|W−j(1 − R2 +D∼Wj|W−j) − RY ∼D|W−jRD∼Wj|W−j − RY ∼Wj|W−jR2 +D∼Wj|W−j +� +1 − R2 +Y ∼D|W−j +� +1 − R2 +D∼Wj|W−j += RY ∼Wj|W−j − RY ∼D|W−j RWj∼D|W−j +� +1 − R2 +Y ∼D|W−j +� +1 − R2 +Wj∼D|W−j += RY ∼Wj|D,W−j. +Returning to equation (28), we plug in Tj = RY ∼Wj|D,W−j and thus finish the proof +βY ∼D|X − βY ∼D|X,W = +l +� +j=1 +βWj∼D +σY ∼D+W−j +σWj∼D+W−j +RY ∼Wj|D,W−j += +l +� +j=1 +βY ∼Wj|D,W−j βWj∼D. +Lemma 6 helps us express the bias of OLS and k-class estimands in terms of par- +tial R-values which serve as sensitivity parameters. Whether these are intuitive, de- +pends on the causal structure of the underlying DAG. In the case of two independent +unmeasured variables U1 and U2 which confound or mediate β – the direct effect of +D on Y –, the sensitivity parameters (RD∼U1, RD∼U2) and (RY ∼U1|D,U2, RY ∼U2|D,U1) +are indeed intuitive. The former tuple targets the dependence between D and U, +the latter tuple focuses on the direct effects of U on Y regressing out the remaining +variables. +The following theorem demonstrates how Lemma 6 can be applied. We identify +the bias of the k-class estimand in terms of the intuitive sensitivity parameters. +Theorem 2. Assume the setting of Theorem 1 and let U = (U1, U2) be a two- +dimensional random vector. Further, suppose U1 ⊥⊥ U2 | X, Z holds. Then, +βk − β = +� +fY ∼Z|X,D RD∼Z|X +1 − k + k R2 +D∼Z|X ++ +2 +� +j=1 +Rj fj +� +1 − f2 +j f2 +−j + +� +R−j +� +1−R2 +j +1−R2 +−j − Rj fj f−j +�2 +� +σY ∼X+Z+D +σD∼X+Z +, +where Rj and fj abbreviate RY ∼Uj|X,Z,D,U−j and fD∼Uj|X,Z, respectively, for j ∈{1, 2}. +Proof. Similarly to the proof of Theorem 1, we expand the difference βk − β as a +telescoping sum +βk − β = (βk − βY ∼D|X,Z) + (βY ∼D|X,Z − βY ∼D|X,Z,U), + +Sensitivity Analysis with the R2-calculus +45 +which allows us to deal with the two summands separately. Following from the +same arguments, the first summand equals +1 +1 − k(1 − R2 +D∼Z|X)(βY ∼D|X − βY ∼D|X,Z) = fY ∼Z|X,D RD∼Z|X +1 − k + k R2 +D∼Z|X +σY ∼X+Z+D +σD∼X+Z +. +From here onwards, partialing out X and Z is only indicated in the estimands. In +order to rewrite and simplify the second summand, we invoke Lemma 6 and the +rule on decomposition of unexplained variance +βY ∼D|X,Z − βY ∼D|X,Z,U = +2 +� +j=1 +RY ∼Uj|D,U−j +σY ∼D+U−j +σUj∼D+U−j +RD∼Uj +σUj +σD +[iii] += +2 +� +j=1 +RY ∼Uj|D,U−jRD∼Uj +� +� +� +� 1 − R2 +Y ∼U−j|D +1 − R2 +Uj∼D+U−j +σY ∼D +σD +. +(29) +Due to rule [i] and the conditional independence assumption, RU1∼U2 = 0 holds. +This result can be used to rewrite RUj∼U−j|D via the recursive partial correlation +formula [iv]; moreover, we use the decomposition of unexplained variance [iii] on +1 − R2 +Ui∼D+U−i as follows +RUj∼U−j|D +[iv] += RUj∼U−j − RUj∼D RU−j∼D +� +1 − R2 +Uj∼D +� +1 − R2 +U−j∼D += −fD∼Uj fD∼U−j, +(30) +1 − R2 +Ui∼D+U−i +[iii] += (1 − R2 +D∼Ui)(1 − R2 +Ui∼U−i|D). +Inserting these relationships into (29), we find +βY ∼D|X,Z − βY ∼D|X,Z,U = +2 +� +j=1 +RY ∼Uj|D,U−j fD∼Uj +� +� +� +� 1 − R2 +Y ∼U−j|D +1 − f2 +D∼U1f2 +D∼U2 +σY ∼D +σD += +2 +� +j=1 +Rj fj +� +1 − R2 +Y ∼U−j|D +1 − f2 +1 f2 +2 +σY ∼D +σD +. +(31) +Lastly, we aim to express +� +1 − R2 +Y ∼U−j|D in terms of the other sensitivity param- +eters. To this end, we use the three-variable identity [vi] with Y ≡ Y , X ≡ U−j, +W ≡ Uj and Z ≡ D, where we replace RUj∼U−j|D according to (30). +R−j +� +1 − R2 +−j +� +1 − R2 +j − f1f2 Rj +[vi] += fY ∼U−j|D +� +1 − f2 +1 f2 +2 . +By definition, the identity +√ +1 − R2 = 1/ +� +1 + f2 holds true for any (partial) R2 + +Sensitivity Analysis with the R2-calculus +46 +and its corresponding f2. Thus, we get +� +1 − R2 +Y ∼U−j|D = +� +����1 + +� +R−j +√ +1−R2 +−j +� +1 − R2 +j − f1f2 Rj +�2 +1 − f2 +1 f2 +2 +� +���� +−1/2 +. +Substituting the +� +1 − R2 +Y ∼U−j|D term in (31) for the expression above proves the +form of the second summand that was required. +C. +Derivation of Constraints in Section 4 +C.1. +Ordinary Least Squares +Specifying a comparative bound on U → Y that partials out D involves two addi- +tional sensitivity parameters, RY ∼U|X,Z and RY ∼U| ˜ +X, ˙XI,Z,D. The former is related +to RY ∼U|X,Z,D via equation (15); hence, it remains to find a relationship that con- +nects RY ∼U| ˜ +X, ˙XI,Z,D to the other sensitivity parameters. To this end, we employ +rule [v] – reduction of partial correlation – and the recursive partial correlation +formula [iv] for RY ∼U| ˜ +X, ˙XI,Z,D and infer +RY ∼U|X,Z +[v] += +RY ∼U| ˜ +X, ˙XI,Z +� +1 − R2 +Y ∼ ˙XIc| ˜ +X, ˙XI,Z +[iv] += +1 +� +1 − R2 +Y ∼ ˙XIc| ˜ +X, ˙XI,Z +� +RY ∼D| ˜ +X, ˙XI,ZRD∼U| ˜ +X, ˙XI,Z ++ RY ∼U| ˜ +X, ˙XI,Z,D +� +1 − R2 +Y ∼D| ˜ +X, ˙XI,Z +� +1 − R2 +D∼U| ˜ +X, ˙XI,Z +� +. +This equation contains the unknown quantity RD∼U| ˜ +X, ˙XI,Z which can be expressed +in terms of RD∼U|X,Z via rule [v] +RD∼U|X,Z +[v] += +RD∼U| ˜ +X, ˙XI,Z +� +1 − R2 +D∼ ˙XIc| ˜ +X, ˙XI,Z +. +Plugging this relationship into the equation above, we arrive at the constraint +RY ∼U|X,Z = +1 +� +1 − R2 +Y ∼ ˙XIc| ˜ +X, ˙XI,Z +� +RY ∼D| ˜ +X, ˙XI,Z +� +1 − R2 +D∼ ˙XIc| ˜ +X, ˙XI,ZRD∼U|X,Z ++ RY ∼U| ˜ +X, ˙XI,Z,D +� +1 − R2 +Y ∼D| ˜ +X, ˙XI,Z +� +1 − R2 +D∼U|X,Z +� +1 − R2 +D∼ ˙XIc| ˜ +X, ˙XI,Z +� +� +. + +Sensitivity Analysis with the R2-calculus +47 +C.2. +Two-stage Least Squares +The comparative bound on U ↔ Z is in fact equivalent to a bound on the sensitivity +parameter RZ∼U|X. +First, we relate RZ∼U| ˜ +X, ˙X−j to RZ∼U|X via the conditional +independence assumption. Recursion of partial correlation [iv] yields +0 = RU∼ ˙Xj| ˜ +XI, ˙X−j,Z +[iv] += +RU∼ ˙Xj| ˜ +X, ˙X−j − RZ∼ ˙Xj| ˜ +X, ˙X−jRZ∼U| ˜ +X, ˙X−j +� +1 − R2 +Z∼ ˙Xj| ˜ +X, ˙X−j +� +1 − R2 +Z∼U| ˜ +X, ˙X−j +⇔ +RU∼ ˙Xj| ˜ +X, ˙X−j = RZ∼ ˙Xj| ˜ +X, ˙X−jRZ∼U| ˜ +X, ˙X−j. +Employing this relationship and rule [iv] again, we find +RZ∼U|X +[iv] += +RZ∼U| ˜ +X, ˙X−j − RZ∼ ˙Xj| ˜ +X, ˙X−jRU∼ ˙Xj| ˜ +X, ˙X−j +� +1 − R2 +Z∼ ˙Xj| ˜ +X, ˙X−j +� +1 − R2 +U∼ ˙Xj| ˜ +X, ˙X−j += RZ∼U| ˜ +X, ˙X−j +� +� +� +� +1 − R2 +Z∼ ˙Xj| ˜ +X, ˙X−j +1 − R2 +Z∼ ˙Xj| ˜ +X, ˙X−jR2 +Z∼U| ˜ +X, ˙X−j +. +As the right-hand side above is monotone in RZ∼U| ˜ +X, ˙Xj, we conclude +R2 +Z∼U|X ≤ bUZ R2 +Z∼ ˙Xj| ˜ +X, ˙X−j +1 − R2 +Z∼ ˙Xj| ˜ +X, ˙X−j +1 − bUZ R4 +Z∼ ˙Xj| ˜ +X, ˙X−j +. +If a practitioner specifies a comparative bound on Z → Y , we need to connect +RY ∼ ˙Xj| ˜ +X, ˙X−j,U,D to RD∼U|X,Z and RY ∼U|X,Z,D. To this end, we employ rule [vi] – +the three-variable identity – with Y ≡ Y , X ≡ ˙Xj, W ≡ U and Z ≡ ( ˜X, ˜X−j, D) +which yields +fY ∼ ˙Xj| ˜ +X, ˙X−j,Z,U,D +� +1 − R2 +Y ∼U|X,Z,D +[vi] += fY ∼ ˙Xj| ˜ +X, ˙X−j,Z,D +� +1 − R2 +U∼ ˙Xj| ˜ +X, ˙X−j,Z,D − RY ∼U|X,Z,D RU∼ ˙Xj| ˜ +X, ˙X−j,Z,D. +Furthermore, we use the conditional independence U ⊥⊥ +˙Xj | ˜X, ˙X−j, Z both to +simplify the following recursive partial correlation formula [iv] and to apply the +reduction of partial correlation formula [v] on RD∼U|X,Z +RU∼ ˙Xj| ˜ +X, ˙X−j,Z,D +[iv] += +RU∼ ˙Xj| ˜ +X, ˙X−j,Z − RD∼ ˙Xj| ˜ +X, ˙X−j,Z RD∼U| ˜ +X, ˙X−j,Z +� +1 − R2 +D∼ ˙Xj| ˜ +X, ˙X−j,Z +� +1 − R2 +D∼U| ˜ +X, ˙X−j,Z += −fD∼ ˙Xj| ˜ +X, ˙X−j,Z fD∼U| ˜ +X, ˙X−j,Z, +RD∼U| ˜ +X, ˙X−j,Z +[v] += RD∼U|X,Z +� +1 − R2 +D∼ ˙Xj| ˜ +X, ˙X−j,Z. + +Sensitivity Analysis with the R2-calculus +48 +Inserting these two relationships in the three-variable identity above and cancelling +some terms, we arrive at +fY ∼ ˙Xj| ˜ +X, ˙X−j,Z,U,D +� +1 − R2 +Y ∼U|X,Z,D = +� +fY ∼ ˙Xj| ˜ +X, ˙X−j,Z,D +� +1 − R2 +D∼U|X,Z ++ RY ∼U|X,Z,D RD∼ ˙Xj| ˜ +X, ˙X−j,Z RD∼U|X,Z +��� +1 − R2 +D∼U|X,Z(1 − R2 +D∼ ˙Xj| ˜ +X, ˙X−j,Z). +D. +Solving the Optimization Problem +Since users can specify any number and kind of bounds on the sensitivity parameters, +the resulting constraint set Ψ(ˆθ) is potentially very complex. It may be non-convex +and can contain multiple non-linear equality- and inequality constraints. This only +leaves few standard optimization algorithms to compute a global solution for (2). +These, however, often require careful choice of hyper-parameters and sometimes fail +to solve the problem. For this reason, we propose an adapted grid search algorithm +that is more robust and tailored to our specific optimization problem by exploiting +the structure of β. First, we characterize the set of potential minimizers and max- +imizers; then, we explain how we can use monotonicity of equality constraints to +reduce the number of dimensions of the grid search algorithm; finally, we give the +pseudocode of the algorithm and discuss its computational complexity. +D.1. +Characterization of the Solution +According to Theorem 1, the objective β is identified in terms of the sensitivity +parameters (ψ1, ψ2) = (RD∼U|X,Z, RY ∼U|X,Z,D). Due to its monotonicity in ψ2, the +objective β attains its optimal values on a subset of the boundary of Ψ(ˆθ). In order +to show this, we characterize the feasible set as +Ψ(ˆθ) = +� +ψ1 : Pψ1̸=∅ +Pψ1, where +Pψ1 = {ψ2 : (ψ1, ψ2) ∈ Ψ(ˆθ)}. +For every fixed ψ1 such that Pψ1 ̸= ∅, the objective β is a linear function in ψ2. +This implies that, for any ψ2 ∈ Pψ1, we obtain +β(ˆθ, ψ1, min Pψ1) ⋚ β(ˆθ, ψ1, ψ2) ⋚ β(ˆθ, ψ1, max Pψ1), +where the direction of the inequalities depends on the sign of ψ1. Therefore, ψ-values +that minimize/maximize β are contained in +Ψ∗(ˆθ) := +� +ψ1 : Pψ1̸=∅ +{min Pψ1, max Pψ1}, +(32) +which is a subset of the boundary of Ψ(ˆθ). +Therefore, it suffices to discretize the set Ψ∗(ˆθ) instead of Ψ(ˆθ) to find an ap- +proximate solution to the optimization problem. + +Sensitivity Analysis with the R2-calculus +49 +D.2. +Transfering Bounds via Monotonicity +Regular grid search algorithms are highly computationally expensive as their com- +plexity grows exponentially in the number of unknown parameters. Yet, the high +computational costs can be significantly reduced by leveraging the monotonicity of +many equality constraints. We illustrate this with an example. +Example 1. Suppose a practitioner specifies the following direct constraint on U → D +and comparative constraint on U → Y : +RD∼U|X,Z ∈ [−0.5, 0.5], +R2 +Y ∼U| ˜ +X, ˙X−j,Z ≤ 2R2 +Y ∼ ˙Xj| ˜ +X, ˙X−j,Z ⇔ R2 +Y ∼U|X,Z ≤ 2 f2 +Y ∼ ˙Xj| ˜ +X, ˙X−j,Z, +(33) +where the latter equivalence is due to (14). +In addition, the unknown parame- +ters RD∼U|X,Z, RY ∼U|X,Z,D and RY ∼U|X,Z are constrained by the recursive partial +correlation formula +RY ∼U|X,Z,D +[iv] += RY ∼U|X,Z − RY ∼D|X,Z RD∼U|X,Z +� +1 − R2 +Y ∼D|X,Z +� +1 − R2 +D∼U|X,Z +. +(34) +Note that, for any fixed RD∼U|X,Z value, RY ∼U|X,Z,D is a linear, and hence, mono- +tone function of RY ∼U|X,Z. +In this setting, brute-force grid search creates a three-dimensional grid of points +– one dimension per unknown partial R-value – and only keeps those that (approxi- +mately) conform with (33) and (34). (Partial R- and f-values that only depend on V +are estimated.) The remaining points are projected onto the (RD∼U|X,Z, RY ∼U|X,Z,D)- +plane and, for every fixed RD∼U|X,Z, we can find the smallest/largest value of +RY ∼U|X,Z,D to approximate Ψ∗(ˆθ). Hence, in this example, the complexity of brute- +force grid search is cubic in the number of points per dimension. +Our algorithm, on the other hand, only needs to create a one-dimensional grid +of RD∼U|X,Z values, i.e. discretize [−0.5, 0.5]. For every such value, we can compute +the smallest value for RY ∼U|X,Z,D by plugging RY ∼U|X,Z = − +√ +2 | ˆfY ∼ ˙Xj| ˜ +X, ˙X−j,Z| +into (34) directly and likewise for the largest value. Therefore, the complexity only +grows linearly in the number of points per dimension. +This principle of using monotonicity of the equality constraints can reduce the +dimension of the grid and applies beyond the above example. In fact, when only +bounds on U → D and U → Y are given, we solely require a one-dimensional grid. +Hence, the computational complexity of generating equally spaced points in Ψ∗(ˆθ) +grows linearly in the number of grid points. In the most general case, when any +(finite) number and kind of bound can be specified, only a three-dimensional grid is +needed. Hence, the worst complexity of the point-generation algorithm is cubic in +the number of points per dimension. Evaluating the objective over Ψ∗(ˆθ) has linear +complexity in any case. +D.3. +Adapted Grid-Search Algorithm +Our proposed algorithm first constructs a set of equally spaced points that are +(approximately) contained in Ψ∗(ˆθ); then, it evaluates β over this set and takes the + +Sensitivity Analysis with the R2-calculus +50 +Algorithm 1: Grid approximation of Ψ∗(ˆθ) +Input: lower and upper bounds given by Al, Au, Bl, Bu, Dl, Du, Eu, El, +Ml, Mu, Ol, Ou, bZY +Output: vectors A, L and U +1 al ← max{Al}; +au← min{Au} +2 ml← max{Ml}; +mu← min{Mu} +3 Initialize A, L, U ∈ RNa +4 for i ∈ [Na] do +5 +Ai ← al + (i − 1) (au − al)/(Na − 1) +6 +dl ← max{hd(Ai, El, c2, c3, c4), Dl} +/* Pushing bounds onto b */ +7 +du ← min{hd(Ai, Eu, c2, c3, c4), Du} +8 +bl ← max{hb(Ai, dl), Bl} +9 +bu ← min{hb(Ai, du), Bu} +10 +if bl > bu then +11 +Ai ← NA +12 +Li ← NA +13 +Ui ← NA +14 +else +15 +fgl← hfg(Ai, Ml) +/* Pushing bounds onto g */ +16 +fgu← hfg(Ai, Mu) +17 +gl ← fgl/ +� +1 + f2 +gl +18 +gu ← fgu/ +� +1 + f2gu +19 +found ← False +/* Finding Li */ +20 +for j ∈ [Nb] and not found do +21 +Bij ← bl + (j − 1) (bu − bl)/(Nb − 1) +22 +fq ← hfq(Ai, Bij, c7) +/* Computing bounds on o */ +23 +ol ← max{− +� +bZY · f2q /(1 + f2q ), Ol} +24 +ou ← min{ +� +bZY · f2q /(1 + f2q ), Ou} +25 +if ol <= ou then +26 +for k ∈ [Ng] and not found do +27 +Gik ← gl + (j − 1) (gu − gl)/(Ng − 1) +28 +fo ← hfo(Bij, Gik) +29 +o ← fo/ +� +1 + f2o +30 +found ← found ∨(ol ≤ o ∧ o ≤ ou) +31 +if found then +32 +Li ← Bij +33 +if not found then +34 +Li ← NA +35 +found ← False +/* Finding Ui */ +36 +. . . +/* Analogously to Li but the Bij decrease */ +37 return A, L, U + +Sensitivity Analysis with the R2-calculus +51 +minimum/maximum of the obtained β-values. The latter step is straightforward +whereas the former is complex when multiple interlocking constraints are present. +In order to keep the the notation short, we introduce some abbreviations: +a = RD∼U|X,Z, +b = RY ∼U|X,Z,D, +d = RY ∼U|X,Z, +e = RY ∼U| ˜ +X, ˙XI,Z,D, +g = RZ∼U|X,D, +m = RZ∼U|X, +o = RY ∼Z|X,U,D, +q = RY ∼ ˙Xj| ˜ +X, ˙X−j,Z,U,D, +c1 = RY ∼D|X,Z, +c2 = RY ∼D| ˜ +X, ˙XI,Z, +c3 = RD∼ ˙XIc| ˜ +X, ˙XI,Z, +c4 = RD∼ ˙XIc| ˜ +X, ˙XI,Z, +c5 = RD∼Z|X, +c6 = RY ∼Z|X,D, +c7 = RY ∼ ˙Xj| ˜ +X, ˙X−j,Z,D, +hb(a, d) = +d − c3 a +� +1 − c2 +3 +√ +1 − a2 , +hd(a, e, c2, c3, c4) = +1 +� +1 − c2 +4 +� +e +� +1 − c2 +2 +� +1 − a2(1 − c2 +3) + c2 +� +1 − c2 +3 a2 +� +, +hfg(a, m) = +1 +√ +1 − a2 +�� +1 − c2 +5 · fm − c5 a +� +, +hfo(b, g) = +1 +√ +1 − b2 +�� +1 − g2 · fc6 − b g +� +, +hfq(a, b, c7) = +√ +1 − a2 · fc7 + c7 a b +√ +1 − b2� +1 − a2(1 − c2 +7) +. +With a slight abuse of notation, the parameter e and the associated constants +c2, c3 and c4 as well as q and the associated constant c7 may be scalars or vectors +depending on the number of (13)- and (22)-constraints, respectively. The notation +fs is a shorthand for the f-transformation of some scalar or vector, that is fs = +s/ +√ +1 − s2. The functions hb and hd are abbreviations for the right-hand sides of +the equations (15) and (16), hfo and hfg stem from (17) and (18) and hfq states +(23) in the new notation. Inserting vectors instead of scalars into the functions is +interpreted as componentwise evaluation. +In order to compute a set of points that is approximately contained in Ψ∗(ˆθ), we +first discretize the interval of all possible a-values and construct the vector A ∈ RNa +which contains Na equally spaced points. +(This corresponds to discretizing the +interval [min{ψ1 : Pψ1 ̸= ∅}, max{ψ1 : Pψ1 ̸= ∅}].) Second, we construct the vectors +L, U ∈ RNa which approximate the corresponding minima and maxima of β at the +respective a-value. Thus, we can create the points +{(Ai, Li): i ∈ [Na]} ∪ {(Ai, Ui): i ∈ [Na]}, +which are (approximately) contained and equally spaced in Ψ∗(ˆθ). Evaluating the +objective β over this set has complexity O(Na). +In case that only bounds on U → D and U → Y are specified, the computa- +tional complexity of generating A, L and U grows linearly in Na and the computed +points are actually elements of Ψ∗(ˆθ) instead of merely approximating it. The two +types of bounds on U → D specify direct constraints on a. Hence, denoting the + +Sensitivity Analysis with the R2-calculus +52 +vectors of upper and lower bounds on a stemming from (9) and (10) Al and Au, we +can construct A by equally spacing Na points in the interval [max{Al}, min{Au}]. +Bounds on U → Y directly constrain b (11), d (14) and e (13). Crucially, for every +fixed a-value Ai, the functions hd and hb are linear in e and d, respectively. Hence, +we can transfer bounds on e onto d and, thus, update bounds on d; likewise, we can +then push forward the bounds on d onto b and compute Li and Ui. +In case that at least one bound on U ↔ Z or Z → Y is specified, A can be +constructed in the same way as before whereas L and U are more computationally +involved. We again use the observation that many h-functions are monotone in one +argument in order to ”push forward” bounds. For fixed a-value, we can transfer +bounds on m onto g; for fixed a- and b- value, we can compute bounds on o; for fixed +a- and g-value, we can compute the corresponding o-value. We construct Li and Ui +by discretizing the range of possible b-values (after successively pushing bounds on +e and d onto b) into Nb points and searching for the smallest/largest feasible value. +To test whether a given b-value is feasible, we construct a sequence of Ng values +of g and check whether there is at least one value such that the bounds on o are +satisfied. Therefore, the computational complexity of constructing A, L and U is +O(Na · Nb · Ng). +Algorithm 1 contains the pseudocode of the algorithm to generate A, L and U. +It concerns the case where at least one bound on U ↔ Z or Z → Y is specified. +Otherwise, we could directly set Li ← bl and Ui ← bu in line 15. +A full implementation of the algorithm will be made available in a public Github +repository soon. +E. +Simulation Study +We investigate the empirical coverage of sensitivity intervals computed with the +bootstrap in two scenarios: a regression model with one additional covariate and +an instrumental variable model. In both set-ups, we set the nominal level to 90 %. +E.1. +Linear Regression Simulation +We generate a sample of n i.i.d. random vectors (εU, εX, εX, εY )T ∼ N(0, Id) and +compute the variables in the model using the following linear structural equations: +U := εU, +X := εX, +D := X + U + εD, +Y := D + 2X + U + εY . +Based on these structural equations, we derive the covariance matrix of the involved +random variables +var +� +� +� +� +� +U +X +D +Y +� +� +� +� +� += +� +� +� +� +1 +0 +1 +2 +0 +1 +1 +3 +1 +1 +3 +6 +2 +3 +6 +15 +� +� +� +� . + +Sensitivity Analysis with the R2-calculus +53 +It can be used to compute (partial) R-values as well as the bias βY ∼D|X − β = 1/2. +If the comparative constraints +R2 +D∼U ≤ R2 +D∼X, +R2 +Y ∼U ≤ 4 +9 R2 +Y ∼X +are specified, the partially identified region is [1, (3 + +√ +3)/2]. Hence, the true value +β = 1 equals the lower end of the PIR. The bounds above are sharp in the sense +that the lower end of the partially identified range can only be reached when both +inequalities are active, i.e. hold with equality. +In order to construct sensitivity intervals, we generate bootstrap samples of the +observed data and solve the corresponding optimization problems. Then, we use +either percentile or basic bootstrap (Davison and Hinkley, 1997, chap. 5) to compute +the lower and upper end of the sensitivity interval. This approach is compared to +the heuristic sensitivity intervals of Cinelli and Hazlett (2020) as well as the oracle +90% confidence interval, which could be computed if U was observed. +We simulate data for different sample sizes n and repeat each such experi- +ment 1000 times to compute the empirical coverage and length of the sensitiv- +ity/confidence intervals. More specifically, we evaluate the empirical coverage of β +and the PIR for different sensitivity intervals and adapt the notion of length. In or- +der to account for the fact that the length of typical confidence intervals approaches +zero as n → ∞ whereas the length of valid sensitivity intervals is lower bounded by +the length of the PIR, we use the distance between the lower end of an interval and +1, when it covers 1, as length. +The results of this simulation study are summarized in Table 2. Percentile boot- +strap exhibits coverage of PIR close to the envisaged level of 90%; its coverage of +β is close to 95%. The latter is expected as the true value of β is the lower end of +the PIR. By comparison, the empirical coverage of sensitivity intervals constructed +via basic bootstrap is 5 to 10 percentage points below the required level. Hence, +we use percentile bootstrap to construct sensitivity intervals in the data example +in the main text. Moreover, this simulation study illustrates that Cinelli and Ha- +zlett’s heuristic sensitivity intervals do not possess frequentist coverage guarantees: +the empirical coverage of the PIR is consistently below 50%. Finally, we see that +sensitivity intervals are substantially longer than the oracle confidence interval. We +attribute the increased length to the uncertainty stemming from estimating the con- +straints. In this simulation study, we did not encounter cases where the estimated +constraint set was empty on a bootstrap sample. +In order to investigate the coverage of bootstrap sensitivity intervals more closely, +we consider the distribution of the estimated upper and lower end of the PIR as +well as the corresponding bootstrap distributions. Figure 7 depicts the estimates +of these distributions based on 1000 repitions of the experiment. For small sample +sizes n, we notice that the bootstrap distribution is both biased and skewed. Both +phenomena diminish as n grows so that the bootstrap distribution approximates the +target distribution more closely. This is in line with the observation that coverage +improves for larger sample sizes, especially for basic bootstrap. + +Sensitivity Analysis with the R2-calculus +54 +Table 2. Simulation results of the linear regression example. +n +Method +Coverage +Length +β +PIR +Mean +Median +200 +Percentile bootstrap +95.5% +92.6% +2.800 +0.748 +Basic bootstrap +86.1% +78.9% +0.533 +0.310 +Heuristic +73.7% +47.6% +0.339 +0.213 +Oracle +90.2% +- +0.127 +0.124 +500 +Percentile bootstrap +96.1% +92.7% +0.431 +0.320 +Basic bootstrap +88.4% +81.1% +0.247 +0.197 +Heuristic +71.7% +44.0% +0.160 +0.126 +Oracle +88.8% +- +0.079 +0.077 +1000 +Percentile bootstrap +94.1% +90.6% +0.240 +0.207 +Basic bootstrap +87.5% +82.6 % +0.172 +0.144 +Heuristic +69.5% +45.7% +0.111 +0.089 +Oracle +90.2% +- +0.054 +0.053 +2000 +Percentile bootstrap +95.8% +91.7% +0.148 +0.135 +Basic bootstrap +90.8% +85.9% +0.117 +0.106 +Heuristic +70.9% +42.8% +0.073 +0.063 +Oracle +90.5% +- +0.039 +0.037 +E.2. +Linear Instrumental Variable Simulation +We generate 100 i.i.d. samples from the distribution (εU, εZ, εD, εY )T ∼ N(0, Id) +and compute the variables of the model as follows +U := εU, +Z := εZ, +D := Z + U + εD, +Y := D + U + εY . +This data-generating process fulfills the instrumental variable assumptions which +renders β = 1 point identified. Hence, a sensitivity interval where the IV-related sen- +sitivity parameters are set to zero ought to be comparable with the confidence inter- +val that is based on the asymptotic normality of the TSLS estimator. In order to use +Algorithm 1, we slightly relax the IV assumptions requiring RZ∼U|X, RY ∼Z|X,U,D ∈ +[−0.002, 0.002] and further set RD∼U|X,Z ∈ [−0.999, 0.999] to bound it away from +−1 and 1. +We compute the empirical coverage and length of sensitivity intervals constructed +via percentile and basic bootstrap, the heuristic sensitivity intervals and the oracle +confidence intervals over 500 repitions of the experiment. Due to the high compu- +tational costs, we conduct this simulation study only for sample size n = 100. +The results of this experiment are stated in Table 3. We notice that the bootstrap +sensitivity intervals are on par with the oracle confidence interval, both in terms + +Sensitivity Analysis with the R2-calculus +55 +n = 1000 +n = 2000 +n = 200 +n = 500 +0 +1 +2 +3 +0 +1 +2 +3 +0 +2 +4 +6 +0 +2 +4 +6 +PIR lower +PIR lower - Boot +PIR upper +PIR upper - Boot +Fig. 7. +Empirical distribution of the lower and upper end of the PIR as well as the corre- +sponding bootstrap distributions. +of coverage and length. By contrast, the heuristic sensitivity intervals exhibit very +high coverage but their length is too long to be informative in practice. In this +simulation study, 24 of the 500 · 500 = 250, 000 constructed bootstrap samples led +to an empty constraint set. In these cases, we set the solution of the optimization +problem to −∞ and ∞, respectively. +F. +Choice of Hyper-parameters +In Table 4, we list the hyper-parameters of Algorithm 1 that were used for different +data analyses. The mesh size of the grid is the same in every dimension, that is +Table 3. Simulation results of the instrumental variable +example. +Method +Coverage +Length +Mean +Median +Percentile bootstrap +91.2% +0.338 +0.301 +Basic bootstrap +94.8% +0.266 +0.240 +Heuristic +99.0% +1.085 +0.581 +Oracle +92.0% +0.290 +0.257 + +Sensitivity Analysis with the R2-calculus +56 +Table 4. +Hyper-parameters for different +plots and simulation examples. +Ngrid +Nb-contour +Nboot +Figure 2 +200 +- +500 +Figure 3 +200 +30 +- +Figure 4 +150 +30 +- +Figure 5 +400 +- +- +Figure 6 +300 +- +- +Table 2 +200 +- +500 +Table 3 +100 +- +500 +the numbers of points considered per dimension Na, Nb, and Ng are equal. We +define Ngrid := Na = Nb = Ng. The number of points per dimension for b-contour +plots and the number of bootstrap samples are denoted by Nb-contour and Nboot, +respectively. +In the simulation study and data example in this work, we found that the PIR +estimates change only marginally for values of Ngrid larger than 200. We recommend +to consider at least 100 points per grid dimension, i.e. Ngrid = 100. The rough struc- +ture of the b-contours often becomes apparent for Nb-contour as low as 10. Due to the +computational costs of the optimization problem, we choose a relatively low number +of bootstrap samples Nboot = 500. The simulation studies empirically confirm that +percentile bootstrap sensitivity intervals achieve good coverage nonetheless. + diff --git a/49AyT4oBgHgl3EQfQPZI/content/tmp_files/load_file.txt b/49AyT4oBgHgl3EQfQPZI/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..ecd7da764b92d1c5a616eb46c1462c66c1c9151f --- /dev/null +++ b/49AyT4oBgHgl3EQfQPZI/content/tmp_files/load_file.txt @@ -0,0 +1,1861 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf,len=1860 +page_content='Sensitivity Analysis with the R2-calculus Tobias Freidling and Qingyuan Zhao Statistical Laboratory, DPMMS, University of Cambridge, United Kingdom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' E-mail: taf40@cam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='uk Summary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Causal inference necessarily relies upon untestable assumptions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' hence, it is crucial to assess the robustness of obtained results to violations of identification assumptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' However, such sensitivity analysis is only occasionally undertaken in practice, as many existing methods only apply to relatively simple models and their results are often difficult to interpret.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We take a more flexible approach to sensitivity analysis and view it as a constrained stochastic optimization problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We focus on linear models with an unmeasured confounder and a potential instrument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We show how the R2-calculus—a set of algebraic rules that relates different (partial) R2- values and correlations—can be applied to identify the bias of the k-class estimators and construct sensitivity models flexibly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We further show that the heuristic “plug-in” sensitivity interval may not have any confidence guarantees;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' instead, we propose a boostrap approach to construct sensitivity intervals which perform well in numerical simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We illustrate the proposed methods with a real study on the causal effect of education on earnings and provide user-friendly visualization tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Keywords: Causal inference;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Instrumental variables;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' k-class estimator;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Linear models;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Partial identification;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Stochastic optimization 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Introduction In many scientific disciplines, provisional causal knowledge is predominantly gen- erated from observational data as randomized controlled experiments are often in- feasible or too costly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Because the treatment is not randomly assigned in an obser- vational study, any causal conclusions must rely on untestable assumptions, such as absence of unmeasured confounders or validity of instrumental variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Hence, the causal inference is inherently sensitive to violations of any identification and modelling assumptions, so reseachers are advised to investigate the robustness of their results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The importance of sensitivity analysis has been emphasized in guidelines for designing and reporting observational studies (Vandenbroucke et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' PCORI Methodology Committee, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For instance, the STROBE guidelines caution that “taking [observed] confounders into account is crucial in observational studies, but readers should not assume that analyses adjusted for [observed] confounders establish the ‘causal part’ of an association” (p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 1638).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' They recommend to conduct sensitivity analyses as they are “helpful to investigate the influence of choices made in the statistical analysis, or to investigate the robustness of the findings to missing data or possible biases” (p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 1647).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='00040v1 [stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='ME] 30 Dec 2022 Sensitivity Analysis with the R2-calculus 2 However, sensitivity analysis is still rarely being conducted in actual studies, leaving other researchers difficult to assess the robustness of their empirical findings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In medicine, Thabane et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2013) did a spot check on the January 2012 editions of major medical journals and found that only 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='7% (36 out of 135) of the articles that included some statistical analysis also performed sensitivity analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In nutrition research, de Souza et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2016) found that, in a representative sample of 100 articles from 2013 to 2015, merely 18% of them conducted some sensitivity analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In political science, Cinelli and Hazlett (2020) found that only 4 out of 64 observational studies published in three leading journals in 2017 conducted a formal sensitivity analysis beyond just some model specification checks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' There are several reasons for the hesitant uptake of sensitivity analysis in prac- tice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' First, it is not straightforward to define a reasonable model for sensitivity analysis, even for the familiar setting of one treatment variable, one outcome vari- able, and multiple baseline covariates that has been studied since the seminal work of Cornfield et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (1959).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For example, Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (1998) assume an unmeasured confounder U independent of the measured covariates X conditional on the treat- ment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' However, Hernan and Robins (1999) point out that this cannot be generally true as conditioning on the treatment opens a collider path between U and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For more complicated settings such as instrumental variables (IV), specifying a good sensitivity model is even more difficult and the literature on sensitivity analysis is considerably smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Second, many methods for sensitivity analysis were devel- oped under simple settings where closed-form solutions are available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This results in a limited scope of applicability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Finally, it is often not easy for practitioners to understand and communicate the results of a sensitivity analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In general, (non-Bayesian) sensitivity analysis can be broadly categorized into point identified and partially identified approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The former requires a precise specification of the confounding mechanism, so that the causal effect of interest is still identified;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' see for instance Rosenbaum and Rubin (1983), Imbens (2003), and VanderWeele and Arah (2011) for the usual observational study design, Scharfstein et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (1999) for longitudinal studies with dropouts, and Altonji et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2005) for instrumental variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' On the other hand, the partially identified approach con- siders the union of many point identified sensitivity models, so the causal effect is only partially identified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Examples include the first sensitivity analysis by Corn- field et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (1959), the approach developed by Rosenbaum (1987, 2002) based on randomization tests, the E-value proposed by Ding and VanderWeele (2016) that generalizes the Cornfield bound, the generalization of Scharfstein et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (1999) by Vansteelandt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2006), bounds on the average treatment effect under Rosen- baum’s sensitivity model by Yadlowsky et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2022) and the marginal sensitivity model studied in Zhao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2019) and Dorn and Guo (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In our experience, the partially identified approach is more flexible and usually aligns with practical demand better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This is why we adopt it in this article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We limit our discussion to linear regression and linear instrumental variable models, but the methodology we develope below is quite general and can potentially be ex- tended to other models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Compared with previous work, a crucial distinction is that we do not require the partially identified region (or, as in Rosenbaum’s sensitivity Sensitivity Analysis with the R2-calculus 3 analysis, an upper bound of the randomization p-value) to have a closed form so- lution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Instead, we leverage a novel perspective on sensitivity analysis through the lens of constrained stochastic optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This is elaborated next.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' A General Framework for Sensitivity Analysis Consider an i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' sample (Vi, Ui)n i=1 from some population, but only the vari- ables (Vi)n i=1 are observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Denote the joint probability distribution of (Vi, Ui) as P = PV,U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Depending on the assumptions on the data generating process, the distribution P may be restricted to be within a parametric, semi-parametric or non-parametric family.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The marginal distribution of V and the distribution of U conditional on V are denoted by PV and PU|V , respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We are interested in estimating and conducting inference for some functional β = β(PV,U).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For example, suppose V = (D, Y, X) includes a treatment variable D, an outcome Y , and some covariates X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We may be interested in estimating the causal effect of D on Y , which would be point identified if there are no other confounders given (X, U) and U is observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' However, since U is not observed, β may only be partially identified if we restrict the “strength of confounding” for U in some sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In many cases, β can be expressed as a function of two types of parameters, θ = θ(PV ) and ψ = ψ(PV,U).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The former only depends on the marginal distribution of V and can therefore be estimated from the observed variables;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' the latter addi- tionally depends on the distribution of U and thus cannot be directly estimated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Adopting a Bayesian perspective, Gustafson (2005) and Daniels and Hogan (2008) advocate the use of a separable parameterization, meaning that ψ = ψ(PU|V ) only depends on the conditional distribution PU|V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In this set-up, no information about ψ can be learnt from the observed data, which has several advantages in deriving bounds or making Bayesian inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' However, requiring a separable parameteriza- tion could be too restrictive in our experience and we will not make this assumption below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Since U is unobserved, the parameter ψ and thus the functional β cannot be identified from the observed data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' A point identified sensitivity analysis assumes that ψ is given, for example by eliciting the opinion of a domain expert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In this sense, the primary analysis can be viewed as a special case of a point identified sensitivity analysis, where ψ takes the value (conventionally 0) that corresponds to the unobserved variable U being ”ignorable”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' To assess the robustness of the primary analysis, a partially identified sensitivity analysis assumes that ψ belongs to a set Ψ = Ψ(θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Comparing to point identified models, this is appealing because it is much easier for domain experts to specify a possible range of ψ than a specific value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' However, under the weaker condition ψ ∈ Ψ, the functional β is only partially identified;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' we call the corresponding set of β-values the partially identified region (PIR): PIR(PV ) := � β(θ(PV ), ψ): ψ ∈ Ψ(θ(PV )) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (1) The condition ψ ∈ Ψ(θ) in (1) implies a constraint on the joint distribution PV,U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 4 For this reason, we will refer to Ψ as the sensitivity model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In general, the partially identified region can be quite complicated and difficult to infer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' However, this can be simplified in the case where β is real-valued and one-dimensional by seeking to solve the following optimization problems: min / max β(θ(PV ), ψ), subject to ψ ∈ Ψ(θ(PV )), (2) where the distribution PV is fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' As both the objective and the feasible set in (2) depend on the unknown PV we can sample from, this is an instance of stochastic optimization or stochastic programming (Shapiro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' A natural, plug-in estimator of the optimal values of this problem can be obtained by solving min / max β(ˆθ, ψ), subject to ψ ∈ Ψ(ˆθ), (3) where ˆθ is an estimator of θ based on the observed data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This can be viewed as a generalization of the sample average approximation (SAA) estimator in stochastic optimization (Shapiro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', 2009, chap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Thus, a general recipe for partially identified sensitivity analysis is the following: (i) The functional β of interest is expressed in terms of the identifiable parameters θ = θ(PV ) and the sensitivity parameters ψ = ψ(PV,U);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (ii) The set of constraints ψ ∈ Ψ(θ) is specified by consulting domain experts;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (iii) The optimal values of the stochastic program (2) are estimated either by first obtaining a closed-form solution to (2) and then estimating that quantity, or by directly solving the plug-in problem (3);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (iv) Suitable methods are then used to quantify the uncertainty of the estimators in the previous step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In this article, we will focus on sensitivity analysis for linear regression and linear instrumental variables models in which θ and ψ are low-dimensional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Nevertheless, the general framework outlined above may also be suitable for problems involving high- or infinite-dimensional parameters;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' see Section 8 for more discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Interpretable Sensitivity Models using the R2-Calculus In practice, the usefulness of the partially identified region in (1) or the optimal values of (2) depends crucially on the interpretability of the sensitivity model Ψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This is where the R2-calculus can be extremely useful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In short, the R2-value R2 Y ∼X, also known as coefficient of determination, measures how much variance of Y can be explained by linear combinations of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' An R2-value close to 1 indicates that X can explain a large degree of the variance of Y ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' on the other hand, values close to 0 indicate that the linear dependence between Y and X is weak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The partial R2-value R2 Y ∼X|Z naturally extends this idea and measures how much variance of Y can be explained by X given Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Due to their straightforward interpretation, R2- and partial R2-values are widely used to help practitioners interpret the results of sensitivity analyses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For instance, Sensitivity Analysis with the R2-calculus 5 Imbens (2003) uses them in sensitivity analysis for regression models with a discrete treatment variable and this idea is recently extended by Veitch and Zaveri (2020);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Small (2007) measures the amount of violations to the instrumental variable as- sumptions by using R2-values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Cinelli and Hazlett (2020) take this idea further and parameterize the bias of the linear regression estimator by solely using R2-values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Other parameterizations that are not fully based on R2-values can be found in Hosman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2010) and Oster (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In this article, we extend this line of work and make several novel contributions: We use partial correlations (or R-values) instead of R2-values (which are just squared R-values) to parameterize the sensitivity model, so the direction of the confounder effect is naturally captured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In contrast, previous works either use worst-case bounds implied by R2-values (Cinelli and Hazlett, 2020) or directly specify the sign of the bias in an additional sensitivity parameter (Zhang and Ding, 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We provide a list of algebraic relations between R- and R2- values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We give a proof of this R2-calculus from a general Hilbert space perspective which may be of independent interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We give a general bias formula for the family of k-class estimators which in- cludes the ordinary least squares estimator and the two-stage least squares estimator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This allows us to provide a unified framework of sensitivity analy- sis for linear regression and instrumental variables models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Facilitated by the R2-calculus and the general bias formula, we allow users to specify very flexible constraints Ψ on the sensitivity parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For example, we allow constraints that compare explanatory capability (in terms of the R2- value) of some unmeasured confounder U with that of a measured covariate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We show that the simple method of fixing the sample R2-value related to the unmeasured variable U in the sensitivity analysis, as proposed by Cinelli and Hazlett (2020), may not provide confidence statements in the frequentist sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Instead, we propose a bootstrap approach to obtain sensitivity intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We provide a suite of user-friendly plots to visualize the results of the sensi- tivity analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Organization of the Paper Section 2 describes the R2-calculus, a collection of algebraic rules that relate (par- tial) R2-values and correlations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Section 3 provides a general bias formula for the k-class estimator in presence of one unmeasured confounder and discusses extensions to multiple unmeasured confounders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Section 4 uses the R2-calculus to develop multiple ways for practitioners to spec- ify the constraints in Ψ(θ) based on domain knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Specifically, we provide comparative bounds on the sensitivity parameters that correspond to deviations from the no unmeasured confounders and the instrumental variable assumptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 6 Section 5 reviews some approaches to construct sensitivity intervals that contains β or the PIR with high probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We show that directly specifying sample R2- values as sensitivity parameter may not provide frequentist guarantees and propose an approach based on the bootstrap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Section 6 applies our proposed sensitivity analysis method to a famous study in labour economics by Card (1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We consider both the linear regression and instrumental variable estimators and compare the results obtained by imposing different sensitivity models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Section 7 introduces sensitivity contour plots that help to investigate how the choice of constraints affects the PIR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' These plots are illustrated with the real data example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Finally, Section 8 concludes this article with a discussion of our method and an outlook on future research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Readers who are more interested in applying the proposed method and interpret- ing its results may wish to skip Sections 2 to 5 initially.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Proofs for some theoretical results in this article and a detailed description of the optimization algorithm can be found in the Appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' R2-calculus We first give a summary of the R2-calculus – a set of widely used algebraic rules which concern the coefficient of determination (also called R2-value) and related quantities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Although these rules are often introduced together with the multivariate normal distribution (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Anderson, 1958, sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='5), they are purely algebraic and rely on no distributional assumptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In fact, this calculus not only applies to the R2- and R-values in the population but also to their counterparts in the sample, which will be denoted by ˆR2 and ˆR below;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' see Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For brevity, we will only state the definitions and results for the population values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Let Y be a random variable, let X and Z be two random vectors, and suppose they all have finite variances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Without loss of generality, we suppose that all random variables and vectors have mean equal to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Otherwise, we can replace them with their centred versions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' see Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We use Y ⊥⊥ X | Z to denote that Y and X are independent conditional on Z as defined in Dawid (1979).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Furthermore, the residual of Y after partialing/regressing out X is given by Y ⊥X := Y − XT var(X)−1 cov(X, Y ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The variance of Y ⊥X equals that of the residual in the linear regression of Y on X, which motivates the notation σ2 Y ∼X = var(Y ⊥X);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' let σY ∼X denote its square root.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Suppose σ2 Y ∼Z > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The R2-value of Y on X is defined as R2 Y ∼X := 1 − σ2 Y ∼X σ2 Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The partial R2-value and f2-value of Y on X given Z are defined as R2 Y ∼X|Z := R2 Y ∼X+Z − R2 Y ∼Z 1 − R2 Y ∼Z and f2 Y ∼X|Z := R2 Y ∼X|Z 1 − R2 Y ∼X|Z , Sensitivity Analysis with the R2-calculus 7 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' If X is one-dimensional and σ2 X∼Z > 0, the partial R- and f-value (Cohen, 1977) are defined as RY ∼X|Z := corr(Y ⊥Z, X⊥Z), and fY ∼X|Z := RY ∼X|Z � 1 − R2 Y ∼X|Z .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The marginal f2-, R- and f-values can be further defined by using an “empty” Z in the definitions above;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' details are omitted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The partial R2 takes values in [0, 1] and is a measure of how well the variables in X can be linearly combined to explain the variation in Y after already using linear combinations of Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Values close to 1 indicate high explanatory capability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This simple interpretation makes the R2-value a popular tool to assess the goodness of fit of a linear model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The partial f2 is a monotone transformation of the partial R2 and takes values in [0, ∞].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The partial R-value captures not only the strength but also the direction of dependence between Y and X after partialing out Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The next result justifies calling R2 Y ∼X|Z a partial R2-value and shows that the definitions of R2- and R-value are consistent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' It follows from the Gram-Schmidt orthogonalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In the setting of Definition 1, R2 Y ∼X|Z = R2 Y ⊥Z∼X⊥Z holds true.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' More- over, if X is one-dimensional, then R2 Y ∼X|Z = (RY ∼X|Z)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The next Proposition collects several useful results about R2-values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Proposition 1 (R2-calculus).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In the setting above, let W be another random vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Assume σ2 Y ∼X+W+Z > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Further, suppose σ2 X∼W+Z > 0 and σ2 W∼X+Z > 0 when X and/or W are one-dimensional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Then, the following rules hold: [i] Independence: if Y ⊥⊥ X, then R2 Y ∼X = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' [ii] Independent additivity: if X ⊥⊥ W, then R2 Y ∼X+W = R2 Y ∼X + R2 Y ∼W ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' [iii] Decomposition of unexplained variance: 1 − R2 Y ∼X+W = (1 − R2 Y ∼X)(1 − R2 Y ∼W|X);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' [iv] Recursion of partial correlation: if X and W are one-dimensional, then RY ∼X|W = RY ∼X − RY ∼W RX∼W � 1 − R2 Y ∼W � 1 − R2 X∼W ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' [v] Reduction of partial correlation: if X is one-dimensional and Y ⊥⊥ W, then RY ∼X|W = RY ∼X � 1 − R2 X∼W ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 8 [vi] Three-variable identity: if both X and W are one-dimensional, then fY ∼X|W � 1 − R2 Y ∼W|X = fY ∼X � 1 − R2 X∼W − RY ∼W|XRX∼W .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' All of the relationships above also hold when Z is partialed out (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' if “ |Z” is appended to the subscripts of all R-, R2-, and f-values) and the inde- pendence assumptions are conditional on Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Rules [i], [ii] and [v] remain true if (conditional) independence condition is replaced by (partial) uncorrelatedness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' A more succint sufficient condition for the positive partial variance requirements is that the covariance matrix of (Y, X, Z, W) has full rank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Rule [vi] may appear unintuitive at first.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' To see how this identity may come up, consider three random variables Y , X and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' There are in total three marginal R-values, RY ∼X, RY ∼W and RX∼W , and three partial R-values, RY ∼X|W , RY ∼W|X and RX∼W|Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Rule [iv] shows that the partial R-values can be determined by all the marginal values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In other words, there are only three degrees of freedom among the six R-values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This implies that there must be an equality constraint relating RY ∼X, RX∼W , RY ∼X|W , and RY ∼W|X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The (partial) R2- and R-value can be defined in a more general Hilbert space setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The corresponding rules of the R2-calculus also hold true, yielding Proposition 1 as a corollary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' See Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Bias of the k-class Estimator Our main goal in this article is to outline a unified approach to sensitivity analysis in linear structural equation models that leverages the R2-calculus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' To this end, we will focus on the case with a one-dimensional treatment D and a continuous outcome Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We would like to estimate the causal effect of D on Y , which will be denoted as β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We may also observe some covariates X and a potential instrumental variable Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Let V = (D, Y, X, Z) be the observed variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In a sensitivity analysis, we are worried about some unmeasured variables U that confound the causal effect of D on Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This can potentially be addressed by finding an instrumental variable Z for the treatment D, but this instrumental vari- able may itself be invalid;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' readers who are unfamiliar with instrumental variables are referred to Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='2 for its definition in the context of linear models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Below we will derive a bias formula for the usual linear regression and instrumental vari- able estimators, which essentially determines the objective functional β(θ, ψ) in the stochastic optimization problem (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' A Single Unmeasured Confounder We start with the case of a one-dimensional unmeasured confounder U and work with the so-called k-class estimators as defined below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 9 Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Suppose var(D⊥X) > var(D⊥X,Z) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The k-class estimand is given by βk := � � � � � � � � � cov(D⊥X, Y ⊥X) − k cov(D⊥X,Z, Y ⊥X,Z) var(D⊥X) − k var(D⊥X,Z) , if − ∞ < k ≤ 1, cov(D⊥X,Z, Y ⊥X,Z) var(D⊥X,Z) , if k = −∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The k-class estimator is defined by replacing variance/covariance and the residuals in the equation above by their sample counterparts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The family of k-class estimators was introduced by Theil (1958) and Nagar (1959) to interpolate the ordinary least squares (OLS) estimator and the two-stage least squares (TSLS) estimator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' It provides a convenient representation for a unified analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' To see the interpolation, the OLS estimand that adjusts for X is given by βY ∼D|X := cov(Y ⊥X, D⊥X) var(D⊥X) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The TSLS estimand (also called the Wald ratio) that uses Z as an instrumental variable and X as exogenous covariates is given by βD∼Z|X, Y ∼Z|X := cov(Y ⊥X, Z⊥X) cov(D⊥X, Z⊥X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' They are special cases of the k-class estimands according to the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In the setting of Definition 2, β1 = βD∼Z|X, Y ∼Z|X, β0 = βY ∼D|X, and lim k→−∞ βk = β−∞ = βY ∼D|X,Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Another important estimator contained in the k-class is the limited information maximum likelihood of Anderson and Rubin (1949), where k needs to be estimated from the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Other examples can be found in Davidson and MacKinnon (1993, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 649) and Koles´ar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Also related is the anchor regression estimator recently introduced by Rothenh¨ausler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2021) that aims to gain robustness under distributional shifts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The target functional β = β(PV,U) we consider is the OLS estimand βY ∼D|X,Z,U which adjusts for X, Z, and the unmeasured confounder U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' When Y is causally determined by a linear structural equation containing D, X, Z and U, the causal effect of D on Y is precisely given by β = βY ∼D|X,Z,U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' see Figure 1 for an illustration of the data-generating process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' When the true structural relationship is not linear, βY ∼D|X,Z,U may still be interpreted as a kind of weighted average treatment effect under additional assumptions (Angrist and Pischke, 2009, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 75).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Because U is not observed, β cannot be consistently estimated without further assumptions on the relationship between U and V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The difference between the estimand βk and the target β is quantified by the next result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 10 Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Suppose σ2 D∼X > σ2 D∼X+Z > σ2 D∼X+Z+U > 0 and let k ∈ (−∞, 1] be fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Then, βk − β = � fY ∼Z|X,D RD∼Z|X 1 − k + k R2 D∼Z|X + RY ∼U|X,Z,D fD∼U|X,Z � σY ∼X+Z+D σD∼X+Z .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (4) For k = −∞, equation (4) holds by taking the limit k → −∞ on the right-hand side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Equation (4) generalizes previous bias formulas for the OLS estimator to the entire family of k-class estimators;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' see Remark 5 below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Interestingly, this more general formula can be easily derived by applying the OLS bias formula twice;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' see equation (5) below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Because the bias of any k-class estimand can be written as a function of RY ∼U|X,Z,D and RD∼U|X,Z, we will refer to them as the primitive sensitivity parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Corollary 1 in the appendix contains specialized bias formulas for the common estimands in Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The next proposition states the causal identification assumption under which these estimands are unbiased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In the setting of Theorem 1, the following statements are true: (i) If RD∼U|X,Z = 0 or RY ∼U|X,Z,D = 0, then β = βY ∼D|X,Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (ii) If R2 D∼U+Z|X = 0 or R2 Y ∼U+Z|X,D = 0, then β = βY ∼D|X,Z = βY ∼D|X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (iii) If RZ∼U|X = 0 and RY ∼Z|X,D,U = 0, then β = βD∼Z|X, Y ∼Z|X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Proof Sketch of Theorem 1 By expanding the difference between the k-class and the target estimands and ap- plying the R2-calculus to the first term, we deduce βk − βY ∼D|X,Z,U = βk − βY ∼D|X,Z + βY ∼D|X,Z − βY ∼D|X,Z,U (5) = � βY ∼D|X − βY ∼D|X,Z � 1 − k � 1 − R2 D∼Z|X � + � βY ∼D|X,Z − βY ∼D|X,Z,U � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Equation (4) can then be derived by applying the following Lemma twice;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' see Ap- pendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Let Y, D and W be random variables, X be a random vector, and suppose σ2 D∼X+W > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Then βY ∼D|X − βY ∼D|X,W = RY ∼W|X,D fD∼W|X σY ∼X+D σD∼X .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' To our knowledge, Lemma 2 first appeared in Cochran (1938) and was later generalized by Cox (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In the context of sensitivity analysis, it has already been used by Frank (2000), Hosman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2010) and Cinelli and Hazlett (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The bias formula in the last paper can be obtained by taking k → −∞ in (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Remark 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Heuristically, the true causal effect β should not depend on the choice of k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This can also been seen from equation (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 11 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Multiple Unmeasured Confounders The assumption that the unmeasured confounder U is one-dimensional has kept the algebra tractable thus far.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In order to obtain a bias formula with multiple confounders, a generalization of Lemma 2 is required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For instance, when W is l-dimensional, we can repeatedly apply Lemma 2 to the following telescoping series: βY ∼D|X − βY ∼D|X,W = l � j=1 βY ∼D|X,W[j−1] − βY ∼D|X,W[j] = l � j=1 RY ∼Wj|X,D,W[j−1] fD∼Wj|X,W[j−1] � � � �1 − R2 Y ∼W[j−1]|X,D 1 − R2 D∼W[j−1]|X σY ∼X+D σD∼X , (6) where [j] := {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' , j} and [0] := ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' By using an expansion similar to (5), we may identify the bias in linear regression and instrumental variables models with multiple unmeasured confounders;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' of course, more sensitivity parameters will be required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Such extensions are explored in Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Alternatively, Lemma 2 provides an upper bound on |βY ∼D|X − βY ∼D|X,W | that can be immediately generalized to multi-dimensional W as stated in the next re- sult.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Heuristically, this is because the confounding effects of several unmeasured variables can negate each other;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' see Cinelli and Hazlett (2020, sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' To our knowledge, this result is first obtained by Hosman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2010);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' we simplify their proof substantially using the R2-calculus in Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Let Y and D be random variables, let X and W be random vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Assume that σ2 D∼X+W > 0 and that the covariance matrix var(W ⊥X,D) is positive definite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Then, ��βY ∼D|X − βY ∼D|X,W �� ≤ � R2 Y ∼W|D,X f2 D∼W|X σ2 Y ∼X+D σ2 D∼X .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (7) Returning to the k-class estimator, when the unmeasured confounder U is multi- dimensional, we may still apply the expansion in equation (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The first term on its right-hand side does not involve U and the second term is bounded by (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This immediately implies a bound on the bias of the k-class estimand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Interpretable and Flexible Constraints Theorem 1 in the previous section has established the dependece of the objective β on two primitive sensitivity parameters: RD∼U|X,Z and RY ∼U|X,Z,D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In this section, we develop different ways to specify interpretable constraints on these parameters by extending ideas in previous work, most notably Cinelli and Hazlett (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The key idea is to compare the R2-value of the unmeasured confounder with that of an observed covariate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' To facilitate this comparison, we assume that the random vector X ∈ Rp can be partitioned into X = ( ˙X, ˜X), ˙X ∈ R ˙p, ˜X ∈ R˜p such that ˙X ⊥⊥ U | ˜X, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (8) Sensitivity Analysis with the R2-calculus 12 Z D U ˙X Y ˜X 1 2 3 4 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Causal diagram for regression and instrumental variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Directed edges repre- sent causal effects and bidirected edges represent dependence due to unmeasured com- mon causes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In Figure 1, we give a causal graphical model that fulfills (8);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' other possibilities may be verified by the familiar d-sepration (Pearl, 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We further denote [ ˙p] := {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' , ˙p}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For I ⊆ [ ˙p] and ˙X ∈ R ˙p, define ˙XI := ( ˙Xi)i∈I and Ic := [ ˙p] \\ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Finally, let ˙X−j := ˙X{j}c for any j ∈ [ ˙p].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Table 1 summarizes the constraints on sensitivity parameters considered in this work;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' it may be helpful to visualize the relations parameterized by these constraints using the causal diagram in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In principle, the constraints in Table 1 can be combined arbitrarily.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In particular, one may specify several comparative bounds using different sets of covariates, although specifying too many bounds may leave the sensitivity model infeasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Next, we show how these bounds naturally arise from the sensitivity analysis for the OLS and TSLS estimators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Ordinary Least Squares The OLS estimand β−∞ = βY ∼D|X,Z identifies the causal effect β = βY ∼D|X,Z,U if the causal diagram in Figure 1 does not contain U → D or U → Y , or equivalent, if RD∼U|X,Z = 0 or RY ∼U|X,Z,D = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Some of the sensitivity models in Table 1 directly bound them;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' others bound related R2-values that can be linked to the primitive parameters by the R2-calculus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Such relations are elaborated below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Constraints on U → D First of all, we may directly specify a bound on the primitive sensitivity parameter RD∼U|X,Z ∈ [Bl UD, Bu UD] ⊆ [−1, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (9) This constraint means that the correlation between D and U, after accounting for linear effects of X and Z, lies within the interval [Bl UD, Bu UD].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 13 Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Specification of constraints: When the user specifies bounds on the sensi- tivity parameters, the corresponding constraints in the last column are added to the stochastic optimization (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' When bounds on U ↔ Z and/or Z → Y are chosen, the TSLS-related equality constraints (17) and (18) also need to be included.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Edge Sensitivity model Optimization constraint 1 U → D 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' RD∼U|X,Z ∈ [Bl UD, Bu UD] (9) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' R2 D∼U| ˜ X, ˙XI,Z ≤ bUDR2 D∼ ˙XJ| ˜ X, ˙XI,Z (10) 2 U → Y 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' RY ∼U|X,Z,D ∈ [Bl UY , Bu UY ] (11) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' R2 Y ∼U| ˜ X, ˙XI,Z ≤ bUY R2 Y ∼ ˙XJ| ˜ X, ˙XI,Z (14), (15) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' R2 Y ∼U| ˜ X, ˙XI,Z,D ≤ bUY R2 Y ∼ ˙XJ| ˜ X, ˙XI,Z,D (13), (15), (16) 3 U ↔ Z 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' RZ∼U|X ∈ [Bl UZ, Bu UZ] (19) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' R2 Z∼U| ˜ X, ˙X−j ≤ bUZR2 Z∼ ˙Xj| ˜ X, ˙X−j (20) 4 Z → Y 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' RY ∼Z|X,U,D ∈ [Bl ZY , Bu ZY ] (21) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' R2 Y ∼Z|X,U,D ≤ bZY R2 Y ∼ ˙Xj| ˜ X, ˙X−j,Z,U,D (22), (23) Alternatively (or in addition to the previous bound), we can specify the following comparative bound that is arguably more interpretable: R2 D∼U| ˜ X, ˙XI,Z ≤ bUDR2 D∼ ˙XJ| ˜ X, ˙XI,Z, I ⊂ [ ˙p], J ⊆ Ic, bUD ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This inequality means that the unmeasured confounder U can explain at most bUD times as much variance of D as ˙XJ does, after accounting for the effect of ( ˜X, ˙XI, Z) on D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For practical purposes, a good choice of the comparison sets is J = {j} and I = Jc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We can relate RD∼U| ˜ X, ˙XI,Z in the last bound to RD∼U|X,Z via the R2-calculus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' By using ˙XIc ⊥⊥ U | ˜X, ˙XI, Z (which follows from the assumption in (8)) and applying the reduction of partial correlation with Y ≡ U, X ≡ D, Z ≡ ( ˜X, ˙XI, Z) and W ≡ ˙XIc, we have R2 D∼U|X,Z [v] = R2 D∼U| ˜ X, ˙XI,Z 1 − R2 D∼ ˙XIc| ˜ X, ˙XI,Z ≤ bUD R2 D∼ ˙XJ| ˜ X, ˙XI,Z 1 − R2 D∼ ˙XIc| ˜ X, ˙XI,Z .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (10) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Constraints on U → Y Similarly to U → D, we may specify a direct bound: RY ∼U|X,Z,D ∈ [Bl UY , Bu UY ] ⊆ [−1, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (11) Alternatively, we may use comparative bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Here we consider two types of bounds depending on whether D is regressed out: R2 Y ∼U| ˜ X, ˙XI,Z ≤ bUY R2 Y ∼ ˙XJ| ˜ X, ˙XI,Z, (12) R2 Y ∼U| ˜ X, ˙XI,Z,D ≤ bUY R2 Y ∼ ˙XJ| ˜ X, ˙XI,Z,D, (13) Sensitivity Analysis with the R2-calculus 14 where I ⊂ [ ˙p], J ⊆ Ic, bUY ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' When comparing the explanatory capability of the variables U and ˙XJ, it is natural to regress out all other variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' However, regressing out D, a potential common child of X and U, may introduce dependence between U and Y ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' this is essentially the point made by Hernan and Robins (1999) in their criticism of Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Thus, we consider both the comparative bound (12) without D and the bound (13) with D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For (12), we may apply rule [v] as in (10) and obtain R2 Y ∼U|X,Z [v] = R2 Y ∼U| ˜ X, ˙XI,Z 1 − R2 Y ∼ ˙XIc| ˜ X, ˙XI,Z ≤ bUY R2 Y ∼ ˙XJ| ˜ X, ˙XI,Z 1 − R2 Y ∼ ˙XIc| ˜ X, ˙XI,Z .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (14) However, we cannot regress out D in (14) because D may be a collider in the path ˙XIc → D ← U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Instead, we can link it to RY ∼U|X,Z,D via the R2-calculus: RY ∼U|X,Z,D [iv] = RY ∼U|X,Z − RY ∼D|X,Z RD∼U|X,Z � 1 − R2 Y ∼D|X,Z � 1 − R2 D∼U|X,Z .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (15) Hence, the first type of comparative bound can be represented as the inequality constraint (14) and the equality constraint (15) in the optimization problem (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The second type of comparative bounds partials out D and involves two addi- tional sensitivity parameters: RY ∼U|X,Z and RY ∼U| ˜ X, ˙XI,Z,D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' To link them to the primitive sensitivity parameters, we may use equation (15) and RY ∼U|X,Z = 1 � 1 − R2 Y ∼ ˙XIc| ˜ X, ˙XI,Z � RY ∼D| ˜ X, ˙XI,ZRD∼U|X,Z � 1 − R2 D∼ ˙XIc| ˜ X, ˙XI,Z + RY ∼U| ˜ X, ˙XI,Z,D � 1 − R2 Y ∼D| ˜ X, ˙XI,Z � 1 − R2 D∼U|X,Z(1 − R2 D∼ ˙XIc| ˜ X, ˙XI,Z) � (16) as an equality constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The derivation of (16) is deferred to Appendix C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Two-stage Least Squares The method of instrumental variables (IV) is commonly used to overcome unmea- sured confounding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Here we only provide a very brief introduction to it;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' the reader is referred to Wooldridge (2010) for a more comprehensive discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' A variable Z is called an instrument for D if (i) it is an independent predictor of D, (ii) it is exogenous in the sense that Z is conditionally independent of the unmeasured confounder U and (iii) it has no direct effect on the outcome Y that is not mediated by D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In linear models, these conditions can be expressed as (i) RZ∼D|X ̸= 0, (ii) RZ∼U|X = 0, (iii) RY ∼Z|X,U,D = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Proposition 3(iii) suggests that under these conditions, the target β = βY ∼D|X,Z,U is identified by the TSLS estimand β1 = βD∼Z|X, Y ∼Z|X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 15 As the last two conditions above involve the unmeasured confounder U and thus cannot be verified, a sensitivity analysis for TSLS would specify bounds on the sensitivity parameters RZ∼U|X and RY ∼Z|X,U,D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' To use the bias formula in Theorem 1, we need to link them to the primitive sensitivity parameters RD∼U|X,Z and RY ∼U|X,Z,D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' To achieve this, we apply the three-variable identity [vi] with Y ≡ Y , X ≡ Z, W ≡ U and Z ≡ (X, D) to obtain fY ∼Z|X,U,D � 1 − R2 Y ∼U|X,Z,D = fY ∼Z|X,D � 1 − R2 Z∼U|X,D − RY ∼U|X,Z,DRZ∼U|X,D, (17) and with Y ≡ U, X ≡ Z, W ≡ D and Z ≡ X to obtain fZ∼U|X,D � 1 − R2 D∼U|X,Z = fZ∼U|X � 1 − R2 D∼Z|X − RD∼Z|XRD∼U|X,Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (18) These are then added to the stochastic program (2) as equality constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Constraints on U ↔ Z The sensitivity parameter RZ∼U|X can be constrained by directly providing a range of plausible values, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' RZ∼U|X ∈ [Bl UZ, Bu UZ] ⊆ [−1, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (19) Alternatively, we allow practitioners to specify the following comparative bound R2 Z∼U| ˜ X, ˙X−j ≤ bUZR2 Z∼ ˙Xj| ˜ X, ˙X−j, j ∈ [ ˙p], bUZ ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Using the conditional independence assumption (8), this can be shown to be equiv- alent to (see Appendix C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='2) R2 Z∼U|X ≤ bUZ R2 Z∼ ˙Xj| ˜ X, ˙X−j 1 − R2 Z∼ ˙Xj| ˜ X, ˙X−j 1 − bUZ R4 Z∼ ˙Xj| ˜ X, ˙X−j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (20) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Constraints on Z → Y We can bound the sensitivity parameter RY ∼Z|X,U,D by specifying the direct bound RY ∼Z|X,U,D ∈ [Bl ZY , Bu ZY ] ⊆ [−1, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (21) Furthermore, we allow the following comparative bound R2 Y ∼Z|X,U,D ≤ bZY R2 Y ∼ ˙Xj| ˜ X, ˙X−j,Z,U,D, j ∈ [ ˙p], bZY ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (22) This last bound is unusual in the sense that the sets of variables that are regressed out are different in the two partial R2-values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' It is difficult to specify compara- tive bounds for the exclusion restriction as the corresponding sensitivity parame- ter RY ∼Z|X,U,D partials out U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Therefore, we cannot directly compare U to an Sensitivity Analysis with the R2-calculus 16 observed covariate, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' ˙Xj, and the right-hand side of the bound cannot be esti- mated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For this reason, we resort to the adjustment set in (22) because we can connect RY ∼ ˙Xj| ˜ X, ˙X−j,Z,U,D to the primitive sensitivity parameters via the following equality constraint fY ∼ ˙Xj| ˜ X, ˙X−j,Z,U,D � 1 − R2 Y ∼U|X,Z,D = � fY ∼ ˙Xj| ˜ X, ˙X−j,Z,D � 1 − R2 D∼U|X,Z + RY ∼U|X,Z,D RD∼ ˙Xj| ˜ X, ˙X−j,Z RD∼U|X,Z ��� 1 − R2 D∼U|X,Z(1 − R2 D∼ ˙Xj| ˜ X, ˙X−j,Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (23) See Appendix C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='2 for the derivation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Intervals So far, we have derived the objective function β = β(θ, ψ) of the stochastic program (2) in Section 3 and a rich set of constraints ψ ∈ Ψ(θ) in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' As θ only involves partial correlations and the standard deviation of regression residuals, we can plug in an empirical estimator of θ to obtain a point estimator of the optimal value of (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In other words, we only need to solve the optimization problem in (3) to estimate the lower and upper bounds of the partially identified region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Complications arise when we would like to construct an interval estimator S of β with certain statistical guarantees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In the general setup presented in Section 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1 and for a given 0 < α < 1, we call S a (1 − α)-sensitivity interval of β if PV � β(θ(PV ), ψ) ∈ S � ≥ 1 − α for all PV and ψ ∈ Ψ(θ(PV )), and S a (1 − α)-sensitivity interval of the partially identified region if PV � PIR(PV ) ⊆ S � ≥ 1 − α for all PV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Obviously, the second notion of confidence is stronger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For a more detailed discus- sion on confidence statements in partially identified problems including issues with asymptotic sensitivity intervals, the reader is referred to Imbens and Manski (2004), Stoye (2009) and Molinari (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Next we review several methods to construct sensitivity intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' To obtain an interval estimator of β in a sensitivity analysis of the OLS, a heuristic approach, as suggested by Cinelli and Hazlett (2020), is to treat U as observed and use the usual confidence interval � �ˆβY ∼D|X,Z + � − ˆRY ∼U|X,Z,D ˆfD∼U|X,Z ± qα √n � � � �1 − ˆR2 Y ∼U|X,Z,D 1 − ˆR2 D∼U|X,Z � ˆσY ∼X+Z+D ˆσD∼X+Z � �, where qα is the (1 − α/2)-quantile of the standard normal distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Here it is assumed that a domain expert can specify ˆψ = ( ˆRY ∼U|X,Z,D ˆRD∼U|X,Z) even though Sensitivity Analysis with the R2-calculus 17 U cannot observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For the partially identified problem, a seemingly reasonable idea is to minimize/maximize the confidence bounds over ˆψ ∈ Ψ(ˆθ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' However, a closer look at this heuristic shows that it achieves no obvious confi- dence guarantees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This is because the sensitivity parameter ˆψ depends on the data and thus its value changes when another sample is drawn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' If ˆψ is almost certainly contained in Ψ(ˆθ), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' P( ˆψ ∈ Ψ(ˆθ)) = 1, this heuristic interval would actually be a sensitivity interval for β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' However, this is only possible if the sensitivity model Ψ is non-informative (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' RD∼U|X,Z ∈ [−1, 1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Numerical simulations in Appendix E confirm this intuitive argument;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' in particular, the heuristic interval has cover- age 50% in one setting and above 99% in another, where the nominal coverage is 1 − α = 90%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' To account for the uncertainty in estimating the feasible set Ψ(θ), Tudball et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2022) propose to solve the optimization problem (3) with a relaxed constraint ψ ∈ ˜Ψ(ˆθ), where ˜Ψ(ˆθ) is constructed to contain Ψ(θ) with high probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' However, several technical difficulties prevent us from directly applying their method to our problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' A third approach to construct sensitivity interval is to use the bootstrap (Efron and Tibshirani, 1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' More specifically, we can compute a collection of estimators ˆˆθ using resamples of the observable data, solve the plug-in optimization problem (3) with ˆθ = ˆˆθ, and then use the bootstrap distribution to construct one-sided confidence intervals [βl min, ∞) and (−∞, βu max] with level (1 − α/2) for the minimal and maximal values, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Different procedures may be employed in the last step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For instance, percentile bootstrap takes the α/2 and 1 − α/2 quantile of the bootstrap distribution to construct the respective confidence interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Other options include the basic (or reverse percentile) bootstrap, studentized bootstrap, and bias-corrected bootstrap;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' see Davison and Hinkley (1997, chap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 5) for more detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Finally, a sensitivity interval with nominal confidence level (1 − α) may be constructed as [βl min, βu max].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For the sensitivity analysis problems described in this article, simulation studies in Appendix E suggest that the percentile bootstrap performs better than the basic boostrap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In two simulation studies with nominal confidence level 90%, we found that the percentile bootstrap intervals covers the partially identified region around 90% and the true parameter, which equals the lower end of the PIR under the specified sensitivity model, around 95% of the time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The empirical coverage of basic bootstrap intervals is about 10% below the nominal level when the sample size is n = 200;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' this gap closes as n increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Although a rigorous asymptotic analysis of the different bootstrap procedures is beyond the scope of this article, we offer some heuristics on why the boostrap is expected to “work” here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' First, Shapiro (1991) provides an asymptotic theory for stochastic optimization and shows that the plug-in estimator of the optimal value of certain stochastic programs is asymptotically linear;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' see also Shapiro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2009, chap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Although our optimization problem (2) involves unknown parameters θ in the constraints and thus does not fall in the class of problems considered by Shapiro (1991), one may hope that the theory there extends to the problem considered here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 18 Second, due to optimization over the sample, the plug-in estimator is always biased, even though the bias may be small asymptotically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' With just a moderate sample size, our simulations also show that the bootstrap distribution of the optimal value estimators is quite skewed;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' see Figure 7 in Appendix E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' It is plausible that the finite sample effects of bias and skewness in the bootstrap distribution cancel out each other for the percentile bootstrap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Finally, Zhao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2019) provide an alternative justification for the percentile bootstrap in partially identified sensitivity analysis by using the generalized minimax inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' However, their proof requires a fixed constraint set Ψ and thus cannot be directly applied to the problem here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Remark 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Although the probability of the estimated constraint set Ψ(ˆθ) being empty should converge to zero as the sample size grows, this can occasionally occur with moderate sample sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Our implementation of the bootstrap procedures takes a conservative approach and sets the optimal value to ∞ or −∞ depending on which end of the PIR is considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Data Example We demonstrate the practicality of the proposed method using a prominent study of the economic return of schooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The dataset was compiled by Card (1993) from the National Longitudinal Survey of Young Men (NLSYM) and contains a sample of 3010 young men at the age of 14 to 24 in 1966 who were followed up until 1981.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Card uses several linear models to estimate the causal effect of education, measured by years of schooling and denoted as D, on the logarithm of earnings, denoted as Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For brevity, we only consider the most parsimonious model used by Card which includes, as covariates for adjustment and denoted as X, years of labour force experience and its square, and indicators for living in the southern USA, being black and living in a metropolitan area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Card (1993) recognizes that many researchers are reluctant to interpret the es- tablished positive correlation between education and earnings as a positive causal effect due to the large number of potential unmeasured confounders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In our analysis, we will consider the possibility that an unmeasured variable U, which represents the motivation of the young men, may influence both schooling and salary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' To address this issue, Card suggests to use an instrumental variable, namely the indicator for growing up in proximity to a 4-year college;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' this is denoted as Z below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Nonethe- less, proximity to college may not be a valid instrumental variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For example, growing up near a college may be correlated with a higher socioeconomic status, more career opportunities, or stronger motivation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' A more detailed discussion of the identification assumptions can be found in Card (1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For the purpose of sensitivity analysis, we assume that being black and living in the southern USA are not directly related with motivation and treat them as ˙X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' the remaining covariates are regarded as ˜X in the sensitivity analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We assume that this partition satisfies the conditional independence in (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In this example, we use comparative bounds to express our beliefs about the effects of the unmeasured confounder U on Y and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We assume that motivation can explain at most 4 times as much variation in the level of education as being black (denoted as ˙Xj) Sensitivity Analysis with the R2-calculus 19 does after accounting for all other observed covariates,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and that motivation can explain at most 5 times as much variation in log-earnings as being black does after accounting for the other covariates and education: (B1) R2 D∼U| ˜ X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' ˙X−j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Z ≤ 4 R2 D∼ ˙Xj| ˜ X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' ˙X−j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (B2) R2 Y ∼U| ˜ X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' ˙X−j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='D ≤ 5 R2 Y ∼ ˙Xj| ˜ X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' ˙X−j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The bounds (B1) and (B2) address deviations from the identification assumptions of a linear regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Likewise, we can also specify deviations from the instrumental variable assumptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We suppose that motivation U can explain at most half as much variation in Z (college proximity) as ˙Xj (black) can after accounting for the effects of ( ˜X, ˙X−j).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Furthermore, we assume that college proximity Z can explain at most 10 % as much variance in log-earnings after excluding effects of (X, U, D) as being black can explain log-earnings after excluding the effects of ( ˜X, ˙X−j, Z, U, D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' These assumptions translate to (B3) R2 Z∼U| ˜ X, ˙X−j ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='5 R2 Z∼ ˙Xj| ˜ X, ˙X−j, (B4) R2 Y ∼Z|X,U,D ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1 R2 Y ∼ ˙Xj| ˜ X, ˙X−j,Z,U,D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' When the bound (B1) is not part of the constraints, we additionally require RD∼U|X,Z ∈ [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='98, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='98].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (24) This ensures that RD∼U|X,Z is bounded away from −1 and 1 and that the partially identified range has finite length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Figure 2 shows the OLS estimates that adjust/do not adjust for Z, the TSLS estimate, and their corresponding 95% confidence intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The same plot shows the estimated partially identified regions and 95% sensitivity intervals (obtained by the percentile bootstrap) for five different sensitivity models that involve different combinations of the bounds (B1) to (B4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Both the OLS and the TSLS estimates suggest a statistically significant positive effect of education on earnings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In the first sensitivity model in Figure 2, we relax the assumption of no unmeasured confounders, which would be required if the OLS estimate is interpreted causally, and assume that the effects of U on D and Y are bounded by (B1) and (B2), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The sensitivity interval remains positive in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In other cases, the estimated partially identified regions and the sensitivity intervals become very wide whenever (B1) is not part of the constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This is because the other constraints, except the loose bound in (24), do not bound |RD∼U|X,Z| away from 1, so the association between D and Y may be entirely driven by the unmeasured confounder U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In fact, the PIR would have an infinite length if (24) was not imposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Therefore, just specifying deviations from the IV- assumptions, as in (B3) and (B4), is not sufficient to ensure that the PIR is finite in this dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Moreover, comparing the first and last sensitivity model in Figure 2, we notice that imposing the IV-related bounds (B3) and (B4) on top of (B1) and (B2) does not shorten the estimated PIR and sensitivity intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' These findings suggest that the results of Card (1993) are more robust towards deviations from the OLS than from the IV assumptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='0 OLS adj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' OLS unadj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' TSLS (B1), (B2) (B3), (B4) (B1), (B3), (B4) (B2), (B3), (B4) (B1) - (B4) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Three estimation strategies and five sensitivity models for the causal effect β: Point estimates/estimates of the PIR (blue);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 95% confidence/sensitivity intervals (black).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Contour Plots This section presents graphical tools to further aid the interpretation of sensitivity analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The main idea is to plot the estimated lower or upper bound of the PIR against the sensitivity parameters or the parameters in the comparative bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Contour lines in this plot allow practitioners to identify the magnitude of unmea- sured confounding (or violations of the instrumental variables assumptions) needed to alter the conclusion of the study qualitatively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This idea dates back at least to Imbens (2003);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' our method below refines the proposal in Cinelli and Hazlett (2020) and Zhang and Ding (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The contour plots will be illustrated using the real data example in the previous section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' b-contour Plot For comparative bounds, the b-factor (such as bUD in (10)) controls how tightly the corresponding sensitivity parameter is constrained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Hence, it is important to gain a practical understanding of b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The b-sensitivity contour plot shows the estimated lower/upper end of the PIR on a grid of b-factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In Figure 3, we consider the sensitivity model with the bounds (B1) and (B2) and investigate our choice (bUD, bUY ) = (4, 5) above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The plot shows that the estimated lower end of the PIR is still positive even for more conservative values such as (bUD, bUY ) = (6, 10) or (bUD, bUY ) = (10, 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Thus, a substantial deviation from the OLS-related assumptions is needed to alter the sign of the estimate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='07 0 (4, 5) 0 5 10 15 0 2 4 6 8 10 12 bUD bUY Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' b-sensitivity contours for (B1), (B2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='07 (4, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='12 0 2 4 6 8 bUD bZY Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' b-sensitivity contours for (B1)-(B4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Figure 4 considers the sensitivity model using the constraints (B1) to (B4) with changing (bUD, bZY ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This plot confirms our observation in Section 6 that imposing the IV-related bounds (B3) and (B4) does not change the estimated lower bound substantially when (B1) and (B2) are already present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In the terminology of con- strained optimization, this means that the “shadow prices” for (B3) and (B4) are small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' R-contour Plot We may also directly plot the estimated lower/upper end of the PIR against the sensitivity parameters RD∼U|X,Z and RY ∼U|X,Z,D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This idea has been adopted in several previous articles already (Imbens, 2003;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Blackwell, 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Veitch and Zaveri, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For such R-contour plots, the key challenge is to benchmark or calibrate the R-values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This was often done informally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For example, Cinelli and Hazlett (2020) consider a model without potential instrument Z, use sensitivity contours parame- terized by R2 D∼U|X and R2 Y ∼U|X,D and add (a ˆR2 D∼Xj|X−j, a ˆR2 Y ∼Xj|X−j,D) for certain choices of a > 0 and j ∈ [p] to the plot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Thus, they aim to provide context for plausible values of the sensitivity parameters;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' the underlying idea is similar to the comparative bounds in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' However, this method of benchmarking is not entirely honest because different sets of covariates are conditioned on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Moreover, regressing out a potential collider D may leave ˆR2 Y ∼Xj|X−j,D difficult to interpret.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Here, we revise the contour plot in Cinelli and Hazlett (2020) by using the R2-calculus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' To this end, we first construct benchmarking points for RD∼U|X,Z and RY ∼U|X,Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Applying the reduction of partial correlation (rule [v]) and the Sensitivity Analysis with the R2-calculus 22 black 2x black 5x black south 2x south 5x south 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='8 RD~U|X,Z RY~U|X,Z,D 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='22 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' R-sensitivity contours for the lower end of the estimated PIR: Our comparison points (black dots) and Cinelli and Hazlett’s comparison points (green triangles).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' conditional independence U ⊥⊥ ˙Xj | ˜X, ˙X−j, Z, j ∈ [ ˙p], we obtain RD∼U|X,Z = RD∼U| ˜ X, ˙X−j,Z � 1 − R2 D∼ ˙Xj| ˜ X, ˙X−j,Z and RY ∼U|X,Z = RY ∼U| ˜ X, ˙X−j,Z � 1 − R2 Y ∼ ˙Xj| ˜ X, ˙X−j,Z , which can be directly compared to, for any j ∈ [ ˙p], ˆRD∼ ˙Xj| ˜ X, ˙X−j,Z � 1 − ˆR2 D∼ ˙Xj| ˜ X, ˙X−j and ˆRY ∼ ˙Xj| ˜ X, ˙X−j � 1 − ˆR2 Y ∼ ˙Xj| ˜ X, ˙X−j,Z .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Moreover, we can multiply these values by a factor of √bR to compare the ex- planatory capability of U (in terms of its R2-value) to bR times the explanatory capability of the measured covariate ˙Xj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Finally, we may use the bijection between (RD∼U|X,Z, RY ∼U|X,Z) and (RD∼U|X,Z, RY ∼U|X,Z,D) in (15) to map the benchmarks to the scale used by the R-contour plot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' To illustrate the proposal, Figure 5 shows the R-contour plot for the estimated lower end of the PIR and adds benchmarks corresponding to black and living in the southern USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We observe that, even if the unmeasured confounder was five times as strong as black in terms of their capability of explaining the variation of D and Y , the estimator would still be positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Figure 5 further contrasts our comparison points with the benchmarks proposed in Cinelli and Hazlett;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' in our experience, the difference between the two methods is usually not significant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Finally, we illustrate the utility of the R-contour plot as a way to visualize the feasible set Ψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity analysis with multiple bounds often entails a non- Sensitivity Analysis with the R2-calculus 23 RZ~U|X , RY~Z|X,U,D ∈ [-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='03 , 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='03] RZ~U|X , RY~Z|X,U,D ∈ [-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='04 , 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='04] RZ~U|X , RY~Z|X,U,D ∈ [-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='01 , 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='01] RZ~U|X , RY~Z|X,U,D ∈ [-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='02 , 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='02] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='0 RD~U|X,Z RY~U|X,Z,D 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='40 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' R-sensitivity contours for the lower end of the estimated PIR: The red lines corre- spond to the values of RD∼U|X,Z and RY ∼U|X,Z,D that conform with the IV-assumptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' intuitive, complex set of constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Consider the following sensitivity model RZ∼U|X, RY ∼Z|X,U,D ∈ [−r, r], r ∈ {0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='01, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='02, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='03, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='04}, R2 Y ∼U| ˜ X, ˙X−j,Z,D ≤ 5 R2 Y ∼ ˙Xj| ˜ X, ˙X−j,Z,D, RD∼U|X,Z ∈ [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='99, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='99], where r parameterizes the degree of deviation from the instrumental variables as- sumptions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' the covariate ˙Xj is the indicator for black.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Figure 6 shows the estimated feasible set Ψ(ˆθ) for different values of r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='01, the feasible set is small and concentrated around the lines that correspond to RD∼U|X,Z = RY ∼U|X,Z,D = 0 (the instrumental variable is valid).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' As r increases, the feasible set becomes larger as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The curved shape of the region of feasible values is a result of the comparative bound on U → Y and the associated constraints (15) and (16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Moreover, we observe that β assumes its most extreme values as RD∼U|X,Z approaches 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This highlights the importance of bounding RD∼U|X,Z away from −1 and 1 to ensure that the PIR has finite length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Discussion and Outlook Thus far, we have sidestepped the issue of numerically computing the solution to the constrained stochastic optimization problem (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In fact, standard algorithms fail to reliably solve the problem due to the complexity of the constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Therefore, we develop a grid search algorithm which leverages the structure of the objective and the equality constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The details can be found in Appendix D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 24 Two insights underlie the methodological development in this article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' First, sen- sitivity analysis (or more generally, any one-dimensional partially identified prob- lem) may be viewed as a constrained stochastic program and we can leverage meth- ods developed in stochastic optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Second, the R2-calculus provides a pa- rameterization of the bias of any k-class estimator and a systematic approach to specify interpretable sensitivity models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Partial identification has attracted considerable attention in econometrics and causal inference since Manski (1990) and Balke and Pearl (1997);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' see Manski (2003);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Imbens and Manski (2004);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Vansteelandt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2006);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Chernozhukov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2007);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Aronow and Lee (2013);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Richardson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2014);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Miratrix et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2018);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Molinari (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Existing methods typically assume a closed-form solution to the stochas- tic program (2) (the lower/upper end of the PIR) and that the plug-in estimator is asymptotically normal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' As such results are only known for relatively simple models, these methods only have limited utility in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The constrained optimization perspective of partial identification is only beginning to get embraced in the litera- ture (Kaido et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Hu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Padh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Our article further shows the need for a more complete, asymptotic theory of the optimal value of a general stochastic program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This may allow one to extend the methodology developed here to sensitivity models with high- or infinite-dimensional parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In particular, a theory for the bootstrap distribution of the optimal value estimator is required to clarify when and which bootstrap procedures provide asymptotically correct sensitivity intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The R2-values, R-values and generalizations thereof are popular for the calibra- tion of sensitivity analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' They have been recently used in the sensitivity analysis for linear models with multiple treatments (Zheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', 2021), mediation analy- sis (Zhang and Ding, 2022), missing values (Colnet et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', 2022) and models with factor-structured outcomes (Zheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In these works, certain algebraic relationships about R2-values and benchmarking techniques such as contour plots and robustness values are frequently used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Thus, the R2-calculus summarized in this article may also benefit the calibration of other sensitivity models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Our proof of the R2-calculus in general Hilbert spaces suggests that it may be useful in nonlinear models, too.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' See Chernozhukov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2022) for related work in partially linear and semiparametric models using the Riesz-Frechet representation of certain causal parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The rules of the R2-calculus are purely algebraic and can therefore be applied in any linear structural equation model – with or without unmeasured variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This raises the question: can sensitivity analysis be automated for reasonable sensitivity models defined by direct and comparative bounds?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Such an algorithm would be immensely useful in applied research, but given the substantial amount of algebra needed for the relatively simple models considered here, the required work would be extremely challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 25 Acknowledgments Tobias Freidling is supported by a PhD studentship from GlaxoSmithKline Re- search & Development.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Qingyuan Zhao is partly supported by the EPSRC grant EP/V049968/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' References Altonji, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Elder, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Taber, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2005) An Evaluation of Instrumental Variable Strategies for Estimating the Effects of Catholic Schooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Journal of Human Resources, XL, 791–821.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Anderson, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (1958) An introduction to multivariate statistical analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' New York;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' London: Wiley Publications in Mathematical Statistics, 1st edn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Anderson, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Rubin, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (1949) Estimation of the parameters of a single equation in a complete system of stochastic equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The Annals of Mathemat- ical Statistics, 20, 46–63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Angrist, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Pischke, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2009) Mostly harmless econometrics: An empiri- cist’s companion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Princeton University Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Aronow, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Lee, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2013) Interval estimation of population means under unknown but bounded probabilities of sample selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Biometrika, 100, 235–240.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Balke, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Pearl, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (1997) Bounds on Treatment Effects from Studies with Imperfect Compliance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Journal of the American Statistical Association, 92, 1171– 1176.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Blackwell, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2014) A Selection Bias Approach to Sensitivity Analysis for Causal Effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Political Analysis, 22, 169–182.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Card, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (1993) Using Geographic Variation in College Proximity to Estimate the Return to Schooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Tech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' w4483, National Bureau of Economic Research, Cambridge, MA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Chernozhukov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Cinelli, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Newey, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Sharma, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Syrgkanis, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2022) Long Story Short: Omitted Variable Bias in Causal Machine Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' arXiv:2112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='13398.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Chernozhukov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Hong, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Tamer, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2007) Estimation and Confidence Regions for Parameter Sets in Econometric Models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Econometrica, 75, 1243– 1284.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Cinelli, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Hazlett, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2020) Making sense of sensitivity: extending omit- ted variable bias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Journal of the Royal Statistical Society: Series B (Statistical Methodology), 82, 39–67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 26 Cochran, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (1938) The Omission or Addition of an Independent Variate in Multiple Linear Regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Supplement to the Journal of the Royal Statistical Society, 5, 171.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Cohen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (1977) Statistical power analysis for the behavioral sciences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' New York: Academic Press, rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' edn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Colnet, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Josse, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Scornet, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Varoquaux, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2022) Causal effect on a target population: a sensitivity analysis to handle missing covariates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' arXiv:2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='06435.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Cornfield, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Haenszel, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Hammond, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Lilienfeld, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Shimkin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Wynder, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (1959) Smoking and lung cancer: recent evidence and a discussion of some questions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Journal of the National Cancer institute, 22, 173–203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Cox, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2007) On a generalization of a result of W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Cochran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Biometrika, 94, 755–759.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Daniels, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Hogan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2008) Missing Data in Longitudinal Stud- ies: Strategies for Bayesian Modeling and Sensitivity Analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Chapman and Hall/CRC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Davidson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and MacKinnon, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (1993) Estimation and inference in economet- rics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' New York: Oxford University Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Davison, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Hinkley, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (1997) Bootstrap Methods and their Application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Cambridge University Press, 1st edn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Dawid, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (1979) Conditional independence in statistical theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Journal of the Royal Statistical Society: Series B (Statistical Methodology), 41, 1–15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Ding, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and VanderWeele, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2016) Sensitivity Analysis Without Assumptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Epidemiology, 27, 368–377.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Dorn, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Guo, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2022) Sharp Sensitivity Analysis for Inverse Propensity Weighting via Quantile Balancing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Journal of the American Statistical Associa- tion, 1–13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Efron, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Tibshirani, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (1994) An Introduction to the Bootstrap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Chapman and Hall/CRC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Frank, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2000) Impact of a Confounding Variable on a Regression Coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sociological Methods & Research, 29, 147–194.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Gustafson, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2005) On Model Expansion, Model Contraction, Identifiability and Prior Information: Two Illustrative Scenarios Involving Mismeasured Variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Statistical Science, 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Halmos, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2000) Introduction to Hilbert space and the theory of spectral multi- plicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Providence, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=': AMS Chelsea, 2nd edn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Hernan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Robins, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (1999) Letter to the editor of biometrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Biomet- rics, 55, 1316–1317.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 27 Hosman, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Hansen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Holland, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2010) The sensitivity of linear regression coefficients’ confidence limits to the omission of a confounder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The Annals of Applied Statistics, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Hu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Wu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Zhang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Wu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2021) A Generative Adversarial Framework for Bounding Confounded Causal Effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Proceedings of the AAAI Conference on Artificial Intelligence, 35, 12104–12112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Imbens, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2003) Sensitivity to exogeneity assumptions in program evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' American Economic Review, 93, 126–132.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Imbens, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Manski, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2004) Confidence Intervals for Partially Identified Parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Econometrica, 72, 1845–1857.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Kaido, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Molinari, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Stoye, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2019) Confidence intervals for projections of partially identified parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Econometrica, 87, 1397–1432.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Koles´ar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Chetty, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Friedman, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Glaeser, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Imbens, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2015) Iden- tification and inference with many invalid instruments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Journal of Business & Economic Statistics, 33, 474–484.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Lin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Psaty, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Kronmal, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (1998) Assessing the Sensitivity of Regression Results to Unmeasured Confounders in Observational Studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Bio- metrics, 54, 948–963.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Manski, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (1990) Nonparametric Bounds on Treatment Effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The American Economic Review, 80, 319–323.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' — (2003) Partial Identification of Probability Distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Springer Series in Statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' New York: Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Miratrix, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Wager, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Zubizarreta, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2018) Shape-constrained par- tial identification of a population mean under unknown probabilities of sample selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Biometrika, 105, 103–114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Molinari, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2020) Chapter 5 - Microeconometrics with Partial Identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In Handbook of Econometrics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 7, 355–486.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Elsevier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Nagar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (1959) The Bias and Moment Matrix of the General k-Class Estimators of the Parameters in Simultaneous Equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Econometrica, 27, 575–595.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Oster, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2019) Unobservable Selection and Coefficient Stability: Theory and Ev- idence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Journal of Business & Economic Statistics, 37, 187–204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Padh, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Zeitler, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Watson, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Kusner, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Silva, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Kilbertus, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2022) Stochastic Causal Programming for Bounding Treatment Effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' arXiv:2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='10806.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' PCORI Methodology Committee (2021) The PCORI Methodology Report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='pcori.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='org/sites/default/files/PCORI-Methodology-Report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 28 Pearl, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2009) Causality: Models, Reasoning, and Inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Cambridge University Press, 2 edn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Richardson, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Hudgens, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Gilbert, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Fine, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2014) Nonparametric Bounds and Sensitivity Analysis of Treatment Effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Statistical Science, 29, 596–618.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Rosenbaum, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (1987) Sensitivity analysis for certain permutation inferences in matched observational studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Biometrika, 74, 13–26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' — (2002) Observational Studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Springer Series in Statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' New York: Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Rosenbaum, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Rubin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (1983) Assessing Sensitivity to an Unobserved Binary Covariate in an Observational Study with Binary Outcome.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Journal of the Royal Statistical Society: Series B (Statistical Methodology), 45, 212–218.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Rothenh¨ausler, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Meinshausen, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', B¨uhlmann, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Peters, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2021) Anchor regression: Heterogeneous data meet causality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Journal of the Royal Statistical Society: Series B (Statistical Methodology), 83, 215–246.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Scharfstein, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Rotnitzky, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Robins, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (1999) Adjusting for Nonig- norable Drop-Out Using Semiparametric Nonresponse Models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Journal of the American Statistical Association, 94, 1096–1120.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Shapiro, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (1991) Asymptotic analysis of stochastic programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Annals of Opera- tions Research, 30, 169–186.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Shapiro, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Dentcheva, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Ruszczy´nski, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2009) Lectures on Stochastic Pro- gramming: Modeling and Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Society for Industrial and Applied Mathemat- ics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Small, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2007) Sensitivity Analysis for Instrumental Variables Regression With Overidentifying Restrictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Journal of the American Statistical Association, 102, 1049–1058.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' de Souza, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Eisen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Perera, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Bantoto, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Bawor, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Dennis, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Samaan, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Thabane, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2016) Best (but oft-forgotten) practices: sensitiv- ity analyses in randomized controlled trials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The American Journal of Clinical Nutrition, 103, 5–17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Stoye, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2009) More on Confidence Intervals for Partially Identified Parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Econometrica, 77, 1299–1315.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Thabane, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Mbuagbaw, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Zhang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Samaan, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Marcucci, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Ye, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Thabane, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Giangregorio, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Dennis, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Kosa, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Debono, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Dillenburg, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Fruci, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Bawor, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Lee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Wells, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Goldsmith, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2013) A tutorial on sensitivity analyses in clinical trials: the what, why, when and how.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' BMC Medical Research Methodology, 13, 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Theil, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (1958) Economist Forecasts and Policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' North-Holland Publishing Com- pany, Amsterdam-London.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 29 Tudball, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Hughes, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Tilling, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Bowden, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Zhao, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2022) Sample- constrained partial identification with application to selection bias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Biometrika, in press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Vandenbroucke, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', von Elm, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Altman, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Gøtzsche, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Mulrow, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Pocock, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Poole, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Schlesselman, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Egger, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2007) Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and Elaboration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' PLoS Medicine, 4, e297.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' VanderWeele, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Arah, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2011) Bias Formulas for Sensitivity Analysis of Unmeasured Confounding for General Outcomes, Treatments, and Confounders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Epidemiology, 22, 42–52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Vansteelandt, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Goetghebeur, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Kenward, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Molenberghs, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2006) Ignorance and Uncertainty Regions as Inferential Tools in a Sensitivity Analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Statistica Sinica, 16, 953–979.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Veitch, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Zaveri, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2020) Sense and Sensitivity Analysis: Simple Post-Hoc Analysis of Bias Due to Unobserved Confounding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In Advances in Neural Infor- mation Processing Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 33, 10999–11009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Curran Associates, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Wooldridge, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2010) Econometric analysis of cross section and panel data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Cambridge, Mass: MIT Press, 2nd edn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Yadlowsky, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Namkoong, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Basu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Duchi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Tian, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2022) Bounds on the conditional and average treatment effect with unobserved confounding factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The Annals of Statistics, 50, 2587–2615.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Zhang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Ding, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2022) Interpretable sensitivity analysis for the Baron- Kenny approach to mediation with unmeasured confounding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='08030.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Zhao, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Small, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Bhattacharya, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2019) Sensitivity analysis for inverse probability weighting estimators via the percentile bootstrap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Journal of the Royal Statistical Society: Series B (Statistical Methodology), 81, 735–761.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Zheng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', D’Amour, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Franks, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2021) Copula-based Sensitivity Analy- sis for Multi-Treatment Causal Inference with Unobserved Confounding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' arXiv: 2102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='09412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Zheng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', Wu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=', D’Amour, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' and Franks, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (2022) Sensitivity to Unobserved Confounding in Studies with Factor-structured Outcomes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' arXiv: 2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='06552.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 30 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Hilbert Space R2-calculus and Proofs The algebraic rules of the R2-calculus – both the population version in Proposition 1 and its sample counterpart – are not specific to linear models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In fact, all rela- tionships fundamentally stem from the geometry of projections in Hilbert spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For this reason, the definitions of R2- and R-values can be generalized and the corresponding algebraic rules can be proven in more generality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This section is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' First, we recall some results on Hilbert space theory (Halmos, 2000, sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 26-29) and define generalized (partial) R2- and R- values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Then, we prove Hilbert space generalizations to Lemma 1 and Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Finally, in Section A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='3, we explain how the R2-calculus for linear models directly follows from the more general result and provides more details on the assumptions and notation involved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Hilbert Space R2-value Let (H, ⟨·, ·⟩) be a Hilbert space over the field K of real or complex numbers;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' denote its associated norm as ∥·∥ and let X, Y, Z ⊆ H be closed linear subspaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The Minkowski sum of Y and X is given by X + Y := {x + y: x ∈ X, y ∈ Y}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For x ∈ X and y ∈ Y, we write x ⊥ y, if ⟨x, y⟩ = 0, x ⊥ Y, if x ⊥ y for all y ∈ Y, and X ⊥ Y, if x ⊥ Y for all x ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For every element h ∈ H, there are unique x ∈ X and x⊥ ∈ H such that x ⊥ x⊥ and h = x + x⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The projection on X is the operator PX : H → X defined by the assignment h = x + x⊥ �→ x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The projection off X is the operator QX : H → H defined by h = x + x⊥ �→ x⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Clearly, the projection on and off X add up to the identity operator, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' PX + QX = Id.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Furthermore, we introduce the notations y⊥X := QX y and Y⊥X := {y⊥X : y ∈ Y}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The space Y⊥X is a closed linear subspace of H;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' thus, the pro- jections PY⊥X and QY⊥X are well-defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' They can be used to define conditional orthogonality: Y ⊥ X | Z ⇔ Y⊥Z ⊥ X ⊥Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (i) PX and QX are linear, self-adjoint, and idempotent operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (ii) If X ⊥ Y, PX+Y = PX + PY and QX+Y = QX QY.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (iii) PX+Y = PX + PY⊥X and QX+Y = QX QY⊥X = QY⊥X QX .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (iv) If h1, h2 ∈ H and h1 ⊥ h2, ∥h1 + h2∥2 = ∥h1∥2 + ∥h2∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (i) See Halmos (2000, sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 26, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (ii) See Halmos (2000, sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 28, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 2) for the proof of PX+Y = PX + PY.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' According to Halmos (2000, sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 29, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 1), PX PY = 0 holds due to X ⊥ Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Hence, the second statement directly follows QX+Y = Id − PX − PY = (Id − PX )(Id − PY) = QX QY.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 31 (iii) We rewrite the direct sum X + Y as follows X + Y = {x + y: x ∈ X, y ∈ Y} = {x + PX y + QX y: x ∈ X, y ∈ Y} = {x + QX y: x ∈ X, y ∈ Y} = X + Y⊥X .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Since X and Y⊥X are orthogonal by definition, the statement directly follows from (ii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (iv) See Halmos (2000, sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 4, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Any one-dimensional linear subspace X can be expressed as X = {λ x: λ ∈ K}, where x is an arbitrary element in X \\{0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Hence, we can identify a one-dimensional subspace with any non-zero element contained in it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Definition 4 (Hilbert space R2- and R-value).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Let X, Y, Z ⊆ H be closed linear subspaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Assume Y is one-dimensional, let y ∈ Y \\ {0} and suppose ∥y⊥Z∥2 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The R2-value of Y on X is defined as R2 Y∼X := 1 − ∥y⊥X ∥2 ∥y∥2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The partial R2-value of Y on X given Z is defined as R2 Y∼X|Z := R2 Y∼X+Z − R2 Y∼Z 1 − R2 Y∼Z .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' If X is one-dimensional, x ∈ X \\ {0} and ∥x⊥Z∥2 > 0, the partial R-value is defined as RY∼X|Z := ⟨y⊥Z, x⊥Z⟩ ∥y⊥Z∥ ∥x⊥Z∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The corresponding (partial) f2- and f-values are defined analogously to Defini- tion 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The choice of the non-zero elements y and x does not change the (partial) R2- and R-values due to the normalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Therefore, all quantities above are well-defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Proofs of Results in Section 2 In this subsection, we state and prove the generalized versions of Lemma 1 and Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In the setting of Definition 4, R2 Y∼X|Z = R2 Y⊥Z∼X ⊥Z holds true.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' More- over, if X is a one-dimensional subspace, then R2 Y∼X|Z = (RY∼X|Z)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 32 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The first statement of the lemma follows from some elementary algebraic manipulations and Lemma 4 (iii) R2 Y∼X|Z = R2 Y∼X+Z − R2 Y∼Z 1 − R2 Y∼Z � 1 − ∥y⊥X+Z∥2 ∥y∥2 − 1 + ∥y⊥Z∥2 ∥y∥2 � �∥y⊥Z∥2 ∥y∥2 = 1 − ∥y⊥X+Z∥2 ∥y⊥Z∥2 (iii) = 1 − ∥QX ⊥Z y⊥Z∥2 ∥y⊥Z∥2 = R2 Y⊥Z∼X ⊥Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' To prove the second part of the lemma, we assume that X is one-dimensional and choose x ∈ X \\ {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' If X ⊥Z = 0, the projection on X ⊥Z is 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' otherwise, it is given by PX ⊥Zh = ⟨h, x⊥Z⟩x⊥Z ∥x⊥Z∥2 , for h ∈ H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (25) This can be easily checked: PX ⊥Z is linear and its image is contained in X ⊥Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Moreover, we compute �⟨h, x⊥Z⟩ x⊥Z ∥x⊥Z∥2 , h − ⟨h, x⊥Z⟩ x⊥Z ∥x⊥Z∥2 � = ⟨h, x⊥Z⟩2 ∥x⊥Z∥2 − ⟨h, x⊥Z⟩2∥x⊥Z∥2 ∥x⊥Z∥4 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Following from the first part of the proof and Lemma 4 (iv), we infer R2 Y∼X|Z = 1 − ∥QX ⊥Z y⊥Z∥2 ∥y⊥Z∥2 (iv) = ∥PX ⊥Z y⊥Z∥2 ∥y⊥Z∥2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Directly plugging in the formula for the projection on X ⊥Z yields the second state- ment of the lemma R2 Y∼X|Z = ∥⟨y⊥Z, x⊥Z⟩ x⊥Z∥2 ∥y⊥Z∥2 ∥x⊥Z∥4 = ⟨y⊥Z, x⊥Z⟩2∥x⊥Z∥2 ∥y⊥Z∥2 ∥x⊥Z∥4 = � RY∼X|Z �2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Proposition 4 (Hilbert space R2-calculus).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In the setting of Definition 4, let W be another closed linear subspace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Assume ∥Y⊥X+W+Z∥2 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Further suppose ∥X ⊥W+Z∥2 >0 and ∥W⊥X+Z∥2 > 0 when X and/or W are one-dimensional sub- spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Then, the following rules hold [i] Orthogonality: if Y ⊥ X, R2 Y∼X = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' [ii] Orthogonal additivity: if X ⊥ W, R2 Y∼X+W = R2 Y∼X + R2 Y∼W;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' [iii] Decomposition of unexplained variation: 1 − R2 Y∼X+W = (1 − R2 Y∼X )(1 − R2 Y∼W|X );' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' [iv] Recursion of partial R-value: if X and W are one-dimensional, RY∼X|W = RY∼X − RY∼WRX∼W � 1 − R2 Y∼W � 1 − R2 X∼W ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 33 [v] Reduction of partial R-value: if X is one-dimensional and Y ⊥ W, RY∼X|W = RY∼X � 1 − R2 X∼W ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' [vi] Three-dimensional restriction: if X and W are one-dimensional, fY∼X|W � 1 − R2 Y∼W|X = fY∼X � 1 − R2 X∼W − RY∼W|X RX∼W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' All of the relationships above also hold when Z is partialed out (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' if “ |Z” is appended to the subscripts of all R-, R2-, and f-values) and the orthogonality as- sumptions are conditional on Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' [i] Since Y⊥Z and X ⊥Z are orthogonal, QX ⊥Zy⊥Z = y⊥Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Hence, R2 Y∼X|Z = 1 − ∥y⊥Z∥2 ∥y⊥Z∥2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' [ii] Lemma 5 and its proof yield R2 Y∼X+W|Z = R2 Y⊥Z∼X ⊥Z+W⊥Z = ∥PX ⊥Z+W⊥Z y⊥Z∥2 ∥y⊥Z∥2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Following from Lemma 4 (ii) and (iv), we get R2 Y∼X+W|Z (ii) = ∥PX ⊥Zy⊥Z + PW⊥Z y⊥Z∥2 ∥y⊥Z∥2 (iv) = ∥PX ⊥Z y⊥Z∥2 ∥y⊥Z∥2 + ∥PW⊥Z y⊥Z∥2 ∥y⊥Z∥2 = R2 Y∼X|Z + R2 Y∼W|Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' [iii] The statement directly follows from the definition of the partial R2-value � 1 − R2 Y∼X|Z � � 1 − R2 Y∼W|X+Z � = ∥y⊥X+Z∥2 ∥y⊥Z∥2 ∥y⊥W+X+Z∥2 ∥y⊥X+Z∥2 = ∥y⊥W+X+Z∥2 ∥y⊥Z∥2 = 1 − R2 Y∼W+X|Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' [iv] Plugging in the definition of the partial R-value into the right-hand side, we get RHS = RY∼X|Z − RY∼W|Z RX∼W|Z � 1 − R2 Y∼W|Z � 1 − R2 X∼W|Z = � ⟨y⊥Z, x⊥Z⟩ ∥y⊥Z∥∥x⊥Z∥ − ⟨y⊥Z, w⊥Z⟩ ∥y⊥Z∥∥w⊥Z∥ ⟨x⊥Z, w⊥Z⟩ ∥x⊥Z∥∥w⊥Z∥ � � �∥y⊥W+Z∥ ∥y⊥Z∥ ∥x⊥W+Z∥ ∥x⊥Z∥ � = ⟨y⊥Z, x⊥Z⟩ ∥y⊥W+Z∥∥x⊥W+Z∥ − ⟨y⊥Z, w⊥Z⟩ ⟨x⊥Z, w⊥Z⟩ ∥w⊥Z∥2∥y⊥W+Z∥∥x⊥W+Z∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 34 Recalling the formula (25) for the projection operator on a one-dimensional subspace, we can reformulate the upper equation further RHS = � y⊥Z, x⊥Z − ⟨x⊥Z,w⊥Z⟩ w⊥Z ∥w⊥Z∥2 � ∥y⊥W+Z∥∥x⊥W+Z∥ = ⟨y⊥Z, QW⊥Z x⊥Z⟩ ∥y⊥W+Z∥∥x⊥W+Z∥ (iii) = ⟨y⊥W+Z, x⊥W+Z⟩ ∥y⊥W+Z∥∥x⊥W+Z∥ = RY∼X|W+Z = LHS, where the third equality follows from Lemma 4 (iii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' [v] Let (w⊥Z j )j∈{1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=',J}, be an orthonormal basis of W⊥Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The subspace spanned by the first j vectors is denoted by W⊥Z j := span{w⊥Z 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' , w⊥Z j }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Due to rule [i] and Y ⊥ W | Z, R2 Y∼Wj|Z = 0 and R2 Y∼Wj+1|Wj+Z = 0 hold for all j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' , J − 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' By induction, we prove the statement RY∼X|Z+Wj = RY∼X|Z � 1 − R2 X∼Wj|Z , for all j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' , J}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For the base case, we apply rule [iv] and RY∼W1|Z = 0 as follows RY∼X|W1+Z [iv] = RY∼X|Z − RY∼W1|Z RX∼W1|Z � 1 − R2 Y∼W1|Z � 1 − R2 X∼W1|Z = RY∼X|Z � 1 − R2 X∼W1|Z .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The induction step uses rule [iv] and simplifies the resulting expression via RY∼Wj+1|Wj+Z = 0, the induction hypothesis and rule [iii]: RY∼X|Wj+1+Z [iv] = RY∼X|Wj+Z − RY∼Wj+1|Wj+Z RX∼Wj+1|Wj+Z � 1 − R2 Y∼Wj+1|Wj+Z � 1 − R2 X∼Wj+1|Wj+Z = RY∼X|Wj+Z � 1 − R2 X∼Wj+1|Wj+Z = RY∼X|Z � 1 − R2 X∼Wj|Z � 1 − R2 X∼Wj+1|Wj+Z [iii] = RY∼X|Z � 1 − R2 X∼Wj+1|Z .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' [vi] First, we apply rule [iv] to RY∼X|W+Z and RY∼W|X+Z RY∼X|W+Z = RY∼X|Z − RY∼W|Z RX∼W|Z � 1 − R2 Y∼W|Z � 1 − R2 X∼W|Z , RY∼W|X+Z = RY∼W|Z − RY∼X|Z RX∼W|Z � 1 − R2 Y∼X|Z � 1 − R2 X∼W|Z , Sensitivity Analysis with the R2-calculus 35 and compute RY∼X|W+Z � 1 − R2 Y∼W|Z + RY∼W|X+ZRX∼W|Z � 1 − R2 Y∼X|Z = 1 � 1 − R2 X∼W|Z � RY∼X|Z − RY∼W|ZRX∼W|Z + RY∼W|ZRX∼W|Z − RY∼X|ZR2 W∼X|Z � = RY∼X|Z � 1 − R2 X∼W|Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Next, we divide both sides of the equation by � 1 − R2 Y∼X|Z and rearrange it which results in RY∼X|W+Z � 1 − R2 Y∼W|Z � 1 − R2 Y∼X|Z = fY∼X|Z � 1 − R2 X∼W|Z − RY∼W|X+ZRX∼W|Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' According to rule [iii], we obtain (1−R2 Y∼X|Z)(1−R2 Y∼W|X+Z) = 1−R2 Y∼X+W|Z = (1−R2 Y∼W|Z)(1−R2 Y∼X|W+Z) and thus 1 − R2 Y∼W|Z 1 − R2 Y∼X|Z = 1 − R2 Y∼W|X+Z 1 − R2 Y∼X|W+Z .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Plugging this relationship into the left-hand side of the upper equation, we arrive at fY∼X|W+Z � 1 − R2 Y∼W|X+Z = fY∼X|Z � 1 − R2 X∼W|Z − RY∼W|X+Z RX∼W|Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' R2-calculus for Linear Models The R2-calculus for linear models as presented in the main text is a special case of the R2-calculus for Hilbert spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' To be consistent with the standard notation for R2-values in linear models in the main text, we make two slight changes to the Hilbert space notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' First, a random vector denotes the linear space that is spanned by its components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Analogously, for an i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' sample of size n for a p-dimensional random vector X, we use the matrix X ∈ Rn×p to denote the row- space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Second, we replace the plus-sign with a comma for partialed out variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For instance, we write R2 Y ∼X|W,Z instead of R2 Y ∼X|W+Z in the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Denote the space of square-integrable random variables L2 := {X : E[X2] < ∞}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 36 We define the following four Hilbert spaces with associated inner products H := L2, ⟨X, Y ⟩H := E[XY ], H0 := � X ∈ L2 : E[X] = 0 � , ⟨X, Y ⟩H0 := cov(X, Y ), ˆH := Rn, ⟨x, y⟩ ˆ H := n−1xT y, ˆH0 := � x ∈ Rn : ¯x = 0 � , ⟨x, y⟩ ˆ H0 := � cov(x, y), where ¯x denotes the empirical mean of x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The population R2-calculus for linear mod- els as stated in the main text follows from choosing the Hilbert space (H0, ⟨·, ·⟩H0) in Lemma 5 and Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Likewise, we use ( ˆH0, ⟨·, ·⟩ ˆ H0) for the empirical R2- calculus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Since we choose the scaling n−1 in the empirical covariance, the estimators of covariance, variance and standard deviation are not unbiased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' To account for the loss of degrees of freedom through estimation of the mean and potentially partialing out a p-dimensional subspace, the factor (n−p−1)−1 must be used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We choose the scaling n−1 instead to accord with the textbook definition of the empirical R2-value (Davidson and MacKinnon, 1993, chap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Besides, for a sufficiently large sample size n the difference will be negligible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In the main text, we made the assumption that the random variables and the observations are centred and thus are elements of H0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' If this does not hold, we can redefine the population R2-value via the inner product ⟨·, ·⟩H as follows R2 Y ∼X := 1 − E[(Y ⊥X)2] E[Y 2] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Similarly, we replace the inner product in the definition of partial R2-, R-, f2- and f-values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This formulation contains the definition of R2-value in the main text as a special case because, for centred random variables, ⟨·, ·⟩H and the covariance are equal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Furthermore, if we treat the constant 1 as an additional covariate, the following relationship holds R2 Y −E[Y ]∼X−E[X] = R2 Y ∼X|1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Hence, centring random variables is equivalent to partialing out the effect of the constant, and thus always observed, covariate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' As our focus lies on the explanatory capability of the non-constant covariates, we always partial out 1 or equivalently centre the observed variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The same arguments also apply to the empirical R2-value and centring the samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Proofs of Results in Section 3 Without loss of generality, we assume that all random variables/vectors are cen- tred;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' moreover, we only state and prove the population version of the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' As explained in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='3, the sample and non-centred counterparts of the results and proofs follow by the same arguments but choosing a different Hilbert space and inner product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 37 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' A Single Unmeasured Confounder Proof of Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' First, we rewrite the partialing out of Z in terms of a projection operation, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Lemma 4 (ii);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' then, we use linearity of the covariance and Lemma 4 (iv) to simplify the numerator and denominator, respectively: β1 = cov(D⊥X, Y ⊥X) − cov(D⊥X, QZ⊥XY ⊥X) var(D⊥X) − var(QZ⊥XD⊥X) = cov(D⊥X, PZ⊥XY ⊥X) var(PZ⊥XD⊥X) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Since Z⊥X is one-dimensional, the projection PZ⊥X is given by (25).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Plugging this relationship into the equation above yields β1 = cov � D⊥X, cov(Z⊥X,Y ⊥X) var(⊥X) Z⊥X� var � cov(D⊥X,Z⊥X) var(Z⊥X) Z⊥X � = cov(Z⊥X, Y ⊥X) cov(Z⊥X, D⊥X) = βD∼Z|X, Y ∼Z|X which proves the first result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The second and third statements directly follow from the definition of the k-class estimand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Proof of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' First, we express the estimands βY ∼D|X and βY ∼D|X,W in terms of standard deviations and correlations and replace the terms with the R- and σ-notation βY ∼D|X − βY ∼D|X,W = corr(Y ⊥X, D⊥X)sd(Y ⊥X)sd(D⊥X) sd(D⊥X)2 − corr(Y ⊥X,W, D⊥X,W )sd(Y ⊥X,W )sd(D⊥X,W ) sd(D⊥X,W )2 = RY ∼D|X σY ∼X σD∼X − RY ∼D|X,W σY ∼X+W σD∼X+W .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Next, we extract the common factor σY ∼X+D/σD∼X by applying the formula for decomposition of unexplained variance [iii] four times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We then rewrite the differ- ence so that it is expressed in terms of RY ∼W|X,D instead of RY ∼D|X,W .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' To this end, we subsequently replace RY ∼D|X,W and RY ∼W|X via the recursion of partial correlation formula [iv].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In summary,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' we get βY ∼D|X − βY ∼D|X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='W [iii] = � � RY ∼D|X � 1 − R2 Y ∼D|X − RY ∼D|X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='W � 1 − R2 Y ∼W|X � 1 − R2 Y ∼D|X � 1 − R2 D∼W|X � � σY ∼X+D σD∼X [iv] = � �fY ∼D|X − RY ∼D|X − RY ∼W|X RD∼W|X � 1 − R2 Y ∼D|X � 1 − R2 D∼W|X � � � σY ∼X+D σD∼X [iv] = � fY ∼D|X − 1 � 1 − R2 Y ∼D|X � 1 − R2 D∼W|X � � RY ∼D|X − RD∼W|X �� 1 − R2 Y ∼D|X � 1 − R2 D∼W|XRY ∼W|X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='D + RY ∼D|X RD∼W|X ��� σY ∼X+D σD∼X Sensitivity Analysis with the R2-calculus 38 = � fY ∼D|X � 1 − 1 1 − R2 D∼W|X + R2 D∼W|X 1 − R2 D∼W|X � +fD∼W|X RY ∼W|X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='D � σY ∼X+D σD∼X = fD∼W|X RY ∼W|X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='D σY ∼X+D σD∼X .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Throughout this proof, all quantities partial out X which is indicated by either the subscript “|X” or the superscript “⊥X”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In order to shorten the notation, we only indicate partialing out X in the estimands and drop the X-dependence in the other quantities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' First, we focus on the difference between the k-class estimand βk and the OLS estimand βY ∼D|X,Z that adjusts for X and Z;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' multiplying the respective denomi- nators yields βk − βY ∼D|X,Z = cov(D, Y ) − k cov(D⊥Z, Y ⊥Z) var(D) − k var(D⊥Z) − cov(Y ⊥Z, D⊥Z) var(D⊥Z) = cov(D, Y ) var(D⊥Z) − k cov(D⊥Z, Y ⊥Z) var(D⊥Z) var(D⊥Z) var(D) − k var(D⊥Z)2 + − cov(D⊥Z, Y ⊥Z) var(D) + k cov(D⊥Z, Y ⊥Z) var(D⊥Z) var(D⊥Z) var(D) − k var(D⊥Z)2 = cov(D, Y ) var(D⊥Z) − cov(D⊥Z, Y ⊥Z) var(D) var(D⊥Z) var(D) − k var(D⊥Z)2 = cov(D, Y ) var(D⊥Z) − cov(D⊥Z, Y ⊥Z) var(D) var(D⊥Z) var(D) � 1 − k var(D⊥Z)/ var(D) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Next, we simplify the last expression by using 1 − R2 D∼Z = var(D⊥Z)/ var(Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This results in a formula which involves the difference of the OLS estimands βY ∼D|X and βY ∼D|X,Z: βk − βY ∼D|X,Z = 1 1 − k � 1 − R2 D∼Z � �cov(D, Y ) var(D) − cov(D⊥Z, Y ⊥Z) var(D⊥Z) � = 1 1 − k � 1 − R2 D∼Z � � βY ∼D|X − βY ∼D|X,Z � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We can now use the last result to express the difference βk −β as a telescoping sum: βk − β = βk − βY ∼D|X,Z + βY ∼D|X,Z − βY ∼D|X,Z,U = 1 1 − k � 1 − R2 D∼Z � � βY ∼D|X − βY ∼D|X,Z � + � βY ∼D|X,Z − βY ∼D|X,Z,U � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This representation includes two differences of OLS estimands;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' hence, Lemma 2 can be applied twice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For the first summand, we use X ≡ X and W ≡ Z;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' for the Sensitivity Analysis with the R2-calculus 39 second, X ≡ (X, Z) and W ≡ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Thus, we get βk − β = 1 1 − k � 1 − R2 D∼Z �RY ∼Z|D fD∼Z σY ∼D σD + RY ∼U|Z,D fD∼U|Z σY ∼Z+D σD∼Z .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Finally, we can simplify the expression above by extracting a common factor of σY ∼Z+D/σD∼Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We use the definition of the (partial) R2-value, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 1 − R2 Y ∼Z|D = σ2 Y ∼Z+D/σ2 Y ∼D, and deduce that βk − β = � RY ∼Z|D fD∼Z 1 − k � 1 − R2 D∼Z � � 1 − R2 D∼Z � 1 − R2 Y ∼Z|D + RY ∼U|Z,D fD∼U|Z �σY ∼Z+D σD∼Z = � fY ∼Z|D RD∼Z 1 − k + k R2 D∼Z + RY ∼U|Z,D fD∼U|Z � σY ∼Z+D σD∼Z , which concludes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In the setting of Theorem 1, the following are true (i) Adjusted Regression: βY ∼D|X,Z − β = RY ∼U|X,Z,D fD∼U|X,Z σY ∼X+Z+D σD∼X+Z ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (ii) Unadjusted Regression: βY ∼D|X − β = � fY ∼Z|X,D RD∼Z|X + RY ∼U|X,Z,D fD∼U|X,Z � σY ∼X+Z+D σD∼X+Z ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (iii) Instrumental Variable: βD∼Z|X, Y ∼Z|X − β = �fY ∼Z|X,D RD∼Z|X + RY ∼U|X,Z,D fD∼U|X,Z � σY ∼X+Z+D σD∼X+Z .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The statements are a direct consequence of Theorem 1 and Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Proof of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (i) This statement directly follows from taking the limit k → −∞ and setting RY ∼U|X,Z,DfD∼U|X,Z = 0 in equation (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (ii) We apply the decomposition of unexplained variance rule 1 − R2 D∼U+Z|X [iii] = � 1 − R2 D∼Z|X �� 1 − R2 D∼U|X,Z � , 1 − R2 Y ∼U+Z|X,D [iii] = � 1 − R2 Y ∼Z|X,D �� 1 − R2 Y ∼U|X,Z,Z � , Sensitivity Analysis with the R2-calculus 40 which yields the implications R2 D∼U+Z|X = 0 ⇒ RD∼Z|X = 0, RD∼U|X,Z = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' R2 Y ∼U+Z|X,D = 0 ⇒ RY ∼Z|X,D = 0, RY ∼U|X,Z,D = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Then, the unbiasedness of βY ∼D|X,Z and βY ∼D|X follows from Corollary 1 or Theorem 1 with k = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (iii) In order to connect the IV-related sensitivity parameters to RD∼U|X,Z and RY ∼U|X,Z,D, we apply the three-variable identity [vi] with Y ≡ Y , X ≡ Z, W ≡ U and Z ≡ (X, D) as well as Y ≡ U, X ≡ Z, W ≡ D and Z ≡ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We obtain fY ∼Z|X,U,D � 1 − R2 Y ∼U|X,Z,D = fY ∼Z|X,D � 1 − R2 Z∼U|X,D − RY ∼U|X,Z,DRZ∼U|X,D, fZ∼U|X,D � 1 − R2 D∼U|X,Z = fZ∼U|X � 1 − R2 D∼Z|X − RD∼Z|XRD∼U|X,Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' If we set RZ∼U|X = 0 and RY ∼Z|X,U,D = 0 in the equations above and simplify them, we get the relationship fD∼U|X,Z RY ∼U|X,Z,D = −fY ∼Z|X,D RD∼Z|X .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Due to Corollary 1 or Theorem 1 with k = 1, this implies βD∼Z|X, Y ∼Z|X = β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Multiple Unmeasured Confounders Proof of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Analogously to the proof of Theorem 1, we only indicate partialing out X in the estimands and drop the X-dependence in the other quantities for ease of notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We define the vector λ as follows λ = var(W ⊥D)−1 cov(W ⊥D, Y ⊥D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' It equals the regression coefficients of W in the linear model Y ∼ D + X + W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In order to reduce the number of dimensions of W, we introduce a new random variable W ∗ := λT W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Since it captures all linear influence of W on Y , the estimands βY ∼D|X,W and βY ∼D|X,W ∗ are equal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' To formally prove this result, we let A denote either Y or D and show that A⊥W ∗ = A⊥W .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' By definition of λ and some algebraic Sensitivity Analysis with the R2-calculus 41 manipulations we derive A⊥W ∗ = A − (W ∗)T var(W ∗)−1 cov(W ∗, A) = A − W T var(W ⊥D)−1 cov(W ⊥D, Y ⊥D) � var(W ⊥D)−1 cov(W ⊥D, Y ⊥D) �−1 × var(W)−1� var(W ⊥D)−1 cov(W ⊥D, Y ⊥D) �−T × cov(W ⊥D, Y ⊥D)T var(W ⊥D)−T cov(W, A) = A − W T var(W)−1 cov(W, A) = A⊥W .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Choosing Y and D for A, we get βY ∼D|X,W ∗ = cov(Y ⊥W ∗, D⊥W ∗) var(D⊥W ∗) = cov(Y ⊥W , D⊥W ) var(D⊥W ) = βY ∼D|X,W .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Since W ∗ is one-dimensional, we can use Lemma 2 to find a precise characterization for the difference between the OLS estimand that does not and does adjust for W: βY ∼D|X − βY ∼D|X,W = βY ∼D|X − βY ∼D|X,W ∗ = RY ∼W ∗|D fD∼W ∗ σY ∼D σD .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (26) Moreover, the explanatory capabilities of W and W ∗ for Y are identical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' According to Lemma 4 (iii), we infer Y ⊥D,W = Q(D,W)Y = QD⊥W QW Y = QD⊥W ∗Y ⊥W ∗ = Y ⊥D,W ∗ which yields R2 Y ∼W|D = 1 − var(Y ⊥D,W ) var(Y ⊥D) = 1 − var(Y ⊥D,W ∗) var(Y ⊥D) = R2 Y ∼W ∗|D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The new random variable W ∗ fully captures the effect of W on Y but does not capture the entire effect of W on D due to the reduced dimension, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' R2 D∼W ≥ R2 D∼W ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' To prove this result, we rewrite D⊥W using Lemma 4 (iii) as follows D⊥W = QPW ∗W+QW ∗W D = Q(W ∗,QW ∗W)D = QW ⊥W ∗D⊥W ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Based on this equation, Lemma 4 (iv) yields the inequality var(D⊥W ) ≤ var(QW ⊥W ∗D⊥W ∗) + var(PW ⊥W ∗D⊥W ∗) = var(D⊥W ∗), which implies R2 D∼W = 1 − var(D⊥W ) var(D) ≥ 1 − var(D⊥W ∗) var(D) = R2 D∼W ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Returning to (26), we use the equality and inequality derived for the R2-values con- cerning W ∗ → Y and W ∗ → D, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Since f2 is a monotone transformation of R2, we have |βY ∼D|X − βY ∼D|X,W |2 ≤ R2 Y ∼W|D,X f2 D∼W|X σ2 Y ∼D+X σ2 D∼X .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 42 In presence of multiple unmeasured confounders, finding an interpretable chara- terization of the difference βY ∼D|X,Z − βY ∼D|X,Z,U becomes more complicated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In the main text, we use a telescoping expansion and repeatedly apply Lemma 2 to ob- tain equation (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The sensitivity parameters in this characterization, however, are not symmetric in the set of partialed out variables which impedes their interpreta- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Under the additional assumption that the components of U are conditionally independent given (X, Z), a symmetric representation can be obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The following result is closely related to Wright’s path analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Our proof, however, only relies on the algebraic relationships of the R2-calculus and does not consult the underlying DAG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Assume the setting of Lemma 3 and further suppose that all components of W are conditionally independent given X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Then, βY ∼D|X − βY ∼D|X,W = l � j=1 βY ∼Wj|X,D,W−j βWj∼D|X, (27) where W−j = (W1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' , Wj−1, Wj+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' , Wl).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For ease of notation, we only indicate partialing out X in the estimands and drop the X-dependence in the other quantities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Due to the conditional independence assumption and Lemma 4 (ii), we can decompose Y as follows Y = Y ⊥D,W + PD⊥W Y + l � j=1 PWjY.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Plugging this relationship into the definition of βY ∼D|X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' using linearity of the co- variance and the formula for projections on a one-dimensional space (25) yields βY ∼D|X = cov(Y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' D) var(D) = 0 + cov(PD⊥W Y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' D) var(D) + l � j=1 cov(PWjY,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' D) var(D) = 1 var(D) � �cov �cov(Y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' D⊥W ) var(D⊥W ) D⊥W ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' D � + l � j=1 cov �cov(Y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Wj) var(Wj) Wj,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' D �� � = cov(Y ⊥W ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' D⊥W ) var(D) + l � j=1 cov(Y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Wj) var(Wj) cov(D,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Wj) var(D) = βY ∼D|X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='W σ2 D∼W σ2 D + l � j=1 RY ∼Wj σY σWj βWj∼D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' By applying the definition of the R2-value, we derive βY ∼D|X − βY ∼D|X,W = −βY ∼D|X,W R2 D∼W + l � j=1 RY ∼Wj σY σWj βWj∼D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 43 Next, we use rule [ii] of the R2-calculus – independent additivity – on R2 D∼W and rewrite βY ∼D|X,W in terms of R-values and σ-values, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' standard deviations: βY ∼D|X − βY ∼D|X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='W [ii] = −RY ∼D|W σY ∼W σD∼W l � j=1 R2 D∼Wj + l � j=1 RY ∼Wj σY σWj βWj∼D = l � j=1 βWj∼D � RY ∼Wj σY σWj − σD RD∼WjσWj RY ∼D|W σY ∼W σD∼W R2 D∼Wj � In order to extract the factor σY ∼D+W−j/σWj∼D+W−j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' we apply rule [iii] – decom- position of unexplained variance – six times and arrive at βY ∼D|X − βY ∼D|X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='W [iii] = l � j=1 βWj∼D σY ∼D+W−j σWj∼D+W−j � RY ∼Wj � � � �1 − R2 Wj∼D+W−j 1 − R2 Y ∼D+W−j − RY ∼D|W RD∼Wj � � � �(1 − R2 Wj∼D+W−j)(1 − R2 Y ∼Wj|W−j) (1 − R2 D∼W )(1 − R2 Y ∼D|W−j) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (28) We concentrate on the term in brackets, denoted by Tj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Invoking rule [v] – reduction of partial correlation – and the (conditional) independence assumption, we infer RY ∼Wj [v] = RY ∼Wj|W−j � 1 − R2 Y ∼W−j, RD∼Wj [v] = RD∼Wj|W−j � 1 − R2 D∼W−j, R2 Wj∼D+W−j = R2 Wj∼D|W−j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We insert these relationships into the expression of Tj and simplify it via rule [iii].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Then,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' we apply rule [iv] – recursion of partial correlation – on RY ∼D|W and simplify ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='the resulting expression ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Tj = RY ∼Wj|W−j ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1 − R2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Wj∼D|W−j ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='� 1 − R2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Y ∼W−j ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1 − R2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Y ∼D+W−j ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='− RY ∼D|W RD∼Wj|W−j ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1 − R2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='D∼W−j ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='�(1 − R2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Wj∼D|W−j)(1 − R2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Y ∼Wj|W−j) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='(1 − R2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='D∼W )(1 − R2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Y ∼D|W−j) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='[iii] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='= RY ∼Wj|W−j ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='�1 − R2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='D∼Wj|W−j ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1 − R2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Y ∼D|W−j ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='− RY ∼D|W RD∼Wj|W−j ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='�1 − R2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Y ∼Wj|W−j ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1 − R2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Y ∼D|W−j ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='[iv] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='= RY ∼Wj|W−j ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='�1 − R2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='D∼Wj|W−j ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1 − R2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Y ∼D|W−j ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='−RD∼Wj|W−j ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='RY ∼D|W−j−RY ∼Wj|W−jRD∼Wj|W−j ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1 − R2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Y ∼D|W−j ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1 − R2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='D∼Wj|W−j ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Sensitivity Analysis with the R2-calculus ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='RY ∼Wj|W−j(1 − R2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='D∼Wj|W−j) − RY ∼D|W−jRD∼Wj|W−j − RY ∼Wj|W−jR2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='D∼Wj|W−j ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1 − R2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Y ∼D|W−j ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1 − R2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='D∼Wj|W−j ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='= RY ∼Wj|W−j − RY ∼D|W−j RWj∼D|W−j ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1 − R2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Y ∼D|W−j ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1 − R2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Wj∼D|W−j ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='= RY ∼Wj|D,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='W−j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Returning to equation (28), we plug in Tj = RY ∼Wj|D,W−j and thus finish the proof βY ∼D|X − βY ∼D|X,W = l � j=1 βWj∼D σY ∼D+W−j σWj∼D+W−j RY ∼Wj|D,W−j = l � j=1 βY ∼Wj|D,W−j βWj∼D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Lemma 6 helps us express the bias of OLS and k-class estimands in terms of par- tial R-values which serve as sensitivity parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Whether these are intuitive, de- pends on the causal structure of the underlying DAG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In the case of two independent unmeasured variables U1 and U2 which confound or mediate β – the direct effect of D on Y –, the sensitivity parameters (RD∼U1, RD∼U2) and (RY ∼U1|D,U2, RY ∼U2|D,U1) are indeed intuitive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The former tuple targets the dependence between D and U, the latter tuple focuses on the direct effects of U on Y regressing out the remaining variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The following theorem demonstrates how Lemma 6 can be applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We identify the bias of the k-class estimand in terms of the intuitive sensitivity parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Assume the setting of Theorem 1 and let U = (U1, U2) be a two- dimensional random vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Further, suppose U1 ⊥⊥ U2 | X, Z holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Then, βk − β = � fY ∼Z|X,D RD∼Z|X 1 − k + k R2 D∼Z|X + 2 � j=1 Rj fj � 1 − f2 j f2 −j + � R−j � 1−R2 j 1−R2 −j − Rj fj f−j �2 � σY ∼X+Z+D σD∼X+Z , where Rj and fj abbreviate RY ∼Uj|X,Z,D,U−j and fD∼Uj|X,Z, respectively, for j ∈{1, 2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Similarly to the proof of Theorem 1, we expand the difference βk − β as a telescoping sum βk − β = (βk − βY ∼D|X,Z) + (βY ∼D|X,Z − βY ∼D|X,Z,U), Sensitivity Analysis with the R2-calculus 45 which allows us to deal with the two summands separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Following from the same arguments, the first summand equals 1 1 − k(1 − R2 D∼Z|X)(βY ∼D|X − βY ∼D|X,Z) = fY ∼Z|X,D RD∼Z|X 1 − k + k R2 D∼Z|X σY ∼X+Z+D σD∼X+Z .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' From here onwards, partialing out X and Z is only indicated in the estimands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In order to rewrite and simplify the second summand, we invoke Lemma 6 and the rule on decomposition of unexplained variance βY ∼D|X,Z − βY ∼D|X,Z,U = 2 � j=1 RY ∼Uj|D,U−j σY ∼D+U−j σUj∼D+U−j RD∼Uj σUj σD [iii] = 2 � j=1 RY ∼Uj|D,U−jRD∼Uj � � � � 1 − R2 Y ∼U−j|D 1 − R2 Uj∼D+U−j σY ∼D σD .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (29) Due to rule [i] and the conditional independence assumption, RU1∼U2 = 0 holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This result can be used to rewrite RUj∼U−j|D via the recursive partial correlation formula [iv];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' moreover, we use the decomposition of unexplained variance [iii] on 1 − R2 Ui∼D+U−i as follows RUj∼U−j|D [iv] = RUj∼U−j − RUj∼D RU−j∼D � 1 − R2 Uj∼D � 1 − R2 U−j∼D = −fD∼Uj fD∼U−j, (30) 1 − R2 Ui∼D+U−i [iii] = (1 − R2 D∼Ui)(1 − R2 Ui∼U−i|D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Inserting these relationships into (29), we find βY ∼D|X,Z − βY ∼D|X,Z,U = 2 � j=1 RY ∼Uj|D,U−j fD∼Uj � � � � 1 − R2 Y ∼U−j|D 1 − f2 D∼U1f2 D∼U2 σY ∼D σD = 2 � j=1 Rj fj � 1 − R2 Y ∼U−j|D 1 − f2 1 f2 2 σY ∼D σD .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (31) Lastly, we aim to express � 1 − R2 Y ∼U−j|D in terms of the other sensitivity param- eters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' To this end, we use the three-variable identity [vi] with Y ≡ Y , X ≡ U−j, W ≡ Uj and Z ≡ D, where we replace RUj∼U−j|D according to (30).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' R−j � 1 − R2 −j � 1 − R2 j − f1f2 Rj [vi] = fY ∼U−j|D � 1 − f2 1 f2 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' By definition, the identity √ 1 − R2 = 1/ � 1 + f2 holds true for any (partial) R2 Sensitivity Analysis with the R2-calculus 46 and its corresponding f2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Thus, we get � 1 − R2 Y ∼U−j|D = � ����1 + � R−j √ 1−R2 −j � 1 − R2 j − f1f2 Rj �2 1 − f2 1 f2 2 � ���� −1/2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Substituting the � 1 − R2 Y ∼U−j|D term in (31) for the expression above proves the form of the second summand that was required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Derivation of Constraints in Section 4 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Ordinary Least Squares Specifying a comparative bound on U → Y that partials out D involves two addi- tional sensitivity parameters, RY ∼U|X,Z and RY ∼U| ˜ X, ˙XI,Z,D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The former is related to RY ∼U|X,Z,D via equation (15);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' hence, it remains to find a relationship that con- nects RY ∼U| ˜ X, ˙XI,Z,D to the other sensitivity parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' To this end, we employ rule [v] – reduction of partial correlation – and the recursive partial correlation formula [iv] for RY ∼U| ˜ X, ˙XI,Z,D and infer RY ∼U|X,Z [v] = RY ∼U| ˜ X, ˙XI,Z � 1 − R2 Y ∼ ˙XIc| ˜ X, ˙XI,Z [iv] = 1 � 1 − R2 Y ∼ ˙XIc| ˜ X, ˙XI,Z � RY ∼D| ˜ X, ˙XI,ZRD∼U| ˜ X, ˙XI,Z + RY ∼U| ˜ X, ˙XI,Z,D � 1 − R2 Y ∼D| ˜ X, ˙XI,Z � 1 − R2 D∼U| ˜ X, ˙XI,Z � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This equation contains the unknown quantity RD∼U| ˜ X, ˙XI,Z which can be expressed in terms of RD∼U|X,Z via rule [v] RD∼U|X,Z [v] = RD∼U| ˜ X, ˙XI,Z � 1 − R2 D∼ ˙XIc| ˜ X, ˙XI,Z .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Plugging this relationship into the equation above, we arrive at the constraint RY ∼U|X,Z = 1 � 1 − R2 Y ∼ ˙XIc| ˜ X, ˙XI,Z � RY ∼D| ˜ X, ˙XI,Z � 1 − R2 D∼ ˙XIc| ˜ X, ˙XI,ZRD∼U|X,Z + RY ∼U| ˜ X, ˙XI,Z,D � 1 − R2 Y ∼D| ˜ X, ˙XI,Z � 1 − R2 D∼U|X,Z � 1 − R2 D∼ ˙XIc| ˜ X, ˙XI,Z � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 47 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Two-stage Least Squares The comparative bound on U ↔ Z is in fact equivalent to a bound on the sensitivity parameter RZ∼U|X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' First, we relate RZ∼U| ˜ X, ˙X−j to RZ∼U|X via the conditional independence assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Recursion of partial correlation [iv] yields 0 = RU∼ ˙Xj| ˜ XI, ˙X−j,Z [iv] = RU∼ ˙Xj| ˜ X, ˙X−j − RZ∼ ˙Xj| ˜ X, ˙X−jRZ∼U| ˜ X, ˙X−j � 1 − R2 Z∼ ˙Xj| ˜ X, ˙X−j � 1 − R2 Z∼U| ˜ X, ˙X−j ⇔ RU∼ ˙Xj| ˜ X, ˙X−j = RZ∼ ˙Xj| ˜ X, ˙X−jRZ∼U| ˜ X, ˙X−j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Employing this relationship and rule [iv] again, we find RZ∼U|X [iv] = RZ∼U| ˜ X, ˙X−j − RZ∼ ˙Xj| ˜ X, ˙X−jRU∼ ˙Xj| ˜ X, ˙X−j � 1 − R2 Z∼ ˙Xj| ˜ X, ˙X−j � 1 − R2 U∼ ˙Xj| ˜ X, ˙X−j = RZ∼U| ˜ X, ˙X−j � � � � 1 − R2 Z∼ ˙Xj| ˜ X, ˙X−j 1 − R2 Z∼ ˙Xj| ˜ X, ˙X−jR2 Z∼U| ˜ X, ˙X−j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' As the right-hand side above is monotone in RZ∼U| ˜ X, ˙Xj, we conclude R2 Z∼U|X ≤ bUZ R2 Z∼ ˙Xj| ˜ X, ˙X−j 1 − R2 Z∼ ˙Xj| ˜ X, ˙X−j 1 − bUZ R4 Z∼ ˙Xj| ˜ X, ˙X−j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' If a practitioner specifies a comparative bound on Z → Y , we need to connect RY ∼ ˙Xj| ˜ X, ˙X−j,U,D to RD∼U|X,Z and RY ∼U|X,Z,D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' To this end, we employ rule [vi] – the three-variable identity – with Y ≡ Y , X ≡ ˙Xj, W ≡ U and Z ≡ ( ˜X, ˜X−j, D) which yields fY ∼ ˙Xj| ˜ X, ˙X−j,Z,U,D � 1 − R2 Y ∼U|X,Z,D [vi] = fY ∼ ˙Xj| ˜ X, ˙X−j,Z,D � 1 − R2 U∼ ˙Xj| ˜ X, ˙X−j,Z,D − RY ∼U|X,Z,D RU∼ ˙Xj| ˜ X, ˙X−j,Z,D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Furthermore,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' we use the conditional independence U ⊥⊥ ˙Xj | ˜X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' ˙X−j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Z both to simplify the following recursive partial correlation formula [iv] and to apply the reduction of partial correlation formula [v] on RD∼U|X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Z RU∼ ˙Xj| ˜ X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' ˙X−j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='D [iv] = RU∼ ˙Xj| ˜ X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' ˙X−j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Z − RD∼ ˙Xj| ˜ X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' ˙X−j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Z RD∼U| ˜ X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' ˙X−j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Z � 1 − R2 D∼ ˙Xj| ˜ X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' ˙X−j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Z � 1 − R2 D∼U| ˜ X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' ˙X−j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Z = −fD∼ ˙Xj| ˜ X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' ˙X−j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Z fD∼U| ˜ X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' ˙X−j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' RD∼U| ˜ X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' ˙X−j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Z [v] = RD∼U|X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Z � 1 − R2 D∼ ˙Xj| ˜ X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' ˙X−j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 48 Inserting these two relationships in the three-variable identity above and cancelling some terms, we arrive at fY ∼ ˙Xj| ˜ X, ˙X−j,Z,U,D � 1 − R2 Y ∼U|X,Z,D = � fY ∼ ˙Xj| ˜ X, ˙X−j,Z,D � 1 − R2 D∼U|X,Z + RY ∼U|X,Z,D RD∼ ˙Xj| ˜ X, ˙X−j,Z RD∼U|X,Z ��� 1 − R2 D∼U|X,Z(1 − R2 D∼ ˙Xj| ˜ X, ˙X−j,Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Solving the Optimization Problem Since users can specify any number and kind of bounds on the sensitivity parameters, the resulting constraint set Ψ(ˆθ) is potentially very complex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' It may be non-convex and can contain multiple non-linear equality- and inequality constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This only leaves few standard optimization algorithms to compute a global solution for (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' These, however, often require careful choice of hyper-parameters and sometimes fail to solve the problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For this reason, we propose an adapted grid search algorithm that is more robust and tailored to our specific optimization problem by exploiting the structure of β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' First, we characterize the set of potential minimizers and max- imizers;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' then, we explain how we can use monotonicity of equality constraints to reduce the number of dimensions of the grid search algorithm;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' finally, we give the pseudocode of the algorithm and discuss its computational complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Characterization of the Solution According to Theorem 1, the objective β is identified in terms of the sensitivity parameters (ψ1, ψ2) = (RD∼U|X,Z, RY ∼U|X,Z,D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Due to its monotonicity in ψ2, the objective β attains its optimal values on a subset of the boundary of Ψ(ˆθ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In order to show this, we characterize the feasible set as Ψ(ˆθ) = � ψ1 : Pψ1̸=∅ Pψ1, where Pψ1 = {ψ2 : (ψ1, ψ2) ∈ Ψ(ˆθ)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For every fixed ψ1 such that Pψ1 ̸= ∅, the objective β is a linear function in ψ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This implies that, for any ψ2 ∈ Pψ1, we obtain β(ˆθ, ψ1, min Pψ1) ⋚ β(ˆθ, ψ1, ψ2) ⋚ β(ˆθ, ψ1, max Pψ1), where the direction of the inequalities depends on the sign of ψ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Therefore, ψ-values that minimize/maximize β are contained in Ψ∗(ˆθ) := � ψ1 : Pψ1̸=∅ {min Pψ1, max Pψ1}, (32) which is a subset of the boundary of Ψ(ˆθ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Therefore, it suffices to discretize the set Ψ∗(ˆθ) instead of Ψ(ˆθ) to find an ap- proximate solution to the optimization problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 49 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Transfering Bounds via Monotonicity Regular grid search algorithms are highly computationally expensive as their com- plexity grows exponentially in the number of unknown parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Yet, the high computational costs can be significantly reduced by leveraging the monotonicity of many equality constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We illustrate this with an example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Example 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Suppose a practitioner specifies the following direct constraint on U → D and comparative constraint on U → Y : RD∼U|X,Z ∈ [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='5, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='5], R2 Y ∼U| ˜ X, ˙X−j,Z ≤ 2R2 Y ∼ ˙Xj| ˜ X, ˙X−j,Z ⇔ R2 Y ∼U|X,Z ≤ 2 f2 Y ∼ ˙Xj| ˜ X, ˙X−j,Z, (33) where the latter equivalence is due to (14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In addition, the unknown parame- ters RD∼U|X,Z, RY ∼U|X,Z,D and RY ∼U|X,Z are constrained by the recursive partial correlation formula RY ∼U|X,Z,D [iv] = RY ∼U|X,Z − RY ∼D|X,Z RD∼U|X,Z � 1 − R2 Y ∼D|X,Z � 1 − R2 D∼U|X,Z .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (34) Note that, for any fixed RD∼U|X,Z value, RY ∼U|X,Z,D is a linear, and hence, mono- tone function of RY ∼U|X,Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In this setting, brute-force grid search creates a three-dimensional grid of points – one dimension per unknown partial R-value – and only keeps those that (approxi- mately) conform with (33) and (34).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (Partial R- and f-values that only depend on V are estimated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=') The remaining points are projected onto the (RD∼U|X,Z, RY ∼U|X,Z,D)- plane and, for every fixed RD∼U|X,Z, we can find the smallest/largest value of RY ∼U|X,Z,D to approximate Ψ∗(ˆθ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Hence, in this example, the complexity of brute- force grid search is cubic in the number of points per dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Our algorithm, on the other hand, only needs to create a one-dimensional grid of RD∼U|X,Z values, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' discretize [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='5, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For every such value, we can compute the smallest value for RY ∼U|X,Z,D by plugging RY ∼U|X,Z = − √ 2 | ˆfY ∼ ˙Xj| ˜ X, ˙X−j,Z| into (34) directly and likewise for the largest value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Therefore, the complexity only grows linearly in the number of points per dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This principle of using monotonicity of the equality constraints can reduce the dimension of the grid and applies beyond the above example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In fact, when only bounds on U → D and U → Y are given, we solely require a one-dimensional grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Hence, the computational complexity of generating equally spaced points in Ψ∗(ˆθ) grows linearly in the number of grid points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In the most general case, when any (finite) number and kind of bound can be specified, only a three-dimensional grid is needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Hence, the worst complexity of the point-generation algorithm is cubic in the number of points per dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Evaluating the objective over Ψ∗(ˆθ) has linear complexity in any case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Adapted Grid-Search Algorithm Our proposed algorithm first constructs a set of equally spaced points that are (approximately) contained in Ψ∗(ˆθ);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' then, it evaluates β over this set and takes the Sensitivity Analysis with the R2-calculus 50 Algorithm 1: Grid approximation of Ψ∗(ˆθ) Input: lower and upper bounds given by Al, Au, Bl, Bu, Dl, Du, Eu, El, Ml, Mu, Ol, Ou, bZY Output: vectors A, L and U 1 al ← max{Al};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' au← min{Au} 2 ml← max{Ml};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' mu← min{Mu} 3 Initialize A,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' U ∈ RNa 4 for i ∈ [Na] do 5 Ai ← al + (i − 1) (au − al)/(Na − 1) 6 dl ← max{hd(Ai,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' El,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' c2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' c3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' c4),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Dl} /* Pushing bounds onto b */ 7 du ← min{hd(Ai,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Eu,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' c2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' c3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' c4),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Du} 8 bl ← max{hb(Ai,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' dl),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Bl} 9 bu ← min{hb(Ai,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' du),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Bu} 10 if bl > bu then 11 Ai ← NA 12 Li ← NA 13 Ui ← NA 14 else 15 fgl← hfg(Ai,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Ml) /* Pushing bounds onto g */ 16 fgu← hfg(Ai,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Mu) 17 gl ← fgl/ � 1 + f2 gl 18 gu ← fgu/ � 1 + f2gu 19 found ← False /* Finding Li */ 20 for j ∈ [Nb] and not found do 21 Bij ← bl + (j − 1) (bu − bl)/(Nb − 1) 22 fq ← hfq(Ai,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Bij,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' c7) /* Computing bounds on o */ 23 ol ← max{− � bZY · f2q /(1 + f2q ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Ol} 24 ou ← min{ � bZY · f2q /(1 + f2q ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Ou} 25 if ol <= ou then 26 for k ∈ [Ng] and not found do 27 Gik ← gl + (j − 1) (gu − gl)/(Ng − 1) 28 fo ← hfo(Bij,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Gik) 29 o ← fo/ � 1 + f2o 30 found ← found ∨(ol ≤ o ∧ o ≤ ou) 31 if found then 32 Li ← Bij 33 if not found then 34 Li ← NA 35 found ← False /* Finding Ui */ 36 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' /* Analogously to Li but the Bij decrease */ 37 return A, L, U Sensitivity Analysis with the R2-calculus 51 minimum/maximum of the obtained β-values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The latter step is straightforward whereas the former is complex when multiple interlocking constraints are present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In order to keep the the notation short,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' we introduce some abbreviations: a = RD∼U|X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' b = RY ∼U|X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='D,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' d = RY ∼U|X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' e = RY ∼U| ˜ X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' ˙XI,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='D,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' g = RZ∼U|X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='D,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' m = RZ∼U|X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' o = RY ∼Z|X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='U,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='D,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' q = RY ∼ ˙Xj| ˜ X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' ˙X−j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='U,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='D,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' c1 = RY ∼D|X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' c2 = RY ∼D| ˜ X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' ˙XI,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' c3 = RD∼ ˙XIc| ˜ X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' ˙XI,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' c4 = RD∼ ˙XIc| ˜ X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' ˙XI,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' c5 = RD∼Z|X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' c6 = RY ∼Z|X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='D,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' c7 = RY ∼ ˙Xj| ˜ X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' ˙X−j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='Z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='D,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' hb(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' d) = d − c3 a � 1 − c2 3 √ 1 − a2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' hd(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' e,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' c2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' c3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' c4) = 1 � 1 − c2 4 � e � 1 − c2 2 � 1 − a2(1 − c2 3) + c2 � 1 − c2 3 a2 � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' hfg(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' m) = 1 √ 1 − a2 �� 1 − c2 5 · fm − c5 a � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' hfo(b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' g) = 1 √ 1 − b2 �� 1 − g2 · fc6 − b g � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' hfq(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' c7) = √ 1 − a2 · fc7 + c7 a b √ 1 − b2� 1 − a2(1 − c2 7) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' With a slight abuse of notation, the parameter e and the associated constants c2, c3 and c4 as well as q and the associated constant c7 may be scalars or vectors depending on the number of (13)- and (22)-constraints, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The notation fs is a shorthand for the f-transformation of some scalar or vector, that is fs = s/ √ 1 − s2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The functions hb and hd are abbreviations for the right-hand sides of the equations (15) and (16), hfo and hfg stem from (17) and (18) and hfq states (23) in the new notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Inserting vectors instead of scalars into the functions is interpreted as componentwise evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In order to compute a set of points that is approximately contained in Ψ∗(ˆθ), we first discretize the interval of all possible a-values and construct the vector A ∈ RNa which contains Na equally spaced points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' (This corresponds to discretizing the interval [min{ψ1 : Pψ1 ̸= ∅}, max{ψ1 : Pψ1 ̸= ∅}].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=') Second, we construct the vectors L, U ∈ RNa which approximate the corresponding minima and maxima of β at the respective a-value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Thus, we can create the points {(Ai, Li): i ∈ [Na]} ∪ {(Ai, Ui): i ∈ [Na]}, which are (approximately) contained and equally spaced in Ψ∗(ˆθ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Evaluating the objective β over this set has complexity O(Na).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In case that only bounds on U → D and U → Y are specified, the computa- tional complexity of generating A, L and U grows linearly in Na and the computed points are actually elements of Ψ∗(ˆθ) instead of merely approximating it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The two types of bounds on U → D specify direct constraints on a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Hence, denoting the Sensitivity Analysis with the R2-calculus 52 vectors of upper and lower bounds on a stemming from (9) and (10) Al and Au, we can construct A by equally spacing Na points in the interval [max{Al}, min{Au}].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Bounds on U → Y directly constrain b (11), d (14) and e (13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Crucially, for every fixed a-value Ai, the functions hd and hb are linear in e and d, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Hence, we can transfer bounds on e onto d and, thus, update bounds on d;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' likewise, we can then push forward the bounds on d onto b and compute Li and Ui.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In case that at least one bound on U ↔ Z or Z → Y is specified, A can be constructed in the same way as before whereas L and U are more computationally involved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We again use the observation that many h-functions are monotone in one argument in order to ”push forward” bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For fixed a-value, we can transfer bounds on m onto g;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' for fixed a- and b- value, we can compute bounds on o;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' for fixed a- and g-value, we can compute the corresponding o-value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We construct Li and Ui by discretizing the range of possible b-values (after successively pushing bounds on e and d onto b) into Nb points and searching for the smallest/largest feasible value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' To test whether a given b-value is feasible, we construct a sequence of Ng values of g and check whether there is at least one value such that the bounds on o are satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Therefore, the computational complexity of constructing A, L and U is O(Na · Nb · Ng).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Algorithm 1 contains the pseudocode of the algorithm to generate A, L and U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' It concerns the case where at least one bound on U ↔ Z or Z → Y is specified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Otherwise, we could directly set Li ← bl and Ui ← bu in line 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' A full implementation of the algorithm will be made available in a public Github repository soon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Simulation Study We investigate the empirical coverage of sensitivity intervals computed with the bootstrap in two scenarios: a regression model with one additional covariate and an instrumental variable model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In both set-ups, we set the nominal level to 90 %.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Linear Regression Simulation We generate a sample of n i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' random vectors (εU, εX, εX, εY )T ∼ N(0, Id) and compute the variables in the model using the following linear structural equations: U := εU, X := εX, D := X + U + εD, Y := D + 2X + U + εY .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Based on these structural equations, we derive the covariance matrix of the involved random variables var � � � � � U X D Y � � � � � = � � � � 1 0 1 2 0 1 1 3 1 1 3 6 2 3 6 15 � � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 53 It can be used to compute (partial) R-values as well as the bias βY ∼D|X − β = 1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' If the comparative constraints R2 D∼U ≤ R2 D∼X, R2 Y ∼U ≤ 4 9 R2 Y ∼X are specified, the partially identified region is [1, (3 + √ 3)/2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Hence, the true value β = 1 equals the lower end of the PIR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The bounds above are sharp in the sense that the lower end of the partially identified range can only be reached when both inequalities are active, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' hold with equality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In order to construct sensitivity intervals, we generate bootstrap samples of the observed data and solve the corresponding optimization problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Then, we use either percentile or basic bootstrap (Davison and Hinkley, 1997, chap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 5) to compute the lower and upper end of the sensitivity interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This approach is compared to the heuristic sensitivity intervals of Cinelli and Hazlett (2020) as well as the oracle 90% confidence interval, which could be computed if U was observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We simulate data for different sample sizes n and repeat each such experi- ment 1000 times to compute the empirical coverage and length of the sensitiv- ity/confidence intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' More specifically, we evaluate the empirical coverage of β and the PIR for different sensitivity intervals and adapt the notion of length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In or- der to account for the fact that the length of typical confidence intervals approaches zero as n → ∞ whereas the length of valid sensitivity intervals is lower bounded by the length of the PIR, we use the distance between the lower end of an interval and 1, when it covers 1, as length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The results of this simulation study are summarized in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Percentile boot- strap exhibits coverage of PIR close to the envisaged level of 90%;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' its coverage of β is close to 95%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The latter is expected as the true value of β is the lower end of the PIR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' By comparison, the empirical coverage of sensitivity intervals constructed via basic bootstrap is 5 to 10 percentage points below the required level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Hence, we use percentile bootstrap to construct sensitivity intervals in the data example in the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Moreover, this simulation study illustrates that Cinelli and Ha- zlett’s heuristic sensitivity intervals do not possess frequentist coverage guarantees: the empirical coverage of the PIR is consistently below 50%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Finally, we see that sensitivity intervals are substantially longer than the oracle confidence interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We attribute the increased length to the uncertainty stemming from estimating the con- straints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In this simulation study, we did not encounter cases where the estimated constraint set was empty on a bootstrap sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In order to investigate the coverage of bootstrap sensitivity intervals more closely, we consider the distribution of the estimated upper and lower end of the PIR as well as the corresponding bootstrap distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Figure 7 depicts the estimates of these distributions based on 1000 repitions of the experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' For small sample sizes n, we notice that the bootstrap distribution is both biased and skewed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Both phenomena diminish as n grows so that the bootstrap distribution approximates the target distribution more closely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This is in line with the observation that coverage improves for larger sample sizes, especially for basic bootstrap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Sensitivity Analysis with the R2-calculus 54 Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Simulation results of the linear regression example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' n Method Coverage Length β PIR Mean Median 200 Percentile bootstrap 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='5% 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='6% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='748 Basic bootstrap 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1% 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='9% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='533 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='310 Heuristic 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='7% 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='6% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='339 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='213 Oracle 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='2% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='127 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='124 500 Percentile bootstrap 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1% 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='7% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='431 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='320 Basic bootstrap 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='4% 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='247 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='197 Heuristic 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='7% 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='0% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='160 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='126 Oracle 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='8% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='079 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='077 1000 Percentile bootstrap 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='1% 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='6% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='240 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='207 Basic bootstrap 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='5% 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='6 % 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='172 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='144 Heuristic 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='5% 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='7% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='111 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='089 Oracle 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='2% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='054 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='053 2000 Percentile bootstrap 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='8% 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='7% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='148 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='135 Basic bootstrap 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='8% 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='9% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='117 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='106 Heuristic 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='9% 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='8% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='073 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='063 Oracle 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='5% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='039 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='037 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Linear Instrumental Variable Simulation We generate 100 i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' samples from the distribution (εU, εZ, εD, εY )T ∼ N(0, Id) and compute the variables of the model as follows U := εU, Z := εZ, D := Z + U + εD, Y := D + U + εY .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' This data-generating process fulfills the instrumental variable assumptions which renders β = 1 point identified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Hence, a sensitivity interval where the IV-related sen- sitivity parameters are set to zero ought to be comparable with the confidence inter- val that is based on the asymptotic normality of the TSLS estimator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In order to use Algorithm 1, we slightly relax the IV assumptions requiring RZ∼U|X, RY ∼Z|X,U,D ∈ [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='002, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='002] and further set RD∼U|X,Z ∈ [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='999, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='999] to bound it away from −1 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We compute the empirical coverage and length of sensitivity intervals constructed via percentile and basic bootstrap, the heuristic sensitivity intervals and the oracle confidence intervals over 500 repitions of the experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Due to the high compu- tational costs, we conduct this simulation study only for sample size n = 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The results of this experiment are stated in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We notice that the bootstrap sensitivity intervals are on par with the oracle confidence interval, both in terms Sensitivity Analysis with the R2-calculus 55 n = 1000 n = 2000 n = 200 n = 500 0 1 2 3 0 1 2 3 0 2 4 6 0 2 4 6 PIR lower PIR lower - Boot PIR upper PIR upper - Boot Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Empirical distribution of the lower and upper end of the PIR as well as the corre- sponding bootstrap distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' of coverage and length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' By contrast, the heuristic sensitivity intervals exhibit very high coverage but their length is too long to be informative in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In this simulation study, 24 of the 500 · 500 = 250, 000 constructed bootstrap samples led to an empty constraint set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In these cases, we set the solution of the optimization problem to −∞ and ∞, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Choice of Hyper-parameters In Table 4, we list the hyper-parameters of Algorithm 1 that were used for different data analyses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The mesh size of the grid is the same in every dimension, that is Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Simulation results of the instrumental variable example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Method Coverage Length Mean Median Percentile bootstrap 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='2% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='338 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='301 Basic bootstrap 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='8% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='266 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='240 Heuristic 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='0% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='085 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='581 Oracle 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='0% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='290 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='257 Sensitivity Analysis with the R2-calculus 56 Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Hyper-parameters for different plots and simulation examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Ngrid Nb-contour Nboot Figure 2 200 500 Figure 3 200 30 Figure 4 150 30 Figure 5 400 Figure 6 300 Table 2 200 500 Table 3 100 500 the numbers of points considered per dimension Na, Nb, and Ng are equal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We define Ngrid := Na = Nb = Ng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The number of points per dimension for b-contour plots and the number of bootstrap samples are denoted by Nb-contour and Nboot, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' In the simulation study and data example in this work, we found that the PIR estimates change only marginally for values of Ngrid larger than 200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' We recommend to consider at least 100 points per grid dimension, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Ngrid = 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The rough struc- ture of the b-contours often becomes apparent for Nb-contour as low as 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' Due to the computational costs of the optimization problem, we choose a relatively low number of bootstrap samples Nboot = 500.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} +page_content=' The simulation studies empirically confirm that percentile bootstrap sensitivity intervals achieve good coverage nonetheless.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AyT4oBgHgl3EQfQPZI/content/2301.00040v1.pdf'} diff --git a/49E1T4oBgHgl3EQfAwK8/content/2301.02844v1.pdf b/49E1T4oBgHgl3EQfAwK8/content/2301.02844v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..b3dab0c4fb0bb9e335837c913b4dcf389a0016e7 --- /dev/null +++ b/49E1T4oBgHgl3EQfAwK8/content/2301.02844v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:393b1ae3d0eb7bf02ba7a5a3ce6e694011f15ef0a1415416aec4cc70e305bab9 +size 6739837 diff --git a/6dE1T4oBgHgl3EQfBQKx/vector_store/index.pkl b/6dE1T4oBgHgl3EQfBQKx/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..8630d9791a0aa0c7d0111171dc48e255c65ac160 --- /dev/null +++ b/6dE1T4oBgHgl3EQfBQKx/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1e8be997bb4b9c6eab61c81a82b78812f2a375641bc7808556836d1e428b5c61 +size 175134 diff --git a/89FRT4oBgHgl3EQfqDcj/content/2301.13615v1.pdf b/89FRT4oBgHgl3EQfqDcj/content/2301.13615v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..84bb00868d3d83be987f14238fd7e4182d365772 --- /dev/null +++ b/89FRT4oBgHgl3EQfqDcj/content/2301.13615v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9ff1a8798754935ff2a8a6f53b1270ae5a131177c5ee7d514fc9c7636b4a1ce9 +size 634099 diff --git a/89FRT4oBgHgl3EQfqDcj/vector_store/index.faiss b/89FRT4oBgHgl3EQfqDcj/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..331016c377435f095aa0435c6e88a8b9d02c33b5 --- /dev/null +++ b/89FRT4oBgHgl3EQfqDcj/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:60541a0c657397ac5c4fb6226e88fd5b9827def1afea8b6ab0fe617f3cf54c2f +size 4522029 diff --git a/89FRT4oBgHgl3EQfqDcj/vector_store/index.pkl b/89FRT4oBgHgl3EQfqDcj/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..2f199e2c5b6b6edfcf2c427f10dc16d942334265 --- /dev/null +++ b/89FRT4oBgHgl3EQfqDcj/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fed63a94bf22cefb839be05d6b3aa84bc37e7954c91e1530b7491083b7a91159 +size 172680 diff --git a/99AyT4oBgHgl3EQfdfcH/content/tmp_files/2301.00301v1.pdf.txt b/99AyT4oBgHgl3EQfdfcH/content/tmp_files/2301.00301v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..a80afb653328ae04ca1fe84c2f66241af1a26df0 --- /dev/null +++ b/99AyT4oBgHgl3EQfdfcH/content/tmp_files/2301.00301v1.pdf.txt @@ -0,0 +1,1977 @@ +Generalized PTR: User-Friendly Recipes for Data-Adaptive +Algorithms with Differential Privacy +Rachel Redberg, Yuqing Zhu, Yu-Xiang Wang +University of California, Santa Barbara +{rredberg, yuqingzhu, yuxiangw}@ucsb.edu +January 3, 2023 +Abstract +The “Propose-Test-Release” (PTR) framework [Dwork and Lei, 2009] is a classic recipe for +designing differentially private (DP) algorithms that are data-adaptive, i.e. those that add less +noise when the input dataset is “nice”. We extend PTR to a more general setting by privately +testing data-dependent privacy losses rather than local sensitivity, hence making it applicable +beyond the standard noise-adding mechanisms, e.g. to queries with unbounded or undefined +sensitivity. We demonstrate the versatility of generalized PTR using private linear regression +as a case study. Additionally, we apply our algorithm to solve an open problem from “Private +Aggregation of Teacher Ensembles (PATE)” [Papernot et al., 2017, 2018] — privately releasing +the entire model with a delicate data-dependent analysis. +1 +Introduction +The guarantees of differential privacy (DP) [Dwork et al., 2006] are based on worst-case outcomes +across all possible datasets. A common paradigm is therefore to add noise scaled by the global +sensitivity of a query f, i.e. the maximum change in f between any pair of neighboring datasets. +A given dataset X might have a local sensitivity that is much smaller than the global sensitivity, in +which case we can hope to add a smaller amount of noise (calibrated to the local rather than the +global sensitivity) while achieving the same privacy guarantee. However, this must not be undertaken +naïvely – the local sensitivity is a dataset-dependent function and so calibrating noise to the local +sensitivity could leak information about the dataset [Nissim et al., 2007]. +The “Propose-Test-Release” (PTR) framework [Dwork and Lei, 2009] resolves this issue by introducing +a test to privately check whether a proposed bound on the local sensitivity is valid. Only if the +test “passes” is the output released with noise calibrated to the proposed bound on the local +sensitivity. +PTR is a powerful and flexible tool for designing data-adaptive DP algorithms, but it has several +limitations. First, it applies only to noise-adding mechanisms which calibrate noise according to the +sensitivity of a query. Second, the test in “Propose-Test-Release” is computationally expensive for all +but a few simple queries such as privately releasing the median or mode. Third, while some existing +works [Decarolis et al., 2020, Kasiviswanathan et al., 2013, Liu et al., 2021] follow the approach of +testing “nice” properties of a dataset before exploiting these properties in a private release to PTR 1, +1We refer to these as PTR-like methods. +1 +arXiv:2301.00301v1 [cs.LG] 31 Dec 2022 + +there has not been a systematic recipe for discovering which properties should be tested. +In this paper, we propose a generalization of PTR which addresses these limitations. The centerpiece +of our framework is a differentially private test on the data-dependent privacy loss. This test does +not directly consider the local sensitivity of a query and is therefore not limited to additive noise +mechanisms. Moreover, in many cases, the test can be efficiently implemented by privately releasing +a high-probability upper bound, thus avoiding the need to search an exponentially large space of +datasets. Furthermore, the derivation of the test itself often spells out exactly what properties of the +input dataset need to be checked, which streamlines the design of data-adaptive DP algorithms. +Our contributions are summarized as follows: +1. We propose a generalization of PTR which can handle algorithms beyond noise-adding +mechanisms. Generalized PTR allows us to plug in any data-dependent DP analysis to +construct a high-probability DP test that adapts to favorable properties of the input dataset – +without painstakingly designing each test from scratch. +2. We demonstrate that many existing examples of PTR and PTR-like algorithms can be unified +under the generalized PTR framework, sometimes resulting in a tighter analysis (see an +example of report-noisy-max in Sec A.1). +3. We show that one can publish a DP model through privately upper-bounding a one-dimensional +statistic — no matter how complex the output space of the mechanism is. We apply this result +to solve an open problem from PATE [Papernot et al., 2017, 2018]. +4. Our results broaden the applicability of private hyper-parameter tuning [Liu and Talwar, 2019, +Papernot and Steinke, 2021] in enabling joint-parameter selection of DP-specific parameters +(e.g., noise level) and native parameters of the algorithm (e.g., learning rate, regularization +weight), which may jointly affect the data-dependent DP losses. +2 +Related Work +Data-dependent DP algorithms. Privately calibrating noise to the local sensitivity is a well- +studied problem. One approach is to add noise calibrated to the smooth sensitivity [Nissim et al., +2007], an upper bound on the local sensitivity which changes slowly between neighboring datasets. +An alternative to this – and the focus of our work – is Propose-Test-Release (PTR) [Dwork and +Lei, 2009], which works by calculating the distance Dβ(X) to the nearest dataset to X whose local +sensitivity violates a proposed bound β. The PTR algorithm then adds noise to Dβ(X) before +testing whether this privately computed distance is sufficiently large. +PTR spin-offs abound. Notable examples include stability-based methods [Thakurta and Smith, +2013] (stable local sensitivity of 0 near the input data) and privately releasing upper bounds of local +sensitivity [Kasiviswanathan et al., 2013, Liu et al., 2021, Decarolis et al., 2020]. We refer readers to +Chapter 3 of Vadhan [2017] for a concise summary of these classical results. Recent work [Wang +et al., 2022] has provided Rényi DP bounds for PTR and demonstrated its applications to robust +DP-SGD. Our work (see Section 5.2) also considers applications of PTR in data-adaptive private +deep learning: Instead of testing the local sensitivity of each gradient step as in Wang et al. [2022], +our PTR-based PATE algorithm tests the data-dependent privacy loss as a whole. +Liu et al. [2021] proposed a new variant called High-dimensional Propose-Test-Release (HPTR). HPTR +provides a systematic way of solving DP statistical estimation problems by using the exponential +2 + +mechanism (EM) with carefully constructed scores based on certain one-dimensional robust statistics, +which have stable local sensitivity bounds. HPTR focuses on designing data-adaptive DP mechanisms +from scratch; our method, in contrast, converts existing randomized algorithms (including EM and +even some that do not satisfy DP) into those with formal DP guarantees. Interestingly, our proposed +method also depends on a one-dimensional statistic of direct interest: the data-dependent privacy +loss. +Data-dependent DP losses. The flip side of data-dependent DP algorithms is the study of +data-dependent DP losses [Papernot et al., 2018, Soria-Comas et al., 2017, Wang, 2017], which fix +the randomized algorithm but parameterize the resulting privacy loss by the specific input dataset. +For example: In the simple mechanism that adds Laplace noise with parameter b, data-dependent +DP losses are ϵ(X) = ∆LS(X)/b. The data-dependent DP losses are often much smaller than the DP +loss, but they themselves depend on the data and thus may reveal sensitive information; algorithms +satisfying a data-dependent privacy guarantee are not formally DP with guarantees any smaller +than that of the worst-case. Existing work has considered privately publishing these data-dependent +privacy losses [Papernot et al., 2018, Redberg and Wang, 2021], but notice that privately publishing +these losses does not improve the DP parameter of the given algorithm. Part of our contribution is +to resolve this conundrum by showing that a simple post-processing step of the privately released +upper bound of ϵ(Data) gives a formal DP algorithm. +Private hyper-parameter tuning. Our work has a nice connection with private hyper-parameter +tuning. Prior work [Liu and Talwar, 2019, Papernot and Steinke, 2021] requires each candidate +configuration to be released with the same DP (or Rényi DP) parameter set. Another hidden +assumption is that the parameters must not be privacy-correlated (i.e., parameter choice will not +change the privacy guarantee). Otherwise we need to use the largest DP bound across all candidates. +For example, Liu and Talwar [2019] show that if each mechanism (instantiated with one group of +hyper-parameters) is (ϵ, 0)-DP, then running a random number of mechanisms and reporting the best +option satisfies (3ϵ, 0)-DP. Our work directly generalizes the above results by (1) considering a wide +range of hyper-parameters, either privacy-correlated or not; and (2) requiring only that individual +candidates to have a testable data-dependent DP. +3 +Preliminaries +Datasets X, X′ ∈ X are neighbors if they differ by no more than one datapoint – i.e., X ≃ X′ if +d(X, X′) ≤ 1. We will define d(·) to be the number of coordinates that differ between two datasets +of the same size n: d(X, Y ) = #{i ∈ [n] : Xi ̸= Yi}. +We use || · || to denote the radius of the smallest Euclidean ball that contains the input set, e.g. +||X|| = supx∈X ||x||. +The parameter φ denotes the privacy parameters associated with a mechanism (e.g. noise level, +regularization). Mφ is a mechanism parameterized by φ. For mechanisms with continuous output +space, we will take Pr[M(X) = y] to be the probability density function of M(X) at y. +Definition 3.1 (Differential privacy [Dwork et al., 2006]). Fix ϵ, δ ≥ 0. A randomized algorithm +M : X → S satisfies (ϵ, δ)-DP if for all neighboring datasets X ≃ X′ and for all measurable sets +S ⊂ S, +Pr +� +M(X) ∈ S +� +≤ eϵPr +� +M(X′) ∈ S +� ++ δ. +Suppose we wish to privately release the output of a real-valued function f : X → R. We can do so +3 + +by calculating the global sensitivity ∆GS, calibrating the noise scale to the global sensitivity and +then adding sampled noise to the output. +Definition 3.2 (Local / Global sensitivity). The local ℓ∗-sensitivity of a function f is defined as +∆LS(X) = max +X≃X′ ||f(X) − f(X′)||∗ and the global sensitivity of f is ∆GS = supX ∆LS(X). +3.1 +Propose-Test-Release +Calibrating the noise level to the local sensitivity ∆LS(X) of a function would allow us to add less +noise and therefore achieve higher utility for releasing private queries. However, the local sensitivity +is a data-dependent function and naïvely calibrating the noise level to ∆LS(X) will not satisfy +DP. +PTR resolves this issue in a three-step procedure: propose a bound on the local sensitivity, privately +test that the bound is valid (with high probability), and if so calibrate noise according to the bound +and release the output. +PTR privately computes the distance Dβ(X) between the input dataset X and the nearest dataset +X′′ whose local sensitivity exceeds the proposed bound β: +Dβ(X) = min +X′′ {d(X, X′′) : ∆LS(X′′) > β}. +Algorithm 1 Propose-Test-Release [Dwork and Lei, 2009] +1: Input: Dataset X; privacy parameters ϵ, δ; proposed bound β on ∆LS(X); query function +f : X → R. +2: if Dβ(X) + Lap +� 1 +ϵ +� +≤ log(1/δ) +ϵ +then output ⊥, +3: else release f(X) + Lap +� +β +ϵ +� +. +Theorem 3.3. Algorithm 1 satisfies (2ϵ, δ)-DP. [Dwork and Lei, 2009] +Rather than proposing an arbitrary threshold β, one can also privately release an upper bound of +the local sensitivity and calibrate noise according to this upper bound. This was used for node DP +in graph statistics [Kasiviswanathan et al., 2013], and for fitting topic models using spectral methods +[Decarolis et al., 2020]. +4 +Generalized PTR +This section introduces the generalized PTR framework. We first formalize the notion of data- +dependent differential privacy that conditions on an input dataset X. +Definition 4.1 (Data-dependent privacy). Suppose we have δ > 0 and a function ϵ : X → R. We +say that mechanism M satisfies (ϵ(X), δ) data-dependent DP2 for dataset X if for all possible output +sets S and neighboring datasets X′, +Pr +� +M(X) ∈ S +� +≤ eϵ(X)Pr +� +M(X′) ∈ S +� ++ δ, +Pr +� +M(X′) ∈ S +� +≤ eϵ(X)Pr +� +M(X) ∈ S +� ++ δ. +2We will sometimes write that M(X) satisfies ϵ(X) data-dependent DP with respect to δ. +4 + +In generalized PTR, we propose a value φ for the randomized algorithm M, which could be a noise +scale or regularization parameter – or a set including both. For example, φ = (λ, γ) in Example 4.4. +We then say that Mφ is the mechanism M parameterized by φ, and ϵφ(X) its data-dependent +DP. +The following example illustrates how to derive the data-dependent DP for a familiar friend – the +Laplace mechanism. +Example 4.2. ( Data-dependent DP of Laplace Mechanism.) Given a function f : X → R, we will +define +Mφ(X) = f(X) + Lap (φ) . +We then have +log Pr[Mφ(X) = y] +Pr[Mφ(X′) = y] ≤ |f(X) − f(X′)| +φ +. +Maximizing the above calculation over all possible outputs y and using Definition 4.1, +ϵφ(X) = +max +X′:X′≃X +|f(X) − f(X′)| +φ += ∆LS(X) +φ +. +The data-dependent DP ϵφ(X) is a function of both the dataset X and the parameter φ. Maximizing +ϵφ(X) over X recovers the standard DP guarantee of running M with parameter φ. +Algorithm 2 Generalized Propose-Test-Release +1: Input: Dataset X; mechanism Mφ : X → R and its privacy budget ϵ, δ; (ˆϵ, ˆδ)-DP test T ; false +positive rate ≤ δ′; data-dependent DP function ϵφ(·) w.r.t. δ. +2: if not T (X) then output ⊥, +3: else release θ = Mφ(X). +Theorem 4.3 (Privacy guarantee of generalized PTR). Consider a proposal φ and a data-dependent +DP function ϵφ(X) w.r.t. δ. Suppose that we have an (ˆϵ, ˆδ)-DP test T : X → {0, 1} such that when +ϵφ(X) > ϵ, +T (X) = +� +0 with probability 1 − δ′, +1 with probability δ′. +Then Algorithm 2 satisfies (ϵ + ˆϵ, δ + ˆδ + δ′)-DP. +Proof sketch. There are three main cases to consider: +1. We decide not to run Mφ. +2. We decide to run Mφ and ϵφ(X) > ϵ; +3. We decide to run Mφ and ϵφ(X) ≤ ϵ. +5 + +In the first case, the decision to output ⊥ is post-processing of an (ˆϵ, ˆδ)-DP mechanism and inherits +its privacy guarantees. The second case occurs when the (ˆϵ, ˆδ)-DP test "fails" (produces a false +positive) and occurs with probability at most δ′. The third case is a composition of an (ˆϵ, ˆδ)-DP +algorithm and an (ϵ, δ)-DP algorithm. +Generalized PTR is a strict generalization of Propose-Test-Release. For some function f, define Mφ +and T as follows: +Mφ(X) = f(X) + Lap(φ); +T (X) = +� +0 +if Dβ(X) + Lap +� 1 +ϵ +� +> log(1/δ) +ϵ +, +1 +otherwise. +Notice that our choice of parameterization is φ = β +ϵ , where φ is the scale of the Laplace noise. In +other words, we know from Example 4.2 that ϵφ(X) > ϵ exactly when ∆LS(X) > β. +For noise-adding mechanisms such as the Laplace mechanism, the sensitivity is proportional to the +privacy loss (in both the global and local sense, i.e. ∆GS ∝ ϵ and ∆LS ∝ ϵ(X)). Therefore for these +mechanisms the only difference between privately testing the local sensitivity (Algorithm 1) and +privately testing the data-dependent DP (Theorem 4.3) is a change of parameterization. +4.1 +Limitations of local sensitivity +Why do we want to generalize PTR beyond noise-adding mechanisms? Compared to classic PTR, the +generalized PTR framework allows us to be more flexible in both the type of test conducted and also +the type of mechanism whose output we wish to release. For many mechanisms, the local sensitivity +either does not exist or is only defined for specific data-dependent quantities (e.g., the sensitivity of +the score function in the exponential mechanism) rather than the mechanism’s output. +The following example illustrates this issue. +Example 4.4 (Private posterior sampling). Let M : X × Y → Θ be a private posterior sampling +mechanism [Minami et al., 2016, Wang et al., 2015, Gopi et al., 2022] for approximately minimizing +FX(θ). +M samples θ ∼ P(θ) ∝ e−γ(FX(θ)+0.5λ||θ||2) with parameters γ, λ. Note that γ, λ cannot be appro- +priately chosen for this mechanism to satisfy DP without going through a sensitivity calculation of +arg min FX(θ). In fact, the global and local sensitivity of the minimizer is unbounded even in linear +regression problems, i.e when FX(θ) = 1 +2||y − Xθ||2. +Output perturbation algorithms do work for the above problem when we regularize, but they +are known to be suboptimal in theory and in practice [Chaudhuri et al., 2011]. In Section 5.1 +we demonstrate how to apply generalized PTR to achieve a data-adaptive posterior sampling +mechanism. +Even in the cases of noise-adding mechanisms where PTR seems to be applicable, it does not lead to +a tight privacy guarantee. Specifically, by an example of privacy amplification by post-processing +(Example A.1 in the appendix), we demonstrate that the local sensitivity does not capture all +sufficient statistics for data-dependent privacy analysis and thus is loose. +6 + +4.2 +Which φ to propose +The main limitation of generalized PTR is that one needs to “propose” a good guess of parameter φ. +Take the example of φ being the noise level in a noise-adding mechanism. Choosing too small a φ +will result in a useless output ⊥, while choosing too large a φ will add more noise than necessary. +Finding this ’Goldilocks’ φ might require trying out many different possibilities – each of which will +consume privacy budget. +This section introduces a method to jointly tune privacy parameters (e.g., noise scale) along with +parameters related only to the utility of an algorithm (e.g., learning rate or batch size in stochastic +gradient descent) – while avoiding the ⊥ output. +Algorithm 3 takes a list of parameters as input, runs generalized PTR with each of the parameters, +and returns the output with the best utility. We show that the privacy guarantee with respect to ϵ +is independent of the number of φ that we try. +Formally, let φ1, ..., φk be a set of hyper-parameters and ˜θi ∈ {⊥, Range(M)} denotes the output of +running generalized PTR on a private dataset X with φi. Let Xval be a public validation set and +q(˜θi) be the score of evaluating ˜θi with Xval (e.g., validation accuracy). The goal is to select a pair +(˜θi, φi) such that DP model ˜θi maximizes the validation score. +The generalized PTR framework with privacy calibration is described in Algorithm 3. The privacy +guarantee of Algorithm 3 is an application of Liu and Talwar [2019]. +Algorithm 3 PTR with hyper-parameter selection +1: Input: Privacy budget per PTR algorithm (ϵ∗, δ∗), cut-off T, parameters φ1:k, flipping probability +τ and validation score function q(·). +2: Initialize the set S = ∅. +3: Draw G from a geometric distribution Dτ and let ˆT = min(T, G). +4: for i = 1 ,..., ˆT do +5: +pick a random φi from φ1:k. +6: +evaluate φi: (˜θi, q(˜θi)) ← Algorithm 2(φi, (ϵ∗, δ∗)). +7: +S ← S ∪ {˜θi, q(˜θi)}. +8: end for +9: Output the highest scored candidate from S. +Theorem 4.5 ( Theorem 3.4 Liu and Talwar [2019] ). Fix any τ ∈ [0, 1], δ2 > 0 and let T = 1 +τ log 1 +δ2 . +If each oracle access to Algorithm 2 is (ϵ∗, δ∗)-DP, then Algorithm 3 is (3ϵ∗ +3 +√ +2δ∗, +√ +2δ∗T +δ2)-DP. +The theorem implies that one can try a random number of φ while paying a constant ϵ. In practice, +we can roughly set τ = +1 +10k so that the algorithm is likely to test all k parameters. We emphasize +that the privacy and the utility guarantee (stated in the appendix) is not our contribution. But the +idea of applying generalized PTR to enforce a uniform DP guarantee over all choices of parameters +with a data-dependent analysis is new, and in our opinion, significantly broadens the applicability to +generic hyper-parameter tuning machinery from Liu and Talwar [2019]. +4.3 +Construction of the DP test +Classic PTR uses the Laplace mechanism to construct a differentially private upper bound of Dβ(X), +the distance from input dataset X to the closest dataset whose local sensitivity exceeds the proposed +7 + +bound β. The tail bound of the Laplace distribution then ensures that if Dβ(X) = 0 (i.e. if +∆LS(X) > β), then the output will be released with only a small probability δ. +The following theorem shows that we could instead use a differentially private upper bound of the +data-dependent DP ϵφ(X) in order to test whether to run the mechanism Mφ. +Theorem 4.6 (Generalized PTR with private upper bound). Suppose we have a differentially private +upper bound of ϵφ(X) w.r.t. δ such that with probability at least 1 − δ′, ϵP +φ (X) > ϵφ(X). Further +suppose we have an (ˆϵ, ˆδ)-DP test T such that +T(X) = +� +1 +if ϵP +φ (X) < ϵ, +0 +otherwise. +Then Algorithm 2 is (ϵ + ˆϵ, δ + ˆδ + δ′)-DP. +In Section 5.2, we demonstrate that one can upper bound the data-dependent DP through a +modification of the smooth sensitivity framework applied on ϵφ(X). Moreover, in Section 5.1 we +provide a direct application of Theorem 4.6 with private linear regression by making use of the +per-instance DP technique [Wang, 2017]. +The applications in Section 5 are illustrative of two distinct approaches to constructing the DP test +for generalized PTR: +1. Private sufficient statistics release (used in the private linear regression example of Section 5.1) +specifies the data-dependent DP as a function of the dataset and privately releases each +data-dependent component. +2. The second approach (used in the PATE example of Section 5.2) uses the smooth sensitivity +framework to privately release the data-dependent DP as a whole, and then construct a +high-confidence test using the Gaussian mechanism. +These two approaches cover most of the scenarios arising in data-adaptive analysis. For example, +in the appendix we demonstrate the merits of generalized PTR in handling data-adaptive private +generalized linear models (GLMs) using private sufficient statistics release. Moreover, sufficient +statistics release together with our private hyper-parameter tuning (Algorithm 3) can be used to +construct data-adaptive extensions of DP-PCA and Sparse-DP-ERM (see details in the future work +section). +5 +Applications +In this section, we put into action our approaches to construct the DP test and provide applications +in private linear regression and PATE. +5.1 +Private Linear Regression +Theorem 5.1 ([Wang, 2017]). For input data X ∈ X and Y ∈ Y, define the following: +• λmin(X) denotes the smallest eigenvalue of XT X; +• ||θ∗ +λ|| is the magnitude of the solution θ∗ +λ = (XT X + λI)−1XT Y ; +• and L(X, y) := ||X||(||X||||θ∗ +λ|| + ||Y||) is the local Lipschitz constant, denoted L in brief. +8 + +10 +1 +100 +10 +2 +6 × 10 +3 +2 × 10 +2 +3 × 10 +2 +4 × 10 +2 +MSE +UCI Bike dataset (n = 17379, d = 17) +AdaOPS +non-private +OutPert +OPS +OPS with PTR +(a) Bike dataset +10 +1 +100 +2 × 10 +2 +3 × 10 +2 +4 × 10 +2 +6 × 10 +2 +MSE +UCI elevators dataset (n = 8752, d = 18) +AdaOPS +non-private +OutPert +OPS +OPS with PTR +(b) Elevators dataset +Figure 1: Differentially private linear regression algorithms on UCI datasets. y-axis reports the MSE +error with confidence intervals. ϵ is evaluated with δ = 1e − 6. +For brevity, denote λ∗ = λ + λmin(X). The algorithm used in Example 4.4 with parameter φ = (λ, γ) +obeys (ϵφ(Z), δ) data-dependent DP for each dataset Z = (X, Y ) with ϵφ(Z) equal to +� +γL2 log(2/δ) +λ∗ ++ +γL2 +2(λ∗ + ||X||2) + 1 + log(2/δ)||X||2 +2(λ∗) +. +Notice that the data-dependent DP is a function of (λmin, L, ||θ∗ +λ||, λ, γ), where (λmin, L, ||θ∗ +λ||) are +data-dependent quantities. One can apply the generalized PTR framework as in the following +example. +Example 5.2 (OPS with PTR). We demonstrate here how to apply generalized PTR to the one- +posterior sample (OPS) algorithm, a differentially private mechanism which outputs one sample from +the posterior distribution of a Bayesian model with bounded log-likelihood. +• Propose φ = (λ, γ). +• Based on (λ, γ), differentially privately release λmin, ||θ∗ +λ||, L with privacy budget (ϵ, δ/2). +• Condition on a high probability event (with probability at least 1 − δ/2) of λmin, ||θ∗ +λ||, L, test if +ϵP +φ (X) is smaller than the predefined privacy budget (ˆϵ, ˆδ), where ϵP +φ (X) denotes the sanitized +data-dependent DP. +• Based on the outcome of the test, decide whether to release θ ∝ e− γ +2 ||Y −Xθ||2+λ||θ||2. +Theorem 5.3. The algorithm outlined in Example 5.2 satisfies (ϵ + ˆϵ, δ + ˆδ)-DP. +The main idea of the above algorithm boils down to privately releasing all data-dependent quantities +in data-dependent DP, constructing high-probability confidence intervals of these quantities, and +then deciding whether to run the mechanism M with the proposed parameters. We defer the details +of the privacy calibration of data-dependent quantities to the appendix. +One may ask why we cannot directly tune privacy parameters (λ, γ) based on the sanitized data- +dependent DP. This is because, in many scenarios, data-dependent quantities depend on the choice of +privacy parameters, e.g., ||θ∗ +λ|| is a complicated function of λ. Thus, the optimization on λ becomes +9 + +a circular problem — to solve λ, we need to sanitize ||θ∗ +λ||, which needs to choose a λ to begin with. +Alternatively, generalized PTR provides a clear and flexible framework to test the validity of privacy +parameters adapted to the dataset. +Remark 5.4. The above “circular” issue is even more serious for generalized linear models (GLMs) +beyond linear regression. The data-dependent DP there involves a local strong-convexity parameter, +a complex function of the regularizer λ and we only have zeroth-order access to. In the appendix, +we demonstrate how to apply generalized PTR to provide a generic solution to a family of private +GLMs where the link function satisfies a self-concordance assumption. +We next apply Algorithm 3 for Example 5.2 with UCI regression datasets. Standard z-scoring is +applied and each data point is normalize with a Euclidean norm of 1. We consider (60%, 10%, 30%) +splits for training, validation and testing test. +Baselines +• Output Perturbation (Outpert) [Chaudhuri et al., 2011]: θ = (XT X + λI)−1XT y. Release +ˆθ = θ + b with an appropriate λ, where b is a Gaussian random vector. +• Posterior sampling (OPS). Sample ˆθ ∼ P(θ) ∝ e−γ(F(θ)+0.5λ||θ||2) with parameters γ, λ. +• Adaptive posterior sampling (AdaOPS) [Wang, 2018]. Run OPS with (λ, γ) chosen adaptively +according to the dataset. +Outpert and OPS serve as two non-adaptive baselines. In particular, we consider OPS-Balanced [Wang, +2018], which chooses λ to minimize a data-independent upper bound of empirical risk and dominates +other OPS variants. AdaOPS is one state-of-the-art algorithm for adaptive private regression, which +automatically chooses λ by minimizing an upper bound of the data-dependent empirical risk. +We implement OPS-PTR as follows: propose a list of λ through grid search (we choose k = 30 and λ +ranges from [2.5, 2.510] on a logarithmic scale); instantiate Algorithm 3 with τ = 0.1k, T = 1 +τ log(1/δ2) +and δ2 = 1/2δ; calibrate γ to meet the privacy requirement for each λ. sample ˆθ using (λ, γ) and +return the one with the best validation accuracy. Notice that we use a “no ⊥” variant of Algorithm 2 +as the calibration of γ is clear given a fixed λ and privacy budget (see more details in the appendix). +We can propose various combinations of (λ, γ) for more general applications. +Figure 1 demonstrates how the MSE error of the linear regression algorithms varies with the privacy +budget ϵ. OutPert suffers from the large global sensitivity of output θ. OPS performs well but does +not benefit from the data-dependent quantities. AdaOPS is able to adaptively choose (λ, γ) based +on the dataset, but suffers from the estimation error of the data-dependent empirical risk. On the +other hand, OPS-PTR selects a (λ, γ) pair that minimizes the empirical error on the validation set +directly, and the privacy parameter γ adapts to the dataset thus achieving the best result. +5.2 +PATE +In this section, we apply the generalized PTR framework to solve an open problem from the Private +Aggregation of Teacher Ensembles (PATE) [Papernot et al., 2017, 2018] — privately publishing the +entire model through privately releasing data-dependent DP losses. Our algorithm makes use of the +smooth sensitivity framework [Nissim et al., 2007] and the Gaussian mechanism to construct a high- +probability test of the data-dependent DP. The one-dimensional statistical nature of data-dependent +DP enables efficient computations under the smooth sensitivity framework. Thus, this approach is +generally applicable for other private data-adaptive analysis beyond PATE. +10 + +PATE is a knowledge transfer framework for model-agnostic private learning. In this framework, an +ensemble of teacher models is trained on the disjoint private data and uses the teachers’ aggregated +consensus answers to supervise the training of a “student” model agnostic to the underlying machine- +learning algorithms. By publishing only the aggregated answers and by the careful analysis of the +“consensus”, PATE has become a practical technique in recent private model training. +The tight privacy guarantee of PATE heavily relies on a delicate data-dependent DP analysis, for +which the authors of PATE use the smooth sensitivity framework to privately publish the data- +dependent privacy cost. However, it remains an open problem to show that the released model is DP +under data-dependent analysis. Our generalized PTR resolves this gap by carefully testing a private +upper bound of the data-dependent privacy cost. Our algorithm is fully described in Algorithm 4, +where the modification over the original PATE framework is highlighted in blue. +Algorithm 4 takes the input of privacy budget (ϵ′, ˆϵ, δ), unlabeled public data x1:T and K teachers’ +predictions on these data. The parameter ϵ denotes the privacy cost of publishing the data-dependent +DP and ϵ′ is the predefined privacy budget for testing. nj(xi) denotes the the number of teachers +that agree on label j for xi and C denotes the number of classes. The goal is to privately release a +list of plurality outcomes — argmaxj∈[C]nj(xi) for i ∈ [T] — and use these outcomes to supervise +the training of a “student” model in the public domain. The parameter σ1 denotes the noise scale +for the vote count. +In their privacy analysis, Papernot et al. [2018] compute the data-dependent RDPσ1(α, X) of labeling +the entire group of student queries. RDPσ1(α, X) can be orders of magnitude smaller than its data- +independent version if there is a strong agreement among teachers. Note that RDPσ1(α, X) is a +function of the RDP order α and the dataset X, analogous to our Definition 4.1 but subject to +RDP [Mironov, 2017]. +Theorem 5.5 ([Papernot et al., 2018]). If the top three vote counts of xi are n1 > n2 > n3 and +n1 − n2, n2 − n3 ≫ σ1, then the data-dependent RDP of releasing argmaxj{nj + N(0, σ2 +1)} satisfies +(α, exp{−2α/σ2 +1}/α)-RDP and the data-independent RDP (using the Gaussian mechanism) satisfies +(α, α +σ2 +1 )-RDP. +Algorithm 4 PATE with generalized PTR +1: Input: Unlabeled public data x1:T , aggregated teachers prediction n(·), privacy parameter +ˆϵ, ϵ′, δ, noisy parameter σ1. +2: Set α = 2 log(2/δ) +ˆϵ ++ 1, σs = σ2 = +� +3α+2 +ˆϵ +, δ2 = δ/2, smoothness parameter β = 0.2 +α . +3: Compute noisy labels: yip ← argmaxj∈[C]{nj(xi) + N(0, σ2 +1)} for all i ∈ [1 : T]. +4: RDPσ1(α, X) ← data-dependent RDP at the α-th order. +5: SSβ(X) ← the smooth sensitivity of RDPupper +σ1 +(α, X). +6: Privately release µ := log(SSβ(X)) + β · N(0, σ2 +2) + +� +2 log(2/δ2) · σ2 · β +7: RDPupper +σ1 +(α) ← an upper bound of data-dependent RDP through Lemma 5.6. +8: ϵσ1 ← DP guarantee converted from RDPupper +σ1 +(α). +9: If ϵ′ ≥ ϵσ1 return a student model trained using (x1:T ; yp +1:T ). +10: Else return ⊥. +However, RDPσ1(α, X) is data-dependent and thus cannot be revealed. The authors therefore +privately publish the data-dependent RDP using the smooth sensitivity framework [Nissim et al., 2007]. +The smooth sensitivity calculates a smooth upper bound on the local sensitivity of RDPσ1(α, X), +11 + +15 +20 +25 +30 +35 +40 +45 +50 +Noise scale +1 +1 +2 +3 +4 +5 + Gaussian mechanism +PATE-PTR ( + +1) +data-dependent DP (non-private) +(a) High consensus and strong data-dependent DP +15 +20 +25 +30 +35 +40 +45 +50 +Noise scale +1 +1 +2 +3 +4 +5 + Gaussian mechanism +PATE-PTR ( + +1) +data-dependent DP (non-private) +(b) Low consensus and low data-dependent DP +Figure 2: Privacy and utility tradeoffs with PATE. When σ1 is aligned, three algorithms provide the +same utility. y-axis plots the privacy cost of labeling T = 200 public data with δ = 10−5. The left +figure considers the high-consensus case, where the data-adaptive analysis is preferred. +denoted as SSβ(X), such that SSβ(X) ≤ eβSSβ(X′) for any neighboring dataset X and X′. By +adding Gaussian noise scaled by the smooth sensitivity (i.e., release ϵσ1(α, X) + SSβ(X) · N(0, σ2 +s)), +the privacy cost is safely published. +Unlike most noise-adding mechanisms, the standard deviation σs cannot be published since SSβ(X) +is a data-dependent quantity. Moreover, this approach fails to provide a valid privacy guarantee +of the noisy labels obtained through the PATE algorithm, as the published privacy cost could be +smaller than the real privacy cost. Our solution in Algorithm 4 looks like the following: +• Privately release an upper bound of the smooth sensitivity SSβ(X) with eµ. +• Conditioned on a high-probability event of eµ, publish the data-dependent RDP with RDPupper +σ1 +(α). +• Convert RDPupper +σ1 +(α) back to the standard DP guarantee using RDP to DP conversion at δ/2. +• Test if the converted DP is above the predefined budget ϵ′. +The following lemma states that RDPupper +σ1 +(α) is a valid upper bound of the data-dependent +RDP. +Lemma 5.6 (Private upper bound of data-dependent RDP). We are given a RDP function +RDP(α, X) and a β-smooth sensitivity bound SS(·) of RDP(α, X). Let µ (defined in Algorithm 4) +denote the private release of log(SSβ(X)). Let the (β, σs, σ2)-GNSS mechanism be +RDPupper(α):=RDP(α,X)+SSβ(X)·N(0,σ2 +s)+σs +� +2 log( 2 +δ2 )eµ +Then, the release of RDPupper(X) satisfies (α, 3α+2 +2σ2s )-RDP for all 1 < α < +1 +2β; w.p. at least 1 − δ2, +RDPupper(α) is an upper bound of RDP(α, X). +The proof (deferred to the appendix) makes use of the facts that: (1) the log of SSβ(X) has a +bounded global sensitivity β through the definition of smooth sensitivity; (2) releasing RDPσ1(α, X)+ +SSβ(X) · N(0, σ2 +s) is (α, α+1 +σ2s )-RDP (Theorem 23 from Papernot et al. [2018]). +Now, we are ready to state the privacy guarantee of Algorithm 4. +12 + +Theorem 5.7. Algorithm 4 satisfies (ϵ′ + ˆϵ, δ)-DP. +In the proof, the choice of α ensures that the cost of the δ/2 contribution (used in the RDP-to-DP +conversion) is roughly ˆϵ/2. Then the release of RDPupper +σ1 +(α) with σs = +� +2+3α +ˆϵ +accounts for another +cost of (ϵ/2, δ/2)-DP. +Empirical results. We next empirically evaluate Algorithm 4 (PATE-PTR) on the MNIST dataset. +Following the experimental setup from Papernot et al. [2018], we consider the training set to be the +private domain, and the testing set is used as the public domain. We first partition the training set +into 400 disjoint sets and 400 teacher models, each trained individually. Then we select T = 200 +unlabeled data from the public domain, with the goal of privately labeling them. To illustrate the +behaviors of algorithms under various data distributions, we consider two settings of unlabeled +data, high-consensus and low-consensus. In the low-consensus setting, we choose T unlabeled data +such that there is no high agreement among teachers, so the advantage of data-adaptive analysis is +diminished. We provide further details on the distribution of these two settings in the appendix. +Baselines. +We consider the Gaussian mechanism as a data-independent baseline, where the +privacy guarantee is valid but does not take advantage of the properties of the dataset. The data- +dependent DP ( Papernot et al. [2018]) serves as a non-private baseline, which requires further +sanitation. Note that these two baselines provide different privacy analyses of the same algorithm +(see Theorem 5.5). +Figure 2 plots privacy-utility tradeoffs between the three approaches by varying the noise scale σ1. +The purple region denotes a set of privacy budget choices (ˆϵ + ϵ′ used in Algorithm 4) such that the +utility of the three algorithms is aligned under the same σ1. In more detail, the purple region is +lower-bounded by ˆϵ+ϵσ1. We first fix σs = σ2 = 15 such that ˆϵ is fixed. Then we empirically calculate +the average of ϵσ1 (the private upper bound of the data-dependent DP) over 10 trials. Running +Algorithm 4 with any choice of ˆϵ + ϵ′ chosen from the purple region implies ϵ′ > ϵσ1. Therefore, +PATE-PTR will output the same noisy labels (with high probability) as the two baselines. +Observation As σ1 increases, the privacy loss of the Gaussian mechanism decreases, while the +data-dependent DP curve does not change much. This is because the data-dependent DP of each +query is a complex function of both the noise scale and the data and does not monotonically +decrease when σ1 increases (see more details in the appendix). However, the data-dependent DP still +dominates the Gaussian mechanism for a wide range of σ1. Moreover, PATE-PTR nicely interpolates +between the data-independent DP guarantee and the non-private data-adaptive DP guarantee. In the +low-consensus case, the gap between the data-dependent DP and the DP guarantee of the Gaussian +mechanism unsurprisingly decreases. Meanwhile, PATE-PTR (the purple region) performs well +when the noise scale is small but deteriorates when the data-independent approach proves more +advantageous. This example demonstrates that using PTR as a post-processing step to convert +the data-dependent DP to standard DP is effective when the data-adaptive approach dominates +others. +6 +Limitations and Future Work +One weakness of generalized PTR is that it requires a case-specific privacy analysis. Have we simply +exchanged the problem of designing a data-adaptive DP algorithm with the problem of analyzing +the data-dependent privacy loss? We argue that this limitation is inherited from classic PTR. In +situations where classic PTR is not applicable, we’ve outlined several approaches to constructing the +13 + +DP test for our framework (see Sections 4.3 and 5.2). +Furthermore, the data-dependent privacy loss is often more straightforward to compute than local +sensitivity, and often exists in intermediate steps of classic DP analysis already. Most DP analysis +involves providing a high-probability tail bound of the privacy loss random variable. If we stop +before taking the max over the input dataset, then we get a data-dependent DP loss right away (as +in Example 4.2). +There are several exciting directions for applying generalized PTR to more problems. Sufficient +statistics release and our private hyperparameter tuning (Algorithm 3) can be used to construct +data-adaptive extensions of DP-PCA [Dwork et al., 2014] and Sparse-DP-ERM [Kifer et al., 2012]. +For DP-PCA we could use our Algorithm 3 to tune the variance of the noise added to the spectral +gap; for Sparse-DP-ERM we would test the restricted strong convexity parameter (RSC), i.e. not +adding additional regularization if the RSC is already large. +7 +Conclusion +Generalized PTR extends the classic “Propose-Test-Release” framework to a more general setting by +testing the data-dependent privacy loss of an input dataset, rather than its local sensitivity. In this +paper we’ve provided several examples – private linear regression with hyperparameter selection and +PATE – to illustrate how generalized PTR can enhance DP algorithm design via a data-adaptive +approach. +Acknowledgments +The work was partially supported by NSF Award # 2048091 and the Google Research Scholar Award. +Yuqing was supported by the Google PhD Fellowship. +14 + +Contents +1 +Introduction +1 +2 +Related Work +2 +3 +Preliminaries +3 +3.1 +Propose-Test-Release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +4 +4 +Generalized PTR +4 +4.1 +Limitations of local sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +6 +4.2 +Which φ to propose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +7 +4.3 +Construction of the DP test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +7 +5 +Applications +8 +5.1 +Private Linear Regression +. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +8 +5.2 +PATE +. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +10 +6 +Limitations and Future Work +13 +7 +Conclusion +14 +A Omitted examples in the main body +15 +A.1 Limits of the classic PTR in private binary voting . . . . . . . . . . . . . . . . . . . . +15 +A.2 Self-concordant generalized linear model (GLM) . . . . . . . . . . . . . . . . . . . . . +18 +A.3 Differentially privately release λmin +� +∇2F(θ) +� +. . . . . . . . . . . . . . . . . . . . . . +21 +A.4 Other applications of generalized PTR . . . . . . . . . . . . . . . . . . . . . . . . . . +22 +B Omitted proofs in Section 4 +23 +C Experimental details +23 +C.1 Experimental details in private linear regression . . . . . . . . . . . . . . . . . . . . . +23 +C.2 Details of PATE case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +24 +D Omitted proofs in private GLM +26 +D.1 Per-instance DP of GLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +26 +A +Omitted examples in the main body +In this appendix, we provide more examples to demonstrate the merits of generalized PTR. We +focus on a simple example of post-processed Laplace mechanism in Section A.1 and then an example +on differentially private learning of generalized linear models in Section 4. In both cases, we observe +that generalized PTR provides data-adaptive algorithms with formal DP guarantees, that are simple, +effective and not previously proposed in the literature (to the best of our knowledge). +A.1 +Limits of the classic PTR in private binary voting +The following example demonstrates that classic PTR does not capture sufficient data-dependent +quantities even when the local sensitivity exists and can be efficiently tested. +15 + +Example A.1. Consider a binary class voting problem: n users vote for a binary class {0, 1} and +the goal is to output the class that is supported by the majority. Let ni denote the number of people +who vote for the class i. We consider the report-noisy-max mechanism: +M(X) : argmaxi∈[0,1]ni(X) + Lap(b), +where b = 1/ϵ denotes the scale of Laplace noise. +In the example, we will (1) demonstrate the merit of data-dependent DP; and (2) empirically compare +classic PTR with generalized PTR. +We first explicitly state the data-dependent DP. +Theorem A.2. The data-dependent DP of the above example is +ϵ(X) := max +X′ {| log p +p′ |, | log 1 − p +1 − p′ |}, +where p := Pr[n0(X) + Lap(1/ϵ) > n1(X) + Lap(1/ϵ)] and p′ := Pr[n0(X′) + Lap(1/ϵ) > n1(X′) + +Lap(1/ϵ)]. There are four possible neighboring datasets X′ : n0(X′) = max(n0(X) ± 1, 0), n1(X′) = +n1(X) or n0(X′) = n0(X), n1(X′) = max(n1(X) ± 1, 0). +In Figure 3(a), we empirically compare the above data-dependent DP with the Laplace mechanism +by varying the gap between the two vote counts |n0(X) − n1(X)|. The noise scale is fixed to ϵ = 10. +The data-dependent DP substantially improves over the standard DP if the gap is large. However, +the data-dependent DP is a function of the dataset. We next demonstrate how to apply generalized +PTR to exploit the data-dependent DP. +Notice that the probability n0(X) + Lap(1/ϵ) > n1(X) + Lap(1/ϵ) is equal to the probability that a +random variable Z := X − Y exceeds ϵ(n1(X) − n0(X)), where X, Y are two independent Lap(1) +distributions. We can compute the pdf of Z through the convolution of two Laplace distributions, +which implies fX−Y (z) = 1 + |z| +4e|z| . Let t denote the difference between n1(X) and n0(X), i.e., +t = n1(X) − n0(X). Then we have +p = Pr[Z > ϵ · t] = +2 + ϵ · t +4 exp(ϵ · t) +Similarly, p′ = +2 + ϵ · (t + ℓ) +4 exp(ϵ · (t + ℓ)), where ℓ ∈ [−1, 1] denotes adding or removing one data point to +construct the neighboring dataset X′. Therefore, we can upper bound log(p/p′) by +log p +p′ = +2 + ϵ · t +4 exp(ϵ · t) · 4 exp(ϵ(t + ℓ)) +2 + ϵ · (t + ℓ) +≤ ϵ · log +� +2 + ϵt +2 + ϵ(t + 1) +� += ϵ log +� +1 − +ϵ +2 + ϵ(t + 1) +� +Then we can apply generalized PTR by privately lower-bounding t. +On the other hand, the local sensitivity ∆LS(X) of this noise-adding mechanism is 0 if t > 1. +Specifically, if the gap is larger than one, adding or removing one user will not change the result. To +16 + +0 +5 +10 +15 +20 +25 +30 +35 +40 +The gap t=|n0(X) +n1(X)| +0 +2 +4 +6 +8 +10 + data-dependent DP +Laplace mechanism +(a) data-dependent DP vs Laplace mechanism +10 +28 +10 +23 +10 +18 +10 +13 +10 +8 +10 +3 +102 +Error +10 +2 +10 +1 + + Gen-PTR( +p + ) +classic PTR +Laplace mechanism +(b) Privacy-utility tradeoff between three approaches. +Figure 3: In Figure 3(a), we compare the privacy guarantee by varying the gap. In Figure 3(b) We +fix t = n0(X) − n1(X) = 100 and compare privacy cost when the accuracy is aligned. Gen-PTR with +any choice of privacy budget (˜ϵ + ϵ′) chosen from the purple region would achieve the same utility as +Laplace mechanism but with a smaller privacy cost. The curve of Gen-PTR is always below than +that of the classic PTR, which implies that Gen-PTR can result a tighter privacy analysis when the +utility is aligned. +apply classic PTR, we let γ(X) denote the distance to the nearest dataset X +′′ such that ∆LS > 0 +and test if γ(X) + Lap(1/ϵ) > log(1/δ) +ϵ +. Notice in this example that γ(X) = max(t − 1, 0) can be +computed efficiently. We provide the detailed implementation of these approaches. +1. Gen PTR: lower bound t with tp = t − log(1/δ) +˜ϵ ++ Lap(1/˜ϵ). Calculate an upper bound of +data-dependent DP ϵp using Theorem A.2 with tp. The algorithm then tests if ϵp is within an +predefined privacy budget ϵ′. If the test passes, the algorithm returns argmaxi∈[0,1]ni(X) + +Lap(1/ϵ) satisfies (˜ϵ + ϵ′, δ)-DP. +2. classic PTR: lower bound t with tp = t − log(1/δ) +˜ϵ ++ Lap(1/˜ϵ). If tp > 1, classic PTR outputs +the ground-truth result else returns a random class. This algorithm satisfies (˜ϵ, δ)-DP. +3. Laplace mechanism. M(X) : argmaxi∈[0,1]ni(X) + Lap(1/ϵ). M is (ϵ, δ)-DP. +We argue that though the Gen-PTR and the classic PTR are similar in privately lower-bounding +the data-dependent quantity t, the latter does not capture sufficient information for data-adaptive +analysis. That is to say, only testing the local sensitivity restricts us from learning helpful information +to amplify the privacy guarantee if the test fails. In contrast, our generalized PTR, where privacy +parameters and the local sensitivity parameterize the data-dependent DP, can handle those failure +cases nicely. +To confirm this conjecture, Figure 3(b) plots a privacy-utility trade-off curve between these three +approaches. We consider a voting example with n0(X) = n1(X) + 100 and t = 100, chosen such +that the data-adaptive analysis is favorable. +In Figure 3(b), we vary the noise scale b = 1/ϵ between [0, 0.5]. For each choice of b, we plot the +privacy guarantee of three algorithms when the error rate is aligned. For Gen-PTR, we set ˜ϵ = 1 +2b +and empirically calculate ϵp over 100000 trials. +17 + +In the plot, when ϵ ≪ log(1/δ) +t +, the classic PTR is even worse than the Laplace mechanism. This is +because the classic PTR is likely to return ⊥ while the Laplace mechanism returns argmaxi∈[0,1]ni(X)+ +Lap(1/ϵ), which contains more useful information. Compared to the Laplace mechanism, Gen-PTR +requires an extra privacy allocation ˜ϵ to release the gap t. However, it still achieves an overall smaller +privacy cost when the error rate ≤ 10−5 (the purple region). Meanwhile, Gen-PTR dominates the +classic PTR (i.e., the dashed black curve is always below the blue curve). Note that the classic PTR +and the Gen-PTR utilize the gap information differently: the classic PTR outputs ⊥ if the gap is +not sufficiently large, while the Gen-PTR encodes the gap into the data-dependent DP function +and tests the data-dependent DP in the end. This empirical result suggests that testing the local +sensitivity can be loosely compared to testing the data-dependent DP. Thus, Gen-PTR could provide +a better privacy-utility trade-off. +A.2 +Self-concordant generalized linear model (GLM) +In this section, we demonstrate the effectiveness and flexibility of generalized PTR in handling a +family of GLMs where the link function satisfies a self-concordance assumption. This section is +organized as follows: +• Introduce a family of GLMs with the self-concordance property. +• Introduce a general output perturbation algorithm for private GLMs. +• Analyze the data-dependent DP of GLMs with the self-concordance property. +• Provide an example of applying our generalized PTR framework to logistic regression. +Consider the empirical risk minimization problem of the generalized linear model +θ∗ = argminθ +� +i=1n +li(θ) + r(θ), +where l : R × R → R belongs to a family of convex GLMs: li(θ) = l(y, xT +i θ). Let r : Rd → R be a +regularization function. +We now define the self-concordance property. +Definition A.3 (Generalized self-concordance [Bach, 2010]). A convex and three-times differentiable +function f : Θ → R is R-generalized-self-concordant on an open nonempty convex set Θ∗ ⊂ Θ with +respect to norm ∥ · ∥ if for all u ∈ Θ∗ and all v ∈ Rd, +∇3f(u)[v, v, v] ≤ 2R∥v∥(∇2f(u)[v, v]). +The closer R is to 0, the “nicer” — more self-concordant — the function is. A consequence of (gener- +alized) self-concordance is the spectral (multiplicative) stability of Hessian to small perturbations of +parameters. +Lemma A.4 (Stability of Hessian[Nesterov and Nemirovskii, 1994, Theorem 2.1.1], [Bach, 2010, +Proposition 1]). Let Hθ := ∇2Fs(θ). If Fs is R-self-concordant at θ, then for any v such that +R∥v∥Hθ < 1, we have that +(1 − R∥v∥Hθ)2∇2Fs(θ) ≺ ∇2Fs(θ + v) +≺ +1 +(1 − R∥v∥Hθ)2 ∇2Fs(θ). +18 + +If instead we assume Fs is R-generalized-self-concordant at θ with respect to norm ∥ · ∥, then +e−R∥v∥∇2Fs(θ) ≺ ∇2Fs(θ + v) ≺ eR∥v∥∇2Fs(θ) +The two bounds are almost identical when R∥v∥ and R∥v∥θ are close to 0. In particular, for x ≤ 1/2, +we have that e−2x ≤ 1 − x ≤ e−x. +In particular, the loss function of binary logistic regression is 1-generalized self-concordant. +Example A.5 (Binary logistic regression). Assume ∥x∥2 ≤ 1 for all x ∈ X and y ∈ {−1, 1}. Then +binary logistic regression with datasets in X × Y has a log-likelihood of F(θ) = �n +i=1 log(1 + e−yixT +i θ). +The univariate function l := log(1 + exp(·)) satisfies +|l′′′| = +���� +exp (·)(1 − exp (·)) +(1 + exp (·))3 +���� ≤ +exp (·) +(1 + exp (·))2 := l′′. +We next apply the modified output perturbation algorithm to privately release θ∗. The algorithm is +simply: +1. Solve +θ∗ = argminθ +n +� +i=1 +li(θ) + r(θ). +2. Release +ˆθ = θ∗ + Z, +where γ > 0 is a tuning parameter and Z ∼ N(0, γ−1(�n +i=1 ∇2li(θ) + ∇2r(θ))−1). +The data-dependent DP of the above procedure is stated as follows. +Theorem A.6 (Data-dependent DP of GLM). Denote the smooth part of the loss function Fs = +�n +i=1 l(yi, < xi, · >) + rs(·). Assume the following: +1. The GLM loss function l is convex, three-times continuously differentiable and R-generalized- +self-concordant w.r.t. ∥ · ∥2, +2. Fs is locally α-strongly convex w.r.t. ∥ · ∥2, +3. and in addition, denote L := supθ∈[θ∗,˜θ∗] |l′(y, xT θ)|, β := supθ∈[θ∗,˜θ∗] |l′′(y, xT θ)|. That is, ℓ(·) +is L-Lipschitz and β-smooth. +We then have the data-dependent DP +ϵ(Z) ≤ R(L + β) +α +(1 + log(2/δ)) + γL2 +α ++ +� +γL2 +α +log(2/δ). +The proof follows by taking an upper bound of the per-instance DP loss (Theorem D.1) ϵ(Z, z) over +z = (x, y) ∈ (X, Y). +Notice that the Hessians can be arbitrarily singular and α could be 0, which leads to an infinite +privacy loss without additional assumptions. Thus, we will impose an additional regularization of +form λ +2||θ||2, which ensures that for any dataset FS is λ-strongly convex. +This is not yet DP because it is still about a fixed dataset. We also need a pre-specified privacy +budget (ϵ, δ). We next demonstrate how to apply the generalized PTR to provide a general solution +to the above GLM, using logistic regression as an example. +19 + +Remark A.7 (Logistic regression). For logistic regression, we know L ≤ 1, β ≤ 1/4 and if ∥x∥2 ≤ 1, +it is 1-generalized self-concordant. For any dataset Z = (X, y), the data-dependent DP ϵ(X) w.r.t. +δ can be simplified to: +1.25 +α (1 + log(2/δ)) + γ +α + +�γ +α log(2/δ) +Now, the data-dependent DP is a function of α and γ, where α denotes the local strong convexity at +θ∗ +λ and γ controls the noise scale. We next show how to select these two parameters adapted to the +dataset. +Example A.8. We demonstrate here how we apply generalized PTR to output perturbation of the +logistic regression problem. +1. Take an exponential grid of parameters {λ} and propose each λ. +2. Solve for θ∗ +λ = argminθF(θ) + λ∥θ∥2/2 +3. Calculate the smallest eigenvalue λmin(∇2F(θ∗ +λ)) (e.g., using power method). +4. Differentially privately release λmin with λp +min := max{λmin+ +√ +log(4/δ) +ϵ/2 +·∆GS·Z− +√ +2 log(4/δ)·log(1/δ)∆GS +ϵ/2 +, 0}, +where ∆GS denote the global sensitivity of λmin using Theorem A.11. +5. Let ϵp(·) be instantiated with ϵ(X) w.r.t. δ from Remark A.7, where α = λp +min + λ. Then, +conditioned on a high probability event, ϵp(·) (a function of γ) is a valid DP bound that holds +for all datasets and all parameters γ. +6. Calculate the maximum γ such that ϵp +δ/2(γ) ≤ ϵ/2. +7. Release ˆθ ∼ N(θ∗ +λ, γ−1∇2Fs(θ∗ +λ)−1). +8. Evaluate the utility on the validation set and return the (λ, γ) pair that leads to the highest +utility. +Theorem A.9. For each proposed λ, the algorithm that releases ˆθ ∼ N(θ∗ +λ, γ−1∇2Fs(θ∗ +λ)−1) is +(ϵ, 2δ)-DP. +Proof. The proof follows the recipe of generalized PTR with private upper bound (Example 4.6). First, +the release of λmin(∇2F(θ∗ +λ)) is (ϵ/2, δ/2)-DP. Then, with probability at least 1 − δ, ϵp +δ(·) > ϵδ(X) +holds for all X and γ. Finally, γ is chosen such that the valid upper bound is (ϵ/2, δ/2)-DP. +For the hyper-parameter tuning on λ (Steps 1 and 8), we can use Algorithm 3 to evaluate each λ. +Unlike Example 5.2, the λmin(∇2F(θ∗ +λ)) is a complicated data-dependent function of λ. Thus, we +cannot privately release the data-dependent quantity λmin(∇2F(θ∗ +λ)) without an input λ. The PTR +approach allows us to test a number of different λ and hence get a more favorable privacy-utility +trade-off. +An interesting perspective of this algorithm for logistic regression is that increasing the regularization +α is effectively increasing the number of data points within the soft “margin”3 of separation, hence a +larger contribution to the Hessian from the loss function. +3If we think of logistic regression as a smoothed version of SVM, then increasing α leads to more support vectors. +The “margin” is “softer” in logistic regression, but qualitatively the same. +20 + +Remark A.10. The PTR solution for GLMs follows a similar recipe: propose a regularization +strength λ; construct a lower bound of the strong convexity α at the optimal solution θ∗ +λ; and test +the validity of data-dependent DP using Theorem D.1. +Before moving on to other applications of generalized PTR, we will show how to differentially +privately release λmin according to the requirements of the logistic regression example. +A.3 +Differentially privately release λmin (∇2F(θ)) +To privately release λmin∇2F(θ), we first need to compute its global sensitivity. Once we have that +then we can release it differentially privately using either the Laplace mechanism or the Gaussian +mechanism. +Theorem A.11 (Global sensitivity of the minimum eigenvalue at the optimal solution). Let +F(θ) = �n +i=1 fi(θ) + r(θ) and ˜F(θ) = F(θ) + f(θ) where f1, ..., fn are loss functions corresponding +to a particular datapoint x. Let θ∗ = argminθF(θ) and ˜θ∗ = argminθ ˜F(θ). Assume f is L-Lipschitz +and β-smooth, r(θ) is λ-strongly convex, and F and ˜F are R-self-concordant. If in addition, λ ≥ RL, +then we have +sup +X,x +(λmin(∇2F(θ∗ +λ)) − λmin(∇2 ˜F( ˜θ∗ +λ))) ≤ 2RL + β. +Proof. +λmin(∇2F(θ∗ +λ)) − λmin(∇2 ˜F( ˜θ∗ +λ)) += (λmin(∇2F(θ∗ +λ)) − λmin(∇2 ˜F(θ∗ +λ))) ++ (λmin(∇2 ˜F(θ∗ +λ)) − λmin(∇2 ˜F( ˜θ∗ +λ))). +(1) +We first bound the part on the left. By applying Weyl’s lemma λ(X + E) − λ(X) ≤ ||E||2, we have +sup +x ||∇2F(θ∗ +λ) − ∇2 +˜ +F(θ∗ +λ)||2 = ||∇2f(θ∗ +λ)||2 ≤ β +(2) +In order to bound the part on the right, we apply the semidefinite ordering using self-concordance, +which gives +e−R∥ ˜ +θ∗ +λ−θ∗ +λ∥∇2 ˜F( ˜θ∗ +λ) ≺ ∇2 ˜F(θ∗ +λ) ≺ eR∥ ˜ +θ∗ +λ−θ∗ +λ∥∇2 ˜F( ˜θ∗ +λ). +By the Courant-Fischer Theorem and the monotonicity theorem, we also have that for the smallest +eigenvalue +e−R∥ ˜ +θ∗ +λ−θ∗ +λ∥λmin +� +∇2 ˜F( ˜θ∗ +λ) +� +≤ λmin +� +∇2 ˜F(θ∗ +λ) +� +≤ eR∥ ˜ +θ∗ +λ−θ∗ +λ∥λmin +� +∇2 ˜F( ˜θ∗ +λ) +� +. +(3) +Moreover by Proposition D.2, we have that +∥ ˜θ∗ +λ − θ∗ +λ∥2 ≤ +∥∇f( ˜θ∗λ)∥ +λmin +� +∇2 ˜F( ˜θ∗ +λ) +� ≤ +L +λmin +� +∇2 ˜F( ˜θ∗ +λ) +�. +If λmin +� +∇2 ˜F( ˜θ∗ +λ) +� +≥ RL, then use that ex − 1 ≤ 2x for x ≤ 1. Substituting the above bound to (3) +then to (1) together with (2), we get a data-independent global sensitivity bound of +λmin(∇2F(θ∗ +λ)) − λmin(∇2 ˜F( ˜θ∗ +λ)) ≤ 2RL + β +21 + +as stated. +Proposition A.12. Let ∥ · ∥ be a norm and ∥ · ∥∗ be its dual norm. Let F(θ), f(θ) and ˜F(θ) = +F(θ) + f(θ) be proper convex functions and θ∗ and +˜ +theta +∗ be their minimizers, i.e., 0 ∈ ∂F(θ∗) and +0 ∈ ∂ ˜F( +˜ +theta +∗). If in addition, F, ˜F is α, ˜α-strongly convex with respect to ∥ · ∥ within the restricted +domain θ ∈ {tθ∗ + (1 − t)˜θ∗ | t ∈ [0, 1]}. Then there exists g ∈ ∂f(θ∗) and ˜g ∈ ∂f(˜θ∗) such that +∥θ∗ − ˜θ∗∥ ≤ min +� 1 +α∥˜g∥∗, 1 +˜α∥g∥∗ +� +. +Proof. Apply the first order condition to F restricted to the line segment between ˜θ∗ and θ∗, we get +F(˜θ∗) ≥ F(θ∗) + ⟨∂F(θ∗), ˜θ∗ − θ∗⟩ + α +2 ∥˜θ∗ − θ∗∥2 +(4) +F(θ∗) ≥ F(˜θ∗) + ⟨∂F(˜θ∗), θ∗ − ˜θ∗⟩ + α +2 ∥˜θ∗ − θ∗∥2 +(5) +Note by the convexity of F and f, ∂ ˜F = ∂F + ∂f, where + is the Minkowski Sum. Therefore, +0 ∈ ∂ ˜F(˜θ∗) implies that there exists ˜g such that ˜g ∈ ∂f(˜θ∗) and −˜g ∈ ∂F(˜θ∗). Take −˜g ∈ ∂F(˜θ∗) in +Equation 10 and 0 ∈ ∂F(θ∗) in Equation 9 and add the two inequalities, we obtain +0 ≥ ⟨−˜g, θ∗ − ˜θ∗⟩ + α∥˜θ∗ − θ∗∥2 +≥ −∥˜g∥∗∥θ∗ − ˜θ∗∥ + α∥˜θ∗ − θ∗∥2. +For ∥˜θ∗ − θ∗∥ = 0 the claim is trivially true; otherwise, we can divide both sides of the above +inequality by ∥˜θ∗ − θ∗∥ and get ∥θ∗ − ˜θ∗∥ ≤ 1 +α∥˜g∥∗. +It remains to show that ∥θ∗ − ˜θ∗∥ ≤ 1 +˜α∥g∥∗. This can be obtained by exactly the same arguments +above but applying strong convexity to ˜F instead. Note that we can actually get something slightly +stronger than the statement because the inequality holds for all g ∈ ∂f(θ∗). +A.4 +Other applications of generalized PTR +Besides one-posterior sampling for GLMs, there are plenty of examples that our generalized-PTR +could be applied, e.g., DP-PCA [Dwork et al., 2014] and Sparse-DP-ERM [Kifer et al., 2012] (when +the designed matrix is well-behaved). +[Dwork et al., 2014] provides a PTR style privacy-preserving principle component analysis (PCA). +The key observation of [Dwork et al., 2014] is that the local sensitivity is quite “small” if there is a +large eigengap between the k-th and the k + 1-th eigenvalues. Therefore, their approach (Algorithm +2) chooses to privately release a lower bound of the k-th eigengap (k is fixed as an input) and use +that to construct a high-confidence upper bound of the local sensitivity. +For noise-adding mechanisms, the local sensitivity is proportional to the data-dependent loss and +generalized PTR is applicable. We can formulate the data-dependent DP of DP-PCA as follows: +Theorem A.13. +For a given matrix A ∈ Rm×n, assume each row of A has a bounded ℓ2 norm +being 1. Let Vk denotes the top k eigenvectors of AT A and dk denotes the gap between the k-th +and the k + 1-th eigenvalue. Then releasing VkV T +k + E, where E ∈ Rn×n is a symmetric matrix +with the upper triangle is i.i.d samples from N(0, σ2) satisfies (ϵ(A), δ) data-dependent DP and +ϵ(A) = +2√ +log(1.25/δ) +σ(dk−2) +. +22 + +The proof is based on the local sensitivity result from [Dwork et al., 2014] and the noise calibration +of Gaussian mechanism. +We can combine Theorem A.13 with our Algorithm 3 to instantiate the generalized PTR framework. +The improvement over Dwork et al. [2014] will be to allow joint tuning of the parameter k and the +noise variance (added to the spectral gap dk). +B +Omitted proofs in Section 4 +The utility of Algorithm 3 depends on how many rounds that Algorithm 2 is invoked. We next +provide the utility guarantee of Algorithm 3, which follows a simplification of the result in the +Section A.2 of Papernot and Steinke [2021]. +Theorem B.1. Suppose applying Algorithm 2 with each φi has an equal probability to achieve the +highest validation score. Let ˆT denotes the number of invocation of Algorithm 2, where ˆT follows a +truncated geometric distribution. Then the expected quantile of the highest score candidate is given +by E ˆT +� +1 − +1 +ˆT+1 +� +. +In practice, we can roughly set τ = +1 +10k so that the algorithm is likely to test all k parameters. +Proof. Suppose each oracle access to Q(X) has a probability 1/k of achiving the best validation +accuracy. Let β denote the probability that A (shorthand for Algorithm 3) outputs the best choice +of φi. +β = 1 − Pr[A(X)is not best] += 1 − E ˆT +� +Pr[Q(X)is not best] +ˆT +� += 1 − E ˆT +� +(1 − 1 +k) +ˆT +� +. +Let f(x) = E[x ˆT ]. Applying a first-order approximation on f(1 − 1 +k), we have f(1 − 1 +k) ≈ f(1) − +f′(1) · 1 +k = 1 − E[ ˆT]/k. Then, if k is large and we choose τ = 0.1/k, A can roughly return the best +φi. +C +Experimental details +C.1 +Experimental details in private linear regression +We start with the privacy calibration of the OPS-PTR algorithm. +Algorithm 5 provides the detailed privacy calibration of the private linear regression problem. +Theorem C.1. Algorithm 5 is (ϵ, 2δ)-DP. +Proof. There are three data-dependent quantities in Theorem 5.1: λmin, ||θ∗ +λ|| and L. First, notice +that λmin has a global sensitivity of ||X||2 by Weyl’s lemma. Under the assumption ||X||2 ≤ 1, we +privately release λmin using (ϵ/4, δ/3) in Step 3. Notice that with probability at least 1 − δ/2, ˜λmin +is a lower bound of λmin. +23 + +Algorithm 5 OPS-PTR: One-Posterior Sample with propose-test-release (no-“perp” version) +1: Input: Data X, y. Private budget : ϵ, δ, proposed regularizer λ. +2: Calculate the minimum eigenvalue λmin(XT X). +3: Sample Z ∼ N(0, 1) and privately release ˜λmin = max +� +λmin + +√ +log(6/δ) +ϵ/4 +Z − +√ +2 log(6/δ)·log(2/δ) +ϵ/4 +, 0 +� +4: Calculate ˆθ = (XT X + λI)−1XT y. +5: Sample Z ∼ N(0, 1) and privately release ∆ = log(||Y|| + ||X||||ˆθ||) + log(1+||X||2/(λ+˜λmin)) +ϵ/(4√ +6/δ) +Z + +log(1+||X||2/(λ+˜λmin)) +ϵ/(4√ +2 log(6/δ) log(2/δ)). +6: Set the local Lipschitz ˜L := ||X||e∆. +7: Calibrate γ with Theorem 5.1(δ/3, ϵ/2.) +8: Output ˜θ ∼ p(θ|X, y) ∝ e− γ +2 ||y−Xθ||2+λ||θ||2 +Then, we apply Lemma C.2 from +Wang [2018] to privately release log(||Y|| + ||X||||ˆθ||) using +(ϵ/4, δ/3). Note that both the local Lipschitz constant L and the norm ||θ∗ +λ|| are functions of +log(||Y|| + ||X||||ˆθ||). Thus, we can construct a private upper bound of these by post-processing of +∆. +Then, with probability at least 1 − δ (by a union bound over ˜λmin and ∆), instantiating Theorem 5.1 +with ˜λmin and ˜L provides a valid upper bound of the data-dependent DP. We then tune the parameter +γ using the remaining privacy budget (ϵ/2, δ/3). +Lemma C.2 (Lemma 12 [Wang, 2018]). Let θ∗ +λ be the ridge regression estimate with parameter +λ and the smallest eigenvalue of XT X be λmin, then the function log(||Y + ||X||||θ∗ +λ||) has a local +sensitivity of log(1 + +||X||2 +λmin+λ ). +C.2 +Details of PATE case study +Definition C.3 (Renyi DP [Mironov, 2017]). We say a randomized algorithm M is (α, ϵM(α))-RDP +with order α ≥ 1 if for neighboring datasets X, X′ +Dα(M(X)||M(X′)) := +1 +α − 1 log Eo∼M(X′) +�� Pr[M(X) = o] +Pr[M(X′) = o] +�α� +≤ ϵM(α). +At the limit of α → ∞, RDP reduces to (ϵ, 0)-DP. We now define the data-dependent Renyi DP +that conditioned on an input dataset X. +Definition C.4 (Data-dependent Renyi DP [Papernot et al., 2018]). We say a randomized algorithm +M is (α, ϵM(α, X))-RDP with order α ≥ 1 for dataset X if for neighboring datasets X′ +Dα(M(X)||M(X′)) := +1 +α − 1 log Eo∼M(X′) +�� Pr[M(X) = o] +Pr[M(X′) = o] +�α� +≤ ϵM(α, X). +RDP features two useful properties. +24 + +Lemma C.5 (Adaptive composition). ϵ(M1,M2) = ϵM1(·) + ϵM2(·). +Lemma C.6 (From RDP to DP). If a randomized algorithm M satisfies (α, ϵ(α))-RDP, then M +also satisfies (ϵ(α) + log(1/δ) +α−1 , δ)-DP for any δ ∈ (0, 1). +Definition C.7 (Smooth Sensitivity). Given the smoothness parameter β, a β-smooth sensitivity +of f(X) is defined as +SSβ(X) := max +d≥0 e−βd · +max +˜ +X′:dist(X, ˜ +X′)≤d +∆LS( ˜X′) +Lemma C.8 (Private upper bound of data-dependent RDP, Restatement of Theorem 5.6). ] Given +a RDP function RDP(α, X) and a β-smooth sensitivity bound SS(·) of RDP(α, X). Let µ (defined +in Algorithm 4) denote the private release of log(SSβ(X)). Let (β, σs, σ2)-GNSS mechanism be +RDPupper(α):=RDP(α,X)+SSβ(X)·N(0,σ2 +s)+σs +� +2 log( 2 +δ2 )eµ +Then, the release of RDPupper(X) satisfies (α, 3α+2 +2σ2s )-RDP for all 1 < α < +1 +2β; w.p. at least 1 − δ2, +RDPupper(α) is an upper bound of RDP(α, X). +Proof sketch. We first show that releasing the smooth sensitivity SSβ with eµ satisfies (α, +α +2σ2 +2 )-RDP. +Notice that the log of SSβ(X) has a bounded global sensitivity β (Definition C.7 implies that +| log SSβ(X) − log SSβ(X′)| ≤ β for any neighboring dataset X, X′). By Gaussian mechanism, +scaling noise with βσ2 to log SSβ(X) is (α, +α +2σ2 +2 )-RDP. Therefore, the release of RDP(α, X) is +(α, ϵs(α) + +α +2σ2 +2 )-RDP. Since the release of f(X) + SSβ(X) · N(0, σ2 +s) is (α, α+1 +σ2s )-RDP (Theorem 23 +from Papernot et al. [2018]) for α < +1 +2β, we have ϵs(α) + +α +2σ2 +2 = 3α+2 +2σ2s . +We next prove the second statement. First, notice that with probability at least 1−δ2/2, eµ ≥ SSβ(X) +using the standard Gaussian tail bound. Let E denote the event that eµ ≥ SSβ(X). +Pr +� +RDPupper(α) ≤ RDP(α, X) +� += Pr +� +RDPupper(α) ≤ RDP(α, X)|E +� ++ Pr +� +RDPupper(α) ≤ RDP(α, X)|Ec +� +≤ Pr +� +RDPupper(α) ≤ RDP(α, X)|E +� ++ δ2/2 += Pr +� +N(0, σ2 +s) · SSβ(X) ≥ σs · +� +2 log(2/δ2)eµ|E +� +� +�� +� +denoted by(∗) ++δ2/2 +Condition on the event E, eµ is a valid upper bound of SSβ(X), which implies +(∗) ≤ Pr[N(0, σ2 +s) · SSβ(X) ≥ σs · +� +2 log(2/δ2)SSβ(X)|E] ≤ δ2/2 +Therefore, with probability at least 1 − δ2, RDPupper(α) ≥ RDP(α, X). +Theorem C.9 (Restatement of Theorem 5.7). Algorithm 4 satisfies (ϵ′ + ˆϵ, δ)-DP. +25 + +Proof. The privacy analysis consists of two components — the privacy cost of releasing an upper +bound of data-dependent RDP (ϵupper(α) := ϵs(α)+ +α +2σ2 +2 and the valid upper bound ϵp +σ1(α). First, set +α = 2 log(2/δ) +ϵ ++ 1 and use RDP to DP conversion with δ/2 ensures that the cost of δ/2 contribution +to be roughly ϵ/2 (i.e., log(2/δ) +α−1 += ϵ/2). Second, choosing σs = +� +2+3α +ϵ +gives us another ϵ/2. +Experimental details K = 400 teacher models are trained individually on the disjoint set using +AlexNet model. We set σ2 = σs = 15.0. Our data-dependent RDP calculation and the smooth- +sensitivity calculation follow Papernot et al. [2018]. Specifically, we use the following theorem +(Theorem 6 from Papernot et al. [2018]) to compute the data-dependent RDP of each unlabeled +data x from the public domain. +Theorem C.10 (data-dependent RDP Papernot et al. [2018]). Let ˜q ≥ Pr[M(X) ̸= Argmaxj∈[C]nj(x)], +i.e., an upper bound of the probability that the noisy label does not match the majority label. Assume +α ≤ µ1 and ˜q ≤ e(µ2−1)ϵ2/ +� +µ1 +µ1−1 · +µ2 +µ2−1 +�µ2 +, then we have: +ϵM(α, X) ≤ +1 +α − 1 log +� +(1 − ˜q) · A(˜q, µ2, ϵ2)α−1 + ˜q · B(˜q, µ1, ϵ1)α−1 +� +where A(˜q, µ2, ϵ2) := (1 − ˜q)/ +� +1 − (˜qeϵ2) +µ2−1 +µ2 +� +, B(˜q, µ1, ϵ1) = eϵ1/˜q +1 +µ1−1 , µ2 = σ1 · +� +log(1/˜q), µ1 = +µ2 + 1, ϵ1 = µ1/σ2 +1 and ϵ2 = µ2/σ2 +2. +In the experiments, the non-private data-dependent DP baseline is also based on the above theorem. +Notice that the data-dependent RDP of each query is a function of ˜q, where ˜q denotes an upper +bound of the probability where the plurality output does not match the noisy output. +˜q is a +complex function of both the noisy scale and data and is not monotonically decreasing when σ1 is +increasing. +Simulation of two distributions. The motivation of the experimental design is to compare +three approaches under different data distributions. Notice that there are K = 400 teachers, which +implies the number of the vote count for each class will be bounded by 400. In the simulation of +high-consensus distribution, we choose T = 200 unlabeled public data such that the majority vote +count will be larger than 150 (i.e., maxj∈[C] nj(x) > 150). For the low-consensus distribution, we +choose to select T unlabeled data such that the majority vote count will be smaller than 150. +D +Omitted proofs in private GLM +D.1 +Per-instance DP of GLM +Theorem D.1 (Per-instance differential privacy guarantee). Consider two adjacent data sets Z and +Z′ = [Z, (x, y)], and denote the smooth part of the loss function Fs = �n +i=1 l(yi, ⟨xi, ·⟩) + rs(·) (thus +˜Fs = Fs + l(y, ⟨x, ·⟩). Let the local neighborhood be the line segment between θ∗ and ˜θ∗. Assume +1. the GLM loss function l be convex, three-time continuous differentiable and R-generalized-self- +concordant w.r.t. ∥ · ∥2, +2. Fs is locally α-strongly convex w.r.t. ∥ · ∥2, +3. and in addition, denote L := supθ∈[θ∗,˜θ∗] |l′(y, xT θ)|, β := supθ∈[θ∗,˜θ∗] |l′′(y, xT θ)|. +26 + +Then the algorithm obeys (ϵ, δ)-pDP for Z and z = (x, y) with any 0 < δ < 2/e and +ϵ ≤ ϵ0(1 + log(2/δ)) + e +RL∥x∥2 +α +�γL2∥x∥2 +H−1 +2 ++ +� +γL2∥x∥2 +H−1 log(2/δ) +� +where ϵ0 ≤ e +RL∥x∥2 +α +− 1 + 2β∥x∥2 +H−1 +1 ++ 2β∥x∥2 +˜H−1 +2 . If we instead assume that l is R-self concordant. +Then the same results hold, but with all e +RL∥x∥2 +α +replaced with (1 − RL∥x∥H−1)2. +Under the stronger three-times continuous differentiable assumption, by mean value theorem, there +exists ξ on the line-segment between θ∗ and ˜θ∗ such that +H = +�� 1 +t=0 +∇2Fs((1 − t)θ∗ + t˜θ∗)dt +� += ∇2Fs(ξ). +The two distributions of interests are N(θ∗, [γ∇2Fs(θ∗)]−1) and N(˜θ∗, [γ∇2Fs(˜θ∗)+∇2l(y, xT ˜θ∗)]−1). +Denote [∇2Fs(θ∗)]−1 =: Σ and [∇2Fs(˜θ∗)+∇2l(y, xT ˜θ∗)]−1 =: ˜Σ. Both the means and the covariance +matrices are different, so we cannot use multivariate Gaussian mechanism naively. Instead we will +take the tail bound interpretation of (ϵ, δ)-DP and make use of the per-instance DP framework as +internal steps of the proof. +First, we can write down the privacy loss random variable in analytic form +log |Σ|−1/2e− γ +2 ∥θ−θ∗∥2 +Σ−1 +|˜Σ|−1/2e− γ +2 ∥θ−˜θ∗∥2 +˜Σ−1 += 1 +2 log +�|Σ−1| +|˜Σ−1| +� +� +�� +� +(∗) ++ γ +2 +� +∥θ − θ∗∥2 +Σ−1 − ∥θ − ˜θ∗∥2 +˜Σ−1 +� +� +�� +� +(∗∗) +The general idea of the proof is to simplify the expression above and upper bounding the two terms +separately using self-concordance and matrix inversion lemma, and ultimately show that the privacy +loss random variable is dominated by another random variable having an appropriately scaled shifted +χ-distribution, therefore admits a Gaussian-like tail bound. +To ensure the presentation is readable, we define a few short hands. We will use H and ˜H to denote +the Hessian of Fs and Fs + f respectively and subscript 1 2 indicates whether the Hessian evaluated +at at θ∗ or ˜θ∗. H without any subscript or superscript represents the Hessian of Fs evaluated at ξ as +previously used. +(∗) = 1 +2 log |H1| +|H| +|H| +|H2| +|H2| +| ˜H2| +≤ 1 +2 +� +log |H1| +|H| + log |H| +|H2| + log |H2| +| ˜H2| +� +By the R-generalized self-concordance of Fs, we can apply Lemma D.3, +−∥θ∗ − ξ∥2R ≤ log |H1| +|H| ≤ R∥θ∗ − ξ∥2, +−R∥ξ − ˜θ∗∥2 ≤ log |H| +|H2| ≤ R∥ξ − ˜θ∗∥2. +The generalized linear model ensures that the Hessian of f is rank-1: +∇2f(˜θ∗) = l′′(y, xT ˜θ∗)xxT +and we can apply Lemma ?? in both ways (taking A = H2 and A = ˜H2) and obtain +|H2| +| ˜H2| += +1 +1 + l′′(y, xT ˜θ∗)xT H−1 +2 x += 1 − l′′(y, xT ˜θ∗)xT ˜H2x +27 + +Note that l′′(y, xT ˜θ∗)xT ˜H−1 +2 x is the in-sample leverage-score and l′′(y, xT ˜θ∗)xT H−1 +2 x is the out- +of-sample leverage-score of the locally linearized problem at ˜θ∗. We denote them by µ2 and µ′ +2 +respectively (similarly, for the consistency of notations, we denote the in-sample and out of sample +leverage score at θ∗ by µ1 and µ′ +1 ). +Combine the above arguments we get +(∗) ≤R∥θ∗ − ξ∥2 + R∥ξ − ˜θ∗∥2 + log(1 − µ2) ≤ R∥θ∗ − ˜θ∗∥2 + log(1 − µ2) +(6) +(∗) ≥ − R∥θ∗ − ˜θ∗∥2 − log(1 − µ2). +(7) +We now move on to deal with the second part, where we would like to express everything in terms of +∥θ − θ∗∥H1, which we know from the algorithm is χ-distributed. +(∗∗) = γ +2 +� +∥θ − θ∗∥2 +H1 − ∥θ − θ∗∥2 +H2 + ∥θ − θ∗∥2 +H2 − ∥θ − ˜θ∗∥2 +H2 + ∥θ − ˜θ∗∥2 +H2 − ∥θ − ˜θ∗∥2 +˜H2 +� +By the generalized self-concordance at θ∗ +e−R∥θ∗−˜θ∗∥2∥ · ∥2 +H1 ≤ ∥ · ∥2 +H2 ≤ eR∥θ∗−˜θ∗∥2∥ · ∥2 +H1 +This allows us to convert from ∥ · ∥H2 to ∥ · ∥H1, and as a consequence: +��∥θ − θ∗∥2 +H1 − ∥θ − θ∗∥2 +H2 +�� ≤ [eR∥θ∗−˜θ∗∥2 − 1]∥θ − θ∗∥2 +H1. +Also, +∥θ − θ∗∥2 +H2 − ∥θ − ˜θ∗∥2 +H2 = +� +˜θ∗ − θ∗, 2θ − 2θ∗ + θ∗ − ˜θ∗� +H2 = 2⟨θ − θ∗, ˜θ∗ − θ∗⟩H2 − ∥θ∗ − ˜θ∗∥2 +H2 +Therefore +���∥θ − θ∗∥2 +H2 − ∥θ − ˜θ∗∥2 +H2 +��� ≤ 2∥θ − θ∗∥H2∥θ∗ − ˜θ∗∥H2 + ∥θ∗ − ˜θ∗∥2 +H2 +≤ 2eR∥˜θ∗−θ∗∥2∥θ − θ∗∥H1∥θ∗ − ˜θ∗∥H + eR∥˜θ∗−θ∗∥2∥θ∗ − ˜θ∗∥2 +H. +Then lastly we have +0 ≥ ∥θ − ˜θ∗∥2 +H2 − ∥θ − ˜θ∗∥2 +˜H2 = −l′′(y, xT ˜θ∗) +� +⟨x, θ − θ∗⟩ + ⟨x, θ∗ − ˜θ∗⟩ +�2 +≥ −2β∥x∥2 +H−1 +1 ∥θ − θ∗∥2 +H1 − 2β∥x∥2 +H−1∥θ∗ − ˜θ∗∥2 +H +���∥θ − ˜θ∗∥2 +H2 − ∥θ − ˜θ∗∥2 +˜H2 +��� ≤ 2β∥x∥2 +H−1 +1 ∥θ − θ∗∥2 +H1 + 2β∥x∥2 +H−1∥θ∗ − ˜θ∗∥2 +H +Combine the above derivations, we get +|(∗∗)| ≤ γ +2 +� +a∥θ − θ∗∥2 +H1 + b∥θ − θ∗∥H1 + c +� +(8) +where +a := +� +eR∥θ∗−˜θ∗∥2 − 1 + 2β∥x∥2 +H−1 +1 +� +b :=2eR∥θ∗−˜θ∗∥2∥θ∗ − ˜θ∗∥H +c :=(eR∥θ∗−˜θ∗∥2 + 2β∥x∥2 +H−1)∥θ∗ − ˜θ∗∥2 +H +28 + +Lastly, by (6) and (8), +����log p(θ|Z) +p(θ|Z′) +���� ≤ R∥θ∗ − ˜θ∗∥2 + log(1 − µ2) + γ +2[aW 2 + bW + c]. +where according to the algorithm W := ∥θ − θ∗∥H1 follows a half-normal distribution with σ = +γ−1/2. +By standard Gaussian tail bound, we have for all δ < 2/e. +P(|W| ≤ γ−1/2� +log(2/δ)) ≤ δ. +This implies that a high probability upper bound of the absolute value of the privacy loss random +variable log p(θ|Z) +p(θ|Z′) under p(θ|Z). By the tail bound to privacy conversion lemma (Lemma ??), we +get that for any set S ⊂ Θ P(θ ∈ S|Z) ≤ eϵP(θ ∈ S|Z′) + δ for any 0 < δ < 2/e and +ϵ = R∥θ∗ − ˜θ∗∥2 + log(1 − µ2) + γc +2 + a +2 log(2/δ) + γ1/2b +2 +� +log(2/δ). +Denote v := θ∗ − ˜θ∗, by strong convexity +∥v∥2 ≤ ∥∇l(y, xT θ)[˜θ∗]∥2/α = |l′|∥x∥2/α ≤ L∥x∥2/α +and +∥v∥H ≤ ∥∇l(y, xT θ)[˜θ∗]∥H−1 = |l′|∥x∥H−1 ≤ L∥x∥H−1. +Also use the fact that | log(1 − µ2)| ≤ 2µ2 for µ2 < 0.5 and µ2 ≤ β∥x∥2 +˜H−1 +2 , we can then combine +similar terms and have a more compact representation. +ϵ ≤ ϵ0(1 + log(2/δ)) + e +RL∥x∥2 +α +�γL2∥x∥2 +H−1 +2 ++ +� +γL2∥x∥2 +H−1 log(2/δ) +� +where +ϵ0 ≤ e +RL∥x∥2 +α +− 1 + 2β∥x∥2 +H−1 +1 ++ 2β∥x∥2 +˜H−1 +2 +is the part of the privacy loss that does not get smaller as γ decreases. +Proposition D.2. Let ∥ · ∥ be a norm and ∥ · ∥∗ be its dual norm. Let F(θ), f(θ) and ˜F(θ) = +F(θ) + f(θ) be proper convex functions and θ∗ and +˜ +theta +∗ be their minimizers, i.e., 0 ∈ ∂F(θ∗) and +0 ∈ ∂ ˜F( +˜ +theta +∗). If in addition, F, ˜F is α, ˜α-strongly convex with respect to ∥ · ∥ within the restricted +domain θ ∈ {tθ∗ + (1 − t)˜θ∗ | t ∈ [0, 1]}. Then there exists g ∈ ∂f(θ∗) and ˜g ∈ ∂f(˜θ∗) such that +∥θ∗ − ˜θ∗∥ ≤ min +� 1 +α∥˜g∥∗, 1 +˜α∥g∥∗ +� +. +Proof. Apply the first order condition to F restricted to the line segment between ˜θ∗ and θ∗, there +are we get +F(˜θ∗) ≥ F(θ∗) + ⟨∂F(θ∗), ˜θ∗ − θ∗⟩ + α +2 ∥˜θ∗ − θ∗∥2 +(9) +F(θ∗) ≥ F(˜θ∗) + ⟨∂F(˜θ∗), θ∗ − ˜θ∗⟩ + α +2 ∥˜θ∗ − θ∗∥2 +(10) +29 + +Note by the convexity of F and f, ∂ ˜F = ∂F + ∂f, where + is the Minkowski Sum. Therefore, +0 ∈ ∂ ˜F(˜θ∗) implies that there exists ˜g such that ˜g ∈ ∂f(˜θ∗) and −˜g ∈ ∂F(˜θ∗). Take −˜g ∈ ∂F(˜θ∗) in +Equation 10 and 0 ∈ ∂F(θ∗) in Equation 9 and add the two inequalities, we obtain +0 ≥ ⟨−˜g, θ∗ − ˜θ∗⟩ + α∥˜θ∗ − θ∗∥2 ≥ −∥˜g∥∗∥θ∗ − ˜θ∗∥ + α∥˜θ∗ − θ∗∥2. +For ∥˜θ∗ − θ∗∥ = 0 the claim is trivially true, otherwise, we can divide the both sides of the above +inequality by ∥˜θ∗ − θ∗∥ and get ∥θ∗ − ˜θ∗∥ ≤ 1 +α∥˜g∥∗. +It remains to show that ∥θ∗ − ˜θ∗∥ ≤ 1 +˜α∥g∥∗. This can be obtained by exactly the same arguments +above but applying strong convexity to ˜F instead. Note that we can actually get something slightly +stronger than the statement because the inequality holds for all g ∈ ∂f(θ∗). +A consequence of (generalized) self-concordance is the spectral (multiplicative) stability of Hessian +to small perturbations of parameters. +Lemma D.3 (Stability of Hessian[Nesterov and Nemirovskii, 1994, Theorem 2.1.1], [Bach, 2010, +Proposition 1]). Let Hθ := ∇2Fs(θ). If Fs is R-self-concordant at θ. Then for any v such that +R∥v∥Hθ < 1, we have that +(1 − R∥v∥Hθ)2∇2Fs(θ) ≺ ∇2Fs(θ + v) ≺ +1 +(1 − R∥v∥Hθ)2 ∇2Fs(θ). +If instead we assume Fs is R-generalized-self-concordant at θ with respect to norm ∥ · ∥, then +e−R∥v∥∇2Fs(θ) ≺ ∇2Fs(θ + v) ≺ eR∥v∥∇2Fs(θ) +The two bounds are almost identical when R∥v∥ and R∥v∥θ are close to 0, in particular, for x ≤ 1/2, +e−2x ≤ 1 − x ≤ e−x. +References +Francis Bach. Self-concordant analysis for logistic regression. Electronic Journal of Statistics, 4: +384–414, 2010. +Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differentially private empirical risk +minimization. Journal of Machine Learning Research, 12(3), 2011. +Chris Decarolis, Mukul Ram, Seyed Esmaeili, Yu-Xiang Wang, and Furong Huang. An end-to- +end differentially private latent dirichlet allocation using a spectral algorithm. In International +Conference on Machine Learning, pages 2421–2431. PMLR, 2020. +Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In ACM symposium on +Theory of computing, pages 371–380, 2009. +Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity +in private data analysis. In Theory of cryptography conference, pages 265–284. Springer, 2006. +Cynthia Dwork, Kunal Talwar, Abhradeep Thakurta, and Li Zhang. Analyze gauss: optimal bounds +for privacy-preserving principal component analysis. In Proceedings of the forty-sixth annual ACM +symposium on Theory of computing, pages 11–20, 2014. +30 + +Sivakanth Gopi, Yin Tat Lee, and Daogao Liu. +Private convex optimization via exponential +mechanism. arXiv preprint arXiv:2203.00263, 2022. +Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Analyzing +graphs with node differential privacy. In Theory of Cryptography Conference, pages 457–476. +Springer, 2013. +Daniel Kifer, Adam Smith, and Abhradeep Thakurta. Private convex empirical risk minimization +and high-dimensional regression. In Conference on Learning Theory, pages 25–1. JMLR Workshop +and Conference Proceedings, 2012. +Jingcheng Liu and Kunal Talwar. Private selection from private candidates. In Proceedings of the +51st Annual ACM SIGACT Symposium on Theory of Computing, pages 298–309, 2019. +Xiyang Liu, Weihao Kong, and Sewoong Oh. Differential privacy and robust statistics in high +dimensions. arXiv preprint arXiv:2111.06578, 2021. +Kentaro Minami, HItomi Arai, Issei Sato, and Hiroshi Nakagawa. Differential privacy without +sensitivity. Advances in Neural Information Processing Systems, 29, 2016. +Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th computer security foundations symposium +(CSF), pages 263–275. IEEE, 2017. +Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex programming. +SIAM, 1994. +Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and sampling in private +data analysis. In ACM symposium on Theory of computing (STOC-07), pages 75–84. ACM, 2007. +Nicolas Papernot and Thomas Steinke. Hyperparameter tuning with renyi differential privacy. arXiv +preprint arXiv:2110.03620, 2021. +Nicolas Papernot, Martín Abadi, Úlfar Erlingsson, Ian Goodfellow, and Kunal Talwar. +Semi- +supervised knowledge transfer for deep learning from private training data. In International +Conference on Learning Representations (ICLR-17), 2017. +Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and Úlfar +Erlingsson. Scalable private learning with pate. arXiv preprint arXiv:1802.08908, 2018. +Rachel Redberg and Yu-Xiang Wang. Privately publishable per-instance privacy. Advances in Neural +Information Processing Systems, 34, 2021. +Jordi Soria-Comas, Josep Domingo-Ferrer, David Sánchez, and David Megías. Individual differential +privacy: A utility-preserving formulation of differential privacy guarantees. IEEE Transactions on +Information Forensics and Security, 12(6):1418–1429, 2017. +Abhradeep Guha Thakurta and Adam Smith. Differentially private feature selection via stability +arguments, and the robustness of the lasso. In Conference on Learning Theory, pages 819–850. +PMLR, 2013. +Salil Vadhan. The complexity of differential privacy. In Tutorials on the Foundations of Cryptography, +pages 347–450. Springer, 2017. +Jiachen T Wang, Saeed Mahloujifar, Shouda Wang, Ruoxi Jia, and Prateek Mittal. Renyi differential +privacy of propose-test-release and applications to private and robust machine learning. arXiv +preprint arXiv:2209.07716, 2022. +31 + +Yu-Xiang Wang. Per-instance differential privacy and the adaptivity of posterior sampling in linear +and ridge regression. arXiv preprint arXiv:1707.07708, pages 48–71, 2017. +Yu-Xiang Wang. Revisiting differentially private linear regression: optimal and adaptive prediction +& estimation in unbounded domain. arXiv preprint arXiv:1803.02596, 2018. +Yu-Xiang Wang, Stephen Fienberg, and Alex Smola. Privacy for free: Posterior sampling and +stochastic gradient monte carlo. In International Conference on Machine Learning, pages 2493– +2502. PMLR, 2015. +32 + diff --git a/99AyT4oBgHgl3EQfdfcH/content/tmp_files/load_file.txt b/99AyT4oBgHgl3EQfdfcH/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..561c577d8d913f6d078cda1ff8aa316c59eb1fb5 --- /dev/null +++ b/99AyT4oBgHgl3EQfdfcH/content/tmp_files/load_file.txt @@ -0,0 +1,1433 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf,len=1432 +page_content='Generalized PTR: User-Friendly Recipes for Data-Adaptive Algorithms with Differential Privacy Rachel Redberg, Yuqing Zhu, Yu-Xiang Wang University of California, Santa Barbara {rredberg, yuqingzhu, yuxiangw}@ucsb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='edu January 3, 2023 Abstract The “Propose-Test-Release” (PTR) framework [Dwork and Lei, 2009] is a classic recipe for designing differentially private (DP) algorithms that are data-adaptive, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' those that add less noise when the input dataset is “nice”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We extend PTR to a more general setting by privately testing data-dependent privacy losses rather than local sensitivity, hence making it applicable beyond the standard noise-adding mechanisms, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' to queries with unbounded or undefined sensitivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We demonstrate the versatility of generalized PTR using private linear regression as a case study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Additionally, we apply our algorithm to solve an open problem from “Private Aggregation of Teacher Ensembles (PATE)” [Papernot et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2017, 2018] — privately releasing the entire model with a delicate data-dependent analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 1 Introduction The guarantees of differential privacy (DP) [Dwork et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2006] are based on worst-case outcomes across all possible datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' A common paradigm is therefore to add noise scaled by the global sensitivity of a query f, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' the maximum change in f between any pair of neighboring datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' A given dataset X might have a local sensitivity that is much smaller than the global sensitivity, in which case we can hope to add a smaller amount of noise (calibrated to the local rather than the global sensitivity) while achieving the same privacy guarantee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' However, this must not be undertaken naïvely – the local sensitivity is a dataset-dependent function and so calibrating noise to the local sensitivity could leak information about the dataset [Nissim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2007].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The “Propose-Test-Release” (PTR) framework [Dwork and Lei, 2009] resolves this issue by introducing a test to privately check whether a proposed bound on the local sensitivity is valid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Only if the test “passes” is the output released with noise calibrated to the proposed bound on the local sensitivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' PTR is a powerful and flexible tool for designing data-adaptive DP algorithms, but it has several limitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' First, it applies only to noise-adding mechanisms which calibrate noise according to the sensitivity of a query.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Second, the test in “Propose-Test-Release” is computationally expensive for all but a few simple queries such as privately releasing the median or mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Third, while some existing works [Decarolis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2020, Kasiviswanathan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2013, Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2021] follow the approach of testing “nice” properties of a dataset before exploiting these properties in a private release to PTR 1, 1We refer to these as PTR-like methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='00301v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='LG] 31 Dec 2022 there has not been a systematic recipe for discovering which properties should be tested.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In this paper, we propose a generalization of PTR which addresses these limitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The centerpiece of our framework is a differentially private test on the data-dependent privacy loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' This test does not directly consider the local sensitivity of a query and is therefore not limited to additive noise mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Moreover, in many cases, the test can be efficiently implemented by privately releasing a high-probability upper bound, thus avoiding the need to search an exponentially large space of datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Furthermore, the derivation of the test itself often spells out exactly what properties of the input dataset need to be checked, which streamlines the design of data-adaptive DP algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Our contributions are summarized as follows: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We propose a generalization of PTR which can handle algorithms beyond noise-adding mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Generalized PTR allows us to plug in any data-dependent DP analysis to construct a high-probability DP test that adapts to favorable properties of the input dataset – without painstakingly designing each test from scratch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We demonstrate that many existing examples of PTR and PTR-like algorithms can be unified under the generalized PTR framework, sometimes resulting in a tighter analysis (see an example of report-noisy-max in Sec A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We show that one can publish a DP model through privately upper-bounding a one-dimensional statistic — no matter how complex the output space of the mechanism is.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We apply this result to solve an open problem from PATE [Papernot et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2017, 2018].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Our results broaden the applicability of private hyper-parameter tuning [Liu and Talwar, 2019, Papernot and Steinke, 2021] in enabling joint-parameter selection of DP-specific parameters (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', noise level) and native parameters of the algorithm (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', learning rate, regularization weight), which may jointly affect the data-dependent DP losses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 2 Related Work Data-dependent DP algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Privately calibrating noise to the local sensitivity is a well- studied problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' One approach is to add noise calibrated to the smooth sensitivity [Nissim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2007], an upper bound on the local sensitivity which changes slowly between neighboring datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' An alternative to this – and the focus of our work – is Propose-Test-Release (PTR) [Dwork and Lei, 2009], which works by calculating the distance Dβ(X) to the nearest dataset to X whose local sensitivity violates a proposed bound β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The PTR algorithm then adds noise to Dβ(X) before testing whether this privately computed distance is sufficiently large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' PTR spin-offs abound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Notable examples include stability-based methods [Thakurta and Smith, 2013] (stable local sensitivity of 0 near the input data) and privately releasing upper bounds of local sensitivity [Kasiviswanathan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2013, Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2021, Decarolis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2020].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We refer readers to Chapter 3 of Vadhan [2017] for a concise summary of these classical results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Recent work [Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2022] has provided Rényi DP bounds for PTR and demonstrated its applications to robust DP-SGD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Our work (see Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='2) also considers applications of PTR in data-adaptive private deep learning: Instead of testing the local sensitivity of each gradient step as in Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' [2022], our PTR-based PATE algorithm tests the data-dependent privacy loss as a whole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' [2021] proposed a new variant called High-dimensional Propose-Test-Release (HPTR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' HPTR provides a systematic way of solving DP statistical estimation problems by using the exponential 2 mechanism (EM) with carefully constructed scores based on certain one-dimensional robust statistics, which have stable local sensitivity bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' HPTR focuses on designing data-adaptive DP mechanisms from scratch;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' our method, in contrast, converts existing randomized algorithms (including EM and even some that do not satisfy DP) into those with formal DP guarantees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Interestingly, our proposed method also depends on a one-dimensional statistic of direct interest: the data-dependent privacy loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Data-dependent DP losses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The flip side of data-dependent DP algorithms is the study of data-dependent DP losses [Papernot et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2018, Soria-Comas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2017, Wang, 2017], which fix the randomized algorithm but parameterize the resulting privacy loss by the specific input dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' For example: In the simple mechanism that adds Laplace noise with parameter b, data-dependent DP losses are ϵ(X) = ∆LS(X)/b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The data-dependent DP losses are often much smaller than the DP loss, but they themselves depend on the data and thus may reveal sensitive information;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' algorithms satisfying a data-dependent privacy guarantee are not formally DP with guarantees any smaller than that of the worst-case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Existing work has considered privately publishing these data-dependent privacy losses [Papernot et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2018, Redberg and Wang, 2021], but notice that privately publishing these losses does not improve the DP parameter of the given algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Part of our contribution is to resolve this conundrum by showing that a simple post-processing step of the privately released upper bound of ϵ(Data) gives a formal DP algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Private hyper-parameter tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Our work has a nice connection with private hyper-parameter tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Prior work [Liu and Talwar, 2019, Papernot and Steinke, 2021] requires each candidate configuration to be released with the same DP (or Rényi DP) parameter set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Another hidden assumption is that the parameters must not be privacy-correlated (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', parameter choice will not change the privacy guarantee).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Otherwise we need to use the largest DP bound across all candidates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' For example, Liu and Talwar [2019] show that if each mechanism (instantiated with one group of hyper-parameters) is (ϵ, 0)-DP, then running a random number of mechanisms and reporting the best option satisfies (3ϵ, 0)-DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Our work directly generalizes the above results by (1) considering a wide range of hyper-parameters, either privacy-correlated or not;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' and (2) requiring only that individual candidates to have a testable data-dependent DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 3 Preliminaries Datasets X, X′ ∈ X are neighbors if they differ by no more than one datapoint – i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', X ≃ X′ if d(X, X′) ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We will define d(·) to be the number of coordinates that differ between two datasets of the same size n: d(X, Y ) = #{i ∈ [n] : Xi ̸= Yi}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We use || · || to denote the radius of the smallest Euclidean ball that contains the input set, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' ||X|| = supx∈X ||x||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The parameter φ denotes the privacy parameters associated with a mechanism (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' noise level, regularization).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Mφ is a mechanism parameterized by φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' For mechanisms with continuous output space, we will take Pr[M(X) = y] to be the probability density function of M(X) at y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1 (Differential privacy [Dwork et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2006]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Fix ϵ, δ ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' A randomized algorithm M : X → S satisfies (ϵ, δ)-DP if for all neighboring datasets X ≃ X′ and for all measurable sets S ⊂ S, Pr � M(X) ∈ S � ≤ eϵPr � M(X′) ∈ S � + δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Suppose we wish to privately release the output of a real-valued function f : X → R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We can do so 3 by calculating the global sensitivity ∆GS, calibrating the noise scale to the global sensitivity and then adding sampled noise to the output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='2 (Local / Global sensitivity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The local ℓ∗-sensitivity of a function f is defined as ∆LS(X) = max X≃X′ ||f(X) − f(X′)||∗ and the global sensitivity of f is ∆GS = supX ∆LS(X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1 Propose-Test-Release Calibrating the noise level to the local sensitivity ∆LS(X) of a function would allow us to add less noise and therefore achieve higher utility for releasing private queries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' However, the local sensitivity is a data-dependent function and naïvely calibrating the noise level to ∆LS(X) will not satisfy DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' PTR resolves this issue in a three-step procedure: propose a bound on the local sensitivity, privately test that the bound is valid (with high probability), and if so calibrate noise according to the bound and release the output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' PTR privately computes the distance Dβ(X) between the input dataset X and the nearest dataset X′′ whose local sensitivity exceeds the proposed bound β: Dβ(X) = min X′′ {d(X, X′′) : ∆LS(X′′) > β}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Algorithm 1 Propose-Test-Release [Dwork and Lei, 2009] 1: Input: Dataset X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' privacy parameters ϵ, δ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' proposed bound β on ∆LS(X);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' query function f : X → R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 2: if Dβ(X) + Lap � 1 ϵ � ≤ log(1/δ) ϵ then output ⊥, 3: else release f(X) + Lap � β ϵ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Algorithm 1 satisfies (2ϵ, δ)-DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' [Dwork and Lei, 2009] Rather than proposing an arbitrary threshold β, one can also privately release an upper bound of the local sensitivity and calibrate noise according to this upper bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' This was used for node DP in graph statistics [Kasiviswanathan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2013], and for fitting topic models using spectral methods [Decarolis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2020].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 4 Generalized PTR This section introduces the generalized PTR framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We first formalize the notion of data- dependent differential privacy that conditions on an input dataset X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1 (Data-dependent privacy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Suppose we have δ > 0 and a function ϵ : X → R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We say that mechanism M satisfies (ϵ(X), δ) data-dependent DP2 for dataset X if for all possible output sets S and neighboring datasets X′, Pr � M(X) ∈ S � ≤ eϵ(X)Pr � M(X′) ∈ S � + δ, Pr � M(X′) ∈ S � ≤ eϵ(X)Pr � M(X) ∈ S � + δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 2We will sometimes write that M(X) satisfies ϵ(X) data-dependent DP with respect to δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 4 In generalized PTR, we propose a value φ for the randomized algorithm M, which could be a noise scale or regularization parameter – or a set including both.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' For example, φ = (λ, γ) in Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We then say that Mφ is the mechanism M parameterized by φ, and ϵφ(X) its data-dependent DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The following example illustrates how to derive the data-dependent DP for a familiar friend – the Laplace mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' ( Data-dependent DP of Laplace Mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=') Given a function f : X → R, we will define Mφ(X) = f(X) + Lap (φ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We then have log Pr[Mφ(X) = y] Pr[Mφ(X′) = y] ≤ |f(X) − f(X′)| φ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Maximizing the above calculation over all possible outputs y and using Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1, ϵφ(X) = max X′:X′≃X |f(X) − f(X′)| φ = ∆LS(X) φ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The data-dependent DP ϵφ(X) is a function of both the dataset X and the parameter φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Maximizing ϵφ(X) over X recovers the standard DP guarantee of running M with parameter φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Algorithm 2 Generalized Propose-Test-Release 1: Input: Dataset X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' mechanism Mφ : X → R and its privacy budget ϵ, δ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' (ˆϵ, ˆδ)-DP test T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' false positive rate ≤ δ′;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' data-dependent DP function ϵφ(·) w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 2: if not T (X) then output ⊥, 3: else release θ = Mφ(X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='3 (Privacy guarantee of generalized PTR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Consider a proposal φ and a data-dependent DP function ϵφ(X) w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Suppose that we have an (ˆϵ, ˆδ)-DP test T : X → {0, 1} such that when ϵφ(X) > ϵ, T (X) = � 0 with probability 1 − δ′, 1 with probability δ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Then Algorithm 2 satisfies (ϵ + ˆϵ, δ + ˆδ + δ′)-DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Proof sketch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' There are three main cases to consider: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We decide not to run Mφ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We decide to run Mφ and ϵφ(X) > ϵ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We decide to run Mφ and ϵφ(X) ≤ ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 5 In the first case, the decision to output ⊥ is post-processing of an (ˆϵ, ˆδ)-DP mechanism and inherits its privacy guarantees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The second case occurs when the (ˆϵ, ˆδ)-DP test "fails" (produces a false positive) and occurs with probability at most δ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The third case is a composition of an (ˆϵ, ˆδ)-DP algorithm and an (ϵ, δ)-DP algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Generalized PTR is a strict generalization of Propose-Test-Release.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' For some function f, define Mφ and T as follows: Mφ(X) = f(X) + Lap(φ);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' T (X) = � 0 if Dβ(X) + Lap � 1 ϵ � > log(1/δ) ϵ , 1 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Notice that our choice of parameterization is φ = β ϵ , where φ is the scale of the Laplace noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In other words, we know from Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='2 that ϵφ(X) > ϵ exactly when ∆LS(X) > β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' For noise-adding mechanisms such as the Laplace mechanism, the sensitivity is proportional to the privacy loss (in both the global and local sense, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' ∆GS ∝ ϵ and ∆LS ∝ ϵ(X)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Therefore for these mechanisms the only difference between privately testing the local sensitivity (Algorithm 1) and privately testing the data-dependent DP (Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='3) is a change of parameterization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1 Limitations of local sensitivity Why do we want to generalize PTR beyond noise-adding mechanisms?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Compared to classic PTR, the generalized PTR framework allows us to be more flexible in both the type of test conducted and also the type of mechanism whose output we wish to release.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' For many mechanisms, the local sensitivity either does not exist or is only defined for specific data-dependent quantities (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', the sensitivity of the score function in the exponential mechanism) rather than the mechanism’s output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The following example illustrates this issue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='4 (Private posterior sampling).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Let M : X × Y → Θ be a private posterior sampling mechanism [Minami et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2016, Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2015, Gopi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2022] for approximately minimizing FX(θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' M samples θ ∼ P(θ) ∝ e−γ(FX(θ)+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='5λ||θ||2) with parameters γ, λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Note that γ, λ cannot be appro- priately chosen for this mechanism to satisfy DP without going through a sensitivity calculation of arg min FX(θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In fact, the global and local sensitivity of the minimizer is unbounded even in linear regression problems, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='e when FX(θ) = 1 2||y − Xθ||2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Output perturbation algorithms do work for the above problem when we regularize, but they are known to be suboptimal in theory and in practice [Chaudhuri et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2011].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1 we demonstrate how to apply generalized PTR to achieve a data-adaptive posterior sampling mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Even in the cases of noise-adding mechanisms where PTR seems to be applicable, it does not lead to a tight privacy guarantee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Specifically, by an example of privacy amplification by post-processing (Example A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1 in the appendix), we demonstrate that the local sensitivity does not capture all sufficient statistics for data-dependent privacy analysis and thus is loose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='2 Which φ to propose The main limitation of generalized PTR is that one needs to “propose” a good guess of parameter φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Take the example of φ being the noise level in a noise-adding mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Choosing too small a φ will result in a useless output ⊥, while choosing too large a φ will add more noise than necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Finding this ’Goldilocks’ φ might require trying out many different possibilities – each of which will consume privacy budget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' This section introduces a method to jointly tune privacy parameters (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', noise scale) along with parameters related only to the utility of an algorithm (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', learning rate or batch size in stochastic gradient descent) – while avoiding the ⊥ output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Algorithm 3 takes a list of parameters as input, runs generalized PTR with each of the parameters, and returns the output with the best utility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We show that the privacy guarantee with respect to ϵ is independent of the number of φ that we try.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Formally, let φ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', φk be a set of hyper-parameters and ˜θi ∈ {⊥, Range(M)} denotes the output of running generalized PTR on a private dataset X with φi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Let Xval be a public validation set and q(˜θi) be the score of evaluating ˜θi with Xval (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', validation accuracy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The goal is to select a pair (˜θi, φi) such that DP model ˜θi maximizes the validation score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The generalized PTR framework with privacy calibration is described in Algorithm 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The privacy guarantee of Algorithm 3 is an application of Liu and Talwar [2019].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Algorithm 3 PTR with hyper-parameter selection 1: Input: Privacy budget per PTR algorithm (ϵ∗, δ∗), cut-off T, parameters φ1:k, flipping probability τ and validation score function q(·).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 2: Initialize the set S = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 3: Draw G from a geometric distribution Dτ and let ˆT = min(T, G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 4: for i = 1 ,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', ˆT do 5: pick a random φi from φ1:k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 6: evaluate φi: (˜θi, q(˜θi)) ← Algorithm 2(φi, (ϵ∗, δ∗)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 7: S ← S ∪ {˜θi, q(˜θi)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 8: end for 9: Output the highest scored candidate from S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='5 ( Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='4 Liu and Talwar [2019] ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Fix any τ ∈ [0, 1], δ2 > 0 and let T = 1 τ log 1 δ2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' If each oracle access to Algorithm 2 is (ϵ∗, δ∗)-DP, then Algorithm 3 is (3ϵ∗ +3 √ 2δ∗, √ 2δ∗T +δ2)-DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The theorem implies that one can try a random number of φ while paying a constant ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In practice, we can roughly set τ = 1 10k so that the algorithm is likely to test all k parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We emphasize that the privacy and the utility guarantee (stated in the appendix) is not our contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' But the idea of applying generalized PTR to enforce a uniform DP guarantee over all choices of parameters with a data-dependent analysis is new, and in our opinion, significantly broadens the applicability to generic hyper-parameter tuning machinery from Liu and Talwar [2019].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='3 Construction of the DP test Classic PTR uses the Laplace mechanism to construct a differentially private upper bound of Dβ(X), the distance from input dataset X to the closest dataset whose local sensitivity exceeds the proposed 7 bound β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The tail bound of the Laplace distribution then ensures that if Dβ(X) = 0 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' if ∆LS(X) > β), then the output will be released with only a small probability δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The following theorem shows that we could instead use a differentially private upper bound of the data-dependent DP ϵφ(X) in order to test whether to run the mechanism Mφ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='6 (Generalized PTR with private upper bound).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Suppose we have a differentially private upper bound of ϵφ(X) w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' δ such that with probability at least 1 − δ′, ϵP φ (X) > ϵφ(X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Further suppose we have an (ˆϵ, ˆδ)-DP test T such that T(X) = � 1 if ϵP φ (X) < ϵ, 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Then Algorithm 2 is (ϵ + ˆϵ, δ + ˆδ + δ′)-DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='2, we demonstrate that one can upper bound the data-dependent DP through a modification of the smooth sensitivity framework applied on ϵφ(X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Moreover, in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1 we provide a direct application of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='6 with private linear regression by making use of the per-instance DP technique [Wang, 2017].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The applications in Section 5 are illustrative of two distinct approaches to constructing the DP test for generalized PTR: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Private sufficient statistics release (used in the private linear regression example of Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1) specifies the data-dependent DP as a function of the dataset and privately releases each data-dependent component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The second approach (used in the PATE example of Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='2) uses the smooth sensitivity framework to privately release the data-dependent DP as a whole, and then construct a high-confidence test using the Gaussian mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' These two approaches cover most of the scenarios arising in data-adaptive analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' For example, in the appendix we demonstrate the merits of generalized PTR in handling data-adaptive private generalized linear models (GLMs) using private sufficient statistics release.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Moreover, sufficient statistics release together with our private hyper-parameter tuning (Algorithm 3) can be used to construct data-adaptive extensions of DP-PCA and Sparse-DP-ERM (see details in the future work section).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 5 Applications In this section, we put into action our approaches to construct the DP test and provide applications in private linear regression and PATE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1 Private Linear Regression Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1 ([Wang, 2017]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' For input data X ∈ X and Y ∈ Y, define the following: λmin(X) denotes the smallest eigenvalue of XT X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' ||θ∗ λ|| is the magnitude of the solution θ∗ λ = (XT X + λI)−1XT Y ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' and L(X, y) := ||X||(||X||||θ∗ λ|| + ||Y||) is the local Lipschitz constant, denoted L in brief.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 8 10 1 100 10 2 6 × 10 3 2 × 10 2 3 × 10 2 4 × 10 2 MSE UCI Bike dataset (n = 17379, d = 17) AdaOPS non-private OutPert OPS OPS with PTR (a) Bike dataset 10 1 100 2 × 10 2 3 × 10 2 4 × 10 2 6 × 10 2 MSE UCI elevators dataset (n = 8752, d = 18) AdaOPS non-private OutPert OPS OPS with PTR (b) Elevators dataset Figure 1: Differentially private linear regression algorithms on UCI datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' y-axis reports the MSE error with confidence intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' ϵ is evaluated with δ = 1e − 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' For brevity, denote λ∗ = λ + λmin(X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The algorithm used in Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='4 with parameter φ = (λ, γ) obeys (ϵφ(Z), δ) data-dependent DP for each dataset Z = (X, Y ) with ϵφ(Z) equal to � γL2 log(2/δ) λ∗ + γL2 2(λ∗ + ||X||2) + 1 + log(2/δ)||X||2 2(λ∗) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Notice that the data-dependent DP is a function of (λmin, L, ||θ∗ λ||, λ, γ), where (λmin, L, ||θ∗ λ||) are data-dependent quantities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' One can apply the generalized PTR framework as in the following example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Example 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='2 (OPS with PTR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We demonstrate here how to apply generalized PTR to the one- posterior sample (OPS) algorithm, a differentially private mechanism which outputs one sample from the posterior distribution of a Bayesian model with bounded log-likelihood.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Propose φ = (λ, γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Based on (λ, γ), differentially privately release λmin, ||θ∗ λ||, L with privacy budget (ϵ, δ/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Condition on a high probability event (with probability at least 1 − δ/2) of λmin, ||θ∗ λ||, L, test if ϵP φ (X) is smaller than the predefined privacy budget (ˆϵ, ˆδ), where ϵP φ (X) denotes the sanitized data-dependent DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Based on the outcome of the test, decide whether to release θ ∝ e− γ 2 ||Y −Xθ||2+λ||θ||2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The algorithm outlined in Example 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='2 satisfies (ϵ + ˆϵ, δ + ˆδ)-DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The main idea of the above algorithm boils down to privately releasing all data-dependent quantities in data-dependent DP, constructing high-probability confidence intervals of these quantities, and then deciding whether to run the mechanism M with the proposed parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We defer the details of the privacy calibration of data-dependent quantities to the appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' One may ask why we cannot directly tune privacy parameters (λ, γ) based on the sanitized data- dependent DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' This is because, in many scenarios, data-dependent quantities depend on the choice of privacy parameters, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', ||θ∗ λ|| is a complicated function of λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Thus, the optimization on λ becomes 9 a circular problem — to solve λ, we need to sanitize ||θ∗ λ||, which needs to choose a λ to begin with.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Alternatively, generalized PTR provides a clear and flexible framework to test the validity of privacy parameters adapted to the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The above “circular” issue is even more serious for generalized linear models (GLMs) beyond linear regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The data-dependent DP there involves a local strong-convexity parameter, a complex function of the regularizer λ and we only have zeroth-order access to.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In the appendix, we demonstrate how to apply generalized PTR to provide a generic solution to a family of private GLMs where the link function satisfies a self-concordance assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We next apply Algorithm 3 for Example 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='2 with UCI regression datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Standard z-scoring is applied and each data point is normalize with a Euclidean norm of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We consider (60%, 10%, 30%) splits for training, validation and testing test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Baselines Output Perturbation (Outpert) [Chaudhuri et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2011]: θ = (XT X + λI)−1XT y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Release ˆθ = θ + b with an appropriate λ, where b is a Gaussian random vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Posterior sampling (OPS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Sample ˆθ ∼ P(θ) ∝ e−γ(F(θ)+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='5λ||θ||2) with parameters γ, λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Adaptive posterior sampling (AdaOPS) [Wang, 2018].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Run OPS with (λ, γ) chosen adaptively according to the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Outpert and OPS serve as two non-adaptive baselines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In particular, we consider OPS-Balanced [Wang, 2018], which chooses λ to minimize a data-independent upper bound of empirical risk and dominates other OPS variants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' AdaOPS is one state-of-the-art algorithm for adaptive private regression, which automatically chooses λ by minimizing an upper bound of the data-dependent empirical risk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We implement OPS-PTR as follows: propose a list of λ through grid search (we choose k = 30 and λ ranges from [2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='5, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='510] on a logarithmic scale);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' instantiate Algorithm 3 with τ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1k, T = 1 τ log(1/δ2) and δ2 = 1/2δ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' calibrate γ to meet the privacy requirement for each λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' sample ˆθ using (λ, γ) and return the one with the best validation accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Notice that we use a “no ⊥” variant of Algorithm 2 as the calibration of γ is clear given a fixed λ and privacy budget (see more details in the appendix).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We can propose various combinations of (λ, γ) for more general applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Figure 1 demonstrates how the MSE error of the linear regression algorithms varies with the privacy budget ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' OutPert suffers from the large global sensitivity of output θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' OPS performs well but does not benefit from the data-dependent quantities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' AdaOPS is able to adaptively choose (λ, γ) based on the dataset, but suffers from the estimation error of the data-dependent empirical risk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' On the other hand, OPS-PTR selects a (λ, γ) pair that minimizes the empirical error on the validation set directly, and the privacy parameter γ adapts to the dataset thus achieving the best result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='2 PATE In this section, we apply the generalized PTR framework to solve an open problem from the Private Aggregation of Teacher Ensembles (PATE) [Papernot et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2017, 2018] — privately publishing the entire model through privately releasing data-dependent DP losses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Our algorithm makes use of the smooth sensitivity framework [Nissim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2007] and the Gaussian mechanism to construct a high- probability test of the data-dependent DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The one-dimensional statistical nature of data-dependent DP enables efficient computations under the smooth sensitivity framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Thus, this approach is generally applicable for other private data-adaptive analysis beyond PATE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 10 PATE is a knowledge transfer framework for model-agnostic private learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In this framework, an ensemble of teacher models is trained on the disjoint private data and uses the teachers’ aggregated consensus answers to supervise the training of a “student” model agnostic to the underlying machine- learning algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' By publishing only the aggregated answers and by the careful analysis of the “consensus”, PATE has become a practical technique in recent private model training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The tight privacy guarantee of PATE heavily relies on a delicate data-dependent DP analysis, for which the authors of PATE use the smooth sensitivity framework to privately publish the data- dependent privacy cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' However, it remains an open problem to show that the released model is DP under data-dependent analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Our generalized PTR resolves this gap by carefully testing a private upper bound of the data-dependent privacy cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Our algorithm is fully described in Algorithm 4, where the modification over the original PATE framework is highlighted in blue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Algorithm 4 takes the input of privacy budget (ϵ′, ˆϵ, δ), unlabeled public data x1:T and K teachers’ predictions on these data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The parameter ϵ denotes the privacy cost of publishing the data-dependent DP and ϵ′ is the predefined privacy budget for testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' nj(xi) denotes the the number of teachers that agree on label j for xi and C denotes the number of classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The goal is to privately release a list of plurality outcomes — argmaxj∈[C]nj(xi) for i ∈ [T] — and use these outcomes to supervise the training of a “student” model in the public domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The parameter σ1 denotes the noise scale for the vote count.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In their privacy analysis, Papernot et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' [2018] compute the data-dependent RDPσ1(α, X) of labeling the entire group of student queries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' RDPσ1(α, X) can be orders of magnitude smaller than its data- independent version if there is a strong agreement among teachers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Note that RDPσ1(α, X) is a function of the RDP order α and the dataset X, analogous to our Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1 but subject to RDP [Mironov, 2017].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='5 ([Papernot et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2018]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' If the top three vote counts of xi are n1 > n2 > n3 and n1 − n2, n2 − n3 ≫ σ1, then the data-dependent RDP of releasing argmaxj{nj + N(0, σ2 1)} satisfies (α, exp{−2α/σ2 1}/α)-RDP and the data-independent RDP (using the Gaussian mechanism) satisfies (α, α σ2 1 )-RDP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Algorithm 4 PATE with generalized PTR 1: Input: Unlabeled public data x1:T , aggregated teachers prediction n(·), privacy parameter ˆϵ, ϵ′, δ, noisy parameter σ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 2: Set α = 2 log(2/δ) ˆϵ + 1, σs = σ2 = � 3α+2 ˆϵ , δ2 = δ/2, smoothness parameter β = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='2 α .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 3: Compute noisy labels: yip ← argmaxj∈[C]{nj(xi) + N(0, σ2 1)} for all i ∈ [1 : T].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 4: RDPσ1(α, X) ← data-dependent RDP at the α-th order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 5: SSβ(X) ← the smooth sensitivity of RDPupper σ1 (α, X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 6: Privately release µ := log(SSβ(X)) + β · N(0, σ2 2) + � 2 log(2/δ2) · σ2 · β 7: RDPupper σ1 (α) ← an upper bound of data-dependent RDP through Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 8: ϵσ1 ← DP guarantee converted from RDPupper σ1 (α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 9: If ϵ′ ≥ ϵσ1 return a student model trained using (x1:T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' yp 1:T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 10: Else return ⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' However, RDPσ1(α, X) is data-dependent and thus cannot be revealed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The authors therefore privately publish the data-dependent RDP using the smooth sensitivity framework [Nissim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2007].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The smooth sensitivity calculates a smooth upper bound on the local sensitivity of RDPσ1(α,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' X),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 11 15 20 25 30 35 40 45 50 Noise scale 1 1 2 3 4 5 Gaussian mechanism PATE-PTR ( + 1) data-dependent DP (non-private) (a) High consensus and strong data-dependent DP 15 20 25 30 35 40 45 50 Noise scale 1 1 2 3 4 5 Gaussian mechanism PATE-PTR ( + 1) data-dependent DP (non-private) (b) Low consensus and low data-dependent DP Figure 2: Privacy and utility tradeoffs with PATE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' When σ1 is aligned, three algorithms provide the same utility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' y-axis plots the privacy cost of labeling T = 200 public data with δ = 10−5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The left figure considers the high-consensus case, where the data-adaptive analysis is preferred.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' denoted as SSβ(X), such that SSβ(X) ≤ eβSSβ(X′) for any neighboring dataset X and X′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' By adding Gaussian noise scaled by the smooth sensitivity (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', release ϵσ1(α, X) + SSβ(X) · N(0, σ2 s)), the privacy cost is safely published.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Unlike most noise-adding mechanisms, the standard deviation σs cannot be published since SSβ(X) is a data-dependent quantity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Moreover, this approach fails to provide a valid privacy guarantee of the noisy labels obtained through the PATE algorithm, as the published privacy cost could be smaller than the real privacy cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Our solution in Algorithm 4 looks like the following: Privately release an upper bound of the smooth sensitivity SSβ(X) with eµ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Conditioned on a high-probability event of eµ, publish the data-dependent RDP with RDPupper σ1 (α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Convert RDPupper σ1 (α) back to the standard DP guarantee using RDP to DP conversion at δ/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Test if the converted DP is above the predefined budget ϵ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The following lemma states that RDPupper σ1 (α) is a valid upper bound of the data-dependent RDP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='6 (Private upper bound of data-dependent RDP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We are given a RDP function RDP(α, X) and a β-smooth sensitivity bound SS(·) of RDP(α, X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Let µ (defined in Algorithm 4) denote the private release of log(SSβ(X)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Let the (β, σs, σ2)-GNSS mechanism be RDPupper(α):=RDP(α,X)+SSβ(X)·N(0,σ2 s)+σs � 2 log( 2 δ2 )eµ Then, the release of RDPupper(X) satisfies (α, 3α+2 2σ2s )-RDP for all 1 < α < 1 2β;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' at least 1 − δ2, RDPupper(α) is an upper bound of RDP(α, X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The proof (deferred to the appendix) makes use of the facts that: (1) the log of SSβ(X) has a bounded global sensitivity β through the definition of smooth sensitivity;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' (2) releasing RDPσ1(α, X)+ SSβ(X) · N(0, σ2 s) is (α, α+1 σ2s )-RDP (Theorem 23 from Papernot et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' [2018]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Now, we are ready to state the privacy guarantee of Algorithm 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 12 Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Algorithm 4 satisfies (ϵ′ + ˆϵ, δ)-DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In the proof, the choice of α ensures that the cost of the δ/2 contribution (used in the RDP-to-DP conversion) is roughly ˆϵ/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Then the release of RDPupper σ1 (α) with σs = � 2+3α ˆϵ accounts for another cost of (ϵ/2, δ/2)-DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Empirical results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We next empirically evaluate Algorithm 4 (PATE-PTR) on the MNIST dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Following the experimental setup from Papernot et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' [2018], we consider the training set to be the private domain, and the testing set is used as the public domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We first partition the training set into 400 disjoint sets and 400 teacher models, each trained individually.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Then we select T = 200 unlabeled data from the public domain, with the goal of privately labeling them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' To illustrate the behaviors of algorithms under various data distributions, we consider two settings of unlabeled data, high-consensus and low-consensus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In the low-consensus setting, we choose T unlabeled data such that there is no high agreement among teachers, so the advantage of data-adaptive analysis is diminished.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We provide further details on the distribution of these two settings in the appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Baselines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We consider the Gaussian mechanism as a data-independent baseline, where the privacy guarantee is valid but does not take advantage of the properties of the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The data- dependent DP ( Papernot et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' [2018]) serves as a non-private baseline, which requires further sanitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Note that these two baselines provide different privacy analyses of the same algorithm (see Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Figure 2 plots privacy-utility tradeoffs between the three approaches by varying the noise scale σ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The purple region denotes a set of privacy budget choices (ˆϵ + ϵ′ used in Algorithm 4) such that the utility of the three algorithms is aligned under the same σ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In more detail, the purple region is lower-bounded by ˆϵ+ϵσ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We first fix σs = σ2 = 15 such that ˆϵ is fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Then we empirically calculate the average of ϵσ1 (the private upper bound of the data-dependent DP) over 10 trials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Running Algorithm 4 with any choice of ˆϵ + ϵ′ chosen from the purple region implies ϵ′ > ϵσ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Therefore, PATE-PTR will output the same noisy labels (with high probability) as the two baselines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Observation As σ1 increases, the privacy loss of the Gaussian mechanism decreases, while the data-dependent DP curve does not change much.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' This is because the data-dependent DP of each query is a complex function of both the noise scale and the data and does not monotonically decrease when σ1 increases (see more details in the appendix).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' However, the data-dependent DP still dominates the Gaussian mechanism for a wide range of σ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Moreover, PATE-PTR nicely interpolates between the data-independent DP guarantee and the non-private data-adaptive DP guarantee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In the low-consensus case, the gap between the data-dependent DP and the DP guarantee of the Gaussian mechanism unsurprisingly decreases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Meanwhile, PATE-PTR (the purple region) performs well when the noise scale is small but deteriorates when the data-independent approach proves more advantageous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' This example demonstrates that using PTR as a post-processing step to convert the data-dependent DP to standard DP is effective when the data-adaptive approach dominates others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 6 Limitations and Future Work One weakness of generalized PTR is that it requires a case-specific privacy analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Have we simply exchanged the problem of designing a data-adaptive DP algorithm with the problem of analyzing the data-dependent privacy loss?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We argue that this limitation is inherited from classic PTR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In situations where classic PTR is not applicable, we’ve outlined several approaches to constructing the 13 DP test for our framework (see Sections 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='3 and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Furthermore, the data-dependent privacy loss is often more straightforward to compute than local sensitivity, and often exists in intermediate steps of classic DP analysis already.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Most DP analysis involves providing a high-probability tail bound of the privacy loss random variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' If we stop before taking the max over the input dataset, then we get a data-dependent DP loss right away (as in Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' There are several exciting directions for applying generalized PTR to more problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Sufficient statistics release and our private hyperparameter tuning (Algorithm 3) can be used to construct data-adaptive extensions of DP-PCA [Dwork et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2014] and Sparse-DP-ERM [Kifer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2012].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' For DP-PCA we could use our Algorithm 3 to tune the variance of the noise added to the spectral gap;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' for Sparse-DP-ERM we would test the restricted strong convexity parameter (RSC), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' not adding additional regularization if the RSC is already large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 7 Conclusion Generalized PTR extends the classic “Propose-Test-Release” framework to a more general setting by testing the data-dependent privacy loss of an input dataset, rather than its local sensitivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In this paper we’ve provided several examples – private linear regression with hyperparameter selection and PATE – to illustrate how generalized PTR can enhance DP algorithm design via a data-adaptive approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Acknowledgments The work was partially supported by NSF Award # 2048091 and the Google Research Scholar Award.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Yuqing was supported by the Google PhD Fellowship.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 14 Contents 1 Introduction 1 2 Related Work 2 3 Preliminaries 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1 Propose-Test-Release .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 4 4 Generalized PTR 4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1 Limitations of local sensitivity .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='2 Which φ to propose .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 7 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='3 Construction of the DP test .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 7 5 Applications 8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1 Private Linear Regression .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='2 PATE .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 10 6 Limitations and Future Work 13 7 Conclusion 14 A Omitted examples in the main body 15 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1 Limits of the classic PTR in private binary voting .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 15 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='2 Self-concordant generalized linear model (GLM) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 18 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='3 Differentially privately release λmin � ∇2F(θ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 21 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='4 Other applications of generalized PTR .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 22 B Omitted proofs in Section 4 23 C Experimental details 23 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1 Experimental details in private linear regression .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 23 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='2 Details of PATE case study .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 24 D Omitted proofs in private GLM 26 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1 Per-instance DP of GLM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 26 A Omitted examples in the main body In this appendix, we provide more examples to demonstrate the merits of generalized PTR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We focus on a simple example of post-processed Laplace mechanism in Section A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1 and then an example on differentially private learning of generalized linear models in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In both cases, we observe that generalized PTR provides data-adaptive algorithms with formal DP guarantees, that are simple, effective and not previously proposed in the literature (to the best of our knowledge).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1 Limits of the classic PTR in private binary voting The following example demonstrates that classic PTR does not capture sufficient data-dependent quantities even when the local sensitivity exists and can be efficiently tested.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 15 Example A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Consider a binary class voting problem: n users vote for a binary class {0, 1} and the goal is to output the class that is supported by the majority.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Let ni denote the number of people who vote for the class i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We consider the report-noisy-max mechanism: M(X) : argmaxi∈[0,1]ni(X) + Lap(b), where b = 1/ϵ denotes the scale of Laplace noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In the example, we will (1) demonstrate the merit of data-dependent DP;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' and (2) empirically compare classic PTR with generalized PTR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We first explicitly state the data-dependent DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The data-dependent DP of the above example is ϵ(X) := max X′ {| log p p′ |, | log 1 − p 1 − p′ |}, where p := Pr[n0(X) + Lap(1/ϵ) > n1(X) + Lap(1/ϵ)] and p′ := Pr[n0(X′) + Lap(1/ϵ) > n1(X′) + Lap(1/ϵ)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' There are four possible neighboring datasets X′ : n0(X′) = max(n0(X) ± 1, 0), n1(X′) = n1(X) or n0(X′) = n0(X), n1(X′) = max(n1(X) ± 1, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In Figure 3(a), we empirically compare the above data-dependent DP with the Laplace mechanism by varying the gap between the two vote counts |n0(X) − n1(X)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The noise scale is fixed to ϵ = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The data-dependent DP substantially improves over the standard DP if the gap is large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' However, the data-dependent DP is a function of the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We next demonstrate how to apply generalized PTR to exploit the data-dependent DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Notice that the probability n0(X) + Lap(1/ϵ) > n1(X) + Lap(1/ϵ) is equal to the probability that a random variable Z := X − Y exceeds ϵ(n1(X) − n0(X)), where X, Y are two independent Lap(1) distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We can compute the pdf of Z through the convolution of two Laplace distributions, which implies fX−Y (z) = 1 + |z| 4e|z| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Let t denote the difference between n1(X) and n0(X), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', t = n1(X) − n0(X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Then we have p = Pr[Z > ϵ · t] = 2 + ϵ · t 4 exp(ϵ · t) Similarly, p′ = 2 + ϵ · (t + ℓ) 4 exp(ϵ · (t + ℓ)), where ℓ ∈ [−1, 1] denotes adding or removing one data point to construct the neighboring dataset X′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Therefore, we can upper bound log(p/p′) by log p p′ = 2 + ϵ · t 4 exp(ϵ · t) · 4 exp(ϵ(t + ℓ)) 2 + ϵ · (t + ℓ) ≤ ϵ · log � 2 + ϵt 2 + ϵ(t + 1) � = ϵ log � 1 − ϵ 2 + ϵ(t + 1) � Then we can apply generalized PTR by privately lower-bounding t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' On the other hand, the local sensitivity ∆LS(X) of this noise-adding mechanism is 0 if t > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Specifically, if the gap is larger than one, adding or removing one user will not change the result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' To 16 0 5 10 15 20 25 30 35 40 The gap t=|n0(X) n1(X)| 0 2 4 6 8 10 data-dependent DP Laplace mechanism (a) data-dependent DP vs Laplace mechanism 10 28 10 23 10 18 10 13 10 8 10 3 102 Error 10 2 10 1 Gen-PTR( p + ) classic PTR Laplace mechanism (b) Privacy-utility tradeoff between three approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Figure 3: In Figure 3(a), we compare the privacy guarantee by varying the gap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In Figure 3(b) We fix t = n0(X) − n1(X) = 100 and compare privacy cost when the accuracy is aligned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Gen-PTR with any choice of privacy budget (˜ϵ + ϵ′) chosen from the purple region would achieve the same utility as Laplace mechanism but with a smaller privacy cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The curve of Gen-PTR is always below than that of the classic PTR, which implies that Gen-PTR can result a tighter privacy analysis when the utility is aligned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' apply classic PTR, we let γ(X) denote the distance to the nearest dataset X ′′ such that ∆LS > 0 and test if γ(X) + Lap(1/ϵ) > log(1/δ) ϵ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Notice in this example that γ(X) = max(t − 1, 0) can be computed efficiently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We provide the detailed implementation of these approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Gen PTR: lower bound t with tp = t − log(1/δ) ˜ϵ + Lap(1/˜ϵ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Calculate an upper bound of data-dependent DP ϵp using Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='2 with tp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The algorithm then tests if ϵp is within an predefined privacy budget ϵ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' If the test passes, the algorithm returns argmaxi∈[0,1]ni(X) + Lap(1/ϵ) satisfies (˜ϵ + ϵ′, δ)-DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' classic PTR: lower bound t with tp = t − log(1/δ) ˜ϵ + Lap(1/˜ϵ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' If tp > 1, classic PTR outputs the ground-truth result else returns a random class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' This algorithm satisfies (˜ϵ, δ)-DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Laplace mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' M(X) : argmaxi∈[0,1]ni(X) + Lap(1/ϵ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' M is (ϵ, δ)-DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We argue that though the Gen-PTR and the classic PTR are similar in privately lower-bounding the data-dependent quantity t, the latter does not capture sufficient information for data-adaptive analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' That is to say, only testing the local sensitivity restricts us from learning helpful information to amplify the privacy guarantee if the test fails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In contrast, our generalized PTR, where privacy parameters and the local sensitivity parameterize the data-dependent DP, can handle those failure cases nicely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' To confirm this conjecture, Figure 3(b) plots a privacy-utility trade-off curve between these three approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We consider a voting example with n0(X) = n1(X) + 100 and t = 100, chosen such that the data-adaptive analysis is favorable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In Figure 3(b), we vary the noise scale b = 1/ϵ between [0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' For each choice of b, we plot the privacy guarantee of three algorithms when the error rate is aligned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' For Gen-PTR, we set ˜ϵ = 1 2b and empirically calculate ϵp over 100000 trials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 17 In the plot, when ϵ ≪ log(1/δ) t , the classic PTR is even worse than the Laplace mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' This is because the classic PTR is likely to return ⊥ while the Laplace mechanism returns argmaxi∈[0,1]ni(X)+ Lap(1/ϵ), which contains more useful information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Compared to the Laplace mechanism, Gen-PTR requires an extra privacy allocation ˜ϵ to release the gap t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' However, it still achieves an overall smaller privacy cost when the error rate ≤ 10−5 (the purple region).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Meanwhile, Gen-PTR dominates the classic PTR (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', the dashed black curve is always below the blue curve).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Note that the classic PTR and the Gen-PTR utilize the gap information differently: the classic PTR outputs ⊥ if the gap is not sufficiently large, while the Gen-PTR encodes the gap into the data-dependent DP function and tests the data-dependent DP in the end.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' This empirical result suggests that testing the local sensitivity can be loosely compared to testing the data-dependent DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Thus, Gen-PTR could provide a better privacy-utility trade-off.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='2 Self-concordant generalized linear model (GLM) In this section, we demonstrate the effectiveness and flexibility of generalized PTR in handling a family of GLMs where the link function satisfies a self-concordance assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' This section is organized as follows: Introduce a family of GLMs with the self-concordance property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Introduce a general output perturbation algorithm for private GLMs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Analyze the data-dependent DP of GLMs with the self-concordance property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Provide an example of applying our generalized PTR framework to logistic regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Consider the empirical risk minimization problem of the generalized linear model θ∗ = argminθ � i=1n li(θ) + r(θ), where l : R × R → R belongs to a family of convex GLMs: li(θ) = l(y, xT i θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Let r : Rd → R be a regularization function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We now define the self-concordance property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Definition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='3 (Generalized self-concordance [Bach, 2010]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' A convex and three-times differentiable function f : Θ → R is R-generalized-self-concordant on an open nonempty convex set Θ∗ ⊂ Θ with respect to norm ∥ · ∥ if for all u ∈ Θ∗ and all v ∈ Rd, ∇3f(u)[v, v, v] ≤ 2R∥v∥(∇2f(u)[v, v]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The closer R is to 0, the “nicer” — more self-concordant — the function is.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' A consequence of (gener- alized) self-concordance is the spectral (multiplicative) stability of Hessian to small perturbations of parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='4 (Stability of Hessian[Nesterov and Nemirovskii, 1994, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1], [Bach, 2010, Proposition 1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Let Hθ := ∇2Fs(θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' If Fs is R-self-concordant at θ, then for any v such that R∥v∥Hθ < 1, we have that (1 − R∥v∥Hθ)2∇2Fs(θ) ≺ ∇2Fs(θ + v) ≺ 1 (1 − R∥v∥Hθ)2 ∇2Fs(θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 18 If instead we assume Fs is R-generalized-self-concordant at θ with respect to norm ∥ · ∥, then e−R∥v∥∇2Fs(θ) ≺ ∇2Fs(θ + v) ≺ eR∥v∥∇2Fs(θ) The two bounds are almost identical when R∥v∥ and R∥v∥θ are close to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In particular, for x ≤ 1/2, we have that e−2x ≤ 1 − x ≤ e−x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In particular, the loss function of binary logistic regression is 1-generalized self-concordant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Example A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='5 (Binary logistic regression).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Assume ∥x∥2 ≤ 1 for all x ∈ X and y ∈ {−1, 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Then binary logistic regression with datasets in X × Y has a log-likelihood of F(θ) = �n i=1 log(1 + e−yixT i θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The univariate function l := log(1 + exp(·)) satisfies |l′′′| = ���� exp (·)(1 − exp (·)) (1 + exp (·))3 ���� ≤ exp (·) (1 + exp (·))2 := l′′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We next apply the modified output perturbation algorithm to privately release θ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The algorithm is simply: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Solve θ∗ = argminθ n � i=1 li(θ) + r(θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Release ˆθ = θ∗ + Z, where γ > 0 is a tuning parameter and Z ∼ N(0, γ−1(�n i=1 ∇2li(θ) + ∇2r(θ))−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The data-dependent DP of the above procedure is stated as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='6 (Data-dependent DP of GLM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Denote the smooth part of the loss function Fs = �n i=1 l(yi, < xi, · >) + rs(·).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Assume the following: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The GLM loss function l is convex, three-times continuously differentiable and R-generalized- self-concordant w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' ∥ · ∥2, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Fs is locally α-strongly convex w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' ∥ · ∥2, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' and in addition, denote L := supθ∈[θ∗,˜θ∗] |l′(y, xT θ)|, β := supθ∈[θ∗,˜θ∗] |l′′(y, xT θ)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' That is, ℓ(·) is L-Lipschitz and β-smooth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We then have the data-dependent DP ϵ(Z) ≤ R(L + β) α (1 + log(2/δ)) + γL2 α + � γL2 α log(2/δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The proof follows by taking an upper bound of the per-instance DP loss (Theorem D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1) ϵ(Z, z) over z = (x, y) ∈ (X, Y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Notice that the Hessians can be arbitrarily singular and α could be 0, which leads to an infinite privacy loss without additional assumptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Thus, we will impose an additional regularization of form λ 2||θ||2, which ensures that for any dataset FS is λ-strongly convex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' This is not yet DP because it is still about a fixed dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We also need a pre-specified privacy budget (ϵ, δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We next demonstrate how to apply the generalized PTR to provide a general solution to the above GLM, using logistic regression as an example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 19 Remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='7 (Logistic regression).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' For logistic regression, we know L ≤ 1, β ≤ 1/4 and if ∥x∥2 ≤ 1, it is 1-generalized self-concordant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' For any dataset Z = (X, y), the data-dependent DP ϵ(X) w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' δ can be simplified to: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='25 α (1 + log(2/δ)) + γ α + �γ α log(2/δ) Now, the data-dependent DP is a function of α and γ, where α denotes the local strong convexity at θ∗ λ and γ controls the noise scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We next show how to select these two parameters adapted to the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Example A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We demonstrate here how we apply generalized PTR to output perturbation of the logistic regression problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Take an exponential grid of parameters {λ} and propose each λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Solve for θ∗ λ = argminθF(θ) + λ∥θ∥2/2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Calculate the smallest eigenvalue λmin(∇2F(θ∗ λ)) (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', using power method).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Differentially privately release λmin with λp min := max{λmin+ √ log(4/δ) ϵ/2 ∆GS·Z− √ 2 log(4/δ)·log(1/δ)∆GS ϵ/2 , 0}, where ∆GS denote the global sensitivity of λmin using Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Let ϵp(·) be instantiated with ϵ(X) w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' δ from Remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='7, where α = λp min + λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Then, conditioned on a high probability event, ϵp(·) (a function of γ) is a valid DP bound that holds for all datasets and all parameters γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Calculate the maximum γ such that ϵp δ/2(γ) ≤ ϵ/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Release ˆθ ∼ N(θ∗ λ, γ−1∇2Fs(θ∗ λ)−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Evaluate the utility on the validation set and return the (λ, γ) pair that leads to the highest utility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' For each proposed λ, the algorithm that releases ˆθ ∼ N(θ∗ λ, γ−1∇2Fs(θ∗ λ)−1) is (ϵ, 2δ)-DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The proof follows the recipe of generalized PTR with private upper bound (Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' First, the release of λmin(∇2F(θ∗ λ)) is (ϵ/2, δ/2)-DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Then, with probability at least 1 − δ, ϵp δ(·) > ϵδ(X) holds for all X and γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Finally, γ is chosen such that the valid upper bound is (ϵ/2, δ/2)-DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' For the hyper-parameter tuning on λ (Steps 1 and 8), we can use Algorithm 3 to evaluate each λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Unlike Example 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='2, the λmin(∇2F(θ∗ λ)) is a complicated data-dependent function of λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Thus, we cannot privately release the data-dependent quantity λmin(∇2F(θ∗ λ)) without an input λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The PTR approach allows us to test a number of different λ and hence get a more favorable privacy-utility trade-off.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' An interesting perspective of this algorithm for logistic regression is that increasing the regularization α is effectively increasing the number of data points within the soft “margin”3 of separation, hence a larger contribution to the Hessian from the loss function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 3If we think of logistic regression as a smoothed version of SVM, then increasing α leads to more support vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The “margin” is “softer” in logistic regression, but qualitatively the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 20 Remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The PTR solution for GLMs follows a similar recipe: propose a regularization strength λ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' construct a lower bound of the strong convexity α at the optimal solution θ∗ λ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' and test the validity of data-dependent DP using Theorem D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Before moving on to other applications of generalized PTR, we will show how to differentially privately release λmin according to the requirements of the logistic regression example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='3 Differentially privately release λmin (∇2F(θ)) To privately release λmin∇2F(θ), we first need to compute its global sensitivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Once we have that then we can release it differentially privately using either the Laplace mechanism or the Gaussian mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='11 (Global sensitivity of the minimum eigenvalue at the optimal solution).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Let F(θ) = �n i=1 fi(θ) + r(θ) and ˜F(θ) = F(θ) + f(θ) where f1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', fn are loss functions corresponding to a particular datapoint x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Let θ∗ = argminθF(θ) and ˜θ∗ = argminθ ˜F(θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Assume f is L-Lipschitz and β-smooth, r(θ) is λ-strongly convex, and F and ˜F are R-self-concordant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' If in addition, λ ≥ RL, then we have sup X,x (λmin(∇2F(θ∗ λ)) − λmin(∇2 ˜F( ˜θ∗ λ))) ≤ 2RL + β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' λmin(∇2F(θ∗ λ)) − λmin(∇2 ˜F( ˜θ∗ λ)) = (λmin(∇2F(θ∗ λ)) − λmin(∇2 ˜F(θ∗ λ))) + (λmin(∇2 ˜F(θ∗ λ)) − λmin(∇2 ˜F( ˜θ∗ λ))).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' (1) We first bound the part on the left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' By applying Weyl’s lemma λ(X + E) − λ(X) ≤ ||E||2, we have sup x ||∇2F(θ∗ λ) − ∇2 ˜ F(θ∗ λ)||2 = ||∇2f(θ∗ λ)||2 ≤ β (2) In order to bound the part on the right, we apply the semidefinite ordering using self-concordance, which gives e−R∥ ˜ θ∗ λ−θ∗ λ∥∇2 ˜F( ˜θ∗ λ) ≺ ∇2 ˜F(θ∗ λ) ≺ eR∥ ˜ θ∗ λ−θ∗ λ∥∇2 ˜F( ˜θ∗ λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' By the Courant-Fischer Theorem and the monotonicity theorem, we also have that for the smallest eigenvalue e−R∥ ˜ θ∗ λ−θ∗ λ∥λmin � ∇2 ˜F( ˜θ∗ λ) � ≤ λmin � ∇2 ˜F(θ∗ λ) � ≤ eR∥ ˜ θ∗ λ−θ∗ λ∥λmin � ∇2 ˜F( ˜θ∗ λ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' (3) Moreover by Proposition D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='2, we have that ∥ ˜θ∗ λ − θ∗ λ∥2 ≤ ∥∇f( ˜θ∗λ)∥ λmin � ∇2 ˜F( ˜θ∗ λ) � ≤ L λmin � ∇2 ˜F( ˜θ∗ λ) �.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' If λmin � ∇2 ˜F( ˜θ∗ λ) � ≥ RL, then use that ex − 1 ≤ 2x for x ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Substituting the above bound to (3) then to (1) together with (2), we get a data-independent global sensitivity bound of λmin(∇2F(θ∗ λ)) − λmin(∇2 ˜F( ˜θ∗ λ)) ≤ 2RL + β 21 as stated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Let ∥ · ∥ be a norm and ∥ · ∥∗ be its dual norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Let F(θ), f(θ) and ˜F(θ) = F(θ) + f(θ) be proper convex functions and θ∗ and ˜ theta ∗ be their minimizers, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 0 ∈ ∂F(θ∗) and 0 ∈ ∂ ˜F( ˜ theta ∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' If in addition, F, ˜F is α, ˜α-strongly convex with respect to ∥ · ∥ within the restricted domain θ ∈ {tθ∗ + (1 − t)˜θ∗ | t ∈ [0, 1]}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Then there exists g ∈ ∂f(θ∗) and ˜g ∈ ∂f(˜θ∗) such that ∥θ∗ − ˜θ∗∥ ≤ min � 1 α∥˜g∥∗, 1 ˜α∥g∥∗ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Apply the first order condition to F restricted to the line segment between ˜θ∗ and θ∗, we get F(˜θ∗) ≥ F(θ∗) + ⟨∂F(θ∗), ˜θ∗ − θ∗⟩ + α 2 ∥˜θ∗ − θ∗∥2 (4) F(θ∗) ≥ F(˜θ∗) + ⟨∂F(˜θ∗), θ∗ − ˜θ∗⟩ + α 2 ∥˜θ∗ − θ∗∥2 (5) Note by the convexity of F and f, ∂ ˜F = ∂F + ∂f, where + is the Minkowski Sum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Therefore, 0 ∈ ∂ ˜F(˜θ∗) implies that there exists ˜g such that ˜g ∈ ∂f(˜θ∗) and −˜g ∈ ∂F(˜θ∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Take −˜g ∈ ∂F(˜θ∗) in Equation 10 and 0 ∈ ∂F(θ∗) in Equation 9 and add the two inequalities, we obtain 0 ≥ ⟨−˜g, θ∗ − ˜θ∗⟩ + α∥˜θ∗ − θ∗∥2 ≥ −∥˜g∥∗∥θ∗ − ˜θ∗∥ + α∥˜θ∗ − θ∗∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' For ∥˜θ∗ − θ∗∥ = 0 the claim is trivially true;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' otherwise, we can divide both sides of the above inequality by ∥˜θ∗ − θ∗∥ and get ∥θ∗ − ˜θ∗∥ ≤ 1 α∥˜g∥∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' It remains to show that ∥θ∗ − ˜θ∗∥ ≤ 1 ˜α∥g∥∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' This can be obtained by exactly the same arguments above but applying strong convexity to ˜F instead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Note that we can actually get something slightly stronger than the statement because the inequality holds for all g ∈ ∂f(θ∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='4 Other applications of generalized PTR Besides one-posterior sampling for GLMs, there are plenty of examples that our generalized-PTR could be applied, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', DP-PCA [Dwork et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2014] and Sparse-DP-ERM [Kifer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2012] (when the designed matrix is well-behaved).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' [Dwork et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2014] provides a PTR style privacy-preserving principle component analysis (PCA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The key observation of [Dwork et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2014] is that the local sensitivity is quite “small” if there is a large eigengap between the k-th and the k + 1-th eigenvalues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Therefore, their approach (Algorithm 2) chooses to privately release a lower bound of the k-th eigengap (k is fixed as an input) and use that to construct a high-confidence upper bound of the local sensitivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' For noise-adding mechanisms, the local sensitivity is proportional to the data-dependent loss and generalized PTR is applicable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We can formulate the data-dependent DP of DP-PCA as follows: Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' For a given matrix A ∈ Rm×n, assume each row of A has a bounded ℓ2 norm being 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Let Vk denotes the top k eigenvectors of AT A and dk denotes the gap between the k-th and the k + 1-th eigenvalue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Then releasing VkV T k + E, where E ∈ Rn×n is a symmetric matrix with the upper triangle is i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='d samples from N(0, σ2) satisfies (ϵ(A), δ) data-dependent DP and ϵ(A) = 2√ log(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='25/δ) σ(dk−2) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 22 The proof is based on the local sensitivity result from [Dwork et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2014] and the noise calibration of Gaussian mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We can combine Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='13 with our Algorithm 3 to instantiate the generalized PTR framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The improvement over Dwork et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' [2014] will be to allow joint tuning of the parameter k and the noise variance (added to the spectral gap dk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' B Omitted proofs in Section 4 The utility of Algorithm 3 depends on how many rounds that Algorithm 2 is invoked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We next provide the utility guarantee of Algorithm 3, which follows a simplification of the result in the Section A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='2 of Papernot and Steinke [2021].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Theorem B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Suppose applying Algorithm 2 with each φi has an equal probability to achieve the highest validation score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Let ˆT denotes the number of invocation of Algorithm 2, where ˆT follows a truncated geometric distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Then the expected quantile of the highest score candidate is given by E ˆT � 1 − 1 ˆT+1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In practice, we can roughly set τ = 1 10k so that the algorithm is likely to test all k parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Suppose each oracle access to Q(X) has a probability 1/k of achiving the best validation accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Let β denote the probability that A (shorthand for Algorithm 3) outputs the best choice of φi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' β = 1 − Pr[A(X)is not best] = 1 − E ˆT � Pr[Q(X)is not best] ˆT � = 1 − E ˆT � (1 − 1 k) ˆT � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Let f(x) = E[x ˆT ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Applying a first-order approximation on f(1 − 1 k), we have f(1 − 1 k) ≈ f(1) − f′(1) · 1 k = 1 − E[ ˆT]/k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Then, if k is large and we choose τ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1/k, A can roughly return the best φi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' C Experimental details C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1 Experimental details in private linear regression We start with the privacy calibration of the OPS-PTR algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Algorithm 5 provides the detailed privacy calibration of the private linear regression problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Theorem C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Algorithm 5 is (ϵ, 2δ)-DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' There are three data-dependent quantities in Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1: λmin, ||θ∗ λ|| and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' First, notice that λmin has a global sensitivity of ||X||2 by Weyl’s lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Under the assumption ||X||2 ≤ 1, we privately release λmin using (ϵ/4, δ/3) in Step 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Notice that with probability at least 1 − δ/2, ˜λmin is a lower bound of λmin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 23 Algorithm 5 OPS-PTR: One-Posterior Sample with propose-test-release (no-“perp” version) 1: Input: Data X, y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Private budget : ϵ, δ, proposed regularizer λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 2: Calculate the minimum eigenvalue λmin(XT X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 3: Sample Z ∼ N(0, 1) and privately release ˜λmin = max � λmin + √ log(6/δ) ϵ/4 Z − √ 2 log(6/δ)·log(2/δ) ϵ/4 , 0 � 4: Calculate ˆθ = (XT X + λI)−1XT y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 5: Sample Z ∼ N(0, 1) and privately release ∆ = log(||Y|| + ||X||||ˆθ||) + log(1+||X||2/(λ+˜λmin)) ϵ/(4√ 6/δ) Z + log(1+||X||2/(λ+˜λmin)) ϵ/(4√ 2 log(6/δ) log(2/δ)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 6: Set the local Lipschitz ˜L := ||X||e∆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 7: Calibrate γ with Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1(δ/3, ϵ/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=') 8: Output ˜θ ∼ p(θ|X, y) ∝ e− γ 2 ||y−Xθ||2+λ||θ||2 Then, we apply Lemma C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='2 from Wang [2018] to privately release log(||Y|| + ||X||||ˆθ||) using (ϵ/4, δ/3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Note that both the local Lipschitz constant L and the norm ||θ∗ λ|| are functions of log(||Y|| + ||X||||ˆθ||).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Thus, we can construct a private upper bound of these by post-processing of ∆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Then, with probability at least 1 − δ (by a union bound over ˜λmin and ∆), instantiating Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1 with ˜λmin and ˜L provides a valid upper bound of the data-dependent DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We then tune the parameter γ using the remaining privacy budget (ϵ/2, δ/3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Lemma C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='2 (Lemma 12 [Wang, 2018]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Let θ∗ λ be the ridge regression estimate with parameter λ and the smallest eigenvalue of XT X be λmin, then the function log(||Y + ||X||||θ∗ λ||) has a local sensitivity of log(1 + ||X||2 λmin+λ ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='2 Details of PATE case study Definition C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='3 (Renyi DP [Mironov, 2017]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We say a randomized algorithm M is (α, ϵM(α))-RDP with order α ≥ 1 if for neighboring datasets X, X′ Dα(M(X)||M(X′)) := 1 α − 1 log Eo∼M(X′) �� Pr[M(X) = o] Pr[M(X′) = o] �α� ≤ ϵM(α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' At the limit of α → ∞, RDP reduces to (ϵ, 0)-DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We now define the data-dependent Renyi DP that conditioned on an input dataset X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Definition C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='4 (Data-dependent Renyi DP [Papernot et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 2018]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We say a randomized algorithm M is (α, ϵM(α, X))-RDP with order α ≥ 1 for dataset X if for neighboring datasets X′ Dα(M(X)||M(X′)) := 1 α − 1 log Eo∼M(X′) �� Pr[M(X) = o] Pr[M(X′) = o] �α� ≤ ϵM(α, X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' RDP features two useful properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 24 Lemma C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='5 (Adaptive composition).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' ϵ(M1,M2) = ϵM1(·) + ϵM2(·).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Lemma C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='6 (From RDP to DP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' If a randomized algorithm M satisfies (α, ϵ(α))-RDP, then M also satisfies (ϵ(α) + log(1/δ) α−1 , δ)-DP for any δ ∈ (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Definition C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='7 (Smooth Sensitivity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Given the smoothness parameter β, a β-smooth sensitivity of f(X) is defined as SSβ(X) := max d≥0 e−βd · max ˜ X′:dist(X, ˜ X′)≤d ∆LS( ˜X′) Lemma C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='8 (Private upper bound of data-dependent RDP, Restatement of Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' ] Given a RDP function RDP(α, X) and a β-smooth sensitivity bound SS(·) of RDP(α, X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Let µ (defined in Algorithm 4) denote the private release of log(SSβ(X)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Let (β, σs, σ2)-GNSS mechanism be RDPupper(α):=RDP(α,X)+SSβ(X)·N(0,σ2 s)+σs � 2 log( 2 δ2 )eµ Then, the release of RDPupper(X) satisfies (α, 3α+2 2σ2s )-RDP for all 1 < α < 1 2β;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' at least 1 − δ2, RDPupper(α) is an upper bound of RDP(α, X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Proof sketch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We first show that releasing the smooth sensitivity SSβ with eµ satisfies (α, α 2σ2 2 )-RDP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Notice that the log of SSβ(X) has a bounded global sensitivity β (Definition C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='7 implies that | log SSβ(X) − log SSβ(X′)| ≤ β for any neighboring dataset X, X′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' By Gaussian mechanism, scaling noise with βσ2 to log SSβ(X) is (α, α 2σ2 2 )-RDP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Therefore, the release of RDP(α, X) is (α, ϵs(α) + α 2σ2 2 )-RDP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Since the release of f(X) + SSβ(X) · N(0, σ2 s) is (α, α+1 σ2s )-RDP (Theorem 23 from Papernot et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' [2018]) for α < 1 2β, we have ϵs(α) + α 2σ2 2 = 3α+2 2σ2s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We next prove the second statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' First, notice that with probability at least 1−δ2/2, eµ ≥ SSβ(X) using the standard Gaussian tail bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Let E denote the event that eµ ≥ SSβ(X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Pr � RDPupper(α) ≤ RDP(α, X) � = Pr � RDPupper(α) ≤ RDP(α, X)|E � + Pr � RDPupper(α) ≤ RDP(α, X)|Ec � ≤ Pr � RDPupper(α) ≤ RDP(α, X)|E � + δ2/2 = Pr � N(0, σ2 s) · SSβ(X) ≥ σs · � 2 log(2/δ2)eµ|E � � �� � denoted by(∗) +δ2/2 Condition on the event E, eµ is a valid upper bound of SSβ(X), which implies (∗) ≤ Pr[N(0, σ2 s) · SSβ(X) ≥ σs · � 2 log(2/δ2)SSβ(X)|E] ≤ δ2/2 Therefore, with probability at least 1 − δ2, RDPupper(α) ≥ RDP(α, X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Theorem C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='9 (Restatement of Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Algorithm 4 satisfies (ϵ′ + ˆϵ, δ)-DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 25 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The privacy analysis consists of two components — the privacy cost of releasing an upper bound of data-dependent RDP (ϵupper(α) := ϵs(α)+ α 2σ2 2 and the valid upper bound ϵp σ1(α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' First, set α = 2 log(2/δ) ϵ + 1 and use RDP to DP conversion with δ/2 ensures that the cost of δ/2 contribution to be roughly ϵ/2 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', log(2/δ) α−1 = ϵ/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Second, choosing σs = � 2+3α ϵ gives us another ϵ/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Experimental details K = 400 teacher models are trained individually on the disjoint set using AlexNet model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We set σ2 = σs = 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Our data-dependent RDP calculation and the smooth- sensitivity calculation follow Papernot et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' [2018].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Specifically, we use the following theorem (Theorem 6 from Papernot et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' [2018]) to compute the data-dependent RDP of each unlabeled data x from the public domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Theorem C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='10 (data-dependent RDP Papernot et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' [2018]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Let ˜q ≥ Pr[M(X) ̸= Argmaxj∈[C]nj(x)], i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', an upper bound of the probability that the noisy label does not match the majority label.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Assume α ≤ µ1 and ˜q ≤ e(µ2−1)ϵ2/ � µ1 µ1−1 · µ2 µ2−1 �µ2 , then we have: ϵM(α, X) ≤ 1 α − 1 log � (1 − ˜q) · A(˜q, µ2, ϵ2)α−1 + ˜q · B(˜q, µ1, ϵ1)α−1 � where A(˜q, µ2, ϵ2) := (1 − ˜q)/ � 1 − (˜qeϵ2) µ2−1 µ2 � , B(˜q, µ1, ϵ1) = eϵ1/˜q 1 µ1−1 , µ2 = σ1 · � log(1/˜q), µ1 = µ2 + 1, ϵ1 = µ1/σ2 1 and ϵ2 = µ2/σ2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In the experiments, the non-private data-dependent DP baseline is also based on the above theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Notice that the data-dependent RDP of each query is a function of ˜q, where ˜q denotes an upper bound of the probability where the plurality output does not match the noisy output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' ˜q is a complex function of both the noisy scale and data and is not monotonically decreasing when σ1 is increasing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Simulation of two distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The motivation of the experimental design is to compare three approaches under different data distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Notice that there are K = 400 teachers, which implies the number of the vote count for each class will be bounded by 400.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In the simulation of high-consensus distribution, we choose T = 200 unlabeled public data such that the majority vote count will be larger than 150 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', maxj∈[C] nj(x) > 150).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' For the low-consensus distribution, we choose to select T unlabeled data such that the majority vote count will be smaller than 150.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' D Omitted proofs in private GLM D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1 Per-instance DP of GLM Theorem D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1 (Per-instance differential privacy guarantee).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Consider two adjacent data sets Z and Z′ = [Z, (x, y)], and denote the smooth part of the loss function Fs = �n i=1 l(yi, ⟨xi, ·⟩) + rs(·) (thus ˜Fs = Fs + l(y, ⟨x, ·⟩).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Let the local neighborhood be the line segment between θ∗ and ˜θ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Assume 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' the GLM loss function l be convex, three-time continuous differentiable and R-generalized-self- concordant w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' ∥ · ∥2, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Fs is locally α-strongly convex w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' ∥ · ∥2, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' and in addition, denote L := supθ∈[θ∗,˜θ∗] |l′(y, xT θ)|, β := supθ∈[θ∗,˜θ∗] |l′′(y, xT θ)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 26 Then the algorithm obeys (ϵ, δ)-pDP for Z and z = (x, y) with any 0 < δ < 2/e and ϵ ≤ ϵ0(1 + log(2/δ)) + e RL∥x∥2 α �γL2∥x∥2 H−1 2 + � γL2∥x∥2 H−1 log(2/δ) � where ϵ0 ≤ e RL∥x∥2 α − 1 + 2β∥x∥2 H−1 1 + 2β∥x∥2 ˜H−1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' If we instead assume that l is R-self concordant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Then the same results hold, but with all e RL∥x∥2 α replaced with (1 − RL∥x∥H−1)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Under the stronger three-times continuous differentiable assumption, by mean value theorem, there exists ξ on the line-segment between θ∗ and ˜θ∗ such that H = �� 1 t=0 ∇2Fs((1 − t)θ∗ + t˜θ∗)dt � = ∇2Fs(ξ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The two distributions of interests are N(θ∗, [γ∇2Fs(θ∗)]−1) and N(˜θ∗, [γ∇2Fs(˜θ∗)+∇2l(y, xT ˜θ∗)]−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Denote [∇2Fs(θ∗)]−1 =: Σ and [∇2Fs(˜θ∗)+∇2l(y, xT ˜θ∗)]−1 =: ˜Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Both the means and the covariance matrices are different, so we cannot use multivariate Gaussian mechanism naively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Instead we will take the tail bound interpretation of (ϵ, δ)-DP and make use of the per-instance DP framework as internal steps of the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' First,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' we can write down the privacy loss random variable in analytic form log |Σ|−1/2e− γ 2 ∥θ−θ∗∥2 Σ−1 |˜Σ|−1/2e− γ 2 ∥θ−˜θ∗∥2 ˜Σ−1 = 1 2 log �|Σ−1| |˜Σ−1| � � �� � (∗) + γ 2 � ∥θ − θ∗∥2 Σ−1 − ∥θ − ˜θ∗∥2 ˜Σ−1 � � �� � (∗∗) The general idea of the proof is to simplify the expression above and upper bounding the two terms separately using self-concordance and matrix inversion lemma,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' and ultimately show that the privacy loss random variable is dominated by another random variable having an appropriately scaled shifted χ-distribution,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' therefore admits a Gaussian-like tail bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' To ensure the presentation is readable, we define a few short hands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We will use H and ˜H to denote the Hessian of Fs and Fs + f respectively and subscript 1 2 indicates whether the Hessian evaluated at at θ∗ or ˜θ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' H without any subscript or superscript represents the Hessian of Fs evaluated at ξ as previously used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' (∗) = 1 2 log |H1| |H| |H| |H2| |H2| | ˜H2| ≤ 1 2 � log |H1| |H| + log |H| |H2| + log |H2| | ˜H2| � By the R-generalized self-concordance of Fs, we can apply Lemma D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='3, −∥θ∗ − ξ∥2R ≤ log |H1| |H| ≤ R∥θ∗ − ξ∥2, −R∥ξ − ˜θ∗∥2 ≤ log |H| |H2| ≤ R∥ξ − ˜θ∗∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The generalized linear model ensures that the Hessian of f is rank-1: ∇2f(˜θ∗) = l′′(y, xT ˜θ∗)xxT and we can apply Lemma ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' in both ways (taking A = H2 and A = ˜H2) and obtain |H2| | ˜H2| = 1 1 + l′′(y, xT ˜θ∗)xT H−1 2 x = 1 − l′′(y, xT ˜θ∗)xT ˜H2x 27 Note that l′′(y, xT ˜θ∗)xT ˜H−1 2 x is the in-sample leverage-score and l′′(y, xT ˜θ∗)xT H−1 2 x is the out- of-sample leverage-score of the locally linearized problem at ˜θ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' We denote them by µ2 and µ′ 2 respectively (similarly, for the consistency of notations, we denote the in-sample and out of sample leverage score at θ∗ by µ1 and µ′ 1 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Combine the above arguments we get (∗) ≤R∥θ∗ − ξ∥2 + R∥ξ − ˜θ∗∥2 + log(1 − µ2) ≤ R∥θ∗ − ˜θ∗∥2 + log(1 − µ2) (6) (∗) ≥ − R∥θ∗ − ˜θ∗∥2 − log(1 − µ2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' (7) We now move on to deal with the second part, where we would like to express everything in terms of ∥θ − θ∗∥H1, which we know from the algorithm is χ-distributed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' (∗∗) = γ 2 � ∥θ − θ∗∥2 H1 − ∥θ − θ∗∥2 H2 + ∥θ − θ∗∥2 H2 − ∥θ − ˜θ∗∥2 H2 + ∥θ − ˜θ∗∥2 H2 − ∥θ − ˜θ∗∥2 ˜H2 � By the generalized self-concordance at θ∗ e−R∥θ∗−˜θ∗∥2∥ · ∥2 H1 ≤ ∥ · ∥2 H2 ≤ eR∥θ∗−˜θ∗∥2∥ · ∥2 H1 This allows us to convert from ∥ · ∥H2 to ∥ · ∥H1, and as a consequence: ��∥θ − θ∗∥2 H1 − ∥θ − θ∗∥2 H2 �� ≤ [eR∥θ∗−˜θ∗∥2 − 1]∥θ − θ∗∥2 H1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Also, ∥θ − θ∗∥2 H2 − ∥θ − ˜θ∗∥2 H2 = � ˜θ∗ − θ∗, 2θ − 2θ∗ + θ∗ − ˜θ∗� H2 = 2⟨θ − θ∗, ˜θ∗ − θ∗⟩H2 − ∥θ∗ − ˜θ∗∥2 H2 Therefore ���∥θ − θ∗∥2 H2 − ∥θ − ˜θ∗∥2 H2 ��� ≤ 2∥θ − θ∗∥H2∥θ∗ − ˜θ∗∥H2 + ∥θ∗ − ˜θ∗∥2 H2 ≤ 2eR∥˜θ∗−θ∗∥2∥θ − θ∗∥H1∥θ∗ − ˜θ∗∥H + eR∥˜θ∗−θ∗∥2∥θ∗ − ˜θ∗∥2 H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Then lastly we have 0 ≥ ∥θ − ˜θ∗∥2 H2 − ∥θ − ˜θ∗∥2 ˜H2 = −l′′(y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' xT ˜θ∗) � ⟨x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' θ − θ∗⟩ + ⟨x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' θ∗ − ˜θ∗⟩ �2 ≥ −2β∥x∥2 H−1 1 ∥θ − θ∗∥2 H1 − 2β∥x∥2 H−1∥θ∗ − ˜θ∗∥2 H ���∥θ − ˜θ∗∥2 H2 − ∥θ − ˜θ∗∥2 ˜H2 ��� ≤ 2β∥x∥2 H−1 1 ∥θ − θ∗∥2 H1 + 2β∥x∥2 H−1∥θ∗ − ˜θ∗∥2 H Combine the above derivations,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' we get |(∗∗)| ≤ γ 2 � a∥θ − θ∗∥2 H1 + b∥θ − θ∗∥H1 + c � (8) where a := � eR∥θ∗−˜θ∗∥2 − 1 + 2β∥x∥2 H−1 1 � b :=2eR∥θ∗−˜θ∗∥2∥θ∗ − ˜θ∗∥H c :=(eR∥θ∗−˜θ∗∥2 + 2β∥x∥2 H−1)∥θ∗ − ˜θ∗∥2 H 28 Lastly,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' by (6) and (8),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' ����log p(θ|Z) p(θ|Z′) ���� ≤ R∥θ∗ − ˜θ∗∥2 + log(1 − µ2) + γ 2[aW 2 + bW + c].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' where according to the algorithm W := ∥θ − θ∗∥H1 follows a half-normal distribution with σ = γ−1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' By standard Gaussian tail bound, we have for all δ < 2/e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' P(|W| ≤ γ−1/2� log(2/δ)) ≤ δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' This implies that a high probability upper bound of the absolute value of the privacy loss random variable log p(θ|Z) p(θ|Z′) under p(θ|Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' By the tail bound to privacy conversion lemma (Lemma ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' ), we get that for any set S ⊂ Θ P(θ ∈ S|Z) ≤ eϵP(θ ∈ S|Z′) + δ for any 0 < δ < 2/e and ϵ = R∥θ∗ − ˜θ∗∥2 + log(1 − µ2) + γc 2 + a 2 log(2/δ) + γ1/2b 2 � log(2/δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Denote v := θ∗ − ˜θ∗, by strong convexity ∥v∥2 ≤ ∥∇l(y, xT θ)[˜θ∗]∥2/α = |l′|∥x∥2/α ≤ L∥x∥2/α and ∥v∥H ≤ ∥∇l(y, xT θ)[˜θ∗]∥H−1 = |l′|∥x∥H−1 ≤ L∥x∥H−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Also use the fact that | log(1 − µ2)| ≤ 2µ2 for µ2 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='5 and µ2 ≤ β∥x∥2 ˜H−1 2 , we can then combine similar terms and have a more compact representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' ϵ ≤ ϵ0(1 + log(2/δ)) + e RL∥x∥2 α �γL2∥x∥2 H−1 2 + � γL2∥x∥2 H−1 log(2/δ) � where ϵ0 ≤ e RL∥x∥2 α − 1 + 2β∥x∥2 H−1 1 + 2β∥x∥2 ˜H−1 2 is the part of the privacy loss that does not get smaller as γ decreases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Proposition D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Let ∥ · ∥ be a norm and ∥ · ∥∗ be its dual norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Let F(θ), f(θ) and ˜F(θ) = F(θ) + f(θ) be proper convex functions and θ∗ and ˜ theta ∗ be their minimizers, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=', 0 ∈ ∂F(θ∗) and 0 ∈ ∂ ˜F( ˜ theta ∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' If in addition, F, ˜F is α, ˜α-strongly convex with respect to ∥ · ∥ within the restricted domain θ ∈ {tθ∗ + (1 − t)˜θ∗ | t ∈ [0, 1]}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Then there exists g ∈ ∂f(θ∗) and ˜g ∈ ∂f(˜θ∗) such that ∥θ∗ − ˜θ∗∥ ≤ min � 1 α∥˜g∥∗, 1 ˜α∥g∥∗ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Apply the first order condition to F restricted to the line segment between ˜θ∗ and θ∗, there are we get F(˜θ∗) ≥ F(θ∗) + ⟨∂F(θ∗), ˜θ∗ − θ∗⟩ + α 2 ∥˜θ∗ − θ∗∥2 (9) F(θ∗) ≥ F(˜θ∗) + ⟨∂F(˜θ∗), θ∗ − ˜θ∗⟩ + α 2 ∥˜θ∗ − θ∗∥2 (10) 29 Note by the convexity of F and f, ∂ ˜F = ∂F + ∂f, where + is the Minkowski Sum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Therefore, 0 ∈ ∂ ˜F(˜θ∗) implies that there exists ˜g such that ˜g ∈ ∂f(˜θ∗) and −˜g ∈ ∂F(˜θ∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Take −˜g ∈ ∂F(˜θ∗) in Equation 10 and 0 ∈ ∂F(θ∗) in Equation 9 and add the two inequalities, we obtain 0 ≥ ⟨−˜g, θ∗ − ˜θ∗⟩ + α∥˜θ∗ − θ∗∥2 ≥ −∥˜g∥∗∥θ∗ − ˜θ∗∥ + α∥˜θ∗ − θ∗∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' For ∥˜θ∗ − θ∗∥ = 0 the claim is trivially true, otherwise, we can divide the both sides of the above inequality by ∥˜θ∗ − θ∗∥ and get ∥θ∗ − ˜θ∗∥ ≤ 1 α∥˜g∥∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' It remains to show that ∥θ∗ − ˜θ∗∥ ≤ 1 ˜α∥g∥∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' This can be obtained by exactly the same arguments above but applying strong convexity to ˜F instead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Note that we can actually get something slightly stronger than the statement because the inequality holds for all g ∈ ∂f(θ∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' A consequence of (generalized) self-concordance is the spectral (multiplicative) stability of Hessian to small perturbations of parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Lemma D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='3 (Stability of Hessian[Nesterov and Nemirovskii, 1994, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='1], [Bach, 2010, Proposition 1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Let Hθ := ∇2Fs(θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' If Fs is R-self-concordant at θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Then for any v such that R∥v∥Hθ < 1, we have that (1 − R∥v∥Hθ)2∇2Fs(θ) ≺ ∇2Fs(θ + v) ≺ 1 (1 − R∥v∥Hθ)2 ∇2Fs(θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' If instead we assume Fs is R-generalized-self-concordant at θ with respect to norm ∥ · ∥, then e−R∥v∥∇2Fs(θ) ≺ ∇2Fs(θ + v) ≺ eR∥v∥∇2Fs(θ) The two bounds are almost identical when R∥v∥ and R∥v∥θ are close to 0, in particular, for x ≤ 1/2, e−2x ≤ 1 − x ≤ e−x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' References Francis Bach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Self-concordant analysis for logistic regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Electronic Journal of Statistics, 4: 384–414, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Differentially private empirical risk minimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Journal of Machine Learning Research, 12(3), 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Chris Decarolis, Mukul Ram, Seyed Esmaeili, Yu-Xiang Wang, and Furong Huang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' An end-to- end differentially private latent dirichlet allocation using a spectral algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In International Conference on Machine Learning, pages 2421–2431.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' PMLR, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Cynthia Dwork and Jing Lei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Differential privacy and robust statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In ACM symposium on Theory of computing, pages 371–380, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Calibrating noise to sensitivity in private data analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In Theory of cryptography conference, pages 265–284.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Springer, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Cynthia Dwork, Kunal Talwar, Abhradeep Thakurta, and Li Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Analyze gauss: optimal bounds for privacy-preserving principal component analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In Proceedings of the forty-sixth annual ACM symposium on Theory of computing, pages 11–20, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 30 Sivakanth Gopi, Yin Tat Lee, and Daogao Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Private convex optimization via exponential mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' arXiv preprint arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='00263, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Analyzing graphs with node differential privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In Theory of Cryptography Conference, pages 457–476.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Springer, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Daniel Kifer, Adam Smith, and Abhradeep Thakurta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Private convex empirical risk minimization and high-dimensional regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In Conference on Learning Theory, pages 25–1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' JMLR Workshop and Conference Proceedings, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Jingcheng Liu and Kunal Talwar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Private selection from private candidates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 298–309, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Xiyang Liu, Weihao Kong, and Sewoong Oh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Differential privacy and robust statistics in high dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' arXiv preprint arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='06578, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Kentaro Minami, HItomi Arai, Issei Sato, and Hiroshi Nakagawa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Differential privacy without sensitivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Advances in Neural Information Processing Systems, 29, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Ilya Mironov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Rényi differential privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In 2017 IEEE 30th computer security foundations symposium (CSF), pages 263–275.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' IEEE, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Yurii Nesterov and Arkadii Nemirovskii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Interior-point polynomial algorithms in convex programming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' SIAM, 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Smooth sensitivity and sampling in private data analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In ACM symposium on Theory of computing (STOC-07), pages 75–84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' ACM, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Nicolas Papernot and Thomas Steinke.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Hyperparameter tuning with renyi differential privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' arXiv preprint arXiv:2110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='03620, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Nicolas Papernot, Martín Abadi, Úlfar Erlingsson, Ian Goodfellow, and Kunal Talwar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Semi- supervised knowledge transfer for deep learning from private training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In International Conference on Learning Representations (ICLR-17), 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and Úlfar Erlingsson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Scalable private learning with pate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' arXiv preprint arXiv:1802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='08908, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Rachel Redberg and Yu-Xiang Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Privately publishable per-instance privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Advances in Neural Information Processing Systems, 34, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Jordi Soria-Comas, Josep Domingo-Ferrer, David Sánchez, and David Megías.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Individual differential privacy: A utility-preserving formulation of differential privacy guarantees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' IEEE Transactions on Information Forensics and Security, 12(6):1418–1429, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Abhradeep Guha Thakurta and Adam Smith.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Differentially private feature selection via stability arguments, and the robustness of the lasso.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In Conference on Learning Theory, pages 819–850.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' PMLR, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Salil Vadhan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' The complexity of differential privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In Tutorials on the Foundations of Cryptography, pages 347–450.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Springer, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Jiachen T Wang, Saeed Mahloujifar, Shouda Wang, Ruoxi Jia, and Prateek Mittal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Renyi differential privacy of propose-test-release and applications to private and robust machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' arXiv preprint arXiv:2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='07716, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 31 Yu-Xiang Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Per-instance differential privacy and the adaptivity of posterior sampling in linear and ridge regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' arXiv preprint arXiv:1707.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='07708, pages 48–71, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Yu-Xiang Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Revisiting differentially private linear regression: optimal and adaptive prediction & estimation in unbounded domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' arXiv preprint arXiv:1803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content='02596, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Yu-Xiang Wang, Stephen Fienberg, and Alex Smola.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' Privacy for free: Posterior sampling and stochastic gradient monte carlo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' In International Conference on Machine Learning, pages 2493– 2502.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' PMLR, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} +page_content=' 32' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99AyT4oBgHgl3EQfdfcH/content/2301.00301v1.pdf'} diff --git a/99FPT4oBgHgl3EQfZDSN/content/tmp_files/2301.13076v1.pdf.txt b/99FPT4oBgHgl3EQfZDSN/content/tmp_files/2301.13076v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..0486650d565a3d675bce9001b83f8667413a2849 --- /dev/null +++ b/99FPT4oBgHgl3EQfZDSN/content/tmp_files/2301.13076v1.pdf.txt @@ -0,0 +1,1286 @@ +EXTREMAL SPHERICAL POLYTOPES AND BORSUK’S CONJECTURE +MIKHAIL KATZ, FACUNDO M´EMOLI, AND QINGSONG WANG +Abstract. We generate anti-self-polar polytopes via a numerical implementation of the +gradient flow induced by the diameter functional on the space of all finite subsets of the +sphere, and prove related results on the critical points of the diameter functional as well as +results about the combinatorics of such polytopes. We also discuss potential connections to +Borsuk’s conjecture. +Contents +1. +Introduction +1 +2. +Pointwise extremal sets +3 +2.1. +The pyramid construction +4 +2.2. +Construction of k-stacks +5 +3. +Minimal sets on S2 with diameter below the first accumulation critical value +7 +3.1. +Configuration space +8 +3.2. +Finiteness results +8 +3.3. +A labeling strategy for the points in Bk +9 +4. +Anti-self-polar polytopes +10 +4.1. +ASP polytopes +11 +4.2. +Borsuk’s conjecture +12 +4.3. +Proof of Lovasz’s theorem +13 +4.4. +4-dimensional polytopes +15 +5. +Implementation of the diameter gradient flow +16 +6. +Computational results +17 +6.1. +Pointwise extremal configurations on S2 +18 +6.2. +Pointwise extremal configurations on S3 +20 +Appendix A. +Semi-algebraic sets +21 +References +21 +1. Introduction +Let (X, dX) be a metric space. The Kuratowski embedding x �→ dX(x, ·) is an embedding +of X into L∞(X), the space of all bounded real-valued functions on X with the uniform +norm. When X is the unit sphere with its geodesic distance, the homotopy types of the +r-neighborhoods Br(X, L∞(X)) in the Kuratowski embedding of X were studied by Katz +in [Kat91]. The values at which the homotopy type changes are closely related to the critical +configurations of the diameter functional diam of X which maps a finite subset A of X to +diam(A) := maxa,a′∈A dX(a, a′). When X is the unit circle, such critical values turn out to +be exactly one-half of the diameter values of odd regular polygons inscribed in S1. Note that +1 +arXiv:2301.13076v1 [math.CO] 30 Jan 2023 + +2 +MIKHAIL KATZ, FACUNDO M´EMOLI, AND QINGSONG WANG +the vertex sets of odd regular polygons are exactly the configurations that are local minima +of the diameter functional on the space of all finite subsets of S1 equipped with Hausdorff +distance. In [Kat89], Katz studied the diameter-extremal configurations on S2 and S3. The +latter provide candidates for testing Borsuk’s conjecture in R4 (see below). +Recently, Lim, M´emoli, and Okutan [LMO22, Theorem 5] proved that the homotopy types +of neighborhoods of the Kuratowski embedding of X are naturally homotopy equivalent to +the so-called Vietoris–Rips complexes of X, a central object in the field of applied algebraic +topology. Therefore, the study of diameter-extremal configurations is also of interest for +understanding the properties of the Vietoris-Rips complex of spheres [AA17, AAF18]. +In this paper, we extend the investigation of diameter-extremal configurations on spheres +started in [Kat89]. +In the S1 case, the critical values of the diameter functional form a +convergent sequence with the only accumulation point being π. It is natural to wonder to +what extent a similar behavior is true on S2. We consider two canonical families of diameter- +extremal configurations on S2 which we call pyramids Ak that contains 2k + 2 points (see +Section 2.1) and stacked-triangles Bk that contains 3k + 1 points (see Section 2.2). Both +families contain infinitely many members with diameters monotonically approaching 2π +3 . We +prove in Theorem 3.10 that 2π +3 is in fact the first accumulation point of the set of critical +values of the diameter functional. In Proposition 3.17, we prove that the two families Ak and +Bk do not exhaust all the possible configurations with similar diameter bounds, and in fact +there are infinitely many additional diameter-extremal configurations. Diameter-extremal +configuration with 3k points can be found by performing diameter gradient flow on a certain +subset of Bk. When k is odd, by a parity argument, the resulting configuration cannot be +an instance of Ak or Bk. +We next devise and implement a computational algorithm (see Algorithm 1) that attempts +to produce diameter extremal configurations. We use this algorithm to find new configu- +rations not in Ak or Bk. Furthermore, we found configurations not isometric to the ones +produced in the course of proving Proposition 3.17. See Table 1 for a complete list of all the +configurations we found in this way with up to 10 points. The list contains 10 previously +unknown configurations where 8 of those exhibit Z2 symmetry and the remaining two are +asymmetric; see Figures 7 and 8. +The convex hulls of certain diameter-extremal configurations give rise to anti-self-polar +polytopes (ASP), for example, the regular tetrahedron and any Ak or Bk. ASPs are polytopes +P characterized by the property that the polar of P equals −P (see Definition 4.3). ASPs +have been studied by Lov´asz in the context of answering a question by Erd¨os and Graham +[Lov83] and were also considered in [Kat89, Section 5] in the context of Borsuk’s conjecture. +Borsuk’s conjecture (see Section 4.2) for a finite point set X in Rn is equivalent to the +property that the chromatic number of the diameter graph (see Definition 4.7) of X is +bounded above by n + 1. We continue to explore the suggestion in [Kat89] to use diameter- +extremal configurations on S3 to test Borsuk’s conjecture in R4 (a case that is still open). +As shown by Lovasz [Lov83], the chromatic number of the diameter graph associated to +any ASP in Rn is at least n + 1. An ASP for which the inequality is strict would disprove +Borsuk’s conjecture. +It was conjectured in [Kat89] that the number of edges in the diameter graph of an ASP +4-polytope with v vertices is at least 3v − 5. We use Kalai’s inequality from [Kalai94, Sec- +tion 4.3] to prove such a bound in Theorem 4.21 below. We then formulate conjectures + +EXTREMAL SPHERICAL POLYTOPES AND BORSUK’S CONJECTURE +3 +about the number of edges in the diameter graph for more general subsets on S3, see Conjec- +tures 4.22 and 4.23. A calculation based on these two conjectures suggests that the maximum +possible chromatic number of the diameter graph of a finite subset X ⊆ R4 is 6 instead 5, +the number predicted by Borsuk’s conjecture. +We perform experiments attempting to identify diameter-extremal configurations on the +three-dimensional sphere. The interest in these experiments is twofold. On the one hand, +it is naturally interesting to obtain an understanding of critical configurations beyond the +case of S1 and S2. On the other hand, whereas Borsuk’s conjecture is known to be true +in dimensions 2 and 3 but false in dimensions 64 and higher, its status for dimension 4 is +unknown. Hence, by the above, it is tempting to seek a diameter-extremal configuration X of +S3 whose convex hull is an ASP such that its diameter graph has chromatic number at least +6. We discovered 65 new configurations on S3 not obtained by the pyramid construction +(see 2.1) on a previously known configuration on S2; see Theorem 6.1. However, all the +diameter graphs of these configurations have a chromatic number precisely 5. +Acknowledgements. This work was partially supported by BSF #2020124, NSF CCF +#1740761, and NSF IIS #1901360. +2. Pointwise extremal sets +Let Sn ⊆ Rn+1 be the unit sphere with its geodesic distance. For a subset Y ⊆ Sn, its +diameter diam(Y ) is computed with respect to the geodesic distance on the sphere. +Definition 2.1 (Taut sets in Sn). A finite subset Y ⊂ Sn is taut if one of the following +equivalent conditions is satisfied: +(1) the convex hull of Y contains the origin; +(2) there are non-negative real numbers {ay}y∈Y , not all zero, satisfying +� +y∈Y +ay y = 0, +where y denotes the position vector of the point y ∈ Rn+1. +Jung’s theorem immediately gives the following result. +Proposition 2.2. If Y ⊂ Sn is taut, then diam(Y ) ≥ arccos +� −1 +n+1 +� +. +The following observation will be useful in the sequel. +Corollary 2.3. Let Y ⊂ Sn be a taut set such that |Y | = n+2 and diam(Y ) < arccos +� +− 1 +n +� +. +Then the dimension of the vector space spanned by Y is equal to n + 1. +In particular, if {a1, . . . , an+2} is any set of non-negative coefficients such that +n+2 +� +i=1 +aiyi = 0, +then all ai must be positive. +Proof. Suppose the vector space spanned by all points in Y is of dimension at most n. Then, +the set {y1, y2, . . . , yn+2} must lie on some great sphere Sn−1 ⊆ Sn and it must be taut in +Sn−1. Then, by Proposition 2.2, the set Y must have diameter at least arccos +� +− 1 +n +� +which +contradicts the assumptions on Y . This concludes the first part of the proof. +For the second part, without loss of generality, we assume that a1 = 0, then the set of vectors + +4 +MIKHAIL KATZ, FACUNDO M´EMOLI, AND QINGSONG WANG +{y2, y3 . . . , yn+2} is linearly dependent and hence dim(span{y2, y3, . . . , yn+2}) < n + 1. The +contradiction with the first part establishes the result. +□ +Let Y be a subset of a metric space (X, dX). For any two points y, y′ ∈ Y , we say that y +and y′ are comaximal in Y if dX(y, y′) = diam(Y ). In such a case, y is called a comaximal +point with y′. We use the notation comaxY (y) to denote the set of all points in Y which are +comaximal with y. +For two points x, x′ ∈ Sn with distance less than π, there is a unique arclength-parametrized +geodesic γx,x′ connecting x to x′ such that γx,x′(0) = x. Consider the unit tangent vector +˙γx,x′(0) in the tangent space TxSn. +We recall the notion of pointwise extremal subsets in Sn as in [Kat89]. +Definition 2.4 ([Kat89]). Let Y ⊆ Sn be a finite subset with no antipodal pairs. We say +that y ∈ Y is held (in place) by Y if the set of vectors ˙γy,y′(0) as y′ runs over comaxY (y) is +a taut set. We say that Y is pointwise extremal if every point y ∈ Y is held by Y . +When n = 1, it is not difficult to see that, for all integers k ≥ 1, the vertex set of an +inscribed regular (2k + 1)-gon is pointwise extremal. The following proposition shows the +converse. +Proposition 2.5. Let Y ⊆ S1 be a pointwise extremal set containing no pair of antipodal +points. Then Y is the vertex set of an odd regular polygon inscribed in S1. +Proof. Let y ∈ Y and let D = diam(Y ). Let RD be the clockwise rotation on S1 by angle D. +As y is held by Y ⊆ S1, the set Y must contain both points in S1 at distance D from y. In +particular, the set Y is invariant under the rotation RD. As Y is a finite subset, the quotient +D +2π must be rational. Let m +n be the representation of +D +2π in lowest terms. Then the orbit of +y under the rotation RD forms the vertex set of an inscribed regular n-gon Y ′ ⊆ S1. As Y +does not contain any antipodal pairs, n is necessarily odd. Therefore, Y contains the vertex +set of a odd regular n-gon Y ′ of the same diameter as Y . Then Y must coincide with Y ′ as +adding any additional point to the set Y ′ would strictly increase the diameter. +□ +2.1. The pyramid construction. In this section, we describe a class of pointwise extremal +subsets of Sn called pyramids in [Kat89]. For any pointwise extremal subset Y ⊂ Sn−1, the +pyramid construction provides a corresponding pointwise extremal subset in Sn that consists +of a rescaled copy of Y together with one extra point. Let Sn ⊆ Rn+1 be the unit sphere. +Let Z = (0, . . . , 0, 1) denote the “north pole”. Let xn+1 be the last coordinate of Rn+1. Then +for each plane {xn+1 = a}, a ∈ R that meets Sn at more than one point, the intersection is +a rescaled copy of Sn−1 which we call a horizontal section. Each horizontal section contains +a suitable rescaled copy of Y which is isometrically embedded into it. +Definition 2.6. The pyramid over Y is the subset of Sn consisting of the north pole Z +together with a rescaled copy Y ′ of Y inside some horizontal section such that the diameter +of Y ′ equals the distance from Z to the horizontal section. Denote by Pyr(Y ) the pyramid +over a pointwise extremal subset Y . +Let x, y ∈ Y be points with dSn−1(x, y) = diam(Y ). Let x′, y′ ∈ Pyr(Y ) be points corre- +sponding to x, y. Then the triple Z, x′, y′ is the vertex set of a spherical equilateral triangle, +with spherical angle ∢ x′Zy′ = diam(Y ). Applying the spherical theorem of cosines to the +geodesic triangle △ x′Zy′, we obtain the following relationship: +diam(Pyr(Y )) = arcsec +� +sec +� +diam(Y ) +� +− 1 +� +. + +EXTREMAL SPHERICAL POLYTOPES AND BORSUK’S CONJECTURE +5 +Example 2.7 (The Ak family in S2). Let k ≥ 1. We apply the pyramid construction to the +regular (2k + 1)-gon on S1 to obtain a pointwise extremal configuration Ak ⊆ S2, consisting +of the north pole of S2 together with a suitably rescaled copy of the regular (2k + 1)-gon, so +that diam(Ak) = arcsec +� +sec +� 2kπ +2k+1 +� +− 1 +� +; see Figure 1. In particular, the diameter diam(Ak) +tends to 2π +3 as k goes to infinity. +Figure 1. The configuration A2 consists of the north pole and the vertices +of a regular pentagon. +2.2. Construction of k-stacks. Following [Kat89], let a β-digon be the convex region on +S2 bounded by two meridians (great semicircles joining the north and south poles), with +angle β between the two meridians. +Given a β-digon, we now introduce a procedure that will be used to produce a certain +type of pointwise extremal set Y ⊆ Sn called a k-stack. The digon procedure is a “walking +process” on the digon that takes as input an odd integer 2k + 1 ≥ 3 and outputs a suitable +step length d1 > β. +We start walking with equal steps from the north pole on alternating sides of the digon, +with step length d1 calibrated so as to get exactly to the south pole after 2k + 1 steps; see +Figure 2. +Let Z ∈ Sn be the north pole. A regular n-simplex inscribed in the equator Sn−1 ⊂ Sn +defines n + 1 meridians passing through the vertices of the simplex. +Let ℓ ∈ (0, π). The set of points on Sn which are at distance ℓ away from the north pole Z +is a rescaled (n−1)-sphere Sn−1 +ℓ +, namely a horizontal section of Sn. The intersection between +Sn−1 +ℓ +and the set of n + 1 meridians is the vertex set of an inscribed n-simplex in Sn−1 +ℓ +. +Let k ≥ 1. A k-stacked configuration Y (see Figure 2) consists of the north pole Z together +with the union of the vertex sets of k stacked n-simplices each obtained as the intersection of +a horizontal (n − 1)-sphere Sn−1 +ℓi +with the n + 1 meridians. The distances ℓ1, . . . , ℓk between +the horizontal sections and the north pole are determined by the digon procedure as follows. +Let d1 be the step length that comes from the digon procedure with input 2k + 1. Consider +the sequence of numbers {dj}2k+1 +j=0 +where dj is the distance to the north pole of the point +obtained after walking j steps in via the digon procedure. Then, the sequence of numbers +{ℓi}1≤i≤k is defined in terms of {di}2k+1 +i=0 +by setting +ℓi = d2i +for +1 ≤ i ≤ k. +Note that d2k = diam(Y ) and d1 = π − d2k. +Given an odd integer 2k + 1 ≥ 3, the following system of equations summarizes the +computation of di for 1 ≤ i ≤ 2k + 1. + +6 +MIKHAIL KATZ, FACUNDO M´EMOLI, AND QINGSONG WANG +Figure 2. Each value di in Equation (2.1) is the distance between the point +pi shown in this figure and the north pole. For 1 ≤ i ≤ 2k + 1, the distance +between pi and pi+1 is d1. The two conditions in Equation (2.1) are obtained by +requiring p0 to be the north pole and p2k+1 to be the south pole. The conditions +in the second line of Equation (2.1) are obtained by applying the theorem of +cosines for the geodesic spherical triangles with vertices {Z, pi, pi+1}, for each +1 ≤ i ≤ 2k + 1. +The third line Equations (2.1) is obtained by symmetry +considerations. +Let βn = arccos( 1 +n). The values {di}0≤i≤2k+1 are determined by n and k via the following +equations (see Figure 2): +(2.1) +� +� +� +� +� +d0 = 0, d2k+1 = π +cos(di) cos(di+1) + sin(di) sin(di+1) cos(βn) = cos(d1), 1 ≤ i ≤ 2k +di + d2k+1−i = π, 0 ≤ i ≤ 2k + 1. +Remark 2.8. Let d1 be the output of the digon procedure with input 2k + 1 on a digon of +angle β. If we perform the “walking process” on a digon of angle π − β with complementary +step length π − d1, we will eventually get close to the south pole (but will not reach it) and +then will start walking back to the north pole and reach it after 2k + 1 steps. If we add an +edge between the points that we traveled during the “walking process”, we obtain the diameter +graph (see Definition 4.7) of a regular 2k + 1-gon. +Example 2.9 (The Bk family in S2). When n = 2, for each k, we denote the stacks that +result from the digon procedure by Bk, which consists of the vertices of k stacked triangles +(2-simplices) together with the north pole. Note that B1 coincides with the configuration +A1 from Example 2.7. By construction, diam(Bk) = π − d1 < π − arccos( 1 +2) = +2π +3 and +limk→∞ diam(Bk) = 2π +3 . + +EXTREMAL SPHERICAL POLYTOPES AND BORSUK’S CONJECTURE +7 +Figure 3. The configuration B2 that consists of the north pole and vertices +of two stacked triangles. The green dash lines are meridians; the red dot is the +north pole, and points of the same color are of the same distance to the north +pole. +Example 2.10 (The Tk family in S3). Let n = 3. For each k, we denote the stacks that +result from the digon procedure by Tk, which consists of the vertices of k stacked tetrahedra +together with the north pole. +3. Minimal sets on S2 with diameter below the first accumulation critical +value +Let d > 0 and let D(S2, d) be the set of all finite subsets Y ⊂ S2 with diam(Y ) < d. +As each finite subset on S2 is closed, the Hausdorff distance dH is a metric on D(S2, d). +Definition 3.1 (Diameter-extremal sets in D(S2, d) [Kat89]). A subset Y ∈ D(S2, d) is called +diameter-extremal for the diameter functional if there is a little-o function such that +diam(Y ) ≤ diam(Y ′) + o( dH(Y, Y ′)) +for all Y ′ ⊂ S2. In other words, we have +lim +dH(Y ′,Y )→0 +diam(Y ′) − diam(Y ) +dH(Y ′, Y ) +≥ 0. +Remark 3.2. An n-point set Y is diameter-extremal if and only if at the corresponding +point in the configuration space (S2)×n, the gradients of the distances between pairs of points +at maximal distance form a taut set (see further in Section 3.1). +Lemma 3.3 ([Kat89, Corollary 3.4]). A diameter-extremal set Y ∈ D(S2, 2π +3 ) is necessarily +pointwise extremal. +Definition 3.4 (Minimal set in D(S2, d) [Kat89]). A subset Y ∈ D(S2, d) is called a minimal +set if there is some δ > 0 such that diam(Y ) ≤ diam(Y ′) for all finite subsets Y ′ with +dH(Y, Y ′) ≤ δ. +Clearly, every minimal set is diameter-extremal. In fact, there is a converse. +Theorem 3.5 ( [Kat89, Theorem 2]). Every diameter-extremal set in D(S2, 2π +3 ) is a minimal +set on S2. +By a mountain-pass argument, one obtains the following consequence. +Lemma 3.6 ([Kat89, Corollary 2]). There is exactly one (up to congruence) minimal set in +each connected component of D(S2, 2π +3 ). + +8 +MIKHAIL KATZ, FACUNDO M´EMOLI, AND QINGSONG WANG +3.1. Configuration space. We will now estimate the number of such connected compo- +nents. We use the notation +k� +diam≤d +S2 to denote the set of all tuples (y1, . . . , yk) in �k S2 such +that the diameter of its associated set {y1, . . . , yk} is less than or equal to d. Note that, for +any ϵ > 0, we have a natural continuous map +k +� +diam≤d +S2 −→ D(S2, d + ϵ). +By realizing +k� +diam≤d +S2 as a closed semi-algebraic set, we obtain the following upper bound on +the number of connected components in +k� +diam≤d +S2. +Lemma 3.7. Let k ≥ 0. We set sk = 2k+ k(k+1) +2 +. Then, for every d > 0, the number b0(k, d) +of connected components of +k� +diam≤d +S2 satisfies +b0(k, d) ≤ 2sk(4sk − 1)3k−1. +Proof. We will first describe the set +k� +diam≤d +S2 as a closed basic semi-algebraic set in R3k. Let +xi,j, where 1 ≤ i ≤ k and 1 ≤ j ≤ 3, denote the standard coordinates in R3k. Then the set +k� +diam≤d +S2 is characterized by the following conditions: +� +x2 +i,1 + x2 +i,2 + x2 +i,3 = 1 +for all 1 ≤ i ≤ k, +(xi,1 − xi′,1)2 + (xi,2 − xi′,2)2 + (xi,3 − xi′,3)2 ≤ d2 +for all 1 ≤ i < i′ ≤ k. +Therefore the set +k� +diam≤d +S2 is a basic semi-algebraic set given by sk = 2k + k(k+1) +2 +non-strict +inequalities. Then Theorem A.5 implies that b0(k, d) ≤ 1 +2(2sk + 2)(2sk + 1)3k−1. +□ +3.2. Finiteness results. Lemma 4.1 and Lemma 4.3 in [Kat89] imply the following result. +Lemma 3.8 ([Kat89]). Let 0 < d < +2π +3 . +Let Y +∈ D(S2, d) be a pointwise extremal +set. +Then for any pair of distinct points y, y′ in Y , the distance dS2(y, y′) is at least +arccos +� +2 cos2(d) +cos2(d/2) − 1 +� +. +By a packing argument on the sphere, we obtain the following result. +Corollary 3.9. For each ϵ > 0, there is a positive integer N(ϵ) such that every pointwise +extremal subset Y of diameter less than 2π +3 − ϵ contains fewer than N(ϵ) points. +Theorem 3.10. For each 0 < ϵ < 2π +3 , there are only finitely many diameter-extremal sets +in D(S2, 2π +3 − ϵ). +In particular, +2π +3 is the first accumulation point of the critical values of the diameter +functional of S2. + +EXTREMAL SPHERICAL POLYTOPES AND BORSUK’S CONJECTURE +9 +Proof. Let dϵ = +2π +3 − ϵ. By Theorem 3.5, it suffices to show that there are only finitely +many minimal sets in D(S2, dϵ). By Corollary 3.9, there is some N such that every pointwise +extremal set in D(S2, dϵ) contains no more than N points. +Therefore the image of the +continuous map φ +φ : +N +� +diam≤dϵ +S2 −→ D(S2, 2π +3 ) +contains all pointwise extremal configurations with diameter less than or equal to dϵ. By +Lemma 3.3, the image of φ (in particular) contains all minimal sets with diameter not +exceeding dϵ. +Let Cϵ be the number of connected components which contain a minimal set with diameter +no more than dϵ. By Lemma 3.6, the number of minimal sets in D(S2, dϵ) is at most Cϵ. As +the image of φ contains all minimal sets with diameter no more than dϵ, the number Cϵ is +bounded by the rank of the map +φ∗ : H0 +� +N +� +diam≤dϵ +S2 +� +−→ H0 +� +D(S2, 2π +3 ) +� +. +The claim now follows by invoking the upper bound on the dimension of H0 +� +N� +diam≤dϵ +S2 +� +from Lemma 3.7. +□ +3.3. A labeling strategy for the points in Bk. Recall that Bk ⊆ S2 consists of the north +pole and the vertices of k stacked triangles, and that the vertices of the stacked triangles are +distributed along three meridians. +We label the north pole as Z, then label the vertices of the i-th triangle (counting from the +north pole) by Pi, Qi, Ri in such a way that all the Pi, 1 ≤ i ≤ k are on a common longitude +and similarly for all Qi, 1 ≤ i ≤ k and Ri, 1 ≤ i ≤ k. +Definition 3.11. The subset dEBk is obtained by removing the points with indexes in E +from Bk. +Definition 3.12. A set Y ⊆ S2 is separable if for each pair of points x, y ∈ Y there are two +other points z, w ∈ Y such that the 4-tuple {x, y, z, w} is taut. +Lemma 3.13 ([Kat89, Lemma 4.1]). A pointwise extremal subset Y ⊂ S2 with diam(Y ) < 2π +3 +is necessarily separable. +The proof of the above lemma in [Kat89] gives the following stronger result. +Lemma 3.14. Let Y ⊂ S2 be a subset with diam(Y ) < 2π +3 . Suppose x ∈ Y is held by Y . +Then for any other point y ∈ Y , there exist z, w ∈ Y such that the four-point set {x, y, z, w} +is taut. +We will now analyze variations of subsets which are continuous with respect to the Haus- +dorff distance. +Lemma 3.15. Let {Yt, t ∈ [0, 1]} be a continuous family of subsets of S2 with at most 4 +points. Suppose the following two conditions hold: +• the set Y0 is taut, +• Yt ∈ D(S2, 2π +3 ) for every t ∈ [0, 1]. + +10 +MIKHAIL KATZ, FACUNDO M´EMOLI, AND QINGSONG WANG +Then Yt is taut for each t ∈ [0, 1]. +Proof. As the set Y0 is taut and diam(Y ) < 2π +3 , Corollary 2.3 implies that the convex hull +H0 of Y0 is a tetrahedron and that the origin 0 is in interior of H0. For each t ∈ [0, 1] let Ht +be the convex hull of the set Yt. To show that each set Yt is taut, it suffices to show that the +origin 0 stays in the interior of Ht for all t ∈ [0, 1]. +Suppose the contrary. Let t0 be the supremum of t such that 0 is in the interior of Ht +for all smaller values of t. Either Ht0 is nondegenerate and then 0 must belong to one of its +(triangular) faces, or it is degenerate, i.e., lies in a plane through the origin. In either case, +we obtain a taut subset of the circle given by the intersection of the plane with the sphere, +and can apply Jung’s theorem. +Namely, by Proposition 2.2 we obtain diam(Yt0) ≥ 2π +3 , contradicting the hypothesis Yt0 ∈ +D(S2, 2π +3 ) and proving the lemma. +□ +Corollary 3.16. Let Yt, t ∈ [0, 1] be a path in D(S2, 2π +3 ). If a certain 4-tuple in Y0 is taut, +then it continues to be taut for all t ∈ [0, 1]. +Proposition 3.17. There exist infinitely many (up to congruence) pointwise extremal sets +in D(S2, 2π +3 ) that are not contained in the family Ak or Bk. +Proof. Since each connected component contains a (unique) minimal set, it suffices to show +that for each k, the configuration dPkBk is separable. +By Lemma 3.14, we can separate most pairs of points from dPkBk except for a pair of +points from the triple of points at maximal distance from Pk, namely the points Z, Q1, and +R1. Let us check that such pairs don’t coalesce, either. This is immediate from the fact that +if we remove all layers except the first and the k-th, the remaining configuration is in the +connected component in D(S2, 2π +3 ) of the 7-point minimal set B2. Thus, by Corollary 3.16, +it suffices to check that if we remove P2 from B2, no remaining points coalesce. This can be +checked directly, and also follows from the fact that the diameter flow applied to the 6-point +configuration dP2B2 produces the 6-point minimal set A2 (see Section 5). +□ +4. Anti-self-polar polytopes +In this paper, we adopt the following restricted definition of a polytope: a (convex) polytope +will be the convex hull of any finite set of points in Rn. +Definition 4.1. The affine hull aff(S) of a set S ⊆ Rn is +aff(S) = +� k +� +i=1 +αixi +����� k > 0, xi ∈ S, αi ∈ R, +k +� +i=1 +αi = 1 +� +. +We now give the formal definition of a face of a polytope following [Zie12]. +Definition 4.2 ([Zie12, Definition 2.1]). Let P ⊆ Rd be a convex polytope. A linear inequality +⟨c, x⟩ ≤ c0 is valid for P if it is satisfied for all points x ∈ P. A face of P is any set of the +form +F = P ∩ +� +x ∈ Rd : ⟨c, x⟩ = c0 +� +where ⟨c, x⟩ ≤ c0 is a valid inequality for P. + +EXTREMAL SPHERICAL POLYTOPES AND BORSUK’S CONJECTURE +11 +The dimension of a polytope P is defined to be the dimension of its affine hull aff(P) +(regarded as an affine space). A 3-dimensional polytope is a polyhedron. The codimension- +one faces of a polytope P are called facets; the codimension-two faces are called ridges. If +each face of P is a simplex, then P is called a simplicial polytope. We will use fi(P) to +denote the number of i-faces of the polytope P. When there is no risk of confusion, we will +denote fi(P) by just fi. For a n-dimensional polytope, the vector (f0, f1, . . . , fn−1) is called +the f-vector of P. +4.1. ASP polytopes. In [Lov83], Lov´asz introduced the following type of polytopes which +we will refer to as anti-self-polar (ASP) polytopes.1 +Our terminology will be justified in +Remark 4.4. +Definition 4.3 (Anti-self-polar polytopes). Let P ⊆ Rn be a n-dimensional polytope. We +say that P is anti-self-polar (ASP) if the following three conditions hold: +(1) P is inscribed in the unit sphere Sn−1 ⊆ Rn. +(2) P is circumscribed around a sphere centered at the origin with radius s for some +0 < s < 1. +(3) There is a bijection σ between vertices and facets of P such that if v is any vertex +then the facet σ(v) is orthogonal to the vector v. +Remark 4.4. Let P ⊂ Rn be a polytope containing the origin 0. Let Sn−1 +r +(0) be the sphere +centered at 0 ∈ Rn with radius r > 0. The polar body of P with respect to the sphere Sn−1 +r +(0) +is defined to be the set +polarr(P) = {x ∈ Rn| ⟨x, y⟩ ≤ r2 for all y ∈ P}. +As shown in [Hor21], the condition for an ASP polytope in Rn can be restated using the +terminology of polar bodies. In terms of our definition of polarity, if P is an ASP polytope, +then there exists some r such that the following relation holds; see [Hor21, Lemma 1]. +polarr(P) = −P. +The polar body description shows that for each 0 ≤ i ≤ n − 1, the bijection σ in condition +(3) can be extended to a bijection between the set of i-dimensional faces and the set of +(n − i − 1)-dimensional faces; see [Hor21, Lemma 2]. +Proposition 4.5 ([Kat89, Remark after Theorem 1]). Let Y ⊂ S2 be a pointwise extremal +subset with diam(Y ) < 2π +3 . Then the convex hull of Y is an ASP polyhedron. +Remark 4.6. The result above no longer holds if the restriction on the diameter is removed. +A counterexample is given by an 8-point configuration Y ⊆ S2 consisting of the vertices of +an antiprism over a square (see Figure 4). If the diameter of Y is exactly attained by the +diagonals of the two squares and by the pairs that consist of a vertex of one square and one +of the two farthest vertices of the other square, then Y is pointwise extremal. However, the +convex hull of Y is not ASP. Indeed, note that the top square is a facet of the convex hull +of Y . If the convex hull of Y were ASP, then there would be a vertex y0 ∈ Y such that the +distance from y0 to each vertex of the top square would equal diam(Y ). But, our construction +of Y does not satisfy this. +1Lov´asz [Lov83] and Horv`ath[Hor21] use the terminology “strongly self-dual polytopes”. + +12 +MIKHAIL KATZ, FACUNDO M´EMOLI, AND QINGSONG WANG +Figure 4. The antiprism on a square. +Definition 4.7. Let Y ⊆ Rn be a finite subset. The diameter graph G(Y ) of Y is defined +to be the graph with vertex set V (G) = Y and two vertices y, y′ in G are connected if and +only if y and y′ are comaximal in Y . +Given a polytope P, we will refer to the diameter graph of the vertex set of P simply as +the diameter graph of P. We denote the diameter graph of P by G(P). +Definition 4.8. The chromatic number χ(G) of a graph G is the smallest number of colors +needed to color the vertices so that no two adjacent vertices share the same color. +The following property of the diameter graph G(P) of an ASP polytope P follows from +[Lov83, Lemma 2 and Lemma 3]. Recall that σ denotes the bijection between the vertex set +and the set of facets of P. In [Lov83, Lemma 1], it is shown that for any two vertices v, v′ +of P, the condition v ∈ σ(v′) is equivalent to v′ ∈ σ(v). +Proposition 4.9. Let P be an ASP polytope. Two vertices v, v′ in G(P) are connected by +an edge in G(P) if and only if v ∈ σ(v′), when viewed as vertices in P. +Theorem 4.10 ([Lov83, Theorem 2]). The diameter graph G(P) of an n-dimensional ASP +polytope P ⊆ Rn satisfies χ(G(P)) ≥ n + 1. +The proof of the theorem is discussed in Section 4.3. The chromatic number of a diameter +graph G(Y ) of a subset Y ⊂ Rn is closely related to the following conjecture of Borsuk. +4.2. Borsuk’s conjecture. +Conjecture 4.11 (Borsuk’s conjecture). Let Y be a bounded subset of Rn. Then there is a +partition of Y into n + 1 sets each of which has a smaller diameter than Y . +For finite subsets, Borsuk’s conjecture has the following equivalent form in terms of diam- +eter graphs: +For every finite bounded subset Y ⊆ Rn, the chromatic number of the diam- +eter graph G(Y ) of Y is no greater than n + 1. +To see the above equivalence, a partition {Y1, . . . , Yk} of Y is equivalent to a coloring of +Y by requiring that two points are of the same color if and only if they both belong to + +EXTREMAL SPHERICAL POLYTOPES AND BORSUK’S CONJECTURE +13 +some Yi, 1 ≤ i ≤ k. Therefore, since Y is a finite set, the condition that the diameter of each +subset Yi is less than the diameter of Y is equivalent to requiring that the coloring associated +to the partition {Y1, . . . , Yk} has the property that no two adjacent vertices in the diameter +graph G(Y ) share the same color. +Borsuk’s conjecture holds when n = 2 (Borsuk [Bor33]) and n = 3 (Perkal [Per47]). The +general conjecture was disproved by Khan and Kalai [KK93]. The lowest dimensional coun- +terexample currently known was constructed by Jenrich and Brouwer (and based on a con- +struction by Bondarenko) in dimension 64 [JB14]. For additional information on the histori- +cal developments on the construction of counterexamples to Borsuk’s conjecture, see [Rai13, +Section 2]. +Remark 4.12. Let Y ⊂ Sn−1 be a finite subset. Given a regular geodesic n + 1-simplex +∆geodesic +n+1 +, Sn−1 can be partitioned into n + 1 connected parts {X1, X2, . . . , Xn+1} where each +Xi contains the interior of one of the faces of ∆geodesic +n+1 +. Therefore, by coloring points of +Y according to which partition set Xi the point belongs to, we obtain a proper coloring of +the diameter graph of Y provided that the diameter diam(Y ) diameter of Y is greater than +ηn−1, the diameter of a face of ∆geodesic +n+1 +. The above coloring strategy was first described in +[Lov83, Section 0]. Though notice that [Lov83] made a mistake in computing the exact value +of ηn−1 [Rai12, Rai13]. The correct values of ηn−1 first appeared in [San46] and reproduced +in the context of ASP polytopes in [Hor21]. +By Theorem 4.10 and the fact that Borsuk’s conjecture is true for n = 3, the chromatic +number χ(G(P)) of an ASP polyhedron P ⊆ R3 equals 4. In Figures 7 and 8, we display +4-colorings of the diameter graphs of all the ASP polyhedra in Tables 5 and 6. +Remark 4.13. Borsuk’s conjecture is still open for 4 ≤ n ≤ 63. Theorem 4.10 suggests +that ASP polytopes are a natural source of potential counterexamples to Borsuk’s conjecture. +Additionally, by Proposition 4.5, pointwise extremal configurations are closely related to ASP +polytopes. In Section 6.2, we present some pointwise extremal subsets on S3 obtained through +computer experiments. However, the pointwise extremal subsets that we have found so far +all have chromatic number 5; cf. Section 6.2. +4.3. Proof of Lovasz’s theorem. Theorem 4.10 was proved in [Lov83] by analyzing the +neighborhood complex of the diameter graph of ASP polytopes. +Definition 4.14 (Neighborhood complex). Let G be a finite graph. +The neighborhood +complex N(G) is the simplicial complex with vertex set V (G) such that a subset A ⊆ V (G) +forms a simplex if and only if the points of A have a neighbor in common. +In [Lov78], Lov´asz shows the following lower bound of the chromatic number of a graph +with respect to the connectivity of its neighborhood complex. Recall a topological space X +is k-connected if its homotopy groups are trivial up to degree k. +Theorem 4.15 ([Lov78]). Let G be a graph and suppose that N(G) is k-connected (k ≥ 0). +Then χ(G) ≥ k + 3. +Lemma 4.16 ([Lov83, Lemma 4]). Let P be an ASP polytope and G(P) be its diameter +graph. Then N(G(P)) is homotopy equivalent to the boundary of P. +Proof of Theorem 4.10. By Lemma 4.16, N(G) is homotopy equivalent to the boundary of +P. + +14 +MIKHAIL KATZ, FACUNDO M´EMOLI, AND QINGSONG WANG +As P is a (convex) polytope, the boundary of P is homeomorphic to Sn−1. Hence N(G) +is homotopy equivalent to Sn−1. Therefore, N(G) is (n − 2) connected. By Theorem 4.15, +χ(G) ≥ n + 1. +□ +Let d ≥ 2 and n ≥ 1 be integers and let e(d, n) be the maximum possible number of edges +in the diameter graph of a subset of Rd with n points. When d = 2, it is shown in [HP34] +that e(2, n) = n. This fact leads to one proof of Borsuk’s conjecture for finite subsets Y of +R2. When d = 3, it was conjectured by V´azsonyi that e(3, n) = 2n − 2; see [Erd46]. The +V´azsonyi’s conjecture was proved independently by Gr¨unbaum [Gr¨u56], Heppes [Hep56] and +Straszewicz [Str57]. As mentioned in Heppes [Hep56], V´azsonyi’s conjecture implies that +Borsuk’s conjecture is true for finite subsets in R3. We have already seen in Theorem 4.10 +that the diameter graph of an ASP polytope has high chromatic number, suggesting a +possible approach to seeking higher-dimensional counterexamples. +We now introduce a set of enumerative invariants fij(P) of a polytope P which will be +used below. Informally, for i < j, fij(P) counts the number of pairs “i-face contained in a +j-face” in the polytope P. Precisely, +fij(P) := ♯{(φi, φj) | φi is a i-face of P, φj is a j-face of P, and φi ⊆ φj.} +When there is no risk of confusion, we will simply use fij to denote fij(P). Thus f01 is the +number of pairs “vertex contained in an edge”, namely just twice the number f1 of edges +in P. +Lemma 4.17. Let P be an anti-self-polar polytope of dimension d + 1. Let e(G(P)) be the +number of edges in the graph G(P). Then f0d(P) = 2e(G(P)). +Proof. Let V be the set of vertices of P and let W be the set of faces in P. Recall that σ +denotes the bijection between V and the set of facets of P. By Proposition 4.9, we have +2e(G(P)) = +� +v∈V +f0(σ(v)) = +� +φd⊂W +f0(φd) = f0d. +The second equality above follows from the definition of σ. +□ +Proposition 4.18. Every ASP polyhedron P ⊆ R3 satisfies e(G(P)) = 2f0 − 2. +Proof. By Lemma 4.17, we have 2e(G(P)) = f02. Furthermore by duality we have f01 = f12. +This enables us to give a possibly generalizable proof as follows. +Note that, each face has as many vertices as edges and therefore f02 = f12. By duality, +f12 = f01 which is twice the number of edges, namely 2f1. Thus the number of maximal +distances is the same as the number of edges. +Meanwhile by the formula for the Euler +characteristic, for an anti-self-polar polyhedron we have f1 = 2f0 − 2. Altogether, we have +f02 = f12 = f01 = 2f1 = 2(2f0 − 2). +Thus the number of maximal distances is also 2f0 − 2. +□ +In fact, it is shown in [Kat89] that every pointwise extremal set in S2 with diameter less +than 2π +3 exhibits the maximum number of possible edges. +Theorem 4.19 ([Kat89, Theorem 1]). Suppose Y ⊂ S2 is a pointwise extremal set with +N = |Y | and diam(Y ) < 2π +3 . Then the number of edges in the diameter graph G(Y ) equals +2N − 2. + +EXTREMAL SPHERICAL POLYTOPES AND BORSUK’S CONJECTURE +15 +As noted in [Kat89, page 118], the example of the antiprism on a square constructed +in Remark 4.13 shows that the above result is no longer true if we remove the diameter +constraint: the diameter graph of the antiprism on a square has 8 vertices but only 12 edges. +4.4. 4-dimensional polytopes. Consider the V´azsonyi’s problem in R4, that is, for a fixed +n, determine the maximal possible number of edges e(4, n) amongst the diameter graphs of +all possible n point sets in R4. +Example 4.20. Let m be a positive integer and let Y := A ∪ B ⊂ S3 be a subset consisting +of 2m points constructed as follows. The set A consists of m points on an arc of length less +than π +2 on a great circle whereas the (disjoint) set B consists of m points also on an arc of +length less than π +2 on an orthogonal great circle. +Then each pair of points a ∈ A, b ∈ B is comaximal in Y . Thus e(4, n) is at least quadratic +in n. It is shown in [Erd67] that e(4, n) exactly has quadratic growth rate in n. +For an anti-self-polar polytope P ⊆ R4, we prove the following lower bound on the number +of edges in the diameter graph G(P), originally conjectured in [Kat89, Section 5]. +Theorem 4.21. Let P ⊆ R4 be a 4-dimensional anti-self-polar polytope. Then the number +of edges e(G(P)) in the diameter graph G(P) is at least 3f0(P) − 5. +Proof. By Lemma 4.17, the assertion is equivalent to the bound f03(P) ≥ 6f0(P) − 10. For +each facet φ of P, let aj +φ be the number of j-gons occurring as faces of φ, and let aj denote +the total number of j-gons occurring as faces of P. Kalai [Kalai94, Section 4.3] proved that +every 4-dimensional polytope satisfies g2 ≥ 0 or equivalently +a4 + 2a5 + · · · ≥ 4f0(P) − f1(P) − 10. +Let φ run through all the facets of P. By Euler’s formula, we have +f03(P) = +� +φ +f0(φ) += +� +φ +2 + f1(φ) − f2(φ) += +� +φ +2 + 1 +2(3a3 +φ + 4a4 +φ + 5a5 +φ + · · · ) − f2(φ) += +� +φ +2 + 1 +2f2(φ) + 1 +2(a4 +φ + 2a5 +φ + · · · ) += 2f3(P) + f2(P) + 1 +2 +� +φ +(a4 +φ + 2a5 +φ + · · · ) += 2f3(P) + f2(P) + (a4 + 2a5 + · · · ) +≥ 2f3(P) + f2(P) + 4f0(P) − f1(P) − 10 += (2f3(P) + 4f0(P)) + (f2(P) − f1(P)) − 10 += 6f0(P) − 10 +by duality, as required. +□ +The above results suggest formulating the following conjectures. + +16 +MIKHAIL KATZ, FACUNDO M´EMOLI, AND QINGSONG WANG +Conjecture 4.22. Every ASP polytope P ⊆ R4 satisfies e(G(P)) = 3f0(P) − 5. +In Section 6.2, we report 65 configurations that we generate through numerical experi- +ments. Each of those configurations confirms the above conjecture. +Conjecture 4.23. Every subset X ⊆ S3 with diam(X) > π +2 satisfies e(G(X)) ≤ 3|X| − 5. +Assuming these conjectures and by an argument similar to the case of the S2 discussed +on page 14, one can show that the chromatic number of the diameter graph of any set X +in S3 with its diameter greater than π +2 would be at most 6. Indeed, Conjecture 4.23 implies +that one can always choose a point x0 ∈ X comaximal with at most 5 other points, by the +pigeonhole principle. Thus, if X − {x0} can be colored with 6 colors, then X can be so +colored, also, by using the color not used up by any of its 5 (or fewer) comaximal points, and +we conclude by induction. The fact that this calculation produces the number 6 instead of +5 would provide weak evidence toward the possibility that the Borsuk number of R4 might +be the former rather than the latter. +5. Implementation of the diameter gradient flow +This section describes the implementation of the diameter gradient flow on spheres. Given +a finite subset Y of Sn, we first test whether every point in Y is held. If there is a point y +that is not held by Y , we then move y in the direction that points toward the center of the +minimum bounding sphere of the tangent vectors determined by points in comaxY (y). We +continue this process until every point in Y is held. In other words the point y is updated to +a point yt = +y0+tv0 +||y0+tv0|| where t > 0 is a parameter value determined through the Armijo rule +[Arm66], and v0 is the unit tangent vector at y that points toward the center of the minimum + +EXTREMAL SPHERICAL POLYTOPES AND BORSUK’S CONJECTURE +17 +bounding sphere of the set {˙γy,y′ | y′ ∈ comaxyY }. The pseudocode of the algorithm is shown +below. +Algorithm 1: DiameterGradientFlow +Input: An initial finite subset Y on unit sphere Sn. +Parameters: β, η ∈ (0, 1) for determing Armijo Rule stepsa. +Output: The extremal configurations obtained under the diameter gradient flow +with initial condition Y . +1 Function IsHeld(y, Y ): +2 +E ← comaxY (y) +3 +Ty(E) ← {˙γy,y′ for y′ ∈ comaxY (y)} +4 +if 0 in the convex hull of Ty(E) then +5 +return True +6 +else +7 +return False +8 +end if +9 +10 Function Main(Y , β, η): +11 +/* Initialize convergence tag +*/ +12 +tag = False +13 +while tag == False do +14 +for y0 ∈ Y do +15 +if IsHeld(y0, Y ) then +16 +tag == True +17 +else +18 +E ← comaxY (y) +19 +Ty0(E) ← {˙γy,y′} for y′ ∈ E} +20 +v0 ← center of the minimum bounding sphere of Ty(E). +21 +/* Determine the step size tk > 0 using Armijo Rule +*/ +22 +tk = maxl∈N0 βl +s.t. +diam +� +Y \{y0} ∪ +� +y0+tkv0 +||y0+tkv0|| +�� +≤ diam(Y ) − βlη +23 +Y ← Y \{y0} ∪ +� +y0+tkv0 +||y0+tkv0|| +� +24 +tag == False +25 +break +26 +end if +27 +end for +28 +end while +29 return +asee [Arm66] +6. Computational results +In this section, we describe our computational results regarding pointwise extremal config- +urations on S2 and S3 using the Algorithm 1. In most of our experiments, we set parameters +β = 0.5, η = 0.001 and use the Python package MINIBALL([Dev21]) for finding the optimal +direction for decreasing the diameter by moving a single point. + +18 +MIKHAIL KATZ, FACUNDO M´EMOLI, AND QINGSONG WANG +6.1. Pointwise extremal configurations on S2. In this section, we present the compu- +tational results from running the diameter gradient flow Algorithm 1 with initial sets, which +are obtained by removing up to six points from Bk (Example 2.9) with k ≤ 5. +In total, we obtain 54 configurations. We present in Table 1 the configurations with up to +10 points2 that we found upon convergence of the gradient flow. +Shape +v +f +r +t +Diameter +Symmetry Group +Initial Set +A1(= B1) +4 +3 +4 +4 +1.91064 +S3 +dZB2 +A2 +6 +5 +1 +5 +2.03446 +D5 +dP2B2 +B2 +7 +4 +3 +4 +2.07654 +S3 +dZB3 +C1 +8 +5 +1 +4 +2.08707 +Z2 +d{Q1,P3}B3 +A3 +8 +7 +1 +7 +2.06459 +D7 +d{P1,P3}B3 +C2 +9 +5 +1 +3 +2.09335 +Z2 +d{P1,R1,Q3,Q4}B4 +C3 +9 +5 +1 +4 +2.09079 +Z2 +dP3B3 +C4 +9 +6 +1 +5 +2.09016 +Z2 +dP1B3 +B3 +10 +4 +6 +4 +2.09303 +S3 +dZB4 +D1 +10 +5 +1 +3 +2.09409 +{e} +d{P1,Q1,P2,Q4,R4,R5}B5 +C5 +10 +5 +1 +4 +2.09317 +Z2 +d{P1,R3,Q4}B4 +C6 +10 +5 +2 +4 +2.09356 +Z2 +d{P1,Q1}B4 +C7 +10 +5 +3 +4 +2.09240 +Z2 +d{P1,R3,P4}B4 +D2 +10 +6 +1 +4 +2.09360 +{e} +d{P1,R3,R4}B4 +C8 +10 +7 +1 +6 +2.09174 +Z2 +d{P1,P3,Q4}B4 +A4 +10 +9 +1 +9 +2.07654 +D9 +d{P1,P3,P4}B4 +Table 1. +Pointwise extremal configurations on S2 with up to v = 10 vertices, +sorted first by v, then by f (maximal number of edges in a face), then by r +(number of faces with a maximal number of edges), then by t (number of +triangles in the configuration’s diameter graph). For each of the 10 pointwise +extremal configurations that we found, in the last column we list one initial +set which leads to that configuration under the diameter gradient flow (a given +pointwise extremal configuration may be reached from different initial sets). +2An interactive visualization of the table can be found through the link: +https://ndag.github.io/ +anti-self-dual-polyhedra/ + +EXTREMAL SPHERICAL POLYTOPES AND BORSUK’S CONJECTURE +19 +(a) C1 +(b) C2 +(c) C3 +(d) C4 +(e) C5 +(f) C6 +(g) C7 +(h) C8 +Figure 5. Eight Z2 symmetric pointwise extremal configurations with at +most 10 points. +(a) D1 +(b) D2 +Figure 6. Two asymmetric pointwise extremal configurations with 10 points. + +20 +MIKHAIL KATZ, FACUNDO M´EMOLI, AND QINGSONG WANG +(a) C1 +(b) C2 +(c) C3 +(d) C4 +(e) C5 +(f) C6 +(g) C7 +(h) C8 +Figure 7. Diameter graphs of Z2 symmetric pointwise extremal configura- +tions with less than 10 with a minimal coloring. Note that all diameter graphs +above can be colored with four colors. +(a) D1 +(b) D2 +Figure 8. The diameter graph of the two asymmetric pointwise extremal +configurations D1 and D2. +6.2. Pointwise extremal configurations on S3. In this section we present some compu- +tational results on pointwise extremal configurations on S3. Recall that Tk ⊆ S3 denotes the +k-stack; cf. Example 2.10. The Tk consists of the north pole and the vertices of k stacked +3-simplices, for a total of 4k + 1 points. +We use similar indexing for the points in Tk, that is, the north pole is denoted Z, then +we label the verticees of i-th tetrahedron (counting from the north pole) by Pi, Qi, Ri, Si +in such a way that all the Pi, 1 ≤ i ≤ k are on a common longitude and similarly for all +Qi, 1 ≤ i ≤ k, Ri, 1 ≤ i ≤ k, and Si, 1 ≤ i ≤ k. +Theorem 6.1. Applying the diameter gradient flow to the initial sets of the diameter gradient +flow be the subsets of T1, T2, T3, T4 with at most four points removed, one obtains at least 65 +distinct pointwise-extremal configurations which are not pyramids. 3 +3A comprehensive table containing statistics for the 65 configurations, similar to Table 1, can be accessed +through the following link: https://ndag.github.io/anti-self-dual-polyhedra/table.html + +EXTREMAL SPHERICAL POLYTOPES AND BORSUK’S CONJECTURE +21 +Through exact calculation via the Python package NetworkX([HSS]), we find that the +diameter graph of each of these 65 configurations has chromatic number equal to 5 and also +satisfies e = 3v − 5 where e and v are the number of edges and the number of vertices in the +diameter graph, respectively. +Appendix A. Semi-algebraic sets +Let k ≥ 1. Let R[x1, . . . , xk] be the k-dimensional ring of polynomials with real coefficients. +We now introduce the notion of semi-algebraic subset following [BCR13]. +Definition A.1 ([BCR13, Definition 2.1.4]). Let {ri}s +i=1 be a set of positive integers. A +semi-algebraic subset of Rn is a subset of the form +s� +i=1 +ri +� +j=1 +{x ∈ Rn | fi,j ∗i,j 0} , +where fi,j ∈ R [X1, . . . , Xn] and the operation ∗i,j is either < or =, for i = 1, , . . . , s and +j = 1, . . . , ri. +Definition A.2. A collection A of subsets of a set X is called an algebra of sets if A +contains the empty set and is closed under finite union, finite intersection and under taking +complements. +Remark A.3. Semi-algebraic subsets of Rn form the smallest algebra of sets that contains +all sets of the form +{x ∈ Rn | f(x) > 0} , where f ∈ R [X1, . . . , Xn] . +Definition A.4 ([BCR13, Definition 2.7.1]). A basic open semi-algebraic subset of Rn is a +set of the form +{x ∈ Rn | f1(x) > 0, . . . , fs(x) > 0} +where f1, . . . , fs ∈ R [X1, . . . , Xn]. A basic closed semi-algebraic subset of Rn is a set of the +form +{x ∈ Rn | f1(x) ≥ 0, . . . , fs(x) ≥ 0} +where f1, . . . , fs ∈ R [X1, . . . , Xn] +By applying Morse theory, Milnor [Mil64] obtained the following bound on the number of +Betti numbers of a closed basic semi-algebraic set. +Theorem A.5 ([Mil64, Theorem 3]). If X ⊂ Rn is a basic closed semi-algebraic subset +defined by p polynomial inequalities f1 ≥ 0, . . . , fp ≥ 0 of degree ≤ d, then the sum of the +Betti numbers of X is at most 1 +2(dp + 2)(dp + 1)n−1. +References +[AA17] Michal Adamaszek and Henry Adams, The Vietoris–Rips complexes of a circle, Pacific Journal of +Mathematics 290.1 (2017) 1–40. +[AAF18] Michal Adamaszek, Henry Adams and Florian Frick, Metric reconstruction via optimal transport, +SIAM Journal on Applied Algebra and Geometry 2.4 (2018) 597–619. +[Arm66] Larry Armijo, Minimization of functions having lipschitz continuous first partial derivatives, Pacific +Journal of mathematics 16 (1966), no. 1, 1–3. +[BCR13] Jacek Bochnak, Michel Coste, and Marie-Fran¸coise Roy, Real algebraic geometry, vol. 36, Springer +Science & Business Media, 2013. + +22 +MIKHAIL KATZ, FACUNDO M´EMOLI, AND QINGSONG WANG +[BHMH18] Logan Beal, Daniel Hill, R Martin, and John Hedengren, Gekko optimization suite, Processes 6 +(2018), no. 8, 106. +[Bor33] Karol Borsuk, Drei s¨atze ¨uber die n-dimensionale euklidische sph¨are, Fundamenta Mathematicae 20 +(1933), no. 1, 177–190. +[Bro12] Arne Brondsted, An introduction to convex polytopes, vol. 90, Springer Science & Business Media, +2012. +[Dev21] Alexandre Devert, Miniball, https://github.com/marmakoide/miniball, 2021. +[Erd46] Paul Erd¨os, On sets of distances of n points, The American Mathematical Monthly 53 (1946), no. 5, +248–250. +[Erd67] P Erd¨os, On some applications of graph theory to geometry, Canadian Journal of Mathematics 19 +(1967), 968–971. +[Gr¨u56] B Gr¨unbaum, A proof of v´azsonyi’s conjecture, Bull. Res. Council Israel, Sect. A 6 (1956), 77–78. +[Hep56] A Heppes, Beweis einer vermutung von a. V´azsonyi, Acta Mathematica Hungarica 7 (1956), no. 3-4, +463–466. +[Hor21] ´Akos. G Horv´ath, Strongly self-dual polytopes and distance graphs in the unit sphere, Acta Mathe- +matica Hungarica 163 (2021), no. 2, 640–651. +[HP34] Heinz Hopf and Erika Pannwitz, Aufgabe nr. 167, Jahresbericht Deutsch. Math.-Verein 43 (1934), +114. +[HSS] +Aric A Hagberg, Daniel A Schult, and Pieter J Swart, Exploring Network Structure, Dynamics, +and Function using NetworkX, Proceedings of the 7th Python in Science Conference (SciPy 2008), +11–16. +[JB14] +Thomas Jenrich and Andries E Brouwer, A 64-dimensional counterexample to borsuk’s conjecture, +The Electronic Journal of Combinatorics (2014), P4–29. +[Kat89] Mikhail Katz, Diameter-extremal subsets of spheres, Discrete & Computational Geometry 4 (1989), +no. 2, 117–137. +[Kat91] +, On neighborhoods of the kuratowski imbedding beyond the first extremum of the diameter +functional, Fundamenta Mathematicae 137 (1991), no. 3, 161–175. +[KK93] Jeff Kahn and Gil Kalai, A counterexample to Borsuk’s conjecture, Bulletin of the American Math- +ematical Society 29 (1993), no. 1, 60–62. +[LMO22] Sunhyuk Lim, Facundo M´emoli, and Osman B Okutan, Vietoris–Rips persistent homology, injec- +tive metric spaces, and the filling radius, Accepted to appear in Algebraic & Geometric Topology +(2022). +[Kalai94] Gil Kalai. Some aspects of the combinatorial theory of convex polytopes. Polytopes: abstract, +convex and computational (Scarborough, ON, 1993), 205–229, NATO Adv. Sci. Inst. Ser. C: Math. +Phys. Sci., 440, Kluwer, Dordrecht, 1994. +[Lov78] L´aszl´o Lov´asz, Kneser’s conjecture, chromatic number, and homotopy, Journal of Combinatorial +Theory, Series A 25 (1978), no. 3, 319–324. +[Lov83] L´asl´o Lov´asz, Self-dual polytopes and the chromatic number of distance graphs on the sphere, Acta +Sci. Math.(Szeged) 45 (1983), no. 1-4, 317–323. +[Mil64] John Milnor, On the Betti numbers of real varieties, Proceedings of the American Mathematical +Society 15 (1964), no. 2, 275–280. +[MS71] Peter McMullen and Geoffrey Colin Shephard, Convex polytopes and the upper bound conjecture, +Cambridge University Press, 1971. +[Per47] Julian Perkal, Sur la subdivision des ensembles en parties de diam`etre inf´erieur, Colloq. Math, vol. 1, +1947, p. 45. +[Rai12] Andrei M Raigorodskii, On the chromatic numbers of spheres in Rn, Combinatorica 32 (2012), +no. 1, 111–123. +[Rai13] Andrei M Raigorodskii, Cliques and cycles in distance graphs and graphs of diameters., Discrete +geometry and algebraic combinatorics, 2013, pp. 93–109. +[San46] LA Santal´o, Convex regions on the n-dimensional spherical surface, Annals of Mathematics (1946), +448–459. +[Str57] +Stefan Straszewicz, Sur un probleme g´eom´etrique de P. Erd¨os, Bull. Acad. Polon. Sci. Cl. III 5 +(1957), 39–40. + +EXTREMAL SPHERICAL POLYTOPES AND BORSUK’S CONJECTURE +23 +[Wal70] David W Walkup, The lower bound conjecture for 3-and 4-manifolds, Acta Mathematica 125 (1970), +75–107. +[Zie12] +G¨unter M Ziegler, Lectures on polytopes, vol. 152, Springer Science & Business Media, 2012. +Bar Ilan University. +Email address: katzmik@math.biu.ac.il +The Ohio State University. +Email address: facundo.memoli@gmail.com +University of Utah. +Email address: qswang@math.utah.edu + diff --git a/99FPT4oBgHgl3EQfZDSN/content/tmp_files/load_file.txt b/99FPT4oBgHgl3EQfZDSN/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..5e0177c16f1b1d0f6ba82c9037a728dd6d7c597d --- /dev/null +++ b/99FPT4oBgHgl3EQfZDSN/content/tmp_files/load_file.txt @@ -0,0 +1,859 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf,len=858 +page_content='EXTREMAL SPHERICAL POLYTOPES AND BORSUK’S CONJECTURE MIKHAIL KATZ, FACUNDO M´EMOLI, AND QINGSONG WANG Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We generate anti-self-polar polytopes via a numerical implementation of the gradient flow induced by the diameter functional on the space of all finite subsets of the sphere, and prove related results on the critical points of the diameter functional as well as results about the combinatorics of such polytopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We also discuss potential connections to Borsuk’s conjecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Contents 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Introduction 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Pointwise extremal sets 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The pyramid construction 4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Construction of k-stacks 5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Minimal sets on S2 with diameter below the first accumulation critical value 7 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Configuration space 8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Finiteness results 8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' A labeling strategy for the points in Bk 9 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Anti-self-polar polytopes 10 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' ASP polytopes 11 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Borsuk’s conjecture 12 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Proof of Lovasz’s theorem 13 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 4-dimensional polytopes 15 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Implementation of the diameter gradient flow 16 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Computational results 17 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Pointwise extremal configurations on S2 18 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Pointwise extremal configurations on S3 20 Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Semi-algebraic sets 21 References 21 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Introduction Let (X, dX) be a metric space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The Kuratowski embedding x �→ dX(x, ·) is an embedding of X into L∞(X), the space of all bounded real-valued functions on X with the uniform norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' When X is the unit sphere with its geodesic distance, the homotopy types of the r-neighborhoods Br(X, L∞(X)) in the Kuratowski embedding of X were studied by Katz in [Kat91].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The values at which the homotopy type changes are closely related to the critical configurations of the diameter functional diam of X which maps a finite subset A of X to diam(A) := maxa,a′∈A dX(a, a′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' When X is the unit circle, such critical values turn out to be exactly one-half of the diameter values of odd regular polygons inscribed in S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Note that 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='13076v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='CO] 30 Jan 2023 2 MIKHAIL KATZ, FACUNDO M´EMOLI, AND QINGSONG WANG the vertex sets of odd regular polygons are exactly the configurations that are local minima of the diameter functional on the space of all finite subsets of S1 equipped with Hausdorff distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' In [Kat89], Katz studied the diameter-extremal configurations on S2 and S3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The latter provide candidates for testing Borsuk’s conjecture in R4 (see below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Recently, Lim, M´emoli, and Okutan [LMO22, Theorem 5] proved that the homotopy types of neighborhoods of the Kuratowski embedding of X are naturally homotopy equivalent to the so-called Vietoris–Rips complexes of X, a central object in the field of applied algebraic topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Therefore, the study of diameter-extremal configurations is also of interest for understanding the properties of the Vietoris-Rips complex of spheres [AA17, AAF18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' In this paper, we extend the investigation of diameter-extremal configurations on spheres started in [Kat89].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' In the S1 case, the critical values of the diameter functional form a convergent sequence with the only accumulation point being π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' It is natural to wonder to what extent a similar behavior is true on S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We consider two canonical families of diameter- extremal configurations on S2 which we call pyramids Ak that contains 2k + 2 points (see Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='1) and stacked-triangles Bk that contains 3k + 1 points (see Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Both families contain infinitely many members with diameters monotonically approaching 2π 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We prove in Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='10 that 2π 3 is in fact the first accumulation point of the set of critical values of the diameter functional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' In Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='17, we prove that the two families Ak and Bk do not exhaust all the possible configurations with similar diameter bounds, and in fact there are infinitely many additional diameter-extremal configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Diameter-extremal configuration with 3k points can be found by performing diameter gradient flow on a certain subset of Bk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' When k is odd, by a parity argument, the resulting configuration cannot be an instance of Ak or Bk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We next devise and implement a computational algorithm (see Algorithm 1) that attempts to produce diameter extremal configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We use this algorithm to find new configu- rations not in Ak or Bk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Furthermore, we found configurations not isometric to the ones produced in the course of proving Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' See Table 1 for a complete list of all the configurations we found in this way with up to 10 points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The list contains 10 previously unknown configurations where 8 of those exhibit Z2 symmetry and the remaining two are asymmetric;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' see Figures 7 and 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The convex hulls of certain diameter-extremal configurations give rise to anti-self-polar polytopes (ASP), for example, the regular tetrahedron and any Ak or Bk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' ASPs are polytopes P characterized by the property that the polar of P equals −P (see Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' ASPs have been studied by Lov´asz in the context of answering a question by Erd¨os and Graham [Lov83] and were also considered in [Kat89, Section 5] in the context of Borsuk’s conjecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Borsuk’s conjecture (see Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='2) for a finite point set X in Rn is equivalent to the property that the chromatic number of the diameter graph (see Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='7) of X is bounded above by n + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We continue to explore the suggestion in [Kat89] to use diameter- extremal configurations on S3 to test Borsuk’s conjecture in R4 (a case that is still open).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' As shown by Lovasz [Lov83], the chromatic number of the diameter graph associated to any ASP in Rn is at least n + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' An ASP for which the inequality is strict would disprove Borsuk’s conjecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' It was conjectured in [Kat89] that the number of edges in the diameter graph of an ASP 4-polytope with v vertices is at least 3v − 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We use Kalai’s inequality from [Kalai94, Sec- tion 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='3] to prove such a bound in Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='21 below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We then formulate conjectures EXTREMAL SPHERICAL POLYTOPES AND BORSUK’S CONJECTURE 3 about the number of edges in the diameter graph for more general subsets on S3, see Conjec- tures 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='22 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' A calculation based on these two conjectures suggests that the maximum possible chromatic number of the diameter graph of a finite subset X ⊆ R4 is 6 instead 5, the number predicted by Borsuk’s conjecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We perform experiments attempting to identify diameter-extremal configurations on the three-dimensional sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The interest in these experiments is twofold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' On the one hand, it is naturally interesting to obtain an understanding of critical configurations beyond the case of S1 and S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' On the other hand, whereas Borsuk’s conjecture is known to be true in dimensions 2 and 3 but false in dimensions 64 and higher, its status for dimension 4 is unknown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Hence, by the above, it is tempting to seek a diameter-extremal configuration X of S3 whose convex hull is an ASP such that its diameter graph has chromatic number at least 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We discovered 65 new configurations on S3 not obtained by the pyramid construction (see 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='1) on a previously known configuration on S2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' see Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' However, all the diameter graphs of these configurations have a chromatic number precisely 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Acknowledgements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' This work was partially supported by BSF #2020124, NSF CCF #1740761, and NSF IIS #1901360.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Pointwise extremal sets Let Sn ⊆ Rn+1 be the unit sphere with its geodesic distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' For a subset Y ⊆ Sn, its diameter diam(Y ) is computed with respect to the geodesic distance on the sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='1 (Taut sets in Sn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' A finite subset Y ⊂ Sn is taut if one of the following equivalent conditions is satisfied: (1) the convex hull of Y contains the origin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' (2) there are non-negative real numbers {ay}y∈Y , not all zero, satisfying � y∈Y ay y = 0, where y denotes the position vector of the point y ∈ Rn+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Jung’s theorem immediately gives the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' If Y ⊂ Sn is taut, then diam(Y ) ≥ arccos � −1 n+1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The following observation will be useful in the sequel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let Y ⊂ Sn be a taut set such that |Y | = n+2 and diam(Y ) < arccos � − 1 n � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Then the dimension of the vector space spanned by Y is equal to n + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' In particular, if {a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' , an+2} is any set of non-negative coefficients such that n+2 � i=1 aiyi = 0, then all ai must be positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Suppose the vector space spanned by all points in Y is of dimension at most n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Then, the set {y1, y2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' , yn+2} must lie on some great sphere Sn−1 ⊆ Sn and it must be taut in Sn−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Then, by Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='2, the set Y must have diameter at least arccos � − 1 n � which contradicts the assumptions on Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' This concludes the first part of the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' For the second part, without loss of generality, we assume that a1 = 0, then the set of vectors 4 MIKHAIL KATZ, FACUNDO M´EMOLI, AND QINGSONG WANG {y2, y3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' , yn+2} is linearly dependent and hence dim(span{y2, y3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' , yn+2}) < n + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The contradiction with the first part establishes the result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' □ Let Y be a subset of a metric space (X, dX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' For any two points y, y′ ∈ Y , we say that y and y′ are comaximal in Y if dX(y, y′) = diam(Y ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' In such a case, y is called a comaximal point with y′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We use the notation comaxY (y) to denote the set of all points in Y which are comaximal with y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' For two points x, x′ ∈ Sn with distance less than π, there is a unique arclength-parametrized geodesic γx,x′ connecting x to x′ such that γx,x′(0) = x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Consider the unit tangent vector ˙γx,x′(0) in the tangent space TxSn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We recall the notion of pointwise extremal subsets in Sn as in [Kat89].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='4 ([Kat89]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let Y ⊆ Sn be a finite subset with no antipodal pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We say that y ∈ Y is held (in place) by Y if the set of vectors ˙γy,y′(0) as y′ runs over comaxY (y) is a taut set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We say that Y is pointwise extremal if every point y ∈ Y is held by Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' When n = 1, it is not difficult to see that, for all integers k ≥ 1, the vertex set of an inscribed regular (2k + 1)-gon is pointwise extremal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The following proposition shows the converse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let Y ⊆ S1 be a pointwise extremal set containing no pair of antipodal points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Then Y is the vertex set of an odd regular polygon inscribed in S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let y ∈ Y and let D = diam(Y ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let RD be the clockwise rotation on S1 by angle D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' As y is held by Y ⊆ S1, the set Y must contain both points in S1 at distance D from y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' In particular, the set Y is invariant under the rotation RD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' As Y is a finite subset, the quotient D 2π must be rational.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let m n be the representation of D 2π in lowest terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Then the orbit of y under the rotation RD forms the vertex set of an inscribed regular n-gon Y ′ ⊆ S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' As Y does not contain any antipodal pairs, n is necessarily odd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Therefore, Y contains the vertex set of a odd regular n-gon Y ′ of the same diameter as Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Then Y must coincide with Y ′ as adding any additional point to the set Y ′ would strictly increase the diameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' □ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The pyramid construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' In this section, we describe a class of pointwise extremal subsets of Sn called pyramids in [Kat89].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' For any pointwise extremal subset Y ⊂ Sn−1, the pyramid construction provides a corresponding pointwise extremal subset in Sn that consists of a rescaled copy of Y together with one extra point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let Sn ⊆ Rn+1 be the unit sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let Z = (0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' , 0, 1) denote the “north pole”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let xn+1 be the last coordinate of Rn+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Then for each plane {xn+1 = a}, a ∈ R that meets Sn at more than one point, the intersection is a rescaled copy of Sn−1 which we call a horizontal section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Each horizontal section contains a suitable rescaled copy of Y which is isometrically embedded into it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The pyramid over Y is the subset of Sn consisting of the north pole Z together with a rescaled copy Y ′ of Y inside some horizontal section such that the diameter of Y ′ equals the distance from Z to the horizontal section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Denote by Pyr(Y ) the pyramid over a pointwise extremal subset Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let x, y ∈ Y be points with dSn−1(x, y) = diam(Y ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let x′, y′ ∈ Pyr(Y ) be points corre- sponding to x, y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Then the triple Z, x′, y′ is the vertex set of a spherical equilateral triangle, with spherical angle ∢ x′Zy′ = diam(Y ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Applying the spherical theorem of cosines to the geodesic triangle △ x′Zy′, we obtain the following relationship: diam(Pyr(Y )) = arcsec � sec � diam(Y ) � − 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' EXTREMAL SPHERICAL POLYTOPES AND BORSUK’S CONJECTURE 5 Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='7 (The Ak family in S2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let k ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We apply the pyramid construction to the regular (2k + 1)-gon on S1 to obtain a pointwise extremal configuration Ak ⊆ S2, consisting of the north pole of S2 together with a suitably rescaled copy of the regular (2k + 1)-gon, so that diam(Ak) = arcsec � sec � 2kπ 2k+1 � − 1 � ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' see Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' In particular, the diameter diam(Ak) tends to 2π 3 as k goes to infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The configuration A2 consists of the north pole and the vertices of a regular pentagon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Construction of k-stacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Following [Kat89], let a β-digon be the convex region on S2 bounded by two meridians (great semicircles joining the north and south poles), with angle β between the two meridians.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Given a β-digon, we now introduce a procedure that will be used to produce a certain type of pointwise extremal set Y ⊆ Sn called a k-stack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The digon procedure is a “walking process” on the digon that takes as input an odd integer 2k + 1 ≥ 3 and outputs a suitable step length d1 > β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We start walking with equal steps from the north pole on alternating sides of the digon, with step length d1 calibrated so as to get exactly to the south pole after 2k + 1 steps;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' see Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let Z ∈ Sn be the north pole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' A regular n-simplex inscribed in the equator Sn−1 ⊂ Sn defines n + 1 meridians passing through the vertices of the simplex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let ℓ ∈ (0, π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The set of points on Sn which are at distance ℓ away from the north pole Z is a rescaled (n−1)-sphere Sn−1 ℓ , namely a horizontal section of Sn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The intersection between Sn−1 ℓ and the set of n + 1 meridians is the vertex set of an inscribed n-simplex in Sn−1 ℓ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let k ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' A k-stacked configuration Y (see Figure 2) consists of the north pole Z together with the union of the vertex sets of k stacked n-simplices each obtained as the intersection of a horizontal (n − 1)-sphere Sn−1 ℓi with the n + 1 meridians.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The distances ℓ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' , ℓk between the horizontal sections and the north pole are determined by the digon procedure as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let d1 be the step length that comes from the digon procedure with input 2k + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Consider the sequence of numbers {dj}2k+1 j=0 where dj is the distance to the north pole of the point obtained after walking j steps in via the digon procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Then, the sequence of numbers {ℓi}1≤i≤k is defined in terms of {di}2k+1 i=0 by setting ℓi = d2i for 1 ≤ i ≤ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Note that d2k = diam(Y ) and d1 = π − d2k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Given an odd integer 2k + 1 ≥ 3, the following system of equations summarizes the computation of di for 1 ≤ i ≤ 2k + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 6 MIKHAIL KATZ, FACUNDO M´EMOLI, AND QINGSONG WANG Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Each value di in Equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='1) is the distance between the point pi shown in this figure and the north pole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' For 1 ≤ i ≤ 2k + 1, the distance between pi and pi+1 is d1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The two conditions in Equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='1) are obtained by requiring p0 to be the north pole and p2k+1 to be the south pole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The conditions in the second line of Equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='1) are obtained by applying the theorem of cosines for the geodesic spherical triangles with vertices {Z, pi, pi+1}, for each 1 ≤ i ≤ 2k + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The third line Equations (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='1) is obtained by symmetry considerations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let βn = arccos( 1 n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The values {di}0≤i≤2k+1 are determined by n and k via the following equations (see Figure 2): (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='1) � � � � � d0 = 0, d2k+1 = π cos(di) cos(di+1) + sin(di) sin(di+1) cos(βn) = cos(d1), 1 ≤ i ≤ 2k di + d2k+1−i = π, 0 ≤ i ≤ 2k + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let d1 be the output of the digon procedure with input 2k + 1 on a digon of angle β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' If we perform the “walking process” on a digon of angle π − β with complementary step length π − d1, we will eventually get close to the south pole (but will not reach it) and then will start walking back to the north pole and reach it after 2k + 1 steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' If we add an edge between the points that we traveled during the “walking process”, we obtain the diameter graph (see Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='7) of a regular 2k + 1-gon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='9 (The Bk family in S2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' When n = 2, for each k, we denote the stacks that result from the digon procedure by Bk, which consists of the vertices of k stacked triangles (2-simplices) together with the north pole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Note that B1 coincides with the configuration A1 from Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' By construction, diam(Bk) = π − d1 < π − arccos( 1 2) = 2π 3 and limk→∞ diam(Bk) = 2π 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' EXTREMAL SPHERICAL POLYTOPES AND BORSUK’S CONJECTURE 7 Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The configuration B2 that consists of the north pole and vertices of two stacked triangles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The green dash lines are meridians;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' the red dot is the north pole, and points of the same color are of the same distance to the north pole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='10 (The Tk family in S3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let n = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' For each k, we denote the stacks that result from the digon procedure by Tk, which consists of the vertices of k stacked tetrahedra together with the north pole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Minimal sets on S2 with diameter below the first accumulation critical value Let d > 0 and let D(S2, d) be the set of all finite subsets Y ⊂ S2 with diam(Y ) < d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' As each finite subset on S2 is closed, the Hausdorff distance dH is a metric on D(S2, d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='1 (Diameter-extremal sets in D(S2, d) [Kat89]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' A subset Y ∈ D(S2, d) is called diameter-extremal for the diameter functional if there is a little-o function such that diam(Y ) ≤ diam(Y ′) + o( dH(Y, Y ′)) for all Y ′ ⊂ S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' In other words, we have lim dH(Y ′,Y )→0 diam(Y ′) − diam(Y ) dH(Y ′, Y ) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' An n-point set Y is diameter-extremal if and only if at the corresponding point in the configuration space (S2)×n, the gradients of the distances between pairs of points at maximal distance form a taut set (see further in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='3 ([Kat89, Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' A diameter-extremal set Y ∈ D(S2, 2π 3 ) is necessarily pointwise extremal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='4 (Minimal set in D(S2, d) [Kat89]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' A subset Y ∈ D(S2, d) is called a minimal set if there is some δ > 0 such that diam(Y ) ≤ diam(Y ′) for all finite subsets Y ′ with dH(Y, Y ′) ≤ δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Clearly, every minimal set is diameter-extremal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' In fact, there is a converse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='5 ( [Kat89, Theorem 2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Every diameter-extremal set in D(S2, 2π 3 ) is a minimal set on S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' By a mountain-pass argument, one obtains the following consequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='6 ([Kat89, Corollary 2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' There is exactly one (up to congruence) minimal set in each connected component of D(S2, 2π 3 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 8 MIKHAIL KATZ, FACUNDO M´EMOLI, AND QINGSONG WANG 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Configuration space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We will now estimate the number of such connected compo- nents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We use the notation k� diam≤d S2 to denote the set of all tuples (y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' , yk) in �k S2 such that the diameter of its associated set {y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' , yk} is less than or equal to d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Note that, for any ϵ > 0, we have a natural continuous map k � diam≤d S2 −→ D(S2, d + ϵ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' By realizing k� diam≤d S2 as a closed semi-algebraic set, we obtain the following upper bound on the number of connected components in k� diam≤d S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let k ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We set sk = 2k+ k(k+1) 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Then, for every d > 0, the number b0(k, d) of connected components of k� diam≤d S2 satisfies b0(k, d) ≤ 2sk(4sk − 1)3k−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We will first describe the set k� diam≤d S2 as a closed basic semi-algebraic set in R3k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let xi,j, where 1 ≤ i ≤ k and 1 ≤ j ≤ 3, denote the standard coordinates in R3k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Then the set k� diam≤d S2 is characterized by the following conditions: � x2 i,1 + x2 i,2 + x2 i,3 = 1 for all 1 ≤ i ≤ k, (xi,1 − xi′,1)2 + (xi,2 − xi′,2)2 + (xi,3 − xi′,3)2 ≤ d2 for all 1 ≤ i < i′ ≤ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Therefore the set k� diam≤d S2 is a basic semi-algebraic set given by sk = 2k + k(k+1) 2 non-strict inequalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Then Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='5 implies that b0(k, d) ≤ 1 2(2sk + 2)(2sk + 1)3k−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' □ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Finiteness results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='1 and Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='3 in [Kat89] imply the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='8 ([Kat89]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let 0 < d < 2π 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let Y ∈ D(S2, d) be a pointwise extremal set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Then for any pair of distinct points y, y′ in Y , the distance dS2(y, y′) is at least arccos � 2 cos2(d) cos2(d/2) − 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' By a packing argument on the sphere, we obtain the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' For each ϵ > 0, there is a positive integer N(ϵ) such that every pointwise extremal subset Y of diameter less than 2π 3 − ϵ contains fewer than N(ϵ) points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' For each 0 < ϵ < 2π 3 , there are only finitely many diameter-extremal sets in D(S2, 2π 3 − ϵ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' In particular, 2π 3 is the first accumulation point of the critical values of the diameter functional of S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' EXTREMAL SPHERICAL POLYTOPES AND BORSUK’S CONJECTURE 9 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let dϵ = 2π 3 − ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' By Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='5, it suffices to show that there are only finitely many minimal sets in D(S2, dϵ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' By Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='9, there is some N such that every pointwise extremal set in D(S2, dϵ) contains no more than N points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Therefore the image of the continuous map φ φ : N � diam≤dϵ S2 −→ D(S2, 2π 3 ) contains all pointwise extremal configurations with diameter less than or equal to dϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='3, the image of φ (in particular) contains all minimal sets with diameter not exceeding dϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let Cϵ be the number of connected components which contain a minimal set with diameter no more than dϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='6, the number of minimal sets in D(S2, dϵ) is at most Cϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' As the image of φ contains all minimal sets with diameter no more than dϵ, the number Cϵ is bounded by the rank of the map φ∗ : H0 � N � diam≤dϵ S2 � −→ H0 � D(S2, 2π 3 ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The claim now follows by invoking the upper bound on the dimension of H0 � N� diam≤dϵ S2 � from Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' □ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' A labeling strategy for the points in Bk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Recall that Bk ⊆ S2 consists of the north pole and the vertices of k stacked triangles, and that the vertices of the stacked triangles are distributed along three meridians.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We label the north pole as Z, then label the vertices of the i-th triangle (counting from the north pole) by Pi, Qi, Ri in such a way that all the Pi, 1 ≤ i ≤ k are on a common longitude and similarly for all Qi, 1 ≤ i ≤ k and Ri, 1 ≤ i ≤ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The subset dEBk is obtained by removing the points with indexes in E from Bk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' A set Y ⊆ S2 is separable if for each pair of points x, y ∈ Y there are two other points z, w ∈ Y such that the 4-tuple {x, y, z, w} is taut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='13 ([Kat89, Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' A pointwise extremal subset Y ⊂ S2 with diam(Y ) < 2π 3 is necessarily separable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The proof of the above lemma in [Kat89] gives the following stronger result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let Y ⊂ S2 be a subset with diam(Y ) < 2π 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Suppose x ∈ Y is held by Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Then for any other point y ∈ Y , there exist z, w ∈ Y such that the four-point set {x, y, z, w} is taut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We will now analyze variations of subsets which are continuous with respect to the Haus- dorff distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let {Yt, t ∈ [0, 1]} be a continuous family of subsets of S2 with at most 4 points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Suppose the following two conditions hold: the set Y0 is taut, Yt ∈ D(S2, 2π 3 ) for every t ∈ [0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 10 MIKHAIL KATZ, FACUNDO M´EMOLI, AND QINGSONG WANG Then Yt is taut for each t ∈ [0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' As the set Y0 is taut and diam(Y ) < 2π 3 , Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='3 implies that the convex hull H0 of Y0 is a tetrahedron and that the origin 0 is in interior of H0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' For each t ∈ [0, 1] let Ht be the convex hull of the set Yt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' To show that each set Yt is taut, it suffices to show that the origin 0 stays in the interior of Ht for all t ∈ [0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Suppose the contrary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let t0 be the supremum of t such that 0 is in the interior of Ht for all smaller values of t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Either Ht0 is nondegenerate and then 0 must belong to one of its (triangular) faces, or it is degenerate, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=', lies in a plane through the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' In either case, we obtain a taut subset of the circle given by the intersection of the plane with the sphere, and can apply Jung’s theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Namely, by Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='2 we obtain diam(Yt0) ≥ 2π 3 , contradicting the hypothesis Yt0 ∈ D(S2, 2π 3 ) and proving the lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' □ Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let Yt, t ∈ [0, 1] be a path in D(S2, 2π 3 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' If a certain 4-tuple in Y0 is taut, then it continues to be taut for all t ∈ [0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' There exist infinitely many (up to congruence) pointwise extremal sets in D(S2, 2π 3 ) that are not contained in the family Ak or Bk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Since each connected component contains a (unique) minimal set, it suffices to show that for each k, the configuration dPkBk is separable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='14, we can separate most pairs of points from dPkBk except for a pair of points from the triple of points at maximal distance from Pk, namely the points Z, Q1, and R1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let us check that such pairs don’t coalesce, either.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' This is immediate from the fact that if we remove all layers except the first and the k-th, the remaining configuration is in the connected component in D(S2, 2π 3 ) of the 7-point minimal set B2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Thus, by Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='16, it suffices to check that if we remove P2 from B2, no remaining points coalesce.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' This can be checked directly, and also follows from the fact that the diameter flow applied to the 6-point configuration dP2B2 produces the 6-point minimal set A2 (see Section 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' □ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Anti-self-polar polytopes In this paper, we adopt the following restricted definition of a polytope: a (convex) polytope will be the convex hull of any finite set of points in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The affine hull aff(S) of a set S ⊆ Rn is aff(S) = � k � i=1 αixi ����� k > 0, xi ∈ S, αi ∈ R, k � i=1 αi = 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We now give the formal definition of a face of a polytope following [Zie12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='2 ([Zie12, Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let P ⊆ Rd be a convex polytope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' A linear inequality ⟨c, x⟩ ≤ c0 is valid for P if it is satisfied for all points x ∈ P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' A face of P is any set of the form F = P ∩ � x ∈ Rd : ⟨c, x⟩ = c0 � where ⟨c, x⟩ ≤ c0 is a valid inequality for P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' EXTREMAL SPHERICAL POLYTOPES AND BORSUK’S CONJECTURE 11 The dimension of a polytope P is defined to be the dimension of its affine hull aff(P) (regarded as an affine space).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' A 3-dimensional polytope is a polyhedron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The codimension- one faces of a polytope P are called facets;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' the codimension-two faces are called ridges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' If each face of P is a simplex, then P is called a simplicial polytope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We will use fi(P) to denote the number of i-faces of the polytope P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' When there is no risk of confusion, we will denote fi(P) by just fi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' For a n-dimensional polytope, the vector (f0, f1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' , fn−1) is called the f-vector of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' ASP polytopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' In [Lov83], Lov´asz introduced the following type of polytopes which we will refer to as anti-self-polar (ASP) polytopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='1 Our terminology will be justified in Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='3 (Anti-self-polar polytopes).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let P ⊆ Rn be a n-dimensional polytope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We say that P is anti-self-polar (ASP) if the following three conditions hold: (1) P is inscribed in the unit sphere Sn−1 ⊆ Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' (2) P is circumscribed around a sphere centered at the origin with radius s for some 0 < s < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' (3) There is a bijection σ between vertices and facets of P such that if v is any vertex then the facet σ(v) is orthogonal to the vector v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let P ⊂ Rn be a polytope containing the origin 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let Sn−1 r (0) be the sphere centered at 0 ∈ Rn with radius r > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The polar body of P with respect to the sphere Sn−1 r (0) is defined to be the set polarr(P) = {x ∈ Rn| ⟨x, y⟩ ≤ r2 for all y ∈ P}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' As shown in [Hor21], the condition for an ASP polytope in Rn can be restated using the terminology of polar bodies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' In terms of our definition of polarity, if P is an ASP polytope, then there exists some r such that the following relation holds;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' see [Hor21, Lemma 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' polarr(P) = −P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The polar body description shows that for each 0 ≤ i ≤ n − 1, the bijection σ in condition (3) can be extended to a bijection between the set of i-dimensional faces and the set of (n − i − 1)-dimensional faces;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' see [Hor21, Lemma 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='5 ([Kat89, Remark after Theorem 1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let Y ⊂ S2 be a pointwise extremal subset with diam(Y ) < 2π 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Then the convex hull of Y is an ASP polyhedron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The result above no longer holds if the restriction on the diameter is removed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' A counterexample is given by an 8-point configuration Y ⊆ S2 consisting of the vertices of an antiprism over a square (see Figure 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' If the diameter of Y is exactly attained by the diagonals of the two squares and by the pairs that consist of a vertex of one square and one of the two farthest vertices of the other square, then Y is pointwise extremal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' However, the convex hull of Y is not ASP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Indeed, note that the top square is a facet of the convex hull of Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' If the convex hull of Y were ASP, then there would be a vertex y0 ∈ Y such that the distance from y0 to each vertex of the top square would equal diam(Y ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' But, our construction of Y does not satisfy this.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 1Lov´asz [Lov83] and Horv`ath[Hor21] use the terminology “strongly self-dual polytopes”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 12 MIKHAIL KATZ, FACUNDO M´EMOLI, AND QINGSONG WANG Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The antiprism on a square.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let Y ⊆ Rn be a finite subset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The diameter graph G(Y ) of Y is defined to be the graph with vertex set V (G) = Y and two vertices y, y′ in G are connected if and only if y and y′ are comaximal in Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Given a polytope P, we will refer to the diameter graph of the vertex set of P simply as the diameter graph of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We denote the diameter graph of P by G(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The chromatic number χ(G) of a graph G is the smallest number of colors needed to color the vertices so that no two adjacent vertices share the same color.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The following property of the diameter graph G(P) of an ASP polytope P follows from [Lov83, Lemma 2 and Lemma 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Recall that σ denotes the bijection between the vertex set and the set of facets of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' In [Lov83, Lemma 1], it is shown that for any two vertices v, v′ of P, the condition v ∈ σ(v′) is equivalent to v′ ∈ σ(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let P be an ASP polytope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Two vertices v, v′ in G(P) are connected by an edge in G(P) if and only if v ∈ σ(v′), when viewed as vertices in P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='10 ([Lov83, Theorem 2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The diameter graph G(P) of an n-dimensional ASP polytope P ⊆ Rn satisfies χ(G(P)) ≥ n + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The proof of the theorem is discussed in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The chromatic number of a diameter graph G(Y ) of a subset Y ⊂ Rn is closely related to the following conjecture of Borsuk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Borsuk’s conjecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Conjecture 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='11 (Borsuk’s conjecture).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let Y be a bounded subset of Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Then there is a partition of Y into n + 1 sets each of which has a smaller diameter than Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' For finite subsets, Borsuk’s conjecture has the following equivalent form in terms of diam- eter graphs: For every finite bounded subset Y ⊆ Rn, the chromatic number of the diam- eter graph G(Y ) of Y is no greater than n + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' To see the above equivalence, a partition {Y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' , Yk} of Y is equivalent to a coloring of Y by requiring that two points are of the same color if and only if they both belong to EXTREMAL SPHERICAL POLYTOPES AND BORSUK’S CONJECTURE 13 some Yi, 1 ≤ i ≤ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Therefore, since Y is a finite set, the condition that the diameter of each subset Yi is less than the diameter of Y is equivalent to requiring that the coloring associated to the partition {Y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' , Yk} has the property that no two adjacent vertices in the diameter graph G(Y ) share the same color.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Borsuk’s conjecture holds when n = 2 (Borsuk [Bor33]) and n = 3 (Perkal [Per47]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The general conjecture was disproved by Khan and Kalai [KK93].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The lowest dimensional coun- terexample currently known was constructed by Jenrich and Brouwer (and based on a con- struction by Bondarenko) in dimension 64 [JB14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' For additional information on the histori- cal developments on the construction of counterexamples to Borsuk’s conjecture, see [Rai13, Section 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let Y ⊂ Sn−1 be a finite subset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Given a regular geodesic n + 1-simplex ∆geodesic n+1 , Sn−1 can be partitioned into n + 1 connected parts {X1, X2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' , Xn+1} where each Xi contains the interior of one of the faces of ∆geodesic n+1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Therefore, by coloring points of Y according to which partition set Xi the point belongs to, we obtain a proper coloring of the diameter graph of Y provided that the diameter diam(Y ) diameter of Y is greater than ηn−1, the diameter of a face of ∆geodesic n+1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The above coloring strategy was first described in [Lov83, Section 0].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Though notice that [Lov83] made a mistake in computing the exact value of ηn−1 [Rai12, Rai13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The correct values of ηn−1 first appeared in [San46] and reproduced in the context of ASP polytopes in [Hor21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' By Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='10 and the fact that Borsuk’s conjecture is true for n = 3, the chromatic number χ(G(P)) of an ASP polyhedron P ⊆ R3 equals 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' In Figures 7 and 8, we display 4-colorings of the diameter graphs of all the ASP polyhedra in Tables 5 and 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Borsuk’s conjecture is still open for 4 ≤ n ≤ 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='10 suggests that ASP polytopes are a natural source of potential counterexamples to Borsuk’s conjecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Additionally, by Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='5, pointwise extremal configurations are closely related to ASP polytopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' In Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='2, we present some pointwise extremal subsets on S3 obtained through computer experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' However, the pointwise extremal subsets that we have found so far all have chromatic number 5;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Proof of Lovasz’s theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='10 was proved in [Lov83] by analyzing the neighborhood complex of the diameter graph of ASP polytopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='14 (Neighborhood complex).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let G be a finite graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The neighborhood complex N(G) is the simplicial complex with vertex set V (G) such that a subset A ⊆ V (G) forms a simplex if and only if the points of A have a neighbor in common.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' In [Lov78], Lov´asz shows the following lower bound of the chromatic number of a graph with respect to the connectivity of its neighborhood complex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Recall a topological space X is k-connected if its homotopy groups are trivial up to degree k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='15 ([Lov78]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let G be a graph and suppose that N(G) is k-connected (k ≥ 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Then χ(G) ≥ k + 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='16 ([Lov83, Lemma 4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let P be an ASP polytope and G(P) be its diameter graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Then N(G(P)) is homotopy equivalent to the boundary of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' By Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='16, N(G) is homotopy equivalent to the boundary of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 14 MIKHAIL KATZ, FACUNDO M´EMOLI, AND QINGSONG WANG As P is a (convex) polytope, the boundary of P is homeomorphic to Sn−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Hence N(G) is homotopy equivalent to Sn−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Therefore, N(G) is (n − 2) connected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' By Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='15, χ(G) ≥ n + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' □ Let d ≥ 2 and n ≥ 1 be integers and let e(d, n) be the maximum possible number of edges in the diameter graph of a subset of Rd with n points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' When d = 2, it is shown in [HP34] that e(2, n) = n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' This fact leads to one proof of Borsuk’s conjecture for finite subsets Y of R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' When d = 3, it was conjectured by V´azsonyi that e(3, n) = 2n − 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' see [Erd46].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The V´azsonyi’s conjecture was proved independently by Gr¨unbaum [Gr¨u56], Heppes [Hep56] and Straszewicz [Str57].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' As mentioned in Heppes [Hep56], V´azsonyi’s conjecture implies that Borsuk’s conjecture is true for finite subsets in R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We have already seen in Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='10 that the diameter graph of an ASP polytope has high chromatic number, suggesting a possible approach to seeking higher-dimensional counterexamples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We now introduce a set of enumerative invariants fij(P) of a polytope P which will be used below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Informally, for i < j, fij(P) counts the number of pairs “i-face contained in a j-face” in the polytope P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Precisely, fij(P) := ♯{(φi, φj) | φi is a i-face of P, φj is a j-face of P, and φi ⊆ φj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='} When there is no risk of confusion, we will simply use fij to denote fij(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Thus f01 is the number of pairs “vertex contained in an edge”, namely just twice the number f1 of edges in P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let P be an anti-self-polar polytope of dimension d + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let e(G(P)) be the number of edges in the graph G(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Then f0d(P) = 2e(G(P)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let V be the set of vertices of P and let W be the set of faces in P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Recall that σ denotes the bijection between V and the set of facets of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' By Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='9, we have 2e(G(P)) = � v∈V f0(σ(v)) = � φd⊂W f0(φd) = f0d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The second equality above follows from the definition of σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' □ Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Every ASP polyhedron P ⊆ R3 satisfies e(G(P)) = 2f0 − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' By Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='17, we have 2e(G(P)) = f02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Furthermore by duality we have f01 = f12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' This enables us to give a possibly generalizable proof as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Note that, each face has as many vertices as edges and therefore f02 = f12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' By duality, f12 = f01 which is twice the number of edges, namely 2f1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Thus the number of maximal distances is the same as the number of edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Meanwhile by the formula for the Euler characteristic, for an anti-self-polar polyhedron we have f1 = 2f0 − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Altogether, we have f02 = f12 = f01 = 2f1 = 2(2f0 − 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Thus the number of maximal distances is also 2f0 − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' □ In fact, it is shown in [Kat89] that every pointwise extremal set in S2 with diameter less than 2π 3 exhibits the maximum number of possible edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='19 ([Kat89, Theorem 1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Suppose Y ⊂ S2 is a pointwise extremal set with N = |Y | and diam(Y ) < 2π 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Then the number of edges in the diameter graph G(Y ) equals 2N − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' EXTREMAL SPHERICAL POLYTOPES AND BORSUK’S CONJECTURE 15 As noted in [Kat89, page 118], the example of the antiprism on a square constructed in Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='13 shows that the above result is no longer true if we remove the diameter constraint: the diameter graph of the antiprism on a square has 8 vertices but only 12 edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 4-dimensional polytopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Consider the V´azsonyi’s problem in R4, that is, for a fixed n, determine the maximal possible number of edges e(4, n) amongst the diameter graphs of all possible n point sets in R4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let m be a positive integer and let Y := A ∪ B ⊂ S3 be a subset consisting of 2m points constructed as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The set A consists of m points on an arc of length less than π 2 on a great circle whereas the (disjoint) set B consists of m points also on an arc of length less than π 2 on an orthogonal great circle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Then each pair of points a ∈ A, b ∈ B is comaximal in Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Thus e(4, n) is at least quadratic in n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' It is shown in [Erd67] that e(4, n) exactly has quadratic growth rate in n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' For an anti-self-polar polytope P ⊆ R4, we prove the following lower bound on the number of edges in the diameter graph G(P), originally conjectured in [Kat89, Section 5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let P ⊆ R4 be a 4-dimensional anti-self-polar polytope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Then the number of edges e(G(P)) in the diameter graph G(P) is at least 3f0(P) − 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' By Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='17, the assertion is equivalent to the bound f03(P) ≥ 6f0(P) − 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' For each facet φ of P, let aj φ be the number of j-gons occurring as faces of φ, and let aj denote the total number of j-gons occurring as faces of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Kalai [Kalai94, Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='3] proved that every 4-dimensional polytope satisfies g2 ≥ 0 or equivalently a4 + 2a5 + · · · ≥ 4f0(P) − f1(P) − 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let φ run through all the facets of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' By Euler’s formula, we have f03(P) = � φ f0(φ) = � φ 2 + f1(φ) − f2(φ) = � φ 2 + 1 2(3a3 φ + 4a4 φ + 5a5 φ + · · · ) − f2(φ) = � φ 2 + 1 2f2(φ) + 1 2(a4 φ + 2a5 φ + · · · ) = 2f3(P) + f2(P) + 1 2 � φ (a4 φ + 2a5 φ + · · · ) = 2f3(P) + f2(P) + (a4 + 2a5 + · · · ) ≥ 2f3(P) + f2(P) + 4f0(P) − f1(P) − 10 = (2f3(P) + 4f0(P)) + (f2(P) − f1(P)) − 10 = 6f0(P) − 10 by duality, as required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' □ The above results suggest formulating the following conjectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 16 MIKHAIL KATZ, FACUNDO M´EMOLI, AND QINGSONG WANG Conjecture 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Every ASP polytope P ⊆ R4 satisfies e(G(P)) = 3f0(P) − 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' In Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='2, we report 65 configurations that we generate through numerical experi- ments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Each of those configurations confirms the above conjecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Conjecture 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Every subset X ⊆ S3 with diam(X) > π 2 satisfies e(G(X)) ≤ 3|X| − 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Assuming these conjectures and by an argument similar to the case of the S2 discussed on page 14, one can show that the chromatic number of the diameter graph of any set X in S3 with its diameter greater than π 2 would be at most 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Indeed, Conjecture 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='23 implies that one can always choose a point x0 ∈ X comaximal with at most 5 other points, by the pigeonhole principle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Thus, if X − {x0} can be colored with 6 colors, then X can be so colored, also, by using the color not used up by any of its 5 (or fewer) comaximal points, and we conclude by induction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The fact that this calculation produces the number 6 instead of 5 would provide weak evidence toward the possibility that the Borsuk number of R4 might be the former rather than the latter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Implementation of the diameter gradient flow This section describes the implementation of the diameter gradient flow on spheres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Given a finite subset Y of Sn, we first test whether every point in Y is held.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' If there is a point y that is not held by Y , we then move y in the direction that points toward the center of the minimum bounding sphere of the tangent vectors determined by points in comaxY (y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We continue this process until every point in Y is held.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' In other words the point y is updated to a point yt = y0+tv0 ||y0+tv0|| where t > 0 is a parameter value determined through the Armijo rule [Arm66], and v0 is the unit tangent vector at y that points toward the center of the minimum EXTREMAL SPHERICAL POLYTOPES AND BORSUK’S CONJECTURE 17 bounding sphere of the set {˙γy,y′ | y′ ∈ comaxyY }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The pseudocode of the algorithm is shown below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Algorithm 1: DiameterGradientFlow Input: An initial finite subset Y on unit sphere Sn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Parameters: β, η ∈ (0, 1) for determing Armijo Rule stepsa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Output: The extremal configurations obtained under the diameter gradient flow with initial condition Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 1 Function IsHeld(y, Y ): 2 E ← comaxY (y) 3 Ty(E) ← {˙γy,y′ for y′ ∈ comaxY (y)} 4 if 0 in the convex hull of Ty(E) then 5 return True 6 else 7 return False 8 end if 9 10 Function Main(Y , β, η): 11 /* Initialize convergence tag / 12 tag = False 13 while tag == False do 14 for y0 ∈ Y do 15 if IsHeld(y0, Y ) then 16 tag == True 17 else 18 E ← comaxY (y) 19 Ty0(E) ← {˙γy,y′} for y′ ∈ E} 20 v0 ← center of the minimum bounding sphere of Ty(E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 21 /* Determine the step size tk > 0 using Armijo Rule / 22 tk = maxl∈N0 βl s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' diam � Y \\{y0} ∪ � y0+tkv0 ||y0+tkv0|| �� ≤ diam(Y ) − βlη 23 Y ← Y \\{y0} ∪ � y0+tkv0 ||y0+tkv0|| � 24 tag == False 25 break 26 end if 27 end for 28 end while 29 return asee [Arm66] 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Computational results In this section, we describe our computational results regarding pointwise extremal config- urations on S2 and S3 using the Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' In most of our experiments, we set parameters β = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='5, η = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='001 and use the Python package MINIBALL([Dev21]) for finding the optimal direction for decreasing the diameter by moving a single point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 18 MIKHAIL KATZ, FACUNDO M´EMOLI, AND QINGSONG WANG 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Pointwise extremal configurations on S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' In this section, we present the compu- tational results from running the diameter gradient flow Algorithm 1 with initial sets, which are obtained by removing up to six points from Bk (Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='9) with k ≤ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' In total, we obtain 54 configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We present in Table 1 the configurations with up to 10 points2 that we found upon convergence of the gradient flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Shape v f r t Diameter Symmetry Group Initial Set A1(= B1) 4 3 4 4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='91064 S3 dZB2 A2 6 5 1 5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='03446 D5 dP2B2 B2 7 4 3 4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='07654 S3 dZB3 C1 8 5 1 4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='08707 Z2 d{Q1,P3}B3 A3 8 7 1 7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='06459 D7 d{P1,P3}B3 C2 9 5 1 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='09335 Z2 d{P1,R1,Q3,Q4}B4 C3 9 5 1 4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='09079 Z2 dP3B3 C4 9 6 1 5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='09016 Z2 dP1B3 B3 10 4 6 4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='09303 S3 dZB4 D1 10 5 1 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='09409 {e} d{P1,Q1,P2,Q4,R4,R5}B5 C5 10 5 1 4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='09317 Z2 d{P1,R3,Q4}B4 C6 10 5 2 4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='09356 Z2 d{P1,Q1}B4 C7 10 5 3 4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='09240 Z2 d{P1,R3,P4}B4 D2 10 6 1 4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='09360 {e} d{P1,R3,R4}B4 C8 10 7 1 6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='09174 Z2 d{P1,P3,Q4}B4 A4 10 9 1 9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='07654 D9 d{P1,P3,P4}B4 Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Pointwise extremal configurations on S2 with up to v = 10 vertices, sorted first by v, then by f (maximal number of edges in a face), then by r (number of faces with a maximal number of edges), then by t (number of triangles in the configuration’s diameter graph).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' For each of the 10 pointwise extremal configurations that we found, in the last column we list one initial set which leads to that configuration under the diameter gradient flow (a given pointwise extremal configuration may be reached from different initial sets).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 2An interactive visualization of the table can be found through the link: https://ndag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='io/ anti-self-dual-polyhedra/ EXTREMAL SPHERICAL POLYTOPES AND BORSUK’S CONJECTURE 19 (a) C1 (b) C2 (c) C3 (d) C4 (e) C5 (f) C6 (g) C7 (h) C8 Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Eight Z2 symmetric pointwise extremal configurations with at most 10 points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' (a) D1 (b) D2 Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Two asymmetric pointwise extremal configurations with 10 points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 20 MIKHAIL KATZ, FACUNDO M´EMOLI, AND QINGSONG WANG (a) C1 (b) C2 (c) C3 (d) C4 (e) C5 (f) C6 (g) C7 (h) C8 Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Diameter graphs of Z2 symmetric pointwise extremal configura- tions with less than 10 with a minimal coloring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Note that all diameter graphs above can be colored with four colors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' (a) D1 (b) D2 Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The diameter graph of the two asymmetric pointwise extremal configurations D1 and D2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Pointwise extremal configurations on S3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' In this section we present some compu- tational results on pointwise extremal configurations on S3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Recall that Tk ⊆ S3 denotes the k-stack;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' The Tk consists of the north pole and the vertices of k stacked 3-simplices, for a total of 4k + 1 points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We use similar indexing for the points in Tk, that is, the north pole is denoted Z, then we label the verticees of i-th tetrahedron (counting from the north pole) by Pi, Qi, Ri, Si in such a way that all the Pi, 1 ≤ i ≤ k are on a common longitude and similarly for all Qi, 1 ≤ i ≤ k, Ri, 1 ≤ i ≤ k, and Si, 1 ≤ i ≤ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Applying the diameter gradient flow to the initial sets of the diameter gradient flow be the subsets of T1, T2, T3, T4 with at most four points removed, one obtains at least 65 distinct pointwise-extremal configurations which are not pyramids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 3 3A comprehensive table containing statistics for the 65 configurations, similar to Table 1, can be accessed through the following link: https://ndag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='io/anti-self-dual-polyhedra/table.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='html EXTREMAL SPHERICAL POLYTOPES AND BORSUK’S CONJECTURE 21 Through exact calculation via the Python package NetworkX([HSS]), we find that the diameter graph of each of these 65 configurations has chromatic number equal to 5 and also satisfies e = 3v − 5 where e and v are the number of edges and the number of vertices in the diameter graph, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Semi-algebraic sets Let k ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let R[x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' , xk] be the k-dimensional ring of polynomials with real coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' We now introduce the notion of semi-algebraic subset following [BCR13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Definition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='1 ([BCR13, Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Let {ri}s i=1 be a set of positive integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' A semi-algebraic subset of Rn is a subset of the form s� i=1 ri � j=1 {x ∈ Rn | fi,j ∗i,j 0} , where fi,j ∈ R [X1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' , Xn] and the operation ∗i,j is either < or =, for i = 1, , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' , s and j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' , ri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Definition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' A collection A of subsets of a set X is called an algebra of sets if A contains the empty set and is closed under finite union, finite intersection and under taking complements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Semi-algebraic subsets of Rn form the smallest algebra of sets that contains all sets of the form {x ∈ Rn | f(x) > 0} , where f ∈ R [X1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' , Xn] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Definition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='4 ([BCR13, Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' A basic open semi-algebraic subset of Rn is a set of the form {x ∈ Rn | f1(x) > 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' , fs(x) > 0} where f1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' , fs ∈ R [X1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' , Xn].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' A basic closed semi-algebraic subset of Rn is a set of the form {x ∈ Rn | f1(x) ≥ 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' , fs(x) ≥ 0} where f1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' , fs ∈ R [X1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' , Xn] By applying Morse theory, Milnor [Mil64] obtained the following bound on the number of Betti numbers of a closed basic semi-algebraic set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='5 ([Mil64, Theorem 3]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' If X ⊂ Rn is a basic closed semi-algebraic subset defined by p polynomial inequalities f1 ≥ 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' , fp ≥ 0 of degree ≤ d, then the sum of the Betti numbers of X is at most 1 2(dp + 2)(dp + 1)n−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' References [AA17] Michal Adamaszek and Henry Adams, The Vietoris–Rips complexes of a circle, Pacific Journal of Mathematics 290.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='1 (2017) 1–40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' [AAF18] Michal Adamaszek, Henry Adams and Florian Frick, Metric reconstruction via optimal transport, SIAM Journal on Applied Algebra and Geometry 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='4 (2018) 597–619.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' [Arm66] Larry Armijo, Minimization of functions having lipschitz continuous first partial derivatives, Pacific Journal of mathematics 16 (1966), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 1, 1–3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' [BCR13] Jacek Bochnak, Michel Coste, and Marie-Fran¸coise Roy, Real algebraic geometry, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 36, Springer Science & Business Media, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 22 MIKHAIL KATZ, FACUNDO M´EMOLI, AND QINGSONG WANG [BHMH18] Logan Beal, Daniel Hill, R Martin, and John Hedengren, Gekko optimization suite, Processes 6 (2018), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 8, 106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' [Bor33] Karol Borsuk, Drei s¨atze ¨uber die n-dimensionale euklidische sph¨are, Fundamenta Mathematicae 20 (1933), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 1, 177–190.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' [Bro12] Arne Brondsted, An introduction to convex polytopes, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 90, Springer Science & Business Media, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' [Dev21] Alexandre Devert, Miniball, https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='com/marmakoide/miniball, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' [Erd46] Paul Erd¨os, On sets of distances of n points, The American Mathematical Monthly 53 (1946), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 5, 248–250.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' [Erd67] P Erd¨os, On some applications of graph theory to geometry, Canadian Journal of Mathematics 19 (1967), 968–971.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' [Gr¨u56] B Gr¨unbaum, A proof of v´azsonyi’s conjecture, Bull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Council Israel, Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' A 6 (1956), 77–78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' [Hep56] A Heppes, Beweis einer vermutung von a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' V´azsonyi, Acta Mathematica Hungarica 7 (1956), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 3-4, 463–466.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' [Hor21] ´Akos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' G Horv´ath, Strongly self-dual polytopes and distance graphs in the unit sphere, Acta Mathe- matica Hungarica 163 (2021), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 2, 640–651.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' [HP34] Heinz Hopf and Erika Pannwitz, Aufgabe nr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 167, Jahresbericht Deutsch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='-Verein 43 (1934), 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' [HSS] Aric A Hagberg, Daniel A Schult, and Pieter J Swart, Exploring Network Structure, Dynamics, and Function using NetworkX, Proceedings of the 7th Python in Science Conference (SciPy 2008), 11–16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' [JB14] Thomas Jenrich and Andries E Brouwer, A 64-dimensional counterexample to borsuk’s conjecture, The Electronic Journal of Combinatorics (2014), P4–29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' [Kat89] Mikhail Katz, Diameter-extremal subsets of spheres, Discrete & Computational Geometry 4 (1989), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 2, 117–137.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' [Kat91] , On neighborhoods of the kuratowski imbedding beyond the first extremum of the diameter functional, Fundamenta Mathematicae 137 (1991), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 3, 161–175.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' [KK93] Jeff Kahn and Gil Kalai, A counterexample to Borsuk’s conjecture, Bulletin of the American Math- ematical Society 29 (1993), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 1, 60–62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' [LMO22] Sunhyuk Lim, Facundo M´emoli, and Osman B Okutan, Vietoris–Rips persistent homology, injec- tive metric spaces, and the filling radius, Accepted to appear in Algebraic & Geometric Topology (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' [Kalai94] Gil Kalai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Some aspects of the combinatorial theory of convex polytopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Polytopes: abstract, convex and computational (Scarborough, ON, 1993), 205–229, NATO Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' C: Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=', 440, Kluwer, Dordrecht, 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' [Lov78] L´aszl´o Lov´asz, Kneser’s conjecture, chromatic number, and homotopy, Journal of Combinatorial Theory, Series A 25 (1978), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 3, 319–324.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' [Lov83] L´asl´o Lov´asz, Self-dual polytopes and the chromatic number of distance graphs on the sphere, Acta Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' (Szeged) 45 (1983), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 1-4, 317–323.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' [Mil64] John Milnor, On the Betti numbers of real varieties, Proceedings of the American Mathematical Society 15 (1964), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 2, 275–280.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' [MS71] Peter McMullen and Geoffrey Colin Shephard, Convex polytopes and the upper bound conjecture, Cambridge University Press, 1971.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' [Per47] Julian Perkal, Sur la subdivision des ensembles en parties de diam`etre inf´erieur, Colloq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Math, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 1, 1947, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' [Rai12] Andrei M Raigorodskii, On the chromatic numbers of spheres in Rn, Combinatorica 32 (2012), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 1, 111–123.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' [Rai13] Andrei M Raigorodskii, Cliques and cycles in distance graphs and graphs of diameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=', Discrete geometry and algebraic combinatorics, 2013, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 93–109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' [San46] LA Santal´o, Convex regions on the n-dimensional spherical surface, Annals of Mathematics (1946), 448–459.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' [Str57] Stefan Straszewicz, Sur un probleme g´eom´etrique de P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Erd¨os, Bull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Polon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Cl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' III 5 (1957), 39–40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' EXTREMAL SPHERICAL POLYTOPES AND BORSUK’S CONJECTURE 23 [Wal70] David W Walkup, The lower bound conjecture for 3-and 4-manifolds, Acta Mathematica 125 (1970), 75–107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' [Zie12] G¨unter M Ziegler, Lectures on polytopes, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' 152, Springer Science & Business Media, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Bar Ilan University.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Email address: katzmik@math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='biu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='il The Ohio State University.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Email address: facundo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='memoli@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='com University of Utah.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content=' Email address: qswang@math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='utah.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} +page_content='edu' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FPT4oBgHgl3EQfZDSN/content/2301.13076v1.pdf'} diff --git a/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf b/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..370bbe36fe54abd207dfb3de8b54f3ad5d58e405 --- /dev/null +++ b/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fb1d4cbb11bef17b82d8a50f8c2624ece997aeee26a2d5dae6c18efe125bbf9b +size 789498 diff --git a/9tAzT4oBgHgl3EQfFPrO/vector_store/index.faiss b/9tAzT4oBgHgl3EQfFPrO/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..143d3f8cd791a41f8d4b7b4e1913525fe6c070c7 --- /dev/null +++ b/9tAzT4oBgHgl3EQfFPrO/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:26ae0e5fc4039ea4bdc78555e1947ca413a63b7184fba4c702adc06a6a5b874c +size 1966125 diff --git a/A9AzT4oBgHgl3EQfF_vM/content/2301.01022v1.pdf b/A9AzT4oBgHgl3EQfF_vM/content/2301.01022v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..ebc1fd6840f9e51c18d6936952713cdadde15d03 --- /dev/null +++ b/A9AzT4oBgHgl3EQfF_vM/content/2301.01022v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8b5ca81351ccfa7849852dc3edd558917c4c5f46b85d3396bb397224272dd217 +size 437270 diff --git a/A9AzT4oBgHgl3EQfF_vM/vector_store/index.pkl b/A9AzT4oBgHgl3EQfF_vM/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..ddc468a2f6826b944099a7ac6b21d4b9d2626fb4 --- /dev/null +++ b/A9AzT4oBgHgl3EQfF_vM/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:26129bc32d581a00f53e498c05c766daa78e7daf570831f335cefe9913e4842f +size 170950 diff --git a/A9E1T4oBgHgl3EQfVgQy/vector_store/index.faiss b/A9E1T4oBgHgl3EQfVgQy/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..e2f216bbed5772fdb18f87be76a3412705b9104d --- /dev/null +++ b/A9E1T4oBgHgl3EQfVgQy/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2fe1d83f56649379f7c46c1dd856178b711988076f00639ecde73956a23000df +size 2097197 diff --git a/AdAzT4oBgHgl3EQfTPx3/vector_store/index.faiss b/AdAzT4oBgHgl3EQfTPx3/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..4a5acffa054a3b09feb3fe1631326850035b7df8 --- /dev/null +++ b/AdAzT4oBgHgl3EQfTPx3/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2fee06b96642d62f589043129d59cc0e368633671688f6a45dba1fecf7a9f587 +size 1048621 diff --git a/AdE1T4oBgHgl3EQfVQSI/content/tmp_files/2301.03100v1.pdf.txt b/AdE1T4oBgHgl3EQfVQSI/content/tmp_files/2301.03100v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..c95e80c37026c3a25f4f5efc30f92b7c41a30170 --- /dev/null +++ b/AdE1T4oBgHgl3EQfVQSI/content/tmp_files/2301.03100v1.pdf.txt @@ -0,0 +1,1026 @@ +Astronomy & Astrophysics manuscript no. kink_cutoff +©ESO 2023 +January 10, 2023 +Cut-off of transverse waves through the solar transition region +Gabriel Pelouze1, 2, Tom Van Doorsselaere2 , Konstantinos Karampelas2, 3 , Julia M. Riedl2 , and Timothy Duckenfield2 +1 Université Paris-Saclay, CNRS, Institut d’astrophysique spatiale, 91405, Orsay, France +2 Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven, +Belgium. +e-mail: tom.vandoorsselaere@kuleuven.be +3 Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK +Received 23 September 2022 / Accepted 3 January 2023 +ABSTRACT +Context. Transverse oscillations are ubiquitously observed in the solar corona, both in coronal loops and open magnetic flux tubes. +Numerical simulations suggest that their dissipation could heat coronal loops, counterbalancing radiative losses. These models rely +on a continuous driver at the footpoint of the loops. However, analytical works predict that transverse waves are subject to a cut-off in +the transition region. It is thus unclear whether they can reach the corona, and indeed heat coronal loops. +Aims. Our aims are to determine how the cut-off of kink waves affects their propagation into the corona, and to characterize the +variation of the cut-off frequency with altitude. +Methods. Using 3D magnetohydrodynamic simulations, we modelled the propagation of kink waves in a magnetic flux tube, embed- +ded in a realistic atmosphere with thermal conduction, that starts in the chromosphere and extends into the corona. We drove kink +waves at four different frequencies, and determined whether they experienced a cut-off. We then calculated the altitude at which the +waves were cut-off, and compared it to the prediction of several analytical models. +Results. We show that kink waves indeed experience a cut-off in the transition region, and we identified the analytical model that +gives the best predictions. In addition, we show that waves with periods shorter than approximately 500 s can still reach the corona by +tunnelling through the transition region, with little to no attenuation of their amplitude. This means that such waves can still propagate +from the footpoints of loop, and result in heating in the corona. +Key words. Sun: atmosphere – Sun: oscillations – magnetohydrodynamics (MHD) – waves – methods: numerical +1. Introduction +Recent advances in observations and modelling have shown +that magnetohydrodynamic (MHD) waves could significantly +contribute to the heating of the solar corona (see review by +Van Doorsselaere et al. 2020). In particular, transverse waves are +ubiquitously observed, and they come in several kinds. The type +that was first discovered are the transverse waves that are impul- +sively excited after a flare (Nakariakov et al. 1999). However, +these transverse waves are only sporadically excited and do not +play an important role in the energy budget of the solar corona +(Terradas & Arregui 2018). Later on, it was discovered that the +corona is filled by small-amplitude transverse waves (Tomczyk +et al. 2007; Tomczyk & McIntosh 2009; McIntosh et al. 2011; +Tian et al. 2012). These were observed in coronal loops as prop- +agating (Tiwari et al. 2019) or standing waves (Anfinogentov +et al. 2015). These low-amplitude transverse waves were also +observed as propagating waves in open-field regions (Thurgood +et al. 2014; Morton et al. 2015). These low-amplitude waves +show little-to-no decay (Morton et al. 2021) and are thus named +“decayless”. +Because the flare-excited standing waves are rapidly decay- +ing (Goddard et al. 2016; Nechaeva et al. 2019) due to reso- +nant absorption (Goossens et al. 2002) and non-linear Kelvin- +Helmholtz instability (KHI) damping (Terradas et al. 2008; An- +tolin et al. 2014; Van Doorsselaere et al. 2021; Arregui 2021), +it is generally thought that the decayless waves must be con- +tinuously supplied with energy to counteract its strong damp- +ing. Several mechanisms for excitation have been proposed: slip- +stick driving with steady flows (Nakariakov et al. 2016; Karam- +pelas & Van Doorsselaere 2020), vortex shedding (Nakariakov +et al. 2009; Karampelas & Van Doorsselaere 2021) or footpoint +driving (Nisticò et al. 2013; Karampelas et al. 2017) through p- +modes (Morton et al. 2019) or convective shuffling. The latter +option of footpoint driving has had some success in generating +standing mode decayless waves (Afanasyev et al. 2020), which +counterbalance the non-linear damping through the KHI (Guo +et al. 2019) and lead to heating of loops (Shi et al. 2021). +However, for the driving of decayless waves through their +footpoints, it is not well understood how the transverse waves +propagate through the complicated structure of the chromo- +sphere and transition region. The simulations of transverse-wave +induced KHI heating (e.g. Karampelas et al. 2019) only take into +account the coronal part of the loop, that is imposing a driver at +the top of the transition region. To properly model the whole loop +evolution due to the wave heating, it is essential to also model the +wave driver in the photosphere, and accurately capture its influ- +ence on the coronal loop dynamics. +In plane-parallel atmospheres, the propagation of fast and +slow waves has been well studied. It was found that these modes +couple efficiently to Alfvén waves through resonant absorption +(Hansen & Cally 2009; Cally & Andries 2010; Khomenko & +Cally 2012). Currently, investigations are ongoing to what hap- +pens if the cross-field structuring is included into the wave prop- +agation model (Cally & Khomenko 2019; Riedl et al. 2019, +2021). Another crucial ingredient is the wave’s behaviour in +Article number, page 1 of 8 +arXiv:2301.03100v1 [astro-ph.SR] 8 Jan 2023 + +A&A proofs: manuscript no. kink_cutoff +strong (i.e. non-WKB) stratification. It is well-known that slow +waves experience a cut-off while propagating through a stratified +medium (Bel & Leroy 1977). This has been verified observation- +ally (Jess et al. 2013) and numerically (Felipe et al. 2018). Still, +up to now, it is unknown if a similar cut-off exists for transverse +waves in structured media. For the driving of the observed decay- +less waves in the corona, this is a crucial property to understand. +Several analytical works predict that transverse waves are +cut-off in the transition below a given frequency. The first for- +mula was derived by Spruit (1981): +ω2 +Sp81 = g +8H +1 +2β + 1, +(1) +where g is the gravity projected along the loop, H the pressure +scale height, and β the ratio between the gas and magnetic pres- +sures. For a typical isothermal atmosphere, this corresponds to +a cut-off period of 700 s (Spruit 1981). However, Lopin et al. +(2014) showed that this classical cut-off is suppressed when the +radial component of the magnetic field is taken into account. +Lopin & Nagorny (2017) later showed that transverse waves can +still be cut-off, provided a non-isothermal atmosphere. They pre- +dict the following cut-off frequency: +ω2 +LN17 = +c2 +k0 +4H0H(z) +� +δ2 +B +dH(z) +dz ++ H2(z) +z2 +� +, +(2) +where z is the altitude, ck0 is the kink speed at the base of atmo- +sphere (z = z0), H is the pressure scale height, H0 = H(z0), and +δ2 +B = +� +B2 +0i − B2 +0e +� +/ +� +B2 +0i + B2 +0e +� +is the relative difference between +the magnetic field inside (B0,i) and outside (B0,e) the flux tube, at +z = z0. Finally, an alternative formula was derived by Snow et al. +(2017): +ω2 +Sn17 = v2 +A(z) +4z2 , +(3) +where z is the altitude, and vA is the Alfvén speed. +In this article, we modelled the propagation of kink waves +in an open magnetic flux tube, embedded in a non-isothermal +atmosphere. The atmosphere extends from the chromosphere to +the corona, and includes gravitational stratification and thermal +conduction (Sect. 2). We drove kink waves at different periods, +and determined whether they experienced a cut-off (Sect. 3). +We compare these results to the three analytical formulas given +above in Sect. 4, and summarize our conclusions in Sect. 5. +2. Numerical model: magnetic flux tube through the +transition region +We modelled a vertical magnetic flux tube of radius R = 1 Mm +embedded in a stratified atmosphere, starting in the chromo- +sphere (altitude z = 0 Mm) and extending through the transi- +tion region (z ≈ 4 Mm) into the corona. Kink waves were ex- +cited in the flux tube by applying a monoperiodic driver at the +bottom of the domain (z = 0 Mm). In the upper half of the do- +main (z > 50 Mm), we implemented a “velocity rewrite layer” +to absorb the kink waves. The driver and the velocity rewrite +layer are described in Sect. 2.1. A sketch of the domain is shown +on Fig. 1. We solved the 3D MHD evolution of this tube using +the PLUTO code (Mignone et al. 2007), version 4.3. This code +solves the conservative MHD equations (mass continuity, mo- +mentum conservation, energy conservation, and induction equa- +tion). We used the corner transport upwind finite volume scheme, +x [Mm] +z [Mm] +Driver +Transition +region +Velocity +rewrite +layer +Corona +Magnetic tube +Kink +wave +2 Mm +Chromosphere +0 +−8 +8 +0 +100 +50 +0 +3 +−3 +y [Mm] +Fig. 1. Sketch of the simulation domain, showing the magnetic flux +tube, the location of the kink wave driver (bottom boundary), chromo- +sphere, transition region, corona, and velocity rewrite layer. +where characteristic tracing is used for the time stepping, and a +linear spatial reconstruction with a monotonized central differ- +ence limiter is performed. The magnetic field divergence was +kept small using the extended divergence cleaning method (gen- +eralized Lagrange multiplier, or GLM), and flux was computed +with the linearized Roe Riemann solver. We did not include ex- +plicit viscosity, resistivity, or cooling. However, numerical dis- +sipation results in higher effective viscosity and resistivity than +what is expected for the solar corona, as discussed by Karam- +pelas et al. (2019). We included a modified thermal conduction, +as described below. +The transition region between the chromosphere and the +corona is characterized by a very sharp temperature gradient. +Resolving such gradient requires a very high resolution along +the tube (∼ 1 km in the transition region). In order to keep com- +putational costs reasonable, we artificially broadened the tran- +sition region (thus reducing the temperature gradient). To that +end, we modified the thermal conductivity using the method de- +veloped by Linker et al. (2001); Lionello et al. (2009); Miki´c +et al. (2013). Below the cut-off temperature Tc = 2.5 · 105 K, +the parallel thermal conductivity was set to κ∥ = C0T 5/2 +c +with +C0 = 9 · 10−12 Wm−1K−7/2. Above Tc, κ∥ = C0T 5/2. This al- +lowed us to use a resolution of 98 km along the tube. This grid +allows to fully resolve the broadened transition region, which +has a minimum temperature scale length of 1.6 Mm (see John- +ston & Bradshaw 2019). The dimensions of the domain were +(Lx, Ly, Lz) = (16, 6, 100) Mm. We used a uniform grid of +400 × 150 × 1024 cells, with a size of 40 km in the x and y direc- +tions, and 98 km in the z direction. Furthermore, we verified that +the results did not change significantly when using a resolution +of 40 km in the z direction. To that end, we ran a separate sim- +ulation and verified that the resulting cut-off altitude and com- +parison to the analytical formulas (see Sect. 4) were not strongly +modified. We note that such resolution is too costly in terms of +compute time to be used for all simulations in this work. +The strong stratification in the transition region makes it +challenging to obtain a relaxed initial state for the model. We +first initialized the domain with a field-aligned hydrostatic equi- +librium (Sect. 2.2). We then let the simulation relax in 2D for +47 ks (Sect. 2.3). Finally, we filled the 3D domain with this re- +Article number, page 2 of 8 + +G. Pelouze et al.: Cut-off of transverse waves +0 +20 +40 +60 +80 +100 +Altitude [Mm] +0.9995 +0.9996 +0.9997 +0.9998 +0.9999 +1.0000 +Velocity rewrite coefficient αv +αv(t≤15.7 ks) +αv(t=18.8 ks) +αv(t=21.9 ks) +αv(t=25.1 ks) +αv(t=28.2 ks) +αv(t≥31.3 ks)=αv,3D +Fig. 2. Velocity-rewrite coefficient αv, applied to the velocity above +50 Mm so that upper-propagating waves are not reflected back into the +domain. αv is shown for different times of the 2D relaxation run. The +last profile (t ≥ 31.3 ks) is also applied in the 3D driven simulations. +laxed state through cylindrical symmetry, where we drove kink +waves of different periods for a duration up to 2.7 ks (Sect. 2.4). +2.1. Boundary conditions and driver +We first describe the boundary conditions used for the relaxation +(2D) and kink wave (3D) simulations. +Bottom boundary +At the bottom boundary (base of the chro- +mosphere, z = 0), the density and pressure were extrapolated +using the hydrostatic equilibrium equation. The magnetic field +was extrapolated using the zero normal-gradient condition de- +scribed by Karampelas et al. (2019, section 2.4). For vz, we ei- +ther imposed a reflective boundary condition (2D relaxation, see +Sect. 2.3), or imposed vz = 0 (in 3D, see Sect. 2.4). We verified +that both boundary conditions give the same results in 3D sim- +ulations. The parallel velocity components vx and vy were set to +obey either a zero-gradient boundary condition (2D relaxation), +or to follow a driver that excites kink waves (in 3D). We used +a monoperiodic, dipole-like, driver developed by Pascoe et al. +(2010) and updated by Karampelas et al. (2017). Inside the tube, +the driver imposes: +� +vx(x, y, t), vy(x, y, t) +� += {v(t), 0} , +(4) +where v(t) = v0 cos (2πt/P0), with v0 the driver amplitude, set +to 2 km s−1. The driver period, P0, was set to different values +in order to test the cut-off of kink waves. Outside the tube, the +driver imposes: +� +vx(x, y, t), vy(x, y, t) +� += v(t)R2 +� +(x − x0(t))2 − y2, 2 (x − x0(t)) y +� +� +(x − x0(t))2 + y2�2 +, +(5) +where x0(t) = v0P0/(2π) · sin (2πt/P0) is the centre of the tube’s +footpoint at time t. This driver generates a kink wave polarized +in the x direction. +Upper boundary At the upper boundary (top of the corona, z = +100 Mm), the magnetic field was kept symmetric. All other vari- +ables obeyed a reflective boundary condition. In order to absorb +the upwards waves excited by the driver, we artificially modified +the velocity in the upper half of the domain (z > 50 Mm). At +each time step, after solving the MHD equations, we decreased +each component of the velocity vi by multiplying it by a quantity +αv ≲ 1: +v′ +i = αv(t, z)vi. +(6) +In the driven 3D simulations αv was kept constant in time, and +varied linearly along the loop, from 1 at z = zv = 50 Mm, to +αv,min = 0.9995 at z = L = 100 Mm: +αv,3D(z) = +������� +1 +if z ≤ zv, +1 − �1 − αv,min +� � z−zv +L−zv +� +else. +(7) +In the 2D relaxation run, the first third of the simulation (t1/3 = +15.7 ks) was run without modifying the velocity (i.e. αv = 1). +During the second third, αv was linearly ramped down in time to +match the profile αv,3D(z) described above. Finally, the last third +of the simulation was run with the constant αv,3D(z): +αv,2D(z, t) = +����������� +1 +if t ≤ t1/3, +1 − �1 − αv,3D(z)� � t−t1/3 +t1/3 +� +if t1/3 < t ≤ 2t1/3, +αv,3D(z) +else. +(8) +The evolution of αv is shown in Fig. 2. This “velocity rewrite +layer” can successfully absorb the kink waves that are excited +by the driver at the bottom of the chromosphere. As a result, +these waves are not reflected at the upper boundary, and do not +propagate downwards back into the domain. We stress that the +solution obtained inside the velocity rewrite layer (i.e. above z = +50 Mm) is not physical, and that this layer should be considered +as a part of the upper boundary. +Side boundaries At the side boundaries (x and y axes), all vari- +ables obeyed a zero-gradient boundary condition. In the 2D re- +laxation run, we only simulated half of the tube radius (x > 0). +For these simulations, we imposed a reflective boundary condi- +tion on all variables at the centre of the tube (x = 0). +2.2. Initial conditions: field-aligned hydrostatic equilibrium +The simulation was initialized with a uniform vertical magnetic +field of magnitude B0 = 42 G. Along the tube, we imposed +the following temperature profile, derived from Aschwanden & +Schrijver (2002): +T(x, y, z) = +��������� +Tch +if z ≤ ∆ch, +Tch + (Tcor(x, y) − Tch) +� +1 − +� L−z +L−∆ch +�2�0.3 +else, +(9) +where z is the altitude, L is the height of the computational +domain, ∆ch = 4 Mm is thickness of the chromosphere, and +Tch = 20 000 K is the temperature in the chromosphere. We de- +fined the transverse temperature profile at the top of the domain, +Tcor(x, y), as: +Tcor(x, y) = Tcor,ext + (Tcor,int − Tcor,ext)ζ(x, y), +(10) +where Tcor,int = 1.2 MK is the temperature inside the tube, and +Tcor,ext = 3.6 MK is the temperature outside the tube. The shape +of the profile was set by ζ(x, y): +ζ(x, y) = 1 +2 +� +1 − tanh +�� � +x2 + y2/R − 1 +� +b +�� +, +(11) +Article number, page 3 of 8 + +A&A proofs: manuscript no. kink_cutoff +0.1 +1 +10 +100 +Altitude [Mm] +10−2 +10−1 +100 +Temperature [MK] +Tint +Text +10−13 +10−12 +10−11 +10−10 +10−9 +10−8 +Density [kg m⁻³] +ρint +ρext +39 +40 +41 +42 +43 +44 +Magnetic field [G] +Bint +Bext +(a) Field-aligned hydrostatic equilibrium +0.1 +1 +10 +100 +Altitude [Mm] +10−2 +10−1 +100 +Temperature [MK] +Tint +Text +10−13 +10−12 +10−11 +10−10 +10−9 +10−8 +Density [kg m⁻³] +ρint +ρext +9 +10 +11 +12 +13 +14 +Magnetic field [G] +Bint +Bext +(b) 2D magnetohydrodynamic relaxation +Fig. 3. Temperature (black), density (red), and magnetic field magnitude (blue) profiles inside (r = 0 Mm; solid lines) and outside (r = 8 Mm; +dashed lines) the flux tube. (a) After solving the field-aligned hydrostatic equilibrium. (b) After the 2D magnetohydrodynamic relaxation. +where R = 1 Mm is the tube radius, and b = 5 is a dimensionless +number setting the width of the inhomogeneous layer between +the interior and exterior of the tube (l ≈ 6R/b). ζ(x, y) is close to +1 inside the tube, and to 0 outside. +We also set the density at the bottom of the chromosphere +(z = 0) to: +ρch(x, y, z = 0) = ρch,ext + (ρch,int − ρch,ext)ζ(x, y), +(12) +where ρch,int = 3.51 · 10−8 kg m−3 is the density inside the tube, +and ρch,ext = 1.17 · 10−8 kg m−3 is the density outside. We then +integrated the field-aligned hydrostatic equilibrium equation nu- +merically using a Crank-Nicholson scheme. The profiles of the +imposed temperature and of the density resulting from the inte- +gration are shown in Fig. 3 (a). The temperature contrast (interior +temperature divided by exterior temperature) is 1 in the chromo- +sphere, and decreases to 1/3 in the corona. The density contrast +is 3 in the chromosphere, increases to around 7 in the transition +region, and decreases again to about 4 in the upper corona. The +pressure contrast is 3 in the chromosphere, and slowly decreases +to reach 1.2 in the upper corona. +However, this initial state is not in magnetohydrostatic +(MHS) equilibrium, because the pressure varies across the flux +tube, while the magnetic field does not. To fix this, we let the +tube relax by running a 2D magnetohydrodynamic simulation +(Sect. 2.3). We then used this relaxed state to initialize the 3D +simulation of kink waves (Sect. 2.4). +2.3. Flux tube relaxation (2D) +In order to obtain a flux tube in MHS equilibrium, we first +run a 2D simulation, initialized with the initial state described +in Sect. 2.2. The MHD equations were solved in a longitudi- +nal plane at y = 0 (see Fig. 1), with x ∈ [0, 8.56] Mm, and +z ∈ [0, 100] Mm. We used a uniform grid of 64 × 2048 cells with +a size of 134 km×49 km. The resolution along z is higher than in +the 3D runs in order to resolve the sharper gradients in the tran- +sition region (see Fig. 3). We verified that a resolution of 40 km +in the x direction yielded the same results, by running a separate +2D simulation followed by a 3D driven simulation (P0 = 200 s), +and verifying that the cut-off altitude and comparison to the an- +alytical formulas (Sect. 4) were not significantly modified. +We let the system evolve for 47 ks, during which the velocity +rewrite parameter αv varied as described in Eq. (8). As a result +of the relaxation, periodic longitudinal flows with a velocity of +about 15 km s−1 develop along the tube. They are damped during +the later stages of the simulation, as the velocity rewrite layer is +gradually introduced. At the end of the relaxation run, residual +velocities are lower than 0.5 km s−1 everywhere in the domain. +The resulting temperature, density, and magnetic field profiles +are shown on Fig. 3 (b). Compared to the initial state (Fig. 3 a), +the transition region is significantly broadened, with a thickness +of about 7 Mm. This is the direct result of the modified thermal +conductivity used in this setup, and allows for a coarser resolu- +tion along the loop in the 3D simulations. In addition, the tem- +perature and density decrease, both inside and outside the tube. +Overall, the density contrast (ρint/ρext) decreases: it reaches 1 +in the chromosphere, 1.2 in the transition region, and 1.8 in the +corona. The temperature contrast also changes to about 1.3 in +the transition, and about 0.8 in the corona. Finally, the magnetic +field amplitude contrast remains very close to 1 everywhere in +the domain (0.97 in the chromosphere and 1 in the corona), with +a magnitude of about 11 G everywhere in the domain. Compared +to the initial uniform magnetic field, the magnitude is divided by +about four, while the contrast remains close to 1. The final tem- +perature and density profile significantly differ from the initial +conditions of 2D relaxation run. However, this is not an issue, as +the goal of this study is to investigate how the analytical formulas +we consider (Spruit 1981; Lopin & Nagorny 2017; Snow et al. +2017) predict the cut-off frequency for a given temperature and +density profile. By using the relaxed profiles as an input to these +analytical formulas, we obtained predictions for the relaxed sys- +tem. +This relaxed 2D simulation was then mapped onto the 3D +domain through cylindrical symmetry. We used a rotation about +the line x = 0 (i.e. the centre of the loop), and a trilinear interpo- +lation to project onto the 3D Cartesian grid. +2.4. Kink waves propagation (3D) +In order to simulate the propagation of kink waves from the chro- +mosphere to the corona, we drove the 3D simulations with the +monoperiodic, dipole-like, driver described in Eqs. (4) and (5). +We ran four simulations, with different driver periods P0: 200 s, +Article number, page 4 of 8 + +G. Pelouze et al.: Cut-off of transverse waves +0 +200 +400 +Time [s] +0 +10 +20 +30 +40 +50 +Altitude [Mm] +(a) P0 =200 s +−15 +−10 +−5 +0 +5 +10 +15 +Velocity [km s⁻¹] +0 +250 +500 +750 +1000 +Time [s] +(b) P0 =335 s +−6 +−4 +−2 +0 +2 +4 +6 +Velocity [km s⁻¹] +0 +500 +1000 +1500 +2000 +Time [s] +(c) P0 =700 s +−3 +−2 +−1 +0 +1 +2 +3 +Velocity [km s⁻¹] +0 +1000 +2000 +Time [s] +(d) P0 =2000 s +−2 +−1 +0 +1 +2 +Velocity [km s⁻¹] +Fig. 4. Kink waves transverse velocity (vx) at the loop centre (x = y = 0), as a function of altitude and time. The velocity is shown for four 3D +simulations with different driver periods P0, after an initial settling time of 2P0 (for P0 = 200 s, 335 s and 700 s), or 0.42P0 (for P0 = 2000 s). The +dashed black lines represent a propagation at the kink speed (see Eq. (13)), and are independent of the driver period. +335 s, 700 s, and 2000 s. The propagating kink waves generated +by the driver are absorbed by the velocity rewrite layer at the top +of the domain, and are thus not reflected downwards. The first +three simulations were run for a duration of 5P0. The last simula- +tion was run for 1.75P0. At the beginning of the simulations, the +system goes through an initial transitory phase before the propa- +gating kink wave is fully established (i.e. its amplitude does not +change with time). We waited for 2P0 (0.42P0 for P0 = 2000 s) +for the kink wave to enter a stable sinusoidal regime. After this +duration, we saved high-cadence snapshots at the centre of the +loop (line x = y = 0). For all further analysis, we used the snap- +shots saved after the transitory phase. The transverse velocity vx +at the loop centre is shown in Fig. 4. As can be seen on this +figure, the amplitude of the kink wave decreases as the period +increases. For the two longer driver periods (700 and 2000 s), +the amplitude of the kink wave is small enough for some pertur- +bations to become visible. They travel at the Alfvén speed, and +appear to be triggered by the flows remaining after the relaxation +(see Sect. 2.3). These perturbations have amplitudes smaller than +0.2 km s−1, and should thus have no effect on the wave. +3. Results: cut-off and tunnelling of transverse +waves +In order to determine whether the kink waves driven in the 3D +simulations are experiencing a cut-off, we looked at the evolution +of the velocity amplitude (Sect. 3.1), as well as the phase speed +(Sect. 3.2) as a function of altitude. The analysis of these profiles +allows us to establish that the transverse waves are subject to a +low-frequency cut-off in the transition region. +3.1. Wave amplitude increases with frequency +In order to compute the velocity amplitude of the kink wave, we +fitted the function Ax(z) sin (ω(z)t + φ(z)) to the transverse ve- +locity vx(z, t), at each altitude (z). Ax(z) is the velocity amplitude, +ω(z) is the kink wave frequency, and φ(z) is the phase. The fre- +quency varies by less than 1 % with altitude, confirming theoret- +ical understanding. The velocity amplitude is shown in Fig. 5. +In all simulations, the wave amplitude increases with altitude, +because of the density decreases with altitude and energy con- +servation. Across simulations, the amplitude at a given altitude +increases with the frequency of the wave. This means that kink +waves with higher frequencies propagate better from the chro- +0.1 +1 +10 +Altitude [Mm] +2 +4 +6 +8 +10 +12 +14 +16 +Velocity amplitude [km s⁻¹] +P0 =200 s +P0 =335 s +P0 =700 s +P0 =2000 s +0.1 +1 +10 +2.0 +2.2 +2.4 +2.6 +0.05 +50 +Fig. 5. Velocity amplitude of kink waves, as a function of altitude. The +velocity is shown for four different driver periods (P0). The inset has the +same axes as the main figure, with a zoom-in on the vertical axis. +mosphere to the corona. This would be consistent with the low- +frequency cut-off predicted by analytical models (see Sect. 1). +3.2. Evanescent waves in the transition region +To determine the altitude at which the waves are cut-off, we +compared their phase speed vp(z) to the kink speed of the +flux tube ck(z). The inverse phase speed is equivalent to the +phase difference ∆φ(z) between two altitudes separated by ∆z: +1/vp(z) = ∆φ(z)/(ω∆z). The phase difference has been success- +fully used to determine the cut-off frequency of acoustic and +slow-magnetosonic waves in observations (Centeno et al. 2006; +Felipe et al. 2010; Krishna Prasad et al. 2017; Felipe et al. 2018), +and in simulations (Felipe & Sangeetha 2020). In these articles, +the authors determine the phase speed for a wide range of fre- +quencies, but at a limited number of altitude positions. In the +present study however, we could only examine four frequencies, +because of the high computational cost of a simulation. However, +we computed the phase difference at all altitudes of the simula- +tion domain. This allows us to determine the altitude at which +the wave is cut-off. +Article number, page 5 of 8 + +A&A proofs: manuscript no. kink_cutoff +The phase speed at a given altitude z was computed from the +transverse velocity in the cells above and below, that is vx(t, z + +∆z/2) and vx(t, z − ∆z/2), where ∆z = 98 km is the cell size. +We apodized these velocity time series with a Hann window, +and computed the cross-correlation C(τ, z) = vx(t, z + ∆z/2) ⋆ +vx(t, z−∆z/2). We then determined the time delay ∆τ(z), by find- +ing the maximum of C(τ, z). To that end, we fitted the function +A + B cos (ω(τ − ∆τ)/δ) to C(τ, z), with τ ∈ [−P0/4, +P0/4]. Fi- +nally, the phase difference was given by ∆φ(z) = ω∆τ(z), and the +inverse phase speed by 1/vp(z) = ∆τ(z)/∆z. The inverse phase +speed is shown on Fig. 6, alongside the inverse kink speed for +the simulated flux tube. The kink speed ck is calculated using: +c2 +k(z) = ρi(z)v2 +A i(z) + ρe(z)v2 +A e(z) +ρi(z) + ρe(z) +, +(13) +where ρ(z) is the density, vA(z) = B(z)/ +� +µ0ρ(z) is the Alfvén +speed, B(z) is the magnetic field amplitude, and µ0 is the mag- +netic permittivity of vacuum. The indices i and e correspond, +respectively, to internal and external quantities relatively to the +flux tube, and are taken at x = 0 and x = 8 Mm. +In simulations with short driver periods, the inverse phase +speed is somewhat smaller than the inverse kink speed in the +chromosphere and transition region (vp/ck ≈ 2 for P0 = 200 s, +and 5 for P0 = 335 s), and equals the inverse kink speed in the +corona. On the other hand, in simulations with longer periods, +the inverse phase speeds are much lower than the inverse kink +speed below a given altitude. For P0 = 700 s, 1/vp is about 250 +times smaller than 1/ck below z = 1 Mm. For P0 = 2000 s, a +similar drop occurs below z = 20 Mm. +For a propagating kink wave, the inverse phase speed is ex- +pected to be equal to the inverse kink speed. Conversely, stand- +ing and evanescent (i.e. cut-off) waves have inverse phase speeds +smaller than the inverse kink speed. Thus, the decreased inverse +phase speed for higher periods indicates that the waves are cut- +off in at least some regions. +To distinguish between the standing and evanescent cases, +we have also looked at the wave amplitude (Fig. 5). In the +absence of vertical stratification, the amplitude of evanescent +waves decreases with altitude. However, in a stratified atmo- +sphere (our case), the amplitude increases with altitude because +of the density decrease, even for evanescent waves. On Fig. 5, the +amplitude of waves with longer periods (for which 1/vp ≪ 1/ck) +increases less with altitude compared to waves with shorter pe- +riods (for which 1/vp ≲ 1/ck). We thus conclude that the waves +with longer periods are evanescent in parts of the low atmo- +sphere, where their inverse phase speed is much lower than the +inverse kink speed. This means that these long-period waves are +cut-off in the transition region. +3.3. Wave tunnelling at higher frequencies +Waves with shorter periods (P0 = 200 and 335 s) also show signs +of cut-off at low altitudes. Below z = 3 Mm, the inverse phase +speed 1/vp is lower than the inverse kink speed 1/ck (Fig. 6), +and the amplitude increase with altitude is smaller for P0 = 335 s +than for P0 = 200 s (Fig. 5). However, this cut-off is significantly +weaker than in the long-period case. This is explained by the fact +that the cut-off region (where 1/vp < 1/ck) is narrower for short +periods (∼ 1 Mm) than for long periods (∼ 10 Mm). As a result, +short-period waves can tunnel through the cut-off region, and +propagate into the corona. Furthermore, the weak attenuation in +the cut-off region (1/vp ≲ 1/ck) results further reduces the effect +of the cut-off. +0.1 +1 +10 +Altitude [Mm] +10−1 +100 +101 +102 +1/v [s Mm⁻¹] +1/ck +1/vp (P0 =200 s) +1/vp (P0 =335 s) +1/vp (P0 =700 s) +1/vp (P0 =2000 s) +50 +Fig. 6. Inverse phase speed of the kink wave (1/vp), and inverse kink +speed of the flux tube (1/ck), as a function of altitude. The phase speed +is given for four different driver periods (P0). +0.1 +1 +10 +Altitude [Mm] +10−3 +10−2 +10−1 +ωc [s⁻¹] +Models +Sp81 +Sn17 +LN17 (z0 = 24 km) +LN17 (z0 = 659 km) +LN17 (z0 = 1343 km) +LN17 (z0 = 1978 km) +Simulations +tr =0.2 +tr =0.3 +tr =0.4 +tr =0.5 +50 +Fig. 7. Kink wave cut-off frequency as a function of altitude, from an- +alytical models (left column of the legend), and from our numerical +simulations (right column of the legend). We show the analytical pre- +dictions of Spruit (1981, SP81), Snow et al. (2017, Sn17), and of Lopin +& Nagorny (2017, LN17) (coloured lines). For the last model, we com- +puted the cut-off frequency for different values of z0, the “base of the +atmosphere”. We show the cut-off altitude (zc) for the four simulations +that we ran with different driver frequencies (black markers). The cut- +off altitudes are computed with different thresholds tr, indicated on the +legend and described in the text. +4. Discussion: comparison to analytical formulas +In order to compare our simulations to the analytical models, +we quantified the cut-off frequency as a function of altitude. We +define zc, the altitude at which ck/vp goes above a given threshold +tr. This corresponds to the altitude where the wave leaves the cut- +off regime and enters the propagating regime. That is, the cut- +off altitude. We computed zc for four values of tr between 0.2 +and 0.5. Considering the four simulations with different driver +frequencies ω, we obtained the cut-off altitude as a function of +the frequency, zc(ω). We compare this to the cut-off frequency as +a function of altitude, ωc(z), predicted by the analytical models +presented in Sect. 1. +Article number, page 6 of 8 + +G. Pelouze et al.: Cut-off of transverse waves +On Fig. 7, we show the cut-off frequency and altitude com- +puted in our simulations, for different values of tr (black points). +On the same figure, we show the predictions of the analytical +formulas of Spruit (1981, Eq. (1)), Lopin & Nagorny (2017, +Eq. (2)), and Snow et al. (2017, Eq. (3)) (coloured lines), com- +puted for the temperature and density profiles used in our simu- +lations. We implement the formula of Lopin & Nagorny (2017) +for different values of z0, defined by the authors as “the base of +the atmosphere”, with no further details. Because this quantity +is not accurately defined, we used four values of z0 in the range +of 24 km (bottom cell of our simulation domain), to 1978 km. +This loosely defined parameter broadens the range for the cut- +off frequencies predicted by this formula. While the match is +rather loose, the cut-off altitude zc(ω) measured in our simula- +tions matches the overall variation the cut-off frequency ωc(z) +predicted by the Lopin & Nagorny (2017) formula. In particular, +the shape of the profiles are in good agreement. On the contrary, +the Snow et al. (2017) model correctly predicts the cut-off fre- +quency only in the lower transition region, but fails to do so in +the upper transition region and corona. In particular, their model +predicts a slower decrease of the cut-off frequency above 20 Mm, +while the simulations and the Lopin & Nagorny (2017) show a +continued decrease. Finally, the Spruit (1981) predictions are off +by almost an order of magnitude at all altitudes. Thus, the for- +mula of Lopin & Nagorny (2017) best predicts the cut-off fre- +quency of transverse waves at different altitudes. +While the broadened transition region in our simulations +could affect the altitude-dependence of the cut-off frequency, this +should have little impact on the validation of the analytical for- +mulas. Indeed, these formulas include the atmospheric stratifi- +cation through altitude-dependent profiles of either the pressure +scale height or the Alfvén speed (see Sect. 1). Because they make +no hypothesis on these profiles, they should be valid regardless +of the atmosphere considered. As such, the agreement with the +simulations should not depend on the broadening of the transi- +tion region, provided the appropriate profile is fed into the for- +mulas. After validating the Lopin & Nagorny (2017) formula by +comparing it to our simulations, it should be applicable to other +stratification profiles. +We note that while analytical formulas can predict the kink +cut-off frequency, this is not sufficient to know whether a kink +wave with a given frequency will propagate into the corona. To +that end, the thickness of the cut-off region and the strength of +the attenuation have to be taken into account. As shown by our +simulations, kink waves with higher frequencies (≥ 3 mHz) can +propagate into the corona by tunnelling through a region where +they are cut-off (Sect. 3.3). Furthermore, these waves only expe- +rience a weak attenuation, because their frequency is close to the +cut-off frequency. In fact, the cut-off frequency does not consti- +tute a clear-cut boundary between oscillatory and non-oscillatory +solutions. This was also reported for sound waves by Felipe & +Sangeetha (2020). Although the question of whether a solution +is oscillating is well-defined mathematically, this is not straight- +forward to translate into a single cut-off frequency (Schmitz & +Fleck 1998). For this reason, there exist several canonical def- +initions for cut-off frequencies, set within the continuous vari- +ation between the oscillating and non-oscillating regimes (see +e.g. Schmitz & Fleck 1998 for sound waves in the solar atmo- +sphere). As a result, cut-off frequencies are bound to be mere +indications, rather than strong constraints, on the physical be- +haviour of a wave (Chae & Litvinenko 2018). +5. Conclusions +Transverse waves are a candidate mechanism for heating the so- +lar corona. However, several analytical models predicted that +they are cut-off in the transition region. In order to assess +whether transverse waves can indeed heat the corona, it is thus +crucial to determine whether they can propagate through the +transition region. To that end, we have simulated the propagation +of transverse kink waves in an open magnetic flux tube, embed- +ded in an atmosphere extending from the chromosphere to the +corona. We found that transverse waves are indeed cut-off in the +lower solar atmosphere. However, only waves with low frequen- +cies (ν ≲ 2 mHz) are significantly affected. At higher frequen- +cies, the cut-off occurs in a very thin layer (∼ 1 Mm), and results +in a weak attenuation. In this case, waves can tunnel through +the cut-off layer, experiencing little to no amplitude attenuation. +This means that transverse waves with high frequencies are able +to transport energy from the chromosphere to the corona, where +it can be dissipated and result in heating. +Furthermore, we compared our simulations to several ana- +lytical models that predict the cut-off frequency of transverse +waves. We conclude that the formula proposed by Lopin & +Nagorny (2017) gives the best prediction. While our simulations +use a broadened transition, we expect it to have little impact on +the validation of analytical formulas. As such, the formula by +Lopin & Nagorny (2017) should be able to predict the cut-off +frequency for any atmospheric stratification profile. We note that +while the cut-off frequency is a good first indicator of whether a +wave can propagate into the corona, it cannot alone predict the +whole behaviour of the wave. In particular, waves with frequen- +cies just below the cut-off frequency (that should thus be cut-off) +can still reach the corona, thanks to a combination of tunnelling, +and weak attenuation. +Acknowledgements. This project has received funding from the European Re- +search Council (ERC) under the European Union’s Horizon 2020 research and +innovation program (grant agreement No. 724326). GP was supported by a +CNES postdoctoral allocation. TVD was supported by the European Research +Council (ERC) under the European Union’s Horizon 2020 research and inno- +vation programme (grant agreement No 724326) and the C1 grant TRACEs- +pace of Internal Funds KU Leuven. K.K. recognises support from a postdoctoral +mandate from KU Leuven Internal Funds (PDM/2019), from a UK Science and +Technology Facilities Council (STFC) grant ST/T000384/1, and from a FWO +(Fonds voor Wetenschappelijk Onderzoek – Vlaanderen) postdoctoral fellowship +(1273221N). The results received support from the FWO senior research project +with number G088021N. Software: Astropy (Astropy Collaboration et al. 2013, +2018), +References +Afanasyev, A. N., Van Doorsselaere, T., & Nakariakov, V. M. 2020, A&A, 633, +L8 +Anfinogentov, S. A., Nakariakov, V. M., & Nisticò, G. 2015, A&A, 583, A136 +Antolin, P., Yokoyama, T., & Van Doorsselaere, T. 2014, ApJ, 787, L22 +Arregui, I. 2021, ApJ, 915, L25 +Aschwanden, M. J. & Schrijver, C. J. 2002, ApJS, 142, 269 +Astropy Collaboration, Price-Whelan, A. M., Sip˝ocz, B. M., et al. 2018, AJ, 156, +123 +Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558, +A33 +Bel, N. & Leroy, B. 1977, A&A, 55, 239 +Cally, P. S. & Andries, J. 2010, Sol. Phys., 266, 17 +Cally, P. S. & Khomenko, E. 2019, ApJ, 885, 58 +Centeno, R., Collados, M., & Trujillo Bueno, J. 2006, ApJ, 640, 1153 +Chae, J. & Litvinenko, Y. E. 2018, ApJ, 869, 36 +Felipe, T., Khomenko, E., Collados, M., & Beck, C. 2010, ApJ, 722, 131 +Felipe, T., Kuckein, C., & Thaler, I. 2018, A&A, 617, A39 +Felipe, T. & Sangeetha, C. R. 2020, A&A, 640, A4 +Goddard, C. R., Nisticò, G., Nakariakov, V. M., & Zimovets, I. V. 2016, A&A, +585, A137 +Article number, page 7 of 8 + +A&A proofs: manuscript no. kink_cutoff +Goossens, M., Andries, J., & Aschwanden, M. J. 2002, A&A, 394, L39 +Guo, M., Van Doorsselaere, T., Karampelas, K., & Li, B. 2019, ApJ, 883, 20 +Hansen, S. C. & Cally, P. S. 2009, Sol. Phys., 255, 193 +Jess, D. B., Reznikova, V. E., Van Doorsselaere, T., Keys, P. H., & Mackay, D. H. +2013, ApJ, 779, 168 +Johnston, C. D. & Bradshaw, S. J. 2019, ApJ, 873, L22 +Karampelas, K. & Van Doorsselaere, T. 2020, ApJ, 897, L35 +Karampelas, K. & Van Doorsselaere, T. 2021, ApJ, 908, L7 +Karampelas, K., Van Doorsselaere, T., & Antolin, P. 2017, A&A, 604, A130 +Karampelas, K., Van Doorsselaere, T., & Guo, M. 2019, A&A, 623, A53 +Khomenko, E. & Cally, P. S. 2012, ApJ, 746, 68 +Krishna Prasad, S., Jess, D. B., Van Doorsselaere, T., et al. 2017, ApJ, 847, 5 +Linker, J. A., Lionello, R., Miki´c, Z., & Amari, T. 2001, J. Geophys. Res., 106, +25165 +Lionello, R., Linker, J. A., & Miki´c, Z. 2009, ApJ, 690, 902 +Lopin, I. & Nagorny, I. 2017, ApJ, 154, 141 +Lopin, I. P., Nagorny, I. G., & Nippolainen, E. 2014, Sol. Phys., 289, 3033 +McIntosh, S. W., de Pontieu, B., Carlsson, M., et al. 2011, Nature, 475, 477 +Mignone, A., Bodo, G., Massaglia, S., et al. 2007, ApJS, 170, 228 +Miki´c, Z., Lionello, R., Mok, Y., Linker, J. A., & Winebarger, A. R. 2013, ApJ, +773, 94 +Morton, R. J., Tiwari, A. K., Van Doorsselaere, T., & McLaughlin, J. A. 2021, +ApJ, 923, 225 +Morton, R. J., Tomczyk, S., & Pinto, R. 2015, Nat. Com., 6, 7813 +Morton, R. J., Weberg, M. J., & McLaughlin, J. A. 2019, Nat. Astron., 3, 223 +Nakariakov, V. M., Anfinogentov, S. A., Nisticò, G., & Lee, D.-H. 2016, A&A, +591, L5 +Nakariakov, V. M., Aschwanden, M. J., & van Doorsselaere, T. 2009, A&A, 502, +661 +Nakariakov, V. M., Ofman, L., Deluca, E. E., Roberts, B., & Davila, J. M. 1999, +Sci, 285, 862 +Nechaeva, A., Zimovets, I. V., Nakariakov, V. M., & Goddard, C. R. 2019, ApJS, +241, 31 +Nisticò, G., Nakariakov, V. M., & Verwichte, E. 2013, A&A, 552, A57 +Pascoe, D. J., Wright, A. N., & De Moortel, I. 2010, ApJ, 711, 990 +Riedl, J. M., Doorsselaere, T. V., Reale, F., et al. 2021, ApJ, 922, 225 +Riedl, J. M., Van Doorsselaere, T., & Santamaria, I. C. 2019, A&A, 625, A144 +Schmitz, F. & Fleck, B. 1998, A&A, 337, 487 +Shi, M., Van Doorsselaere, T., Guo, M., et al. 2021, ApJ, 908, 233 +Snow, B., Fedun, V., Verth, G., & Erdelyi, R. 2017, New Insights into Kink Wave +Cut-off Frequency Due to Longitudinal Stratification, UK National Astron- +omy Meeting, 2017 +Spruit, H. C. 1981, A&A, 98, 155 +Terradas, J., Andries, J., Goossens, M., et al. 2008, ApJ, 687, L115 +Terradas, J. & Arregui, I. 2018, Research Notes of the American Astronomical +Society, 2, 196 +Thurgood, J. O., Morton, R. J., & McLaughlin, J. A. 2014, ApJ, 790, L2 +Tian, H., McIntosh, S. W., Wang, T., et al. 2012, ApJ, 759, 144 +Tiwari, A. K., Morton, R. J., Régnier, S., & McLaughlin, J. A. 2019, ApJ, 876, +106 +Tomczyk, S. & McIntosh, S. W. 2009, ApJ, 697, 1384 +Tomczyk, S., McIntosh, S. W., Keil, S. L., et al. 2007, Sci, 317, 1192 +Van Doorsselaere, T., Goossens, M., Magyar, N., Ruderman, M. S., & Ismayilli, +R. 2021, ApJ, 910, 58 +Van Doorsselaere, T., Srivastava, A. K., Antolin, P., et al. 2020, Space Sci. Rev., +216, 140 +Article number, page 8 of 8 + diff --git a/AdE1T4oBgHgl3EQfVQSI/content/tmp_files/load_file.txt b/AdE1T4oBgHgl3EQfVQSI/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..75715798f7e89402163e221bf63244241ed80e5a --- /dev/null +++ b/AdE1T4oBgHgl3EQfVQSI/content/tmp_files/load_file.txt @@ -0,0 +1,792 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf,len=791 +page_content='Astronomy & Astrophysics manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' kink_cutoff ©ESO 2023 January 10, 2023 Cut-off of transverse waves through the solar transition region Gabriel Pelouze1, 2, Tom Van Doorsselaere2 , Konstantinos Karampelas2, 3 , Julia M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Riedl2 , and Timothy Duckenfield2 1 Université Paris-Saclay, CNRS, Institut d’astrophysique spatiale, 91405, Orsay, France 2 Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' e-mail: tom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='vandoorsselaere@kuleuven.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='be 3 Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK Received 23 September 2022 / Accepted 3 January 2023 ABSTRACT Context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Transverse oscillations are ubiquitously observed in the solar corona, both in coronal loops and open magnetic flux tubes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Numerical simulations suggest that their dissipation could heat coronal loops, counterbalancing radiative losses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' These models rely on a continuous driver at the footpoint of the loops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' However, analytical works predict that transverse waves are subject to a cut-off in the transition region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' It is thus unclear whether they can reach the corona, and indeed heat coronal loops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Aims.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Our aims are to determine how the cut-off of kink waves affects their propagation into the corona, and to characterize the variation of the cut-off frequency with altitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Using 3D magnetohydrodynamic simulations, we modelled the propagation of kink waves in a magnetic flux tube, embed- ded in a realistic atmosphere with thermal conduction, that starts in the chromosphere and extends into the corona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We drove kink waves at four different frequencies, and determined whether they experienced a cut-off.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We then calculated the altitude at which the waves were cut-off, and compared it to the prediction of several analytical models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We show that kink waves indeed experience a cut-off in the transition region, and we identified the analytical model that gives the best predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' In addition, we show that waves with periods shorter than approximately 500 s can still reach the corona by tunnelling through the transition region, with little to no attenuation of their amplitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' This means that such waves can still propagate from the footpoints of loop, and result in heating in the corona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Key words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Sun: atmosphere – Sun: oscillations – magnetohydrodynamics (MHD) – waves – methods: numerical 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Introduction Recent advances in observations and modelling have shown that magnetohydrodynamic (MHD) waves could significantly contribute to the heating of the solar corona (see review by Van Doorsselaere et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' In particular, transverse waves are ubiquitously observed, and they come in several kinds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The type that was first discovered are the transverse waves that are impul- sively excited after a flare (Nakariakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' However, these transverse waves are only sporadically excited and do not play an important role in the energy budget of the solar corona (Terradas & Arregui 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Later on, it was discovered that the corona is filled by small-amplitude transverse waves (Tomczyk et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Tomczyk & McIntosh 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' McIntosh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Tian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' These were observed in coronal loops as prop- agating (Tiwari et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2019) or standing waves (Anfinogentov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' These low-amplitude transverse waves were also observed as propagating waves in open-field regions (Thurgood et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Morton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' These low-amplitude waves show little-to-no decay (Morton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2021) and are thus named “decayless”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Because the flare-excited standing waves are rapidly decay- ing (Goddard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Nechaeva et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2019) due to reso- nant absorption (Goossens et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2002) and non-linear Kelvin- Helmholtz instability (KHI) damping (Terradas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' An- tolin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Van Doorsselaere et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Arregui 2021), it is generally thought that the decayless waves must be con- tinuously supplied with energy to counteract its strong damp- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Several mechanisms for excitation have been proposed: slip- stick driving with steady flows (Nakariakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Karam- pelas & Van Doorsselaere 2020), vortex shedding (Nakariakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Karampelas & Van Doorsselaere 2021) or footpoint driving (Nisticò et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Karampelas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2017) through p- modes (Morton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2019) or convective shuffling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The latter option of footpoint driving has had some success in generating standing mode decayless waves (Afanasyev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2020), which counterbalance the non-linear damping through the KHI (Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2019) and lead to heating of loops (Shi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' However, for the driving of decayless waves through their footpoints, it is not well understood how the transverse waves propagate through the complicated structure of the chromo- sphere and transition region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The simulations of transverse-wave induced KHI heating (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Karampelas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2019) only take into account the coronal part of the loop, that is imposing a driver at the top of the transition region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' To properly model the whole loop evolution due to the wave heating, it is essential to also model the wave driver in the photosphere, and accurately capture its influ- ence on the coronal loop dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' In plane-parallel atmospheres, the propagation of fast and slow waves has been well studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' It was found that these modes couple efficiently to Alfvén waves through resonant absorption (Hansen & Cally 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Cally & Andries 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Khomenko & Cally 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Currently, investigations are ongoing to what hap- pens if the cross-field structuring is included into the wave prop- agation model (Cally & Khomenko 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Riedl et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2019, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Another crucial ingredient is the wave’s behaviour in Article number, page 1 of 8 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='03100v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='SR] 8 Jan 2023 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' kink_cutoff strong (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' non-WKB) stratification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' It is well-known that slow waves experience a cut-off while propagating through a stratified medium (Bel & Leroy 1977).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' This has been verified observation- ally (Jess et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2013) and numerically (Felipe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Still, up to now, it is unknown if a similar cut-off exists for transverse waves in structured media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' For the driving of the observed decay- less waves in the corona, this is a crucial property to understand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Several analytical works predict that transverse waves are cut-off in the transition below a given frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The first for- mula was derived by Spruit (1981): ω2 Sp81 = g 8H 1 2β + 1, (1) where g is the gravity projected along the loop, H the pressure scale height, and β the ratio between the gas and magnetic pres- sures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' For a typical isothermal atmosphere, this corresponds to a cut-off period of 700 s (Spruit 1981).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' However, Lopin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' (2014) showed that this classical cut-off is suppressed when the radial component of the magnetic field is taken into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Lopin & Nagorny (2017) later showed that transverse waves can still be cut-off, provided a non-isothermal atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' They pre- dict the following cut-off frequency: ω2 LN17 = c2 k0 4H0H(z) � δ2 B dH(z) dz + H2(z) z2 � , (2) where z is the altitude, ck0 is the kink speed at the base of atmo- sphere (z = z0), H is the pressure scale height, H0 = H(z0), and δ2 B = � B2 0i − B2 0e � / � B2 0i + B2 0e � is the relative difference between the magnetic field inside (B0,i) and outside (B0,e) the flux tube, at z = z0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Finally, an alternative formula was derived by Snow et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' (2017): ω2 Sn17 = v2 A(z) 4z2 , (3) where z is the altitude, and vA is the Alfvén speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' In this article, we modelled the propagation of kink waves in an open magnetic flux tube, embedded in a non-isothermal atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The atmosphere extends from the chromosphere to the corona, and includes gravitational stratification and thermal conduction (Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We drove kink waves at different periods, and determined whether they experienced a cut-off (Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We compare these results to the three analytical formulas given above in Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 4, and summarize our conclusions in Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Numerical model: magnetic flux tube through the transition region We modelled a vertical magnetic flux tube of radius R = 1 Mm embedded in a stratified atmosphere, starting in the chromo- sphere (altitude z = 0 Mm) and extending through the transi- tion region (z ≈ 4 Mm) into the corona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Kink waves were ex- cited in the flux tube by applying a monoperiodic driver at the bottom of the domain (z = 0 Mm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' In the upper half of the do- main (z > 50 Mm), we implemented a “velocity rewrite layer” to absorb the kink waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The driver and the velocity rewrite layer are described in Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' A sketch of the domain is shown on Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We solved the 3D MHD evolution of this tube using the PLUTO code (Mignone et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2007), version 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' This code solves the conservative MHD equations (mass continuity, mo- mentum conservation, energy conservation, and induction equa- tion).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We used the corner transport upwind finite volume scheme, x [Mm] z [Mm] Driver Transition region Velocity rewrite layer Corona Magnetic tube Kink wave 2 Mm Chromosphere 0 −8 8 0 100 50 0 3 −3 y [Mm] Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Sketch of the simulation domain, showing the magnetic flux tube, the location of the kink wave driver (bottom boundary), chromo- sphere, transition region, corona, and velocity rewrite layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' where characteristic tracing is used for the time stepping, and a linear spatial reconstruction with a monotonized central differ- ence limiter is performed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The magnetic field divergence was kept small using the extended divergence cleaning method (gen- eralized Lagrange multiplier, or GLM), and flux was computed with the linearized Roe Riemann solver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We did not include ex- plicit viscosity, resistivity, or cooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' However, numerical dis- sipation results in higher effective viscosity and resistivity than what is expected for the solar corona, as discussed by Karam- pelas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We included a modified thermal conduction, as described below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The transition region between the chromosphere and the corona is characterized by a very sharp temperature gradient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Resolving such gradient requires a very high resolution along the tube (∼ 1 km in the transition region).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' In order to keep com- putational costs reasonable, we artificially broadened the tran- sition region (thus reducing the temperature gradient).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' To that end, we modified the thermal conductivity using the method de- veloped by Linker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' (2001);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Lionello et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' (2009);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Miki´c et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Below the cut-off temperature Tc = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='5 · 105 K, the parallel thermal conductivity was set to κ∥ = C0T 5/2 c with C0 = 9 · 10−12 Wm−1K−7/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Above Tc, κ∥ = C0T 5/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' This al- lowed us to use a resolution of 98 km along the tube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' This grid allows to fully resolve the broadened transition region, which has a minimum temperature scale length of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='6 Mm (see John- ston & Bradshaw 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The dimensions of the domain were (Lx, Ly, Lz) = (16, 6, 100) Mm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We used a uniform grid of 400 × 150 × 1024 cells, with a size of 40 km in the x and y direc- tions, and 98 km in the z direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Furthermore, we verified that the results did not change significantly when using a resolution of 40 km in the z direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' To that end, we ran a separate sim- ulation and verified that the resulting cut-off altitude and com- parison to the analytical formulas (see Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 4) were not strongly modified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We note that such resolution is too costly in terms of compute time to be used for all simulations in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The strong stratification in the transition region makes it challenging to obtain a relaxed initial state for the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We first initialized the domain with a field-aligned hydrostatic equi- librium (Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We then let the simulation relax in 2D for 47 ks (Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Finally, we filled the 3D domain with this re- Article number, page 2 of 8 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Pelouze et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' : Cut-off of transverse waves 0 20 40 60 80 100 Altitude [Mm] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='9995 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='9996 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='9997 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='9998 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='9999 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='0000 Velocity rewrite coefficient αv αv(t≤15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='7 ks) αv(t=18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='8 ks) αv(t=21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='9 ks) αv(t=25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='1 ks) αv(t=28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='2 ks) αv(t≥31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='3 ks)=αv,3D Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Velocity-rewrite coefficient αv, applied to the velocity above 50 Mm so that upper-propagating waves are not reflected back into the domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' αv is shown for different times of the 2D relaxation run.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The last profile (t ≥ 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='3 ks) is also applied in the 3D driven simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' laxed state through cylindrical symmetry, where we drove kink waves of different periods for a duration up to 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='7 ks (Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Boundary conditions and driver We first describe the boundary conditions used for the relaxation (2D) and kink wave (3D) simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Bottom boundary At the bottom boundary (base of the chro- mosphere, z = 0), the density and pressure were extrapolated using the hydrostatic equilibrium equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The magnetic field was extrapolated using the zero normal-gradient condition de- scribed by Karampelas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' (2019, section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' For vz, we ei- ther imposed a reflective boundary condition (2D relaxation, see Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='3), or imposed vz = 0 (in 3D, see Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We verified that both boundary conditions give the same results in 3D sim- ulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The parallel velocity components vx and vy were set to obey either a zero-gradient boundary condition (2D relaxation), or to follow a driver that excites kink waves (in 3D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We used a monoperiodic, dipole-like, driver developed by Pascoe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' (2010) and updated by Karampelas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Inside the tube, the driver imposes: � vx(x, y, t), vy(x, y, t) � = {v(t), 0} , (4) where v(t) = v0 cos (2πt/P0), with v0 the driver amplitude, set to 2 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The driver period, P0, was set to different values in order to test the cut-off of kink waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Outside the tube, the driver imposes: � vx(x, y, t), vy(x, y, t) � = v(t)R2 � (x − x0(t))2 − y2, 2 (x − x0(t)) y � � (x − x0(t))2 + y2�2 , (5) where x0(t) = v0P0/(2π) · sin (2πt/P0) is the centre of the tube’s footpoint at time t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' This driver generates a kink wave polarized in the x direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Upper boundary At the upper boundary (top of the corona, z = 100 Mm), the magnetic field was kept symmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' All other vari- ables obeyed a reflective boundary condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' In order to absorb the upwards waves excited by the driver, we artificially modified the velocity in the upper half of the domain (z > 50 Mm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' At each time step, after solving the MHD equations, we decreased each component of the velocity vi by multiplying it by a quantity αv ≲ 1: v′ i = αv(t, z)vi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' (6) In the driven 3D simulations αv was kept constant in time, and varied linearly along the loop, from 1 at z = zv = 50 Mm, to αv,min = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='9995 at z = L = 100 Mm: αv,3D(z) = ������� 1 if z ≤ zv, 1 − �1 − αv,min � � z−zv L−zv � else.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' (7) In the 2D relaxation run, the first third of the simulation (t1/3 = 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='7 ks) was run without modifying the velocity (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' αv = 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' During the second third, αv was linearly ramped down in time to match the profile αv,3D(z) described above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Finally, the last third of the simulation was run with the constant αv,3D(z): αv,2D(z, t) = ����������� 1 if t ≤ t1/3, 1 − �1 − αv,3D(z)� � t−t1/3 t1/3 � if t1/3 < t ≤ 2t1/3, αv,3D(z) else.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' (8) The evolution of αv is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' This “velocity rewrite layer” can successfully absorb the kink waves that are excited by the driver at the bottom of the chromosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' As a result, these waves are not reflected at the upper boundary, and do not propagate downwards back into the domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We stress that the solution obtained inside the velocity rewrite layer (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' above z = 50 Mm) is not physical, and that this layer should be considered as a part of the upper boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Side boundaries At the side boundaries (x and y axes), all vari- ables obeyed a zero-gradient boundary condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' In the 2D re- laxation run, we only simulated half of the tube radius (x > 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' For these simulations, we imposed a reflective boundary condi- tion on all variables at the centre of the tube (x = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Initial conditions: field-aligned hydrostatic equilibrium The simulation was initialized with a uniform vertical magnetic field of magnitude B0 = 42 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Along the tube, we imposed the following temperature profile, derived from Aschwanden & Schrijver (2002): T(x, y, z) = ��������� Tch if z ≤ ∆ch, Tch + (Tcor(x, y) − Tch) � 1 − � L−z L−∆ch �2�0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='3 else, (9) where z is the altitude, L is the height of the computational domain, ∆ch = 4 Mm is thickness of the chromosphere, and Tch = 20 000 K is the temperature in the chromosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We de- fined the transverse temperature profile at the top of the domain, Tcor(x, y), as: Tcor(x, y) = Tcor,ext + (Tcor,int − Tcor,ext)ζ(x, y), (10) where Tcor,int = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='2 MK is the temperature inside the tube, and Tcor,ext = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='6 MK is the temperature outside the tube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The shape of the profile was set by ζ(x, y): ζ(x, y) = 1 2 � 1 − tanh �� � x2 + y2/R − 1 � b �� , (11) Article number, page 3 of 8 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' kink_cutoff 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='1 1 10 100 Altitude [Mm] 10−2 10−1 100 Temperature [MK] Tint Text 10−13 10−12 10−11 10−10 10−9 10−8 Density [kg m⁻³] ρint ρext 39 40 41 42 43 44 Magnetic field [G] Bint Bext (a) Field-aligned hydrostatic equilibrium 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='1 1 10 100 Altitude [Mm] 10−2 10−1 100 Temperature [MK] Tint Text 10−13 10−12 10−11 10−10 10−9 10−8 Density [kg m⁻³] ρint ρext 9 10 11 12 13 14 Magnetic field [G] Bint Bext (b) 2D magnetohydrodynamic relaxation Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Temperature (black), density (red), and magnetic field magnitude (blue) profiles inside (r = 0 Mm;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' solid lines) and outside (r = 8 Mm;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' dashed lines) the flux tube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' (a) After solving the field-aligned hydrostatic equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' (b) After the 2D magnetohydrodynamic relaxation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' where R = 1 Mm is the tube radius, and b = 5 is a dimensionless number setting the width of the inhomogeneous layer between the interior and exterior of the tube (l ≈ 6R/b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' ζ(x, y) is close to 1 inside the tube, and to 0 outside.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We also set the density at the bottom of the chromosphere (z = 0) to: ρch(x, y, z = 0) = ρch,ext + (ρch,int − ρch,ext)ζ(x, y), (12) where ρch,int = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='51 · 10−8 kg m−3 is the density inside the tube, and ρch,ext = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='17 · 10−8 kg m−3 is the density outside.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We then integrated the field-aligned hydrostatic equilibrium equation nu- merically using a Crank-Nicholson scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The profiles of the imposed temperature and of the density resulting from the inte- gration are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 3 (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The temperature contrast (interior temperature divided by exterior temperature) is 1 in the chromo- sphere, and decreases to 1/3 in the corona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The density contrast is 3 in the chromosphere, increases to around 7 in the transition region, and decreases again to about 4 in the upper corona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The pressure contrast is 3 in the chromosphere, and slowly decreases to reach 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='2 in the upper corona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' However, this initial state is not in magnetohydrostatic (MHS) equilibrium, because the pressure varies across the flux tube, while the magnetic field does not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' To fix this, we let the tube relax by running a 2D magnetohydrodynamic simulation (Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We then used this relaxed state to initialize the 3D simulation of kink waves (Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Flux tube relaxation (2D) In order to obtain a flux tube in MHS equilibrium, we first run a 2D simulation, initialized with the initial state described in Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The MHD equations were solved in a longitudi- nal plane at y = 0 (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 1), with x ∈ [0, 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='56] Mm, and z ∈ [0, 100] Mm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We used a uniform grid of 64 × 2048 cells with a size of 134 km×49 km.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The resolution along z is higher than in the 3D runs in order to resolve the sharper gradients in the tran- sition region (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We verified that a resolution of 40 km in the x direction yielded the same results, by running a separate 2D simulation followed by a 3D driven simulation (P0 = 200 s), and verifying that the cut-off altitude and comparison to the an- alytical formulas (Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 4) were not significantly modified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We let the system evolve for 47 ks, during which the velocity rewrite parameter αv varied as described in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' As a result of the relaxation, periodic longitudinal flows with a velocity of about 15 km s−1 develop along the tube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' They are damped during the later stages of the simulation, as the velocity rewrite layer is gradually introduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' At the end of the relaxation run, residual velocities are lower than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='5 km s−1 everywhere in the domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The resulting temperature, density, and magnetic field profiles are shown on Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 3 (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Compared to the initial state (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 3 a), the transition region is significantly broadened, with a thickness of about 7 Mm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' This is the direct result of the modified thermal conductivity used in this setup, and allows for a coarser resolu- tion along the loop in the 3D simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' In addition, the tem- perature and density decrease, both inside and outside the tube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Overall, the density contrast (ρint/ρext) decreases: it reaches 1 in the chromosphere, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='2 in the transition region, and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='8 in the corona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The temperature contrast also changes to about 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='3 in the transition, and about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='8 in the corona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Finally, the magnetic field amplitude contrast remains very close to 1 everywhere in the domain (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='97 in the chromosphere and 1 in the corona), with a magnitude of about 11 G everywhere in the domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Compared to the initial uniform magnetic field, the magnitude is divided by about four, while the contrast remains close to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The final tem- perature and density profile significantly differ from the initial conditions of 2D relaxation run.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' However, this is not an issue, as the goal of this study is to investigate how the analytical formulas we consider (Spruit 1981;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Lopin & Nagorny 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Snow et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2017) predict the cut-off frequency for a given temperature and density profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' By using the relaxed profiles as an input to these analytical formulas, we obtained predictions for the relaxed sys- tem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' This relaxed 2D simulation was then mapped onto the 3D domain through cylindrical symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We used a rotation about the line x = 0 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' the centre of the loop), and a trilinear interpo- lation to project onto the 3D Cartesian grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Kink waves propagation (3D) In order to simulate the propagation of kink waves from the chro- mosphere to the corona, we drove the 3D simulations with the monoperiodic, dipole-like, driver described in Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' (4) and (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We ran four simulations, with different driver periods P0: 200 s, Article number, page 4 of 8 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Pelouze et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' : Cut-off of transverse waves 0 200 400 Time [s] 0 10 20 30 40 50 Altitude [Mm] (a) P0 =200 s −15 −10 −5 0 5 10 15 Velocity [km s⁻¹] 0 250 500 750 1000 Time [s] (b) P0 =335 s −6 −4 −2 0 2 4 6 Velocity [km s⁻¹] 0 500 1000 1500 2000 Time [s] (c) P0 =700 s −3 −2 −1 0 1 2 3 Velocity [km s⁻¹] 0 1000 2000 Time [s] (d) P0 =2000 s −2 −1 0 1 2 Velocity [km s⁻¹] Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Kink waves transverse velocity (vx) at the loop centre (x = y = 0), as a function of altitude and time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The velocity is shown for four 3D simulations with different driver periods P0, after an initial settling time of 2P0 (for P0 = 200 s, 335 s and 700 s), or 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='42P0 (for P0 = 2000 s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The dashed black lines represent a propagation at the kink speed (see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' (13)), and are independent of the driver period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 335 s, 700 s, and 2000 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The propagating kink waves generated by the driver are absorbed by the velocity rewrite layer at the top of the domain, and are thus not reflected downwards.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The first three simulations were run for a duration of 5P0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The last simula- tion was run for 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='75P0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' At the beginning of the simulations, the system goes through an initial transitory phase before the propa- gating kink wave is fully established (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' its amplitude does not change with time).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We waited for 2P0 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='42P0 for P0 = 2000 s) for the kink wave to enter a stable sinusoidal regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' After this duration, we saved high-cadence snapshots at the centre of the loop (line x = y = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' For all further analysis, we used the snap- shots saved after the transitory phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The transverse velocity vx at the loop centre is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' As can be seen on this figure, the amplitude of the kink wave decreases as the period increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' For the two longer driver periods (700 and 2000 s), the amplitude of the kink wave is small enough for some pertur- bations to become visible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' They travel at the Alfvén speed, and appear to be triggered by the flows remaining after the relaxation (see Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' These perturbations have amplitudes smaller than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='2 km s−1, and should thus have no effect on the wave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Results: cut-off and tunnelling of transverse waves In order to determine whether the kink waves driven in the 3D simulations are experiencing a cut-off, we looked at the evolution of the velocity amplitude (Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='1), as well as the phase speed (Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='2) as a function of altitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The analysis of these profiles allows us to establish that the transverse waves are subject to a low-frequency cut-off in the transition region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Wave amplitude increases with frequency In order to compute the velocity amplitude of the kink wave, we fitted the function Ax(z) sin (ω(z)t + φ(z)) to the transverse ve- locity vx(z, t), at each altitude (z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Ax(z) is the velocity amplitude, ω(z) is the kink wave frequency, and φ(z) is the phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The fre- quency varies by less than 1 % with altitude, confirming theoret- ical understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The velocity amplitude is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' In all simulations, the wave amplitude increases with altitude, because of the density decreases with altitude and energy con- servation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Across simulations, the amplitude at a given altitude increases with the frequency of the wave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' This means that kink waves with higher frequencies propagate better from the chro- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='1 1 10 Altitude [Mm] 2 4 6 8 10 12 14 16 Velocity amplitude [km s⁻¹] P0 =200 s P0 =335 s P0 =700 s P0 =2000 s 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='1 1 10 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='05 50 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Velocity amplitude of kink waves, as a function of altitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The velocity is shown for four different driver periods (P0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The inset has the same axes as the main figure, with a zoom-in on the vertical axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' mosphere to the corona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' This would be consistent with the low- frequency cut-off predicted by analytical models (see Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Evanescent waves in the transition region To determine the altitude at which the waves are cut-off, we compared their phase speed vp(z) to the kink speed of the flux tube ck(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The inverse phase speed is equivalent to the phase difference ∆φ(z) between two altitudes separated by ∆z: 1/vp(z) = ∆φ(z)/(ω∆z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The phase difference has been success- fully used to determine the cut-off frequency of acoustic and slow-magnetosonic waves in observations (Centeno et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Felipe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Krishna Prasad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Felipe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2018), and in simulations (Felipe & Sangeetha 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' In these articles, the authors determine the phase speed for a wide range of fre- quencies, but at a limited number of altitude positions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' In the present study however, we could only examine four frequencies, because of the high computational cost of a simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' However, we computed the phase difference at all altitudes of the simula- tion domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' This allows us to determine the altitude at which the wave is cut-off.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Article number, page 5 of 8 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' kink_cutoff The phase speed at a given altitude z was computed from the transverse velocity in the cells above and below, that is vx(t, z + ∆z/2) and vx(t, z − ∆z/2), where ∆z = 98 km is the cell size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We apodized these velocity time series with a Hann window, and computed the cross-correlation C(τ, z) = vx(t, z + ∆z/2) ⋆ vx(t, z−∆z/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We then determined the time delay ∆τ(z), by find- ing the maximum of C(τ, z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' To that end, we fitted the function A + B cos (ω(τ − ∆τ)/δ) to C(τ, z), with τ ∈ [−P0/4, +P0/4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Fi- nally, the phase difference was given by ∆φ(z) = ω∆τ(z), and the inverse phase speed by 1/vp(z) = ∆τ(z)/∆z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The inverse phase speed is shown on Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 6, alongside the inverse kink speed for the simulated flux tube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The kink speed ck is calculated using: c2 k(z) = ρi(z)v2 A i(z) + ρe(z)v2 A e(z) ρi(z) + ρe(z) , (13) where ρ(z) is the density, vA(z) = B(z)/ � µ0ρ(z) is the Alfvén speed, B(z) is the magnetic field amplitude, and µ0 is the mag- netic permittivity of vacuum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The indices i and e correspond, respectively, to internal and external quantities relatively to the flux tube, and are taken at x = 0 and x = 8 Mm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' In simulations with short driver periods, the inverse phase speed is somewhat smaller than the inverse kink speed in the chromosphere and transition region (vp/ck ≈ 2 for P0 = 200 s, and 5 for P0 = 335 s), and equals the inverse kink speed in the corona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' On the other hand, in simulations with longer periods, the inverse phase speeds are much lower than the inverse kink speed below a given altitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' For P0 = 700 s, 1/vp is about 250 times smaller than 1/ck below z = 1 Mm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' For P0 = 2000 s, a similar drop occurs below z = 20 Mm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' For a propagating kink wave, the inverse phase speed is ex- pected to be equal to the inverse kink speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Conversely, stand- ing and evanescent (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' cut-off) waves have inverse phase speeds smaller than the inverse kink speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Thus, the decreased inverse phase speed for higher periods indicates that the waves are cut- off in at least some regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' To distinguish between the standing and evanescent cases, we have also looked at the wave amplitude (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' In the absence of vertical stratification, the amplitude of evanescent waves decreases with altitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' However, in a stratified atmo- sphere (our case), the amplitude increases with altitude because of the density decrease, even for evanescent waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' On Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 5, the amplitude of waves with longer periods (for which 1/vp ≪ 1/ck) increases less with altitude compared to waves with shorter pe- riods (for which 1/vp ≲ 1/ck).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We thus conclude that the waves with longer periods are evanescent in parts of the low atmo- sphere, where their inverse phase speed is much lower than the inverse kink speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' This means that these long-period waves are cut-off in the transition region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Wave tunnelling at higher frequencies Waves with shorter periods (P0 = 200 and 335 s) also show signs of cut-off at low altitudes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Below z = 3 Mm, the inverse phase speed 1/vp is lower than the inverse kink speed 1/ck (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 6), and the amplitude increase with altitude is smaller for P0 = 335 s than for P0 = 200 s (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' However, this cut-off is significantly weaker than in the long-period case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' This is explained by the fact that the cut-off region (where 1/vp < 1/ck) is narrower for short periods (∼ 1 Mm) than for long periods (∼ 10 Mm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' As a result, short-period waves can tunnel through the cut-off region, and propagate into the corona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Furthermore, the weak attenuation in the cut-off region (1/vp ≲ 1/ck) results further reduces the effect of the cut-off.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='1 1 10 Altitude [Mm] 10−1 100 101 102 1/v [s Mm⁻¹] 1/ck 1/vp (P0 =200 s) 1/vp (P0 =335 s) 1/vp (P0 =700 s) 1/vp (P0 =2000 s) 50 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Inverse phase speed of the kink wave (1/vp), and inverse kink speed of the flux tube (1/ck), as a function of altitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The phase speed is given for four different driver periods (P0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='1 1 10 Altitude [Mm] 10−3 10−2 10−1 ωc [s⁻¹] Models Sp81 Sn17 LN17 (z0 = 24 km) LN17 (z0 = 659 km) LN17 (z0 = 1343 km) LN17 (z0 = 1978 km) Simulations tr =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='2 tr =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='3 tr =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='4 tr =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='5 50 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Kink wave cut-off frequency as a function of altitude, from an- alytical models (left column of the legend), and from our numerical simulations (right column of the legend).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We show the analytical pre- dictions of Spruit (1981, SP81), Snow et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' (2017, Sn17), and of Lopin & Nagorny (2017, LN17) (coloured lines).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' For the last model, we com- puted the cut-off frequency for different values of z0, the “base of the atmosphere”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We show the cut-off altitude (zc) for the four simulations that we ran with different driver frequencies (black markers).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The cut- off altitudes are computed with different thresholds tr, indicated on the legend and described in the text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Discussion: comparison to analytical formulas In order to compare our simulations to the analytical models, we quantified the cut-off frequency as a function of altitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We define zc, the altitude at which ck/vp goes above a given threshold tr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' This corresponds to the altitude where the wave leaves the cut- off regime and enters the propagating regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' That is, the cut- off altitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We computed zc for four values of tr between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='2 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Considering the four simulations with different driver frequencies ω, we obtained the cut-off altitude as a function of the frequency, zc(ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We compare this to the cut-off frequency as a function of altitude, ωc(z), predicted by the analytical models presented in Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Article number, page 6 of 8 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Pelouze et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' : Cut-off of transverse waves On Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 7, we show the cut-off frequency and altitude com- puted in our simulations, for different values of tr (black points).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' On the same figure, we show the predictions of the analytical formulas of Spruit (1981, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' (1)), Lopin & Nagorny (2017, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' (2)), and Snow et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' (2017, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' (3)) (coloured lines), com- puted for the temperature and density profiles used in our simu- lations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We implement the formula of Lopin & Nagorny (2017) for different values of z0, defined by the authors as “the base of the atmosphere”, with no further details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Because this quantity is not accurately defined, we used four values of z0 in the range of 24 km (bottom cell of our simulation domain), to 1978 km.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' This loosely defined parameter broadens the range for the cut- off frequencies predicted by this formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' While the match is rather loose, the cut-off altitude zc(ω) measured in our simula- tions matches the overall variation the cut-off frequency ωc(z) predicted by the Lopin & Nagorny (2017) formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' In particular, the shape of the profiles are in good agreement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' On the contrary, the Snow et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' (2017) model correctly predicts the cut-off fre- quency only in the lower transition region, but fails to do so in the upper transition region and corona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' In particular, their model predicts a slower decrease of the cut-off frequency above 20 Mm, while the simulations and the Lopin & Nagorny (2017) show a continued decrease.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Finally, the Spruit (1981) predictions are off by almost an order of magnitude at all altitudes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Thus, the for- mula of Lopin & Nagorny (2017) best predicts the cut-off fre- quency of transverse waves at different altitudes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' While the broadened transition region in our simulations could affect the altitude-dependence of the cut-off frequency, this should have little impact on the validation of the analytical for- mulas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Indeed, these formulas include the atmospheric stratifi- cation through altitude-dependent profiles of either the pressure scale height or the Alfvén speed (see Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Because they make no hypothesis on these profiles, they should be valid regardless of the atmosphere considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' As such, the agreement with the simulations should not depend on the broadening of the transi- tion region, provided the appropriate profile is fed into the for- mulas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' After validating the Lopin & Nagorny (2017) formula by comparing it to our simulations, it should be applicable to other stratification profiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We note that while analytical formulas can predict the kink cut-off frequency, this is not sufficient to know whether a kink wave with a given frequency will propagate into the corona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' To that end, the thickness of the cut-off region and the strength of the attenuation have to be taken into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' As shown by our simulations, kink waves with higher frequencies (≥ 3 mHz) can propagate into the corona by tunnelling through a region where they are cut-off (Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Furthermore, these waves only expe- rience a weak attenuation, because their frequency is close to the cut-off frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' In fact, the cut-off frequency does not consti- tute a clear-cut boundary between oscillatory and non-oscillatory solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' This was also reported for sound waves by Felipe & Sangeetha (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Although the question of whether a solution is oscillating is well-defined mathematically, this is not straight- forward to translate into a single cut-off frequency (Schmitz & Fleck 1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' For this reason, there exist several canonical def- initions for cut-off frequencies, set within the continuous vari- ation between the oscillating and non-oscillating regimes (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Schmitz & Fleck 1998 for sound waves in the solar atmo- sphere).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' As a result, cut-off frequencies are bound to be mere indications, rather than strong constraints, on the physical be- haviour of a wave (Chae & Litvinenko 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Conclusions Transverse waves are a candidate mechanism for heating the so- lar corona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' However, several analytical models predicted that they are cut-off in the transition region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' In order to assess whether transverse waves can indeed heat the corona, it is thus crucial to determine whether they can propagate through the transition region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' To that end, we have simulated the propagation of transverse kink waves in an open magnetic flux tube, embed- ded in an atmosphere extending from the chromosphere to the corona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We found that transverse waves are indeed cut-off in the lower solar atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' However, only waves with low frequen- cies (ν ≲ 2 mHz) are significantly affected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' At higher frequen- cies, the cut-off occurs in a very thin layer (∼ 1 Mm), and results in a weak attenuation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' In this case, waves can tunnel through the cut-off layer, experiencing little to no amplitude attenuation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' This means that transverse waves with high frequencies are able to transport energy from the chromosphere to the corona, where it can be dissipated and result in heating.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Furthermore, we compared our simulations to several ana- lytical models that predict the cut-off frequency of transverse waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We conclude that the formula proposed by Lopin & Nagorny (2017) gives the best prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' While our simulations use a broadened transition, we expect it to have little impact on the validation of analytical formulas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' As such, the formula by Lopin & Nagorny (2017) should be able to predict the cut-off frequency for any atmospheric stratification profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' We note that while the cut-off frequency is a good first indicator of whether a wave can propagate into the corona, it cannot alone predict the whole behaviour of the wave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' In particular, waves with frequen- cies just below the cut-off frequency (that should thus be cut-off) can still reach the corona, thanks to a combination of tunnelling, and weak attenuation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Acknowledgements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' This project has received funding from the European Re- search Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 724326).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' GP was supported by a CNES postdoctoral allocation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' TVD was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and inno- vation programme (grant agreement No 724326) and the C1 grant TRACEs- pace of Internal Funds KU Leuven.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' recognises support from a postdoctoral mandate from KU Leuven Internal Funds (PDM/2019), from a UK Science and Technology Facilities Council (STFC) grant ST/T000384/1, and from a FWO (Fonds voor Wetenschappelijk Onderzoek – Vlaanderen) postdoctoral fellowship (1273221N).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' The results received support from the FWO senior research project with number G088021N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Software: Astropy (Astropy Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2013, 2018), References Afanasyev, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Van Doorsselaere, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & Nakariakov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2020, A&A, 633, L8 Anfinogentov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Nakariakov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & Nisticò, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2015, A&A, 583, A136 Antolin, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Yokoyama, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & Van Doorsselaere, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2014, ApJ, 787, L22 Arregui, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2021, ApJ, 915, L25 Aschwanden, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' & Schrijver, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2002, ApJS, 142, 269 Astropy Collaboration, Price-Whelan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Sip˝ocz, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2018, AJ, 156, 123 Astropy Collaboration, Robitaille, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Tollerud, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2013, A&A, 558, A33 Bel, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' & Leroy, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 1977, A&A, 55, 239 Cally, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' & Andries, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2010, Sol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', 266, 17 Cally, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' & Khomenko, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2019, ApJ, 885, 58 Centeno, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Collados, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & Trujillo Bueno, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2006, ApJ, 640, 1153 Chae, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' & Litvinenko, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2018, ApJ, 869, 36 Felipe, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Khomenko, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Collados, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & Beck, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2010, ApJ, 722, 131 Felipe, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Kuckein, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & Thaler, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2018, A&A, 617, A39 Felipe, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' & Sangeetha, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2020, A&A, 640, A4 Goddard, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Nisticò, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Nakariakov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & Zimovets, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2016, A&A, 585, A137 Article number, page 7 of 8 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' kink_cutoff Goossens, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Andries, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & Aschwanden, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2002, A&A, 394, L39 Guo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Van Doorsselaere, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Karampelas, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & Li, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2019, ApJ, 883, 20 Hansen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' & Cally, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2009, Sol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', 255, 193 Jess, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Reznikova, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Van Doorsselaere, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Keys, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & Mackay, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2013, ApJ, 779, 168 Johnston, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' & Bradshaw, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2019, ApJ, 873, L22 Karampelas, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' & Van Doorsselaere, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2020, ApJ, 897, L35 Karampelas, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' & Van Doorsselaere, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2021, ApJ, 908, L7 Karampelas, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Van Doorsselaere, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & Antolin, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2017, A&A, 604, A130 Karampelas, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Van Doorsselaere, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & Guo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2019, A&A, 623, A53 Khomenko, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' & Cally, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2012, ApJ, 746, 68 Krishna Prasad, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Jess, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Van Doorsselaere, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2017, ApJ, 847, 5 Linker, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Lionello, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Miki´c, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & Amari, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2001, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', 106, 25165 Lionello, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Linker, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & Miki´c, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2009, ApJ, 690, 902 Lopin, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' & Nagorny, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2017, ApJ, 154, 141 Lopin, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Nagorny, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & Nippolainen, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2014, Sol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', 289, 3033 McIntosh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', de Pontieu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Carlsson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2011, Nature, 475, 477 Mignone, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Bodo, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Massaglia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2007, ApJS, 170, 228 Miki´c, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Lionello, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Mok, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Linker, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & Winebarger, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2013, ApJ, 773, 94 Morton, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Tiwari, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Van Doorsselaere, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & McLaughlin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2021, ApJ, 923, 225 Morton, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Tomczyk, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & Pinto, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2015, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Com.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', 6, 7813 Morton, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Weberg, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & McLaughlin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2019, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', 3, 223 Nakariakov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Anfinogentov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Nisticò, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & Lee, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2016, A&A, 591, L5 Nakariakov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Aschwanden, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & van Doorsselaere, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2009, A&A, 502, 661 Nakariakov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Ofman, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Deluca, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Roberts, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & Davila, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 1999, Sci, 285, 862 Nechaeva, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Zimovets, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Nakariakov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & Goddard, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2019, ApJS, 241, 31 Nisticò, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Nakariakov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & Verwichte, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2013, A&A, 552, A57 Pascoe, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Wright, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & De Moortel, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2010, ApJ, 711, 990 Riedl, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Doorsselaere, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Reale, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2021, ApJ, 922, 225 Riedl, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Van Doorsselaere, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & Santamaria, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2019, A&A, 625, A144 Schmitz, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' & Fleck, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 1998, A&A, 337, 487 Shi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Van Doorsselaere, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Guo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2021, ApJ, 908, 233 Snow, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Fedun, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Verth, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & Erdelyi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2017, New Insights into Kink Wave Cut-off Frequency Due to Longitudinal Stratification, UK National Astron- omy Meeting, 2017 Spruit, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 1981, A&A, 98, 155 Terradas, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Andries, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Goossens, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2008, ApJ, 687, L115 Terradas, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' & Arregui, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2018, Research Notes of the American Astronomical Society, 2, 196 Thurgood, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Morton, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & McLaughlin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2014, ApJ, 790, L2 Tian, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', McIntosh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Wang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2012, ApJ, 759, 144 Tiwari, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Morton, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Régnier, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & McLaughlin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2019, ApJ, 876, 106 Tomczyk, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' & McIntosh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2009, ApJ, 697, 1384 Tomczyk, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', McIntosh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Keil, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2007, Sci, 317, 1192 Van Doorsselaere, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Goossens, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Magyar, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Ruderman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', & Ismayilli, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2021, ApJ, 910, 58 Van Doorsselaere, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Srivastava, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', Antolin, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' 2020, Space Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} +page_content=', 216, 140 Article number, page 8 of 8' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE1T4oBgHgl3EQfVQSI/content/2301.03100v1.pdf'} diff --git a/C9AyT4oBgHgl3EQf4fqw/vector_store/index.faiss b/C9AyT4oBgHgl3EQf4fqw/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..0d323d45390869330d1ca75756f1d782929b0419 --- /dev/null +++ b/C9AyT4oBgHgl3EQf4fqw/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:088ce65ac6c09736a6f79f23d3e808d443cc7ecf66640e354ed1460e53a7dd52 +size 2621485 diff --git a/D9E4T4oBgHgl3EQfGQye/vector_store/index.faiss b/D9E4T4oBgHgl3EQfGQye/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..25bcfda88152b25460c6508c7e5f173b8fe6270b --- /dev/null +++ b/D9E4T4oBgHgl3EQfGQye/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c1b818e18447058e15ab7f9199dbc5768efbc1c9dc9944e0f45bd9921cc5f3f9 +size 7733293 diff --git a/DNE2T4oBgHgl3EQfSAfe/content/tmp_files/2301.03789v1.pdf.txt b/DNE2T4oBgHgl3EQfSAfe/content/tmp_files/2301.03789v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..79b11535dbe76dca35eede831a57772a02c85a7b --- /dev/null +++ b/DNE2T4oBgHgl3EQfSAfe/content/tmp_files/2301.03789v1.pdf.txt @@ -0,0 +1,3874 @@ +1 + +Determination of the Zak phase of one-dimensional photonic +systems via far-field diffraction + +C. Liu*, H.R. Wang*, and H.C. Onga) + +Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, People’s +Republic of China + +Bloch waves in 1D periodic systems carry Zak phase, which plays a key role in determining +the band topology. In general, for systems that possess inversion symmetry, the Zak phase of +an isolated band is quantized as 0 or and is associated with the spatial field symmetries at the +Brillouin zone center and boundary. The phase is if the field symmetries are different but is +0 when they are the same. Since the radiation losses from leaky systems are strongly associated +with the Bloch waves, one may probe the far-field continuum to determine the Zak phases. +Here, we formulate the diffractions from photonic systems at the zone center and boundary and +find their spectral profiles reveal the Bloch wave symmetries and thereby the corresponding +Zak phase. The field symmetries also generalize the occurrence of bound states in the +continuum at high symmetry points. For verification, we have studied the Zak phases of one- +dimensional TM plasmonic and TE photonic crystals by electrodynamic simulations and +measuring the optical properties of plasmonic crystals using Fourier space diffraction +spectroscopy and common path interferometry. In addition, a topological protected interface +state is demonstrated when two 0 and systems are joined together. The results prove our +method provides a simple way for characterizing the band topology of non-Hermitian systems +via far-fields. + +* These authors equally contributed to this work +a) hcong@phy.cuhk.edu.hk + + +2 + +I. +INTRODUCTION +Topological physics has attracted a widespread of interest not only in condensed matter +physics [1-3] but also in other branches such as ultracold atom [4,5], electromagnetism [6-8], +mechanics [9], acoustics [10,11], and oceanography [12]. Much attention in this field is focused +on realizing the so-called topologically protected states, which support robust wave +propagation against perturbation and disorder [1-12]. To produce such states, two systems that +are topologically trivial and nontrivial are brought together to facilitate the occurrence of +topological phase transition at the interface. As most of the matters are topologically trivial, +the identification and the growth of different classes of topological systems are currently under +intensive investigation [13,14]. Likewise, developing methods to characterize the topological +properties of the systems is equally important. +In analogy to the Su-Schrieffer-Heeger (SSH) model, the band topology of one- +dimensional (1D) periodic systems is determined by Zak phase, , which is a geometric phase +[15,16]. For a particular th isolated band, emerges when the Bloch wave travels in +momentum space adiabatically along the band across the first Brillouin zone from k = -/P to +/P, where P is the period of the system. [16]. If systems possess inversion symmetry, is +quantized as either 0 or [16]. defines the topological invariant of two band systems. For +systems that support higher order bands, the topology of the band gap of interest is the +summation of all below that gap, giving rise to a summation that is either even or odd +multiple of for indicating whether the system is topologically trivial or nontrivial [17,18]. A +zero-dimensional interface state is then formed between two odd and even systems. +One notable feature that comes with is the distinctive spatial wave symmetries at the +Brillouin zone center and boundary of the band [16-18]. The field symmetries, typically even + +3 + +and odd with respect to the unit cell center, are the same for = 0 system but different when + = [18]. The association between n and the field symmetry can be understood from the +standpoint of Wannier function, which sums the Bloch waves carrying all k along a band [19]. +Consider the Bloch waves at the zone center and boundary that have the same field symmetry, +the Wannier function has either the +( +) +( ) +W +x +W +x +− += + or +( +) +( ) +W +x +W +x +− += − + spatial dependence, +leading to = +( ) +2 +2 +x W +x +dx +P + + +− + = 0 [16]. On the other hand, for the waves that exhibit +different spatial symmetries at two high symmetry points, the Wannier function now shows +( +) +( ) +W +x +P +W +x +− + += + or +( +) +( ) +W +x +P +W +x +− + += − + dependence, which gives = [16]. +Therefore, instead of tracing the Bloch waves one by one along the band to determine n, one +can simply examine the field symmetries. However, how to measure the Bloch wave symmetry +remains challenging. +To date, there have been only a few studies focusing on measuring the geometric phase, +either Zak or Berry phase. Demler and Bloch are among the first to combine Bloch oscillation +and interferometry in a dimerized cold atom system to mobilize the Bloch wave across the +Brillouin zone and subsequently measure [20,21]. They prove = evolves when the +intercell interaction is stronger than that of intracell. Cardano et al have demonstrated the use +of mean displacement method to determine in a chiral Floquet system [22]. Such method is +then extended to other more generalized SSH systems where the next nearest neighbor +interaction is strong enough to break the chiral symmetry [23]. While most of them trace the +Bloch waves, Gorlach et al adopt an alternative approach by probing the spectral positions of +the dipolar (bright) and quadrupolar (dark) characteristics of far-field radiations, which scale +with the topological invariant of the system as deduced by using temporal coupled mode theory + +4 + +(CMT) [24]. When the bright and dark radiation bands are at longer and shorter wavelengths, +the system is trivial, but becomes nontrivial upon switching places. However, their method is +limited to the lowest band gap at the zone center. Recently, Chan and his coworkers have +formulated that the sign of the reflection phase for wavelengths within the th band gap can +resolves the trivial and nontrivial [17,18]. The determination of via measuring the +reflection phase of the band gap is then demonstrated in several photonic and acoustic systems +[25-28]. +Here, we further extend the CMT to formulate the diffractions arising from 1D leaky +optical systems and show the mirror symmetric diffraction orders taken at the zone center and +boundary directly reveal the near-field symmetries and thereby the corresponding . It is found +the odd and even near-field symmetries dictate the far-field interferences, shaping the overall +radiation profiles including the bound states in the continuum (BICs) [29-35] and Fano +resonances [36]. We find destructive interference always occurs between the diffraction orders +of the first band gap at the zone center, resulting in a symmetry-protected quasi-BIC [34]. To +verify the CMT, we first conduct finite-difference time-domain (FDTD) simulations on 1D Au +plasmonic and SiO2/Au photonic crystals which respectively support TM- and TE-polarized +surface waves and the results agree very well with the theory. We then fabricate plasmonic +crystals (PmCs) with different geometries and measure their polarization- and angle-resolved +diffraction and phase profiles by Fourier space spectroscopy and common path interferometry +to study . Changing the groove width of PmCs leads to band inversion and thus effectively +varies the band topology. Finally, a topological protected interface state is demonstrated by +joining two topological trivial and nontrivial PmCs together. +II. +TEMPORAL COUPLED MODE THEORY + +5 + +At high symmetry points in 1D Brillouin zone, two degenerate but counter propagating +Bloch modes interact with each other to yield two coupled modes separated by an energy gap +[37,38]. Such interaction can be described within the framework of CMT [37-40]. As shown +in Fig. 1(a), for an optically thick system that possesses inversion symmetry, the dynamics of +two mode amplitudes, a1 and a2, taken under TM or TE polarization can be written as: + +1 +1 +2 +2 +o +c +T +c +o +a +a +d +i +K +s +a +a +dt + + + + ++ + + + + + + += ++ + + + + + + + + + + + + +, + + +(1) +where +o + and +c + are the complex frequency and coupling constant, which are expressed as +( +) 2 +o +o +a +r +i + + += ++ + + + and +c +i + + + += ++ +, where o is the resonant angular frequency, a and +r are the absorption and radiative decay rates, and and are the real and imaginary parts of +the coupling constant. For a given polarization, the discrete incoming power amplitude vector +is +0 +T +N , +, +N , +s +s +s +s ++ +− ++ ++ ++ += + + + , where the subscript N is an integer 0. +0, +s + is denoted +as the surface normal power and +N , +s ++ are two mirror symmetric powers defined obliquely with +respect to the surface normal. +1 +0 1 +1 +2 +0 2 +2 +N , +, +N , +T +N , +, +N , +K + + + + + + +− +− + + += + + + +, where +1 +N, + + and +2 +N, + + are the +complex in-coupling constants for inputting energy from the continuum to a1 and a2. N +depends on the number of available ports, which is governed by the diffraction equation as +( +) +m +m +P sin +sin + + + += +− +, where m is the diffraction order, is the incident polar angle, and m +is the diffraction angle [41]. For example, as shown in Fig. 1(b), for the lowest band gap at the +zone center, = 0o, such that only one m = 0th propagating order exists in free space. For the +second band gap at the zone boundary where +2P sin + + += +, two m = 0th and 1st orders are +present at +m + + += . In general, zone center supports an odd number of ports including +0 + +whereas an even number of ports is found at zone boundary where +0 + is always zero [41]. + +6 + +To see how the field symmetry is revealed, we solve the eigenvalues and eigenvectors of +the homogeneous part of Eq. (1) by diagonalization. The complex frequencies of the coupled +modes as: +( +) +( +) +( +) +2 +o +a +r +i + + + + + = + ++ + + + +, indicating their spectral positions and decay +rates depend on and . For the real part, we see the spectral positions of the coupled modes +are determined by the magnitude and sign of and they are separated by an energy gap = 2. +On the other hand, for the imaginary part, one mode has larger decay rate whereas another one +has lower, featuring the bright (dipolar) and dark (quadrupolar) modes [42]. In particular, if +2 +0 +r + + − += +, one coupled mode exhibits zero radiation damping, resulting in a quasi-BIC [34]. +The unit eigenvectors are +1 +2 +1 +2 +1 +2 +a +a +a +a +a +a ++ +− ++ + + + + += + + + + +− + + + + +, which are orthogonal and carry odd and even +symmetries with respect to the unit cell center. As a result, for an isolated energy band, = 0 +if both the eigenvectors at the zone center and boundary are either a+ or a− but = if they are +different. +We study the spatial field symmetries of a for TM and TE polarized waves. Leaky +evanescent waves are considered here as an example. For TM modes such as Bloch-like +surface plasmon polaritons (SPPs) propagating in the x-direction, the magnetic fields of a+ are +( )( +) +1 +2 +x +x +z +ik x +ik x +k z +k +ˆ +H +H +Ae +u +x +e +e +y +− +− ++ += +− +, where A is a constant, kx and kz are the propagation +constants in the x- and z-directions, and +( ) +ku +x is the periodic function [43]. +( ) +ku +x is assumed +to be an even function for simplicity as its symmetry does not affect the Zak phase results. The +corresponding +electric +fields +are +( +) +( ) +( +) +( +) +( +) +1 +2 +2 +zk z +k +z +x +x +x +H +H +A +ˆ +ˆ +E +e +u +x +k sin k x x +k cos k x z +i +− + ++ +− += += ++ +− + +, revealing the in-plane x- +and out-of-plane z-components are odd and even in the x-direction, or +( ) +( +) +x +x +E +x +E +x += − +− + and + +7 + +( ) +( +) +z +z +E +x +E +x += +− +. Likewise, for a− , we have even +( ) +( +) +x +x +E +x +E +x += +− + and odd +( ) +( +) +z +z +E +x +E +x += − +− +. Conversely, for TE modes such as waveguide modes, the in-plane electric +fields of a+ and a− are +( ) +( +) +2 +zk z +k +x +ˆ +iAe +u +x sin k x y +− + and +( ) +( +) +2 +zk z +x +ˆ +Ae +u x cos k x y +− +, giving rise to +odd +( ) +( +) +y +y +E +x +E +x += − +− + and even +( ) +( +) +y +y +E +x +E +x += +− +, respectively. Therefore, for the in-plane +components, the TM and TE polarized a+ and a− are odd and even in the x-direction. +Once the field symmetries of a are known, their spectral positions will then be deduced +via far-field. By using conservation of energy and time reversal symmetry, the outgoing ports +are expressed as + +1 +2 +a +s +C s +K a +− ++ + + += ++ + + + + +, where +0 +T +N , +, +N , +s +s +s +s +− +− +− +− +− += + + + and C is the +nonresonant scattering matrix [38]. We find the transformation matrix to be +1 +1 +1 +1 +1 +2 +T +T + + += + + +− + + + +so that the outgoing fields can now be rewritten as: + + + +1 +2 +1 +2 +0 1 +0 2 +0 1 +0 2 +1 +2 +1 +2 +1 +1 +2 +2 +N , +N , +N , +N , +T +, +, +, +, +N , +N , +N , +N , +a +s +C s +T K +C s +a +a +a + + + + + + + + + + + + +− +− +− +− ++ +− ++ ++ ++ +− +− ++ +− + + + + + + + + + + + + + + + + + + ++ +− += ++ += ++ ++ + + + + + + + + + + + + + + + + ++ +− + + + + +. +(2) +Eq. (2) can be further simplified by using the relationships between +n,i + − + and +n,i + +, where i = 1 +or 2 and n N is the diffraction order. As provided in the Supplementary Information [44], +given the fact that both far- and near-fields should follow the same spatial symmetry, the +radiation patterns of TM a arising from the interferences between the decay ports should +preserve the same +( ) +( +) +F +F +x +x +E +x +E +x += − +− + and +( ) +( +) +F +F +x +x +E +x +E +x += +− + dependences, where the +superscript +F +denotes +the +far-fields, +leading +to +( +) +1 +2 +1 +2 +n, +n, +n, +n, + + + + +− +− ++ += − ++ + and +1 +2 +1 +2 +n, +n, +n, +n, + + + + +− +− +− += +− + for a+ and a− . Likewise, for TE a , +( ) +( +) +F +F +y +y +E +x +E +x += − +− + and + +8 + +( ) +( +) +F +F +y +y +E +x +E +x += +− + also give +( +) +1 +2 +1 +2 +n, +n, +n, +n, + + + + +− +− ++ += − ++ + and +1 +2 +1 +2 +n, +n, +n, +n, + + + + +− +− +− += +− +. More +importantly, both polarizations indicate +,1 +,2 +n +n + +− += − + and +,1 +,2 +n +n + + +− += − +, which agree with the +fact that the system should fulfill the inversion symmetry requirement. However, +1 +n, + − + ( +2 +n, + − +) +is not necessarily equal to +1 +n, + +( +2 +n, + +). In addition, for a+ , +( +) +0 1 +0 2 +0 1 +0 2 +, +, +, +, + + + + ++ += − ++ + implies the +normal diffraction order is always missing, resulting in an even number of decay ports at both +the zone center and boundary. Therefore, at the zone center for TM and TE polarizations, Eq. +(2) can be reduced as: + +( +) +0 +0 +1 +1 +0 +2 +2 +2 +N +N +N , +N +N +, +N +N +N , +N +N +s +s +C s +a +a +s + + + + + + + + + +− +− +− +− +− ++ ++ +− +− +− +− +− ++ + + + + + + + + + + + + + + + + + + + + + + + + += ++ ++ + + + + + + + + + + + + + + + + + + +− +− ++ + + + + + + +, + +(3) +where the 1,2 subscripts are now dropped. On the other hand, at the zone boundary, the +outgoing fields carry the same analytical form as Eq. (3) except +0, +s − = 0 since +0 +0 + = +. +Eq. (3) reveals additional information about the occurrence of quasi-BIC at high +symmetry points. In general, quasi-BIC occurs when all the decay ports are zero. Therefore, +at the zone center, unless +0 + = 0, quasi-BIC can only be observed from a+ . Particularly, for +the lowest zone center band gap where only the N = 0 port is present, an a+ quasi-BIC is always +present, making it symmetry protected [34]. However, for higher order band gaps, while the +normal N = 0 port is still zero, other N > 0 ports are not necessary. Quasi-BIC can still be +found if +n +n + + +− = +. In other words, if all the mirror symmetric decay ports of the uncoupled +mode are identical and in-phase, destructive interferences occur everywhere across all +diffraction orders, resulting in quasi-BIC. Such special condition can only be met for certain +tailored system geometry. If +n +n + + +− +, a+ appears as bright or dark mode depending on the + +9 + +sign of . On the other hand, at the zone boundary where +0, +s −is always zero, a+ or a− can be +quasi-BIC if +n +n + +− += + or +n +n + +− += − + is fulfilled. +We then explicitly formulate the diffraction orders. By considering only one single +incidence port q such that +0 +0 +T +q, +s +s ++ ++ + + += + , the coupled mode amplitudes are +( +) +( +) +, +1 +2 +q +q +qs +a +i +− ++ ++ ++ +− += +− + + + + + and +( +) +( +) +, +1 +2 +q +q +qs +a +i + + + + +− ++ +− +− ++ += +− +. Two mirror symmetric n N diffraction +orders thus are: +( +)( +) +( +) +( +)( +) +( +) +( +)( +) +( +) +( +)( +) +( +) +, +, +, +, +1 +1 +, +2 +2 +1 +1 +, +2 +2 +n +n +q +n +n +n +n +q +q +n +n +q +q +n +n +q +q +n +n +q +q +q +s +c +s +s +s +i +i +i +c +i +− +− +− ++ ++ +− ++ +− +− +− +− ++ +− +− +− +− +− ++ +− +− +− ++ ++ ++ +− +− +− +− += +− ++ +− += ++ ++ ++ +− + + + + + + + + + + + + + + + + + + + + + + + + + + +(4) +where +n +c are the complex nonresonant scattering coefficients. We see from Eq. (4) that the +radiations from a+ and a− have odd and even symmetries [37]. While a− gives two in phase +diffraction orders, those from a+ are out of phase. Therefore, by fitting the magnitude and +phase, +2 +, +, +n +q +s +s + +− ++ and +( +) +, +, +arg +n +q +s +s + +− ++ , spectra of any pair of oblique mirror diffraction orders +at the zone center and boundary with Eq. (4) to determine their relative phase, the spectral +positions +( +) +Re + + + can be deduced to find out whether a+ or a− is associated with the energy +band of interest. +III. +FINITE-DIFFERENCE TIME DOMAIN SIMULATION +We verify the CMT model by FDTD simulations. Two types of optical systems are +considered, and they are 1D Au plasmonic and SiO2/Au photonic crystals. While the plasmonic +crystals (PmCs) support TM-polarized Bloch-like SPPs [45], the photonic crystals (PhCs) +excite TE waveguide modes [46]. We will present the results of PmCs here and those of the + +10 + +PhCs are provided in the Supplementary Information [44]. For the PmCs, the unit cell is shown +in Fig. 2(a), with the period P and groove height H are set at 900 nm and 50 nm, respectively, +and the groove width W is varied from 100 and 700 nm with a step size of 150 nm. The +corresponding TM-polarized k- and wavelength-resolved total reflectivity, which sums all the +diffraction orders, mappings are calculated along the -X direction in Fig 2(b) – (f), showing +the presence of the dispersive ±1 and -2 Bloch-like SPP bands, which follow the phase +matching equation given as +2 +2 +1 +1 +2 +Au +SP +Au +n +k +P + + + + + + + + = ++ + + + + ++ + + + +, where +Au + + is the dielectric constant +of Au and nSP is the SPP band, as illustrated by the dash lines in Fig 2(b) [37,45]. More +importantly, one sees ±1 SPPs cross at k = 0 m-1 and +1 and -2 SPPs cross at k = /P m-1, +yielding two band gaps at = 925 and 650 nm for the zone center and boundary. In agreement +with the CMT model, the coupled modes exhibit dark and bright radiation characteristics. +We attempt to determine the Zak phase of the +1 SPP band. At the zone center for all +PmCs, the dark mode is quasi-BIC and located at the +1 band for W = 100 – 400 nm but flips +to the -1 band when W increases further. The corresponding reflectivity spectra are plotted in +Fig. 3(a) for illustration, clearly showing only one single reflectivity dip as the bright mode. +As a result, we conclude a+ locates at the +1 band for W = 100 – 400 nm but flips to the -1 +band for wider W. On the other hand, at the zone boundary, we can no longer differentiate the +spectral positions of a simply by examining the total reflectivity spectra because two dark +and bright modes are present. Since only a pair of mirror symmetric m = 0th and 1st, or n = 1, +diffraction orders is available, Fig. 3(b) & (c) show the simulated +2 +1, +1, +s +s + − ++ + and +( +) +1, +1, +arg s +s + − ++ spectra and we fit them by by Eq. (4) to determine the relative phases between +the diffraction pairs of two modes. The best fits are displayed as the solid lines. The +corresponding +( +) +Re of all PmCs are summarized in Table 1, in which the highlights are the + +11 + +coupled modes sitting on the +1 band at the zone center (high energy mode) and boundary (low +energy mode). If the highlights at two regions are either a+ or a− , the Zak phase is 0, but +when they are different. As a result, by comparing the modes at the zone center and boundary +of the +1 band, = for W = 100, 250, 550 nm but = 0 for 400 and 700 nm. +To confirm our findings, we have simulated the near-field intensity profiles at the zone +center and boundary of the +1 band by FDTD in Fig. 4(a) & (b) for different W. At the zone +center, we see the profiles are even with respect to the groove center for W = 100 – 400 nm but +change to odd afterwards [18,47]. On the other hand, the profiles at the zone boundary are odd +for W = 100, 250, and 700 nm but are even for 400 and 550 nm. As a result, the field +symmetries indicate = for W = 100, 250 and 550 nm but 0 for 400 and 700 nm, in consistent +with the far-field simulations. In addition, we have calculated the near-field patterns across the +first Brillouin zone for all PmCs in the Supplementary Information [44] and then employ the +Wilson loop method to directly determine given as +( ) +P +P +X +k dk + + +− +, where +( ) +X +k is the Berry +connection given as +( ) ( ) +( ) ( ) +* +,k +k +unit cell +* +k +,k +unit cell +u +( x ) +i +u +x +x +dx +k +u +x +x u +( x )dx + + + + + + + [47,48]. The evolutions of the individal +phase difference, which is +( ) +X +k +k + , of the +1 band as a fucntion of k with k = 0.04π/P are +plotted in Fig. 4(c). The integrated areas yield the phases that once again support our results. +IV. +EXPERIMENTAL VERIFICATION +A series of 1D periodic Au rectangular groove PmCs has been fabricated by focused ion +beam (FIB) and their scanning electron microscopy (SEM) images are shown in the insets of +Fig. 5(a) – (e), showing they have P = 900 nm, H = 50 nm, and W varying from 100 to 700 nm +[47]. After the sample preparation, the PmCs are then transferred to a homebuilt Fourier space + +12 + +optical microscope described in the Supplementary Information for angle- and wavelength- +resolved diffraction measurements [44]. Briefly, a supercontinuum generation laser is +illuminated on the sample at a well-defined incident angle via the microscope objective lens +and the signals from the sample are collected by the same objective lens in which the diffraction +orders are projected onto the momentum space [49,50]. By using an aperture to filter out the +desired diffraction order, a spectrometer-based CCD detector and a common path +interferometer are used for measuring the magnitude and phase spectra [51,52]. +By varying sequentially and at the same time measuring the total reflection spectra, we +contour plot the TM-polarized reflectivity mappings in Fig. 5(a) – (e) for different W along the +-X direction. They show ±1 and -2 SPP bands are present, and the bands are consistent with +the phase-matching equation as illustrated by the dash lines. From the mappings, we see at +normal incidence, or the zone center, BIC-like mode is always observed near the band gap. +The +1 band has a+ for W = 100 – 400 nm but a− for wider W. On the other hand, at the zone +boundary where +1 and -2 SPPs cross at ~ 20.5o, we see the dark and bright modes are found +and their positions depend on W. To estimate the spectral positions of a , we measure the +corresponding m = 0th and 1st, or n = ±1, reflectivity and TM-TE phase difference spectra in +Fig. 6(a) & (b) and fit them by Eq. (4) to determine +( +) +Re in Table 1, which shows the +1 +band is a− for W = 100, 250 and 700 nm is a+ for 400 and 550 nm. Therefore, = for W = +100, 250 and 550 nm but = 0 for 400 and 700 nm. +Finally, we demonstrate a topologically protected state is formed at the interface between +two topological trivial and nontrivial PmCs [47]. We construct a heterostructure by joining +two W = 100 and 400 nm PmCs together. In prior to joining, we have examined by FDTD the +field symmetries at the zone center and boundary of two PmCs and determine the of the 0, - +1, and +1 SPP bands to be , and for W = 100 nm and , and 0 for W = 400 nm. + +13 + +Therefore, the sums of give and 0 for W = 100 and 400 nm PmCs, indicating the -2/+1 +energy gaps at the zone boundary are topological trivial and nontrivial. We then simulate the +heterostructure supercell as shown in Fig. 7(a) that consists of 14 unit cells of W = 100 and 400 +nm PmCs on the right- and left-handed sides [47]. Fig. 7(b) shows the TM-polarized k- and +wavelength-resolved reflectivity mapping at the zone boundary along the -X direction, clearly +demonstrating a localized mode is located at k = 0.5/P or θ = 20.5o, and ~ 640 nm in the +mid of the band gap. We also have simulated the wavelength-dependent near-field mapping +of the heterostructure. For different wavelengths, the near-field intensities at 20 nm above the +surface is simulated across the heterostructure and then contour plotted in Fig. 7(c), showing +the interface is located at x = 0 m and the trivial and nontrivial regions are at x > 0 m and < +0 m, respectively. One sees two strong fields are visible at ~ 620 and 670 nm in the PmC +bulk regions away from the interface due to the excitations of the upper and lower coupled +modes. However, the strongest field strength is observed at the interface, x = 0 µm, at 640 nm, +and it decays rapidly into the bulk regions, signifying the presence of a topologically protected +interface state [47]. We have prepared the heterostructure by FIB and its SEM image is shown +in Fig. 7(d) with W = 100 and 400 nm PmCs on the right- and left-hand sides. The TM- +polarized k- and wavelength-resolved reflectivity mapping of the sample is illustrated in Fig. +7(e), clearly showing an interface state is found at = 20.5o and ~ 625 nm in the +1/-2 band +gap at the zone boundary. +V. +CONCLUSION +In summary, we have formulated an analytical model based on temporal CMT to +determine the Zak phase of an isolated band in leaky photonic systems. At the Brillouin zone +center and boundary, as the far- and near-fields of the systems share the same spatial symmetry, +the mirror symmetric diffractions are either in or out of phase depending on the Bloch wave + +14 + +symmetry. Therefore, the near-field symmetries can be probed by studying the diffraction +profiles. In addition, our model generalizes the occurrence of quasi-BIC at the high symmetry +points. The interplay between the in-coupling constants of different ports plays a decisive role +in manifesting quasi-BICs. For verification, we have studied 1D PmCs and PhCs that support +TM- and TE-polarized SPP and waveguide modes by FDTD and the results agree very well +with the theory. We also have prepared 1D PmCs by FIB and examined their diffractions by +using Fourier space diffraction spectroscopy and common path interferometry for determining +the Zak phases. In the end, a topological protected interface state is demonstrated by joining +two topological trivial and nontrivial PmCs together. +VI. +ACKNOWLEDGMENT +This research was supported by the Chinese University of Hong Kong through Area of +Excellence (AoE/P-02/12) and Innovative Technology Fund Guangdong-Hong Kong +Technology Cooperation Funding Scheme (GHP/077/20GD). + + + +15 + +Reference +1. X.L. Qi and S.C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, +1057 (2011). +2. M.Z. Hasan and C.L. Kane, Topological insulators, Rev. Mod. Phys. 82, 3045 (2010). +3. J.E. Moore, The birth of topological insulators, Nature 464, 194 (2010). +4. N.R. Cooper, J. Dalibard, and I.B. Spielman, Topological bands for ultracold atoms, Rev. +Mod. Phys. 91, 015005 (2019). +5. D.W. Zhang, Y.Q. Zhu, Y.X. Zhao, H. Yan, S.L. Zhu, Topological quantum matter with +cold atoms, Adv. Phys. 67, 253 (2019). +6. T. Ozawa, H.M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M.C. Rechtsman, D. +Schuster, J. Simon, O. Zilberberg, and I. Carusotto, Topological photonics, Rev. Mod. +Phys. 91, 015006 (2019). +7. L. Lu, J.D. Joannopoulos and M. Soljačić, Topological photonics, Nat. Photon. 8, 821 +(2018). +8. A.B. Khanikaev and G. Shvets, Two-dimensional topological photonics, Nat. Photon. 11, +763 (2017). +9. S.D. Huber, Topological mechanics, Nat. Phys. 12, 621 (2016). +10. Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y.D Chong, and B. Zhang, Topological Acoustics, +Phys. Rev. Lett. 114, 114301 (2015). +11. G. Ma, M. Xiao and C.T. Chan, Topological phases in acoustic and mechanical systems, +Nat. Rev. Phys. 1, 281 (2019). +12. P. Delplace, J.B. Marston, and A. Venaille, Topological origin of equatorial waves, +Science 358, 1075 (2017). +13. F. Tang, H.C. Po, A. Vishwanath, and X. Wan, Comprehensive search for topological +materials using symmetry indicators, Nature 566, 486 (2019). + +16 + +14. X. Chen, X. Ma, K. He, J.F. Jia, and Q.-K. Xue, Molecular beam epitaxial growth of +topological insulators, Adv. Mater. 23, 1162 (2011). +15. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in Polyacetylene, Phys. Rev. Lett. 42, +1698 (1979). +16. J. Zak, Berry’s Phase for Energy Bands in Solids, Phys. Rev. Lett. 62, 2747 (1989). +17. M. Xiao, Z.Q. Zhang, and C.T. Chan, Surface impedance and bulk band geometric phases +in one-dimensional systems, Phys. Rev. X 4, 021017 (2014). +18. M. Xiao, G. Ma, Z. Yang, P. Sheng, Z.Q. Zhang, and C.T. Chan, Geometric phase and +band inversion in periodic acoustic systems, Nat. Phys. 11, 240 (2015). +19. J.K. Asbóth, L. Oroszlány, and A. Pályi, A Short Course on Topological Insulators +(Springer, New York, 2016). +20. D.A. Abanin, T. Kitagawa, I. Bloch, and E. Demler, Interferometric approach to measuring +band topology in 2D optical lattices, Phys. Rev. Lett. 110, 165304 (2013). +21. M. Atala, M. Aidelsburger, J.T. Barreiro, D. Abanin, T. Kitagawa, E. Demler and I. Bloch, +Direct measurement of the Zak phase in topological Bloch bands, Nat. Phys. 9, 795 (2013). +22. F. Cardano, A. D’Errico1, A. Dauphin, M. Maffei, B. Piccirillo, C. de Lisio, G. De Filippis, +V. Cataudella, E. Santamato, L. Marrucci, M. Lewenstein, and P. Massignan, Detection of +Zak phases and topological invariants in a chiral quantum walk of twisted photons, Nat. +Comm. 8, 15516 (2017). +23. Z. Jiao, S. Longhi, X. Wang, J. Gao, W. Zhou, Y. Wang, Y. Fu, L. Wang, R. Ren, L.-F. +Qiao, and X.-M. Jin, Experimentally detecting quantized Zak phases without chiral symmetry in +photonic lattices, Phys. Rev. Lett. 127, 147401 (2021). +24. M.A. Gorlach, X. Ni, D.A. Smirnova, D. Korobkin, D. Zhirihin, A.P. Slobozhanyuk, P.A. +Belov, A. Alù, and A.B. Khanikaev, Far-field probing of leaky topological states in all +dielectric metasurfaces, Nat. Comm. 9, 909 (2018). + +17 + +25. W. Gao, M. Xiao, C.T. Chan, and W.Y. Tam, Determination of Zak phase by reflection +phase in 1D photonic crystals, Opt. Lett. 40, 5259 (2015). +26. Q. Wang, M. Xiao, H. Liu, S. Zhu, and C.T. Chan, Measurement of the Zak phase of photonic +bands through the interface states of a metasurface/photonic crystal, Phys. Rev. B 93, 041415(R) +(2016). +27. L. Fan, W. Yu, S. Zhang, H. Zhang, and J. Ding, Zak phases and band properties in acoustic +metamaterials with negative modulus or negative density, Phys. Rev. B 94, 174307 (2016). +28. W. Zhu, Y. Ding, J. Ren, Y. Sun, Y. Li, H. Jiang, and H. Chen, Zak phase and band +inversion in dimerized one-dimensional locally resonant metamaterials, Phys. Rev. B 97, +195307 (2018). +29. K. Koshelev, A. Bogdanov, and Y. Kivshar, Engineering with bound states in the +continuum, Opt. Photon. News 31, 38 (2020). +30. B. Zhen, C.W. Hsu, L. Lu, A.D. Stone, and M. Soljacic, Topological nature of optical +bound states in the continuum, Phys. Rev. Lett. 113, 257401 (2014). +31. Y. Zhang, A. Chen, W.H. Liu, C.W. Hsu, B. Wang, F. Guan, X. Liu, L. Shi, L. Lu, and J. +Zi, Observation of polarization vortices in momentum space, Phys. Rev. Lett. 120, 186103 +(2018). +32. W. Ye, Y. Gao, and J. Liu, Singular points of polarizations in the momentum space of +photonic crystal slabs, Phys. Rev. Lett. 124, 153904 (2020). +33. T. Yoda and M. Notomi, Generation and annihilation of topologically protected bound +states in the continuum and circularly polarized states by symmetry breaking, Phys. Rev. +Lett. 125, 053902 (2020). +34. C.W. Hsu, B. Zhen, A.D. Stone, J.D. Joannopoulos, and M. Soljacic, Bound states in the +continuum, Nat. Rev. Mater. 1, 16048 (2016). + +18 + +35. H.M. Doeleman, F. Monticone, W. den Hollander, A. Alu, and A.F. Koenderink, +Experimental observation of a polarization vortex at an optical bound state in the +continuum, Nat. Photon. 12 397 (2018). +36. M.F. Limonov, M.V. Rybin, A.N. Poddubny, and Y.S. Kivshar, Fano resonances in +photonics, Nat. Photon. 11, 543 (2017) +37. Z. L. Cao and H. C. Ong, Determination of the absorption and radiative decay rates of dark +and bright plasmonic modes, Opt. Exp. 22, 16112 (2014). +38. L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. H. Fan, From electromagnetically +induced transparency to superscattering with a single structure: A coupled-mode theory +for doubly resonant structures, Phys. Rev. Lett. 108, 083902 (2012). +39. H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, New Jersey, 1984). +40. S. Fan, in Optical Fiber Telecommunications V, edited by I. P. Kaminow, T. Li, and A. E. +Willner (Academic Press, Burlington, 2008). +41. E.G. Loewen and E. Popov, Diffraction gratings and applications (CRC Press, New York, +1997). +42. C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, +Femtosecond light transmission and subradiant damping in plasmonic crystals, Phys. Rev. +Lett. 94 113901 (2005). +43. C. Billaudeau, S. Collin, C. Sauvan, N. Bardou, F. Pardo, and J.-L. Pelouard, Angle- +resolved transmission measurements through anisotropic two-dimensional plasmonic +crystals, Opt. Lett. 33, 165 (2008). +44. See Supplementary Materials for the connection between the far- and near-fields from one- +dimensional periodic optical system, simulated near-field patterns of the +1 surface +plasmon polariton (SPP) band of 1D PmCs across the first Brillouin zone, FDTD +simulation results of 1D SiO2/Au photonic crystals (PhCs), and the Fourier space optical + +19 + +microscope for angle- and wavelength resolved diffraction mapping and common path +interferometry +45. X. Guo, C. Liu, and H. C. Ong, Generalization of the circular dichroism from metallic +arrays that support Bloch-like surface plasmon polaritons, Phys. Rev. Appl. 15, 024048 +(2021). +46. A. Christ, S.G. Tikhodeev, N.A. Gippius, J. Kuhl, and H. Giessen, Waveguide-plasmon +polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic +crystal slab, Phys. Rev. Lett. 91, 183901 (2003). +47. C. Liu and H. C. Ong, Realization of topological superlattices and the associated interface +states in one-dimensional plasmonic crystals, Phys. Rev. B 106, 045401 (2022). +48. H. Wang, G.-Y. Guo, and J.-H. Jiang, Band topology in classical waves: Wilson-loop +approach to topological numbers and fragile topology, New. J. Phys. 21, 093029 (2019). +49. B. Huang, F. Yu, and R. N. Zare, Surface plasmon resonance imaging using a high +numerical aperture microscope objective, Anal. Chem. 79, 2979 (2007). +50. F. Bleckmann, Z. Cherpakova, S. Linden, and A. Alberti, Spectral imaging of topological +edge states in plasmonic waveguide arrays, Phys. Rev. B 96, 045417 (2017). +51. Z.L. Cao, S.L. Wong, S.Y. Wu, H.P. Ho, and H.C. Ong, High performing phase-based +surface plasmon resonance sensing from metallic nanohole arrays, Appl. Phys. Lett. 104, +171116 (2014). +52. S.L. Wong and H.C. Ong, Phase difference mapping of two-dimensional metallic nanohole +arrays, Appl. Phys. Lett. 100, 233102 (2012). + + + +20 + + +Fig. 1. (a) The schematic shows at the Brillouin zone center and boundary in 1D leaky optical +system, two Bloch-like modes a1,2 counter propagate in opposite directions with each supports +discrete in-coupling channels +1 2 +0 1 2 +1 2 +N, , +, , +N, , + + +− +. They interact with each other to form two +coupled a at higher and lower energies separated by an energy band gap. (b) +0 1 2 +0 +, , + + + at +the zone center but +0 1 2 +0 +, , + += + at the zone boundary. + + + +Second zone + boundary +band gap +Lowest zone +center band gap +Lowest zone +boundary +band gap21 + + +Fig. 2. (a) The unit cell of 1D PmC for FDTD simulations. The simulated TM-polarized k- +and wavelength-resolved total reflectivity mappings of PmCs with W = (b) 100, (c) 250, (d) +400, (e) 550, and (f) 700 nm taken along the -X direction. The white dash lines are calculated +by using the phase-matching equation, indicating ±1 and -2 Bloch-like SPPs are excited. At +the zone center and boundary where k = 0 and 0.5, two energy band gaps are formed, featuring +two dark and bright modes are located above or below the gap. Particularly, at k = 0, a quasi- +BIC is observed at either above or below the gap. + + +(a) +Air +(b) +-2 SPP +p +↑H ++1: +SPP +W +Au +、-1SPP +C) +(d) +(f) +e22 + + +Fig. 3. The TM-polarized total reflectivity spectra of PmCs taken at the zone center for +different W, exhibiting only one single reflectivity dip as the bright mode. The red dash line +is the band gap center, indicating the quasi-BIC occurs at shorter wavelength for W = 100, 250 +and 400 nm but longer wavelength for W = 550 and 700 nm. At the zone boundary, two TM- +polarized mirror symmetric n = -1 (black square) and 1 (red circle) (b) reflectivity and (c) phase +spectra for W = 100 (top) to 700 (bottom). The green and blue solid lines are the best fits +determined by CMT. + +XX +X23 + + +Fig. 4. The FDTD simulated near-field patterns of the PmCs for different W taken at the +Brillouin zone (a) center and (b) boundary, showing their field symmetries are the same for W += 400 and 500 nm but different for W = 100, 250, and 700 nm. (c) The individual phase profiles +determined by the Wilson loop method. The integration yields the Zak phase, indicating the +phase is 0 for W = 400 and 500 nm but for W = 100, 250, and 700 nm. + +(b)24 + + +Fig. 5. The measured TM-polarized k- and wavelength-resolved total reflectivity mappings of +PmCs with W = (a) 100, (b) 250, (c) 400, (d) 550, and (e) 700 nm taken along the -X direction. +The white dash lines are ±1 and -2 Bloch-like SPPs determined by the phase matching equation. +Two band gaps are formed at the zone center and boundary. The insets are the corresponding +SEM images of the PmCs with the scale bare = 1 µm. + +0..9 +600 +-2SPP +0.8 +6/5 +0.7 +750 ++1SPP +0.6 +825 +0.5 +900 +1 +SPP +(a) +(b) +(c) +(d) +(e +975 +0..4 +80c0L0008060L000800L000s060L0008060L00025 + + +Fig. 6. At the zone boundary, two measured TM-polarized mirror symmetric n = -1 (black +square) and 1 (red circle) (b) reflectivity and (c) TM-TE phase difference spectra for W = 100 +(top) to 700 (bottom). The green and blue solid lines are the best fits determined by CMT. + + + + +26 + + +Fig. 7. (a) The schematic of the heterostructure by joining W = trivial 100 and nontrivial 400 +nm PmCs. The interface is marked by the dash line. (b) The FDTD simulated TM-polarized +reflectivity mapping of the heterostructure taken at the zone boundary along the -X direction, +showing an interface state is found within the gap at = 640 nm. (c) The wavelength- +dependent near-field intensity mapping simulated at 20 nm above the heterostructure. The +interface is located at x = 0 m, showing strong field localization. The strong fields at 620 and +670 nm arise from the PmC bulk regions. (d) The SEM image of the W = 100 and 400 nm with +the scale bar corresponding to 1 µm. (e) The measured TM-polarized reflectivity mapping of +the heterostructure taken at the zone boundary along the -X direction, showing an interface +state is found within the gap at = 625 nm. + +W = 400nm +W = 100nm +nontrivial +trivial +0.9 +0.8 +0.7 +0.6 +0.52 +0.9 +0..8 +0..7 +0.6 +575 +575 +(b) +e +600 +600 +625 +625 +650 +650 +675 +675) +700 +(25) +/00 +0.4 +0.65) +0.6 +0.25 +0.30 +0.35 +0.4.0 +0.415 +k (2/) +k (2TN) +700 +(c) +0.9 +680 +0.8 +0..7 +660 +0.6 +0.5 +@) +640 +0.4 +ABl +interface state +0.3 +620 +0.2 +0..1 +W = 400 nm +W = 100 nm +0 +600 +1000 +500 +0 +500 +1000 +x (nrm)27 + + + + + +100 nm 250 nm 400 nm 550 nm 700 nm +FDTD +Zone +center +( +) +Re + (eV) +1.36 +1.37 +1.36 +1.32 +1.30 +( +) +Re − (eV) +1.32 +1.31 +1.33 +1.36 +1.37 +Zone +boundary +( +) +Re + (eV) +2.00 +1.98 +1.84 +1.85 +1.98 +( +) +Re − (eV) +1.82 +1.89 +1.99 +1.96 +1.85 +Experiment +Zone +center +( +) +Re + (eV) +1.36 +1.36 +1.36 +1.33 +1.32 +( +) +Re − (eV) +1.33 +1.32 +1.34 +1.36 +1.36 +Zone +boundary +( +) +Re + (eV) +2.02 +2.01 +1.95 +1.96 +2.02 +( +) +Re − (eV) +1.93 +1.96 +2.02 +2.01 +1.95 + +Table 1. The FDTD and experimental +( +) +Re at the Brillouin zone center and boundary for +the PmCs with different W. The highlights are the coupled modes located on the +1 SPP band. +If the highlights at the zone center and boundary are both a+ or a− , the Zak phase is 0. If not, +the Zak phase is . + + + +28 + +Supplementary Information +Determination of the band topology of one-dimensional photonic +systems via far-field diffraction + +C. Liu, H.R. Wang, and H.C. Ong +Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, People’s +Republic of China + +A. +Derivation of the connection between the far- and near-fields from one-dimensional +periodic optical system + + +Fig. S1. The schematic of the 2N+1 diffraction orders arising from the coupled mode supported +on 1D periodic leaky system. + +29 + +As shown in Fig. S1, for a one-dimensional optical leaky periodic system that possesses +inversion symmetry in the x-direction, at the Brillouin zone center and boundary, it supports +two Bloch-like coupled modes a above and below the photonic band gap with each dissipates +a total of 2N + 1 mirror symmetric diffraction channels in free space, where N is the highest +diffraction order. For TM- and TE-polarizations, both the near- and far-fields should carry the +same polarization and field symmetry in the x-y plane along the surface. For example, for TM- +polarization, in the far-field at zo above the system, the x-component of the electric field +( , +) +F +x +o +E +x z + is expressed as the superposition of all diffraction orders: +1 +1 +1 +0 +1 +1 +1 +sin +cos +sin +cos +1 +1 +sin +cos +sin +cos +0 +1 +1 +cos +cos +cos +cos +N +N +N o +N +N +N +o +o +N +N +N +o +N +N +N o +i +ik +x +ik +z +i +ik +x +ik +z +N +N +N +N +i +ikz +i +ik +x +ik +z +i +ik +x +ik +z +N +N +N +N +A e +e +e +A +e +e +e +A e e +A +e +e +e +A e +e +e + + + + + + + + + + + + + + + + + +− +− +− +− ++ +− ++ +− ++ +− +− +− +− +− +− ++ +− ++ +− +− +− +− ++ ++ ++ ++ ++ ++ +, (S1) +where An, n, and n are the diffraction amplitude, phase, and angle and the subscript n is the +diffraction order. At the same time, for the near-field, the TM-polarized a+ is a standing wave +with +( ) +( +) +( +) +( +) +zk z +k +z +x +x +x +ˆ +ˆ +E +e +u +x +k sin k x x +k cos k x z +− + ++ +, where kx and kz are the propagation +constants in the x- and z-directions and +( ) +ku +x is the periodic function. Assume +( ) +ku +x is an +even function for simplicity, we see +( ) +x +E +x is an odd function with +( ) +( +) +x +x +E +x +E +x += − +− + +dependence. Therefore, Eq. (S1) should also exhibit +( ) +( +) +F +F +x +x +E +x +E +x += − +− + dependence, yielding +n +n +A +A +− = +, +n +n + + + +− += ++ +, and +0 +0 +A = + that indicate two mirror symmetric diffraction orders have +the same magnitude but are always out of phase and the normal diffraction order is null. As +a result, Eq. (S1) is rewritten as: +1 +1 +1 +1 +1 +1 +sin +cos +sin +cos +1 +1 +sin +cos +sin +cos +1 +1 +cos +cos +cos +cos +N +N +N o +N +N +N +o +N +N +N +o +N +N +N o +i +ik +x +ik +z +i +ik +x +ik +z +N +N +N +N +i +ik +x +ik +z +i +ik +x +ik +z +N +N +N +N +A e +e +e +A +e +e +e +A +e +e +e +A e +e +e + + + + + + + + + + + + + + + + +− +− +− +− +− +− +− +− +− +− +− +− ++ ++ +− +− +. +(S2) +By matching Eq. (S2) with the outgoing power amplitudes of a+ from CMT, which are +,1 +,2 +0,1 +0,2 +,1 +,2 +1 +2 +N +N +N +N +a + + + + + + +− +− ++ ++ + + + + + + + + ++ + + + + + + ++ + + +, we conclude +( +) +1 +2 +1 +2 +n, +n, +n, +n, + + + + +− +− ++ += − ++ + and +0,1 +0,2 +0 + + ++ += +. Likewise, +for another coupled mode a− where +( ) +( +) +( +) +( +) +zk z +k +z +x +x +x +ˆ +ˆ +E +e +u +x +k cos k x x +k sin k x z +− + ++ +, we see + +30 + +( ) +( +) +x +x +E +x +E +x += +− + and have +n +n +A +A +− = +, +n +n + +− += + and +0 +0 +A +, indicating two mirror symmetric +orders are in phase and the normal diffraction order is present. Therefore, Eq. (S1) for a− is: +1 +1 +1 +0 +1 +1 +1 +sin +cos +sin +cos +1 +1 +sin +cos +sin +cos +0 +1 +1 +cos +cos +cos +cos +N +N +N o +N +N +N +o +o +N +N +N +o +N +N +N o +i +ik +x +ik +z +i +ik +x +ik +z +N +N +N +N +i +ikz +i +ik +x +ik +z +i +ik +x +ik +z +N +N +N +N +A e +e +e +A +e +e +e +A e e +A +e +e +e +A e +e +e + + + + + + + + + + + + + + + + + +− +− +− +− +− +− +− +− +− +− +− +− +− ++ ++ ++ ++ ++ ++ +. (S3) +We then have +1 +2 +1 +2 +n, +n, +n, +n, + + + + +− +− +− += +− + for the outgoing power amplitudes of a− given as +,1 +,2 +0,1 +0,2 +,1 +,2 +1 +2 +N +N +N +N +a + + + + + + +− +− +− +− + + + + + + + + +− + + + + + + +− + + +. + +Finally, +two +conditions +( +) +1 +2 +1 +2 +n, +n, +n, +n, + + + + +− +− ++ += − ++ + and +1 +2 +1 +2 +n, +n, +n, +n, + + + + +− +− +− += +− + result in +,1 +,2 +n +n + +− += − + and +,1 +,2 +n +n + + +− += − +. +On the other hand, for TE-polarized Bloch-like coupled modes a , at zo in the free space above +the system, the y-component of the far-field electric field +( , +) +F +y +o +E +x z + can be written as: +1 +1 +1 +0 +1 +1 +1 +sin +cos +sin +cos +1 +sin +cos +sin +cos +0 +1 +N +N +N o +N +N +N +o +o +N +N +N +o +N +N +N o +i +ik +x +ik +z +i +ik +x +ik +z +N +N +i +ikz +i +ik +x +ik +z +i +ik +x +ik +z +N +N +A e +e +e +A +e +e +e +A e e +A +e +e +e +A e +e +e + + + + + + + + + + + + + +− +− +− +− ++ +− ++ +− ++ +− +− +− +− +− ++ +− +− +− ++ ++ ++ ++ ++ ++ +. + +(S4) +The near-field of a+ where +( ) +( +) +zk z +k +x +ˆ +E +e +u +x sin k x y +− + +, we have +( ) +( +) +y +y +E +x +E +x += − +− + such that +n +n +A +A +− = +, +n +n + + + +− += ++ +, and +0 +0 +A = +, leading to +( +) +1 +2 +1 +2 +n, +n, +n, +n, + + + + +− +− ++ += − ++ + and +0,1 +0,2 +0 + + ++ += +. +Likewise, for a− where +( ) +( +) +y +y +E +x +E +x += +− +, we have +n +n +A +A +− = +, +n +n + +− += + and +0 +0 +A +, giving rise +to +1 +2 +1 +2 +n, +n, +n, +n, + + + + +− +− +− += +− +. Therefore, two conditions give the same conclusion that +,1 +,2 +n +n + +− += − + and +,1 +,2 +n +n + + +− += − + regardless of the polarization. As a result, at the zone center for +TM- and TE-polarizations, the outgoing profile is: + + +( +) +0 +0 +1 +1 +0 +2 +2 +2 +N +N +N , +N +N +, +N +N +N , +N +N +s +s +C s +a +a +s + + + + + + + + + +− +− +− +− +− ++ ++ +− +− +− +− +− ++ + + + + + + + + + + + + + + + + + + + + + + + + += ++ ++ + + + + + + + + + + + + + + + + + + +− +− ++ + + + + + + +, + (S5) + +31 + +where the 1,2 subscripts are now dropped. We see quasi-BIC arises from a+ and it will occur +when +0 +n +n + + +− − += +. However, for the lowest band gap where only the normal diffraction order +is present, quasi-BIC always occur, making it symmetry protected. On the other hand, at the +zone boundary where +0, +s − is always 0, we have for TM- and TE-polarizations: + +( +) +0 +1 +1 +0 +0 +2 +2 +N +N +N , +N +N +, +N +N +N , +N +N +s +s +C s +a +a +s + + + + + + + + +− +− +− +− +− ++ ++ +− +− +− +− +− ++ + + + + + + + + + + + + + + + + + + + + + + + + += ++ ++ + + + + + + + + + + + + + + + + + + +− +− ++ + + + + + + +. +(S6) +Quasi-BIC occurs depending on the interplay between +n +− and +n + . a+ (a− ) is quasi-BIC if +0 +n +n + + +− − += + ( +0 +n +n + + +− + += +) but dark and bright modes are present if +0 +n +n + + +− + +. +B. +Simulated near-field patterns of the +1 surface plasmon polariton (SPP) band of 1D +PmCs across the first Brillouin zone +By using the dipole source excitation method, the complex near-field patterns along the +1 SPP +band of 1D Au PmCs with period = 900 nm, groove height = 50 nm and different groove widths +have been simulated. The real and imaginary parts of the surface normal components, Re(Ez) +and Im(Ez), taken at 20 nm above the surface across the Brillouin zone from k = -/P to /P +m-1 are shown in Fig. S2 for groove width W = 100, 250, 400, 550 and 700 nm PmCs. They +will then be used for determining the Zak phase by the Wilson loop method. + +32 + +Fig. S2. The real and imaginary parts of the z-component of the near-field patterns of the PmCs +plotted as a function of k along the +1 SPP band in the first Brillouin zone for different W = +(a) & (b) 100, (c) & (d) 250, (e) & (f) 400, (g) & (h) 550, and (i) & (j) 700 nm. + + + + +(a +(b)33 + +C. +FDTD results of 1D SiO2/Au photonic crystals (PhCs) +Fig. S3(a) shows the unit cell of the PhCs, which has 400 nm thick SiO2 coated on Au surface +with the period P and the groove height H being set at 900 nm and 200 nm whereas the groove +width W varied from 100 and 725 nm with a step size of 125 nm. The corresponding TE- +polarized k-resolved total reflectivity mappings are shown in Fig S3(b) – (f), showing the +dispersive ±1 and -2 photonic bands, which follow the phase matching equation given as +( +) +( +) +2 +2 +sin +D +D +PhC +n +n +m +P + + += ++ +, where nD is the refractive index of SiO2 and mPhC is the +photonic band. The calculations are superimposed in Fig 3(b). We see mPhC = ±1 photonic +bands cross at k = 0 m-1 and mPhC = +1 and -2 bands cross at k = /P m-1, yielding two energy +band gaps at = 930 – 1030 nm and 700 – 770 nm at the zone center and boundary. At the +zone center, one symmetry protected quasi-BIC is always found, and it is located on the -1 +band for W = 100 – 475 nm but flips to the +1 band when W increases further. At the same +time, accidental quasi-BICs are also found along the +1 band at different k for all PhCs. + +34 + + +Fig. S3. (a) The FDTD unit cell of the PhC. The simulated TE-polarized k- and wavelength- +resolved total reflectivity mappings of PhCs with W = (b) 100, (c) 225, (d) 350, (e) 475, (f) +600, and (g) 725 nm taken along the -X direction. The white dash lines are calculated by using +the phase-matching equation, indicating ±1 and -2 photonic band are present. At the zone +center and boundary where k = 0 and 0.5, two energy band gaps are formed, featuring two dark +and bright modes are located above or below the gap. Particularly, at k = 0, a symmetry +protected quasi-BIC is observed at either above or below the gap. On the other hand, an +accidentally BIC is observed along the +1 band. + +Air +p +SiO2 +H +W +Au +(b) +C +-2 band ++1 band +-1 band +(d) +(e) +(f) +935 + +We will focus on the modes located on the +1 band at the zone center and boundary and +determine their field symmetries as well as . The reflectivity spectra of the PhCs taken under +normal incidence, i.e., at the zone center, are illustrated in Fig. S4(a), clearly showing only one +single reflectivity dip is present as the bright mode, verifying another coupled mode is quasi- +BIC that does not produce any dip. As quasi-BIC arises solely from a+ for the lowest band +gap, we deduce the coupled mode on the +1 band is symmetric a− for W = 100 – 475 nm PhCs +but becomes asymmetric a+ for W = 600 and 725 nm PhCs. On the other hand, the reflectivity +spectra taken at the zone boundary for all PhCs are shown in Fig. S4(b), showing two bright +and dark modes are present. + +Fig. S4. The TE-polarized total reflectivity spectra of PhCs taken at the zone (a) center and (b) +boundary for different W. At the zone center, only one single reflectivity dip is present as the +bright mode. On the other hand, at the zone boundary, two bright and dark modes are present. + +36 + + +To determine the near-field symmetries of the PhCs at the zone boundary, the two mirror +symmetric diffraction and phase spectra are shown in Fig. S5 and they are fitted with +2 +1, +1, +s +s + − ++ + and +( +) +1, +1, +arg s +s + − ++ from CMT. The best fits are displayed as the solid lines and the +fitted results +( +) +Re are tabulated in Table S1. in which the highlights are the coupled modes +sitting on the +1 photonic band at the zone center (high energy mode) and boundary (low +energy mode). If the highlights at two regions are either a+ or a− , the Zak phase is 0, but +when they are different. As a result, we conclude the Zak phase of +1 band for W = 100, 225 +and 600 nm is but becomes 0 for W = 350, 475 and 725 nm. + + + + + +100 nm +225 nm +350 nm +475 nm +600 nm +725 nm +Zone +center +( +) +Re + (eV) +1.18 +1.19 +1.22 +1.27 +1.33 +1.37 +( +) +Re − (eV) +1.21 +1.26 +1.28 +1.29 +1.29 +1.31 +Zone +boundary +( +) +Re + (eV) +1.62 +1.65 +1.72 +1.78 +1.79 +1.79 +( +) +Re − (eV) +1.67 +1.69 +1.69 +1.71 +1.77 +1.84 + +Table S1. The FDTD +( +) +Re at the Brillouin zone center and boundary for the PhCs with +different W. The highlights are the coupled modes located on the +1 photonic band. If the +highlights at the zone center and boundary are both a+ or a− , the Zak phase is 0. If not, the +Zak phase is . + + + +37 + + +Fig. S5. At the zone boundary, two TE-polarized mirror symmetric n = -1 (black square) and +1 (red circle) (a) reflectivity and (b) phase spectra of the PhCs for W = 100 (top) to 725 (bottom). +The green and blue solid lines are the best fits determined by CMT. + + + +4 +XC38 + +To verify the Zak phases, we have simulated the real and imaginary parts of the surface normal +components, Re(Ez) and Im(Ez), taken at 20 nm above the surface across the Brillouin zone +from k = -/P to /P m-1 in Fig. S6 for all PhCs. They will then be used for determining the +Zak phase by the Wilson loop method given as +( ) +P +P +X +k dk + + +− +, where +( ) +X +k is +( ) ( ) +( ) ( ) +* +,k +k +unit cell +* +k +,k +unit cell +u +( x ) +i +u +x +x +dx +k +u +x +x u +( x )dx + + + + + + + . The evolutions of the individal phase difference, which is +( ) +X +k +k + , of the +1 band as a fucntion of k with k = 0.04π/P of all PhCs are plotted in Fig. +S7. The integrated areas yield the Zak phases are for W = 100, 225, and 600 nm and 0 for +W = 350, 475 and 725 nm, and they agree very well with earlier CMT results. + +39 + + +Fig. S6. The real and imaginary parts of the z-component of the near-field patterns of the PhCs +plotted as a function of k along the +1 photonic band in the first Brillouin zone for different W += (a) & (b) 100, (c) & (d) 225, (e) & (f) 350, (g) & (h) 475, (i) & (j) 600, and (k) & (l) 725 nm. + +(C) +(e +(g) +(h) +(i) +(k)40 + + +Fig. S7. The individual phase profiles of the PhCs with different W. The integration yields the +Zak phase, indicating the phase for W = 100, 225, and 600 nm and 0 for W = 350, 475 and +725 nm. + +D. +Schematic of the Fourier space optical microscope for angle- and wavelength +resolved diffraction mapping and common path interferometry +Fig. S8 shows the schematic of the Fourier space optical microscope. Briefly, a broadband +supercontinuum laser from a nonlinear photonic crystal fiber is collimated and then passed +through a set of linear polarizers, wave plates, and lenses before being focused onto the back +focal plane (BFP) of a 100X objective lens (OB) with numerical aperture = 0.9. The light +exiting from the objective lens is then a collimated beam with well-defined linear polarization. +In addition, by displacing the focused spot across the BFP of the objective lens using a +motorized translation stage, the incident polar angle of the collimated beam onto the sample +can be varied following sin = d/f, where d is the distance between the focused spot and the +optical axis of the BFP and f is the focal length of the objective lens. In addition, the azimuth +angle can be varied by a motorized rotation sample stage to align the incident plane to the - +X direction of the PmC. The diffractions from the PmC are then collected by the same objective +lens and are routed through a set of Fourier lens system so that the diffraction orders are +projected onto the momentum space. By placing an aperture at the momentum space to filter + +41 + +out the desired diffraction order, its intensity and phase spectra can be measured by a +spectrometer-based CCD detector and a common path interferometer [1]. +To perform common path interferometry, the 45o linearly polarized collimated beam with the +Jones vector given as +1 +1 +1 +2 + + + + is incident on the PmC. The diffraction order from the PmC +after the aperture can be formulated as: +0 +0 +TM +TE +i +TM +PmC +i +TE +r +e +J +r +e + + + + += + + + +, where rTM,TE and TM,TE +are the magnitudes and phases for TM- and TE-polarizations. The diffraction passes through +a quarter wave plate with the fast axis being placed at 45o with respect to the incident plane +and +a +motorized +rotatable +analyzer +with +angle +, +which +are +given +as +2 +( ) +2 +cos +sin +cos +sin +cos +sin +analyzer +J + + + + + + + + + += + + + + and +(45 ) +1 +1 +1 +1 +1 +2 +QWP +i +i +J +i +i + +− ++ + + += + + ++ +− + + +. The output vector is +( ) +(45 ) +1 +1 +1 +2 +analyzer +QWP +PmC +J +J +J + + + + + +. After some formulations, the intensities for different = 0o, +±45o, +and +90o +can +be +written +as: +( +) +2 +2 +2 +0 +1 +1 +( ) +2 +sin +2 +4 +0 +i +TM +TE +TM +TE +TM +TE +r +e +i r +R +r +r +r +r + + + + + ++ += += ++ ++ + + + + +, +( +) +2 +2 +45 +1 +( ) +2 +cos +4 +TM +TE +TM +TE +R +r +r +r +r + + ++ += ++ ++ +, +( +) +2 +2 +45 +1 +( ) +2 +cos +4 +TM +TE +TM +TE +R +r +r +r +r + + +− += ++ +− +, and +( +) +2 +2 +90 +1 +2 +sin +4 +TM +TE +TM +TE +R +r +r +r +r + += ++ +− +, where +TM +TE + + + += +− +. Therefore, the phase difference +between TM- and TE- polarized diffractions can be calculated by: +0 +90 +45 +45 +( ) +( ) +tan ( ) +( ) +( ) +R +R +R +R + + + + + ++ +− +− += +− +. + +42 + + +Fig. S8. The schematic of the Fourier optical microscope. + +Reference +53. Z.L. Cao, S.L. Wong, S.Y. Wu, H.P. Ho, and H.C. Ong, High performing phase-based +surface plasmon resonance sensing from metallic nanohole arrays, Appl. Phys. Lett. 104, +171116 (2014). + + +P: polarizer +L1,L2,L3,L4: focusing lens +OB: objective lens +BS: beam splitter +BFP: back focal plane \ No newline at end of file diff --git a/DNE2T4oBgHgl3EQfSAfe/content/tmp_files/load_file.txt b/DNE2T4oBgHgl3EQfSAfe/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..e9ee9bf4e7708adf0817166e7d8abad27ec83a39 --- /dev/null +++ b/DNE2T4oBgHgl3EQfSAfe/content/tmp_files/load_file.txt @@ -0,0 +1,1199 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf,len=1198 +page_content='1 Determination of the Zak phase of one-dimensional photonic systems via far-field diffraction C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Liu*, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Wang*, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Onga) Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, People’s Republic of China Bloch waves in 1D periodic systems carry Zak phase, which plays a key role in determining the band topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' In general, for systems that possess inversion symmetry, the Zak phase of an isolated band is quantized as 0 or \uf070 and is associated with the spatial field symmetries at the Brillouin zone center and boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The phase is \uf070 if the field symmetries are different but is 0 when they are the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Since the radiation losses from leaky systems are strongly associated with the Bloch waves, one may probe the far-field continuum to determine the Zak phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Here, we formulate the diffractions from photonic systems at the zone center and boundary and find their spectral profiles reveal the Bloch wave symmetries and thereby the corresponding Zak phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The field symmetries also generalize the occurrence of bound states in the continuum at high symmetry points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' For verification, we have studied the Zak phases of one- dimensional TM plasmonic and TE photonic crystals by electrodynamic simulations and measuring the optical properties of plasmonic crystals using Fourier space diffraction spectroscopy and common path interferometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' In addition, a topological protected interface state is demonstrated when two 0 and \uf070 systems are joined together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The results prove our method provides a simple way for characterizing the band topology of non-Hermitian systems via far-fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' These authors equally contributed to this work a) hcong@phy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='cuhk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='hk 2 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' INTRODUCTION Topological physics has attracted a widespread of interest not only in condensed matter physics [1-3] but also in other branches such as ultracold atom [4,5], electromagnetism [6-8], mechanics [9], acoustics [10,11], and oceanography [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Much attention in this field is focused on realizing the so-called topologically protected states, which support robust wave propagation against perturbation and disorder [1-12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' To produce such states, two systems that are topologically trivial and nontrivial are brought together to facilitate the occurrence of topological phase transition at the interface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' As most of the matters are topologically trivial, the identification and the growth of different classes of topological systems are currently under intensive investigation [13,14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Likewise, developing methods to characterize the topological properties of the systems is equally important.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' In analogy to the Su-Schrieffer-Heeger (SSH) model, the band topology of one- dimensional (1D) periodic systems is determined by Zak phase, \uf067, which is a geometric phase [15,16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' For a particular \uf06cth isolated band, \uf067\uf06c emerges when the Bloch wave travels in momentum space adiabatically along the band across the first Brillouin zone from k = -\uf070/P to \uf070/P, where P is the period of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' If systems possess inversion symmetry, \uf067\uf06c is quantized as either 0 or \uf070 [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' \uf067 defines the topological invariant of two band systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' For systems that support higher order bands, the topology of the band gap of interest is the summation of all \uf067 below that gap, giving rise to a \uf067 summation that is either even or odd multiple of \uf070 for indicating whether the system is topologically trivial or nontrivial [17,18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' A zero-dimensional interface state is then formed between two odd and even \uf070 systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' One notable feature that comes with \uf067\uf06c is the distinctive spatial wave symmetries at the Brillouin zone center and boundary of the band [16-18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The field symmetries, typically even 3 and odd with respect to the unit cell center, are the same for \uf067\uf06c = 0 system but different when \uf067\uf06c = \uf070 [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The association between \uf067n and the field symmetry can be understood from the standpoint of Wannier function, which sums the Bloch waves carrying all k along a band [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Consider the Bloch waves at the zone center and boundary that have the same field symmetry, the Wannier function has either the ( ) ( ) W x W x − = or ( ) ( ) W x W x − = − spatial dependence, leading to \uf067\uf06c = ( ) 2 2 x W x dx P \uf070 \uf0a5 −\uf0a5\uf0f2 = 0 [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' On the other hand, for the waves that exhibit different spatial symmetries at two high symmetry points, the Wannier function now shows ( ) ( ) W x P W x − + = or ( ) ( ) W x P W x − + = − dependence, which gives \uf067\uf06c = \uf070 [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Therefore, instead of tracing the Bloch waves one by one along the band to determine \uf067n, one can simply examine the field symmetries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' However, how to measure the Bloch wave symmetry remains challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' To date, there have been only a few studies focusing on measuring the geometric phase, either Zak or Berry phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Demler and Bloch are among the first to combine Bloch oscillation and interferometry in a dimerized cold atom system to mobilize the Bloch wave across the Brillouin zone and subsequently measure \uf067\uf06c [20,21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' They prove \uf067\uf06c = \uf070 evolves when the intercell interaction is stronger than that of intracell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Cardano et al have demonstrated the use of mean displacement method to determine \uf067\uf06c in a chiral Floquet system [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Such method is then extended to other more generalized SSH systems where the next nearest neighbor interaction is strong enough to break the chiral symmetry [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' While most of them trace the Bloch waves, Gorlach et al adopt an alternative approach by probing the spectral positions of the dipolar (bright) and quadrupolar (dark) characteristics of far-field radiations, which scale with the topological invariant of the system as deduced by using temporal coupled mode theory 4 (CMT) [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' When the bright and dark radiation bands are at longer and shorter wavelengths, the system is trivial, but becomes nontrivial upon switching places.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' However, their method is limited to the lowest band gap at the zone center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Recently, Chan and his coworkers have formulated that the sign of the reflection phase for wavelengths within the \uf06cth band gap can resolves the trivial and nontrivial \uf067\uf06c [17,18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The determination of \uf067\uf06c via measuring the reflection phase of the band gap is then demonstrated in several photonic and acoustic systems [25-28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Here, we further extend the CMT to formulate the diffractions arising from 1D leaky optical systems and show the mirror symmetric diffraction orders taken at the zone center and boundary directly reveal the near-field symmetries and thereby the corresponding \uf067.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' It is found the odd and even near-field symmetries dictate the far-field interferences, shaping the overall radiation profiles including the bound states in the continuum (BICs) [29-35] and Fano resonances [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' We find destructive interference always occurs between the diffraction orders of the first band gap at the zone center, resulting in a symmetry-protected quasi-BIC [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' To verify the CMT, we first conduct finite-difference time-domain (FDTD) simulations on 1D Au plasmonic and SiO2/Au photonic crystals which respectively support TM- and TE-polarized surface waves and the results agree very well with the theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' We then fabricate plasmonic crystals (PmCs) with different geometries and measure their polarization- and angle-resolved diffraction and phase profiles by Fourier space spectroscopy and common path interferometry to study \uf067.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Changing the groove width of PmCs leads to band inversion and thus effectively varies the band topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Finally, a topological protected interface state is demonstrated by joining two topological trivial and nontrivial PmCs together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' TEMPORAL COUPLED MODE THEORY 5 At high symmetry points in 1D Brillouin zone, two degenerate but counter propagating Bloch modes interact with each other to yield two coupled modes separated by an energy gap [37,38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Such interaction can be described within the framework of CMT [37-40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 1(a),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' for an optically thick system that possesses inversion symmetry,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' the dynamics of two mode amplitudes,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' a1 and a2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' taken under TM or TE polarization can be written as: \uf05b \uf05d 1 1 2 2 o c T c o a a d i K s a a dt \uf077 \uf077 \uf077 \uf077 + \uf0e9 \uf0f9 \uf0e9 \uf0f9 \uf0e9 \uf0f9 = + \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0eb \uf0fb \uf0eb \uf0fb \uf0eb \uf0fb ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (1) where o \uf077 and c \uf077 are the complex frequency and coupling constant,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' which are expressed as ( ) 2 o o a r i \uf077 \uf077 = + \uf047 +\uf047 and c i \uf077 \uf061 \uf062 = + ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' where \uf077o is the resonant angular frequency,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' \uf047a and \uf047r are the absorption and radiative decay rates,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' and \uf061 and \uf062 are the real and imaginary parts of the coupling constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' For a given polarization, the discrete incoming power amplitude vector is \uf05b \uf05d 0 T N , , N , s s s s + − + + + = \uf0e9 \uf0f9 \uf0eb \uf0fb , where the subscript N is an integer \uf0b3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 0, s + is denoted as the surface normal power and N , s\uf0b1 + are two mirror symmetric powers defined obliquely with respect to the surface normal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 1 0 1 1 2 0 2 2 N , , N , T N , , N , K \uf06b \uf06b \uf06b \uf06b \uf06b \uf06b − − \uf0e9 \uf0f9 = \uf0ea \uf0fa \uf0eb \uf0fb , where 1 N, \uf06b and 2 N, \uf06b are the complex in-coupling constants for inputting energy from the continuum to a1 and a2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' N depends on the number of available ports, which is governed by the diffraction equation as ( ) m m P sin sin \uf06c \uf071 \uf066 = − , where m is the diffraction order, \uf071 is the incident polar angle, and \uf066m is the diffraction angle [41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' For example, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 1(b), for the lowest band gap at the zone center, \uf071 = 0o, such that only one m = 0th propagating order exists in free space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' For the second band gap at the zone boundary where 2P sin \uf06c \uf071 = , two m = 0th and 1st orders are present at m \uf066 \uf071 = \uf0b1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' In general, zone center supports an odd number of ports including 0 \uf06b whereas an even number of ports is found at zone boundary where 0 \uf06b is always zero [41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 6 To see how the field symmetry is revealed, we solve the eigenvalues and eigenvectors of the homogeneous part of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (1) by diagonalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The complex frequencies of the coupled modes as: ( ) ( ) ( ) 2 o a r i \uf077 \uf077 \uf061 \uf062 \uf0b1 = \uf0b1 + \uf047 +\uf047 \uf0b1 , indicating their spectral positions and decay rates depend on \uf061 and \uf062.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' For the real part, we see the spectral positions of the coupled modes are determined by the magnitude and sign of \uf061 and they are separated by an energy gap = 2\uf061.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' On the other hand, for the imaginary part, one mode has larger decay rate whereas another one has lower, featuring the bright (dipolar) and dark (quadrupolar) modes [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' In particular, if 2 0 r \uf062 \uf047 − = , one coupled mode exhibits zero radiation damping, resulting in a quasi-BIC [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The unit eigenvectors are 1 2 1 2 1 2 a a a a a a + − + \uf0e9 \uf0f9 \uf0e9 \uf0f9 = \uf0ea \uf0fa \uf0ea \uf0fa − \uf0eb \uf0fb \uf0eb \uf0fb , which are orthogonal and carry odd and even symmetries with respect to the unit cell center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' As a result, for an isolated energy band, \uf067 = 0 if both the eigenvectors at the zone center and boundary are either a+ or a− but = \uf070 if they are different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' We study the spatial field symmetries of a\uf0b1 for TM and TE polarized waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Leaky evanescent waves are considered here as an example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' For TM modes such as Bloch-like surface plasmon polaritons (SPPs) propagating in the x-direction, the magnetic fields of a+ are ( )( ) 1 2 x x z ik x ik x k z k ˆ H H Ae u x e e y − − + = − , where A is a constant, kx and kz are the propagation constants in the x- and z-directions, and ( ) ku x is the periodic function [43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' ( ) ku x is assumed to be an even function for simplicity as its symmetry does not affect the Zak phase results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The corresponding electric fields are ( ) ( ) ( ) ( ) ( ) 1 2 2 zk z k z x x x H H A ˆ ˆ E e u x k sin k x x k cos k x z i − \uf0d1\uf0b4 + − = = + − \uf077\uf065 \uf077\uf065 , revealing the in-plane x- and out-of-plane z-components are odd and even in the x-direction, or ( ) ( ) x x E x E x = − − and 7 ( ) ( ) z z E x E x = − .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Likewise, for a− , we have even ( ) ( ) x x E x E x = − and odd ( ) ( ) z z E x E x = − − .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Conversely, for TE modes such as waveguide modes, the in-plane electric fields of a+ and a− are ( ) ( ) 2 zk z k x ˆ iAe u x sin k x y − and ( ) ( ) 2 zk z x ˆ Ae u x cos k x y − , giving rise to odd ( ) ( ) y y E x E x = − − and even ( ) ( ) y y E x E x = − , respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Therefore, for the in-plane components, the TM and TE polarized a+ and a− are odd and even in the x-direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Once the field symmetries of a\uf0b1 are known, their spectral positions will then be deduced via far-field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' By using conservation of energy and time reversal symmetry, the outgoing ports are expressed as \uf05b \uf05d \uf05b \uf05d 1 2 a s C s K a − + \uf0e9 \uf0f9 = + \uf0ea \uf0fa \uf0eb \uf0fb , where \uf05b \uf05d 0 T N , , N , s s s s − − − − − = \uf0e9 \uf0f9 \uf0eb \uf0fb and C is the nonresonant scattering matrix [38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' We find the transformation matrix to be 1 1 1 1 1 2 T T \uf0e9 \uf0f9 = \uf0ea \uf0fa − \uf0eb \uf0fb so that the outgoing fields can now be rewritten as: \uf05b \uf05d \uf05b \uf05d \uf05b \uf05d 1 2 1 2 0 1 0 2 0 1 0 2 1 2 1 2 1 1 2 2 N ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' N ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' N ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' N ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' T ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' N ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' N ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' N ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' N ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' a s C s T K C s a a a \uf06b \uf06b \uf06b \uf06b \uf06b \uf06b \uf06b \uf06b \uf06b \uf06b \uf06b \uf06b − − − − + − + + + − − + − \uf0e9 \uf0f9 \uf0e9 \uf0f9 \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0e9 \uf0f9 \uf0ea \uf0fa \uf0ea \uf0fa + − = + = + + \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0eb \uf0fb \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa + − \uf0eb \uf0fb \uf0eb \uf0fb .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (2) Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (2) can be further simplified by using the relationships between n,i \uf06b − and n,i \uf06b , where i = 1 or 2 and n \uf0a3 N is the diffraction order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' As provided in the Supplementary Information [44],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' given the fact that both far- and near-fields should follow the same spatial symmetry,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' the radiation patterns of TM a\uf0b1 arising from the interferences between the decay ports should preserve the same ( ) ( ) F F x x E x E x = − − and ( ) ( ) F F x x E x E x = − dependences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' where the superscript F denotes the far-fields,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' leading to ( ) 1 2 1 2 n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' \uf06b \uf06b \uf06b \uf06b − − + = − + and 1 2 1 2 n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' \uf06b \uf06b \uf06b \uf06b − − − = − for a+ and a− .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Likewise, for TE a\uf0b1 , ( ) ( ) F F y y E x E x = − − and 8 ( ) ( ) F F y y E x E x = − also give ( ) 1 2 1 2 n, n, n, n, \uf06b \uf06b \uf06b \uf06b − − + = − + and 1 2 1 2 n, n, n, n, \uf06b \uf06b \uf06b \uf06b − − − = − .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' More importantly, both polarizations indicate ,1 ,2 n n \uf06b \uf06b− = − and ,1 ,2 n n \uf06b \uf06b − = − , which agree with the fact that the system should fulfill the inversion symmetry requirement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' However, 1 n, \uf06b − ( 2 n, \uf06b − ) is not necessarily equal to 1 n, \uf06b ( 2 n, \uf06b ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' In addition, for a+ , ( ) 0 1 0 2 0 1 0 2 , , , , \uf06b \uf06b \uf06b \uf06b + = − + implies the normal diffraction order is always missing, resulting in an even number of decay ports at both the zone center and boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Therefore, at the zone center for TM and TE polarizations, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (2) can be reduced as: \uf05b \uf05d ( ) 0 0 1 1 0 2 2 2 N N N , N N , N N N , N N s s C s a a s \uf06b \uf06b \uf06b \uf06b \uf06b \uf06b \uf06b \uf06b \uf06b − − − − − + + − − − − − + \uf0e9 \uf0f9 \uf0e9 \uf0f9 \uf0e9 \uf0f9 \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa = + + \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa − − + \uf0eb \uf0fb \uf0eb \uf0fb \uf0eb \uf0fb , (3) where the 1,2 subscripts are now dropped.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' On the other hand, at the zone boundary, the outgoing fields carry the same analytical form as Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (3) except 0, s − = 0 since 0 0 \uf06b = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (3) reveals additional information about the occurrence of quasi-BIC at high symmetry points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' In general, quasi-BIC occurs when all the decay ports are zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Therefore, at the zone center, unless 0 \uf06b = 0, quasi-BIC can only be observed from a+ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Particularly, for the lowest zone center band gap where only the N = 0 port is present, an a+ quasi-BIC is always present, making it symmetry protected [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' However, for higher order band gaps, while the normal N = 0 port is still zero, other N > 0 ports are not necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Quasi-BIC can still be found if n n \uf06b \uf06b − = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' In other words, if all the mirror symmetric decay ports of the uncoupled mode are identical and in-phase, destructive interferences occur everywhere across all diffraction orders, resulting in quasi-BIC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Such special condition can only be met for certain tailored system geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' If n n \uf06b \uf06b − \uf0b9 , a+ appears as bright or dark mode depending on the 9 sign of \uf062.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' On the other hand, at the zone boundary where 0, s −is always zero, a+ or a− can be quasi-BIC if n n \uf06b \uf06b− = or n n \uf06b \uf06b− = − is fulfilled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' We then explicitly formulate the diffraction orders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' By considering only one single incidence port q such that \uf05b \uf05d 0 0 T q, s s + + \uf0e9 \uf0f9 = \uf0eb \uf0fb , the coupled mode amplitudes are ( ) ( ) , 1 2 q q qs a i − + + + − = − \uf06b \uf06b \uf077 \uf077 and ( ) ( ) , 1 2 q q qs a i \uf06b \uf06b \uf077 \uf077 − + − − + = − .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Two mirror symmetric n \uf0a3 N diffraction orders thus are: ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 1 1 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 2 2 1 1 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 2 2 n n q n n n n q q n n q q n n q q n n q q q s c s s s i i i c i − − − + + − + − − − − + − − − − − + − − − + + + − − − − = − + − = + + + − \uf06b \uf06b \uf06b \uf06b \uf06b \uf06b \uf06b \uf06b \uf077 \uf077 \uf077 \uf077 \uf06b \uf06b \uf06b \uf06b \uf06b \uf06b \uf06b \uf06b \uf077 \uf077 \uf077 \uf077 (4) where n c\uf0b1 are the complex nonresonant scattering coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' We see from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (4) that the radiations from a+ and a− have odd and even symmetries [37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' While a− gives two in phase diffraction orders, those from a+ are \uf070 out of phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Therefore, by fitting the magnitude and phase, 2 , , n q s s \uf0b1 − + and ( ) , , arg n q s s \uf0b1 − + , spectra of any pair of oblique mirror diffraction orders at the zone center and boundary with Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (4) to determine their relative phase, the spectral positions ( ) Re \uf0b1 \uf077 can be deduced to find out whether a+ or a− is associated with the energy band of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' FINITE-DIFFERENCE TIME DOMAIN SIMULATION We verify the CMT model by FDTD simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Two types of optical systems are considered, and they are 1D Au plasmonic and SiO2/Au photonic crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' While the plasmonic crystals (PmCs) support TM-polarized Bloch-like SPPs [45], the photonic crystals (PhCs) excite TE waveguide modes [46].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' We will present the results of PmCs here and those of the 10 PhCs are provided in the Supplementary Information [44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' For the PmCs, the unit cell is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 2(a), with the period P and groove height H are set at 900 nm and 50 nm, respectively, and the groove width W is varied from 100 and 700 nm with a step size of 150 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The corresponding TM-polarized k- and wavelength-resolved total reflectivity,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' which sums all the diffraction orders,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' mappings are calculated along the \uf047-X direction in Fig 2(b) – (f),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' showing the presence of the dispersive ±1 and -2 Bloch-like SPP bands,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' which follow the phase matching equation given as 2 2 1 1 2 Au SP Au n k P \uf065 \uf065 \uf06c \uf070 \uf0e6 \uf0f6 \uf0e6 \uf0f6 = + \uf0e7 \uf0f7 \uf0e7 \uf0f7 + \uf0e8 \uf0f8 \uf0e8 \uf0f8 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' where Au \uf065 is the dielectric constant of Au and nSP is the SPP band,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' as illustrated by the dash lines in Fig 2(b) [37,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' More importantly, one sees ±1 SPPs cross at k = 0 \uf06dm-1 and +1 and -2 SPPs cross at k = \uf070/P \uf06dm-1, yielding two band gaps at \uf06c = 925 and 650 nm for the zone center and boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' In agreement with the CMT model, the coupled modes exhibit dark and bright radiation characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' We attempt to determine the Zak phase of the +1 SPP band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' At the zone center for all PmCs, the dark mode is quasi-BIC and located at the +1 band for W = 100 – 400 nm but flips to the -1 band when W increases further.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The corresponding reflectivity spectra are plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 3(a) for illustration, clearly showing only one single reflectivity dip as the bright mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' As a result, we conclude a+ locates at the +1 band for W = 100 – 400 nm but flips to the -1 band for wider W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' On the other hand, at the zone boundary, we can no longer differentiate the spectral positions of a\uf0b1 simply by examining the total reflectivity spectra because two dark and bright modes are present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Since only a pair of mirror symmetric m = 0th and 1st, or n = \uf0b11, diffraction orders is available, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 3(b) & (c) show the simulated 2 1, 1, s s \uf0b1 − + and ( ) 1, 1, arg s s \uf0b1 − + spectra and we fit them by by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (4) to determine the relative phases between the diffraction pairs of two modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The best fits are displayed as the solid lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The corresponding ( ) Re \uf077\uf0b1 of all PmCs are summarized in Table 1, in which the highlights are the 11 coupled modes sitting on the +1 band at the zone center (high energy mode) and boundary (low energy mode).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' If the highlights at two regions are either a+ or a− , the Zak phase is 0, but \uf070 when they are different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' As a result, by comparing the modes at the zone center and boundary of the +1 band, \uf067 = \uf070 for W = 100, 250, 550 nm but \uf067 = 0 for 400 and 700 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' To confirm our findings, we have simulated the near-field intensity profiles at the zone center and boundary of the +1 band by FDTD in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 4(a) & (b) for different W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' At the zone center, we see the profiles are even with respect to the groove center for W = 100 – 400 nm but change to odd afterwards [18,47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' On the other hand, the profiles at the zone boundary are odd for W = 100, 250, and 700 nm but are even for 400 and 550 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' As a result, the field symmetries indicate \uf067 = \uf070 for W = 100, 250 and 550 nm but 0 for 400 and 700 nm, in consistent with the far-field simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' In addition, we have calculated the near-field patterns across the first Brillouin zone for all PmCs in the Supplementary Information [44] and then employ the Wilson loop method to directly determine \uf067\uf06c given as ( ) P P X k dk \uf070 \uf070 −\uf0f2 , where ( ) X k is the Berry connection given as ( ) ( ) ( ) ( ) ,k k unit cell k ,k unit cell u ( x ) i u x x dx k u x x u ( x )dx \uf065 \uf065 \uf0b6 \uf0b6 \uf0f2 \uf0f2 [47,48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The evolutions of the individal phase difference, which is ( ) X k k \uf044 , of the +1 band as a fucntion of k with \uf044k = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='04π/P are plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 4(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The integrated areas yield the \uf067\uf06c phases that once again support our results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' EXPERIMENTAL VERIFICATION A series of 1D periodic Au rectangular groove PmCs has been fabricated by focused ion beam (FIB) and their scanning electron microscopy (SEM) images are shown in the insets of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 5(a) – (e), showing they have P = 900 nm, H = 50 nm, and W varying from 100 to 700 nm [47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' After the sample preparation, the PmCs are then transferred to a homebuilt Fourier space 12 optical microscope described in the Supplementary Information for angle- and wavelength- resolved diffraction measurements [44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Briefly, a supercontinuum generation laser is illuminated on the sample at a well-defined incident angle \uf071 via the microscope objective lens and the signals from the sample are collected by the same objective lens in which the diffraction orders are projected onto the momentum space [49,50].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' By using an aperture to filter out the desired diffraction order, a spectrometer-based CCD detector and a common path interferometer are used for measuring the magnitude and phase spectra [51,52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' By varying \uf071 sequentially and at the same time measuring the total reflection spectra, we contour plot the TM-polarized reflectivity mappings in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 5(a) – (e) for different W along the \uf047-X direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' They show ±1 and -2 SPP bands are present, and the bands are consistent with the phase-matching equation as illustrated by the dash lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' From the mappings, we see at normal incidence, or the zone center, BIC-like mode is always observed near the band gap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The +1 band has a+ for W = 100 – 400 nm but a− for wider W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' On the other hand, at the zone boundary where +1 and -2 SPPs cross at \uf071 ~ 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='5o, we see the dark and bright modes are found and their positions depend on W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' To estimate the spectral positions of a\uf0b1 , we measure the corresponding m = 0th and 1st, or n = ±1, reflectivity and TM-TE phase difference spectra in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 6(a) & (b) and fit them by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (4) to determine ( ) Re \uf077\uf0b1 in Table 1, which shows the +1 band is a− for W = 100, 250 and 700 nm is a+ for 400 and 550 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Therefore, \uf067 = \uf070 for W = 100, 250 and 550 nm but = 0 for 400 and 700 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Finally, we demonstrate a topologically protected state is formed at the interface between two topological trivial and nontrivial PmCs [47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' We construct a heterostructure by joining two W = 100 and 400 nm PmCs together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' In prior to joining, we have examined by FDTD the field symmetries at the zone center and boundary of two PmCs and determine the \uf067 of the 0, - 1, and +1 SPP bands to be \uf070 , \uf070 and \uf070 for W = 100 nm and \uf070 , \uf070 and 0 for W = 400 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 13 Therefore, the sums of \uf067\uf06c give \uf070 and 0 for W = 100 and 400 nm PmCs, indicating the -2/+1 energy gaps at the zone boundary are topological trivial and nontrivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' We then simulate the heterostructure supercell as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 7(a) that consists of 14 unit cells of W = 100 and 400 nm PmCs on the right- and left-handed sides [47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 7(b) shows the TM-polarized k- and wavelength-resolved reflectivity mapping at the zone boundary along the \uf047-X direction, clearly demonstrating a localized mode is located at k = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='5\uf070/P or θ = 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='5o, and \uf06c ~ 640 nm in the mid of the band gap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' We also have simulated the wavelength-dependent near-field mapping of the heterostructure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' For different wavelengths, the near-field intensities at 20 nm above the surface is simulated across the heterostructure and then contour plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 7(c), showing the interface is located at x = 0 \uf06dm and the trivial and nontrivial regions are at x > 0 \uf06dm and < 0 \uf06dm, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' One sees two strong fields are visible at ~ 620 and 670 nm in the PmC bulk regions away from the interface due to the excitations of the upper and lower coupled modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' However, the strongest field strength is observed at the interface, x = 0 µm, at 640 nm, and it decays rapidly into the bulk regions, signifying the presence of a topologically protected interface state [47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' We have prepared the heterostructure by FIB and its SEM image is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 7(d) with W = 100 and 400 nm PmCs on the right- and left-hand sides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The TM- polarized k- and wavelength-resolved reflectivity mapping of the sample is illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 7(e), clearly showing an interface state is found at \uf071 = 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='5o and \uf06c ~ 625 nm in the +1/-2 band gap at the zone boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' CONCLUSION In summary, we have formulated an analytical model based on temporal CMT to determine the Zak phase of an isolated band in leaky photonic systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' At the Brillouin zone center and boundary, as the far- and near-fields of the systems share the same spatial symmetry, the mirror symmetric diffractions are either in or \uf070 out of phase depending on the Bloch wave 14 symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Therefore, the near-field symmetries can be probed by studying the diffraction profiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' In addition, our model generalizes the occurrence of quasi-BIC at the high symmetry points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The interplay between the in-coupling constants of different ports plays a decisive role in manifesting quasi-BICs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' For verification, we have studied 1D PmCs and PhCs that support TM- and TE-polarized SPP and waveguide modes by FDTD and the results agree very well with the theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' We also have prepared 1D PmCs by FIB and examined their diffractions by using Fourier space diffraction spectroscopy and common path interferometry for determining the Zak phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' In the end, a topological protected interface state is demonstrated by joining two topological trivial and nontrivial PmCs together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' ACKNOWLEDGMENT This research was supported by the Chinese University of Hong Kong through Area of Excellence (AoE/P-02/12) and Innovative Technology Fund Guangdong-Hong Kong Technology Cooperation Funding Scheme (GHP/077/20GD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 15 Reference 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Qi and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Zhang, Topological insulators and superconductors, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 83, 1057 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Hasan and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Kane, Topological insulators, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 82, 3045 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Moore, The birth of topological insulators, Nature 464, 194 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Cooper, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Dalibard, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Spielman, Topological bands for ultracold atoms, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 91, 015005 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Zhu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Zhao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Yan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Zhu, Topological quantum matter with cold atoms, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 67, 253 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Ozawa, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Price, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Amo, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Goldman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Hafezi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Lu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Rechtsman, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Schuster, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Simon, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Zilberberg, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Carusotto, Topological photonics, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 91, 015006 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Lu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Joannopoulos and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Soljačić, Topological photonics, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Photon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 8, 821 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Khanikaev and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Shvets, Two-dimensional topological photonics, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Photon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 11, 763 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Huber, Topological mechanics, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 12, 621 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Yang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Gao, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Shi, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Lin, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Gao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='D Chong, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Zhang, Topological Acoustics, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 114, 114301 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Ma, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Xiao and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Chan, Topological phases in acoustic and mechanical systems, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 1, 281 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Delplace, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Marston, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Venaille, Topological origin of equatorial waves, Science 358, 1075 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Tang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Po, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Vishwanath, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Wan, Comprehensive search for topological materials using symmetry indicators, Nature 566, 486 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 16 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Chen, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Ma, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' He, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Jia, and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Xue, Molecular beam epitaxial growth of topological insulators, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 23, 1162 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Su, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Schrieffer, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Heeger, Solitons in Polyacetylene, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 42, 1698 (1979).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Zak, Berry’s Phase for Energy Bands in Solids, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 62, 2747 (1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Xiao, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Zhang, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Chan, Surface impedance and bulk band geometric phases in one-dimensional systems, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' X 4, 021017 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Xiao, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Ma, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Yang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Sheng, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Zhang, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Chan, Geometric phase and band inversion in periodic acoustic systems, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 11, 240 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Asbóth, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Oroszlány, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Pályi, A Short Course on Topological Insulators (Springer, New York, 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Abanin, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Kitagawa, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Bloch, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Demler, Interferometric approach to measuring band topology in 2D optical lattices, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 110, 165304 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Atala, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Aidelsburger, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Barreiro, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Abanin, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Kitagawa, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Demler and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Bloch, Direct measurement of the Zak phase in topological Bloch bands, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 9, 795 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Cardano, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' D’Errico1, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Dauphin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Maffei, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Piccirillo, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' de Lisio, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' De Filippis, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Cataudella, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Santamato, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Marrucci, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Lewenstein, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Massignan, Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 8, 15516 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Jiao, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Longhi, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Gao, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Zhou, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Fu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Wang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Ren, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Qiao, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Jin, Experimentally detecting quantized Zak phases without chiral symmetry in photonic lattices, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 127, 147401 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Gorlach, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Ni, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Smirnova, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Korobkin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Zhirihin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Slobozhanyuk, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Belov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Alù, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Khanikaev, Far-field probing of leaky topological states in all dielectric metasurfaces, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 9, 909 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 17 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Gao, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Xiao, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Chan, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Tam, Determination of Zak phase by reflection phase in 1D photonic crystals, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 40, 5259 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Wang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Xiao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Liu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Zhu, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Chan, Measurement of the Zak phase of photonic bands through the interface states of a metasurface/photonic crystal, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' B 93, 041415(R) (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Fan, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Yu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Zhang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Zhang, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Ding, Zak phases and band properties in acoustic metamaterials with negative modulus or negative density, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' B 94, 174307 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Zhu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Ding, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Ren, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Sun, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Li, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Jiang, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Chen, Zak phase and band inversion in dimerized one-dimensional locally resonant metamaterials, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' B 97, 195307 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Koshelev, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Bogdanov, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Kivshar, Engineering with bound states in the continuum, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Photon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' News 31, 38 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Zhen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Hsu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Lu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Stone, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Soljacic, Topological nature of optical bound states in the continuum, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 113, 257401 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Zhang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Chen, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Liu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Hsu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Wang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Guan, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Liu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Shi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Lu, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Zi, Observation of polarization vortices in momentum space, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 120, 186103 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Ye, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Gao, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Liu, Singular points of polarizations in the momentum space of photonic crystal slabs, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 124, 153904 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Yoda and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Notomi, Generation and annihilation of topologically protected bound states in the continuum and circularly polarized states by symmetry breaking, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 125, 053902 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Hsu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Zhen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Stone, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Joannopoulos, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Soljacic, Bound states in the continuum, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 1, 16048 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 18 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Doeleman, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Monticone, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' den Hollander, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Alu, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Koenderink, Experimental observation of a polarization vortex at an optical bound state in the continuum, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Photon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 12 397 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Limonov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Rybin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Poddubny, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Kivshar, Fano resonances in photonics, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Photon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 11, 543 (2017) 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Cao and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Ong, Determination of the absorption and radiative decay rates of dark and bright plasmonic modes, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Exp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 22, 16112 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Verslegers, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Yu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Ruan, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Catrysse, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Fan, From electromagnetically induced transparency to superscattering with a single structure: A coupled-mode theory for doubly resonant structures, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 108, 083902 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Haus, Waves and fields in optoelectronics (Prentice-Hall, New Jersey, 1984).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Fan, in Optical Fiber Telecommunications V, edited by I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Kaminow, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Li, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Willner (Academic Press, Burlington, 2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Loewen and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Popov, Diffraction gratings and applications (CRC Press, New York, 1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Ropers, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Park, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Stibenz, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Steinmeyer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Kim, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Kim, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Lienau, Femtosecond light transmission and subradiant damping in plasmonic crystals, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 94 113901 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Billaudeau, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Collin, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Sauvan, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Bardou, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Pardo, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Pelouard, Angle- resolved transmission measurements through anisotropic two-dimensional plasmonic crystals, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 33, 165 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' See Supplementary Materials for the connection between the far- and near-fields from one- dimensional periodic optical system, simulated near-field patterns of the +1 surface plasmon polariton (SPP) band of 1D PmCs across the first Brillouin zone, FDTD simulation results of 1D SiO2/Au photonic crystals (PhCs), and the Fourier space optical 19 microscope for angle- and wavelength resolved diffraction mapping and common path interferometry 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Guo, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Liu, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Ong, Generalization of the circular dichroism from metallic arrays that support Bloch-like surface plasmon polaritons, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 15, 024048 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Christ, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Tikhodeev, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Gippius, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Kuhl, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Giessen, Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 91, 183901 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Liu and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Ong, Realization of topological superlattices and the associated interface states in one-dimensional plasmonic crystals, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' B 106, 045401 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Wang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Guo, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Jiang, Band topology in classical waves: Wilson-loop approach to topological numbers and fragile topology, New.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 21, 093029 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Huang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Yu, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Zare, Surface plasmon resonance imaging using a high numerical aperture microscope objective, Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 79, 2979 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Bleckmann, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Cherpakova, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Linden, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Alberti, Spectral imaging of topological edge states in plasmonic waveguide arrays, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' B 96, 045417 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Cao, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Wong, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Wu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Ho, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Ong, High performing phase-based surface plasmon resonance sensing from metallic nanohole arrays, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 104, 171116 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Wong and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Ong, Phase difference mapping of two-dimensional metallic nanohole arrays, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 100, 233102 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 20 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (a) The schematic shows at the Brillouin zone center and boundary in 1D leaky optical system, two Bloch-like modes a1,2 counter propagate in opposite directions with each supports discrete in-coupling channels 1 2 0 1 2 1 2 N, , , , N, , \uf06b \uf06b \uf06b− .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' They interact with each other to form two coupled a\uf0b1 at higher and lower energies separated by an energy band gap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (b) 0 1 2 0 , , \uf06b \uf0b9 at the zone center but 0 1 2 0 , , \uf06b = at the zone boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Second zone boundary band gap Lowest zone center band gap Lowest zone boundary band gap21 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (a) The unit cell of 1D PmC for FDTD simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The simulated TM-polarized k- and wavelength-resolved total reflectivity mappings of PmCs with W = (b) 100, (c) 250, (d) 400, (e) 550, and (f) 700 nm taken along the \uf047-X direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The white dash lines are calculated by using the phase-matching equation, indicating ±1 and -2 Bloch-like SPPs are excited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' At the zone center and boundary where k = 0 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='5, two energy band gaps are formed, featuring two dark and bright modes are located above or below the gap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Particularly, at k = 0, a quasi- BIC is observed at either above or below the gap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (a) Air (b) 2 SPP p ↑H +1: SPP W Au 、-1SPP C) (d) (f) e22 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The TM-polarized total reflectivity spectra of PmCs taken at the zone center for different W, exhibiting only one single reflectivity dip as the bright mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The red dash line is the band gap center, indicating the quasi-BIC occurs at shorter wavelength for W = 100, 250 and 400 nm but longer wavelength for W = 550 and 700 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' At the zone boundary, two TM- polarized mirror symmetric n = -1 (black square) and 1 (red circle) (b) reflectivity and (c) phase spectra for W = 100 (top) to 700 (bottom).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The green and blue solid lines are the best fits determined by CMT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' XX X23 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The FDTD simulated near-field patterns of the PmCs for different W taken at the Brillouin zone (a) center and (b) boundary, showing their field symmetries are the same for W = 400 and 500 nm but different for W = 100, 250, and 700 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (c) The individual phase profiles determined by the Wilson loop method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The integration yields the Zak phase, indicating the phase is 0 for W = 400 and 500 nm but \uf070 for W = 100, 250, and 700 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (b)24 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The measured TM-polarized k- and wavelength-resolved total reflectivity mappings of PmCs with W = (a) 100, (b) 250, (c) 400, (d) 550, and (e) 700 nm taken along the \uf047-X direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The white dash lines are ±1 and -2 Bloch-like SPPs determined by the phase matching equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Two band gaps are formed at the zone center and boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The insets are the corresponding SEM images of the PmCs with the scale bare = 1 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='.9 600 2SPP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='8 6/5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='7 750 +1SPP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='6 825 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='5 900 1 SPP (a) (b) (c) (d) (e 975 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='.4 80c0L0008060L000800L000s060L0008060L00025 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' At the zone boundary, two measured TM-polarized mirror symmetric n = -1 (black square) and 1 (red circle) (b) reflectivity and (c) TM-TE phase difference spectra for W = 100 (top) to 700 (bottom).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The green and blue solid lines are the best fits determined by CMT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 26 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (a) The schematic of the heterostructure by joining W = trivial 100 and nontrivial 400 nm PmCs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The interface is marked by the dash line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (b) The FDTD simulated TM-polarized reflectivity mapping of the heterostructure taken at the zone boundary along the \uf047-X direction, showing an interface state is found within the gap at \uf06c = 640 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (c) The wavelength- dependent near-field intensity mapping simulated at 20 nm above the heterostructure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The interface is located at x = 0 \uf06dm, showing strong field localization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The strong fields at 620 and 670 nm arise from the PmC bulk regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (d) The SEM image of the W = 100 and 400 nm with the scale bar corresponding to 1 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (e) The measured TM-polarized reflectivity mapping of the heterostructure taken at the zone boundary along the \uf047-X direction, showing an interface state is found within the gap at \uf06c = 625 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' W = 400nm W = 100nm nontrivial trivial 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='52 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='.8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='.7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='6 575 575 (b) e 600 600 625 625 650 650 675 675) 700 (25) /00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='65) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='415 k (2/) k (2TN) 700 (c) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='9 680 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='.7 660 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='5 @) 640 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='4 ABl interface state 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='3 620 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='.1 W = 400 nm W = 100 nm 0 600 1000 500 0 500 1000 x (nrm)27 100 nm 250 nm 400 nm 550 nm 700 nm FDTD Zone center ( ) Re \uf077+ (eV) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='36 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='37 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='36 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='32 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='30 ( ) Re \uf077− (eV) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='32 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='31 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='33 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='36 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='37 Zone boundary ( ) Re \uf077+ (eV) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='98 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='84 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='85 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='98 ( ) Re \uf077− (eV) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='82 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='89 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='99 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='96 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='85 Experiment Zone center ( ) Re \uf077+ (eV) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='36 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='36 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='36 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='33 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='32 ( ) Re \uf077− (eV) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='33 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='32 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='34 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='36 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='36 Zone boundary ( ) Re \uf077+ (eV) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='02 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='01 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='95 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='96 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='02 ( ) Re \uf077− (eV) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='93 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='96 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='02 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='01 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='95 Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The FDTD and experimental ( ) Re \uf077\uf0b1 at the Brillouin zone center and boundary for the PmCs with different W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The highlights are the coupled modes located on the +1 SPP band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' If the highlights at the zone center and boundary are both a+ or a− , the Zak phase is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' If not, the Zak phase is \uf070.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 28 Supplementary Information Determination of the band topology of one-dimensional photonic systems via far-field diffraction C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Liu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Wang, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Ong Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, People’s Republic of China A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Derivation of the connection between the far- and near-fields from one-dimensional periodic optical system Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The schematic of the 2N+1 diffraction orders arising from the coupled mode supported on 1D periodic leaky system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 29 As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' S1, for a one-dimensional optical leaky periodic system that possesses inversion symmetry in the x-direction, at the Brillouin zone center and boundary, it supports two Bloch-like coupled modes a\uf0b1 above and below the photonic band gap with each dissipates a total of 2N + 1 mirror symmetric diffraction channels in free space, where N is the highest diffraction order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' For TM- and TE-polarizations, both the near- and far-fields should carry the same polarization and field symmetry in the x-y plane along the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' For example,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' for TM- polarization,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' in the far-field at zo above the system,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' the x-component of the electric field ( ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=') ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='F ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='o ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='E ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='x z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='is expressed as the superposition of all diffraction orders: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='sin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='cos ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='sin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='cos ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='sin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='cos ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='sin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='cos ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='cos ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='cos ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='cos ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='cos ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='N o ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='o ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='o ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='o ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='N o ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='i ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='ik ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='ik ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='i ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='ik ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='ik ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='i ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='ikz ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='i ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='ik ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='ik ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='i ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='ik ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='ik ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='A e ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='e ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='e ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='e ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='e ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='e ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='A e e ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='e ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='e ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='e ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='A e ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='e ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='e ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='\uf06a ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='\uf071 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='\uf071 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='\uf06a ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='\uf071 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='\uf071 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='\uf06a ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='\uf06a ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='\uf071 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='\uf071 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='\uf06a ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='\uf071 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='\uf071 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='\uf071 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='\uf071 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='\uf071 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='\uf071 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=',' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (S1) where An,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' \uf06an,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' and \uf071n are the diffraction amplitude,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' phase,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' and angle and the subscript n is the diffraction order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' At the same time, for the near-field, the TM-polarized a+ is a standing wave with ( ) ( ) ( ) ( ) zk z k z x x x ˆ ˆ E e u x k sin k x x k cos k x z − \uf0b5 + , where kx and kz are the propagation constants in the x- and z-directions and ( ) ku x is the periodic function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Assume ( ) ku x is an even function for simplicity, we see ( ) x E x is an odd function with ( ) ( ) x x E x E x = − − dependence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Therefore, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (S1) should also exhibit ( ) ( ) F F x x E x E x = − − dependence, yielding n n A A − = , n n \uf06a \uf06a \uf070 − = + , and 0 0 A = that indicate two mirror symmetric diffraction orders have the same magnitude but are always \uf070 out of phase and the normal diffraction order is null.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' As a result, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (S1) is rewritten as: 1 1 1 1 1 1 sin cos sin cos 1 1 sin cos sin cos 1 1 cos cos cos cos N N N o N N N o N N N o N N N o i ik x ik z i ik x ik z N N N N i ik x ik z i ik x ik z N N N N A e e e A e e e A e e e A e e e \uf06a \uf071 \uf071 \uf06a \uf071 \uf071 \uf06a \uf071 \uf071 \uf06a \uf071 \uf071 \uf071 \uf071 \uf071 \uf071 − − − − − − − − − − − − + + − − .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (S2) By matching Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (S2) with the outgoing power amplitudes of a+ from CMT, which are ,1 ,2 0,1 0,2 ,1 ,2 1 2 N N N N a \uf06b \uf06b \uf06b \uf06b \uf06b \uf06b − − + + \uf0e9 \uf0f9 \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa + \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa + \uf0eb \uf0fb , we conclude ( ) 1 2 1 2 n, n, n, n, \uf06b \uf06b \uf06b \uf06b − − + = − + and 0,1 0,2 0 \uf06b \uf06b + = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Likewise, for another coupled mode a− where ( ) ( ) ( ) ( ) zk z k z x x x ˆ ˆ E e u x k cos k x x k sin k x z − \uf0b5 + , we see 30 ( ) ( ) x x E x E x = − and have n n A A − = , n n \uf06a \uf06a− = and 0 0 A \uf0b9 , indicating two mirror symmetric orders are in phase and the normal diffraction order is present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Therefore, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (S1) for a− is: 1 1 1 0 1 1 1 sin cos sin cos 1 1 sin cos sin cos 0 1 1 cos cos cos cos N N N o N N N o o N N N o N N N o i ik x ik z i ik x ik z N N N N i ikz i ik x ik z i ik x ik z N N N N A e e e A e e e A e e A e e e A e e e \uf06a \uf071 \uf071 \uf06a \uf071 \uf071 \uf06a \uf06a \uf071 \uf071 \uf06a \uf071 \uf071 \uf071 \uf071 \uf071 \uf071 − − − − − − − − − − − − − + + + + + + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (S3) We then have 1 2 1 2 n, n, n, n, \uf06b \uf06b \uf06b \uf06b − − − = − for the outgoing power amplitudes of a− given as ,1 ,2 0,1 0,2 ,1 ,2 1 2 N N N N a \uf06b \uf06b \uf06b \uf06b \uf06b \uf06b − − − − \uf0e9 \uf0f9 \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa − \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa − \uf0eb \uf0fb .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Finally, two conditions ( ) 1 2 1 2 n, n, n, n, \uf06b \uf06b \uf06b \uf06b − − + = − + and 1 2 1 2 n, n, n, n, \uf06b \uf06b \uf06b \uf06b − − − = − result in ,1 ,2 n n \uf06b \uf06b− = − and ,1 ,2 n n \uf06b \uf06b − = − .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' On the other hand,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' for TE-polarized Bloch-like coupled modes a\uf0b1 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' at zo in the free space above the system,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' the y-component of the far-field electric field ( ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' ) F y o E x z can be written as: 1 1 1 0 1 1 1 sin cos sin cos 1 sin cos sin cos 0 1 N N N o N N N o o N N N o N N N o i ik x ik z i ik x ik z N N i ikz i ik x ik z i ik x ik z N N A e e e A e e e A e e A e e e A e e e \uf06a \uf071 \uf071 \uf06a \uf071 \uf071 \uf06a \uf06a \uf071 \uf071 \uf06a \uf071 \uf071 − − − − + − + − + − − − − − + − − − + + + + + + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (S4) The near-field of a+ where ( ) ( ) zk z k x ˆ E e u x sin k x y − \uf0b5 , we have ( ) ( ) y y E x E x = − − such that n n A A − = , n n \uf06a \uf06a \uf070 − = + , and 0 0 A = , leading to ( ) 1 2 1 2 n, n, n, n, \uf06b \uf06b \uf06b \uf06b − − + = − + and 0,1 0,2 0 \uf06b \uf06b + = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Likewise, for a− where ( ) ( ) y y E x E x = − , we have n n A A − = , n n \uf06a \uf06a− = and 0 0 A \uf0b9 , giving rise to 1 2 1 2 n, n, n, n, \uf06b \uf06b \uf06b \uf06b − − − = − .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Therefore, two conditions give the same conclusion that ,1 ,2 n n \uf06b \uf06b− = − and ,1 ,2 n n \uf06b \uf06b − = − regardless of the polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' As a result, at the zone center for TM- and TE-polarizations, the outgoing profile is: \uf05b \uf05d ( ) 0 0 1 1 0 2 2 2 N N N , N N , N N N , N N s s C s a a s \uf06b \uf06b \uf06b \uf06b \uf06b \uf06b \uf06b \uf06b \uf06b − − − − − + + − − − − − + \uf0e9 \uf0f9 \uf0e9 \uf0f9 \uf0e9 \uf0f9 \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa = + + \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa − − + \uf0eb \uf0fb \uf0eb \uf0fb \uf0eb \uf0fb , (S5) 31 where the 1,2 subscripts are now dropped.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' We see quasi-BIC arises from a+ and it will occur when 0 n n \uf06b \uf06b − − = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' However, for the lowest band gap where only the normal diffraction order is present, quasi-BIC always occur, making it symmetry protected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' On the other hand, at the zone boundary where 0, s − is always 0, we have for TM- and TE-polarizations: \uf05b \uf05d ( ) 0 1 1 0 0 2 2 N N N , N N , N N N , N N s s C s a a s \uf06b \uf06b \uf06b \uf06b \uf06b \uf06b \uf06b \uf06b − − − − − + + − − − − − + \uf0e9 \uf0f9 \uf0e9 \uf0f9 \uf0e9 \uf0f9 \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa = + + \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa \uf0ea \uf0fa − − + \uf0eb \uf0fb \uf0eb \uf0fb \uf0eb \uf0fb .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (S6) Quasi-BIC occurs depending on the interplay between n \uf06b− and n \uf06b .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' a+ (a− ) is quasi-BIC if 0 n n \uf06b \uf06b − − = ( 0 n n \uf06b \uf06b − + = ) but dark and bright modes are present if 0 n n \uf06b \uf06b − \uf0b1 \uf0b9 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Simulated near-field patterns of the +1 surface plasmon polariton (SPP) band of 1D PmCs across the first Brillouin zone By using the dipole source excitation method, the complex near-field patterns along the +1 SPP band of 1D Au PmCs with period = 900 nm, groove height = 50 nm and different groove widths have been simulated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The real and imaginary parts of the surface normal components, Re(Ez) and Im(Ez), taken at 20 nm above the surface across the Brillouin zone from k = -\uf070/P to \uf070/P \uf06dm-1 are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' S2 for groove width W = 100, 250, 400, 550 and 700 nm PmCs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' They will then be used for determining the Zak phase by the Wilson loop method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 32 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The real and imaginary parts of the z-component of the near-field patterns of the PmCs plotted as a function of k along the +1 SPP band in the first Brillouin zone for different W = (a) & (b) 100, (c) & (d) 250, (e) & (f) 400, (g) & (h) 550, and (i) & (j) 700 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (a (b)33 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' FDTD results of 1D SiO2/Au photonic crystals (PhCs) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' S3(a) shows the unit cell of the PhCs, which has 400 nm thick SiO2 coated on Au surface with the period P and the groove height H being set at 900 nm and 200 nm whereas the groove width W varied from 100 and 725 nm with a step size of 125 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The corresponding TE- polarized k-resolved total reflectivity mappings are shown in Fig S3(b) – (f), showing the dispersive ±1 and -2 photonic bands, which follow the phase matching equation given as ( ) ( ) 2 2 sin D D PhC n n m P \uf06c \uf071 \uf06c = + , where nD is the refractive index of SiO2 and mPhC is the photonic band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The calculations are superimposed in Fig 3(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' We see mPhC = ±1 photonic bands cross at k = 0 \uf06dm-1 and mPhC = +1 and -2 bands cross at k = \uf070/P \uf06dm-1, yielding two energy band gaps at \uf06c = 930 – 1030 nm and 700 – 770 nm at the zone center and boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' At the zone center, one symmetry protected quasi-BIC is always found, and it is located on the -1 band for W = 100 – 475 nm but flips to the +1 band when W increases further.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' At the same time, accidental quasi-BICs are also found along the +1 band at different k for all PhCs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 34 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' S3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (a) The FDTD unit cell of the PhC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The simulated TE-polarized k- and wavelength- resolved total reflectivity mappings of PhCs with W = (b) 100, (c) 225, (d) 350, (e) 475, (f) 600, and (g) 725 nm taken along the \uf047-X direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The white dash lines are calculated by using the phase-matching equation, indicating ±1 and -2 photonic band are present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' At the zone center and boundary where k = 0 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='5, two energy band gaps are formed, featuring two dark and bright modes are located above or below the gap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Particularly, at k = 0, a symmetry protected quasi-BIC is observed at either above or below the gap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' On the other hand, an accidentally BIC is observed along the +1 band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Air p SiO2 H W Au (b) C 2 band +1 band 1 band (d) (e) (f) 935 We will focus on the modes located on the +1 band at the zone center and boundary and determine their field symmetries as well as \uf067.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The reflectivity spectra of the PhCs taken under normal incidence, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=', at the zone center, are illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' S4(a), clearly showing only one single reflectivity dip is present as the bright mode, verifying another coupled mode is quasi- BIC that does not produce any dip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' As quasi-BIC arises solely from a+ for the lowest band gap, we deduce the coupled mode on the +1 band is symmetric a− for W = 100 – 475 nm PhCs but becomes asymmetric a+ for W = 600 and 725 nm PhCs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' On the other hand, the reflectivity spectra taken at the zone boundary for all PhCs are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' S4(b), showing two bright and dark modes are present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' S4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The TE-polarized total reflectivity spectra of PhCs taken at the zone (a) center and (b) boundary for different W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' At the zone center, only one single reflectivity dip is present as the bright mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' On the other hand, at the zone boundary, two bright and dark modes are present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 36 To determine the near-field symmetries of the PhCs at the zone boundary, the two mirror symmetric diffraction and phase spectra are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' S5 and they are fitted with 2 1, 1, s s \uf0b1 − + and ( ) 1, 1, arg s s \uf0b1 − + from CMT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The best fits are displayed as the solid lines and the fitted results ( ) Re \uf077\uf0b1 are tabulated in Table S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' in which the highlights are the coupled modes sitting on the +1 photonic band at the zone center (high energy mode) and boundary (low energy mode).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' If the highlights at two regions are either a+ or a− , the Zak phase is 0, but \uf070 when they are different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' As a result, we conclude the Zak phase of +1 band for W = 100, 225 and 600 nm is \uf070 but becomes 0 for W = 350, 475 and 725 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 100 nm 225 nm 350 nm 475 nm 600 nm 725 nm Zone center ( ) Re \uf077+ (eV) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='18 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='19 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='22 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='27 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='33 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='37 ( ) Re \uf077− (eV) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='21 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='26 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='28 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='29 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='29 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='31 Zone boundary ( ) Re \uf077+ (eV) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='62 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='65 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='72 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='78 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='79 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='79 ( ) Re \uf077− (eV) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='67 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='69 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='69 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='71 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='77 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='84 Table S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The FDTD ( ) Re \uf077\uf0b1 at the Brillouin zone center and boundary for the PhCs with different W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The highlights are the coupled modes located on the +1 photonic band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' If the highlights at the zone center and boundary are both a+ or a− , the Zak phase is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' If not, the Zak phase is \uf070.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 37 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' S5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' At the zone boundary, two TE-polarized mirror symmetric n = -1 (black square) and 1 (red circle) (a) reflectivity and (b) phase spectra of the PhCs for W = 100 (top) to 725 (bottom).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The green and blue solid lines are the best fits determined by CMT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 4 XC38 To verify the Zak phases, we have simulated the real and imaginary parts of the surface normal components, Re(Ez) and Im(Ez), taken at 20 nm above the surface across the Brillouin zone from k = -\uf070/P to \uf070/P \uf06dm-1 in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' S6 for all PhCs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' They will then be used for determining the Zak phase by the Wilson loop method given as ( ) P P X k dk \uf070 \uf070 −\uf0f2 , where ( ) X k is ( ) ( ) ( ) ( ) ,k k unit cell k ,k unit cell u ( x ) i u x x dx k u x x u ( x )dx \uf065 \uf065 \uf0b6 \uf0b6 \uf0f2 \uf0f2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The evolutions of the individal phase difference, which is ( ) X k k \uf044 , of the +1 band as a fucntion of k with \uf044k = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='04π/P of all PhCs are plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' S7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The integrated areas yield the Zak phases are \uf070 for W = 100, 225, and 600 nm and 0 for W = 350, 475 and 725 nm, and they agree very well with earlier CMT results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 39 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' S6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The real and imaginary parts of the z-component of the near-field patterns of the PhCs plotted as a function of k along the +1 photonic band in the first Brillouin zone for different W = (a) & (b) 100, (c) & (d) 225, (e) & (f) 350, (g) & (h) 475, (i) & (j) 600, and (k) & (l) 725 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' (C) (e (g) (h) (i) (k)40 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' S7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The individual phase profiles of the PhCs with different W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The integration yields the Zak phase, indicating the phase \uf070 for W = 100, 225, and 600 nm and 0 for W = 350, 475 and 725 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Schematic of the Fourier space optical microscope for angle- and wavelength resolved diffraction mapping and common path interferometry Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' S8 shows the schematic of the Fourier space optical microscope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Briefly, a broadband supercontinuum laser from a nonlinear photonic crystal fiber is collimated and then passed through a set of linear polarizers, wave plates, and lenses before being focused onto the back focal plane (BFP) of a 100X objective lens (OB) with numerical aperture = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The light exiting from the objective lens is then a collimated beam with well-defined linear polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' In addition, by displacing the focused spot across the BFP of the objective lens using a motorized translation stage, the incident polar angle \uf071 of the collimated beam onto the sample can be varied following sin\uf071 = d/f, where d is the distance between the focused spot and the optical axis of the BFP and f is the focal length of the objective lens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' In addition, the azimuth angle \uf066 can be varied by a motorized rotation sample stage to align the incident plane to the \uf047- X direction of the PmC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The diffractions from the PmC are then collected by the same objective lens and are routed through a set of Fourier lens system so that the diffraction orders are projected onto the momentum space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' By placing an aperture at the momentum space to filter 41 out the desired diffraction order, its intensity and phase spectra can be measured by a spectrometer-based CCD detector and a common path interferometer [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' To perform common path interferometry, the 45o linearly polarized collimated beam with the Jones vector given as 1 1 1 2 \uf0e9 \uf0f9 \uf0ea \uf0fa \uf0eb \uf0fb is incident on the PmC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The diffraction order from the PmC after the aperture can be formulated as: 0 0 TM TE i TM PmC i TE r e J r e \uf071 \uf071 \uf0e9 \uf0f9 = \uf0ea \uf0fa \uf0eb \uf0fb , where rTM,TE and \uf071TM,TE are the magnitudes and phases for TM- and TE-polarizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The diffraction passes through a quarter wave plate with the fast axis being placed at 45o with respect to the incident plane and a motorized rotatable analyzer with angle \uf078, which are given as 2 ( ) 2 cos sin cos sin cos sin analyzer J \uf078 \uf078 \uf078 \uf078 \uf078 \uf078 \uf078 \uf0e9 \uf0f9 = \uf0ea \uf0fa \uf0eb \uf0fb and (45 ) 1 1 1 1 1 2 QWP i i J i i \uf0b0 − + \uf0e9 \uf0f9 = \uf0ea \uf0fa + − \uf0eb \uf0fb .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The output vector is ( ) (45 ) 1 1 1 2 analyzer QWP PmC J J J \uf078 \uf0b0 \uf0e6 \uf0f6 \uf0e7 \uf0f7 \uf0e8 \uf0f8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' After some formulations,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' the intensities for different \uf078 = 0o,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' ±45o,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' and 90o can be written as: ( ) 2 2 2 0 1 1 ( ) 2 sin 2 4 0 i TM TE TM TE TM TE r e i r R r r r r \uf06a \uf06c \uf06a \uf0e9 \uf0f9 + = = + + \uf0ea \uf0fa \uf0eb \uf0fb ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' ( ) 2 2 45 1 ( ) 2 cos 4 TM TE TM TE R r r r r \uf06c \uf06a + = + + ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' ( ) 2 2 45 1 ( ) 2 cos 4 TM TE TM TE R r r r r \uf06c \uf06a − = + − ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' and ( ) 2 2 90 1 2 sin 4 TM TE TM TE R r r r r \uf06a = + − ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' where TM TE \uf06a \uf071 \uf071 = − .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Therefore, the phase difference between TM- and TE- polarized diffractions can be calculated by: 0 90 45 45 ( ) ( ) tan ( ) ( ) ( ) R R R R \uf06c \uf06c \uf06a \uf06c \uf06c \uf06c + − − = − .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 42 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' S8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' The schematic of the Fourier optical microscope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Reference 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Cao, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Wong, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Wu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Ho, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Ong, High performing phase-based surface plasmon resonance sensing from metallic nanohole arrays, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' 104, 171116 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} +page_content=' P: polarizer L1,L2,L3,L4: focusing lens OB: objective lens BS: beam splitter BFP: back focal plane' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE2T4oBgHgl3EQfSAfe/content/2301.03789v1.pdf'} diff --git a/DdFQT4oBgHgl3EQfPjZG/content/tmp_files/2301.13279v1.pdf.txt b/DdFQT4oBgHgl3EQfPjZG/content/tmp_files/2301.13279v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..c8c12b5093107e9ffaf05cbc3a350acf85003868 --- /dev/null +++ b/DdFQT4oBgHgl3EQfPjZG/content/tmp_files/2301.13279v1.pdf.txt @@ -0,0 +1,1122 @@ +Learning Coordination Policies over Heterogeneous Graphs for +Human-Robot Teams via Recurrent Neural Schedule Propagation +Batuhan Altundas1, Zheyuan Wang1, Joshua Bishop1 and Matthew Gombolay1 +Abstract— As human-robot collaboration increases in the +workforce, it becomes essential for human-robot teams to +coordinate efficiently and intuitively. Traditional approaches +for human-robot scheduling either utilize exact methods that +are intractable for large-scale problems and struggle to ac- +count for stochastic, time varying human task performance, +or application-specific heuristics that require expert domain +knowledge to develop. We propose a deep learning-based +framework, called HybridNet, combining a heterogeneous +graph-based encoder with a recurrent schedule propagator for +scheduling stochastic human-robot teams under upper- and +lower-bound temporal constraints. The HybridNet’s encoder +leverages Heterogeneous Graph Attention Networks to model +the initial environment and team dynamics while accounting +for the constraints. By formulating task scheduling as a se- +quential decision-making process, the HybridNet’s recurrent +neural schedule propagator leverages Long Short-Term Mem- +ory (LSTM) models to propagate forward consequences of +actions to carry out fast schedule generation, removing the +need to interact with the environment between every task- +agent pair selection. The resulting scheduling policy network +provides a computationally lightweight yet highly expressive +model that is end-to-end trainable via Reinforcement Learning +algorithms. We develop a virtual task scheduling environment +for mixed human-robot teams in a multi-round setting, capable +of modeling the stochastic learning behaviors of human work- +ers. Experimental results showed that HybridNet outperformed +other human-robot scheduling solutions across problem sizes +for both deterministic and stochastic human performance, with +faster runtime compared to pure-GNN-based schedulers. +I. INTRODUCTION +With collaborative robots (cobots) becoming more avail- +able in the industrial and manufacturing environments, robots +and humans increasingly share the same work space to +collaborate on tasks [1]. By removing the cage around tradi- +tional robot platforms and integrating robots into dynamic, +final assembly operations, manufacturers can see improve- +ments in reducing a factory’s footprint and environmental +costs as well as increased productivity [2]. In this paper, +we focus on the problem of multi-agent task allocation and +scheduling [3] with mixed human-robot teams over multiple +iterations of the same task allocation problem. Our work +accounts for and leverages stochastic, time-varying human +task performance to quickly solve task allocation problems +among team members to achieve a high-quality schedule +with respect to the application-specific objective function +*This work was supported in part by the Office of Naval Research +under grant N00014-19-1-2076 and Naval Research Laboratory under grant +N00173-21-1-G009. +1Batuhan Altundas, Zheyuan Wang, Joshua Bishop and Matthew Gom- +bolay are with the Institute for Robotics and Intelligent Machines, Georgia +Institute of Technology, Atlanta, GA 30332, USA {baltundas3, +pjohnwang, jbishop45, mgombolay3}@gatech.edu +while satisfying the temporal constraints (i.e., upper and +lower bound deadline, wait, and task duration constraints). +Compared to task scheduling within multi-robot systems, +the inclusion of human workers makes scheduling even more +challenging because, while robots can be programmed to +carry out certain tasks at a fixed rate, human workers typ- +ically have latent, dynamic, and task-specific proficiencies. +Effective collaboration in human-robot teams requires utiliz- +ing the distinct abilities of each team member to achieve safe, +effective, and fluent execution. For these problems, we must +consider the ability of humans to learn and improve in task +performance over time. To exploit this property, a scheduling +algorithm must reason about a human’s latent performance +characteristics in order to decide whether to assign the best +worker to a task now versus giving more task experience +to a person who is slower but has a greater potential for +fluency at that particular task. However, it is non-trivial to +infer human strengths and weaknesses while ensuring that +the team satisfies requisite scheduling constraints, due to +the uncertainty introduced by variability in task execution +behavior across different individuals, as well as uncertainty +on future task performance affected by human’s learning +effects with practice [4]. Moreover, a lack of consideration +for human preferences and perceived equality may, in the +long run, put efficient behavior and fluent coordination at a +contradiction [5]. +Recent advances in scheduling methods for human-robot +teams have shown a significant improvement in the ability to +dynamically coordinate large-scale teams in final assembly +manufacturing [6], [7]. Prior approaches typically rely on +an assumption of deterministic or static worker-task profi- +ciencies to formulate the scheduling problem as a mixed- +integer linear program (MILP), which is generally NP-hard +[8]. Exact methods are hard to scale and often fail to consider +the time-varying stochastic task proficiencies of human work- +ers over multi-round schedule execution that could result +in significant productivity gains. The heuristic approaches +may be able to determine task assignments; however, such +approaches required domain specific knowledge that takes +years to gain. We desire a scalable algorithmic approach that +can automatically learn to factor in the human behavior for +fast and fluent human-robot teaming. +Advancements in artificial intelligence have fostered the +idea of leveraging deep neural networks (DNNs) to solve +a plethora of problems in operations research [9]. DNNs +can be trained to automatically explore the problem struc- +ture and discover useful representations in high-dimensional +data towards constructing high-quality solutions, without +arXiv:2301.13279v1 [cs.AI] 30 Jan 2023 + +Fig. 1. +Overview of Multi-Round Environment with HybridNet Scheduler. Left: The Multi-Round Scheduling Environment is developed to simulate a +human-robot scheduling problem over multiple iterative rounds of execution, accounting for changes in human task performance. Right: HybridNet consists +of a heterogeneous graph-based encoder to extract high-level embeddings of the problem and a recurrent schedule propagator for fast schedule generation. +hand-crafted feature engineering [10]. Particularly, promis- +ing progress has been made in learning scalable solvers +with graph neural networks via imitation learning (IL) or +reinforcement learning (RL), outperforming state-of-the-art, +approximate methods [11], [12], [13]. +To overcome the limitations of prior work, we propose +a deep learning-based framework, called HybridNet, for +scheduling stochastic human-robot teams under temporal +constraints. Figure 1 shows the overall framework of our +proposed method operating in a multi-round environment. +HybridNet utilizes a heterogeneous graph-based encoder and +a recurrent schedule propagator. The encoder extracts high +level embeddings of the scheduling problem using a hetero- +geneous graph representation of the problem extended from +the simple temporal network (STN) [14]. By formulating +task scheduling as a sequential decision-making process, the +recurrent propagator uses Long Short Term Memory (LSTM) +cells to carry out fast schedule generation. The resulted +policy network provides a computationally lightweight yet +highly expressive model that is end-to-end trainable via +reinforcement learning algorithms. +The primary contributions of our work are: +• We propose a deep learning-based framework, Hybrid- +Net, for human-robot coordination under temporal con- +straints. HybridNet consist of a Heterogeneous Graph- +based encoder and a Recurrent Schedule Propagator. +The encoder extracts relevant information about the +initial environment, while the Propagator generates the +consequential models of each task-agent assignments +based on the initial model. Inspired by the sensory +encoding and recurrent processing of the brain, this +approach allows for fast schedule generation, removing +the need to interact with the environment between every +task-agent pair selection. +• We develop a virtual task scheduling environment for +mixed human-robot teams in a multi-round setting, +capable of modeling the stochastic learning behavior +of human workers. We make our environment OpenAI +gym-compatible and expect it to serve as a testbed to +facilitate the development of human-robot scheduling +algorithms. The implementation is publicly available.1 +• We present a novel policy model that jointly learns how +to pick agents and tasks without interacting with the +environment between intermediate scheduling decisions +and only needs a single reward at the end of schedule. +By factoring in the action space into an agent selec- +tor and a task selector, we enable conditional policy +learning with HybridNet. We account for the state and +agent models when selecting the agents, and combine +the information regarding the tasks, selected agent and +the state for task assignment. As a result, HybridNet is +end-to-end trainable via Policy Gradients algorithms. +• We conducted extensive experiments to validate Hy- +bridNet across a set of problem sizes. Results showed +HybridNet consistently outperformed prior human- +robot scheduling solutions under both deterministic and +stochastic settings. +II. RELATED WORK +A. Multi-Agent Scheduling Problem +Task assignment and scheduling of multi-agent systems is +an optimization problem that has been studied for real world +applications, both for Multi-Robot Task Allocation(MRTA) +problem using traditional techniques [15] and deep learning +based techniques [16] as well as for human-robot collab- +oration [7]. Task Allocation can be formalised by Mixed +Integer Linear Programming (MILP) to capture it’s con- +straints. The exponential complexity of solving the MILP +can be accelerated through constraint programming methods +[7], [17], [18] or heuristic schedulers to leverage better +scalability [19], [20]. Zhang et al. encoded task schedules +as chromosomes for a genetic algorithm that optimized +schedules for heterogeneous human-robot collaboration by +repeatedly crossing over and mutating the solutions to find +the optimal schedule. [21] +1https://github.com/altundasbatu/HybridNet IROS2022 + +Multi-Round Env +HybridNet +Schedule Propagator +[wl|/1] +Encoder +Problem Instance +Input to +Agent +Learning Curve Models +L'STM +LSTM +Sample +Agent +Agent Selector +Embedding +an +Temporal Constraints +Human-Robot Teams +Agent +Layer +Layel +HetGAT Layer +HetGAT +etGAT I +State +LSTM +Agent Index +Learning Curve +State +Repetition Tracker +Estimator + Embeddings +Task +Sample +(Task, Agent) + Round number +Task Selector +Embeddings +a Task +Picked +Single assignment +Evaluate +Step +Reward +/Makespan +Whole Schedule +TrainingGombolay et al. present an algorithm to capture domain +knowledge through scheduling policy requiring domain- +expert demonstrations [22]. Wang et al. propose Schedu- +leNet, a Heterogenous Graph Neural Networks-based model +for task allocation under temporospatial constraints, trained +through Imitation Learning using optimal schedule [23]. +ScheduleNet relies on interactive scheduling scheme, with +constant update of an environment before reaching a com- +plete schedule. These approaches require optimal schedules +generated by other expert systemsto train and have high +computational complexity that make their implementation +costly. +B. Modeling Human-Robot Teams +As advancements in robot capability progress, they be- +come safer and effective to use in conjunction with humans +to complete specialized works. Liu et al. presents a model +of human task completions, showing an increase in the task +efficiency as a result of learning. This paper shows that +prediction of human performance enhances the ability of +the scheduling systems to explicitly reason about the agents’ +capabilities [4]. Prior work on behavioral teaming and the +natural computational intractability of large-scale schedule +optimization suggests that robots can offer a valuable service +by designing and adapting schedules for human teammates. +In our system, we leverage the findings of Liu et al. to +account for humans learning over time, both in problem +generation as part of the environment and a learning curve +predictor as part of the scheduling policy. The human learn- +ing curve follows an exponential function of generic form +over the course of multiple iterations as shown in Equation +1 [4]: +y = c + ke−βi +(1) +where i is the number of iteration the human has previously +executed a task and c, k, β parameters. We further account +for the stochastic-nature of human learning in our environ- +ment. +C. Graph Neural Networks +Graph Neural Networks (GNNs) are a class of deep neural +networks that learn from unstructured data by representing +objects as nodes and relations as edges and aggregating +information from nearby nodes [24]. GNNs have been widely +applied in graph-based problems such as node classification, +link prediction and clustering, and they have shown to +have an impressive performance [25]. The Heterogeneous +Graph Attention Network presented in Wang et al. utilizes +Deep Learning Algorithms to address the Scheduling Prob- +lem, showing improved performance compared to non-Deep +Learning Schedulers such as Earliest-Deadline First (EDF) +[26] and Tercio [7] at the cost of increased computational +complexity [23]. +D. LSTM Based Sequence Prediction +The impact of the LSTM network has been notable +in language modeling [27], speech-to-text transcription[28], +machine translation [29], and other applications that involve +predictive modeling [30], [31], [32]. The advantage of this +lengthier path generated through the recurrent nature of the +neural network is that it affords an opportunity to build a +certain degree of intuition that can prove beneficial during +all phases of the process [30], [33]. +III. HUMAN-ROBOT SCHEDULING PROBLEM +A. Problem Overview +In this paper, we focus on the problem of human-robot task +allocation and scheduling with temporal constraints [15]. We +describe the problem components using a 4-tuple ⟨a, τ, d, w⟩ +form. a represents all agents that belong to the human-robot +team, τ represents all the tasks to be performed. Each task, +τi, and agent, aj, have a task completion duration dur(τi, aj) +and agents are capable of completing a sequence of tasks in +order. d contains the set of deadline constraints, where di ∈ d +specifies the tasks depending on τi [23]. w is the set of wait +constraints where wij ∈ w denotes the wait time between +tasks τi and τj. A Schedule, S, is a sequence of task-agent +pairs ⟨τi, aj⟩ such that S contains all tasks in τ. +B. Multi-Round Scheduling Environment +The Multi-Round Scheduling Environment is developed +to simulate a human-robot scheduling problem over multiple +iterative rounds of execution, accounting for changes in +the task performance of human workers based on previous +round. Each round is a step in the OpenAI Gym-compatible +environment, taking as input the complete set of task-agent +pairs for the scheduling problem, simulating the sequential +assignment of tasks to agents. +Each round’s execution is considered finished when all +the tasks are assigned to one of the agents or if the provided +schedule is determined to be infeasible under the problem +constraints. The environment checks the feasibility of the +provided schedule given the constraints of the problem, +and computes the total duration of task completion of the +schedule if the schedule is feasible. If the schedule does not +satisfy the constraints, it is determined to be infeasible and +the list of tasks that could not been scheduled are returned. +We formulate the Multi-Round Scheduling Environment as +a Partially Observable Markov Decision Process (POMDP) +using a six-tuple ⟨S, A, T, R, Ω, O, γ⟩ below: +• States: The problem state S is a state of the Multi- +Round Environment consistent of the state of the +Agents. +• Actions: Actions at round t within the Multi-Round +Environment refers to a complete set of Task Alloca- +tions made up of a list of task-agent pairs, denoted as +At = [⟨τi1, aj1⟩, ⟨τi2, aj2⟩, ...] to be executed in order. +• Transitions: T corresponds to executing the action in +Multi-Round Scheduling Environment and proceed to +next time step. +• Rewards: Rt is based on the scheduling objective a user +wants to optimize. In Section III-E we show how to +compute Rt when optimizing makespan. +• Observations: Ω is the estimated performance of all the +task-agent pairs, plus the observable constraints. + +• Observation Function: O is handled by the Learning +Curve Estimator explained in the Section III-D. +• Discount factor, γ +C. Agent Models +The Multi-Round Environment stores the Agent informa- +tion, allowing the environment to keep track of each agent +and which tasks it has previously completed. The update of +the Environment happens at the end of each round, allowing +agents to modify themselves based on their internal models. +to update the model based on the selected (task-agent) pairs +for each round. +1) Determinitic Robot Model: We generate the robot task +completion times randomly through uniform distribution. +2) Stochastic Human Model: We generate the human +task completion times randomly based on Equation 1, such +that the Environment can be setup to provide Deterministic +and Stochastic performance for human learning. The task +duration parameters of the human learning model, c, k, β, in +Equation 1 are built from the randomly selected initial task +completion time for round 0. For Stochastic performance, +the standard deviations are used to sample from a Normal +Distribution as presented in Liu et al. [4]. +D. Learning Curve Estimator +The scheduler is given an estimate of the performance of +the human agents for each task based on the information +about the task duration of the previous executions of the +task-agent pair through the Learning Curve Estimator as +part of our OpenAI Gym-like Environment In our paper, +we have implemented a black box model based on the +insights presented in Liu et al.[4] to simulate a Stochastic +Human Learning Estimator. As an Agent completes a task +in multiple rounds, the Agent Model records the task comple- +tion duration, allowing Learning Curve Estimator to predict +the next task-agent duration more accurately. To represent +the increase in accuracy from increase in information, we +implemented a Learning Curve Estimator that generates an +estimate of the human agent performance using the actual +task performance as the mean of a Gaussian Distribution +with noise that exponentially decreases with the number of +repetitions of the same task for that agent in previous rounds. +E. Reward Design +The total reward, Rt, for the schedule generated by the +multi-round scheduling environment is calculated based on +feasible, A′, and infeasible, ˜A′, subsets of task allocations, +such that At = A′ +t∪ ˜A′ +t. Specifically, the reward, Rt, is based +on the expected reward for the feasible subset of task-agent +assignments, Rt(A′ +t), and the reward from the assignment +of the infeasible subset of task-agent assignments, Rt ˜A′ +t... , +based on the point estimate of the reward from assigning +the incomplete task to the agent that will complete it in +the longest possible duration, multiplied by an infeasible +coefficient Ci as shown in equation 2: +Rt = +� +i∈A′ +t +R (τi, ai) + Cimaxaj +� +�� +i∈ ˜ +A′ +R (τi, aj) +� +� +(2) +The Total Schedule Reward, RS, favors schedules with +more feasible task allocations and enables learning from +infeasible explorations during training. +IV. HYBRIDNET SCHEDULING POLICY +As shown in Figure 1, our HybridNet framework consists +of a heterogeneous graph-based encoder to learn high level +embeddings of the scheduling problem, and a recurrent +schedule propagator to generate the team schedule sequen- +tially. This hybrid network architecture enables directly +learning useful features from the problem structure, owing to +the expressiveness of heterogeneous graph neural networks, +and at the same time efficiently constructing the schedule +with our LSTM-based propagator. As a result, HybridNet +does not require interacting with the environment between +every task-agent pair selection, which is necessary but com- +putationally expensive in prior work [16], [23]. +We denote the policy learned by HybridNet as πθ(A|S), +with θ representing the parameters of the neural network. At +round t, an action takes the form of an ordered sequence +of scheduling decisions, At = {d1, d2, ..., dn}, di = ⟨τi, aj⟩, +where a latter decision, di, is conditioned on its former ones, +d1:i−1. Then, the policy can be factorized as +pθ(At|St) = +n +� +i=1 +pθ(di|St, d1:i−1) +(3) +Using +the +Recurrent +Schedule +Propagator, +HybridNet +recursively +computes +the +conditional +probability, +pθ(di|St, d1:i−1), +for +sampling +a +task-agent +pair. +At +the end, the network collects all the decisions and sends to +the environment for execution. +A. Heterogeneous Graph Encoder +We build our Encoder using the heterogeneous graph at- +tention (HetGAT) layer proposed in [23] that has been shown +effective in representation learning of multi-agent scheduling +problems. At the start of each round for a given human-robot +scheduling problem, the heterogeneous graph representation +is built by extending from the simple temporal network +(STN) that encodes the temporal constraints to include agent +nodes and a state summary node. The metagraph of the +resulted graph is shown in Figure 2, which summarizes +all the node types and edge types. Then, a HetGAT layer +computes the output node features by performing per-edge- +type message passing followed by per-node-type feature +reduction, while utilizing a feature-dependent and structure- +free attention mechanism. We refer interested readers to [23] +for full details of implementing a HetGAT layer. +By stacking several HetGAT layers sequentially, we con- +struct the Encoder that utilizes multi-layer structure to extract +high-level embeddings of each node that will be send to +the propagator for schedule generation. We follow the same + +Fig. 2. +Metagraph of the heterogeneous graph built from the STN by +adding agent and state summary nodes. +hyper-parameters for HetGAT layers as provided in Wang et +al. [23] +B. Recurrent Schedule Propagator +The HetGAT layers are computationally complex and +require interactive scheduling to generate the initial model. +By utilizing an LSTM based Recurrent Predictor, we prop- +agate forward consequences of each task-agent assignment, +recreating the encoded information about the environment +without relying on the initial HetGAT Layer, significantly +reducing the computational complexity of our scheduler. +The Recurrent Schedule Propagator takes as input the +Task, State and Agent embeddings generated by the Het- +erogeneous Graph Encoder and sequentially generates task- +agent pairs based on the encoded information. To predict the +consecutive encoding of state and agents, we use an LSTM +Model to recursively generate the Agent and State after +each assignment of a task to an agent, without interacting +with the Environment, outputting the sequential task-agent +assignment for the complete set of tasks. The pseudo-code +for scheduling generation with HybridNet is presented in +Algorithm 1. +As di = ⟨τi, aj⟩, we further factor pθ(di|St, d1:i−1) into +an agent selector and a task selector. That is, πfactor(d|·) = +πagent(aj|·) · πtask(τi|aj, ·). This factorization allows the +policy to capture the underlying composite and conditional +nature of the scheduling decisions, where the task to schedule +is strongly dependent on the picked agent. +The Agent Selector selects the new agent for the next deci- +sion d based on the state and agent information. Specifically, +the concatenated state-agent embeddings are processed by a +feed-forward neural network, fa, to compute the likelihood +of selecting each agent for the next task-agent pair, using +Equation 4. A softmax operation is performed to convert +the raw predictions into a probability distribution. After +the selection of the agent, the agent embedding of the +chosen agent is updated based on the selected task and state +embeddings, as state change only happens for the assigned +agent. This approach allows the agent selector to consider +how busy each agent is, based on the inherent information +Algorithm 1 Psuedocode for Schedule Generation +Input: graph g, features f, unscheduled-Tasks u +Output: schedule +1: schedule = [ ], i = 1 +2: (ha1, ca1, ht1, ct1, hs1, cs1) ← Encoder(g, f) +3: while |u| ̸= 0 do +4: +pai ← AgentSelector(hsi, hai) +5: +ai ← Sampling(pai) +6: +pti ← TaskSelector(hti, hsi, ai) +7: +ti ← Sampling(pti−1) +8: +schedule.append(⟨ti, ai⟩) +9: +unscheduledTasks.remove(ti) +10: +if |unscheduledTasks| == 0 then +11: +return schedule +12: +end if +13: +i ← i + 1 +14: +hsi, csi ← LSTMs((hti−1[ti], hai−1[ai]), +hai−1, cai−1) +15: +hai, cai ← LSTMa((hti−1[ti], hai−1[ai]), +hai−1, cai−1) +16: end while +presented in the embeddings. +πagent(aj|s) = softmaxi(fa([haj||hs])) +(4) +Next, the Schedule Propagator uses the Task Selector to +assign the task for the selected agent based on the state, agent +and unscheduled task embeddings. As shown in Equation 5, +the Task Selector concatenates the state, selected agent and +the unscheduled task embeddings and passes the combined +information to a feedforward neural network, fτ, to calculate +the likelihood of the task being assigned to the selected +agent. After assigning to an agent for execution, the tasks +are removed from the list of unscheduled tasks. Since the +calculation of likelihood of each task is independent of each +other up to the last softmax operation, the model is scalable +and can be used for differentproblem sizes. +πtask(τi|aj, s) = softmaxi(fτ([hτi||haj||hs])) +(5) +The key component of the Schedule Propagator is the use +of LSTM. As shown in line 12 of Algorithm 1, after each +task-agent pair selection, the state and agent embeddings are +updated using the state LSTM and agent LSTM, respectively. +The LSTM Cell stores the hidden and cell data from the +previous step of the task allocation and predicts the next +step based on the input using the Equation 6 [33]. +ft = σ(Wf[ht−1, xt] + bf) +it = σ(Wi[ht, xt] + bi) +˜ct = tanh(Wc[ht−1, xt] + bc) +ct = ftct−1 + it˜ct +ot = σ(Wo[ht−1, xt] + bo +ht = ottanh(ct) +(6) +Where the Encoder produces initial hidden state, h1 and +initial cell state c1 as an output in the form of [h1, c1]. +During testing, we utilize a batched sampling strategy for +further performance gains. Specifically, we generate multiple +schedules for the same task allocation problem every round. + +communicate +Agent +assignedTo +State +takeTime +UseTime +Task +in +temporalWe select the best performing schedule by computing the +estimated makespan utilizing the Learning Curve Estimator +and provide it to the Multi-Round Environment. More sam- +pling improves solution quality at increased computation. +C. Stochastic Policy Learning +We train HybridNet in multi-round scheduling environ- +ments using Policy Gradient methods that seek to directly +optimize the model parameters based on rewards received +from the environment [34]. Specifically, we compute the +gradient of the model using the sum of the log likelihood +of Agent and Task Selectors, as shown in Equation 7: +∇θJ(θ) = Eπ( +T +� +t +Aπθ +t (st, ⟨τi, ai⟩) +∇θ(logπθ(τi|ai, st) + logπθ(ai|st)) +(7) +In Equation 7, the advantage term, At is estimated by sub- +tracting a “baseline” from the total future reward calculated +in Equation 2. We calculate the “baseline” using the reward +generated for the same task-allocation problem from multiple +batches executed in multiple sequential rounds in the Multi- +Round Environment. Each element of the batch solves the +same scheduling problem and the environment is updated +to account for the task-allocation of the previous round, +updating the agent models. The gradients were calculated +from Equation 7 to updated the model weights. +Due to the combinatorial nature of the task scheduling +problem, plus the stochasticity in human proficiency, learning +a helpful value function as a baseline for computing the +advantage term is non-trivial. Instead, we investigate two +more accessible and efficient alternatives: +• Step-based Baseline: During gradient estimation, the +baseline value subtracted is set as the average return +value across training episodes in the current batch. +• Greedy Rollout Baseline: Greedy Rollout Baseline uses, +πgreedy(A|S), a deterministic greedy version of the Hy- +bridNet scheduler, to collect rewards in the environment. +Its weights, θgreedy, are updated periodically by copying +the weights from the current learner, πθ(A|S). +V. EXPERIMENTAL RESULTS +A. Data Generation +We generate scheduling problems with deadline and wait +constraints under different scales. For all scales, the deadline +constraints are randomly generated for approximately 25% of +the tasks from a range of [1, 5N] where N is the number of +tasks. Approximately 25% of the tasks have wait constraints, +and the duration of non-zero wait constraints is sampled from +U([1, 10]). Task durations are clamped to 10 to 100. +1) Small Scale: The small data set has 9 to 11 tasks with 2 +robots and 2 humans in a team. We generated 2000 Training +Problems and 200 Test Problems. +2) Medium Scale: The medium data set has 18 to 22 +tasks with 2 robots and 2 humans in a team. We generated +2000 Training Problems and 200 Test Problems to inspect +the scalability of our trained model. +3) Large Scale: The large data set is defined as problems +with 36 to 44 tasks chosen at random with 2 robots and 2 +humans in a team. We have generated 200 Test Problems +to evaluated the HybridNet performance with zero training +problems (i.e., zero-shot transfer to from the smaller scale +datasets to the Large Scale dataset). +To simulate the stochastic learning of human agents, for +each Data Set noise is introduced to the Human Agent +models by simulating the natural distribution of the c, k, β +parameters of Equation 1. This allows for each Data Set to +simulate Deterministic and Stochastic Human Performance. +The stochastic model is clipped to fall within the specified +range of task durations. +B. Benchmarking +We benchmark HybridNet against the following methods: +• EDF: A ubiquitous heuristic algorithm, earliest deadline +first (EDF), that selects from a list of available tasks the +one with the earliest deadline, assigning it to the first +available agent. +• Genetic Algorithm: An Evolutionary Optimization Al- +gorithm that uses Post-Processing on the Schedule +Generated by EDF [21]. Genetic algorithm creates new +schedules based on the initial schedule through iterative +randomized mutations by swapping task allocations +and task orders [4]. Each generation selects the top +performing schedules, sorted on feasibility and total +schedule completion time, and used as the baseline for +creating new mutations. The Genetic Algorithm was run +for 10 generation with 90 baseline schedules, 10 task +allocation and 10 task order swapping mutations. +Furthermore, we evaluate the functionality of the Re- +current Schedule Propagator by comparing it against the +following HybridNet variant: +• HetGAT: We implement a HetGAT Scheduler based on +the Encoder of HybridNet. After each task-agent pair +assignment, instead of using the LSTM Cells to update +the task, agent and state embeddings, it directly interacts +with the environment to model the consequences of +action with a new heterogeneous graph and re-computes +those information from it. +We evaluate HybridNet on three metrics: 1) Proportion +of problems solved; 2) Adjusted makespan: determined by +the average of the makespan of feasible schedules and the +maximum possible makespan of the infeasible schedules; +and 3) Runtime statistics. Runtime statistics for training and +execution is compared for HybridNet and HetGAT Scheduler +to model their computational complexity. Because HetGAT +Scheduler relies on interactive scheduling through the envi- +ronment after every task-agent pair allocation, we only train +and evaluate it for Deterministic Human Performance. +C. Model Details +We implement HybridNet and HetGAT using PyTorch [35] +and Deep Graph Library [36]. The HybridNet Encoder used +in training/testing is constructed by stacking three multi-head + +TABLE I +EVALUATION RESULTS: ADJUSTED MAKESPAN AND FEASIBILITY WITH DETERMINISTIC HUMAN TASK PROFICIENCY COMPARING BENCHMARKS +WITH HYBRIDNET TRAINED ON SMALL AND MEDIUM SCALES, WITH SCHEDULES SAMPLED FROM SIZES 8 AND 16 +Training +Methods +Small +Medium +Large +Makespan +Feasibility (%) +Makespan +Feasibility (%) +Makespan +Feasibility (%) +- +EDF +239.31 +73.00 +1109.85 +15.00 +2535.89 +1.00 +- +Genetic Algorithm +302.42 ± 0.77 +74.10 ± 0.30 +1180.07 ±2.54 +16.60 ± 0.70 +2542.79 ± 0.06 +1.00 ± 0.00 +Step-based +HetGAT 8 +257.20 ± 0.18 +86.29 ± 0.08 +751.27 ± 1.29 +50.17 ± 0.14 +2123.96 ± 5.66 +17.12 ± 0.27 +HetGAT 16 +249.69 ± 0.30 +86.51 ± 0.09 +723.57 ± 0.94 +50.29 ± 0.11 +2081.65 ± 5.45 +17.15 ± 0.16 +Greedy +HetGAT 8 +261.15 ± 0.09 +85.59 ± 0.10 +784.32 ± 0.52 +53.28 ± 0.17 +2017.25 ± 2.16 +23.98 ± 0.14 +HetGAT 16 +255.70 ± 0.23 +86.05 ± 0.15 +765.79 ± 0.96 +53.41 ± 0.08 +1983.73 ± 1.59 +23.84 ± 0.01 +Step-based +HybridNet Small 8 +260.22 ± 0.15 +86.93 ± 0.10 +770.48 ± 1.07 +59.11 ± 0.35 +2005.80 ± 2.33 +30.65 ± 0.39 +HybridNet Small 16 +252.57 ± 0.49 +87.08 ± 0.10 +746.35 ± 0.52 +60.89 ± 0.36 +1953.65 ± 3.76 +33.24 ± 0.61 +Greedy +HybridNet Small 8 +266.74 ± 0.31 +84.65 ± 0.32 +758.96 ± 2.27 +61.09 ± 0.43 +2049.32 ± 3.73 +28.74 ± 0.45 +HybridNet Small 16 +258.17 ± 0.45 +85.13 ± 0.20 +723.35 ± 1.70 +63.68 ± 0.49 +1973.15 ± 2.91 +32.46 ± 0.40 +Step-based +HybridNet Medium 8 +- +- +722.85 ± 0.61 +64.69 ± 0.29 +2010.86 ± 1.97 +30.86 ± 0.45 +HybridNet Medium 16 +- +- +697.40 ± 2.04 +66.25 ± 0.51 +1944.72 ± 4.10 +33.88 ± 0.49 +Greedy +HybridNet Medium 8 +- +- +692.01 ± 3.69 +68.33 ± 0.66 +2011.78 ± 5.08 +30.58 ± 0.87 +HybridNet Medium 16 +- +- +659.01 ± 0.89 +71.00 ± 0.45 +1936.97 ± 4.68 +34.66 ± 0.74 +TABLE II +EVALUATION RESULTS: ADJUSTED MAKESPAN AND FEASIBILITY WITH STOCHASTIC HUMAN TASK PROFICIENCY +Methods +Small +Medium +Large +Makespan +Feasibility (%) +Makespan +Feasibility (%) +Makespan +Feasibility (%) +EDF +227.81± 6.17 +75.65 ± 1.21 +1071.02± 20.65 +17.30 ± 1.12 +2524.92± 8.95 +1.15 ± 0.23 +Genetic Algorithm +283.79 ± 10.39 +77.45 ± 2.05 +1149.42 ± 12.14 +19.55 ± 1.31 +2541.20 ± 3.54 +1.05 ± 0.15 +HybridNet Small +298.81 ± 0.96 +79.54 ± 0.52 +881.16 ± 2.89 +48.89 ± 1.09 +2141.80 ± 5.12 +23.51 ± 0.96 +HybridNet Medium +- +- +859.99 ± 4.82 +51.94 ± 1.32 +2174.57 ± 8.53 +22.31 ± 0.94 +TABLE III +EVALUATION RESULTS: RUNTIME PERFORMANCE ON SINGLE PROBLEM +Methods +HetGAT8 +HybridNet8 +HybridNet16 +Training Time (s) +Small +184.52 ± 18.00 +19.97 ± 0.91 +- +Medium +354.77 ± 38.31 +22.40 ± 6.52 +- +Evaluation Time (s) +Small +22.91 ± 5.85 +10.94 ± 0.99 +18.95 ± 3.53 +Medium +70.12 ± 8.67 +14.77 ± 1.42 +22.30 ± 7.55 +Large +123.76 ± 32.32 +18.84 ± 7.38 +27.78 ± 16.52 +HetGAT layers (the first two use concatenation, and the last +one uses averaging). The feature dimension of hidden layers += 64, and the number of heads = 8. The Recurrent Propagator +utilizes a LSTMCell of size 32 followed by a fully-connected +layer and a softmax layer. We set γ = 0.99, batch size = +8 and used Adam optimizer [37] with a learning rate of +2 × 10−3, and a weight decay of 5 × 10−4. We employed a +learning rate decay of 0.5 every 4000 epochs. We evaluate the +models using a batch size of 8 and 16. For the Multi-Round +Environment, the infeasible reward coefficient Ci = 2.0 and +total round number = 4. Both training and evaluation were +conducted on a Quadro RTX 8000 GPU. +D. Evaluation Results +Table I shows the evaluation performance with Deter- +ministic Human Proficiency in different scales. The Deter- +ministic Human Proficiency means that during training and +evaluation, human learning curve is known and execution +is deterministic for every agent. In Table I, “Small” and +“Medium” term after model name denotes the data scale the +model was trained on and the number following it denotes +the batch size for schedule sampling. The results show that +HybridNet outperforms both EDF and Genetic Algorithm in +adjusted makespan and percentage of feasibility. HybridNet +trained on Small scale problems generalizes for both Medium +and Large scale problems with similar or slightly worse +performance than HybridNet trained on Medium. HybridNet +and HetGAT performs similarly on all scales. This shows that +HybridNet is capable of learning high performance policies +by leveraging the Recurrent Schedule Propagator and without +requiring interaction with the Environment. +We provide the runtimes of training and evaluation for +HetGAT and HybridNET in Table III. HybridNet is approx- +imately 10 times faster in training compared to HetGAT +Model and at least 2 times faster during evaluation for +same batch size. EDF and Genetic Algorithm were evalu- +ated through the CPU without GPU acceleration, making it +infeasible to accurately compare the performance of the Deep +Learning Models to the Traditional Models. +We show that for HybridNet, step-based training has better +performance over the greedy baseline, while for HetGAT +model, greedy baseline training is better. We also observed +that greedy baseline training reached convergence faster than +step-based training (4500 epochs vs. 19000 epochs). Further +investigation is worthwhile. +Table II shows the evaluation performance with Stochas- +tic Human Proficiency in different scales. The Stochastic +Human Proficiency is presented as randomness in both the +actual human execution within Multi-Round Environment +and uncertainty within the Learning Curve Estimator used +for schedule generation. The results show that HybridNet +outperforms the EDF and Genetic Algorithm across different +data scales. The largest performance gap was observed on +large dataset (23.51% vs. 1.15%). Here, HetGAT model is +not included as it requires interaction with the environment +after every task-agent assignment to observe the outcome, +which is not available until the whole schedule is generated +and sent to the Stochastic Environment for execution to +emulate real-world scenarios. +VI. CONCLUSIONS +We present a deep learning-based framework, called +HybridNet, combining a heterogeneous graph-based en- +coder with a recurrent schedule propagator, for scheduling + +stochastic human-robot teams under temporal constraints. +The resulting policy network provides a computationally +lightweight yet highly expressive model that is end-to-end +trainable via reinforcement learning algorithms. We devel- +oped a multi-round task scheduling environment for stochas- +tic human-robot teams and conducted extensive experiments, +showing that HybridNet outperforms other human-robot +scheduling solutions across problem sizes. Future research +includes integrating the learning-based human estimator into +HybridNet, transfer learning across optimizing different ob- +jective functions, and deploying the trained network in a real- +world scenario. +REFERENCES +[1] Z. Yan, N. Jouandeau, and A. A. Cherif, “A survey and analysis +of multi-robot coordination,” International Journal of Advanced +Robotic Systems, vol. 10, no. 12, p. 399, 2013. [Online]. Available: +https://doi.org/10.5772/57313 +[2] C. Heyer, “Human-robot interaction and future industrial robotics ap- +plications,” in 2010 IEEE/RSJ International Conference on Intelligent +Robots and Systems. +IEEE, 2010, pp. 4749–4754. +[3] E. Nunes, M. Manner, H. Mitiche, and M. Gini, “A taxonomy for task +allocation problems with temporal and ordering constraints,” Robotics +and Autonomous Systems, vol. 90, pp. 55–70, 2017. +[4] R. Liu, M. Natarajan, and M. Gombolay, “Human-robot team coordi- +nation with dynamic and latent human task proficiencies: Scheduling +with learning curves,” 2020. +[5] M. C. Gombolay, R. A. Gutierrez, S. G. Clarke, G. F. Sturla, +and J. A. Shah, “Decision-making authority, team efficiency and +human worker satisfaction in mixed human–robot teams,” Autonomous +Robots, vol. 39, no. 3, pp. 293–312, 2015. +[6] E. Nunes and M. Gini, “Multi-robot auctions for allocation of tasks +with temporal constraints,” in Twenty-Ninth AAAI Conference on +Artificial Intelligence, 2015, pp. 2110–2116. +[7] M. C. Gombolay, R. J. Wilcox, and J. A. Shah, “Fast scheduling of +robot teams performing tasks with temporospatial constraints,” IEEE +Transactions on Robotics, vol. 34, no. 1, pp. 220–239, 2018. +[8] M. M. Solomon, “On the worst-case performance of some heuristics +for the vehicle routing and scheduling problem with time window +constraints,” Networks, vol. 16, no. 2, pp. 161–174, 1986. +[9] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for com- +binatorial optimization: a methodological tour d’horizon,” European +Journal of Operational Research, vol. 290, no. 2, pp. 405–421, 2021. +[10] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. +521, no. 7553, pp. 436–444, 2015. +[11] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning +combinatorial optimization algorithms over graphs,” in Advances in +Neural Information Processing Systems, 2017, pp. 6348–6358. +[12] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve +routing problems!” in International Conference on Learning Repre- +sentations, 2019. +[13] T. Ma, P. Ferber, S. Huo, J. Chen, and M. Katz, “Online planner +selection with graph neural networks and adaptive scheduling,” +Proceedings of the AAAI Conference on Artificial Intelligence, +vol. 34, no. 04, pp. 5077–5084, Apr. 2020. [Online]. Available: +https://ojs.aaai.org/index.php/AAAI/article/view/5949 +[14] R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint networks,” +Artificial intelligence, vol. 49, no. 1-3, pp. 61–95, 1991. +[15] E. Nunes, M. Manner, H. Mitiche, and M. Gini, “A taxonomy for task +allocation problems with temporal and ordering constraints,” Robotics +and Autonomous Systems, vol. 90, pp. 55–70, Apr. 2017, publisher +Copyright: © 2016 Elsevier B.V. +[16] Z. Wang and M. Gombolay, “Learning scheduling policies for multi- +robot coordination with graph attention networks,” IEEE Robotics and +Automation Letters, vol. 5, no. 3, pp. 4509–4516, 2020. +[17] J. F. Benders, “Partitioning procedures for solving mixed-variables +programming problems,” Numerische Mathematik, vol. 4, no. 1, +pp. 238–252, Dec. 1962. [Online]. Available: https://doi.org/10.1007/ +bf01386316 +[18] H. Ren and L. Tang, “An improved hybrid milp/cp algorithm frame- +work for the job-shop scheduling,” 2009 IEEE International Confer- +ence on Automation and Logistics, pp. 890–894, 2009. +[19] E. Castro and S. Petrovic, “Combined mathematical programming +and heuristics for a radiotherapy pre-treatment scheduling problem,” +Journal of Scheduling, vol. 15, no. 3, pp. 333–346, May 2011. +[Online]. Available: https://doi.org/10.1007/s10951-011-0239-8 +[20] J. Chen and R. Askin, “Project selection, scheduling and resource allo- +cation with time dependent returns,” European Journal of Operational +Research, vol. 193, pp. 23–34, 02 2009. +[21] S. Zhang, Y. Chen, J. Zhang, and Y. Jia, “Real-time adaptive assembly +scheduling in human-multi-robot collaboration according to human +capability*,” 2020 IEEE International Conference on Robotics and +Automation (ICRA), pp. 3860–3866, 2020. +[22] M. C. Gombolay, “Apprenticeship scheduling for human-robot teams,” +in Proceedings of the Thirtieth AAAI Conference on Artificial Intelli- +gence, ser. AAAI’16. +AAAI Press, 2016, p. 2497–2498. +[23] Z. Wang, C. Liu, and M. Gombolay, “Heterogeneous graph attention +networks for scalable multi-robot scheduling with temporospatial +constraints,” Autonomous Robots, vol. 46, no. 1, pp. 249–268, 2022. +[24] F. +Scarselli, +M. +Gori, +A. +C. +Tsoi, +M. +Hagenbuchner, +and +G. Monfardini, “The graph neural network model,” Trans. Neur. +Netw., vol. 20, no. 1, p. 61–80, jan 2009. [Online]. Available: +https://doi.org/10.1109/TNN.2008.2005605 +[25] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are +graph neural networks?” in International Conference on Learning +Representations, 2019. +[26] J. Singh, “An algorithm to reduce the time complexity of earliest +deadline first scheduling algorithm in real-time system,” 2010. +[27] M. Sundermeyer, R. Schl¨uter, and H. Ney, “Lstm neural networks for +language modeling,” in Thirteenth annual conference of the interna- +tional speech communication association, 2012. +[28] A. Graves, S. Fern´andez, and J. Schmidhuber, “Bidirectional lstm +networks for improved phoneme classification and recognition,” in +International conference on artificial neural networks. Springer, 2005, +pp. 799–804. +[29] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, +and M. Sun, “Graph neural networks: A review of methods and +applications,” 2021. +[30] A. Sherstinsky, “Fundamentals of recurrent neural network (RNN) +and +long +short-term +memory +(LSTM) +network,” +CoRR, +vol. +abs/1808.03314, 2018. [Online]. Available: http://arxiv.org/abs/1808. +03314 +[31] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and +G. Shroff, “Lstm-based encoder-decoder for multi-sensor anomaly +detection,” arXiv preprint arXiv:1607.00148, 2016. +[32] A. Ycart, E. Benetos, et al., “A study on lstm networks for polyphonic +music sequence modelling.” +ISMIR, 2017. +[33] Y. Yu, X. Si, C. Hu, and J. Zhang, “A review of recurrent neural +networks: Lstm cells and network architectures,” Neural Computation, +vol. 31, no. 7, pp. 1235–1270, 2019. +[34] R. S. Sutton, S. Singh, and D. McAllester, “Comparing policy-gradient +algorithms,” IEEE Transactions on Systems, Man, and Cybernetics, +2000. +[35] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, +T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, +E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, +L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high- +performance deep learning library,” in Advances in Neural Information +Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, +F. d'Alch´e-Buc, E. Fox, and R. Garnett, Eds., vol. 32. +Curran +Associates, Inc., 2019. +[36] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma, +L. Yu, Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang, “Deep +graph library: A graph-centric, highly-performant package for graph +neural networks,” 2020. +[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza- +tion,” 2017. + diff --git a/DdFQT4oBgHgl3EQfPjZG/content/tmp_files/load_file.txt b/DdFQT4oBgHgl3EQfPjZG/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..3721bf5d7b1206b290dc32157c1420c2d87edf7e --- /dev/null +++ b/DdFQT4oBgHgl3EQfPjZG/content/tmp_files/load_file.txt @@ -0,0 +1,780 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf,len=779 +page_content='Learning Coordination Policies over Heterogeneous Graphs for Human-Robot Teams via Recurrent Neural Schedule Propagation Batuhan Altundas1, Zheyuan Wang1, Joshua Bishop1 and Matthew Gombolay1 Abstract— As human-robot collaboration increases in the workforce, it becomes essential for human-robot teams to coordinate efficiently and intuitively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Traditional approaches for human-robot scheduling either utilize exact methods that are intractable for large-scale problems and struggle to ac- count for stochastic, time varying human task performance, or application-specific heuristics that require expert domain knowledge to develop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' We propose a deep learning-based framework, called HybridNet, combining a heterogeneous graph-based encoder with a recurrent schedule propagator for scheduling stochastic human-robot teams under upper- and lower-bound temporal constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The HybridNet’s encoder leverages Heterogeneous Graph Attention Networks to model the initial environment and team dynamics while accounting for the constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' By formulating task scheduling as a se- quential decision-making process, the HybridNet’s recurrent neural schedule propagator leverages Long Short-Term Mem- ory (LSTM) models to propagate forward consequences of actions to carry out fast schedule generation, removing the need to interact with the environment between every task- agent pair selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The resulting scheduling policy network provides a computationally lightweight yet highly expressive model that is end-to-end trainable via Reinforcement Learning algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' We develop a virtual task scheduling environment for mixed human-robot teams in a multi-round setting, capable of modeling the stochastic learning behaviors of human work- ers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Experimental results showed that HybridNet outperformed other human-robot scheduling solutions across problem sizes for both deterministic and stochastic human performance, with faster runtime compared to pure-GNN-based schedulers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' INTRODUCTION With collaborative robots (cobots) becoming more avail- able in the industrial and manufacturing environments, robots and humans increasingly share the same work space to collaborate on tasks [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' By removing the cage around tradi- tional robot platforms and integrating robots into dynamic, final assembly operations, manufacturers can see improve- ments in reducing a factory’s footprint and environmental costs as well as increased productivity [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' In this paper, we focus on the problem of multi-agent task allocation and scheduling [3] with mixed human-robot teams over multiple iterations of the same task allocation problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Our work accounts for and leverages stochastic, time-varying human task performance to quickly solve task allocation problems among team members to achieve a high-quality schedule with respect to the application-specific objective function This work was supported in part by the Office of Naval Research under grant N00014-19-1-2076 and Naval Research Laboratory under grant N00173-21-1-G009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 1Batuhan Altundas, Zheyuan Wang, Joshua Bishop and Matthew Gom- bolay are with the Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332, USA {baltundas3, pjohnwang, jbishop45, mgombolay3}@gatech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='edu while satisfying the temporal constraints (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=', upper and lower bound deadline, wait, and task duration constraints).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Compared to task scheduling within multi-robot systems, the inclusion of human workers makes scheduling even more challenging because, while robots can be programmed to carry out certain tasks at a fixed rate, human workers typ- ically have latent, dynamic, and task-specific proficiencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Effective collaboration in human-robot teams requires utiliz- ing the distinct abilities of each team member to achieve safe, effective, and fluent execution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' For these problems, we must consider the ability of humans to learn and improve in task performance over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' To exploit this property, a scheduling algorithm must reason about a human’s latent performance characteristics in order to decide whether to assign the best worker to a task now versus giving more task experience to a person who is slower but has a greater potential for fluency at that particular task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' However, it is non-trivial to infer human strengths and weaknesses while ensuring that the team satisfies requisite scheduling constraints, due to the uncertainty introduced by variability in task execution behavior across different individuals, as well as uncertainty on future task performance affected by human’s learning effects with practice [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Moreover, a lack of consideration for human preferences and perceived equality may, in the long run, put efficient behavior and fluent coordination at a contradiction [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Recent advances in scheduling methods for human-robot teams have shown a significant improvement in the ability to dynamically coordinate large-scale teams in final assembly manufacturing [6], [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Prior approaches typically rely on an assumption of deterministic or static worker-task profi- ciencies to formulate the scheduling problem as a mixed- integer linear program (MILP), which is generally NP-hard [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Exact methods are hard to scale and often fail to consider the time-varying stochastic task proficiencies of human work- ers over multi-round schedule execution that could result in significant productivity gains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The heuristic approaches may be able to determine task assignments;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' however, such approaches required domain specific knowledge that takes years to gain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' We desire a scalable algorithmic approach that can automatically learn to factor in the human behavior for fast and fluent human-robot teaming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Advancements in artificial intelligence have fostered the idea of leveraging deep neural networks (DNNs) to solve a plethora of problems in operations research [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' DNNs can be trained to automatically explore the problem struc- ture and discover useful representations in high-dimensional data towards constructing high-quality solutions, without arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='13279v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='AI] 30 Jan 2023 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Overview of Multi-Round Environment with HybridNet Scheduler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Left: The Multi-Round Scheduling Environment is developed to simulate a human-robot scheduling problem over multiple iterative rounds of execution, accounting for changes in human task performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Right: HybridNet consists of a heterogeneous graph-based encoder to extract high-level embeddings of the problem and a recurrent schedule propagator for fast schedule generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' hand-crafted feature engineering [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Particularly, promis- ing progress has been made in learning scalable solvers with graph neural networks via imitation learning (IL) or reinforcement learning (RL), outperforming state-of-the-art, approximate methods [11], [12], [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' To overcome the limitations of prior work, we propose a deep learning-based framework, called HybridNet, for scheduling stochastic human-robot teams under temporal constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Figure 1 shows the overall framework of our proposed method operating in a multi-round environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' HybridNet utilizes a heterogeneous graph-based encoder and a recurrent schedule propagator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The encoder extracts high level embeddings of the scheduling problem using a hetero- geneous graph representation of the problem extended from the simple temporal network (STN) [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' By formulating task scheduling as a sequential decision-making process, the recurrent propagator uses Long Short Term Memory (LSTM) cells to carry out fast schedule generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The resulted policy network provides a computationally lightweight yet highly expressive model that is end-to-end trainable via reinforcement learning algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The primary contributions of our work are: We propose a deep learning-based framework, Hybrid- Net, for human-robot coordination under temporal con- straints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' HybridNet consist of a Heterogeneous Graph- based encoder and a Recurrent Schedule Propagator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The encoder extracts relevant information about the initial environment, while the Propagator generates the consequential models of each task-agent assignments based on the initial model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Inspired by the sensory encoding and recurrent processing of the brain, this approach allows for fast schedule generation, removing the need to interact with the environment between every task-agent pair selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' We develop a virtual task scheduling environment for mixed human-robot teams in a multi-round setting, capable of modeling the stochastic learning behavior of human workers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' We make our environment OpenAI gym-compatible and expect it to serve as a testbed to facilitate the development of human-robot scheduling algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The implementation is publicly available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='1 We present a novel policy model that jointly learns how to pick agents and tasks without interacting with the environment between intermediate scheduling decisions and only needs a single reward at the end of schedule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' By factoring in the action space into an agent selec- tor and a task selector, we enable conditional policy learning with HybridNet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' We account for the state and agent models when selecting the agents, and combine the information regarding the tasks, selected agent and the state for task assignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' As a result, HybridNet is end-to-end trainable via Policy Gradients algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' We conducted extensive experiments to validate Hy- bridNet across a set of problem sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Results showed HybridNet consistently outperformed prior human- robot scheduling solutions under both deterministic and stochastic settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' RELATED WORK A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Multi-Agent Scheduling Problem Task assignment and scheduling of multi-agent systems is an optimization problem that has been studied for real world applications, both for Multi-Robot Task Allocation(MRTA) problem using traditional techniques [15] and deep learning based techniques [16] as well as for human-robot collab- oration [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Task Allocation can be formalised by Mixed Integer Linear Programming (MILP) to capture it’s con- straints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The exponential complexity of solving the MILP can be accelerated through constraint programming methods [7], [17], [18] or heuristic schedulers to leverage better scalability [19], [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' encoded task schedules as chromosomes for a genetic algorithm that optimized schedules for heterogeneous human-robot collaboration by repeatedly crossing over and mutating the solutions to find the optimal schedule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [21] 1https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content="com/altundasbatu/HybridNet IROS2022 Multi-Round Env HybridNet Schedule Propagator [wl|/1] Encoder Problem Instance Input to Agent Learning Curve Models L'STM LSTM Sample Agent Agent Selector Embedding an Temporal Constraints Human-Robot Teams Agent Layer Layel HetGAT Layer HetGAT etGAT I State LSTM Agent Index Learning Curve State Repetition Tracker Estimator Embeddings Task Sample (Task," metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Agent) Round number Task Selector Embeddings a Task Picked Single assignment Evaluate Step Reward /Makespan Whole Schedule TrainingGombolay et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' present an algorithm to capture domain knowledge through scheduling policy requiring domain- expert demonstrations [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' propose Schedu- leNet, a Heterogenous Graph Neural Networks-based model for task allocation under temporospatial constraints, trained through Imitation Learning using optimal schedule [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' ScheduleNet relies on interactive scheduling scheme, with constant update of an environment before reaching a com- plete schedule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' These approaches require optimal schedules generated by other expert systemsto train and have high computational complexity that make their implementation costly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Modeling Human-Robot Teams As advancements in robot capability progress, they be- come safer and effective to use in conjunction with humans to complete specialized works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' presents a model of human task completions, showing an increase in the task efficiency as a result of learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' This paper shows that prediction of human performance enhances the ability of the scheduling systems to explicitly reason about the agents’ capabilities [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Prior work on behavioral teaming and the natural computational intractability of large-scale schedule optimization suggests that robots can offer a valuable service by designing and adapting schedules for human teammates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' In our system, we leverage the findings of Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' to account for humans learning over time, both in problem generation as part of the environment and a learning curve predictor as part of the scheduling policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The human learn- ing curve follows an exponential function of generic form over the course of multiple iterations as shown in Equation 1 [4]: y = c + ke−βi (1) where i is the number of iteration the human has previously executed a task and c, k, β parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' We further account for the stochastic-nature of human learning in our environ- ment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Graph Neural Networks Graph Neural Networks (GNNs) are a class of deep neural networks that learn from unstructured data by representing objects as nodes and relations as edges and aggregating information from nearby nodes [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' GNNs have been widely applied in graph-based problems such as node classification, link prediction and clustering, and they have shown to have an impressive performance [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The Heterogeneous Graph Attention Network presented in Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' utilizes Deep Learning Algorithms to address the Scheduling Prob- lem, showing improved performance compared to non-Deep Learning Schedulers such as Earliest-Deadline First (EDF) [26] and Tercio [7] at the cost of increased computational complexity [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' LSTM Based Sequence Prediction The impact of the LSTM network has been notable in language modeling [27], speech-to-text transcription[28], machine translation [29], and other applications that involve predictive modeling [30], [31], [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The advantage of this lengthier path generated through the recurrent nature of the neural network is that it affords an opportunity to build a certain degree of intuition that can prove beneficial during all phases of the process [30], [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' HUMAN-ROBOT SCHEDULING PROBLEM A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Problem Overview In this paper, we focus on the problem of human-robot task allocation and scheduling with temporal constraints [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' We describe the problem components using a 4-tuple ⟨a, τ, d, w⟩ form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' a represents all agents that belong to the human-robot team, τ represents all the tasks to be performed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Each task, τi, and agent, aj, have a task completion duration dur(τi, aj) and agents are capable of completing a sequence of tasks in order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' d contains the set of deadline constraints, where di ∈ d specifies the tasks depending on τi [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' w is the set of wait constraints where wij ∈ w denotes the wait time between tasks τi and τj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' A Schedule, S, is a sequence of task-agent pairs ⟨τi, aj⟩ such that S contains all tasks in τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Multi-Round Scheduling Environment The Multi-Round Scheduling Environment is developed to simulate a human-robot scheduling problem over multiple iterative rounds of execution, accounting for changes in the task performance of human workers based on previous round.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Each round is a step in the OpenAI Gym-compatible environment, taking as input the complete set of task-agent pairs for the scheduling problem, simulating the sequential assignment of tasks to agents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Each round’s execution is considered finished when all the tasks are assigned to one of the agents or if the provided schedule is determined to be infeasible under the problem constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The environment checks the feasibility of the provided schedule given the constraints of the problem, and computes the total duration of task completion of the schedule if the schedule is feasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' If the schedule does not satisfy the constraints, it is determined to be infeasible and the list of tasks that could not been scheduled are returned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' We formulate the Multi-Round Scheduling Environment as a Partially Observable Markov Decision Process (POMDP) using a six-tuple ⟨S, A, T, R, Ω, O, γ⟩ below: States: The problem state S is a state of the Multi- Round Environment consistent of the state of the Agents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Actions: Actions at round t within the Multi-Round Environment refers to a complete set of Task Alloca- tions made up of a list of task-agent pairs, denoted as At = [⟨τi1, aj1⟩, ⟨τi2, aj2⟩, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='] to be executed in order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Transitions: T corresponds to executing the action in Multi-Round Scheduling Environment and proceed to next time step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Rewards: Rt is based on the scheduling objective a user wants to optimize.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' In Section III-E we show how to compute Rt when optimizing makespan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Observations: Ω is the estimated performance of all the task-agent pairs, plus the observable constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Observation Function: O is handled by the Learning Curve Estimator explained in the Section III-D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Discount factor, γ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Agent Models The Multi-Round Environment stores the Agent informa- tion, allowing the environment to keep track of each agent and which tasks it has previously completed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The update of the Environment happens at the end of each round, allowing agents to modify themselves based on their internal models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' to update the model based on the selected (task-agent) pairs for each round.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 1) Determinitic Robot Model: We generate the robot task completion times randomly through uniform distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 2) Stochastic Human Model: We generate the human task completion times randomly based on Equation 1, such that the Environment can be setup to provide Deterministic and Stochastic performance for human learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The task duration parameters of the human learning model, c, k, β, in Equation 1 are built from the randomly selected initial task completion time for round 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' For Stochastic performance, the standard deviations are used to sample from a Normal Distribution as presented in Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Learning Curve Estimator The scheduler is given an estimate of the performance of the human agents for each task based on the information about the task duration of the previous executions of the task-agent pair through the Learning Curve Estimator as part of our OpenAI Gym-like Environment In our paper, we have implemented a black box model based on the insights presented in Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [4] to simulate a Stochastic Human Learning Estimator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' As an Agent completes a task in multiple rounds, the Agent Model records the task comple- tion duration, allowing Learning Curve Estimator to predict the next task-agent duration more accurately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' To represent the increase in accuracy from increase in information, we implemented a Learning Curve Estimator that generates an estimate of the human agent performance using the actual task performance as the mean of a Gaussian Distribution with noise that exponentially decreases with the number of repetitions of the same task for that agent in previous rounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Reward Design The total reward, Rt, for the schedule generated by the multi-round scheduling environment is calculated based on feasible, A′, and infeasible, ˜A′, subsets of task allocations, such that At = A′ t∪ ˜A′ t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Specifically, the reward, Rt, is based on the expected reward for the feasible subset of task-agent assignments, Rt(A′ t), and the reward from the assignment of the infeasible subset of task-agent assignments, Rt ˜A′ t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' , based on the point estimate of the reward from assigning the incomplete task to the agent that will complete it in the longest possible duration, multiplied by an infeasible coefficient Ci as shown in equation 2: Rt = � i∈A′ t R (τi, ai) + Cimaxaj � �� i∈ ˜ A′ R (τi, aj) � � (2) The Total Schedule Reward, RS, favors schedules with more feasible task allocations and enables learning from infeasible explorations during training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' HYBRIDNET SCHEDULING POLICY As shown in Figure 1, our HybridNet framework consists of a heterogeneous graph-based encoder to learn high level embeddings of the scheduling problem, and a recurrent schedule propagator to generate the team schedule sequen- tially.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' This hybrid network architecture enables directly learning useful features from the problem structure, owing to the expressiveness of heterogeneous graph neural networks, and at the same time efficiently constructing the schedule with our LSTM-based propagator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' As a result, HybridNet does not require interacting with the environment between every task-agent pair selection, which is necessary but com- putationally expensive in prior work [16], [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' We denote the policy learned by HybridNet as πθ(A|S), with θ representing the parameters of the neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' At round t, an action takes the form of an ordered sequence of scheduling decisions, At = {d1, d2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=', dn}, di = ⟨τi, aj⟩, where a latter decision, di, is conditioned on its former ones, d1:i−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Then, the policy can be factorized as pθ(At|St) = n � i=1 pθ(di|St, d1:i−1) (3) Using the Recurrent Schedule Propagator, HybridNet recursively computes the conditional probability, pθ(di|St, d1:i−1), for sampling a task-agent pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' At the end, the network collects all the decisions and sends to the environment for execution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Heterogeneous Graph Encoder We build our Encoder using the heterogeneous graph at- tention (HetGAT) layer proposed in [23] that has been shown effective in representation learning of multi-agent scheduling problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' At the start of each round for a given human-robot scheduling problem, the heterogeneous graph representation is built by extending from the simple temporal network (STN) that encodes the temporal constraints to include agent nodes and a state summary node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The metagraph of the resulted graph is shown in Figure 2, which summarizes all the node types and edge types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Then, a HetGAT layer computes the output node features by performing per-edge- type message passing followed by per-node-type feature reduction, while utilizing a feature-dependent and structure- free attention mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' We refer interested readers to [23] for full details of implementing a HetGAT layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' By stacking several HetGAT layers sequentially, we con- struct the Encoder that utilizes multi-layer structure to extract high-level embeddings of each node that will be send to the propagator for schedule generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' We follow the same Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Metagraph of the heterogeneous graph built from the STN by adding agent and state summary nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' hyper-parameters for HetGAT layers as provided in Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [23] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Recurrent Schedule Propagator The HetGAT layers are computationally complex and require interactive scheduling to generate the initial model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' By utilizing an LSTM based Recurrent Predictor, we prop- agate forward consequences of each task-agent assignment, recreating the encoded information about the environment without relying on the initial HetGAT Layer, significantly reducing the computational complexity of our scheduler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The Recurrent Schedule Propagator takes as input the Task, State and Agent embeddings generated by the Het- erogeneous Graph Encoder and sequentially generates task- agent pairs based on the encoded information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' To predict the consecutive encoding of state and agents, we use an LSTM Model to recursively generate the Agent and State after each assignment of a task to an agent, without interacting with the Environment, outputting the sequential task-agent assignment for the complete set of tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The pseudo-code for scheduling generation with HybridNet is presented in Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' As di = ⟨τi, aj⟩, we further factor pθ(di|St, d1:i−1) into an agent selector and a task selector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' That is, πfactor(d|·) = πagent(aj|·) · πtask(τi|aj, ·).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' This factorization allows the policy to capture the underlying composite and conditional nature of the scheduling decisions, where the task to schedule is strongly dependent on the picked agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The Agent Selector selects the new agent for the next deci- sion d based on the state and agent information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Specifically, the concatenated state-agent embeddings are processed by a feed-forward neural network, fa, to compute the likelihood of selecting each agent for the next task-agent pair, using Equation 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' A softmax operation is performed to convert the raw predictions into a probability distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' After the selection of the agent, the agent embedding of the chosen agent is updated based on the selected task and state embeddings, as state change only happens for the assigned agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' This approach allows the agent selector to consider how busy each agent is, based on the inherent information Algorithm 1 Psuedocode for Schedule Generation Input: graph g, features f, unscheduled-Tasks u Output: schedule 1: schedule = [ ], i = 1 2: (ha1, ca1, ht1, ct1, hs1, cs1) ← Encoder(g, f) 3: while |u| ̸= 0 do 4: pai ← AgentSelector(hsi, hai) 5: ai ← Sampling(pai) 6: pti ← TaskSelector(hti, hsi, ai) 7: ti ← Sampling(pti−1) 8: schedule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='append(⟨ti, ai⟩) 9: unscheduledTasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='remove(ti) 10: if |unscheduledTasks| == 0 then 11: return schedule 12: end if 13: i ← i + 1 14: hsi, csi ← LSTMs((hti−1[ti], hai−1[ai]), hai−1, cai−1) 15: hai, cai ← LSTMa((hti−1[ti], hai−1[ai]), hai−1, cai−1) 16: end while presented in the embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' πagent(aj|s) = softmaxi(fa([haj||hs])) (4) Next, the Schedule Propagator uses the Task Selector to assign the task for the selected agent based on the state, agent and unscheduled task embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' As shown in Equation 5, the Task Selector concatenates the state, selected agent and the unscheduled task embeddings and passes the combined information to a feedforward neural network, fτ, to calculate the likelihood of the task being assigned to the selected agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' After assigning to an agent for execution, the tasks are removed from the list of unscheduled tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Since the calculation of likelihood of each task is independent of each other up to the last softmax operation, the model is scalable and can be used for differentproblem sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' πtask(τi|aj, s) = softmaxi(fτ([hτi||haj||hs])) (5) The key component of the Schedule Propagator is the use of LSTM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' As shown in line 12 of Algorithm 1, after each task-agent pair selection, the state and agent embeddings are updated using the state LSTM and agent LSTM, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The LSTM Cell stores the hidden and cell data from the previous step of the task allocation and predicts the next step based on the input using the Equation 6 [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' ft = σ(Wf[ht−1, xt] + bf) it = σ(Wi[ht, xt] + bi) ˜ct = tanh(Wc[ht−1, xt] + bc) ct = ftct−1 + it˜ct ot = σ(Wo[ht−1, xt] + bo ht = ottanh(ct) (6) Where the Encoder produces initial hidden state, h1 and initial cell state c1 as an output in the form of [h1, c1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' During testing, we utilize a batched sampling strategy for further performance gains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Specifically, we generate multiple schedules for the same task allocation problem every round.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' communicate Agent assignedTo State takeTime UseTime Task in temporalWe select the best performing schedule by computing the estimated makespan utilizing the Learning Curve Estimator and provide it to the Multi-Round Environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' More sam- pling improves solution quality at increased computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Stochastic Policy Learning We train HybridNet in multi-round scheduling environ- ments using Policy Gradient methods that seek to directly optimize the model parameters based on rewards received from the environment [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Specifically, we compute the gradient of the model using the sum of the log likelihood of Agent and Task Selectors, as shown in Equation 7: ∇θJ(θ) = Eπ( T � t Aπθ t (st, ⟨τi, ai⟩) ∇θ(logπθ(τi|ai, st) + logπθ(ai|st)) (7) In Equation 7, the advantage term, At is estimated by sub- tracting a “baseline” from the total future reward calculated in Equation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' We calculate the “baseline” using the reward generated for the same task-allocation problem from multiple batches executed in multiple sequential rounds in the Multi- Round Environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Each element of the batch solves the same scheduling problem and the environment is updated to account for the task-allocation of the previous round, updating the agent models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The gradients were calculated from Equation 7 to updated the model weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Due to the combinatorial nature of the task scheduling problem, plus the stochasticity in human proficiency, learning a helpful value function as a baseline for computing the advantage term is non-trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Instead, we investigate two more accessible and efficient alternatives: Step-based Baseline: During gradient estimation, the baseline value subtracted is set as the average return value across training episodes in the current batch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Greedy Rollout Baseline: Greedy Rollout Baseline uses, πgreedy(A|S), a deterministic greedy version of the Hy- bridNet scheduler, to collect rewards in the environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Its weights, θgreedy, are updated periodically by copying the weights from the current learner, πθ(A|S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' EXPERIMENTAL RESULTS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Data Generation We generate scheduling problems with deadline and wait constraints under different scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' For all scales, the deadline constraints are randomly generated for approximately 25% of the tasks from a range of [1, 5N] where N is the number of tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Approximately 25% of the tasks have wait constraints, and the duration of non-zero wait constraints is sampled from U([1, 10]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Task durations are clamped to 10 to 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 1) Small Scale: The small data set has 9 to 11 tasks with 2 robots and 2 humans in a team.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' We generated 2000 Training Problems and 200 Test Problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 2) Medium Scale: The medium data set has 18 to 22 tasks with 2 robots and 2 humans in a team.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' We generated 2000 Training Problems and 200 Test Problems to inspect the scalability of our trained model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 3) Large Scale: The large data set is defined as problems with 36 to 44 tasks chosen at random with 2 robots and 2 humans in a team.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' We have generated 200 Test Problems to evaluated the HybridNet performance with zero training problems (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=', zero-shot transfer to from the smaller scale datasets to the Large Scale dataset).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' To simulate the stochastic learning of human agents, for each Data Set noise is introduced to the Human Agent models by simulating the natural distribution of the c, k, β parameters of Equation 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' This allows for each Data Set to simulate Deterministic and Stochastic Human Performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The stochastic model is clipped to fall within the specified range of task durations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Benchmarking We benchmark HybridNet against the following methods: EDF: A ubiquitous heuristic algorithm, earliest deadline first (EDF), that selects from a list of available tasks the one with the earliest deadline, assigning it to the first available agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Genetic Algorithm: An Evolutionary Optimization Al- gorithm that uses Post-Processing on the Schedule Generated by EDF [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Genetic algorithm creates new schedules based on the initial schedule through iterative randomized mutations by swapping task allocations and task orders [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Each generation selects the top performing schedules, sorted on feasibility and total schedule completion time, and used as the baseline for creating new mutations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The Genetic Algorithm was run for 10 generation with 90 baseline schedules, 10 task allocation and 10 task order swapping mutations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Furthermore, we evaluate the functionality of the Re- current Schedule Propagator by comparing it against the following HybridNet variant: HetGAT: We implement a HetGAT Scheduler based on the Encoder of HybridNet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' After each task-agent pair assignment, instead of using the LSTM Cells to update the task, agent and state embeddings, it directly interacts with the environment to model the consequences of action with a new heterogeneous graph and re-computes those information from it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' We evaluate HybridNet on three metrics: 1) Proportion of problems solved;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 2) Adjusted makespan: determined by the average of the makespan of feasible schedules and the maximum possible makespan of the infeasible schedules;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' and 3) Runtime statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Runtime statistics for training and execution is compared for HybridNet and HetGAT Scheduler to model their computational complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Because HetGAT Scheduler relies on interactive scheduling through the envi- ronment after every task-agent pair allocation, we only train and evaluate it for Deterministic Human Performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Model Details We implement HybridNet and HetGAT using PyTorch [35] and Deep Graph Library [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The HybridNet Encoder used in training/testing is constructed by stacking three multi-head TABLE I EVALUATION RESULTS: ADJUSTED MAKESPAN AND FEASIBILITY WITH DETERMINISTIC HUMAN TASK PROFICIENCY COMPARING BENCHMARKS WITH HYBRIDNET TRAINED ON SMALL AND MEDIUM SCALES, WITH SCHEDULES SAMPLED FROM SIZES 8 AND 16 Training Methods Small Medium Large Makespan Feasibility (%) Makespan Feasibility (%) Makespan Feasibility (%) EDF 239.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='31 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='00 1109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='85 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='00 2535.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='89 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='00 Genetic Algorithm 302.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='42 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='77 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='10 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='30 1180.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='07 ±2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='54 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='60 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='70 2542.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='79 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='06 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='00 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='00 Step-based HetGAT 8 257.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='20 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='18 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='29 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='08 751.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='27 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='29 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='17 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='14 2123.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='96 ± 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='66 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='12 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='27 HetGAT 16 249.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='69 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='30 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='51 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='09 723.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='57 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='94 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='29 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='11 2081.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='65 ± 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='45 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='15 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='16 Greedy HetGAT 8 261.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='15 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='09 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='59 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='10 784.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='32 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='52 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='28 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='17 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='25 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='16 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='98 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='14 HetGAT 16 255.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='70 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='23 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='05 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='15 765.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='79 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='96 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='41 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='08 1983.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='73 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='59 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='84 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='01 Step-based HybridNet Small 8 260.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='22 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='15 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='93 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='10 770.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='48 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='07 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='11 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='35 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='80 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='33 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='65 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='39 HybridNet Small 16 252.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='57 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='49 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='08 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='10 746.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='35 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='52 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='89 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='36 1953.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='65 ± 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='76 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='24 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='61 Greedy HybridNet Small 8 266.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='74 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='31 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='65 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='32 758.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='96 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='27 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='09 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='43 2049.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='32 ± 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='73 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='74 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='45 HybridNet Small 16 258.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='17 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='45 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='13 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='20 723.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='35 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='70 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='68 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='49 1973.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='15 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='91 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='46 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='40 Step-based HybridNet Medium 8 722.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='85 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='61 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='69 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='29 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='86 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='97 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='86 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='45 HybridNet Medium 16 697.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='40 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='04 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='25 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='51 1944.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='72 ± 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='10 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='88 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='49 Greedy HybridNet Medium 8 692.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='01 ± 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='69 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='33 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='66 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='78 ± 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='08 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='58 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='87 HybridNet Medium 16 659.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='01 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='89 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='00 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='45 1936.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='97 ± 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='68 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='66 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='74 TABLE II EVALUATION RESULTS: ADJUSTED MAKESPAN AND FEASIBILITY WITH STOCHASTIC HUMAN TASK PROFICIENCY Methods Small Medium Large Makespan Feasibility (%) Makespan Feasibility (%) Makespan Feasibility (%) EDF 227.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='81± 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='17 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='65 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='21 1071.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='02± 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='65 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='30 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='12 2524.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='92± 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='95 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='15 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='23 Genetic Algorithm 283.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='79 ± 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='39 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='45 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='05 1149.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='42 ± 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='14 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='55 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='31 2541.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='20 ± 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='54 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='05 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='15 HybridNet Small 298.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='81 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='96 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='54 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='52 881.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='16 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='89 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='89 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='09 2141.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='80 ± 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='12 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='51 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='96 HybridNet Medium 859.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='99 ± 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='82 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='94 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='32 2174.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='57 ± 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='53 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='31 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='94 TABLE III EVALUATION RESULTS: RUNTIME PERFORMANCE ON SINGLE PROBLEM Methods HetGAT8 HybridNet8 HybridNet16 Training Time (s) Small 184.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='52 ± 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='00 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='97 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='91 Medium 354.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='77 ± 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='31 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='40 ± 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='52 Evaluation Time (s) Small 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='91 ± 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='85 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='94 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='99 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='95 ± 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='53 Medium 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='12 ± 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='67 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='77 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='42 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='30 ± 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='55 Large 123.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='76 ± 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='32 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='84 ± 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='38 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='78 ± 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='52 HetGAT layers (the first two use concatenation, and the last one uses averaging).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The feature dimension of hidden layers = 64, and the number of heads = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The Recurrent Propagator utilizes a LSTMCell of size 32 followed by a fully-connected layer and a softmax layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' We set γ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='99, batch size = 8 and used Adam optimizer [37] with a learning rate of 2 × 10−3, and a weight decay of 5 × 10−4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' We employed a learning rate decay of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='5 every 4000 epochs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' We evaluate the models using a batch size of 8 and 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' For the Multi-Round Environment, the infeasible reward coefficient Ci = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='0 and total round number = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Both training and evaluation were conducted on a Quadro RTX 8000 GPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Evaluation Results Table I shows the evaluation performance with Deter- ministic Human Proficiency in different scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The Deter- ministic Human Proficiency means that during training and evaluation, human learning curve is known and execution is deterministic for every agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' In Table I, “Small” and “Medium” term after model name denotes the data scale the model was trained on and the number following it denotes the batch size for schedule sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The results show that HybridNet outperforms both EDF and Genetic Algorithm in adjusted makespan and percentage of feasibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' HybridNet trained on Small scale problems generalizes for both Medium and Large scale problems with similar or slightly worse performance than HybridNet trained on Medium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' HybridNet and HetGAT performs similarly on all scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' This shows that HybridNet is capable of learning high performance policies by leveraging the Recurrent Schedule Propagator and without requiring interaction with the Environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' We provide the runtimes of training and evaluation for HetGAT and HybridNET in Table III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' HybridNet is approx- imately 10 times faster in training compared to HetGAT Model and at least 2 times faster during evaluation for same batch size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' EDF and Genetic Algorithm were evalu- ated through the CPU without GPU acceleration, making it infeasible to accurately compare the performance of the Deep Learning Models to the Traditional Models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' We show that for HybridNet, step-based training has better performance over the greedy baseline, while for HetGAT model, greedy baseline training is better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' We also observed that greedy baseline training reached convergence faster than step-based training (4500 epochs vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 19000 epochs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Further investigation is worthwhile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Table II shows the evaluation performance with Stochas- tic Human Proficiency in different scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The Stochastic Human Proficiency is presented as randomness in both the actual human execution within Multi-Round Environment and uncertainty within the Learning Curve Estimator used for schedule generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The results show that HybridNet outperforms the EDF and Genetic Algorithm across different data scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The largest performance gap was observed on large dataset (23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='51% vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='15%).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Here, HetGAT model is not included as it requires interaction with the environment after every task-agent assignment to observe the outcome, which is not available until the whole schedule is generated and sent to the Stochastic Environment for execution to emulate real-world scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' CONCLUSIONS We present a deep learning-based framework, called HybridNet, combining a heterogeneous graph-based en- coder with a recurrent schedule propagator, for scheduling stochastic human-robot teams under temporal constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' The resulting policy network provides a computationally lightweight yet highly expressive model that is end-to-end trainable via reinforcement learning algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' We devel- oped a multi-round task scheduling environment for stochas- tic human-robot teams and conducted extensive experiments, showing that HybridNet outperforms other human-robot scheduling solutions across problem sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Future research includes integrating the learning-based human estimator into HybridNet, transfer learning across optimizing different ob- jective functions, and deploying the trained network in a real- world scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' REFERENCES [1] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Yan, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Jouandeau, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Cherif, “A survey and analysis of multi-robot coordination,” International Journal of Advanced Robotic Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 10, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 12, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 399, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Available: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='5772/57313 [2] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Heyer, “Human-robot interaction and future industrial robotics ap- plications,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' IEEE, 2010, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 4749–4754.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [3] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Nunes, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Manner, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Mitiche, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Gini, “A taxonomy for task allocation problems with temporal and ordering constraints,” Robotics and Autonomous Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 90, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 55–70, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [4] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Liu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Natarajan, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Gombolay, “Human-robot team coordi- nation with dynamic and latent human task proficiencies: Scheduling with learning curves,” 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [5] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Gombolay, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Gutierrez, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Clarke, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Sturla, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Shah, “Decision-making authority, team efficiency and human worker satisfaction in mixed human–robot teams,” Autonomous Robots, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 39, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 293–312, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [6] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Nunes and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Gini, “Multi-robot auctions for allocation of tasks with temporal constraints,” in Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 2110–2116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [7] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Gombolay, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Wilcox, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Shah, “Fast scheduling of robot teams performing tasks with temporospatial constraints,” IEEE Transactions on Robotics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 34, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 220–239, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [8] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Solomon, “On the worst-case performance of some heuristics for the vehicle routing and scheduling problem with time window constraints,” Networks, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 16, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 161–174, 1986.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [9] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Bengio, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Lodi, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Prouvost, “Machine learning for com- binatorial optimization: a methodological tour d’horizon,” European Journal of Operational Research, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 290, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 405–421, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [10] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' LeCun, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Bengio, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Hinton, “Deep learning,” nature, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 521, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 7553, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 436–444, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [11] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Khalil, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Dai, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Zhang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Dilkina, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Song, “Learning combinatorial optimization algorithms over graphs,” in Advances in Neural Information Processing Systems, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 6348–6358.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [12] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Kool, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' van Hoof, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Welling, “Attention, learn to solve routing problems!”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' in International Conference on Learning Repre- sentations, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [13] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Ma, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Ferber, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Huo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Chen, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Katz, “Online planner selection with graph neural networks and adaptive scheduling,” Proceedings of the AAAI Conference on Artificial Intelligence, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 34, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 04, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 5077–5084, Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Available: https://ojs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='aaai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='org/index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='php/AAAI/article/view/5949 [14] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Dechter, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Meiri, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Pearl, “Temporal constraint networks,” Artificial intelligence, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 49, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 1-3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 61–95, 1991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [15] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Nunes, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Manner, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Mitiche, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Gini, “A taxonomy for task allocation problems with temporal and ordering constraints,” Robotics and Autonomous Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 90, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 55–70, Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 2017, publisher Copyright: © 2016 Elsevier B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [16] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Wang and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Gombolay, “Learning scheduling policies for multi- robot coordination with graph attention networks,” IEEE Robotics and Automation Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 5, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 4509–4516, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [17] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Benders, “Partitioning procedures for solving mixed-variables programming problems,” Numerische Mathematik, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 4, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 238–252, Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 1962.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Available: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='1007/ bf01386316 [18] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Ren and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Tang, “An improved hybrid milp/cp algorithm frame- work for the job-shop scheduling,” 2009 IEEE International Confer- ence on Automation and Logistics, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 890–894, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [19] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Castro and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Petrovic, “Combined mathematical programming and heuristics for a radiotherapy pre-treatment scheduling problem,” Journal of Scheduling, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 15, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 333–346, May 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Available: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='1007/s10951-011-0239-8 [20] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Chen and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Askin, “Project selection, scheduling and resource allo- cation with time dependent returns,” European Journal of Operational Research, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 193, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 23–34, 02 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [21] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Chen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Zhang, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Jia, “Real-time adaptive assembly scheduling in human-multi-robot collaboration according to human capability*,” 2020 IEEE International Conference on Robotics and Automation (ICRA), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 3860–3866, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [22] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Gombolay, “Apprenticeship scheduling for human-robot teams,” in Proceedings of the Thirtieth AAAI Conference on Artificial Intelli- gence, ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' AAAI’16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' AAAI Press, 2016, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 2497–2498.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [23] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Wang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Liu, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Gombolay, “Heterogeneous graph attention networks for scalable multi-robot scheduling with temporospatial constraints,” Autonomous Robots, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 46, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 249–268, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [24] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Scarselli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Gori, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Tsoi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Hagenbuchner, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Monfardini, “The graph neural network model,” Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Neur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Netw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 20, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 1, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 61–80, jan 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Available: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='1109/TNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='2005605 [25] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Xu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Hu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Leskovec, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Jegelka, “How powerful are graph neural networks?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' in International Conference on Learning Representations, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [26] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Singh, “An algorithm to reduce the time complexity of earliest deadline first scheduling algorithm in real-time system,” 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [27] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Sundermeyer, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Schl¨uter, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Ney, “Lstm neural networks for language modeling,” in Thirteenth annual conference of the interna- tional speech communication association, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [28] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Graves, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Fern´andez, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Schmidhuber, “Bidirectional lstm networks for improved phoneme classification and recognition,” in International conference on artificial neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Springer, 2005, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 799–804.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [29] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Zhou, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Cui, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Hu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Zhang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Yang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Liu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Wang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Li, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Sun, “Graph neural networks: A review of methods and applications,” 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [30] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Sherstinsky, “Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network,” CoRR, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' abs/1808.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='03314, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Available: http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='org/abs/1808.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 03314 [31] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Malhotra, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Ramakrishnan, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Anand, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Vig, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Agarwal, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Shroff, “Lstm-based encoder-decoder for multi-sensor anomaly detection,” arXiv preprint arXiv:1607.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content='00148, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [32] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Ycart, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Benetos, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=', “A study on lstm networks for polyphonic music sequence modelling.” ISMIR, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [33] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Yu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Si, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Hu, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Zhang, “A review of recurrent neural networks: Lstm cells and network architectures,” Neural Computation, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 31, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 1235–1270, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [34] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Sutton, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Singh, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' McAllester, “Comparing policy-gradient algorithms,” IEEE Transactions on Systems, Man, and Cybernetics, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [35] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Paszke, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Gross, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Massa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Lerer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Bradbury, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Chanan, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Killeen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Lin, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Gimelshein, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Antiga, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Desmaison, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Kopf, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Yang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' DeVito, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Raison, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Tejani, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Chilamkurthy, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Steiner, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Fang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Bai, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Chintala, “Pytorch: An imperative style, high- performance deep learning library,” in Advances in Neural Information Processing Systems, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Wallach, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Larochelle, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Beygelzimer, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=" d'Alch´e-Buc, E." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Fox, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Garnett, Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Curran Associates, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [36] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Wang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Zheng, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Ye, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Gan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Song, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Zhou, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Ma, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Yu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Gai, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Xiao, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' He, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Karypis, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Li, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Zhang, “Deep graph library: A graph-centric, highly-performant package for graph neural networks,” 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' [37] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Kingma and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} +page_content=' Ba, “Adam: A method for stochastic optimiza- tion,” 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFQT4oBgHgl3EQfPjZG/content/2301.13279v1.pdf'} diff --git a/DtFQT4oBgHgl3EQfPzZf/content/tmp_files/2301.13280v1.pdf.txt b/DtFQT4oBgHgl3EQfPzZf/content/tmp_files/2301.13280v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..63b5ab977a12dbe1be254cfa6e76dae33eb2f87d --- /dev/null +++ b/DtFQT4oBgHgl3EQfPzZf/content/tmp_files/2301.13280v1.pdf.txt @@ -0,0 +1,2726 @@ +WebUI: A Dataset for Enhancing Visual UI Understanding with +Web Semantics +Jason Wu +HCI Institute, Carnegie Mellon +University +Pittsburgh, PA, USA +jsonwu@cmu.edu +Siyan Wang +Wellesley College +Wellesley, MA, USA +sw1@wellesley.edu +Siman Shen +Grinnell College +Grinnell, IA, USA +shenlisa@grinnell.edu +Yi-Hao Peng +HCI Institute, Carnegie Mellon +University +Pittsburgh, PA, USA +yihaop@cs.cmu.edu +Jeffrey Nichols +Snooty Bird LLC +USA +jwnichls@gmail.com +Jeffrey P. Bigham +HCI Institute, Carnegie Mellon +University +Pittsburgh, PA, USA +jbigham@cs.cmu.edu +ABSTRACT +Modeling user interfaces (UIs) from visual information allows sys- +tems to make inferences about the functionality and semantics +needed to support use cases in accessibility, app automation, and +testing. Current datasets for training machine learning models are +limited in size due to the costly and time-consuming process of +manually collecting and annotating UIs. We crawled the web to +construct WebUI, a large dataset of 400,000 rendered web pages +associated with automatically extracted metadata. We analyze the +composition of WebUI and show that while automatically extracted +data is noisy, most examples meet basic criteria for visual UI mod- +eling. We applied several strategies for incorporating semantics +found in web pages to increase the performance of visual UI un- +derstanding models in the mobile domain, where less labeled data +is available: (i) element detection, (ii) screen classification and (iii) +screen similarity. +KEYWORDS +Dataset; UI Modeling; Computer Vision; Transfer Learning; Web +Semantics; Computational Interaction +ACM Reference Format: +Jason Wu, Siyan Wang, Siman Shen, Yi-Hao Peng, Jeffrey Nichols, and Jeffrey +P. Bigham. 2023. WebUI: A Dataset for Enhancing Visual UI Understanding +with Web Semantics. In Proceedings of the 2023 CHI Conference on Human Fac- +tors in Computing Systems (CHI ’23), April 23–28, 2023, Hamburg, Germany. +ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3544548.3581158 +1 +INTRODUCTION +Computational modeling of user interfaces (UIs) allows us to under- +stand design decisions [15, 28], improve their accessibility [55], and +automate their usage [7, 31, 32]. Often, these systems must interact +with UIs in environments with incomplete or missing metadata (e.g., +Permission to make digital or hard copies of part or all of this work for personal or +classroom use is granted without fee provided that copies are not made or distributed +for profit or commercial advantage and that copies bear this notice and the full citation +on the first page. Copyrights for third-party components of this work must be honored. +For all other uses, contact the owner/author(s). +CHI ’23, April 23–28, 2023, Hamburg, Germany +© 2023 Copyright held by the owner/author(s). +ACM ISBN 978-1-4503-9421-5/23/04. +https://doi.org/10.1145/3544548.3581158 +mobile apps authored with inaccessible UI toolkits). This presents +many challenges since it necessitates that they reliably identify and +reason about the functionality of the UI to support downstream +applications. Visual modeling of UIs, which has shown to be a +promising solution, predicts information directly from a screen- +shot using machine learning models and introduces no additional +dependencies. +Building the datasets needed to train accurate visual models +involves collecting a large number of screenshots paired with their +underlying semantic or structural representations. Recent efforts to +collect datasets [15, 55] for data-driven modeling have focused on +mobile apps, which are typically manually crawled and annotated +by crowdworkers since they are often difficult to automate. This +process is both time-consuming and expensive — prior work has +estimated that collecting a dataset of 72,000 app screens from 10,000 +apps took 5 months and cost $20,000 [15]. Because of this, datasets +for visual UI modeling are limited in size and can be prohibitively +expensive to keep updated. +The web presents a possible solution to UI data scarcity since +web pages are a promising source of data to bootstrap and enhance +visual UI understanding. In contrast to mobile UIs, web UIs (i.e., web +pages) are much easier to crawl since they are authored in a unified +parsable language (i.e., HTML) that typically exposes semantics +(e.g., links and listeners) necessary for automated navigation. The +same web page can also be viewed in many different viewports +and display settings, which makes it possible to collect a large +dataset of UIs rendered on a variety of devices (e.g., a smartphone or +tablet). In addition, web browsers offer several facilities to extract +visual, semantic, and stylistic information programmatically. In +particular, web conventions, such as the semantic HTML and the +ARIA initiatives, while not always adopted, constitute a large, if +potentially noisy, source of annotations for UI elements. Finally, +the web offers a virtually unlimited supply of data and has already +been employed as a data source for large-scale machine learning +[23, 52, 53]. We explore the possibility of automatically collecting +and labeling a large dataset of web UIs to support visual UI modeling +in other domains (e.g., mobile). Compared to previous web datasets +[28], our dataset is much larger, more recent, and contains semantic +information needed to support common visual UI understanding +tasks. +arXiv:2301.13280v1 [cs.HC] 30 Jan 2023 + +CHI ’23, April 23–28, 2023, Hamburg, Germany +Wu et al. +In this paper, we show that a large dataset of automatically +collected web pages can improve the performance of visual UI +Understanding models through transfer learning techniques, and +we verify this phenomenon for three tasks. We first describe the +platform that we built to crawl websites automatically and scrape +relevant visual, semantic, and style data. Our crawler visited a +total of approximately 400,000 web pages using different simulated +devices. WebUI, the resulting dataset is an order of magnitude larger +than other publicly available datasets [28]. Next, we analyzed our +dataset’s composition and estimated data quality using several +automated metrics: (i) element size, (ii) element occlusion, and +(iii) layout responsiveness. We found that most websites met basic +criteria for visual UI modeling. Finally, we propose a framework +for incorporating web semantics to enhance the performance of +existing visual UI understanding approaches. We apply it to three +tasks in the literature: (i) element detection, (ii) screen classification +and (iii) video screen similarity and show that incorporating web +data improves performance in other target domains, even when +labels are unavailable. +To summarize, our paper makes the following contributions: +(1) The WebUI dataset, which consists of 400,000 web pages +each accessed with multiple simulated devices. We collected +WebUI using automated web crawling and automatically +associated web pages with visual, semantic, and stylistic +information that can generalize to UIs of other platforms. +(2) An analyis of the composition and quality of examples in +WebUI for visual UI modeling in terms of (i) element size, (ii) +element occlusion, and (iii) website layout responsiveness. +(3) A demonstration of the usefulness of the WebUI dataset +through three applications from the literature: (i) element +detection, (ii) screen classification and (iii) screen similarity. +We show that incorporating web data can lead to perfor- +mance improvements when used in a transfer learning set- +ting, and we verified its improvement for our three tasks. We +envision that similar approaches can be used for other tasks +common in visual UI understanding. Furthermore, we show +that models trained on only web data can often be directly +applied to other domains (e.g., Android app screens). +All code, models, and data will be released to the public to encourage +further research in this area. +2 +RELATED WORK +2.1 +Datasets for UI Modeling +There have been several datasets collected to support UI modeling, +mostly in the mobile domain. Several datasets have been collected to +support training specialized models [26, 40, 44] . The AMP dataset +consists of 77k screens from 4,068 iOS apps and was originally used +to train Screen Recognition, an enhanced screen reader [55], but +has also been extended with additional pairwise annotations to +support automated crawling applications [20]. +The largest publicly available dataset Rico, which consists of +72K app screens from 9.7K Android apps, was collected using a +combination of automated and human crawling [15]. It captures +aspects of user interfaces that are static (e.g., app screenshots) and +dynamic (e.g., animations and user interaction traces). Rico has +served as the primary source of data for much UI understanding +research and it has been extended and re-labeled to support many +downstream applications, such as natural language interaction [7, +32, 49] and UI retrieval for design [6, 15]. +Nevertheless, Rico has several weaknesses [14]. Several works +have identified labeling errors and noise (e.g., nodes in the view +hierarchy do not match up with the screenshot). To this end, efforts +have been made to repair and filter examples. Enrico first randomly +sampled 10,000 examples from Rico then cleaned and provided +additional annotations for 1460 of them [29]. The VINS dataset [6] is +a dataset for UI element detection that was created by collecting and +manually taking screenshots from several sources, including Rico. +The Clay dataset (60K app screens) was generated by denoising +Rico through a pipeline of automated machine learning models and +human annotators to provide element labels [30]. Rico and other +manually annotated datasets are expensive to create and update, and +thus, models trained on them may exhibit degraded performance +on newer design guidelines (e.g., Material Design is an updated +design look for Android). For example, Rico was collected in early +2017 and has yet to see any update. Finally, many of these datasets +focus on one particular platform (e.g., mobile phone) and therefore +may learn visual patterns specific to the screen dimensions. For +example, “hamburger menus” are usually used in mobile apps while +desktop apps may use navigation bars. +In our work, we scrape the web for examples of UIs, which +addresses some drawbacks (high cost, difficult to update, device- +dependent) of current datasets but not others (dataset noise). The +closest to our work is Webzeitgeist [28], which also used automated +crawling to mine the design of web pages. To support design mining +and machine learning applications, Webzeitgeist crawled 103,744 +webpages and associated web elements with extracted properties +such as HTML tag, size, font, and color. This work is primarily used +for data-driven design applications and does not attempt to transfer +semantics to other domains. We also collect multiple views of each +website and query the browser for accessibility metadata, which +can further facilitate UI modeling applications. +2.2 +Applications of UI Datasets +Applications that operate and improve existing UIs must reliably +identify their composition and functionality. Originally, many relied +on pixel-based or heuristic matching [1, 18, 43, 54]. The introduc- +tion of large UI datasets, such as those previously discussed, have +provided the opportunity to learn more robust computational mod- +els, especially those from visual data. The goal of this paper is to +improve the performance of these computational models by lever- +aging a large body of web data and its associated semantics. There +have been many efforts to learn the semantics of UIs [37, 49, 50]. In +this paper, we focus on three modeling tasks at the (i) element (ele- +ment detection), (ii) screen (screen classification), and (iii) app-level +(screen similarity). +Element detection identifies the location and type of UI widgets +from a screenshot and has applications in accessibility metadata +repair [55], design search [6], and software testing [12, 51]. Labeled +datasets for element detection exist [6, 15, 30, 55]; however they +are quite small compared to other datasets for object detection [36] +which contain an order of magnitude more examples (330K). We +found that incorporating our web UI dataset (400K examples) in a + +WebUI: A Dataset for Enhancing Visual UI Understanding with Web Semantics +CHI ’23, April 23–28, 2023, Hamburg, Germany +pre-training phase led to performance benefits. Other work involves +modeling UIs at a higher level (e.g., screen-level) to reason about the +design categorization [29] and purpose [49] of a screen. Similarly, +datasets with screen-level annotations of UIs are much smaller than +others used in the CV literature [17] so we used additional web +data to improve accuracy. Finally, we investigated screen similarity, +a task that reasons about multiple UI inputs (e.g., frames of a video +recording), where no publicly available labeled data exists. We +found that models trained on related web semantics (e.g., URL +similarity) were able to successfully generalize to mobile screens. +In summary, our paper shows that applying examples from the +web and relevant machine learning techniques can improve the +performance of computational models that depend on UI data. +2.3 +Related Machine Learning Approaches +We briefly introduce and summarize three machine learning ap- +proaches that we apply in our paper. Broadly, they fall under a body +of research known as “transfer learning” which uses knowledge +from learning one task (e.g., web pages) to improve performance +on another (e.g., mobile app screens). +Inductive transfer learning is a technique that improves model +performance by first “pre-training” a model on a related task, typi- +cally where a lot of data is available [42]. Once the model converges +on the first task, its weights are used as a starting point when train- +ing on the target task. Labeled data is required for both the source +and target domains, although it is possible that there are fewer +target examples. +In some cases, labeled data are missing for either the source or +target domains. If source labels are unavailable, semi-supervised +learning (SSL) can be applied to take advantage of unlabeled data to +improve performance [9]. For example, WebUI doesn’t contain any +labels for screen type (e.g., login screen, register screen), but we’d +like to use it to improve prediction accuracy on a small number of +annotated Android app screens. In our work, we apply a form of +SSL known as “self-learning” [9], where a UI classification model it- +eratively improves its performance by generating pseudo-labels for +an unlabeled dataset, then re-training itself using high-confidence +samples. +Finally, to support use-cases where target labels are unavailable, +we apply unsupervised domain adaptation (UDA) [22]. In many +cases, visual UI models trained on web data can be directly used +on any screenshot (including Android and iOS apps), and UDA +improves the performance and robustness of models to domain +changes. This type of knowledge transfer is particularly interesting +because it enables us to explore the feasibility of new UI under- +standing tasks (without manually annotating a large number of +examples) and bring some benefits of web semantics (e.g., semantic +HTML) to other platforms. +3 +WEBUI DATASET +We introduce the WebUI dataset, which we construct and release +to support UI modeling. The WebUI dataset is composed of 400,000 +web pages automatically crawled from the web. We stored screen- +shots and corresponding metadata from the browser engine, which +serve as annotations of UI element semantics. Because the collec- +tion process is highly automated, our final dataset is an order of +Database +Crawling +Coordinator +Crawler +Web +workers +assign URLs +to worker +send back +crawled URLs +Request and +collect data +Figure 1: Overview of our crawling architecture. A crawl- +ing coordinator contains a queue of URLs to crawl and as- +signs them to workers in a crawler pool. Workers asyn- +chronously process URLs by visiting them in a automated +browser, scraping relevant metadata, then uploading them +to a cloud database. +magnitude larger than other publicly available ones (Figure 4) and +can be more easily updated over time. +In this section, we give an overview of our web crawling architec- +ture, analyze the composition of our dataset, and provide evidence +that it can support visual UI modeling for other platforms. +3.1 +Web UI Crawler +3.1.1 +Crawling Architecture. To collect our dataset, we implemented +a parallelizable cloud-based web crawler. Our crawler consists of +(i) a crawling coordinator server that keeps track of visited and +queued URLs, (ii) a pool of crawler workers that scrapes URLs using +a headless browser, and (iii) a database service that stores uploaded +artifacts from the workers. The crawler worker is implemented +using a headless framework [3] for interfacing with the Chrome +browser. Each crawler worker repeatedly requests a URL from the +coordinator server, which keeps global data structures for visited +and upcoming URLs. The crawler worker includes some simple +heuristics to automatically dismiss certain types of popups (e.g., +GDPR cookie warnings) to help it access page content. +We seeded our coordinator using a list of websites that we hy- +pothesized would lead to diverse examples of web pages (e.g., link +aggregation websites and design blogs) and ones that we expected to +have high-quality accessibility metadata (e.g., government websites). +A full list of our seed websites can be found in the supplementary +materials. +We explored several crawling policies and eventually settled on +one that encourages diverse exploration by inversely weighting the +probability of visiting a URL by its similarity to the visited set. For +example, if the crawler previously visited http://example.com/user/ +alpha, it would be less likely to subsequently visit http://example. +com/user/beta. We set a minimum probability so that it is possible to +re-visit links to support additional types of analysis (e.g., temporal +changes). The coordinator organizes upcoming (i.e., queued) URLs +by their hostname, (i) selects a hostname randomly with uniform +probability, and then (ii) selects a URL using its assigned probability. +Empirically, we found this technique to be effective at avoiding + +CHI ’23, April 23–28, 2023, Hamburg, Germany +Wu et al. +1280x720 +1366x768 +1536x864 +1920x1080 +iPhone +iPad +Figure 2: Screenshots from a web page accessed using 6 dif- +ferent devices: 4 desktop resolutions, a smartphone, and a +tablet. By requesting a responsive web page at different reso- +lutions, we induce several layout variations (e.g., navigation +and hero button). +crawler traps, which are websites that cause automated crawlers to +get stuck in endless loops navigating within the same site. +3.1.2 +Data Collected from a Web Page. We used a pool of crawler +workers to crawl web pages in parallel, and we visited each URL +with multiple simulated devices. We collected several types of se- +mantic information by querying the rendering and accessibility +engine. We set a timeout limit of 6 minutes for each URL, so some +web pages were not visited by all simulated devices. +Simulated Devices. We sampled each web page with 6 sim- +ulated devices: 4 of the most common desktop resolutions [4], a +tablet, and a mobile phone. Devices are simulated by setting the +browser window resolution and user agent to match the goal device, +both of which may affect the page’s content and rendering. +Screenshots. Our crawler worker captured two types of screen- +shots (i.e., visual data) from websites. We captured a viewport +screenshot, with fixed image dimensions, and a full-page screenshot, +with variable height. Images were saved using lossy compression +to save storage. While compression can introduce some artifacts, +previous work [19] suggests that the effect on deep learning model +performance is minimal. +Accessibility Tree. We used a browser automation library to +query Chrome’s developer tools to retrieve an accessibility tree +for each page [2]. The accessibility tree is a tree-based represen- +tation of a web page that is shown to assistive technology, such +as screen readers. The tree contains accessibility objects, which +usually correspond to UI elements and can be queried for properties +(e.g., clickability, headings). +Compared to the DOM tree, the accessibility tree is simplified by +removing redundant nodes (e.g.,