jackkuo commited on
Commit
3d3e4ef
·
verified ·
1 Parent(s): a090b89

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -NA0T4oBgHgl3EQfPP8X/content/tmp_files/2301.02171v1.pdf.txt +2141 -0
  2. -NA0T4oBgHgl3EQfPP8X/content/tmp_files/load_file.txt +0 -0
  3. -NE0T4oBgHgl3EQfxAEX/content/2301.02639v1.pdf +3 -0
  4. -NE0T4oBgHgl3EQfxAEX/vector_store/index.pkl +3 -0
  5. .gitattributes +42 -0
  6. 09AzT4oBgHgl3EQfDPrL/content/tmp_files/2301.00974v1.pdf.txt +967 -0
  7. 09AzT4oBgHgl3EQfDPrL/content/tmp_files/load_file.txt +0 -0
  8. 09E4T4oBgHgl3EQfZwye/content/2301.05059v1.pdf +3 -0
  9. 09E4T4oBgHgl3EQfZwye/vector_store/index.pkl +3 -0
  10. 0dFJT4oBgHgl3EQfjix9/content/2301.11575v1.pdf +3 -0
  11. 0dFJT4oBgHgl3EQfjix9/vector_store/index.faiss +3 -0
  12. 0dFJT4oBgHgl3EQfjix9/vector_store/index.pkl +3 -0
  13. 39AyT4oBgHgl3EQf1_mj/content/tmp_files/2301.00744v1.pdf.txt +1434 -0
  14. 39AyT4oBgHgl3EQf1_mj/content/tmp_files/load_file.txt +0 -0
  15. 39E2T4oBgHgl3EQfjgft/content/tmp_files/2301.03970v1.pdf.txt +1472 -0
  16. 39E2T4oBgHgl3EQfjgft/content/tmp_files/load_file.txt +0 -0
  17. 39FRT4oBgHgl3EQfozcR/content/2301.13610v1.pdf +3 -0
  18. 39FRT4oBgHgl3EQfozcR/vector_store/index.faiss +3 -0
  19. 39FRT4oBgHgl3EQfozcR/vector_store/index.pkl +3 -0
  20. 3NFAT4oBgHgl3EQflB25/content/tmp_files/2301.08615v1.pdf.txt +865 -0
  21. 3NFAT4oBgHgl3EQflB25/content/tmp_files/load_file.txt +0 -0
  22. 3dE3T4oBgHgl3EQfPwmd/vector_store/index.faiss +3 -0
  23. 3dFRT4oBgHgl3EQfoTds/vector_store/index.faiss +3 -0
  24. 4dE1T4oBgHgl3EQf6QUq/content/tmp_files/load_file.txt +496 -0
  25. 4dE4T4oBgHgl3EQf0w2N/content/2301.05285v1.pdf +3 -0
  26. 4tAyT4oBgHgl3EQfpPhP/content/2301.00521v1.pdf +3 -0
  27. 4tAyT4oBgHgl3EQfpPhP/vector_store/index.faiss +3 -0
  28. 8dE3T4oBgHgl3EQfqgpk/vector_store/index.faiss +3 -0
  29. 8dE3T4oBgHgl3EQfqgpk/vector_store/index.pkl +3 -0
  30. 9dE1T4oBgHgl3EQfoAQF/content/2301.03314v1.pdf +3 -0
  31. 9dE1T4oBgHgl3EQfoAQF/vector_store/index.faiss +3 -0
  32. 9dE1T4oBgHgl3EQfoAQF/vector_store/index.pkl +3 -0
  33. A9AyT4oBgHgl3EQf3_rL/content/tmp_files/2301.00780v1.pdf.txt +0 -0
  34. A9AyT4oBgHgl3EQf3_rL/content/tmp_files/load_file.txt +0 -0
  35. AtFLT4oBgHgl3EQfFC_E/vector_store/index.faiss +3 -0
  36. BdAzT4oBgHgl3EQfh_0J/content/tmp_files/2301.01491v1.pdf.txt +3401 -0
  37. BdAzT4oBgHgl3EQfh_0J/content/tmp_files/load_file.txt +0 -0
  38. CNAzT4oBgHgl3EQfTvwq/content/tmp_files/2301.01253v1.pdf.txt +1062 -0
  39. CNAzT4oBgHgl3EQfTvwq/content/tmp_files/load_file.txt +0 -0
  40. ENAyT4oBgHgl3EQfSPf9/content/tmp_files/2301.00085v1.pdf.txt +1124 -0
  41. ENAyT4oBgHgl3EQfSPf9/content/tmp_files/load_file.txt +362 -0
  42. GtAzT4oBgHgl3EQfUvxQ/content/tmp_files/2301.01271v1.pdf.txt +1442 -0
  43. GtAzT4oBgHgl3EQfUvxQ/content/tmp_files/load_file.txt +0 -0
  44. H9E4T4oBgHgl3EQfIAys/content/2301.04909v1.pdf +3 -0
  45. H9E4T4oBgHgl3EQfIAys/vector_store/index.faiss +3 -0
  46. H9E4T4oBgHgl3EQfIAys/vector_store/index.pkl +3 -0
  47. JtE1T4oBgHgl3EQfYQS_/content/tmp_files/2301.03137v1.pdf.txt +2321 -0
  48. JtE1T4oBgHgl3EQfYQS_/content/tmp_files/load_file.txt +0 -0
  49. K9E0T4oBgHgl3EQfSgAu/content/tmp_files/2301.02222v1.pdf.txt +2290 -0
  50. K9E0T4oBgHgl3EQfSgAu/content/tmp_files/load_file.txt +0 -0
-NA0T4oBgHgl3EQfPP8X/content/tmp_files/2301.02171v1.pdf.txt ADDED
@@ -0,0 +1,2141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Strong Convergence of Peaks Over a Threshold
2
+ S. A. Padoan
3
+ Department of Decision Sciences, Bocconi University, Italy
4
+ and
5
+ S. Rizzelli
6
+ Department of Statistical Sciences, Catholic University, Italy
7
+ January 6, 2023
8
+ Abstract
9
+ Extreme Value Theory plays an important role to provide approximation re-
10
+ sults for the extremes of a sequence of independent random variable when their
11
+ distribution is unknown. An important one is given by the Generalised Pareto dis-
12
+ tribution Hγ(x) as an approximation of the distribution Ft(s(t)x) of the excesses
13
+ over a threshold t, where s(t) is a suitable norming function. In this paper we
14
+ study the rate of convergence of Ft(s(t)·) to Hγ in variational and Hellinger dis-
15
+ tances and translate it into that regarding the Kullback-Leibler divergence between
16
+ the respective densities. We discuss the utility of these results in the statistical field
17
+ by showing that the derivation of consistency and rate of convergence of estimators
18
+ of the tail index or tail probabilities can be obtained thorough an alternative and
19
+ relatively simplified approach, if compared to usual asymptotic techniques.
20
+ Keywords: Contraction Rate, Consistency, Exceedances, Extreme Quantile, Gener-
21
+ alised Pareto, Tail Index.
22
+ 2020 Mathematics Subject Classification: Primary 60G70; secondary 62F12, 62G20
23
+ 1
24
+ Introduction
25
+ Extreme Value Theory (EVT) develops probabilistic models and methods for describ-
26
+ ing the random behaviour of extreme observations that rarely occur. These theoretical
27
+ foundations are very important for studying practical problems in environmental, cli-
28
+ mate, insurance and financial fields (e.g., Embrechts et al., 2013; Dey and Yan, 2016),
29
+ to name a few.
30
+ In the univariate setting, the most popular approaches for statistical analysis are the
31
+ so-called Block Maxima (BM) and Peaks Over Threshold (POT) (see e.g. B¨ucher and
32
+ Zhou, 2021, for a review). Let X1, . . . , Xn be independent and identically distributed
33
+ (i.i.d.) random variables according to a common distribution F. The first approach
34
+ concerns the modelling of k sample maxima derived over blocks of a certain size m, i.e.
35
+ Mm,i = max(X(i−1)m+1, . . . , Xim), i ∈ {1, . . . , k}. In this case, under some regularity
36
+ conditions (e.g. de Haan and Ferreira, 2006, Ch. 1), the weak limit theory establishes
37
+ that F m(amx+bm) converges pointwise to Gγ(x) as m → ∞, for every continuity point
38
+ x of Gγ, where Gγ is the Generalised Extreme Value (GEV) distribution, am > 0 and
39
+ bm are suitable norming constants for each m = 1, 2, . . . and γ ∈ R is the so-called
40
+ tail index, which describes the tail heaviness of F (e.g. de Haan and Ferreira, 2006,
41
+ Ch. 1). The second method concerns the modelling of k random variables out of the
42
+ n available that exceed a high threshold t, or, equivalently, of k threshold excesses Yj,
43
+ 1
44
+ arXiv:2301.02171v1 [math.PR] 5 Jan 2023
45
+
46
+ j = 1, . . . , k, which are i.i.d. copies of Y = X −t|X > t. In this context, the Generalised
47
+ Pareto (GP) distribution, say Hγ, appears as weak limit law of appropriately normalised
48
+ high threshold exceedances, i.e. for all x > 0, Ft(s(t)x) converges pointwise to Hγ(x)
49
+ as t → x∗, for all the continuity points x of Hγ(x), where Ft(x) = P(Y ≤ x) and
50
+ s(t) > 0 is a suitable scaling function for any t ≤ x∗, with x∗ = inf(x : F(x) <
51
+ ∞). This result motivates the POT approach, which was introduced decades ago by
52
+ the seminal paper Balkema and de Haan (1974). Since then, few other convergence
53
+ results emerged.
54
+ For instance, the uniform convergence of Ft(s(t) · ) to Hγ and the
55
+ coresponding convergence rate have been derived by Pickands III (1975) and Raoult
56
+ and Worms (2003), respectively. Similar results but in Wasserstein distance have been
57
+ recently established by Bobbia et al. (2021). As for the GEV distribution, more results
58
+ are available.
59
+ In particular, there are sufficient conditions to ensure, in addition to
60
+ weak convergence, that F m(am · +bm) converges to Gγ for example uniformly and
61
+ in variational distance and the density of F m(am · +bm) converges pointwise, locally
62
+ uniformly and uniformly to that of Gγ (e.g. Falk et al., 2010, Ch. 2; Resnick, 2007, Ch.
63
+ 2).
64
+ The main contribution of this article is to provide new convergence results that can
65
+ be useful in practical problems for the POT approach. Motivated by the utility in the
66
+ statistical field to asses the asymptotic accuracy of estimation procedures, we study
67
+ stronger forms of convergence than the pointwise one, as limt→x∗ D(Ft(s(t) · ), Hγ) = 0,
68
+ where D( · ; · ) is either the variational distance, the Hellinger distance or the Kullback-
69
+ Leibler divergence. In particular, we provide upper bounds for the rate of convergence
70
+ to zero of D(Ft(s(t) · ); Hγ) in the case that D( · ; · ) is the variational and Hellinger dis-
71
+ tance, and further translate them into bounds on Kullback-Leibler divergence between
72
+ the densities of Ft(s(t)·) and Hγ, respectively.
73
+ Estimators of the tail index γ (and other related quantities) are typically defined
74
+ as functionals of the random variables (Y1, . . . , Yk), as for instance the popular Hill
75
+ (Hill, 1975), Moment (Dekkers et al., 1989), Pickands (Pickands III, 1975), Maximum
76
+ Likelihood (ML, Jenkinson, 1969), Generalised Probability Weighted Moment (GPWM,
77
+ Hosking et al., 1985) estimators, to name a few. In real applications, the distribution
78
+ F is typically unknown and so is F(s(t) · ). Although, for large t, Hγ provides a model
79
+ approximation for Ft(s(t) · ), when one wants to derive asymptotic properties as the
80
+ consistency and especially the rate of convergence of the tail index estimators (or other
81
+ related quantities), still the fact that (after rescaling) the random variables (Y1, . . . , Yk)
82
+ are actually distributed according to Ft(s(t) · ) needs to be taken into account, which
83
+ makes asymptotic derivations quite burdensome. These are even more complicated if t
84
+ is determined on the basis of the (k + 1)-th largest order statistic of the original sample
85
+ X1, . . . , Xn, which is the most common situation in practical applications. In this case,
86
+ the threshold is in fact random and, up to rescaling, Ft(s(t) · ) only gives a conditional
87
+ model for the variables Yj given a fixed value t of the chosen statistic. Asymptotic
88
+ properties for POT methods have been studied in the last fifty years, see for example
89
+ Hall and Welsh (1984), Drees (1998), Dekkers and de Haan (1993) and the reference
90
+ therein.
91
+ Leveraging on our strong convergence results we can show that, for random sequences
92
+ (such as sequences of estimators) convergence results in probability that hold under the
93
+ limit model Hγ, are also valid for a rescaled sample of excesses over a large order statistic.
94
+ Precisely, we show that the distribution of the latter, up to rescaling and reordering,
95
+ is contiguous to that of an ordered i.i.d. sample from Hγ (e.g., van der Vaart, 2000,
96
+ Ch. 6.2). As a by product of this result, one can derive the consistency and rate of
97
+ convergence of a tail index estimator (or an estimator of a related quantity) by defining
98
+ it as a functional of the random sequence (Z1, . . . , Zk) which is distributed according the
99
+ 2
100
+
101
+ limit model Hγ, and, if density of Ft(s(t)·) satisfies some regularity conditions, then the
102
+ same asymptotic results hold even when such estimator is defined through the sequence
103
+ of excesses. This approach simplifies a lot the computations as asymptotic properties
104
+ are easily derivable under the limit model.
105
+ The article is organised as follows, Section 2 of the paper provides a brief summary
106
+ of the probabilistic context on which our results are based. Section 3 provides our new
107
+ results on strong convergence to a Pareto model. Section 4 explains in what applications
108
+ concerning statistical estimation our results are useful. Section 5 provides the proofs of
109
+ the main results.
110
+ 2
111
+ Background
112
+ Let X be a random variable with a distribution function F that is in the domain of
113
+ attraction of the GEV distribution Gγ, shortly denoted as F ∈ D(Gγ). This means that
114
+ there are norming constants am > 0 and bm ∈ R for m = 1, 2, . . . such that
115
+ lim
116
+ m→∞ F m(amx + bm) = exp
117
+
118
+ − (1 + γx)−1/γ�
119
+ =: Gγ(x),
120
+ (2.1)
121
+ for all x ∈ R such that 1 + γx > 0, where γ ∈ R, and this is true if only if there is a
122
+ scaling function s(t) > 0 with t < x∗ such that
123
+ lim
124
+ t→x∗ Ft(s(t)x) = 1 − (1 + γx)−1/γ =: Hγ(x),
125
+ (2.2)
126
+ e.g., de Haan and Ferreira (2006, Theorem 1.1.6). The densities of Hγ and Gγ are
127
+ hγ(x) = (1 + γx)−(1/γ+1)
128
+ and
129
+ gγ(x) = Gγ(x)hγ(x),
130
+ respectively. Let U(v) := F ←(1 − 1/v), for v ≥ 1, where F ← is the left-continuous
131
+ inverse function of F and G←(exp(−1/x)) = (xγ − 1)/γ.
132
+ Then, we recall that the
133
+ first-order condition in formula (2.1) is equivalent to the limit result
134
+ lim
135
+ v→∞
136
+ U(vx) − U(v)
137
+ a(v)
138
+ = xγ − 1
139
+ γ
140
+ ,
141
+ (2.3)
142
+ for all x > 0, where a(v) > 0 is a suitable scaling function. In particular, we have that
143
+ s(t) = a(1/(1 − F(t))), see de Haan and Ferreira (2006, Ch. 1) for possible selections of
144
+ the function a.
145
+ A stronger convergence form than that in formula (2.2) is the uniform one, i.e.
146
+ sup
147
+ x∈[0, x∗−t
148
+ s(t) )
149
+ |Ft(s(t)x) − Hγ(x)| → 0,
150
+ t → x∗.
151
+ To establish the speed at which Ft(s(t)x) converges uniformly to Hγ(x), Raoult and
152
+ Worms (2003) relied on a specific formulation of the well-known second-order condi-
153
+ tion. In its general form, the second order condition requires the existence of a posi-
154
+ tive function a and a positive or negative function A, named rate function, such that
155
+ limv→∞ |A(v)| = 0 and
156
+ lim
157
+ v→∞
158
+ U(vx)−U(v)
159
+ a(v)
160
+ − xγ−1
161
+ γ
162
+ A(v)
163
+ = D(x),
164
+ x > 0,
165
+ 3
166
+
167
+ where D is a non-null function which is not a multiple of (xγ − 1)/γ, see de Haan and
168
+ Ferreira (2006, Definition 2.3.1). The rate function A is necessarily regularly varying at
169
+ infinity with index ρ ≤ 0, named second-order parameter (de Haan and Ferreira, 2006,
170
+ Theorem 2.3.3). In the sequel, we use the same specific form of second order condition
171
+ of Raoult and Worms (2003) to obtain decay rates for stronger metrics than uniform
172
+ distance between distribution functions.
173
+ 3
174
+ Strong results for POT
175
+ In this section, we discuss strong forms of convergence for the distribution of rescaled
176
+ exceedances over a threshold. First, in Section 3.1, we discuss convergence to a GP
177
+ distribution in variational and Hellinger distance, drawing a connection with known
178
+ results for density convergence of normalized maxima. In Section 3.2 we quantify the
179
+ speed of convergence in variational and Hellinger distance. Finally, in Section 3.3, we
180
+ show how these can be used to also bound Kullback-Leibler divergences. Throughout,
181
+ for a twice differentiable function W(x) on R, we denote with W ′(x) = (∂/∂x)W(x)
182
+ and W ′′(x) = (∂2/∂x2)W(x) the first and second order derivatives, respectively.
183
+ 3.1
184
+ Strong convergence under classical assumptions
185
+ Let the distribution function F be twice differentiable. In the sequel, we denote f = F ′,
186
+ gm = (F m(am · +bm))′ and ft = F ′
187
+ t.
188
+ Under the following classical von Mises-type
189
+ conditions
190
+ lim
191
+ x→∞
192
+ xf(x)
193
+ 1 − F(x) = 1
194
+ γ ,
195
+ γ > 0,
196
+ lim
197
+ x→x∗
198
+ (x∗ − x)f(x)
199
+ 1 − F(x)
200
+ = −1
201
+ γ ,
202
+ γ < 0,
203
+ (3.1)
204
+ lim
205
+ x→x∗
206
+ f(x)
207
+ � x∗
208
+ x (1 − F(v)dv)
209
+ (1 − F(x))2
210
+ = 0,
211
+ γ = 0,
212
+ we know that the first-order condition in formula (2.3) is satisfied and it holds that
213
+ lim
214
+ v→∞ va(v)f(a(v)x + U(v)) = (1 + γx)−1/γ−1
215
+ (3.2)
216
+ locally uniformly for (1 + γx) > 0. Since the equality gm(x) = F m−1(amx + bm)hm(x)
217
+ holds true, with bm = U(m), am = a(m) and hm(x) = mamf(amx + bm), and since
218
+ F m−1(amx+bm) converges to Gγ(x) locally uniformly as m → ∞, the convergence result
219
+ in formula (3.2) thus implies that gm(x) converges to gγ(x) locally uniformly (Resnick,
220
+ 2007, Ch. 2.2).
221
+ On the other hand, the density pertaining to Ft(s(t)x) is
222
+ lt(x) := ft(s(t)x)s(t) = s(t)f(s(t)x + t)
223
+ 1 − F(t)
224
+ and, setting v = 1/(1 − F(t)), we have a(v) = s(t) and v → ∞ as t → x∗. Therefore,
225
+ a further implication of the convergence result in formula (3.2) is that lt(x) converges
226
+ to hγ(x) locally uniformly for x > 0, if γ ≥ 0, or x ∈ (0, −1/γ), if γ < 0. In turn, by
227
+ Scheffe’s lemma we have
228
+ lim
229
+ t→x∗ V (Pt, P) = 0,
230
+ where
231
+ V (Pt, P) = sup
232
+ B∈B
233
+ |Pt(B) − P(B)|
234
+ 4
235
+
236
+ is the total variation distance between the probability measures
237
+ Pt(B) := P
238
+ �X − t
239
+ s(t)
240
+ ∈ B
241
+ ����X > t
242
+
243
+ and P(B) := P(Z ∈ B),
244
+ and where Z is a random variable with distribution Hγ and B is a set in the Borel
245
+ σ-field of R, denoted by B. Let
246
+ H 2(lt; hγ) :=
247
+ � ��
248
+ lt(x) −
249
+
250
+ hγ(x)
251
+ �2
252
+ dx
253
+ be the square of the Hellinger distance. It is well know that the Hellinger and total
254
+ variation distances are related as
255
+ H 2(lt; hγ) ≤ 2V (Pt, P) ≤ 2H (lt; hγ),
256
+ (3.3)
257
+ see e.g. Ghosal and van der Vaart (2017, Appendix B). Therefore, the conditions in
258
+ formula (3.1) ultimately entail that also the Hellinger distance between the density of
259
+ rescaled peaks over a threshold lt and the GP density hγ converges to zero as t → x∗.
260
+ In the next subsection we introduce a stronger assumption, allowing us to also quantify
261
+ the speed of such convergence.
262
+ 3.2
263
+ Convergence rates
264
+ As in Raoult and Worms (2003) we rely on the following assumption, in order to derive
265
+ the convergence rate for the variational and Hellinger distance.
266
+ Condition 3.1. Assume that F is twice differentiable. Moreover, assume that there
267
+ exists ρ ≤ 0 such that
268
+ A(v) := vU′′(v)
269
+ U ′(v) + 1 − γ
270
+ defines a function of constant sign near infinity, whose absolute value |A(v)| is regularly
271
+ varying as v → ∞ with index of variation ρ.
272
+ When Condition 3.1 holds then the classical von-Mises conditions in formula (3.1)
273
+ are also satisfied for the cases where γ is positive, negative or equal to zero, respec-
274
+ tively. Furthermore, Condition 3.1 implies that an appropriate scaling function for the
275
+ exceedances of a high threshold t < x∗, which complies with the equivalent first-order
276
+ condition (2.2), is defined as
277
+ s(t) = (1 − F(t))/f(t).
278
+ With such a choice of the scaling function s, we establish the following results.
279
+ Theorem 3.2. Assume Condition 3.1 is satisfied with γ > −1/2. Then, there exist
280
+ constants ci > 0 with i = 1, 2, αj > 0 with j = 1, ..., 4, K > 0 and t0 < x∗ such that
281
+ H 2(lt; hγ)
282
+ K|A(v)|2 ≤ S(v)
283
+ (3.4)
284
+ for all t ≥ t0, where v = 1/(1 − F(t)) and
285
+ S(v) :=
286
+
287
+ 1 − |A(v)|α1 + 4 exp (c1|A(v)|α2) ,
288
+ if γ ≥ 0
289
+ 1 − |A(v)|α3 + 4 exp (c2|A(v)|α4) ,
290
+ if γ < 0
291
+ .
292
+ 5
293
+
294
+ Given the relationship between the total variation and Hellinger distances in (3.3),
295
+ the following result is a direct consequence of Theorem (3.2).
296
+ Corollary 3.3. Under the assumptions of Theorem 3.2, for all t ≥ t0
297
+ V (Pt, P) ≤ |A(v)|
298
+
299
+ KS(v).
300
+ Theorem 3.2 implies that the Hellinger and variational distances of the probability
301
+ density and measure of rescaled exceedances from their GP distribution counterparts are
302
+ bounded from above by C|A(v)|, for a positive constant C, as the threshold t approaches
303
+ the end-point x∗. Since for a fixed x ∈ ∩t≥t0(0, x∗−t
304
+ s(t) ) it holds that
305
+ |Ft(s(t)x) − Hγ(x)| ≤ V (Pt, P)
306
+ and since Raoult and Worms (2003, Theorem 2(i)) implies that |Ft(s(t)x)−Hγ(x)|/|A(v)|
307
+ converges to a positive constant, there also exists c > 0 such that, for all large t, c|A(v)|
308
+ is a lower bound for variational and Hellinger distances. Therefore, since
309
+ c|A(v)| ≤ V (Pt, P) ≤ H (lt; hγ) ≤ C|A(v)|,
310
+ the decay rate of variational and Hellinger distances is precisely |A(v)| as t → x∗.
311
+ Differently from the result on uniform convergence in Raoult and Worms (2003),
312
+ our results on convergence rates in the stronger total variation and Hellinger topologies
313
+ are given for γ > −1/2. Although the bound in formula (3.4) remains mathematically
314
+ valid also for tail indices below −1/2, the restriction γ > −1/2 is imposed to guarantee
315
+ that constants α3, α4 in the definition of S(v) are positive, so that S(v) is positive and
316
+ bounded as t approaches x∗. Note that such a behaviour of S is essential to deduce
317
+ from the bound in formula (3.4) that the rate of convergence is |A(v)|.
318
+ 3.3
319
+ Kullback-Leibler divergences
320
+ A further implication of Theorem 3.2 concerns the speed of convergence to zero of the
321
+ Kullback-Leibler divergence
322
+ K (˜lt; hγ) :=
323
+
324
+ ln
325
+
326
+ ˜lt(x)/hγ(x)
327
+
328
+ ˜lt(x)dx,
329
+ and the divergences of higher order p ≥ 2
330
+ Dp(˜lt; hγ) :=
331
+ � ���ln
332
+
333
+ ˜lt(x)/hγ(x)
334
+ ����
335
+ p ˜lt(x)dx,
336
+ where ˜lt = (Ft(˜s(t) · ))′ and ˜s(t) is a scaling function possibly different from s(t), which
337
+ ensures that the support of the conditional distribution Ft(˜s(t)x) is contained in that
338
+ of the GP distribution Hγ when γ < 0, i.e. x ∈ R : x < (x∗ − t)/˜s(t) < −1/γ. We recall
339
+ indeed that, when γ is negative, the end-point (x∗ − t)/s(t) of lt converges to −1/γ as
340
+ t approaches x∗. Nevertheless, for t < x∗ it can be that (x∗ − t)/s(t) > −1/γ, entailing
341
+ that K (lt; hγ) = Dp(lt; hγ) = ∞. The introduction of a more flexible scaling function
342
+ ˜s is thus meant to rule out this uninteresting situation. In order to exploit Theorem
343
+ 3.2 to give bounds on Kullback-Leibler and higher order divergences, we first introduce
344
+ by the next two lemmas a uniform bound on density ratios and a Lipschitz continuity
345
+ result.
346
+ Lemma 3.4. Under the assumptions of Theorem 3.2, if ρ < 0 and γ ̸= 0, and if
347
+ ˜s(t)/s(t) → 1 as t → x∗, then there exist a t1 < x∗ and a constant M ∈ (0, ∞) such
348
+ that
349
+ sup
350
+ t≥t1
351
+ sup
352
+ 0<x< x∗−t
353
+ ˜s(t)
354
+ ˜lt(x)
355
+ hγ(x) < M.
356
+ 6
357
+
358
+ Lemma 3.5. Let γ > −1/2. Then, there exists ϵ > 0 and L > 0 such that
359
+ H 2(hγ; hγ′(σ · )σ) < L2(|γ − γ′|2 + |1 − σ|2)
360
+ whenever |γ − γ′|2 + |1 − σ|2 < ϵ2.
361
+ Next, using the uniform bound on density ratio provided in Lemma 3.4 and the
362
+ Lipschitz continuity property established in Lemma 3.5, we are able to translate the
363
+ upper bounds on the squared Hellinger distance H 2(lt, hγ) into upper bounds on the
364
+ Kullback-Leibler divergence K (˜lt; hγ) and higher order divergences Dp(˜lt; hγ).
365
+ Corollary 3.6. Under the assumptions of Theorem 3.2 with in particular ρ < 0 and
366
+ γ ̸= 0, if there also exists B > 0 such that, for all large t < x∗,
367
+ |s(t)/˜s(t) − 1| ≤ B|A(v)|,
368
+ then there exists a t2 < x∗ such that, for all t ≥ t2
369
+ (a) K (˜lt; hγ) ≤ 2M(
370
+
371
+ KS(v) + BL)2|A(v)|2
372
+ (b) Dp(˜lt; hγ) ≤ 2p!M(
373
+
374
+ KS(v) + BL)2|A(v)|2, with p ≥ 2.
375
+ To extend the general results in Lemma 3.4 and Corollary 3.6 to the case of γ = 0
376
+ seems to be technically over complicated.
377
+ Nevertheless, there are specific examples
378
+ where the properties listed in such lemmas are satisfied, such as the following one.
379
+ Example 3.7. Let F(x) = exp(− exp(−x)), x ∈ R, be the Gumbel distribution function.
380
+ In this case, Condition 3.1 is satisfied with γ = 0 and ρ = −1, so that Theorem 3.2
381
+ applies to this example, and for an arbitrarily small ϵ > 0 we have
382
+ lt(x)/h0(x) ≤ exp(exp(−t)) < 1 + ϵ
383
+ for all x > 0 and suitably large t. Hence, the bounded density ratio property is satisfied
384
+ and it is still possible to conclude that Dp(lt; h0)/|A(v)|2 and K (lt; h0)/|A(v)|2 can be
385
+ bounded from above as in Corollary 3.6.
386
+ 4
387
+ Implications
388
+ From a statistical stand point, the results introduced in Sections 3 can be used to study
389
+ consistency and rate of contraction of estimators of the true value for a quantity of
390
+ interest relative to the distribution of threshold exceedances within a POT approach.
391
+ First, in Section 4.1, we illustrate an application to a density estimation problem.
392
+ Second, in Section 4.2, we discuss the problem of studying estimators’ asymptotic ac-
393
+ curacy in more general terms. A by product of our theory in Section 3 is that the
394
+ consistency of estimators of the GP distribution parameters or related quantities can
395
+ be easily derived by means of a contiguity result (e.g. van der Vaart, 2000, Ch. 6),
396
+ provided that appropriate regularity conditions are satisfied, avoiding complicated and
397
+ long calculations, typically required for example by popular estimators of the tail index
398
+ γ (Hall and Welsh, 1984; Drees, 1998; Dekkers and de Haan, 1993).
399
+ 4.1
400
+ Density estimation
401
+ Accurate density estimation for threshold excesses is a crucial problem for probabilis-
402
+ tic foresting of extremes, and, in particular, for the construction of reliable predictive
403
+ regions for future large observations. When a sample X1, . . . , Xn of i.i.d. random vari-
404
+ ables, with a common distribution F, is available, a simple method to estimate the
405
+ 7
406
+
407
+ density ft of (approximately) a small fraction k/n of exceedances, with k ∈ N, over a
408
+ large quantile t = U(n/k), is as follows. Let X(n−k) < . . . < X(n) denote the k + 1
409
+ largest order statistics of the sample. Then, for measurable functions Tk,i, i = 1, 2, let
410
+ �γk = Tk,1(X(n−k), ..., X(n))
411
+ be a generic estimator of the tail index γ and
412
+ �sk = Tk,2(X(n−k), ..., X(n))
413
+ be a generic estimator of the scaling function s(U(n/k)). Since under Condition 3.1 it
414
+ holds that
415
+ ft(x) ≈ hγ
416
+
417
+ x
418
+ s(U(n/k))
419
+
420
+ 1
421
+ s(U(n/k)),
422
+ then a plug-in estimator of ft(x) exploiting its GP approximation is given by
423
+ �hk(x) := h�γk(x/�sk)(1/�sk).
424
+ By means of Theorem 3.2 the accuracy of the above estimator can be assessed by
425
+ quantifying its rate of contraction to the true density ft in Hellinger distance. This is
426
+ formally stated by the next result.
427
+ Proposition 4.1. Under the assumptions of Theorem 3.2 and assuming further that,
428
+ for t = U(n/k) and k ≡ k(n), the following conditions are satisfied as n → ∞:
429
+ (a) k → ∞ and k/n → 0,
430
+ (b)
431
+
432
+ k|A(n/k)| → λ ∈ (0, ∞),
433
+ (c) |�γk − γ| = Op(1/
434
+
435
+ k) and |�sk/s(U(n/k)) − 1| = Op(1/
436
+
437
+ k),
438
+ it then holds that
439
+ H (ft;�hk) = Op(1/
440
+
441
+ k).
442
+ For some specific choices of the estimators �γk and �sk proposed in the literature
443
+ on POT methods (e.g. de Haan and Ferreira, 2006, Ch.
444
+ 3–5), assumptions (a)–(b)
445
+ of Proposition 4.1 have been used along with the second order condition to establish
446
+ asymptotic normality of the sequence
447
+
448
+ k
449
+
450
+ �γk − γ,
451
+ �sk
452
+ s(U(n/k)) − 1
453
+
454
+ .
455
+ Such estimators thus comply with assumption (c) of Proposition 4.1, whose statement
456
+ allows to readily obtain the rate of contraction of �hk to ft in Hellinger distance. We
457
+ provide next two examples.
458
+ Example 4.2. Under the assumptions of Theorem 3.2 and conditions (a)–(b) of Propo-
459
+ sition 4.1, there exists a sequence of ML estimators of γ and s(U(n/k)) given by
460
+ (�γk, �sk) ∈ arg max
461
+ (γ,σ)∈D
462
+ k
463
+
464
+ i=1
465
+
466
+ �X(n−k+i) − X(n−k)
467
+ σ
468
+ � 1
469
+ σ
470
+ where D = (−1/2, ∞) × (0, ∞), satisfying condition (c) of Proposition 4.1, see Drees
471
+ et al. (2004) and Zhou (2009).
472
+ 8
473
+
474
+ Example 4.3. The GPWM estimators of γ and s(U(n/k)) are defined as
475
+ �γk = 1 −
476
+ � Pk
477
+ 2Qk
478
+ − 1
479
+ �−1
480
+ ,
481
+ �sk = Pk
482
+ � Pk
483
+ 2Qk
484
+ − 1
485
+ �−1
486
+ ,
487
+ where
488
+ Pk = 1
489
+ k
490
+ k−1
491
+
492
+ i=0
493
+
494
+ X(n−i) − X(n−k)
495
+
496
+ ,
497
+ Qk = 1
498
+ k
499
+ k−1
500
+
501
+ i=0
502
+ i
503
+ k
504
+
505
+ X(n−i) − X(n−k)
506
+
507
+ .
508
+ Under the assumptions of Theorem 3.2 and conditions (a)–(b) of Proposition 4.1, and
509
+ assuming further that γ < 1/2, such estimators satisfy condition (c) of Proposition 4.1,
510
+ see e.g. Theorem 3.6.1 in de Haan and Ferreira (2006).
511
+ 4.2
512
+ Estimation consistency
513
+ Popular estimators of the tail index γ as for example the Hill, Moment, Pickands, ML,
514
+ GPWM (Hill, 1975; Dekkers et al., 1989; Pickands III, 1975; Jenkinson, 1969; Hosking
515
+ et al., 1985), or estimators of other related quantities, are typically defined as suitable
516
+ functionals of peaks/excesses over a large order statistic X(n−k), defined though the k
517
+ larger statistics in a sample as
518
+ Yk := (X(n−k+1) − X(n−k), . . . , X(n) − X(n−k)).
519
+ Informally speaking, the random variable X(n−k) plays the role of a high threshold t
520
+ and the sequence (X(n−k+i) − X(n−k)) with i = 1, . . . , k (up to rescaling) is seen as
521
+ approximately distributed according to Hγ.
522
+ Let Z1, . . . , Zk be a sample of i.i.d.
523
+ random variables with GP distribution Hγ
524
+ and let Zk = (Z(1), . . . , Z(k)) be the corresponding order statistics. In this section we
525
+ establish the important statistical result that the distribution of the suitably rescaled
526
+ sequence Yk is contiguous to that of the sequence Zk. To this aim, we first recall the
527
+ notion of contiguity, see van der Vaart (e.g., 2000, Ch. 6.2) for more details.
528
+ Definition 4.4. Let Pk and Qk be two sequence of probability measures. Qk is said to
529
+ be contiguous with respect to Pk, in symbols Pk ▷Qk, if for all measurable set sequences
530
+ Ek for which Pk(Ek) = o(1) we also have Qk(Ek) = o(1).
531
+ As in Proposition 4.1, in the sequel we assume k ≡ k(n) and k → ∞ as n → ∞.
532
+ Proposition 4.5. Let Pk and Qk be the probability measures relative to the random
533
+ sequences Zk and Yk/˜s(X(n−k)), respectively. Then, under the assumptions of Corollary
534
+ 3.6 and assumptions (a)–(b) of Proposition 4.1, we have that Pk ▷ Qk.
535
+ In statistical problems where the aim is to estimate a functional of the limiting
536
+ GP distribution, say θ := φ(Hγ), the contiguity result in Proposition 4.5 can be used
537
+ to show that a suitable estimator Tk(Yk) of the parameter θ is consistent, or formally
538
+ speaking D(Tk(Yk), θ) = op(1), for a suitable metric D of interest. The next result and
539
+ the subsequent discussion illustrate this point.
540
+ Corollary 4.6. Under the assumption of Proposition 4.5, if Tk is a scale invariant
541
+ measurable function on (0, ∞)k and Tk(Zk) is consistent estimator of θ as n → ∞, then
542
+ also Tk(Yk) is a consistent estimator of θ as n → ∞.
543
+ In real applications the distribution F of the original sample (X1, . . . , Xn) is typically
544
+ unknown and as a result also the distribution of Yk is unknown.
545
+ For this reason,
546
+ 9
547
+
548
+ proving consistency of an estimator of the form Tk(Yk) for the parameter θ can be quite
549
+ burdensome, and this is especially true for the derivation of its rate of contraction. We
550
+ recall that quantifying the speed of convergence, or contraction rate, of an estimator
551
+ Tk(Yk) of a parameter θ concerns the derivation of a positive sequences ϵk such that
552
+ ϵk ↓ 0 and D(Tk(Yk), θ) = Op(ϵk) as k → ∞, for a suitable metric D.
553
+ On the contrary, to establish the consistency of an estimator of the form Tk(Zk)
554
+ for estimating θ and its contraction rate is much easier, and these preliminary results
555
+ can be readily extended to the more demanding estimator Tk(Yk) by our Corollary 4.6,
556
+ therefore establishing its consistency and the associated speed of convergence.
557
+ We conclude the section with the following remark. It should be noted that within
558
+ the POT approach it is common to use estimators defined on the basis of scale invariant
559
+ functionals Tk. This is the case for many estimators of the tail index γ as those afore-
560
+ mentioned. Nevertheless, the result of Proposition 4.5 extends also to estimators which
561
+ are not invariant to rescaling of the data, provided that the discrepancy D(Tk(Yk), θ)
562
+ can be suitably decomposed into several terms that depends on Yk/˜s(X(n−k)) up to an
563
+ op(1) reminder.
564
+ 5
565
+ Proofs
566
+ 5.1
567
+ Additional notation
568
+ For y > 0, we denote T(y) = U(ey) and, for t < x∗, we define the functions
569
+ pt(y) =
570
+ � T(y+T −1(t))−t
571
+ s(t)
572
+ − eγy−1
573
+ γ
574
+ ,
575
+ γ ̸= 0
576
+ T(y+T −1(t))−t
577
+ s(t)
578
+ − y,
579
+ γ = 0
580
+ ,
581
+ with s(t) = (1 − F(t))/f(t), and
582
+ qt(y) =
583
+
584
+ 1
585
+ γ ln [1 + γe−γypt(y)] ,
586
+ γ ̸= 0
587
+ pt(y),
588
+ γ = 0
589
+ .
590
+ Moreover, for x ∈ (0, x∗ − t), we let φt(x) = T −1(x + t) − T −1(t). Finally, for x ∈ R,
591
+ γ ∈ R, ρ ≤ 0 and σ > 0, we set
592
+ Iγ,ρ(x) =
593
+ � x
594
+ 0
595
+ eγs
596
+ � s
597
+ 0
598
+ eρzdzds
599
+ and ψx,γ = νx/σ(γ)
600
+
601
+ 1/σ, with
602
+ νx(γ) =
603
+ ��
604
+ hγ(x),
605
+ 1 + γx > 0
606
+ 0,
607
+ otherwise
608
+ .
609
+ 5.2
610
+ Auxiliary results
611
+ In this section we provide some results which are auxiliary to the proofs of the main ones,
612
+ presented in Section 3. Throughout, for Lemmas 5.1–5.6, Condition 3.1 is implicitly
613
+ assumed to hold true.
614
+ Lemma 5.1. For every ε > 0 and every α > 0, if γ ≥ 0, or α ∈ (0, −1/γ), if γ < 0,
615
+ there exist x1 < x∗ and κ1 > 0 such that, for all t ≥ x1 and y ∈ (0, −α ln |A(eT −1(t))|)
616
+ (a) if γ ≥ 0, then
617
+ eqt(y) ∈
618
+
619
+ e±κ1|A(eT −1(t))|e2εy�
620
+ ;
621
+ 10
622
+
623
+ (b) if γ < 0, then
624
+ eqt(y) ∈
625
+
626
+ e±κ1|A(eT −1(t))|e(γ−ε)y�
627
+ .
628
+ Proof. By Lemma 5 in Raoult and Worms (2003), for all ε > 0 there exists x0 such that
629
+ for all t ∈ (x0, x∗) and y > 0,
630
+ e−γx|pt(y)| ≤ (1 + ε)|A(eT −1(t))|Iγ,ρ(y)e(γ−ε)y.
631
+ Moreover, for a positive constant ϑ1
632
+ Iγ,ρ(y)e(γ−ε)y ≤
633
+
634
+ ϑ1e2εy,
635
+ γ ≥ 0
636
+ ϑ1e(γ−ε)y,
637
+ γ < 0
638
+ .
639
+ Combining these two inequalities, we deduce that
640
+ e−γy|pt(y)| ≤
641
+
642
+ (1 + ε)|A(eT −1(t))|ϑ1e2εy,
643
+ γ ≥ 0
644
+ (1 + ε)|A(eT −1(t))|ϑ1e(γ−ε)y,
645
+ γ < 0
646
+ .
647
+ (5.1)
648
+ As a consequence, if γ ≥ 0, for any α > 0 there exists a constant ϑ2 such that
649
+ sup
650
+ y∈(0,−α ln |A(eT −1(t))|)
651
+ e−γy|pt(y)| ≤ ϑ2|A(eT −1(t))|1−2εα
652
+ (5.2)
653
+ while, if γ < 0, for any α ∈ (0, −1/γ) there exists a constant ϑ3 such that
654
+ sup
655
+ y∈(0,−α ln |A(eT −1(t))|)
656
+ e−γy|pt(y)| ≤ ϑ3|A(eT −1(t))|1−(ε−γ)α.
657
+ (5.3)
658
+ Therefore, choosing ε sufficiently small, e−γy|pt(y)| converges to zero uniformly over the
659
+ interval (0, −α ln |A(eT −1(t))|) as t → x∗.
660
+ It now follows that, if y ∈ (0, −α ln |A(eT −1(t))|) and t > x1 for a sufficiently large
661
+ value x1 < x∗, when γ ̸= 0 a first-order Taylor expansion of the logarithm at 1 yields
662
+ |qt(y)| =
663
+ ����
664
+ 1
665
+ γ
666
+ γe−γypt(y)
667
+ 1 + ϑ(t, y)γe−γypt(y)
668
+ ����
669
+
670
+
671
+ ϑ4|A(eT −1(t))|e2εy,
672
+ γ > 0
673
+ ϑ5|A(eT −1(t))|e(γ−ε)y,
674
+ γ < 0
675
+ ,
676
+ where ϑ(t, y) ∈ (0, 1) and ϑ4, ϑ5 are positive constants, while when γ = 0 it holds that
677
+ |qt(y)| = eγye−γy|pt(y)|
678
+ ≤ ϑ6|A(eT −1(t))|e2εy,
679
+ where ϑ6 is a positive constant. The two results in the statement are a direct consequence
680
+ of the last two inequalities.
681
+ Lemma 5.2. For every ε > 0 and every α > 0, if γ ≥ 0, or α ∈ (0, −1/γ), if γ < 0,
682
+ there exist x2 < x∗ and κ2 > 0 such that, for all t ≥ x2 and y ∈ (0, −α ln |A(eT −1(t))|)
683
+ (a) if γ ≥ 0, then
684
+ 1 + q′
685
+ t(y) ∈
686
+
687
+ e±κ2|A(eT −1(t))|e2εy�
688
+ ;
689
+ 11
690
+
691
+ (b) if γ < 0, then
692
+ 1 + q′
693
+ t(y) ∈
694
+ ��
695
+ e±κ2|A(eT −1(t))|e(γ−ε)y�
696
+ .
697
+ Proof. If γ ̸= 0
698
+ 1 + q′
699
+ t(y) =
700
+ exp
701
+ �� ey+T −1(t)
702
+ eT −1(t)
703
+ A(u)
704
+ u du
705
+
706
+ 1 + γe−γypt(y)
707
+ ,
708
+ while if γ = 0
709
+ 1 + q′
710
+ t(y) = exp
711
+ �� ey+T −1(t)
712
+ eT −1(t)
713
+ A(u)
714
+ u
715
+ du
716
+
717
+ .
718
+ Therefore, if y ∈ (0, −α ln |A(eT −1(t))|) and t > x2 for a sufficiently large value x2 < x∗,
719
+ using the bounds in formulas (5.1)–(5.3) and choosing a suitably small ε we deduce
720
+ 1 + q′
721
+ t(y) ≤
722
+ exp
723
+ �� ey+T −1(t)
724
+ eT −1(t)
725
+ A(u)
726
+ u du
727
+
728
+ 1 − 1(γ ̸= 0)|γ|e−γy|pt(y)|
729
+ ≤ exp
730
+
731
+ y|A(eT −1(t))|
732
+
733
+ ×
734
+
735
+
736
+
737
+ 1
738
+ 1−ω1|A(eT −1(t))|e2εy ,
739
+ γ ≥ 0
740
+ 1
741
+ 1−ω2|A(eT −1(t))|e(γ−ε)y ,
742
+ γ < 0
743
+
744
+
745
+
746
+
747
+ exp
748
+
749
+ ω3|A(eT −1(t))|e2εy�
750
+ ,
751
+ γ ≥ 0
752
+ exp
753
+
754
+ ω4|A(eT −1(t))|e(γ−ε)y�
755
+ ,
756
+ γ < 0
757
+ for positive constants ωi, i = 1, . . . , 4. Similarly,
758
+ 1 + q′
759
+ t(y) ≥
760
+ exp
761
+ �� ey+T −1(t)
762
+ eT −1(t)
763
+ A(u)
764
+ u du
765
+
766
+ 1 + 1(γ ̸= 0)|γ|e−γy|pt(y)|
767
+ ≥ exp
768
+
769
+ −y|A(eT −1(t))|
770
+
771
+ ×
772
+
773
+
774
+
775
+ 1
776
+ 1+ω5|A(eT −1(t))|e2εy ,
777
+ γ ≥ 0
778
+ 1
779
+ 1+ω6|A(eT −1(t))|e(γ−ε)y ,
780
+ γ < 0
781
+
782
+
783
+
784
+
785
+ exp
786
+
787
+ −ω7|A(eT −1(t))|e2εy�
788
+ ,
789
+ γ ≥ 0
790
+ exp
791
+
792
+ −ω8|A(eT −1(t))|e(γ−ε)y�
793
+ ,
794
+ γ < 0
795
+ for positive constants ωi, i = 5, . . . , 8. The result now follows.
796
+ Lemma 5.3. If γ > 0 and ρ < 0, there exists a regularly varying function R with
797
+ negative index ϱ such that, defining the function
798
+ η(t) := (1 + γt)f(t)
799
+ 1 − F(t)
800
+ − 1,
801
+ as v → ∞, η(U(v)) = O(R(v)).
802
+ Proof. Let v0 > 0 satisfy U(v0) ̸= 0 and U ′(v0) ̸= 0. Then, for v > v0 it holds that
803
+ η(U(v)) = 1 + γU(v)
804
+ vU′(v)
805
+ − 1
806
+ = 1 + γU(v0)
807
+ vU′(v)
808
+ + γ
809
+ � v
810
+ v0
811
+ U ′(r)
812
+ vU′(v)dr − 1.
813
+ 12
814
+
815
+ Moreover, by definition of A, we have the identity
816
+ γ
817
+ � v
818
+ v0
819
+ U ′(r)
820
+ vU′(v)dr − 1 =
821
+ � 1
822
+ v0/v
823
+ U ′(zv)
824
+ U ′(v) dz − 1
825
+ =
826
+ � 1
827
+ v0/v
828
+ γzγ−1
829
+
830
+ exp
831
+
832
+
833
+ � 1
834
+ z
835
+ A(vu)
836
+ u
837
+ du
838
+
839
+ − 1
840
+
841
+ dz −
842
+ �v0
843
+ v
844
+ �γ
845
+ .
846
+ Therefore, denoting by R2(v) the first term on the right-hand side and setting
847
+ R1(v) = 1 + γU(v0)
848
+ vU′(v)
849
+
850
+ �v0
851
+ v
852
+ �γ
853
+ ,
854
+ we have η(U(v)) = R1(v) + R2(v).
855
+ On one hand, the function R1(v) is regularly
856
+ varying of order −γ. On the other hand, for any β ∈ (0, 1), the function R2(v) can be
857
+ decomposed as follows
858
+ R2(v) =
859
+ � v−(1−β)
860
+ v0/v
861
+ +
862
+ � 1
863
+ v−(1−β) γzγ−1
864
+
865
+ exp
866
+
867
+
868
+ � 1
869
+ z
870
+ A(vu)
871
+ u
872
+ du
873
+
874
+ − 1
875
+
876
+ dz
877
+ =: R2,1(v) + R2,2(v).
878
+ Assuming that A is ultimately positive and selecting v0 suitably large, we have
879
+ |R2,1(v)| ≤
880
+ � v−(1−β)
881
+ v0/v
882
+ γzγ−1
883
+
884
+ 1 − exp
885
+
886
+ −A(vz)
887
+ z
888
+ ��
889
+ dz
890
+ = O(v−γ(1−β))
891
+ and
892
+ |R2,2(v)| ≤
893
+ � 1
894
+ v−(1−β) γzγ−1 �
895
+ 1 − zA(vβ)�
896
+ dz
897
+ = O(v−γ(1−β) ∨ A(vβ)).
898
+ Consequently, there exists a regularly varying function R of index ϱ = γ(β − 1) ∨ ρβ
899
+ complying with the property in the statement as v → ∞.
900
+ Similarly, if A is ultimately negative, choosing β such that β < 2γ and v0 suitably
901
+ large, we have
902
+ |R2,1(v)| ≤
903
+ � v−(1−β)
904
+ v0/v
905
+ γzγ−1 �
906
+ uA(v0) − 1
907
+
908
+ dz
909
+ = O(v−(γ−β/2)(1−β))
910
+ and
911
+ |R2,2(v)| ≤
912
+ � 1
913
+ v−(1−β) γzγ−1 �
914
+ zA(vβ) − 1
915
+
916
+ dz
917
+ = O(v−(γ−β/2)(1−β) ∨ |A(vβ)|)
918
+ as v → ∞. Hence, there exists a regularly varying function R of index ϱ = (β − 1)(γ −
919
+ β/2)∨ρβ complying with the property in the statement. The proof is now complete.
920
+ Lemma 5.4. If γ > 0 and ρ < 0, there exists x3 ∈ (0, ∞) and δ > 0 such that, for all
921
+ x ≥ x3,
922
+ f(x) = hγ(x)
923
+
924
+ 1 + O({1 − Hγ(x)}δ)
925
+
926
+ .
927
+ 13
928
+
929
+ Proof. Let R∗(t) := R(1/(1 − F(t))), where R is as in Lemma 5.3. Then R∗(t) is regu-
930
+ larly varying of index ϱ/γ (Resnick, 2007, Proposition 0.8(iv)). In turn, by Karamata’s
931
+ theorem (e.g, Resnick, 2007, Proposition 0.6(a)) we have that for a large t∗
932
+ � ∞
933
+ t∗
934
+ |η(t)|
935
+ 1 + γtdt < ∞
936
+ and thus, by Proposition 2.1.4 in Falk et al. (2010), we conclude that
937
+ τ := lim
938
+ t→∞
939
+ 1 − F(t)
940
+ 1 − Hγ(t) ∈ (0, ∞).
941
+ (5.4)
942
+ As a consequence, for any δ ∈ (0, −ϱ), as t → ∞
943
+ R∗(t) ∼ R
944
+
945
+ 1
946
+ τ(1 − Hγ(t))
947
+
948
+ = O({1 − Hγ(t)}δ).
949
+ The conclusion now follows by Proposition 2.1.5 in Falk et al. (2010).
950
+ Lemma 5.5. If γ < 0 and ρ < 0, there exists a a regularly varying function ˜R with
951
+ negative index ˜ϱ = (−1) ∨ (−ρ/γ) such that, defining the function
952
+ ˜η(y) := (1 − γy)f(x∗ − 1/y)
953
+ [1 − F(x∗ − 1/y)]y2 − 1,
954
+ as y → ∞, ˜η(y) = O( ˜R(y)).
955
+ Proof. By definition,
956
+ ˜η (y) =
957
+ f(x∗ − 1/y)
958
+ [1 − F(x∗ − 1/y)]y2 − γ
959
+
960
+ f(x∗ − 1/y)
961
+ y(1 − F(x∗ − 1/y)) + 1
962
+ γ
963
+
964
+ =: ˜η1 (y) + ˜η2 (y) .
965
+ On one hand, we have that, as y → ∞
966
+ ˜η1 (y) = O(1/y).
967
+ On the other hand, for v > 1 we have the identity
968
+ ˜η2
969
+
970
+ 1
971
+ x∗ − U(v)
972
+
973
+ =
974
+ � ∞
975
+ 1
976
+ γzγ−1
977
+
978
+ 1 − exp
979
+ �� z
980
+ 1
981
+ A(uv)
982
+ u
983
+ du
984
+ ��
985
+ dz.
986
+ Hence, if A is ultimately positive,
987
+ ˜η2
988
+
989
+ 1
990
+ x∗ − U(v)
991
+
992
+ ≤ −γ
993
+ � ∞
994
+ 1
995
+ zγ−1(zA(v) − 1)dz
996
+ = O(A(v))
997
+ while, if A is ultimately negative,
998
+ ����˜η2
999
+
1000
+ 1
1001
+ x∗ − U(v)
1002
+ ����� ≤ γA(v)
1003
+ � ∞
1004
+ 1
1005
+ zγ−1 ln zdz
1006
+ = O(|A(v)|).
1007
+ As a result of the two above inequalities, as v → ∞
1008
+ ˜η2(t) = O
1009
+ �����A
1010
+
1011
+ 1
1012
+ 1 − F(x∗ − 1/y)
1013
+ �����
1014
+
1015
+ ,
1016
+ Therefore, by regular variation of 1/(1 − F(x∗ − 1/y)) with index −1/γ, ˜η2(y) is even-
1017
+ tually dominated by a regularly varing function of index −ρ/γ. The final result now
1018
+ follows.
1019
+ 14
1020
+
1021
+ Lemma 5.6. If γ < 0 and ρ < 0, there exist ˜δ > 0 such that, as y → ∞,
1022
+ f(x∗ − 1/y)
1023
+ y2
1024
+ = (1 − γy)1/γ−1 �
1025
+ 1 + O({1 − H−γ(y)}
1026
+ ˜δ)
1027
+
1028
+ Proof. The function ˜f(y) := f(x∗ − 1/y)y−2 is the density of the distribution function
1029
+ ˜F(y) := F(x∗−1/y), which is in the domain of attraction of G˜γ, with ˜γ = −γ. Moreover,
1030
+ ˜η(y) = (1 + ˜γy) ˜f(y)
1031
+ 1 − ˜F(y)
1032
+ − 1.
1033
+ By Lemma 5.5 and regular variation of 1 − H˜γ with index −1/˜γ, we have
1034
+ ˜η(y) = O({1 − H˜γ(y)}
1035
+ ˜δ)
1036
+ for any ˜δ > 0 such that −˜δ/˜γ > ˜ϱ. Therefore, by Proposition 2.1.5 in Falk et al. (2010),
1037
+ as y → ∞ it holds that
1038
+ ˜f(y) = h˜γ(y)[1 + O({1 − H˜γ(y)}
1039
+ ˜δ)],
1040
+ which is the result.
1041
+ Lemma 5.7. Let ν′
1042
+ x(γ) = (∂/∂γ)νx(γ).
1043
+ (a) If ξ : R �→ (0, ∞), then it holds that
1044
+ �� ∞
1045
+ 0
1046
+ [ν′x(ξ(x))]2 dx ≤ 1
1047
+ 2
1048
+ �� ∞
1049
+ 0
1050
+ (1 + xξ(x))−3−
1051
+ 1
1052
+ ξ(x)
1053
+ �x ln(1 + xξ(x))
1054
+ ξ(x)
1055
+ �2
1056
+ dx
1057
+ + 1
1058
+ 2
1059
+ �� ∞
1060
+ 0
1061
+ (1 + xξ(x))−3−
1062
+ 1
1063
+ ξ(x) x2dx.
1064
+ (b) If instead ξ : R �→ (γ∗, 0), then
1065
+ �� −1/γ∗
1066
+ 0
1067
+ [ν′x(ξ(x))]2 dx ≤ 1
1068
+ 2
1069
+ �� −1/γ∗
1070
+ 0
1071
+ (1 + xξ(x))−3−
1072
+ 1
1073
+ ξ(x) x4dx
1074
+ + 1
1075
+ 2
1076
+ �� −1/γ∗
1077
+ 0
1078
+ (1 + xξ(x))−3−
1079
+ 1
1080
+ ξ(x) x2dx.
1081
+ Proof. Let ϕx(γ) := (∂/∂γ) ln(1 − Hγ(x)). Then, for any x > 0, if ξ(·) > 0, or x ∈
1082
+ (0, −1/γ∗), if ξ(·) ∈ (γ∗, 0) we have
1083
+ ν′
1084
+ x(ξ(x)) = 1
1085
+ 2(1 + xξ(x))− 1
1086
+ 2 −
1087
+ 1
1088
+ 2ξ(x) ϕx(ξ(x)) − 1
1089
+ 2(1 + xξ(x))− 3
1090
+ 2 −
1091
+ 1
1092
+ 2ξ(x) x.
1093
+ If ξ(·) > 0, by Minkowski inequality
1094
+ �� ∞
1095
+ 0
1096
+ [ν′x(ξ(x))]2 dx ≤ 1
1097
+ 2
1098
+ �� ∞
1099
+ 0
1100
+ (1 + xξ(x))−1−
1101
+ 1
1102
+ ξ(x) [ϕx(ξ(x))]2 dx
1103
+ + 1
1104
+ 2
1105
+ �� ∞
1106
+ 0
1107
+ (1 + xξ(x))−3−
1108
+ 1
1109
+ ξ(x) x2dx.
1110
+ 15
1111
+
1112
+ The result at point (a) now follows from the above inequality and the fact that, by
1113
+ equations (B.5)-(B.6) in B¨ucher and Segers (2017),
1114
+ 0 ≤ ϕx(ξ(x)) ≤ x ln(1 + xξ(x))
1115
+ ξ(x)(1 + xξ(x)).
1116
+ If ξ(·) ∈ (γ∗, 0), inequality (B.8) in B¨ucher and Segers (2017) implies that for any
1117
+ x ∈ (0, −1/γ∗)
1118
+ 0 ≤ ϕx(ξ(x)) ≤
1119
+ x2
1120
+ 1 + xξ(x).
1121
+ This inequality and an argument by Minkowsi inequality, analogous to the previous one,
1122
+ now lead to the result at point (b).
1123
+ Lemma 5.8. Set ψ′
1124
+ γ,x(σ) = (∂/∂σ)ψγ,x(σ).
1125
+ (a) If ς : R �→ (1 ± ϵ), with ϵ ∈ (0, 1), and if γ > 0
1126
+ �� ∞
1127
+ 0
1128
+
1129
+ ψ′γ,x(ς(x))
1130
+ �2 dx ≤
1131
+ �1
1132
+ γ +
1133
+
1134
+ 1
1135
+ 2γ + 1
1136
+ � �1 + ϵ
1137
+ 1 − ϵ
1138
+ �5/2
1139
+ .
1140
+ (b) If γ ∈ (−1/2, 0) and ς(x) ∈ (σ∗, 1), with σ∗ ∈ (0, 1), there is a constant ζ > 0 such
1141
+ that
1142
+ �� − σ∗
1143
+ γ
1144
+ 0
1145
+
1146
+ ψ′γ,x(ς(x))
1147
+ �2 dx ≤
1148
+ 1
1149
+ σ∗
1150
+ √−γζ
1151
+ � 1
1152
+ γ2 + 1
1153
+
1154
+ .
1155
+ If instead ς(x) > 1,
1156
+ �� − 1
1157
+ γ
1158
+ 0
1159
+
1160
+ ψ′γ,x(ς(x))
1161
+ �2 dx ≤
1162
+ 1
1163
+ √−γζ
1164
+ � 1
1165
+ γ2 + 1
1166
+
1167
+ .
1168
+ Proof. Note that for x such that 1 + γx/σ > 0
1169
+ ψ′
1170
+ γ,x(σ) = (1 + γx/σ)− 1
1171
+ 2γ − 3
1172
+ 2
1173
+ σ5/2
1174
+ x
1175
+ γ + (1 + γx/σ)− 1
1176
+ 2γ − 3
1177
+ 2
1178
+ σ3/2
1179
+ .
1180
+ Consequently, if ς : R �→ (1 ± ϵ) and γ > 0, by Minkowski inequality
1181
+ �� ∞
1182
+ 0
1183
+
1184
+ ψ′γ,x(ς(x))
1185
+ �2 dx
1186
+
1187
+ �� ∞
1188
+ 0
1189
+ (1 + γx/ς(x))− 1
1190
+ γ −3
1191
+ ς5(x)
1192
+ �x
1193
+ γ
1194
+ �2
1195
+ dx +
1196
+ �� ∞
1197
+ 0
1198
+ (1 + γx/ς(x))− 1
1199
+ γ −3
1200
+ ς3(x)
1201
+ dx
1202
+ ≤ (1 + ϵ)
1203
+ 3
1204
+ 2
1205
+ (1 − ϵ)
1206
+ 5
1207
+ 2
1208
+ 1
1209
+ γ + (1 + ϵ)
1210
+ 1
1211
+ 2
1212
+ (1 − ϵ)
1213
+ 3
1214
+ 2
1215
+
1216
+ 1
1217
+ 2γ + 1
1218
+ � 1
1219
+ 2
1220
+ and the result at point (a) follows.
1221
+ 16
1222
+
1223
+ If instead, ς(·) ∈ (σ∗, 1), for some σ∗ ∈ (0, 1), and γ ∈ (−1/2, 0), there is a constant
1224
+ ζ > 0 such that
1225
+ �� − σ∗
1226
+ γ
1227
+ 0
1228
+
1229
+ ψ′γ,x(ς(x))
1230
+ �2 dx
1231
+
1232
+ �� − σ∗
1233
+ γ
1234
+ 0
1235
+ (1 + γx/ς(x))− 1
1236
+ γ −3
1237
+ ς5(x)
1238
+ �x
1239
+ γ
1240
+ �2
1241
+ dx +
1242
+ �� − σ∗
1243
+ γ
1244
+ 0
1245
+ (1 + γx/ς(x))− 1
1246
+ γ −3
1247
+ ς3(x)
1248
+ dx
1249
+
1250
+ �� − σ∗
1251
+ γ
1252
+ 0
1253
+ (1 + γx/σ∗)−1+ζ
1254
+ σ3∗
1255
+ 1
1256
+ γ4 dx +
1257
+ �� − σ∗
1258
+ γ
1259
+ 0
1260
+ (1 + γx/σ∗)−1+ζ
1261
+ σ3∗
1262
+ dx
1263
+ =
1264
+
1265
+ 1
1266
+ ζσ2∗(−γ)5 +
1267
+
1268
+ 1
1269
+ ζσ2∗(−γ).
1270
+ The first half of the statement at point (b) is now established. The second half of the
1271
+ statement can be proved analogously.
1272
+ 5.3
1273
+ Proof of Theorem 3.2
1274
+ For every xt > 0, it holds that
1275
+ H 2(lt; hγ) =
1276
+ � xt
1277
+ 0
1278
+ +
1279
+ � ∞
1280
+ xt
1281
+ ��
1282
+ ft(x) −
1283
+
1284
+ hγ(x/s(t))/s(t)
1285
+ �2
1286
+ dx
1287
+
1288
+ � φt(xt)
1289
+ 0
1290
+ e−y
1291
+
1292
+ 1 −
1293
+
1294
+ eqt(y)(1 + q′
1295
+ t(y))
1296
+ �2
1297
+ dy
1298
+ +
1299
+ ��
1300
+ 1 − Ft(xt) +
1301
+
1302
+ 1 − Hγ(xt/s(t))
1303
+ �2
1304
+ =: I1(t) + I2(t).
1305
+ Let xt be such that the following equality holds
1306
+ φt(xt) = −α ln |A(eT −1(t))|,
1307
+ for a positive constant α to be specified later. Then, by Lemmas 5.1-5.2, for a suitably
1308
+ small ε > 0 there exist constants κ3, κ4 > 0 such that for all sufficiently large t
1309
+ I1(t) ≤
1310
+
1311
+
1312
+
1313
+ � −α ln |A(eT −1(t))|
1314
+ 0
1315
+ κ3|A(eT −1(t))|2e(4ε−1)ydy,
1316
+ γ ≥ 0
1317
+ � −α ln |A(eT −1(t))|
1318
+ 0
1319
+ κ4|A(eT −1(t))|2e(γ−ε−1)ydy,
1320
+ γ < 0
1321
+
1322
+
1323
+
1324
+
1325
+ κ3|A(eT −1(t))|2 �
1326
+ 1 − |A(eT −1(t))|α1
1327
+
1328
+ ,
1329
+ γ ≥ 0
1330
+ κ4|A(eT −1(t))|2 �
1331
+ 1 − |A(eT −1(t))|α3
1332
+
1333
+ ,
1334
+ γ < 0
1335
+ ,
1336
+ where α1 := α(1 − 4ε) and α3 := α(1 − 2(ε − γ)) are positive. Moreover, on one hand
1337
+ we have the identity
1338
+ 1 − Ft(xt) = |A(eT −1(t))|α.
1339
+ On the other hand, for some constants κ5, κ6 > 0 we have the inequality
1340
+ 1 − Hγ(xt/s(t)) = |A(eT −1(t))|α exp
1341
+
1342
+ −qt
1343
+
1344
+ −α ln |A(eT −1(t))|
1345
+ ��
1346
+
1347
+
1348
+
1349
+
1350
+ |A(eT −1(t))|α exp
1351
+
1352
+ κ5|A(eT −1(t))|1−2εα�
1353
+ ,
1354
+ γ ≥ 0
1355
+ |A(eT −1(t))|α exp
1356
+
1357
+ κ6|A(eT −1(t))|1−(ε−γ)α�
1358
+ ,
1359
+ γ < 0
1360
+ .
1361
+ 17
1362
+
1363
+ Consequently,
1364
+ I2(t) ≤
1365
+
1366
+
1367
+
1368
+ |A(eT −1(t))|α �
1369
+ 1 + exp
1370
+
1371
+ κ5
1372
+ 2 |A(eT −1(t))|1−2εα��
1373
+ ,
1374
+ γ ≥ 0
1375
+ |A(eT −1(t))|α �
1376
+ 1 + exp
1377
+
1378
+ κ6
1379
+ 2 |A(eT −1(t))|1−(ε−γ)α��
1380
+ ,
1381
+ γ < 0
1382
+ .
1383
+ Now, if γ ≥ 0, we can choose α > 2 and ε small enough, so that
1384
+ |A(eT −1(t))|α < |A(eT −1(t))|2
1385
+ and α2 := 1 − 2εα > 0. If instead γ ∈ (−1/2, 0), we can choose α slightly larger than
1386
+ 2 and ε small enough, so that the inequality in the above display is still satisfied and
1387
+ α4 := 1−α(ε−γ) > 0. The conclusion then follows noting that T −1(t) = − ln(1−F(t))
1388
+ and, in turn,
1389
+ |A(eT −1(t))| = |A(v)|.
1390
+ 5.4
1391
+ Proof of Lemma 3.4
1392
+ We analyse the cases where γ > 0 and γ < 0 separately.
1393
+ Case 1: γ > 0. In this case, ˜s(t) = s(t) = (1 − F(t))/f(t) and ˜lt = lt. By Lemma
1394
+ 5.4, there are positive constants κ, δ and ϵ such that, for all large t and all x > 0
1395
+ lt(x)
1396
+ hγ(x) ≤ hγ(s(t)x + t)
1397
+ hγ(x)
1398
+ s(t)
1399
+ 1 − F(t)
1400
+
1401
+ 1 + κ {1 − Hγ(s(t)x + t)}δ�
1402
+
1403
+
1404
+ 1 + γx
1405
+ (1 + γt)/s(t) + γx
1406
+ �1+1/γ
1407
+ 1 + ϵ
1408
+ (s(t))1/γ(1 − F(t)).
1409
+ Moreover, by Lemma 5.3 it holds that as t → ∞
1410
+ 1 + γt
1411
+ s(t)
1412
+ = 1 + η(t) = 1 + o(1)
1413
+ and, in turn, (s(t))1/γ ∼ (1+γt)1/γ. These two facts, combined with the tail equivalence
1414
+ relation in formula (5.4), imply that for all sufficiently large t and all x > 0
1415
+ lt(x)
1416
+ hγ(x) ≤
1417
+
1418
+ 1 + γx
1419
+ 1 − ϵ + γx
1420
+ �1+1/γ
1421
+ 1 + ϵ
1422
+ (1 − ϵ)τ
1423
+
1424
+
1425
+ 1
1426
+ 1 − ϵ
1427
+ �1+1/γ
1428
+ 1 + ϵ
1429
+ (1 − ϵ)τ .
1430
+ The result now follows.
1431
+ Case 2: γ < 0. In this case, for any x ∈ (0, (x∗ − t)/˜s(t))
1432
+ ˜lt(x) = f
1433
+
1434
+ x∗ − 1
1435
+ y
1436
+ � 1
1437
+ y2
1438
+ y2˜s(t)
1439
+ 1 − F(t)
1440
+ where
1441
+ y ≡ y(x, t) :=
1442
+ 1
1443
+ ˜s(t)
1444
+ �x∗ − t
1445
+ ˜s(t)
1446
+ − x
1447
+ �−1
1448
+ Note that y is bounded from below by 1/(x∗ − t), which converges to ∞ as t → x∗.
1449
+ Thus, by Lemma 5.6 there are positive constants ˜δ, ϵ and ˜κ such that
1450
+ ˜lt(x) ≤ (1 − γy)1/γ−1[1 + ˜κ{1 − H−γ(y)}
1451
+ ˜δ] y2˜s(t)
1452
+ 1 − F(t)
1453
+
1454
+
1455
+ 1 + γ ˜s(t)
1456
+ x∗ − t
1457
+
1458
+ −1
1459
+ γ
1460
+
1461
+ x
1462
+ �− 1
1463
+ γ −1 �
1464
+ (x∗ − t)
1465
+
1466
+ 1 − ˜s(t)x
1467
+ x∗ − t
1468
+
1469
+ − γ
1470
+ � 1
1471
+ γ −1 ˜s(t)(1 + ϵ)
1472
+ 1 − F(t) (x∗ − t)− 1
1473
+ γ −1.
1474
+ 18
1475
+
1476
+ By hypothesis, it holds that
1477
+ x∗ − t
1478
+ ˜s(t)
1479
+ ≤ −1
1480
+ γ ,
1481
+ thus
1482
+
1483
+ 1 + γ ˜s(t)
1484
+ x∗ − t
1485
+
1486
+ −1
1487
+ γ
1488
+
1489
+ x
1490
+ �− 1
1491
+ γ −1
1492
+ ≤ (1 + γx)−1/γ−1.
1493
+ Moreover, it holds that
1494
+ 1 − ˜s(t)x
1495
+ x∗ − t > 0,
1496
+ thus
1497
+
1498
+ (x∗ − t)
1499
+
1500
+ 1 − ˜s(t)x
1501
+ x∗ − t
1502
+
1503
+ − γ
1504
+ � 1
1505
+ γ −1
1506
+ ≤ (−γ)
1507
+ 1
1508
+ γ −1.
1509
+ Finally, for all large t,
1510
+ ˜s(t)
1511
+ x∗ − t ≤ −(1 + ϵ)γ.
1512
+ Combining all the above inequalities we can now conclude that, for all large t and for
1513
+ any x ∈ (0, (x∗ − t)/˜s(t)),
1514
+ ˜lt(x)
1515
+ hγ(x) ≤ (1 + ϵ)2(−γ)
1516
+ 1
1517
+ γ (x∗ − t)− 1
1518
+ γ
1519
+ 1 − F(t) .
1520
+ Now, setting t = U(v), we have that v → ∞ if and only if t → x∗ and, by Theorem
1521
+ 2.3.6 in de Haan and Ferreira (2006), there is a constant ϖ > 0 such that for all large t
1522
+ (x∗ − t)− 1
1523
+ γ
1524
+ 1 − F(t)
1525
+ ≤ v[(1 + ϵ)ϖvγ]− 1
1526
+ γ = [(1 + ϵ)ϖ]− 1
1527
+ γ
1528
+ The result now follows.
1529
+ 5.5
1530
+ Proof of Lemma 3.5
1531
+ Note that for any γ′ > −1/2 and σ > 0
1532
+ H (hγ; hγ′(σ · )σ) ≤
1533
+ ��
1534
+ R
1535
+ [νx(γ) − νx(γ′)]2 dx +
1536
+ ��
1537
+ R
1538
+ [ψγ,x(σ) − ψγ,x(1)]2 dx
1539
+ In what follows, we bound the two terms on the right-hand side for γ′ ∈ (γ ± ϵ) and
1540
+ σ ∈ (1 ± ϵ), for a suitably small ϵ > 0. We study the the cases where γ > 0, γ < 0 and
1541
+ γ = 0 separately.
1542
+ Case 1: γ > 0. An application of the mean-value theorem and Lemma 5.7(a) yields
1543
+ that, for a function ξ(x) ∈ (γ ∧ γ′, γ ∨ γ′),
1544
+ ��
1545
+ R
1546
+ [νx(γ) − νx(γ′)]2 dx = |γ − γ′|
1547
+ �� ∞
1548
+ 0
1549
+ [ν′x(ξ(x))]2 dx
1550
+ ≤ |γ − γ′|
1551
+ 2
1552
+ �� ∞
1553
+ 0
1554
+ (1 + xξ(x))−3−
1555
+ 1
1556
+ ξ(x)
1557
+ �x ln(1 + xξ(x))
1558
+ ξ(x)
1559
+ �2
1560
+ dx
1561
+ + |γ − γ′|
1562
+ 2
1563
+ �� ∞
1564
+ 0
1565
+ (1 + xξ(x))−3−
1566
+ 1
1567
+ ξ(x) x2dx.
1568
+ 19
1569
+
1570
+ On one hand, it holds that
1571
+ � ∞
1572
+ 0
1573
+ (1 + xξ(x))−3−
1574
+ 1
1575
+ ξ(x)
1576
+ �x ln(1 + xξ(x))
1577
+ ξ(x)
1578
+ �2
1579
+ dx
1580
+ ≤ 4
1581
+ � ∞
1582
+ 0
1583
+ (1 + x(γ − ϵ))−1−
1584
+ 1
1585
+ γ+ϵ
1586
+ �ln(1 + x(γ − ϵ))
1587
+ (γ − ϵ)2
1588
+ �2
1589
+ dx
1590
+ ≤ 8(γ + ϵ)3
1591
+ (γ − ϵ)5 .
1592
+ On the other hand, it holds that
1593
+ � ∞
1594
+ 0
1595
+ (1 + ξ(x))−3−
1596
+ 1
1597
+ ξ(x) x2dx
1598
+ ���
1599
+ � ∞
1600
+ 0
1601
+ (1 + x(γ − ϵ))−1−
1602
+ 1
1603
+ γ+ϵ
1604
+ 1
1605
+ (γ − ϵ)2 dx
1606
+ ≤ (γ + ϵ)
1607
+ (γ − ϵ)3 .
1608
+ While, an application of the mean-value theorem and Lemma 5.8(a) yields that, for a
1609
+ function ς(x) ∈ (1 ∧ σ, 1 ∨ σ),
1610
+
1611
+ R
1612
+
1613
+ ψγ′,x(σ) − ψγ,x(1)
1614
+ �2 dx =
1615
+ � ∞
1616
+ 0
1617
+
1618
+ ψ′
1619
+ γ,x(ς(x))
1620
+ �2 dx
1621
+
1622
+ � 1
1623
+ γ2 +
1624
+
1625
+ 1
1626
+ 2γ + 1
1627
+ �2 �1 + ϵ
1628
+ 1 − ϵ
1629
+ �5
1630
+ .
1631
+ The result now follows.
1632
+ Case 2: γ < 0. Assume that γ < γ′, then an application of the mean-value theorem
1633
+ and Lemma 5.7(b) yields that, for a function ξ(x) ∈ (γ, γ′),
1634
+
1635
+ R
1636
+
1637
+ νx(γ) − νx(γ′)
1638
+ �2 dx = |γ − γ′|2
1639
+ � −1/γ
1640
+ 0
1641
+
1642
+ ν′
1643
+ x(ξ(x))
1644
+ �2 dx + 1 − Hγ′(−1/γ)
1645
+ ≤ |γ − γ′|2
1646
+ 4
1647
+
1648
+
1649
+ �� −1/γ
1650
+ 0
1651
+ (1 + xξ(x))−3−
1652
+ 1
1653
+ ξ(x) x4dx
1654
+ +
1655
+ �� −1/γ
1656
+ 0
1657
+ (1 + xξ(x))−3−
1658
+ 1
1659
+ ξ(x) x2dx
1660
+
1661
+
1662
+ 2
1663
+ + 1 − Hγ′(−1/γ).
1664
+ First, for a constant β satisfying 0 < β < 1/(ϵ − γ) − 2, we have that
1665
+ � −1/γ
1666
+ 0
1667
+ (1 + xξ(x))−3−
1668
+ 1
1669
+ ξ(x) x4dx ≤ 1
1670
+ γ4
1671
+ � −1/γ
1672
+ 0
1673
+ (1 + γx)−1+βdx
1674
+
1675
+ 1
1676
+ (−γ)5
1677
+ 1
1678
+ β .
1679
+ Similarly,
1680
+ � −1/γ
1681
+ 0
1682
+ (1 + xξ(x))−3−
1683
+ 1
1684
+ ξ(x) x2dx ≤ 1
1685
+ γ2
1686
+ � −1/γ
1687
+ 0
1688
+ (1 + γx)−1+βdx
1689
+
1690
+ 1
1691
+ (−γ)3
1692
+ 1
1693
+ β .
1694
+ 20
1695
+
1696
+ Finally, if ϵ is small enough, 1 − Hγ′(−1/γ) ≤ (1 − γ′/γ)2. Thus, we can conclude that
1697
+
1698
+ R
1699
+
1700
+ νx(γ) − νx(γ′)
1701
+ �2 dx ≤ |γ − γ′|2 1 + 1/2β
1702
+ (−γ)5 .
1703
+ A similar reasoning when γ > γ′ yields that
1704
+
1705
+ R
1706
+
1707
+ νx(γ) − νx(γ′)
1708
+ �2 dx ≤ |γ − γ′|2 1 + 2/β
1709
+ (−γ′)5
1710
+ ≤ |γ − γ′|2 1 + 2/β
1711
+ (−γ − ϵ)5 .
1712
+ Next, assuming that σ < 1, an application of the mean-value theorem and the first
1713
+ half of Lemma 5.8(b) yields that for a function ς(x) ∈ (1 − ϵ, 1) and a constant ζ > 0
1714
+
1715
+ R
1716
+ [ψγ,x(σ) − ψγ,x(1)]2 dx = (1 − σ)2
1717
+ � −σ/γ
1718
+ 0
1719
+
1720
+ ψ′
1721
+ γ,x(ς(x))
1722
+ �2 dx + (1 − σ)−1/γ
1723
+ ≤ (1 − σ)2
1724
+
1725
+ 1
1726
+ ζ(1 − ϵ)2(−γ)
1727
+ � 1
1728
+ γ2 + 1
1729
+ �2
1730
+ + 1
1731
+
1732
+ .
1733
+ While, if σ > 1, for a function ς(x) ∈ (1, 1 + ϵ)
1734
+
1735
+ R
1736
+ [ψγ,x(σ) − ψγ,x(1)]2 dx = (1 − σ)2
1737
+ � −1/γ
1738
+ 0
1739
+
1740
+ ψ′
1741
+ γ,x(ς(x))
1742
+ �2 dx + (1 − 1/σ)−1/γ
1743
+ ≤ (1 − σ)2
1744
+
1745
+ 1
1746
+ ζ(−γ)
1747
+ � 1
1748
+ γ2 + 1
1749
+ �2
1750
+ + 1
1751
+
1752
+ .
1753
+ The result now follows.
1754
+ Case 3: γ = 0. Assume that γ′ > 0, then an application of the mean-value theorem
1755
+ and Lemma 5.7(a) yields that, for a function ξ(x) ∈ (0, γ′),
1756
+
1757
+ R
1758
+
1759
+ νx(γ) − νx(γ′)
1760
+ �2 dx = |γ − γ′|2
1761
+ � ∞
1762
+ 0
1763
+
1764
+ ν′
1765
+ x(ξ(x))
1766
+ �2 dx
1767
+ ≤ |γ − γ′|2
1768
+ 4
1769
+
1770
+
1771
+ �� ∞
1772
+ 0
1773
+ (1 + xξ(x))−3−
1774
+ 1
1775
+ ξ(x)
1776
+ �x ln(1 + xξ(x))
1777
+ ξ(x)
1778
+ �2
1779
+ dx
1780
+ +
1781
+ �� −∞
1782
+ 0
1783
+ (1 + xξ(x))−3−
1784
+ 1
1785
+ ξ(x) x2dx
1786
+
1787
+
1788
+ 2
1789
+ .
1790
+ On one hand, we have
1791
+ � ∞
1792
+ 0
1793
+ (1 + xξ(x))−3−
1794
+ 1
1795
+ ξ(x)
1796
+ �x ln(1 + xξ(x))
1797
+ ξ(x)
1798
+ �2
1799
+ dx ≤
1800
+ � ∞
1801
+ 0
1802
+ (1 + xξ(x))−3−
1803
+ 1
1804
+ ξ(x) x4dx
1805
+
1806
+ � ∞
1807
+ 0
1808
+ (1 + xγ′)−3− 1
1809
+ γ′ x4dx +
1810
+ � ∞
1811
+ 0
1812
+ e−xx4dx
1813
+ ≤ 36 + Γ(5).
1814
+ On the other hand, we have
1815
+ � ∞
1816
+ 0
1817
+ (1 + xξ(x))−3−
1818
+ 1
1819
+ ξ(x) x2dx ≤
1820
+ � ∞
1821
+ 0
1822
+ (1 + xγ′)−3− 1
1823
+ γ′ x2dx +
1824
+ � ∞
1825
+ 0
1826
+ e−xx2dx
1827
+ ≤ 3 + Γ(3).
1828
+ 21
1829
+
1830
+ Assume next that γ′ < 0, then an application of the mean-value theorem and Lemma
1831
+ 5.7(b) yields that, for a function ξ(x) ∈ (−ϵ, 0),
1832
+
1833
+ R
1834
+
1835
+ νx(γ) − νx(γ′)
1836
+ �2 dx = |γ − γ′|2
1837
+ � −1/γ′
1838
+ 0
1839
+
1840
+ ν′
1841
+ x(ξ(x))
1842
+ �2 dx + e1/γ′
1843
+ ≤ |γ − γ′|2
1844
+ 4
1845
+
1846
+
1847
+ �� −1/γ′
1848
+ 0
1849
+ (1 + xξ(x))−3−
1850
+ 1
1851
+ ξ(x) x4dx
1852
+ +
1853
+ �� −1/γ′
1854
+ 0
1855
+ (1 + xξ(x))−3−
1856
+ 1
1857
+ ξ(x) x2dx
1858
+
1859
+
1860
+ 2
1861
+ + e1/γ′.
1862
+ On one hand, for ϵ sufficiently small we have
1863
+ � −1/γ′
1864
+ 0
1865
+ (1 + xξ(x))−3−
1866
+ 1
1867
+ ξ(x) x4dx ≤
1868
+ � −1/γ′
1869
+ 0
1870
+ (1 + xγ′)−3− 1
1871
+ γ′ x4dx +
1872
+ � −1/γ′
1873
+ 0
1874
+ e−xx4dx
1875
+ ≤ 13
1876
+ 2 Γ(5)
1877
+ and
1878
+ � −1/γ′
1879
+ 0
1880
+ (1 + xξ(x))−3−
1881
+ 1
1882
+ ξ(x) x2dx ≤
1883
+ � −1/γ′
1884
+ 0
1885
+ (1 + xγ′)−3− 1
1886
+ γ′ x4dx +
1887
+ � −1/γ′
1888
+ 0
1889
+ e−xx2dx
1890
+ ≤ 3
1891
+ 2Γ(3).
1892
+ On the other hand, for ϵ sufficiently small we have e1/γ′ ≤ |γ′ − γ|2.
1893
+ Finally, some algebraic manipulations yield
1894
+
1895
+ R
1896
+ [ψγ,x(σ) − ψγ,x(1)]2 dx =
1897
+ � ∞
1898
+ 0
1899
+ ��
1900
+ e−x/σ 1
1901
+ σ −
1902
+
1903
+ e−x
1904
+ �2
1905
+ dx
1906
+ ≤ (1 − σ)2
1907
+ (1 − ϵ)2
1908
+
1909
+ 1 + 1
1910
+ 2
1911
+ �1 + ϵ
1912
+ 1 − ϵ
1913
+ �3/2�2
1914
+ .
1915
+ The proof is now complete.
1916
+ 5.6
1917
+ Proof of Corollary 3.6
1918
+ By Lemma 8.2 in Ghosal et al. (2000)
1919
+ K (˜lt; hγ) ≤ 2
1920
+
1921
+
1922
+ sup
1923
+ 0<x< x∗−t
1924
+ ˜s(t)
1925
+ ˜lt(x)
1926
+ hγ(x)
1927
+
1928
+ � H 2(˜lt; hγ).
1929
+ Moreover, by Lemma B.3 in Ghosal and van der Vaart (2017), for p ≥ 2
1930
+ Dp(˜lt; hγ) ≤ 2p!
1931
+
1932
+
1933
+ sup
1934
+ 0<x< x∗−t
1935
+ ˜s(t)
1936
+ ˜lt(x)
1937
+ hγ(x)
1938
+
1939
+ � H 2(˜lt; hγ).
1940
+ Furthermore, by triangular inequality and Lemma 3.5, for all large t
1941
+ H (˜lt; hγ) = H
1942
+
1943
+ lt; hγ
1944
+
1945
+ · s(t)
1946
+ ˜s(t)
1947
+ � s(t)
1948
+ ˜s(t)
1949
+
1950
+ ≤ H (lt; hγ) + H
1951
+
1952
+ hγ; hγ
1953
+
1954
+ · s(t)
1955
+ ˜s(t)
1956
+ � s(t)
1957
+ ˜s(t)
1958
+
1959
+ ≤ H (lt; hγ) + L|s(t)/˜s(t) − 1|
1960
+ ≤ H (lt; hγ) + LB|A(v)|.
1961
+ 22
1962
+
1963
+ The conclusion now follows by combining the above inequalities and applying Theorem
1964
+ 3.2 and Lemma 3.4.
1965
+ 5.7
1966
+ Proof of Proposition 4.1
1967
+ By invariance of Hellinger distance under rescaling and triangle inequality
1968
+ H (ft;�hk) = H
1969
+
1970
+ lt; h�γk
1971
+
1972
+ · s(t)
1973
+ �sk(t)
1974
+ � s(t)
1975
+ �sk(t)
1976
+
1977
+ ≤ H (lt; hγ) + H
1978
+
1979
+ hγ; h�γk
1980
+
1981
+ · s(t)
1982
+ �sk(t)
1983
+ � s(t)
1984
+ �sk(t)
1985
+
1986
+ .
1987
+ On one hand, by Theorem 3.2 and assumption (b), as n → ∞
1988
+ H (lt; hγ) = O(|A(n/k)|) = O(1/
1989
+
1990
+ k).
1991
+ Moreover, by Lemma 3.5 and assumption (c), as n → ∞
1992
+ H
1993
+
1994
+ hγ; h�γk
1995
+
1996
+ · s(t)
1997
+ �sk(t)
1998
+ � s(t)
1999
+ �sk(t)
2000
+
2001
+ = Op
2002
+
2003
+
2004
+
2005
+ |γ − �γk|2 +
2006
+ ����1 − s(t)
2007
+ �sk(t)
2008
+ ����
2009
+ 2
2010
+
2011
+
2012
+ = Op(1/
2013
+
2014
+ k).
2015
+ The result now follows.
2016
+ 5.8
2017
+ Proof of Proposition 4.5
2018
+ Let Qk denote the probability measure relative to the random sequence
2019
+ (Yk/˜s(X(n−k)), X(n−k)).
2020
+ Let Zk be the order statistics of an iid sample from Hγ, independent from X1, X2 . . .,
2021
+ and denote by Pk the probability measure relative to the random sequence (Zk, X(n−k)).
2022
+ In what follows, we prove that Pk ▷ Qk, which implies the result in the statement.
2023
+ We start by recalling that, as n → ∞,
2024
+ 1/(1 − F(X(n−k)))
2025
+ n/k
2026
+ = 1 + op(1),
2027
+ see e.g. Lemma 2.2.3 in de Haan and Ferreira (2006). Hence, defining the set Bk :=
2028
+ (U((1 ± ϵ))n/k), for a small ϵ > 0, we have that for any measurable set sequence Ek
2029
+ Pk(Ek) = Pk(Ek|X(n−k) ∈ Bk)(1 + o(1)) + o(1)
2030
+ and
2031
+ Qk(Ek) = Pk(Ek|X(n−k) ∈ Bk)(1 + o(1)) + o(1)
2032
+ as n → ∞. Therefore, it suffices to prove that
2033
+ Pk( · |X(n−k) ∈ Bk) ▷ Qk( · |X(n−k) ∈ Bk).
2034
+ To do it, we denote by πk and χk the (Lebesgue) densities pertaining to the two condi-
2035
+ tional probability measures in the formula above and prove that
2036
+ lim sup
2037
+ n→∞ K (χk; πk) < ∞.
2038
+ (5.5)
2039
+ 23
2040
+
2041
+ Clearly, it holds that for almost every (y, t) ∈ Rk+2
2042
+ χk(y, t) = fYk/˜s(X(n−k))(y|X(n−k) = t)
2043
+ fX(n−k)(t)1(t ∈ Bk)
2044
+ P(X(n−k) ∈ Bk)
2045
+ ,
2046
+ where fYk/˜s(X(n−k))(y|X(n−k) = t) and fX(n−k)(t) are the conditional density of Yk/˜s(X(n−k))
2047
+ given X(n−k) = t and the marginal density of X(n−k), respectively. Moreover,
2048
+ πk(y, t) = hZk(y)
2049
+ fX(n−k)(t)1(t ∈ Bk)
2050
+ P(X(n−k) ∈ Bk)
2051
+ ,
2052
+ where hZk(y) is the density of Zk. As a consequence,
2053
+ K (χk; πk) =
2054
+
2055
+ Bk
2056
+ K (fYk/˜s(X(n−k))( · |X(n−k) = t); hZk)
2057
+ fX(n−k)(t)
2058
+ P(X(n−k) ∈ Bk)dt.
2059
+ By Lemma B.11 in Ghosal and van der Vaart (2017) and Lemma 3.4.1 in de Haan and
2060
+ Ferreira (2006)
2061
+ K (fYk/˜s(X(n−k))( · |X(n−k) = t); hZk) ≤ kK (˜lt; hγ).
2062
+ Moreover, by Corollary 3.6, there is a constant Λ > 0 such that for all large n
2063
+ sup
2064
+ t∈Bk
2065
+ K (˜lt; hγ) ≤ Λ
2066
+ ���A
2067
+
2068
+ (1 − ϵ)n
2069
+ k
2070
+ ����
2071
+ 2
2072
+ ≤ Λ(1 − ϵ)ρ(1 + ϵ)
2073
+ ���A
2074
+ �n
2075
+ k
2076
+ ����
2077
+ 2
2078
+ .
2079
+ Combining the above inequalities we obtain that
2080
+ K (χk; πk) ≤ Λ(1 − ϵ)ρ(1 + ϵ)k
2081
+ ���A
2082
+ �n
2083
+ k
2084
+ ����
2085
+ 2
2086
+ → Λ(1 − ϵ)ρ(1 + ϵ)λ2
2087
+ as n → ∞, where the convergence result in the second line follows from assumption (b).
2088
+ The result in formula (5.5) is now established and the proof is complete.
2089
+ Acknowledgements
2090
+ Simone Padoan is supported by the Bocconi Institute for Data Science and Analytics
2091
+ (BIDSA), Italy.
2092
+ References
2093
+ Balkema, A. A. and L. de Haan (1974). Residual life time at great age. The Annals of
2094
+ probability 2, 792–804.
2095
+ Bobbia, B., C. Dombry, and D. Varron (2021). The coupling method in extreme value
2096
+ theory. Bernoulli 27, 1824–1850.
2097
+ B¨ucher, A. and J. Segers (2017). On the maximum likelihood estimator for the Gener-
2098
+ alized Extreme-Value distribution. Extremes 20, 839–872.
2099
+ B¨ucher, A. and C. Zhou (2021). A Horse Race between the Block Maxima Method and
2100
+ the Peak–over–Threshold Approach. Statistical Science 36, 360–378.
2101
+ 24
2102
+
2103
+ de Haan, L. and A. Ferreira (2006). Extreme Value Theory: An Introduction. Springer.
2104
+ Dekkers, A. L. and L. de Haan (1993). Optimal choice of sample fraction in extreme-
2105
+ value estimation. Journal of Multivariate Analysis 47, 173–195.
2106
+ Dekkers, A. L., J. H. Einmahl, and L. de Haan (1989). A moment estimator for the
2107
+ index of an extreme-value distribution. The Annals of Statistics 17, 1833–1855.
2108
+ Dey, D. K. and J. Yan (2016). Extreme value modeling and risk analysis: methods and
2109
+ applications. CRC Press.
2110
+ Drees, H. (1998). Optimal rates of convergence for estimates of the extreme value index.
2111
+ Annals of Statistics 26, 434–448.
2112
+ Drees, H., A. Ferreira, and L. de Haan (2004). On maximum likelihood estimation of
2113
+ the extreme value index. The Annals of Applied Probability 14, 1179–1201.
2114
+ Embrechts, P., C. Kl¨uppelberg, and T. Mikosch (2013). Modelling extremal events: for
2115
+ insurance and finance, Volume 33. Springer Science & Business Media.
2116
+ Falk, M., J. H¨usler, and R.-D. Reiss (2010). Laws of small numbers: extremes and rare
2117
+ events. Springer Science & Business Media.
2118
+ Ghosal, S., J. K. Ghosh, and A. W. van der Vaart (2000). Convergence rates of posterior
2119
+ distributions. The Annals of Statistics 28, 500–531.
2120
+ Ghosal, S. and A. van der Vaart (2017).
2121
+ Fundamentals of Nonparametric Bayesian
2122
+ Inference. Cambridge University Press.
2123
+ Hall, P. and A. H. Welsh (1984). Best attainable rates of convergence for estimates of
2124
+ parameters of regular variation. The Annals of Statistics 12, 1079–1084.
2125
+ Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution.
2126
+ Annals of statistics 3, 1163–1174.
2127
+ Hosking, J. R. M., J. R. Wallis, and E. F. Wood (1985). Estimation of the General-
2128
+ ized Extreme-Value Distribution by the Method of Probability-Weighted Moments.
2129
+ Technometrics 27, 251–261.
2130
+ Jenkinson, A. (1969). Statistics of extemes. In Estimation of maximum floods, WMO
2131
+ Tech. Note 98, pp. 183–228.
2132
+ Pickands III, J. (1975). Statistical inference using extreme order statistics. The Annals
2133
+ of Statistics 3, 119–131.
2134
+ Raoult, J.-P. and R. Worms (2003). Rate of convergence for the generalized pareto
2135
+ approximation of the excesses. Advances in Applied Probability 35, 1007–1027.
2136
+ Resnick, S. I. (2007). Extreme Values, Regular Variation, and Point Processes, Vol-
2137
+ ume 4. Springer Science & Business Media.
2138
+ van der Vaart, A. (2000). Asymptotic Statistics. Cambridge University Press.
2139
+ Zhou, C. (2009). Journal of Multivariate Analysis 100, 794–815.
2140
+ 25
2141
+
-NA0T4oBgHgl3EQfPP8X/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
-NE0T4oBgHgl3EQfxAEX/content/2301.02639v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31fdfdc721a190dd1d5118b9c823e2582c7457862c996eb48305e5eb70b001e5
3
+ size 236514
-NE0T4oBgHgl3EQfxAEX/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b26718c49e9cfcf51fcc4813e212bacfea78b146d8cfd677e08e0d3908af15e7
3
+ size 159450
.gitattributes CHANGED
@@ -875,3 +875,45 @@ kdE3T4oBgHgl3EQfhgpA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex
875
  bdAyT4oBgHgl3EQf-PoQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
876
  sdAyT4oBgHgl3EQfZvfd/content/2301.00231v1.pdf filter=lfs diff=lfs merge=lfs -text
877
  kdE3T4oBgHgl3EQfhgpA/content/2301.04571v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
875
  bdAyT4oBgHgl3EQf-PoQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
876
  sdAyT4oBgHgl3EQfZvfd/content/2301.00231v1.pdf filter=lfs diff=lfs merge=lfs -text
877
  kdE3T4oBgHgl3EQfhgpA/content/2301.04571v1.pdf filter=lfs diff=lfs merge=lfs -text
878
+ KdE2T4oBgHgl3EQfpgjD/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
879
+ KdE2T4oBgHgl3EQfpgjD/content/2301.04030v1.pdf filter=lfs diff=lfs merge=lfs -text
880
+ H9E4T4oBgHgl3EQfIAys/content/2301.04909v1.pdf filter=lfs diff=lfs merge=lfs -text
881
+ 9dE1T4oBgHgl3EQfoAQF/content/2301.03314v1.pdf filter=lfs diff=lfs merge=lfs -text
882
+ bdAyT4oBgHgl3EQf-PoQ/content/2301.00887v1.pdf filter=lfs diff=lfs merge=lfs -text
883
+ 3dE3T4oBgHgl3EQfPwmd/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
884
+ zdAzT4oBgHgl3EQf8P6x/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
885
+ 4tAyT4oBgHgl3EQfpPhP/content/2301.00521v1.pdf filter=lfs diff=lfs merge=lfs -text
886
+ o9E5T4oBgHgl3EQfIw4s/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
887
+ AtFLT4oBgHgl3EQfFC_E/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
888
+ H9E4T4oBgHgl3EQfIAys/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
889
+ 9dE1T4oBgHgl3EQfoAQF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
890
+ 3dFRT4oBgHgl3EQfoTds/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
891
+ v9E2T4oBgHgl3EQfggeM/content/2301.03938v1.pdf filter=lfs diff=lfs merge=lfs -text
892
+ ntE0T4oBgHgl3EQfqAHb/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
893
+ odE0T4oBgHgl3EQfqQG1/content/2301.02551v1.pdf filter=lfs diff=lfs merge=lfs -text
894
+ sdAyT4oBgHgl3EQfZvfd/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
895
+ odE0T4oBgHgl3EQfqQG1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
896
+ q9FAT4oBgHgl3EQffR3S/content/2301.08581v1.pdf filter=lfs diff=lfs merge=lfs -text
897
+ L9FAT4oBgHgl3EQfxB4e/content/2301.08684v1.pdf filter=lfs diff=lfs merge=lfs -text
898
+ hNAzT4oBgHgl3EQfMvs5/content/2301.01136v1.pdf filter=lfs diff=lfs merge=lfs -text
899
+ 8dE3T4oBgHgl3EQfqgpk/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
900
+ 4dE4T4oBgHgl3EQf0w2N/content/2301.05285v1.pdf filter=lfs diff=lfs merge=lfs -text
901
+ 39FRT4oBgHgl3EQfozcR/content/2301.13610v1.pdf filter=lfs diff=lfs merge=lfs -text
902
+ udE3T4oBgHgl3EQf-Auh/content/2301.04822v1.pdf filter=lfs diff=lfs merge=lfs -text
903
+ zdAzT4oBgHgl3EQf8P6x/content/2301.01902v1.pdf filter=lfs diff=lfs merge=lfs -text
904
+ 4tAyT4oBgHgl3EQfpPhP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
905
+ qNAzT4oBgHgl3EQfcPwr/content/2301.01398v1.pdf filter=lfs diff=lfs merge=lfs -text
906
+ 0dFJT4oBgHgl3EQfjix9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
907
+ t9AyT4oBgHgl3EQfmvi8/content/2301.00478v1.pdf filter=lfs diff=lfs merge=lfs -text
908
+ ldFST4oBgHgl3EQfJTg8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
909
+ 0dFJT4oBgHgl3EQfjix9/content/2301.11575v1.pdf filter=lfs diff=lfs merge=lfs -text
910
+ j9FPT4oBgHgl3EQfGDRS/content/2301.13002v1.pdf filter=lfs diff=lfs merge=lfs -text
911
+ j9FPT4oBgHgl3EQfGDRS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
912
+ 09E4T4oBgHgl3EQfZwye/content/2301.05059v1.pdf filter=lfs diff=lfs merge=lfs -text
913
+ qNAzT4oBgHgl3EQfcPwr/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
914
+ -NE0T4oBgHgl3EQfxAEX/content/2301.02639v1.pdf filter=lfs diff=lfs merge=lfs -text
915
+ 39FRT4oBgHgl3EQfozcR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
916
+ v9E2T4oBgHgl3EQfggeM/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
917
+ q9FAT4oBgHgl3EQffR3S/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
918
+ j9FRT4oBgHgl3EQfWzfr/content/2301.13545v1.pdf filter=lfs diff=lfs merge=lfs -text
919
+ j9FRT4oBgHgl3EQfWzfr/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
09AzT4oBgHgl3EQfDPrL/content/tmp_files/2301.00974v1.pdf.txt ADDED
@@ -0,0 +1,967 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Single-material MoS2 thermoelectric junction enabled by substrate
2
+ engineering
3
+ Mohammadali Razeghi1, Jean Spiece3, Oğuzhan Oğuz1, Doruk Pehlivanoğlu2, Yubin Huang3, Ali
4
+ Sheraz2, Phillip S. Dobson4, Jonathan M. R. Weaver4, Pascal Gehring3, T. Serkan Kasırga1,2*
5
+ 1 Bilkent University UNAM – Institute of Materials Science and Nanotehcnology, Bilkent 06800 Ankara,
6
+ Turkey
7
+ 2 Department of Physics, Bilkent University, Bilkent 06800 Ankara, Turkey
8
+ 3 IMCN/NAPS, Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
9
+ 4 James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, U.K
10
+ *Corresponding Author: kasirga@unam.bilkent.edu.tr
11
+ Abstract
12
+ To realize a thermoelectric power generator, typically a junction between two materials with different
13
+ Seebeck coefficient needs to be fabricated. Such difference in Seebeck coefficients can be induced by
14
+ doping, which renders difficult when working with two-dimensional (2d) materials. Here, we employ
15
+ substrate effects to form a thermoelectric junction in ultra-thin few-layer MoS2 films. We investigated
16
+ the junctions with a combination of scanning photocurrent microscopy and scanning thermal
17
+ microscopy. This allows us to reveal that thermoelectric junctions form across the substrate-
18
+ engineered parts. We attribute this to a gating effect induced by interfacial charges in combination
19
+ with alterations in the electron-phonon scattering mechanisms. This work demonstrates that
20
+ substrate engineering is a promising strategy to develop future compact thin-film thermoelectric
21
+ power generators.
22
+ Main Text
23
+ In ultra-thin materials with large surface-to-bulk ratio, interactions with the substrate can have strong
24
+ impact on the materials properties 1–6. It is therefore important to understand this so-called substrate-
25
+ effect, especially in order to optimize the reliability of future devices based on two-dimensional (2d)
26
+ semiconducting materials. As an example, the choice of substrate for mono- and few-layer MoS2 has
27
+ been shown to strongly affect its Raman modes and photoluminescence (PL)7, electronic8, and thermal
28
+ transport9 properties. In this work, we employ the substrate effect to enable completely new
29
+ functionalities in a 2d semiconductor device. To this end, we engineer the substrate that atomically
30
+ thin MoS2 is deposited on. Using a combination of scanning photocurrent microscopy (SPCM) along
31
+ with scanning thermal microscopy (SThM) we demonstrate that substrate engineering is a powerful
32
+ way to build a thermoelectric junction.
33
+
34
+
35
+ Figure 1 a. Schematic of a substrate-engineered device: a MoS2 flake is suspended over a circular hole
36
+ drilled in the substrate. Metal contacts are used for scanning photocurrent microscopy (SPCM),
37
+ scanning thermal gate microscopy (SThGM) and I-V measurements. The inset shows a magnification
38
+ of the area indicated by the dashed yellow square, where Seebeck coefficients of supported and
39
+ suspended parts are labelled with 𝑆1 and 𝑆2, respectively. b. Optical microscope image of a multi-
40
+ layered device over circular holes with indium contacts, marked with grey overlays. Scale bar: 10 µm.
41
+ c. SPCM reflection map and the corresponding open-circuit photocurrent map acquired from the
42
+ yellow dashed rectangle in b with 532 nm laser. {𝐼𝑚𝑖𝑛, 𝐼𝑚𝑎𝑥} = {−0.5, 0.5} nA. d. Photocurrent map
43
+ from the red dashed rectangle region in c. Black circle is the position of the hole determined from the
44
+ reflection image. Right panel shows the photocurrent, 𝐼𝑃𝐶 vs bias taken from point 1 (red dots) and
45
+ point 2 (blue dots) over the suspended part of the crystal marked on the left panel. Lower graph is the
46
+ derived photoconductance, 𝐺𝑃𝐶 vs. bias.
47
+ In the following we predict that a thermoelectric junction with a Seebeck coefficient difference of tens
48
+ of µV/K can be fabricated when connecting regions of suspended MoS2 to supported regions. We
49
+ assume that the Seebeck coefficient 𝑆 in thermal equilibrium is composed of contributions from the
50
+ energy-dependent diffusion (𝑆𝑁), scattering (𝑆τ) and the phonon-drag (𝑆𝑝𝑑), so that 𝑆 = 𝑆𝑁 + 𝑆𝜏 +
51
+ 𝑆𝑝𝑑 9,10. Here, 𝑆𝑁 and 𝑆τ terms can be written from the Mott relation assuming that MoS2 is in the
52
+ highly conductive state and electrons are the majority carriers:
53
+ 𝑆τ = −
54
+ 𝜋2𝑘𝐵
55
+ 2𝑇
56
+ 3𝑒
57
+ 𝜕ln𝜏
58
+ 𝜕𝐸 | 𝐸=𝐸𝐹 and 𝑆𝑁 = ±
59
+ 𝑘𝐵
60
+ 𝑒 [
61
+ 𝐸𝐹−𝐸𝐶
62
+ 𝑘𝐵𝑇 −
63
+ (𝑟+2)𝐹𝑟+1(𝜂)
64
+ (𝑟+1)𝐹𝑟(𝜂) ]
65
+ where 𝑇 is the temperature, 𝑘𝐵 is the Boltzmann constant, 𝑒 is the electron’s charge, 𝜏 is the relaxation
66
+ time, 𝐸𝐹 is the Fermi energy, 𝐸𝐶 is the conduction band edge energy, 𝑟 is scattering parameter and 𝐸
67
+ is the energy. 𝐹𝑚(𝜂) is the m-th order Fermi integral11. In the 2d limit, 𝜏 is energy independent, thus
68
+ 𝑆𝜏 is zero. 𝑆𝑝𝑑 term can be estimated from the theory of phonon-drag in semiconductors in the first
69
+ order as 𝑆𝑝𝑑 = −
70
+ 𝛽𝑣𝑝𝑙𝑝
71
+ 𝜇𝑇 where, 𝑣𝑝 and 𝑙𝑝 are the group velocity and the mean free path of a phonon,
72
+ 𝛽 is a parameter to modify the electron-phonon interaction strength and ranges from 0 to 1, and 𝜇 is
73
+ the electron mobility, respectively10. Importantly, 𝑙𝑝 and 𝜇 are heavily affected by the presence of a
74
+ substrate12 which implies that the 𝑆𝑝𝑑 term gets strongly modified when the MoS2 flake is suspended.
75
+
76
+ pended
77
+ ported
78
+ Reflection Map
79
+ 0mV
80
+ S1
81
+ noelectric
82
+ Photocurrent Map
83
+ 0mVIndeed, we find that for suspended MoS2 at room temperature 𝑆𝑝𝑑 ≈ −100 µV/K and for MoS2 on
84
+ SiO2 at room temperature 𝑆𝑝𝑑 ≈ −230 µV/K. Similarly, 𝑆𝑁 is heavily influenced by the presence or
85
+ absence of the substrate as electron density depends on the interfacial Coulomb impurities and short-
86
+ ranged defects11–17. We estimate that that for MoS2, 𝑆𝑁 ranges from -400 µV/K to -200 µV/K for carrier
87
+ concentrations ranging from 1012 cm-2 (suspended few layer MoS2) to 3 x 1013 cm-2 (SiO2 supported
88
+ few layer MoS2).18–20 As a result, a substrate engineered thermoelectric junction with a Seebeck
89
+ coefficient difference of Δ𝑆 ≈ 70 µV/K can be formed along the MoS2 flake (see Figure 1a and
90
+ Supporting Information).
91
+ To test this hypothesis, we fabricated substrate-engineered MoS2 devices by mechanical exfoliation
92
+ and dry transfer21 of atomically thin MoS2 flakes on substrates (sapphire or oxidized silicon) with pre-
93
+ patterned trenches/holes formed by focused ion beam (FIB). We contacted the flakes with Indium
94
+ needles22–24 which are suitable for achieving Ohmic contacts to MoS225,26 (gold-contacted device
95
+ measurements are shown in Supporting Information). A typical device is shown in Figure 1b. We then
96
+ used scanning photocurrent microscopy, to locally heat up the junction with a focused laser beam and
97
+ to measure the photothermoelectric current that is generated (see Methods for experimental details).
98
+ Figure 1c shows the greyscale reflection intensity map and the corresponding photocurrent
99
+ distribution over the device. For the few-layer suspended MoS2 devices we observe a bipolar
100
+ photoresponse at the junctions between the supported and the suspended part of the crystal. The
101
+ spatial distribution of the signal agrees well with the finite element analysis simulations, given in the
102
+ supporting information, and suggests the formation of a thermoelectric junction. When applying a
103
+ voltage bias 𝑉 to the junction, the photocurrent, 𝐼𝑃𝐶 changes linearly with bias, while the
104
+ photoconductance, 𝐺𝑃𝐶 =
105
+ 𝐼𝑃𝐶
106
+ 𝑉 −𝐼𝑃𝐶
107
+ 0
108
+ 𝑉
109
+ (𝐼𝑃𝐶
110
+ 𝑉 , 𝐼𝑃𝐶
111
+ 0 : photocurrent under 𝑉 and 0 mV bias, respectively) stays
112
+ constant (Figure 1d). Such bias-independent photoconductance is typically an indication for an
113
+ photothermoelectric nature of the observed signal22,24,27–29. Although we propose that the
114
+ photocurrent in substrate-engineered MoS2 devices is dominated by the photothermal effect
115
+ (PTE)30,31, other possible mechanisms have been reported that may lead to a photovoltaic response.
116
+ These include (1) strain related effects such as strain modulation of materials properties and flexo-
117
+ photovoltaic effect13, and (2) substrate proximity related effects that forms a built-in electric field32.
118
+ Next, we present experimental evidence for a thermoelectric origin of the observed photocurrent. To
119
+ this end, we employed scanning thermal gate microscopy (SThGM), where a hot AFM tip heats up the
120
+ junction locally while the resulting voltage build-up on the devices is recorded (see Methods). Since
121
+ no laser-illumination of the sample is required in this method, it can be used to ultimately exclude
122
+ photovoltaic effects. Figure 2 compares SPCM and SThGM maps of the same holes. We observed the
123
+ same bipolar signals in the suspended regions with both experimental methods. Thanks to its sub-100
124
+ nm lateral resolution, SThGM further allows us to observe local variations of the thermovoltage in
125
+ supported MoS2 that can be attributed to charge puddles induced by local doping via the substrate33–
126
+ 35. We confirmed that the SThGM signal disappears when no power is dissipated in the probe heater,
127
+ which rules out parasitic effects induced by the laser used for AFM feedback. Furthermore, SThGM
128
+ allows us to estimate the magnitude of the local Seebeck coefficient variations. Using the probe-
129
+ calibration data we obtain a value of Δ𝑆 = 72 ± 10 µV/K (See supporting information). Despite the
130
+ uncertainties regarding the real sample temperature, the obtained Δ𝑆 value is very close to the
131
+ theoretically predicted value.
132
+
133
+
134
+ Figure 2 a. SPCM reflection map and b. photocurrent map of the device shown in the inset of panel a.
135
+ Scale bar: 10 µm. The yellow rectangle indicates the region that was investigated by SThGM in c (AFM
136
+ height map) and d (SThGM thermovoltage map). e. SPCM map of the same region excerpted from the
137
+ map given in b. Color scale is the same as in panel b. Scale bars in c, d and e: 3 µm.
138
+ To understand why suspending MoS2 alters its Seebeck coefficient, we first would like to discuss the
139
+ possibility of strain induced changes in the materials properties. MoS2, like graphene, is nominally
140
+ compressed when deposited on a substrate36–39. Upon suspending the crystals, the free-standing part
141
+ either adheres to the sidewalls of the hole and dimples or, bulges. As a result, strain might be present
142
+ in the free-standing part of the crystal. Strain can affect both the bandgap and the Seebeck coefficient
143
+ of MoS2. The indirect optical gap is modulated by -110 meV/%-strain for a trilayer MoS236,40. Ab initio
144
+ studies show a ~10% decrease in the Seebeck coefficient of monolayer MoS2 per 1% tensile strain 41.
145
+ To estimate the biaxial strain, we performed atomic force microscopy (AFM) height trace mapping on
146
+ the samples. Most samples, regardless of the geometry of the hole exhibit slight bulging of a few
147
+ nanometers. For the MoS2 flakes suspended on the circular holes in the device shown in Figure 3a,
148
+ the bulge height is 𝛿𝑡 ≈ 25 nm. Similar 𝛿𝑡 values were measured for other devices. The biaxial strain
149
+ can then be calculated using an uniformly loaded circular membrane model, and is as low as 0.0025%
150
+ 42. Such a small strain on MoS2 is not sufficient to induce a significant change in bandgap or Seebeck
151
+ coefficient 43–45.
152
+ Next, we consider the substrate induced changes on the material properties. The presence or the
153
+ absence of the substrate can cause enhanced or diminished optical absorption due to the screening
154
+ effects, Fermi level pinning46 and charges donated by the substrate7,47. More significantly, the doping
155
+ effect due to the trapped charges at the interface with the substrate can locally gate the MoS2 and
156
+ modify the number of charge carriers48 and thus its Seebeck coefficient. To investigate the
157
+ electrostatic impact of the substrate on the MoS2 membrane, we investigated the surface potential
158
+ difference (SPD) on devices using Kelvin Probe Force Microscopy (KPFM). SPD can provide an insight
159
+ on the band bending of the MoS2 due to the substrate effects49. Figure 3b-d shows the AFM height
160
+ trace map and the uncalibrated SPD map of the sample. SPD across the supported and suspended part
161
+ of the flake is on the order of 50 mV. This shift in the SPD value hints that there is a slight change in
162
+ the Fermi level of the suspended part with respect to the supported part of the crystal. The same type
163
+ of charge carriers is dominant on both sides of the junction formed by the suspended and supported
164
+ parts of the crystal. The band structure formed by such a junction in zero bias cannot be used in
165
+ separation of photoinduced carriers50, however, it can lead to the formation of a thermoelectric
166
+ junction11,51. This is in line with the SThGM measurements.
167
+
168
+
169
+ Figure 3 a. AFM height trace map of a device suspended over circular holes show a bulge of 𝛿𝑡 ≈ 25
170
+ nm. The line trace is overlayed on the map. Scale bar: 4 µm. b. AFM height trace map of the sample
171
+ shows the bulged and dimpled parts of the flake. Scale bar: 4 µm. c. KPFM map of the sample shows
172
+ the variation in the surface potential. Scale bar: 4 µm. d. Line traces taken along the numbered lines
173
+ in c. Direction of the arrows in c indicates the direction of the line plot.
174
+ In the remainder of the paper, we aim at controlling the electrostatics that are responsible for the
175
+ formation of a thermoelectric junction. Charge transport in MoS2 is dominated by electrons due to
176
+ unintentional doping52,53. Modulating the density and the type of free charge carriers can be done by
177
+ applying a gate voltage 𝑉𝑔 to the junction54. This significantly modifies the magnitude and the sign of
178
+ the Seebeck coefficient as demonstrated in previous studies16,30,31,55. The Mott relation56 can be used
179
+ to model the Seebeck coefficient as a function of 𝑉𝑔:
180
+ 𝑆 =
181
+ 𝜋2𝑘𝐵
182
+ 2𝑇
183
+ 3𝑒
184
+ 1
185
+ 𝑅
186
+ 𝑑𝑅
187
+ 𝑑𝑉𝑔
188
+ 𝑑𝑉𝑔
189
+ 𝑑𝐸 | 𝐸=𝐸𝐹 eq.(1)
190
+ Here, 𝑇 is the temperature, 𝑘𝐵 is the Boltzmann constant, 𝑒 is the electron’s charge, 𝑅 is the device
191
+ resistance, 𝐸𝐹 is the Fermi energy and 𝐸 is the energy.
192
+ Since hole transport is limited due to substrate induced Fermi level pinning on SiO2 supported MoS2
193
+ field-effect devices,46 to observe the sign inversion of the Seebeck coefficient (see the Supporting
194
+ Information for measurements on device fabricated on SiO2 and Al2O3 coated SiO2) we followed an
195
+ alternative approach to emulate suspension: we fabricated heterostructure devices where the crystal
196
+ is partially supported by hexagonal boron nitride (h-BN). h-BN is commonly used to encapsulate two-
197
+ dimensional materials thanks to its hydrophobic and atomically smooth surface. This leads to less
198
+ unintentional doping due to the interfacial charge trapping and reduced electron scattering7,57,58. A
199
+ ~10 ML MoS2 is placed over a 10 nm thick h-BN crystal to form a double-junction device (see
200
+ supporting information for a single-junction device formed by a MoS2 flake which is partially placed
201
+ over a h-BN flake) and indium contacts are placed over the MoS2. The device is on 1 µm thick oxide
202
+ coated Si substrate where Si is used as the back-gate electrode. Figure 4a shows the optical
203
+ micrograph of the device and its schematic. The presence of h-BN modifies the SPD by 80 mV – a value
204
+ very similar to the values we find for suspended devices (see SI) – which is consistent with the relative
205
+ n-doping by the h-BN substrate32,57. We therefore attribute this difference to the Fermi level shift due
206
+ to the difference in interfacial charge doping by the different substrates.
207
+
208
+ ot
209
+ 0 1234μm
210
+ Figure 4 a. Optical micrograph of a Si back-gated MoS2 device partially placed over h-BN. Its cross-
211
+ sectional schematic is shown in the lower panel. Scale bar: 10 µm. b. SPCM reflection map and the
212
+ photocurrent map of the device shown in a. 𝐼𝑚𝑎𝑥 = 3 nA and 𝐼𝑚𝑖𝑛 = −3 nA. Scale bar: 10 µm. c.
213
+ Current-Voltage graph versus 𝑉𝐺 from -40 to 40 V. Inset shows the resistance versus 𝑉𝐺. d. 𝐼𝑃𝐶 vs. 𝑉𝐺
214
+ recorded at the points marked in the SPCM map in b.
215
+ Figure 4b shows the SPCM map under zero gate voltage. We observe a bipolar photocurrent signal
216
+ from the junctions between h-BN and SiO2 supported MoS2. Raman mapping (see the Supporting
217
+ Information) reveals slight intensity decrease and a small shift of the A1𝑔 peak over the h-BN
218
+ supported part of the MoS2. This is consistent with the stiffening of the Raman mode due to the higher
219
+ degree of charged impurities in SiO2 as compared to h-BN7. By applying a gate voltage to the device,
220
+ its resistance can be tuned significantly as free charges are depleted (Figure 4c). Under large positive
221
+ gate voltages, the I-V characteristic becomes asymmetric. To investigate the dependence of the
222
+ photocurrent on carrier type and concentration, the laser is held at specific positions on the device as
223
+ marked in Figure 4d, and the gate is swept from positive to negative voltages with respect to the
224
+ ground terminal. For positive gate voltages, the magnitude of the photoresponse from both junctions,
225
+ between h-BN and SiO2 supported MoS2, (points 2 and 3) decrease. When a negative gate voltage is
226
+ applied, the magnitude of the photoresponse at both junctions increases by almost a factor of two at
227
+ 𝑉𝐺 = −21.5 V. Once this maximum is reached, the amplitude of the photocurrent at both points
228
+ decreases and has the same value as the photocurrent generated over the MoS2 (point 4) at 𝑉𝐺 =
229
+ −34.5 V.
230
+ These observations can be qualitatively explained as follows: at a gate voltage of 𝑉𝐺 = −34.5 𝑉, the
231
+ majority charge carrier type in the h-BN supported part changes from electrons to holes. As a
232
+ consequence, the Seebeck coefficients of MoS2 resting on h-BN and SiO2, respectively, become similar,
233
+ which leads to ∆𝑆 ≈ 0, and curves 2,3 and 4 in Figure 4d cross. The photocurrent signal recorded near
234
+ the indium contacts (points 1 and 5) decreases non-monotonically with decreasing 𝑉𝐺 and reaches
235
+
236
+ SiO2
237
+ Si
238
+ Imax
239
+ Iminzero at 𝑉𝐺 = −40 𝑉. At this voltage the Seebeck coefficient of MoS2 on SiO2 reaches that of Indium
240
+ (SIn = + 1.7 µV/K)59.
241
+ In conclusion we demonstrated that substrate engineering can be used to generate a thermoelectric
242
+ junction in atomically thin MoS2 devices. Similar strategies can be employed in other low dimensional
243
+ materials that exhibit large and tunable Seebeck coefficients. This might in particular be promising at
244
+ low temperature where effects like band-hybridization and Kondo scattering can produce a very
245
+ strong photothermoelectric effect9.
246
+ Author Contributions
247
+ T.S.K. designed and conceived the experiments, T.S.K. and P.G. prepared the manuscript. M.R.
248
+ fabricated devices, performed the experiment and analyzed the results. D.P. prepared the substrates,
249
+ performed simulations, and helped with the experiments. O.O. performed the AFM and KPFM
250
+ measurements and A.S. performed some of the earlier measurements. J.S., Y.H. and P.G. performed
251
+ the SThGM measurements and analyzed the results. P.S.D and J.M.R.W contributed discussions on the
252
+ implementation of VITA-DM-GLA-1 SThM probes. All authors discussed the results and reviewed the
253
+ final version of the manuscript.
254
+ Competing Interests
255
+ The Authors declare no Competing Financial or Non-Financial Interests.
256
+ Methods
257
+ SPCM setup is a commercially available setup from LST Scientific Instruments Ltd. which offers a
258
+ compact scanning head with easily interchangeable lasers. Two SR-830 Lock-in amplifiers are
259
+ employed, one for the reflection map and the other for the photocurrent/voltage measurements. In
260
+ the main text we reported the photocurrent (a measurement of the photovoltage is given in Figure
261
+ S2). The incident laser beam is chopped at a certain frequency and focused onto the sample through
262
+ a 40x objective. The electrical response is collected through gold probes pressed on the electrical
263
+ contacts of the devices and the signal is amplified by a lock-in amplifier set to the chopping frequency
264
+ of the laser beam. Although various wavelengths (406, 532, 633 nm) are employed for the
265
+ measurements, unless otherwise stated we used 532 nm in the experiments reported in the main text
266
+ (see Figure S3 for SPCM measurements with different wavelengths). All the excitation energies are
267
+ above the indirect bandgap of the few layer MoS2.
268
+ Scanning Thermal Microscopy measurements were performed with a Dimension Icon (Bruker) AFM
269
+ under ambient conditions. The probe used in the experiments is VITA-DM-GLA-1 made of a palladium
270
+ heater on a silicon nitride cantilever and tip. The radius is typically in the order of 25-40 nm. The heater
271
+ is part of a modified Wheatstone bridge and is driven by a combined 91 kHz AC and DC bias, as
272
+ reported elsewhere. The signal is detected via a SR830 lock-in amplifier and fed in the AFM controller.
273
+ This signal monitors the probe temperature and thus allows to locally map the thermal conductance
274
+ of the sample. In this work, the power supplied to the probe gives rise to a 45K excess temperature.
275
+ While the probe is scanning the sample, we measure the voltage drop across the device using a low
276
+ noise preamplifier (SR 560). This voltage is created by the local heating induced by the hot SThM tip.
277
+ It is then fed also to the AFM controller and recorded simultaneously. In this study, the thermovoltage
278
+ measurements were performed without modulating the heater power. We note that it is also possible
279
+ to generate similar maps by varying the heater temperature and detecting thermovoltage via lock-in
280
+ detection.
281
+
282
+ Data Availability
283
+ Source data available from the corresponding authors upon request.
284
+ References
285
+ (1)
286
+ Chen, J. H.; Jang, C.; Adam, S.; Fuhrer, M. S.; Williams, E. D.; Ishigami, M. Charged-Impurity
287
+ Scattering in Graphene. Nat. Phys. 2008 45 2008, 4 (5), 377–381.
288
+ https://doi.org/10.1038/nphys935.
289
+ (2)
290
+ Zhang, Y.; Brar, V. W.; Girit, C.; Zettl, A.; Crommie, M. F. Origin of Spatial Charge
291
+ Inhomogeneity in Graphene. Nat. Phys. 2009 510 2009, 5 (10), 722–726.
292
+ https://doi.org/10.1038/nphys1365.
293
+ (3)
294
+ Wang, Q. H.; Jin, Z.; Kim, K. K.; Hilmer, A. J.; Paulus, G. L. C.; Shih, C. J.; Ham, M. H.; Sanchez-
295
+ Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kong, J.; Jarillo-Herrero, P.; Strano, M. S.
296
+ Understanding and Controlling the Substrate Effect on Graphene Electron-Transfer Chemistry
297
+ via Reactivity Imprint Lithography. Nat. Chem. 2012 49 2012, 4 (9), 724–732.
298
+ https://doi.org/10.1038/nchem.1421.
299
+ (4)
300
+ Bao, W.; Cai, X.; Kim, D.; Sridhara, K.; Fuhrer, M. S. High Mobility Ambipolar MoS2 Field-Effect
301
+ Transistors: Substrate and Dielectric Effects. Appl. Phys. Lett. 2013, 102 (4), 042104.
302
+ https://doi.org/10.1063/1.4789365.
303
+ (5)
304
+ Robinson, B. J.; Giusca, C. E.; Gonzalez, Y. T.; DKay, N.; Kazakova, O.; Kolosov, O. V. Structural,
305
+ Optical and Electrostatic Properties of Single and Few-Layers MoS2: Effect of Substrate. 2D
306
+ Mater. 2015, 2 (1), 015005. https://doi.org/10.1088/2053-1583/2/1/015005.
307
+ (6)
308
+ Wang, L.; Nilsson, Z. N.; Tahir, M.; Chen, H.; Sambur, J. B. Influence of the Substrate on the
309
+ Optical and Photo-Electrochemical Properties of Monolayer MoS2. ACS Appl. Mater.
310
+ Interfaces 2020, 12 (13), 15034–15042.
311
+ https://doi.org/10.1021/ACSAMI.9B21230/ASSET/IMAGES/LARGE/AM9B21230_0005.JPEG.
312
+ (7)
313
+ Buscema, M.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. The Effect of the
314
+ Substrate on the Raman and Photoluminescence Emission of Single-Layer MoS2. Nano Res.
315
+ 2014, 7 (4), 561–571. https://doi.org/10.1007/s12274-014-0424-0.
316
+ (8)
317
+ Sercombe, D.; Schwarz, S.; Pozo-Zamudio, O. Del; Liu, F.; Robinson, B. J.; Chekhovich, E. A.;
318
+ Tartakovskii, I. I.; Kolosov, O.; Tartakovskii, A. I. Optical Investigation of the Natural Electron
319
+ Doping in Thin MoS 2 Films Deposited on Dielectric Substrates. Sci. Rep. 2013, 3 (1), 1–6.
320
+ https://doi.org/10.1038/srep03489.
321
+ (9)
322
+ Wu, J.; Liu, Y.; Liu, Y.; Liu, Y.; Cai, Y.; Zhao, Y.; Ng, H. K.; Watanabe, K.; Taniguchi, T.; Zhang, G.;
323
+ Qiu, C. W.; Chi, D.; Neto, A. H. C.; Thong, J. T. L.; Loh, K. P.; Hippalgaonkar, K. Large
324
+ Enhancement of Thermoelectric Performance in MoS2/h-BN Heterostructure Due to
325
+ Vacancy-Induced Band Hybridization. Proc. Natl. Acad. Sci. U. S. A. 2020, 117 (25), 13929–
326
+ 13936. https://doi.org/10.1073/pnas.2007495117.
327
+ (10)
328
+ Herring, C. Theory of the Thermoelectric Power of Semiconductors. Phys. Rev. 1954, 96 (5),
329
+ 1163–1187. https://doi.org/10.1103/PhysRev.96.1163.
330
+ (11)
331
+ Ng, H. K.; Chi, D.; Hippalgaonkar, K. Effect of Dimensionality on Thermoelectric Powerfactor
332
+ of Molybdenum Disulfide. J. Appl. Phys. 2017, 121 (20), 204303.
333
+ https://doi.org/10.1063/1.4984138.
334
+ (12)
335
+ Cui, X.; Lee, G. H.; Kim, Y. D.; Arefe, G.; Huang, P. Y.; Lee, C. H.; Chenet, D. A.; Zhang, X.; Wang,
336
+ L.; Ye, F.; Pizzocchero, F.; Jessen, B. S.; Watanabe, K.; Taniguchi, T.; Muller, D. A.; Low, T.; Kim,
337
+
338
+ P.; Hone, J. Multi-Terminal Transport Measurements of MoS2 Using a van Der Waals
339
+ Heterostructure Device Platform. Nat. Nanotechnol. 2015 106 2015, 10 (6), 534–540.
340
+ https://doi.org/10.1038/nnano.2015.70.
341
+ (13)
342
+ Jiang, J.; Chen, Z.; Hu, Y.; Xiang, Y.; Zhang, L.; Wang, Y.; Wang, G.-C.; Shi, J. Flexo-Photovoltaic
343
+ Effect in MoS2. Nat. Nanotechnol. 2021 168 2021, 16 (8), 894–901.
344
+ https://doi.org/10.1038/s41565-021-00919-y.
345
+ (14)
346
+ Rice, C.; Young, R. J.; Zan, R.; Bangert, U.; Wolverson, D.; Georgiou, T.; Jalil, R.; Novoselov, K.
347
+ S. Raman-Scattering Measurements and First-Principles Calculations of Strain-Induced
348
+ Phonon Shifts in Monolayer MoS2. Phys. Rev. B - Condens. Matter Mater. Phys. 2013, 87 (8),
349
+ 081307. https://doi.org/10.1103/PhysRevB.87.081307.
350
+ (15)
351
+ Hippalgaonkar, K.; Wang, Y.; Ye, Y.; Qiu, D. Y.; Zhu, H.; Wang, Y.; Moore, J.; Louie, S. G.; Zhang,
352
+ X. High Thermoelectric Power Factor in Two-Dimensional Crystals of Mo S2. Phys. Rev. B
353
+ 2017, 95 (11), 115407. https://doi.org/10.1103/PHYSREVB.95.115407/FIGURES/8/MEDIUM.
354
+ (16)
355
+ Kayyalha, M.; Maassen, J.; Lundstrom, M.; Shi, L.; Chen, Y. P. Gate-Tunable and Thickness-
356
+ Dependent Electronic and Thermoelectric Transport in Few-Layer MoS2. J. Appl. Phys. 2016,
357
+ 120 (13), 134305. https://doi.org/10.1063/1.4963364.
358
+ (17)
359
+ Liu, L.; Lu, Y.; Guo, J. On Monolayer MoS2 Field-Effect Transistors at the Scaling Limit. IEEE
360
+ Trans. Electron Devices 2013, 60 (12), 4133–4139.
361
+ https://doi.org/10.1109/TED.2013.2284591.
362
+ (18)
363
+ Dagan, R.; Vaknin, Y.; Henning, A.; Shang, J. Y.; Lauhon, L. J.; Rosenwaks, Y. Two-Dimensional
364
+ Charge Carrier Distribution in MoS2 Monolayer and Multilayers. Appl. Phys. Lett. 2019, 114
365
+ (10), 101602. https://doi.org/10.1063/1.5078711.
366
+ (19)
367
+ Chae, W. H.; Cain, J. D.; Hanson, E. D.; Murthy, A. A.; Dravid, V. P. Substrate-Induced Strain
368
+ and Charge Doping in CVD-Grown Monolayer MoS2. Appl. Phys. Lett. 2017, 111 (14), 143106.
369
+ https://doi.org/10.1063/1.4998284.
370
+ (20)
371
+ Ng, H. K.; Chi, D.; Hippalgaonkar, K. Effect of Dimensionality on Thermoelectric Powerfactor
372
+ of Molybdenum Disulfide. J. Appl. Phys. 2017, 121 (20), 204303.
373
+ https://doi.org/10.1063/1.4984138.
374
+ (21)
375
+ Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; Van Der Zant, H. S.
376
+ J.; Steele, G. A. Deterministic Transfer of Two-Dimensional Materials by All-Dry Viscoelastic
377
+ Stamping. 2D Mater. 2014, 1 (1), 011002. https://doi.org/10.1088/2053-1583/1/1/011002.
378
+ (22)
379
+ Mehmood, N.; Rasouli, H. R.; Çakıroğlu, O.; Kasırga, T. S. Photocurrent Generation in a
380
+ Metallic Transition-Metal Dichalcogenide. Phys. Rev. B 2018, 97 (19), 195412.
381
+ https://doi.org/10.1103/PhysRevB.97.195412.
382
+ (23)
383
+ Rasouli, H. R.; Kim, J.; Mehmood, N.; Sheraz, A.; Jo, M.; Song, S.; Kang, K.; Kasirga, T. S.
384
+ Electric-Field-Induced Reversible Phase Transitions in a Spontaneously Ion-Intercalated 2D
385
+ Metal Oxide. Nano Lett. 2021, 21 (9), 3997–4005.
386
+ https://doi.org/10.1021/ACS.NANOLETT.1C00735.
387
+ (24)
388
+ Razeghi, M.; Üstünçelik, M.; Shabani, F.; Demir, H. V.; Kasırga, T. S. Plasmon-Enhanced
389
+ Photoresponse of Single Silver Nanowires and Their Network Devices. Nanoscale Horizons
390
+ 2022, 7 (4), 396–402. https://doi.org/10.1039/d1nh00629k.
391
+ (25)
392
+ Kim, B.-K.; Kim, T.-H.; Choi, D.-H.; Kim, H.; Watanabe, K.; Taniguchi, T.; Rho, H.; Kim, J.-J.; Kim,
393
+ Y.-H.; Bae, M.-H. Origins of Genuine Ohmic van Der Waals Contact between Indium and
394
+ MoS2. npj 2D Mater. Appl. 2021, 5 (1), 9. https://doi.org/10.1038/s41699-020-00191-z.
395
+
396
+ (26)
397
+ Wang, Y.; Kim, J. C.; Wu, R. J.; Martinez, J.; Song, X.; Yang, J.; Zhao, F.; Mkhoyan, A.; Jeong, H.
398
+ Y.; Chhowalla, M. Van Der Waals Contacts between Three-Dimensional Metals and Two-
399
+ Dimensional Semiconductors. Nature 2019, 568 (7750), 70–74.
400
+ https://doi.org/10.1038/s41586-019-1052-3.
401
+ (27)
402
+ Kasirga, T. S. Thermal Conductivity Measurements in Atomically Thin Materials and Devices;
403
+ SpringerBriefs in Applied Sciences and Technology; Springer Singapore: Singapore, 2020.
404
+ https://doi.org/10.1007/978-981-15-5348-6.
405
+ (28)
406
+ Kasirga, T. S.; Sun, D.; Park, J. H.; Coy, J. M.; Fei, Z.; Xu, X.; Cobden, D. H. Photoresponse of a
407
+ Strongly Correlated Material Determined by Scanning Photocurrent Microscopy. Nat.
408
+ Nanotechnol. 2012, 7 (11). https://doi.org/10.1038/nnano.2012.176.
409
+ (29)
410
+ Çakıroğlu, O.; Mehmood, N.; Çiçek, M. M.; Aikebaier, A.; Rasouli, H. R.; Durgun, E.; Kasırga, T.
411
+ S. Thermal Conductivity Measurements in Nanosheets via Bolometric Effect. 2D Mater. 2020,
412
+ 7 (3), 035003. https://doi.org/10.1088/2053-1583/ab8048.
413
+ (30)
414
+ Buscema, M.; Barkelid, M.; Zwiller, V.; Zant, H. S. J. van der; Steele, G. A.; Castellanos-Gomez,
415
+ A. Large and Tunable Photothermoelectric Effect in Single-Layer MoS2. Nano Lett. 2013, 13
416
+ (2), 358–363. https://doi.org/10.1021/NL303321G.
417
+ (31)
418
+ Zhang, Y.; Li, H.; Wang, L.; Wang, H.; Xie, X.; Zhang, S. L.; Liu, R.; Qiu, Z. J. Photothermoelectric
419
+ and Photovoltaic Effects Both Present in MoS2. Sci. Rep. 2015, 5 (1), 1–7.
420
+ https://doi.org/10.1038/srep07938.
421
+ (32)
422
+ Utama, M. I. B.; Kleemann, H.; Zhao, W.; Ong, C. S.; da Jornada, F. H.; Qiu, D. Y.; Cai, H.; Li, H.;
423
+ Kou, R.; Zhao, S.; Wang, S.; Watanabe, K.; Taniguchi, T.; Tongay, S.; Zettl, A.; Louie, S. G.;
424
+ Wang, F. A Dielectric-Defined Lateral Heterojunction in a Monolayer Semiconductor. Nat.
425
+ Electron. 2019, 2 (2), 60–65. https://doi.org/10.1038/s41928-019-0207-4.
426
+ (33)
427
+ Harzheim, A.; Evangeli, C.; Kolosov, O. V.; Gehring, P. Direct Mapping of Local Seebeck
428
+ Coefficient in 2D Material Nanostructures via Scanning Thermal Gate Microscopy. 2D Mater.
429
+ 2020, 7 (4), 041004. https://doi.org/10.1088/2053-1583/aba333.
430
+ (34)
431
+ Spièce, J.; Evangeli, C.; Robson, A. J.; El Sachat, A.; Haenel, L.; Alonso, M. I.; Garriga, M.;
432
+ Robinson, B. J.; Oehme, M.; Schulze, J.; Alzina, F.; Sotomayor Torres, C.; Kolosov, O. V.
433
+ Quantifying Thermal Transport in Buried Semiconductor Nanostructures: Via Cross-Sectional
434
+ Scanning Thermal Microscopy. Nanoscale 2021, 13 (24), 10829–10836.
435
+ https://doi.org/10.1039/d0nr08768h.
436
+ (35)
437
+ Spiece, J.; Evangeli, C.; Lulla, K.; Robson, A.; Robinson, B.; Kolosov, O. Improving Accuracy of
438
+ Nanothermal Measurements via Spatially Distributed Scanning Thermal Microscope Probes. J.
439
+ Appl. Phys. 2018, 124 (1), 015101. https://doi.org/10.1063/1.5031085.
440
+ (36)
441
+ Lloyd, D.; Liu, X.; Christopher, J. W.; Cantley, L.; Wadehra, A.; Kim, B. L.; Goldberg, B. B.; Swan,
442
+ A. K.; Bunch, J. S. Band Gap Engineering with Ultralarge Biaxial Strains in Suspended
443
+ Monolayer MoS2. Nano Lett. 2016, 16 (9), 5836–5841.
444
+ https://doi.org/10.1021/ACS.NANOLETT.6B02615/SUPPL_FILE/NL6B02615_SI_001.PDF.
445
+ (37)
446
+ Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and Breaking of Ultrathin MoS 2. ACS Nano 2011, 5
447
+ (12), 9703–9709. https://doi.org/10.1021/nn203879f.
448
+ (38)
449
+ Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Of Monolayer Graphene. 2008, 321 (July), 385–388.
450
+ (39)
451
+ Castellanos-Gomez, A.; Poot, M.; Steele, G. A.; Van Der Zant, H. S. J.; Agraït, N.; Rubio-
452
+ Bollinger, G. Elastic Properties of Freely Suspended MoS2 Nanosheets. Adv. Mater. 2012, 24
453
+ (6), 772–775. https://doi.org/10.1002/adma.201103965.
454
+
455
+ (40)
456
+ Li, Z.; Lv, Y.; Ren, L.; Li, J.; Kong, L.; Zeng, Y.; Tao, Q.; Wu, R.; Ma, H.; Zhao, B.; Wang, D.; Dang,
457
+ W.; Chen, K.; Liao, L.; Duan, X.; Duan, X.; Liu, Y. Efficient Strain Modulation of 2D Materials via
458
+ Polymer Encapsulation. Nat. Commun. 2020, 11 (1), 1151. https://doi.org/10.1038/s41467-
459
+ 020-15023-3.
460
+ (41)
461
+ Dimple; Jena, N.; De Sarkar, A. Compressive Strain Induced Enhancement in Thermoelectric-
462
+ Power-Factor in Monolayer MoS2 Nanosheet. J. Phys. Condens. Matter 2017, 29 (22),
463
+ 225501. https://doi.org/10.1088/1361-648X/aa6cbc.
464
+ (42)
465
+ Fichter, W. B. Some Solutions for the Large Deflections of Uniformly Loaded Circular
466
+ Membranes. NASA Tech. Pap. 1997, 3658.
467
+ (43)
468
+ Yang, M. M.; Kim, D. J.; Alexe, M. Flexo-Photovoltaic Effect. Science (80-. ). 2018, 360 (6391),
469
+ 904–907. https://doi.org/10.1126/science.aan3256.
470
+ (44)
471
+ Jiang, J.; Chen, Z.; Hu, Y.; Xiang, Y.; Zhang, L.; Wang, Y.; Wang, G.-C.; Shi, J. Flexo-Photovoltaic
472
+ Effect in MoS2. Nat. Nanotechnol. 2021. https://doi.org/10.1038/s41565-021-00919-y.
473
+ (45)
474
+ Huang, Y.; Wang, Y. K.; Huang, X. Y.; Zhang, G. H.; Han, X.; Yang, Y.; Gao, Y.; Meng, L.; Wang,
475
+ Y.; Geng, G. Z.; Liu, L. W.; Zhao, L.; Cheng, Z. H.; Liu, X. F.; Ren, Z. F.; Yang, H. X.; Hao, Y.; Gao,
476
+ H. J.; Zhou, X. J.; Ji, W.; Wang, Y. L. An Efficient Route to Prepare Suspended Monolayer for
477
+ Feasible Optical and Electronic Characterizations of Two-Dimensional Materials. InfoMat
478
+ 2022, 4 (2), e12274. https://doi.org/10.1002/inf2.12274.
479
+ (46)
480
+ Mootheri, V.; Leonhardt, A.; Verreck, D.; Asselberghs, I.; Huyghebaert, C.; de Gendt, S.; Radu,
481
+ I.; Lin, D.; Heyns, M. Understanding Ambipolar Transport in MoS2 Field Effect Transistors: The
482
+ Substrate Is the Key. Nanotechnology 2021, 32 (13), 135202. https://doi.org/10.1088/1361-
483
+ 6528/abd27a.
484
+ (47)
485
+ Drüppel, M.; Deilmann, T.; Krüger, P.; Rohlfing, M. Diversity of Trion States and Substrate
486
+ Effects in the Optical Properties of an MoS2 Monolayer. Nat. Commun. 2017 81 2017, 8 (1),
487
+ 1–7. https://doi.org/10.1038/s41467-017-02286-6.
488
+ (48)
489
+ Lu, C. P.; Li, G.; Mao, J.; Wang, L. M.; Andrei, E. Y. Bandgap, Mid-Gap States, and Gating
490
+ Effects in MoS2. Nano Lett. 2014, 14 (8), 4628–4633. https://doi.org/10.1021/nl501659n.
491
+ (49)
492
+ Ochedowski, O.; Marinov, K.; Scheuschner, N.; Poloczek, A.; Bussmann, B. K.; Maultzsch, J.;
493
+ Schleberger, M. Effect of Contaminations and Surface Preparation on the Work Function of
494
+ Single Layer MoS2. Beilstein J. Nanotechnol. 2014, 5 (1), 291–297.
495
+ https://doi.org/10.3762/bjnano.5.32.
496
+ (50)
497
+ Sun, D.; Aivazian, G.; Jones, A. M.; Ross, J. S.; Yao, W.; Cobden, D.; Xu, X. Ultrafast Hot-Carrier-
498
+ Dominated Photocurrent in Graphene. Nat. Nanotechnol. 2011 72 2012, 7 (2), 114–118.
499
+ https://doi.org/10.1038/nnano.2011.243.
500
+ (51)
501
+ Lee, C.; Hong, J.; Lee, W. R.; Kim, D. Y.; Shim, J. H. Density Functional Theory Investigation of
502
+ the Electronic Structure and Thermoelectric Properties of Layered MoS2, MoSe2 and Their
503
+ Mixed-Layer Compound. J. Solid State Chem. 2014, 211, 113–119.
504
+ https://doi.org/10.1016/j.jssc.2013.12.012.
505
+ (52)
506
+ Siao, M. D.; Shen, W. C.; Chen, R. S.; Chang, Z. W.; Shih, M. C.; Chiu, Y. P.; Cheng, C. M. Two-
507
+ Dimensional Electronic Transport and Surface Electron Accumulation in MoS2. Nat. Commun.
508
+ 2018, 9 (1), 1–12. https://doi.org/10.1038/s41467-018-03824-6.
509
+ (53)
510
+ Dagan, R.; Vaknin, Y.; Henning, A.; Shang, J. Y.; Lauhon, L. J.; Rosenwaks, Y. Two-Dimensional
511
+ Charge Carrier Distribution in MoS2 Monolayer and Multilayers. Appl. Phys. Lett. 2019, 114
512
+ (10), 101602. https://doi.org/10.1063/1.5078711.
513
+
514
+ (54)
515
+ Jahangir, I.; Koley, G.; Chandrashekhar, M. V. S. Back Gated FETs Fabricated by Large-Area,
516
+ Transfer-Free Growth of a Few Layer MoS2 with High Electron Mobility. Appl. Phys. Lett.
517
+ 2017, 110 (18), 182108. https://doi.org/10.1063/1.4982595.
518
+ (55)
519
+ Dobusch, L.; Furchi, M. M.; Pospischil, A.; Mueller, T.; Bertagnolli, E.; Lugstein, A. Electric Field
520
+ Modulation of Thermovoltage in Single-Layer MoS 2. Appl. Phys. Lett. 2014, 105 (25), 253103.
521
+ https://doi.org/10.1063/1.4905014.
522
+ (56)
523
+ Ashcroft, N.; Mermin, D. Solid State Physics; Thomson Learning Inc.: London, 1976.
524
+ (57)
525
+ Joo, M. K.; Moon, B. H.; Ji, H.; Han, G. H.; Kim, H.; Lee, G.; Lim, S. C.; Suh, D.; Lee, Y. H.
526
+ Electron Excess Doping and Effective Schottky Barrier Reduction on the MoS2/h-BN
527
+ Heterostructure. Nano Lett. 2016, 16 (10), 6383–6389.
528
+ https://doi.org/10.1021/acs.nanolett.6b02788.
529
+ (58)
530
+ Li, L.; Lee, I.; Lim, D.; Kang, M.; Kim, G. H.; Aoki, N.; Ochiai, Y.; Watanabe, K.; Taniguchi, T.
531
+ Raman Shift and Electrical Properties of MoS2 Bilayer on Boron Nitride Substrate.
532
+ Nanotechnology 2015, 26 (29), 295702. https://doi.org/10.1088/0957-4484/26/29/295702.
533
+ (59)
534
+ Shakouri, A.; Li, S. Thermoelectric Power Factor for Electrically Conductive Polymers. In
535
+ International Conference on Thermoelectrics, ICT, Proceedings; IEEE, 1999; pp 402–406.
536
+ https://doi.org/10.1109/ict.1999.843415.
537
+
538
+
539
+
540
+
541
+ Supporting Information: Single-material MoS2 thermoelectric junction
542
+ enabled by substrate engineering
543
+ Mohammadali Razeghi1, Jean Spiece3, Oğuzhan Oğuz1, Doruk Pehlivanoğlu2, Yubin Huang3, Ali
544
+ Sheraz2, Phillip S. Dobson4, Jonathan M. R. Weaver4, Pascal Gehring3, T. Serkan Kasırga1,2*
545
+ 1 Bilkent University UNAM – Institute of Materials Science and Nanotehcnology, Bilkent 06800 Ankara,
546
+ Turkey
547
+ 2 Department of Physics, Bilkent University, Bilkent 06800 Ankara, Turkey
548
+ 3 IMCN/NAPS, Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
549
+ 4 James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, U.K
550
+ *Corresponding Author: kasirga@unam.bilkent.edu.tr
551
+
552
+ 1. Theoretical prediction of the substrate-effect induced Seebeck coefficient difference in MoS2
553
+ As discussed in the main text, we assume that the Seebeck coefficient S in thermal equilibrium is
554
+ composed of contributions from the energy-dependent diffusion (𝑆𝑁), scattering (𝑆τ) and the phonon-
555
+ drag (𝑆𝑝𝑑), so that 𝑆 = 𝑆𝑁 + 𝑆𝜏 + 𝑆𝑝𝑑. Here, 𝑆𝑁 and 𝑆τ terms can be written from the Mott relation
556
+ assuming that MoS2 is in the highly conductive state and electrons are the majority carriers:
557
+ 𝑆τ = −
558
+ 𝜋2𝑘𝐵
559
+ 2𝑇
560
+ 3𝑒
561
+ 𝜕ln𝜏
562
+ 𝜕𝐸 | 𝐸=𝐸𝐹 and 𝑆𝑁 = ±
563
+ 𝑘𝐵
564
+ 𝑒 [
565
+ 𝐸𝐹−𝐸𝐶
566
+ 𝑘𝐵𝑇 −
567
+ (𝑟+2)𝐹𝑟+1(𝜂)
568
+ (𝑟+1)𝐹𝑟(𝜂) ]
569
+ As mentioned in the main text, 𝑆τ is zero as 𝜏 is energy independent in the 2d limit. 𝑆𝑁 term is
570
+ composed of constants related to material properties, scattering parameter 𝑟 and the Fermi integral
571
+ of the 𝑟-th order: 𝐹𝑟 = ∫
572
+ [
573
+ 𝑥𝑚
574
+ 𝑒𝑥−𝜂 + 1]𝑑𝑥
575
+
576
+ 0
577
+ . The scattering parameters of 2d materials are listed in Table
578
+ 1.1,2 Here, as discussed in detail in Ref. 1, 𝑟 = 0 adequately accounts for the acoustic phonon scattering
579
+ and small deviations of experimental data from the calculated values is due to the other scattering
580
+ mechanisms. As a result, at the room temperature 𝑆𝑁 for suspended MoS2 (1012 cm-2) is about -400
581
+ µV/K and for SiO2 supported MoS2 (1013 cm-2) is about -200 µV/K.
582
+ Table 1. Scattering parameters 𝒓 of 2d materials.
583
+ Scattering mechanism
584
+ 𝒓
585
+ Charged Impurity Scattering
586
+ 3/2
587
+ Acoustic Phonon Scattering
588
+ 0
589
+ Intervalley Scattering
590
+ 0
591
+ Strongly Screened Coulomb Scattering
592
+ -1/2
593
+
594
+ 𝑆𝑝𝑑 term can be estimated from the theory of phonon-drag in semiconductors in the first order as
595
+ 𝑆𝑝𝑑 = −
596
+ 𝛽𝑣𝑝𝑙𝑝
597
+ 𝜇𝑇 where, 𝑣𝑝 and 𝑙𝑝 are the group velocity and the mean free path of a phonon, 𝛽 is a
598
+ parameter to modify the electron-phonon interaction strength and ranges from 0 to 1, and 𝜇 is the
599
+ electron mobility, respectively. As the dominant charge carriers are electrons, 𝑆𝑝𝑑 term has a negative
600
+ sign. We use the parameters given in Table 2. Based on the values given in the table we obtain 𝑆𝑝𝑑
601
+ 𝑆𝑖𝑂2 =
602
+ −230 µV/K and ���𝑝𝑑
603
+ 𝑆𝑢𝑠 = −100 µV/K.
604
+
605
+ The total 𝑆 = 𝑆𝑁 + 𝑆𝑝𝑑 for suspended and SiO2 supported parts can be calculated by adding both
606
+ contributions. 𝑆𝑆𝑢𝑠 = −500 µV/K and 𝑆𝑆𝑖𝑂2 = −430 µV/K. Of course, we consider this to be a rough
607
+ estimate as we ignore charged impurity scattering and strongly screeded Coulomb scattering. Also
608
+ there are certain errors associated with the measurement of the parameters used for the calculation
609
+ of the Seebeck coefficients. However, overall, this calculation shows that the substrate induced effect
610
+ must be present under right experimental conditions.
611
+ Table 2. Parameters used for 𝑺𝒑𝒅 calculation
612
+ Parameter
613
+ On SiO2 (Ref. 3)
614
+ Suspended (Ref. 3)
615
+ 𝑣𝑝
616
+ 7 105 cm/s
617
+ 7 105 cm/s
618
+ 𝑙𝑝
619
+ 5 nm
620
+ 20 nm
621
+ 𝜇
622
+ 5 cm2/V.s
623
+ 50 cm2/V.s
624
+
625
+ 2. SPCM map on a gold electrode substrate engineered MoS2 device
626
+ Throughout the study we used indium contacted devices thanks to their rapid fabrication. To compare
627
+ our indium device results, we fabricated gold contacted devices. Figure S1 shows the optical
628
+ microscope images and corresponding SPCM reflection and photocurrent maps. There is no qualitative
629
+ difference between the indium contacted devices and gold contacted device in the substrate-
630
+ engineered photocurrent. Despite IV measurement is collected from 0.25 to -0.25 V its rectifying
631
+ behaviour can be observed. Power dependence of the photocurrent from the substrate engineered
632
+ junction is also comparable to the one reported in indium contacted devices.
633
+
634
+ Figure S1 a. Optical microscope micrograph of a gold contacted substrate engineered MoS2 device is
635
+ shown. Scale bar is 10 µm. b. SPCM reflection map and c. photocurrent map. d. IV curve shows signs
636
+ of rectifying nature of the contacts. e. Power dependence of the photocurrent at one of the side of
637
+ the junction is plotted in a log-log graph and the exponent is about 0.63.
638
+
639
+ b
640
+ a
641
+ 3. Scanning photovoltage microscopy, AFM and KPFM measurements on a parallel trench
642
+ device
643
+ Figure S2 shows an MoS2 device fabricated on trenches drilled on sapphire with different depths. We
644
+ performed SPVM, AFM and KPFM Measurements. First, AFM measurements show that the crystal is
645
+ stuck to the bottom of the 100 nm deep trench (Figure S2b). For the rest of the trenches the flake
646
+ bulges about 10 nm above the surface (Figure S2c). AFM height trace map also reveals a peculiar
647
+ wrinkle formation over the suspended part of the flake.
648
+ In this measurement we operated the scanning microscope at photovoltage mode. Figure S2d shows
649
+ the reflection map and the corresponding photovoltage map. The bipolar response is evident with
650
+ slightly lower positive signal in some of the trenches. This asymmetry can be explained by lower
651
+ heating of one side of the samples due to the scan direction. One important observation that agrees
652
+ well with the photothermoelectric photoresponse is that the 100 nm trench shows very small
653
+ photovoltage as compared to other trenches.
654
+ Figure S2e shows the KPFM and AFM profiles. The suspended part of the crystal has 60 meV lower
655
+ surface potential difference. This is consistent with other KPFM measurements. The lower panel shows
656
+ the variation in the height over the wrinkles. The workfunction is calculated with a calibrated tip and
657
+ it follows the wrinkles of the sample. However, the difference in the SPD is not due to the variations in
658
+ the height profile of the crystal. The change in the workfunciton is a good indication of the changes in
659
+ the electronic landscape of the device upon suspension. Small variations along the wrinkles are also
660
+ expected due to formation of varying stress regions along the crystal.
661
+
662
+ Figure S2 a. Optical microscope image of the device with trench depths labelled next to it. b. AFM
663
+ height trace map and c. line trace taken along the height trace. The bulge of the crystal over the
664
+ trenches is clear. d. Reflection and photovoltage maps obtained by operating the scanning microscope
665
+ in photovoltage mode. Scale bar is 5 µm. e. Left panel shows the workfunction and height taken over
666
+
667
+ Profile1
668
+ 103nm
669
+ Onmthe red lines marked on the maps given in the right panel. The variation of the workfunction along the
670
+ trench is very small and correlated with the wrinkles of the crystal.
671
+ 4. SPCM maps taken at different laser wavelengths and incidence polarization
672
+ We used three different wavelengths, 406, 532 and 633 nm, in our experiments all of them which are
673
+ at an energy larger than the band gap of MoS2. Figure S3 shows the SPCM results collected with
674
+ different laser wavelengths. Also, polarization dependence of the photocurrent measured at each end
675
+ of the trench as well as a point over the contact is given in Figure S3f. There is no polarization
676
+ dependence of the photocurrent. This shows that The effect is not due to built in polarization fields.
677
+
678
+ Figure S3 a. Optical microscope image of a two-terminal substrate-engineered MoS2 device with
679
+ different trench widths. Scale bar is 10 µm. b. SPCM reflection map of the region marked with yellow
680
+ rectangle in a. c, d and e show photocurrent map taken at different wavelengths. At each run laser
681
+ power is set to ~40 µW. The measured signal in all three measurements are very close and the overall
682
+ photocurrent features are the same. f. Incident polarization of the 633 nm laser is rotated and 𝐼𝑃𝐶 is
683
+ measured at three different points marked by colored arrows on d, black dots- near contact, red dots-
684
+ at the positive side and blue dots- at the negative side of the trench. There is no polarization
685
+ dependence of the measured photocurrent at the three points where photocurrent is measured.
686
+ 5. Finite element simulation of a substrate modified thermoelectric junction
687
+ To understand how a substrate modified thermoelectric junction would behave depending on how the
688
+ contacts are configured, we performed finite element analysis simulations using COMSOL
689
+ Multiphysics. An irregularly shaped crystal is modelled over a substrate with a hole and voltage at a
690
+ floating terminal is measured with respect to different laser positions. The observed pattern agrees
691
+ with our measurements. Figure S4 shows the thermoelectric emf generated and temperature
692
+ distribution maps.
693
+
694
+ 406 nm
695
+ 532 nm
696
+ 633 nm
697
+ Figure S4 a. An arbitrary crystal is modelled over a SiO2 substrate with a hole. The outline drawn over
698
+ the voltage distribution map shows the outline of the crystal and the outline of the hole. The red line
699
+ indicates the ground terminal and the blue line indicates the floating voltage terminal where the
700
+ photothermoelectric emf is measured from like in the experiments. b. For comparison, another
701
+ terminal is simulated as the floating terminal. c. Temperature distribution vs. laser position is shown.
702
+ As clear, the maximum temperature rise is achieved at the center of the hole.
703
+ 6. KPFM on h-BN supported and suspended MoS2
704
+
705
+ Figure S5 a. Optical micrograph of an MoS2 crystal partially suspended over a trench and partially
706
+ supported on h-BN (outlined by blacked dashed lines). White dashed square shows the AFM region. b.
707
+ AFM height trace map and c. corresponding SPD map is given. d. SPD line traces from the colored lines
708
+ in c are plotted. The difference between the SPD in h-BN supported, suspended and SiO2 supported
709
+ parts are evident. Scale bars are 2 µm.
710
+ 7. Gate dependent measurements
711
+ We performed gate dependent SPCM measurements both on suspended and h-BN supported MoS2
712
+ devices. In both cases, we used 1 µm SiO2 coated Si wafers. Si is used as the back gate in both device
713
+ configurations. We reported the h-BN supported junctions in the main text as devices over holes
714
+ showed significant change upon application of negative gate bias. Figure S5 shows the degradation of
715
+ the suspended device. After application of a few volts the device irreversibly shows a contrast change
716
+
717
+ hBN
718
+ 0.12
719
+ 0.10
720
+ hBNSupported
721
+ 58mV
722
+ Suspended
723
+ :35mV
724
+ Sio,Supported
725
+ 0.06
726
+ 0.04
727
+ 0.0
728
+ 0.5
729
+ 1.0
730
+ 1.5
731
+ 2.0
732
+ lenght [um]starting from the edges of the hole. We fabricated a long trench with open ends to see if the trapped
733
+ air within the hole is causing the observed contrast change. However, same contrast change is
734
+ observed after applying negative gate voltages. We observe that the contrast change starts from near
735
+ the hole and expands from there. At the moment we are not fully aware of the reasons leading this
736
+ contrast change. We consider that the release of the adsorbed molecules on the surface of the
737
+ substrate under large negative gate voltages lead to such degradation.
738
+
739
+ Figure S6 a. Optical microscope micrograph of indium contacted MoS2 on SiO2/Si with stair-like holes
740
+ before and after application of gate voltages down to 𝑉𝐺 = −20 𝑉. Lower panel shows a clear contrast
741
+ change around the holes extending to the indium contacts. b. SPCM maps taken at 𝑉𝐺 = 0 𝑉 with 532
742
+ nm of 86 µW on sample: (i) before gating, (ii) after 𝑉𝐺 = −15 𝑉 scan and (iii) after the scan in (iii).
743
+ 𝐼𝑚𝑎𝑥 = 6.5 nA and 𝐼𝑚𝑖𝑛 = −6.5 nA. Scan starts from top left corner to the bottom left corner with
744
+ progressing to the right in raster scan pattern. Scale bars are 5 µm.
745
+ To prevent the sample degradation problem under large negative gate voltages, we coated the
746
+ substrate surface with 5 nm thick Al2O3 using atomic layer deposition (ALD) method after milling the
747
+ holes with FIB. Then, the device is fabricated over the ALD coated surface. The device didn’t show any
748
+ sign of degradation and produced pronounced photoresponse. Measurements from the device is given
749
+ in Figure S6. Although the device exhibits the expected gate dependent response, as discussed in the
750
+ main text, there is no carrier inversion induced reduction in the photovoltage due to the Fermi level
751
+ pinning.
752
+
753
+ ii
754
+ ili
755
+ BeforeV
756
+ After VG
757
+ Figure S7 a. Schematic of the device along with the optical image is shown. The sample is coated with
758
+ 30 nm thick Al2O3 to passivate the SiO2 surface and to minimize the pinholes. Scale bar is 10 µm. b.
759
+ Photovoltage map collected in DC mode without the Lock-in amplifier and chopper. i is the reflection
760
+ map, and photovoltage maps at ii is the 𝑉𝐺 =-60 V, iii 𝑉𝐺 = 0 V, iv 𝑉𝐺 =60 V. Here, 𝑉𝑚𝑎𝑥 = 20 mV and
761
+ 𝑉𝑚𝑖𝑛 = -20 mV. c. Photovoltage line trace taken along the dashed arrow given in b-ii. Large signal
762
+ corresponds to the more negative gate voltages. d. Photovoltage data collected from points indicated
763
+ on b-ii. This sample showed no Seebeck coefficient inversion due to possible Fermi level pinning
764
+ induced by the substrate as discussed in the main text.
765
+ H-BN supported devices performed better and showed no sign of such a contrast change. Figure S7
766
+ shows the reflection and the photocurrent maps reported in the main text and the photocurrent from
767
+ point 2 and 3 subtracted from point 4, marked on the photocurrent map. Both junctions of the h-BN
768
+ show almost identical response under gate voltage (point 3 data is multiplied by -1 for viewing
769
+ convenience).
770
+
771
+
772
+ ii
773
+ MoS2
774
+ B
775
+ in
776
+ In
777
+ A/2O3
778
+ SiO.
779
+ Si
780
+ ili
781
+ IV
782
+ Point A
783
+ Point B
784
+ Point C
785
+ Figure S8 a. Same figure from the main text is copied here for convenience. b. Raman intensity map
786
+ and the 𝐴1𝑔 peak shift map is given. c. Gate dependent signal from point 4 is subtracted from the
787
+ gate dependent data from point 2 (red curve) and point 3 (blue curve). Blue curve is multiplied by -1
788
+ for viewing convenience.
789
+
790
+ 8. Scanning Thermal Microscope Calibration and Seebeck variation estimation
791
+ The Scanning Thermal Microscope (SThM) measurements were performed on a commercial Bruker
792
+ Icon instrument with a VITA-GLA-DM-1 probe. The probe, consisting of the silicon nitride lever with a
793
+ Pd heater/thermometer has been calibrated on a hot plate to relate the temperature to its electrical
794
+ resistance. The calibration curves are shown on figure S9.
795
+
796
+ Figure S9 a. SThM probe calibration of the electrical resistance with the supplied power. b.
797
+ Temperature as a function of electrical resistance
798
+ As described elsewhere4,5, the probe is part of a modified Wheatstone bridge which is balanced at low
799
+ voltage. During the measurements, we applied a combined AC (91 kHz) and DC bias on the bridge
800
+ which heats the probe and creates a bridge offset that directly measures the probe heater
801
+ temperature. For most experiments, we applied 1mW on the probe creating a Δ𝑇 of 50 ± 2 K, when
802
+ the probe was far away from the sample.
803
+ When the SThM tip is brought into contact with the devices, it locally heats the materials below its
804
+ apex. While the probe scans the surface, the device open circuit voltage is recorded and amplified via
805
+ a SR830 voltage preamplifier. This voltage is referred to as the thermovoltage. We excluded any
806
+
807
+ E
808
+ Imax
809
+ 3(a)
810
+ (b)
811
+ 368
812
+ 100
813
+ 80
814
+ 367
815
+ (Ohms)
816
+ 60
817
+ 366
818
+ 40
819
+ 365
820
+ R
821
+ = 363.68 + 12.73 P
822
+ 20
823
+ ,= -1607.39 + 4.48 R
824
+ applied
825
+ probe
826
+ probe
827
+ 364
828
+ 0.05
829
+ 0.10
830
+ 0.15
831
+ 0.20
832
+ 0.25
833
+ 0.30
834
+ 0.35
835
+ 364
836
+ 368
837
+ 372
838
+ 376
839
+ 380
840
+ 384
841
+ P
842
+ applied (mW)
843
+ R.
844
+ Rprobe (Ohms)shortcut between the probe and the device as no leakage current could be measured between the
845
+ probe and both contacts.
846
+ The thermovoltage can be written analytically as6,7,
847
+ 𝑉𝑡ℎ(𝑥) = − ∫ 𝑆(𝑥) 𝜕𝑇
848
+ 𝜕𝑥 (𝑥)𝑑𝑥
849
+ 𝐵
850
+ 𝐴
851
+
852
+ where 𝑆(𝑥) is the position dependent Seebeck coefficient and
853
+ 𝜕𝑇
854
+ 𝜕𝑥 (𝑥) is the position dependent
855
+ temperature gradient. Both are integrated over the whole device length from A to B.
856
+ As shown elsewhere6,7, it is possible to deconvolute the Seebeck coefficient from the temperature
857
+ gradient. This however requires a precise estimation of the temperature gradient and thus the sample
858
+ temperature rise under the tip, Δ𝑇𝑠𝑎𝑚𝑝𝑙𝑒.
859
+ As we know the probe temperature far away from the sample (50 ± 2 K) and we monitor its
860
+ temperature via the Wheatstone bridge, we know that the probe temperature in contact with the
861
+ sample is 43.8 ± 4 K. The probe cooling occurs because of several heat transfer mechanisms4,5 (solid-
862
+ solid conduction, air conduction, water meniscus, …).
863
+ For those probes, the Pd heater is however distributed over the whole triangular shaped silicon nitride
864
+ tip4,5. This implies that the tip temperature and probe temperature are different. We turned to finite
865
+ element modelling (COMSOL Multiphysics) to estimate the tip temperature over the MoS2 suspended
866
+ and supported sample. Figure S10 shows the overall simulated probe and sample.
867
+ We used reported values for the in-plane and out-of-plane MoS2 thermal conductivity as well as for
868
+ the MoS2-glass interface conductance. Reported values vary greatly in literature8–16. However, to the
869
+ best of our knowledge, for a thick sample (>10 layers), the values are on the order of 30 Wm-1K-1 for
870
+ the supported in-plane, 60 Wm-1K-1 for the suspended in-plane and 3 Wm-1K-1 for the cross-plane
871
+ conductivities. For the substrate interface conductance, we used 1 MWm-2K-1.
872
+
873
+
874
+ Figure S10 a. Finite element model for the SThM probe on a MoS2 suspended sample. b. Zoomed-in
875
+ view of the model where the temperature gradient is visible on the sample surface.
876
+ Using those material parameters, we estimated a ratio between the probe temperature and the tip
877
+ apex temperature of 4.9. The model also accounts for the tip-sample thermal resistance. This method
878
+
879
+ (a)
880
+ (b)and model were experimentally confirmed elsewhere4,5,17. Taking these into consideration, we obtain
881
+ a sample temperature rise Δ𝑇𝑠𝑎𝑚𝑝𝑙𝑒 of 7.4 ± 0.7 K. This gives a Seebeck variation of 72±10 µVK-1.
882
+
883
+ References
884
+ (1)
885
+ Ng, H. K.; Chi, D.; Hippalgaonkar, K. Effect of Dimensionality on Thermoelectric Powerfactor of
886
+ Molybdenum Disulfide. J Appl Phys 2017, 121 (20), 204303.
887
+ https://doi.org/10.1063/1.4984138.
888
+ (2)
889
+ Wu, J.; Liu, Y.; Liu, Y.; Liu, Y.; Cai, Y.; Zhao, Y.; Ng, H. K.; Watanabe, K.; Taniguchi, T.; Zhang, G.;
890
+ Qiu, C. W.; Chi, D.; Neto, A. H. C.; Thong, J. T. L.; Loh, K. P.; Hippalgaonkar, K. Large
891
+ Enhancement of Thermoelectric Performance in MoS2/h-BN Heterostructure Due to Vacancy-
892
+ Induced Band Hybridization. Proc Natl Acad Sci U S A 2020, 117 (25), 13929–13936.
893
+ https://doi.org/10.1073/pnas.2007495117.
894
+ (3)
895
+ Cui, X.; Lee, G. H.; Kim, Y. D.; Arefe, G.; Huang, P. Y.; Lee, C. H.; Chenet, D. A.; Zhang, X.; Wang,
896
+ L.; Ye, F.; Pizzocchero, F.; Jessen, B. S.; Watanabe, K.; Taniguchi, T.; Muller, D. A.; Low, T.; Kim,
897
+ P.; Hone, J. Multi-Terminal Transport Measurements of MoS2 Using a van Der Waals
898
+ Heterostructure Device Platform. Nature Nanotechnology 2015 10:6 2015, 10 (6), 534–540.
899
+ https://doi.org/10.1038/nnano.2015.70.
900
+ (4)
901
+ Tovee, P.; Pumarol, M.; Zeze, D.; Kjoller, K.; Kolosov, O. Nanoscale Spatial Resolution Probes
902
+ for Scanning Thermal Microscopy of Solid State Materials. J Appl Phys 2012, 112 (11).
903
+ https://doi.org/10.1063/1.4767923.
904
+ (5)
905
+ Spiece, J.; Evangeli, C.; Lulla, K.; Robson, A.; Robinson, B.; Kolosov, O. Improving Accuracy of
906
+ Nanothermal Measurements via Spatially Distributed Scanning Thermal Microscope Probes. J
907
+ Appl Phys 2018, 124 (1), 015101. https://doi.org/10.1063/1.5031085.
908
+ (6)
909
+ Harzheim, A.; Spiece, J.; Evangeli, C.; McCann, E.; Falko, V.; Sheng, Y.; Warner, J. H.; Briggs, G.
910
+ A. D.; Mol, J. A.; Gehring, P.; Kolosov, O. v. Geometrically Enhanced Thermoelectric Effects in
911
+ Graphene Nanoconstrictions. Nano Lett 2018, 18 (12), 7719–7725.
912
+ https://doi.org/10.1021/ACS.NANOLETT.8B03406/ASSET/IMAGES/MEDIUM/NL-2018-
913
+ 03406E_M006.GIF.
914
+ (7)
915
+ Harzheim, A.; Evangeli, C.; Kolosov, O. v.; Gehring, P. Direct Mapping of Local Seebeck
916
+ Coefficient in 2D Material Nanostructures via Scanning Thermal Gate Microscopy. 2d Mater
917
+ 2020, 7 (4), 041004. https://doi.org/10.1088/2053-1583/ABA333.
918
+ (8)
919
+ Frausto-Avila, C. M.; Arellano-Arreola, V. M.; Yañez Limon, J. M.; de Luna-Bugallo, A.; Gomès,
920
+ S.; Chapuis, P. O. Thermal Boundary Conductance of CVD-Grown MoS2 Monolayer-on-Silica
921
+ Substrate Determined by Scanning Thermal Microscopy. Appl Phys Lett 2022, 120 (26),
922
+ 262202. https://doi.org/10.1063/5.0092553.
923
+ (9)
924
+ Taube, A.; Judek, J.; Łapińska, A.; Zdrojek, M. Temperature-Dependent Thermal Properties of
925
+ Supported MoS2 Monolayers. ACS Appl Mater Interfaces 2015, 7 (9), 5061–5065.
926
+ https://doi.org/10.1021/ACSAMI.5B00690/SUPPL_FILE/AM5B00690_SI_001.PDF.
927
+ (10)
928
+ Yue, X. F.; Wang, Y. Y.; Zhao, Y.; Jiang, J.; Yu, K.; Liang, Y.; Zhong, B.; Ren, S. T.; Gao, R. X.; Zou,
929
+ M. Q. Measurement of Interfacial Thermal Conductance of Few-Layer MoS2 Supported on
930
+
931
+ Different Substrates Using Raman Spectroscopy. J Appl Phys 2020, 127 (10), 104301.
932
+ https://doi.org/10.1063/1.5128613.
933
+ (11)
934
+ Gabourie, A. J.; Suryavanshi, S. v.; Farimani, A. B.; Pop, E. Reduced Thermal Conductivity of
935
+ Supported and Encased Monolayer and Bilayer MoS2. 2d Mater 2020, 8 (1), 011001.
936
+ https://doi.org/10.1088/2053-1583/ABA4ED.
937
+ (12)
938
+ Zhang, X.; Sun, D.; Li, Y.; Lee, G. H.; Cui, X.; Chenet, D.; You, Y.; Heinz, T. F.; Hone, J. C.
939
+ Measurement of Lateral and Interfacial Thermal Conductivity of Single- and Bilayer MoS2 and
940
+ MoSe2 Using Refined Optothermal Raman Technique. ACS Appl Mater Interfaces 2015, 7 (46),
941
+ 25923–25929. https://doi.org/10.1021/ACSAMI.5B08580/ASSET/IMAGES/LARGE/AM-2015-
942
+ 085805_0003.JPEG.
943
+ (13)
944
+ Jo, I.; Pettes, M. T.; Ou, E.; Wu, W.; Shi, L. Basal-Plane Thermal Conductivity of Few-Layer
945
+ Molybdenum Disulfide. Appl Phys Lett 2014, 104 (20), 201902.
946
+ https://doi.org/10.1063/1.4876965.
947
+ (14)
948
+ Yuan, P.; Wang, R.; Wang, T.; Wang, X.; Chemistry, Y. X.-P.; 2018, undefined. Nonmonotonic
949
+ Thickness-Dependence of in-Plane Thermal Conductivity of Few-Layered MoS 2: 2.4 to 37.8
950
+ Nm. pubs.rsc.org.
951
+ (15)
952
+ Bae, J. J.; Jeong, H. Y.; Han, G. H.; Kim, J.; Kim, H.; Kim, M. S.; Moon, B. H.; Lim, S. C.; Lee, Y. H.
953
+ Thickness-Dependent in-Plane Thermal Conductivity of Suspended MoS2 Grown by Chemical
954
+ Vapor Deposition. Nanoscale 2017, 9 (7), 2541–2547. https://doi.org/10.1039/C6NR09484H.
955
+ (16)
956
+ Meng, X.; Pandey, T.; Jeong, J.; Fu, S.; Yang, J.; Chen, K.; Singh, A.; He, F.; Xu, X.; Zhou, J.;
957
+ Hsieh, W. P.; Singh, A. K.; Lin, J. F.; Wang, Y. Thermal Conductivity Enhancement in MoS2
958
+ under Extreme Strain. Phys Rev Lett 2019, 122 (15), 155901.
959
+ https://doi.org/10.1103/PHYSREVLETT.122.155901/FIGURES/3/MEDIUM.
960
+ (17)
961
+ Gehring, P.; Harzheim, A.; Spièce, J.; Sheng, Y.; Rogers, G.; Evangeli, C.; Mishra, A.; Robinson,
962
+ B. J.; Porfyrakis, K.; Warner, J. H.; Kolosov, O. v.; Briggs, G. A. D.; Mol, J. A. Field-Effect Control
963
+ of Graphene-Fullerene Thermoelectric Nanodevices. Nano Lett 2017, 17 (11), 7055–7061.
964
+ https://doi.org/10.1021/ACS.NANOLETT.7B03736/ASSET/IMAGES/NL-2017-
965
+ 03736Q_M017.GIF.
966
+
967
+
09AzT4oBgHgl3EQfDPrL/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
09E4T4oBgHgl3EQfZwye/content/2301.05059v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0c8e5076a2f84f727c74ac37acf963d06894a2b9becd02627e4bfabb516d059
3
+ size 377088
09E4T4oBgHgl3EQfZwye/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:692e900b0472ca64c98e7217f780f1f2449330e46054355b2d6584033d7a1ee7
3
+ size 194581
0dFJT4oBgHgl3EQfjix9/content/2301.11575v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:048bce6dbea3b434ffefe2832a8b2409e30d7d1b7e00f1b9e397c0bd973c8b64
3
+ size 3775900
0dFJT4oBgHgl3EQfjix9/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:412f79faf35c146aa850f33c9b173a45630a19d13cd1fcbd4afeb048040dd068
3
+ size 2228269
0dFJT4oBgHgl3EQfjix9/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f9854ae60cb7fe44f983c3ea8facaee7cf806a8cf3242315c702df2644b6f4a
3
+ size 88897
39AyT4oBgHgl3EQf1_mj/content/tmp_files/2301.00744v1.pdf.txt ADDED
@@ -0,0 +1,1434 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00744v1 [math.CO] 2 Jan 2023
2
+ ODD AND EVEN FIBONACCI LATTICES ARISING FROM A
3
+ GARSIDE MONOID
4
+ THOMAS GOBET AND BAPTISTE ROGNERUD
5
+ Abstract. We study two families of lattices whose number of elements are given by
6
+ the numbers in even (respectively odd) positions in the Fibonacci sequence. The even
7
+ Fibonacci lattice arises as the lattice of simple elements of a Garside monoid partially
8
+ ordered by left-divisibility, and the odd Fibonacci lattice is an order ideal in the even
9
+ one. We give a combinatorial proof of the lattice property, relying on a description of
10
+ words for the Garside element in terms of Schröder trees, and on a recursive description
11
+ of the even Fibonacci lattice. This yields an explicit formula to calculate meets and joins
12
+ in the lattice. As a byproduct we also obtain that the number of words for the Garside
13
+ element is given by a little Schröder number.
14
+ Contents
15
+ 1.
16
+ Introduction
17
+ 1
18
+ 2.
19
+ Definition and structure of the poset
20
+ 3
21
+ 2.1.
22
+ Definition of the poset
23
+ 3
24
+ 2.2.
25
+ Lattice property
26
+ 4
27
+ 3.
28
+ Schröder trees and words for the Garside element
29
+ 7
30
+ 3.1.
31
+ labelling of Schröder trees
32
+ 7
33
+ 3.2.
34
+ Words for the Garside element in terms of Schröder trees
35
+ 10
36
+ 4.
37
+ Enumerative results
38
+ 17
39
+ 4.1.
40
+ Number of simple elements
41
+ 17
42
+ 4.2.
43
+ Number of left-divisors of the lcm of the atoms and odd Fibonacci lattice
44
+ 17
45
+ 4.3.
46
+ Number of words for the divisors of the Garside element
47
+ 18
48
+ References
49
+ 20
50
+ 1. Introduction
51
+ Several algebraic structures naturally yield examples of lattices: as elementary examples,
52
+ one can cite the lattice of subsets of a given set ordered by inclusion, or the lattice of
53
+ subgroups of a given group.
54
+ One can then study which properties are satisfied by the
55
+ obtained lattices, or conversely, starting from a known lattice, wondering for instance if
56
+ it can be realized in a given algebraic framework, or if a property of the lattice implies
57
+ properties of the attached algebraic structure(s) and vice-versa.
58
+ The aim of this paper is to give a combinatorial description of a finite lattice that
59
+ appeared in the framework of Garside theory. We will not recall results and principles
60
+ of Garside theory as they will not be used in this paper, but the interested reader can
61
+ look at [5, 4] for more on the topic.
62
+ This is a branch of combinatorial group theory
63
+ which aims at establishing properties of families of infinite groups such as the solvability
64
+ of the word problem, the conjugacy problem, the structure of the center, etc. Roughly
65
+ speaking, a Garside group is a group of fraction of a monoid (called a Garside monoid) with
66
+
67
+ 2
68
+ THOMAS GOBET AND BAPTISTE ROGNERUD
69
+ particularly nice divisibility properties, which ensures that the above-mentioned problems
70
+ can be solved. Such a monoid M has no nontrivial invertible element, and comes equipped
71
+ with a distinguished element ∆ (called a Garside element) whose left- and right-divisors are
72
+ finite, coincide, generate the monoid, and form a lattice under left- and right-divisibility.
73
+ The left- or right-divisors of ∆ are called the simples.
74
+ The fundamental example of a Garside group is the n-strand Artin braid group [7].
75
+ It admits several non-equivalent Garside structures (i.e., nonisomorphic Garside monoids
76
+ whose group of fractions are isomorphic to the n-strand braid group), and the lattice of
77
+ simples in the first discovered such Garside structure is isomorphic to the weak Bruhat
78
+ order on the symmetric group. Several widely studied lattices can be realized as lattices
79
+ of simples of a Garside monoid: this includes the lattices of left and right weak Bruhat
80
+ order on any finite Coxeter group [3, 6], the lattice of (generalized) noncrossing partitions
81
+ attached to a finite Coxeter group [1, 2], etc. (see also [12] for many other examples). This
82
+ suggests the following question:
83
+ Question. Which lattices can appear as lattices of simples of Garside monoids ?
84
+ The aim of this paper is to study a family Pn of lattices arising as simples of a family Mn,
85
+ n ≥ 2 of Garside monoids introduced by the first author [8]. For n = 2, the corresponding
86
+ Garside group is isomorphic to the 3-strand braid group B3, while in general it is isomorphic
87
+ to the (n, n + 1)-torus knot group, which for n > 3 is a (strict) extension of the (n + 1)-
88
+ strand braid group Bn+1. The lattice property of Pn follows from the fact proven in op.
89
+ cit. that Mn is a Garside monoid, but it gives very little information about the structure
90
+ and properties of the lattice. For instance, one does not have a formula enumerating the
91
+ number of simples, and only an algorithm to calculate meet and joins in the lattice.
92
+ In Section 2 we give a new proof of the lattice property of Pn (Theorem 2.8) by exhibiting
93
+ the recursive structure of the poset. Every lattice Pn turns out to contain the lattices Pi,
94
+ i < n as sublattices. Note that an ingredient of the proof of Theorem 2.8 is proven later on
95
+ in the paper, as it relies on a combinatorial description for the set of words for the Garside
96
+ element in terms of Schröder trees.
97
+ More precisely, in Section 3 we establish a simple
98
+ bijection between the set of words for ∆n and the set of Schröder trees on n+1 leaves, in such
99
+ a way that applying a defining relation of Mn to a word amounts to applying what we call a
100
+ "local move" on the corresponding Schröder tree (Theorem 3.12 and Corollary 3.13). These
101
+ local moves are given by specific edge contraction and are related to the notion of refinement
102
+ considered in [10]. This allows us to establish in Proposition 3.16 an isomorphism of posets
103
+ between subposets of Pn and Pi, i < n, required in the proof of Theorem 2.8.
104
+ Finally, the obtained recursive description of Pn together with the description of words
105
+ for ∆n in terms of Schröder trees allows us to derive a few enumerative results. This is
106
+ done in Section 4. The first one is that the number of elements of Pn is given by F2n, where
107
+ Fi is the i-th Fibonacci number (Lemma 4.1). We thus call Pn the even Fibonacci lattice.
108
+ The atoms of Mn turn out to have the same left- and right-lcm, which is strictly less than
109
+ ∆n. We also show that the sublattice of Pn defined as the order ideal of this lcm has F2n−1
110
+ elements (Lemma 4.3), and thus call it the odd Fibonacci lattice. Other enumerative results
111
+ include the determination of the number of words for the Garside elements (Corollary 3.14),
112
+ and the number of words for the whole set of simples (Theorem 4.7).
113
+ Recall that the Garside monoid Mn under study in this paper has group of fractions
114
+ isomorphic to the (n, n + 1)-torus knot group. This Garside structure was generalized to
115
+ all torus knot groups in [9]. It would be interesting to have a description of the lattices of
116
+ simples of this bigger family of Garside monoids.
117
+
118
+ ODD AND EVEN FIBONACCI LATTICES ARISING FROM A GARSIDE MONOID
119
+ 3
120
+ 1
121
+ ρ1
122
+ ρ2
123
+ ρ2ρ1
124
+ ρ3
125
+ ρ1ρ3
126
+ ρ3ρ1
127
+ ρ1ρ3ρ1
128
+ ρ3ρ2
129
+ ρ2ρ1ρ3
130
+ ρ3ρ2ρ1
131
+ ρ2
132
+ 3
133
+ ρ3ρ1ρ3
134
+ ρ2
135
+ 3ρ1
136
+ (ρ1ρ3)2
137
+ (ρ3ρ1)2
138
+ ρ3
139
+ 3
140
+ ρ3ρ2ρ1ρ3
141
+ ρ2
142
+ 3ρ1ρ3
143
+ (ρ3ρ1)2ρ3
144
+ ρ4
145
+ 3
146
+ Figure 1. The even Fibonacci lattice for n = 3 and (in blue) the odd Fibonacci
147
+ lattice inside it.
148
+ 2. Definition and structure of the poset
149
+ 2.1. Definition of the poset. The beginning of this section is devoted to explaining how
150
+ the poset under study is defined. We recall the definition of the monoid from which it is
151
+ built, as well as a few properties of this monoid (all of which are proven in [8]).
152
+ Let M be a monoid and a, b ∈ M. We say that a is a left divisor of b (or that b is a
153
+ right multiple of a) if there is c ∈ M such that ac = b. We similarly define right divisors
154
+ and left multiples.
155
+ Let M0 be the trivial monoid and for n ≥ 1, let Mn be the monoid defined by the
156
+ presentation
157
+ (2.1)
158
+
159
+ ρ1, ρ2, . . . , ρn
160
+ ���� ρ1ρnρi = ρi+1ρn for all 1 ≤ i ≤ n − 1
161
+
162
+ .
163
+ We denote by S the set of generators {ρ1, ρ2, . . . , ρn}, and by R the defining relations of
164
+ Mn. This monoid was introduced by the first author in [8, Definition 4.1]. Note that this
165
+ monoid is equipped with a length function λ : Mn −→ Z≥0 given by the multiplicative
166
+ extension of λ(ρi) = i for all i = 1, . . . , n, which is possible since the defining relations
167
+ do not change the length of a word. As a corollary, the only invertible element in Mn is
168
+
169
+ 4
170
+ THOMAS GOBET AND BAPTISTE ROGNERUD
171
+ the identity, and the left- and right-divisibility relations are partial orders on Mn. We will
172
+ write a ≤L b or simply a ≤ b if a left-divides b, and a ≤R b if a right-divides b.
173
+ This monoid was shown to be a so-called Garside monoid (see [8, Theorem 4.18]), with
174
+ corresponding Garside group (which has the same presentation as Mn) isomorphic to the
175
+ (n, n + 1)-torus knot group, that is, the fundamental group of the complement of the
176
+ torus knot Tn,n+1 in S3.
177
+ Garside monoids have several important properties.
178
+ Among
179
+ them, the left- and right-divisibility relations equip Mn with two lattice structures, and
180
+ Mn comes equipped with a distinguished element ∆n, called a Garside element, which has
181
+ the following two properties
182
+ (1) The set of left divisors of ∆n coincides with its set of right divisors, and forms a
183
+ finite set.
184
+ (2) The set of left (or right) divisors of ∆n generates Mn.
185
+ This Garside element is given by ∆n = ρn+1
186
+ n
187
+ . In particular, as any Garside monoid is a
188
+ lattice for both left- and right-divisibility, the set Div(∆n) of left (or right) divisors of ∆n
189
+ is a finite lattice if equipped by the order relation given by the restriction of left- (or right-)
190
+ divisibility on Mn. The set Div(∆n) is the set of simple elements or simples of Mn. In
191
+ general (Div(∆n), ≤L) and (Div(∆n), ≤R) will not be isomorphic as posets. But we always
192
+ have
193
+ (Div(∆n), ≤L) ∼= (Div(∆n), ≤R)op
194
+ (see for instance [8, Lemma 2.19]; such a property holds in any Garside monoid).
195
+ We will give a new proof that (Div(∆n), ≤) (and hence (Div(∆n), ≤R) is a lattice, in
196
+ a way which will exhibit a recursive structure of the poset. To this end, we will require
197
+ (sometimes without mentioning it) a few basic results on the monoid Mn which are either
198
+ explained above or proven in [8]:
199
+ (1) The left- and right-divisibility relations on Mn are partial orders.
200
+ (2) The monoid Mn is both left- and right-cancellative, i.e., for a, b, c ∈ Mn, we have
201
+ that ab = ac ⇒ b = c, and ba = ca ⇒ b = c (see [8, Propositions 4.9 and 4.12]),
202
+ (3) The set of left- and right-divisors of ∆n coincide. In fact, the element ∆n is central
203
+ in Mn, hence as Mn is cancellative, for a, b ∈ Mn such that ab = ∆n, we have
204
+ ab = ba (see [8, Proposition 4.15])
205
+ 2.2. Lattice property. The aim of this subsection is to prove a few properties of simple
206
+ elements of Mn, and to derive a new algebraic proof that Div(∆n) is a lattice.
207
+ Proposition 2.1. Let x1x2 · · · xk be a word for ∆n, with xi ∈ S for all i = 1, . . . , k. There
208
+ are i1 = 1 < i2 < · · · < iℓ ≤ k such that
209
+ • For all j = 1, . . . , ℓ, the word yj := xijxij+1 · · · xij+1−1 (with the convention that
210
+ iℓ+1 = k + 1) is a word for a power of ρn,
211
+ • The decomposition y1|y2| · · · |yℓ of the word x1x2 · · · xk is maximal in the sense that
212
+ no word among the yj can be decomposed as a product of two nonempty words which
213
+ are words for powers of ρn.
214
+ Morever, a decomposition with the above properties is unique.
215
+ Proof. The existence of the decomposition is clear using the fact that Mn is cancellative:
216
+ given the word x1x2 · · · xk, consider the smallest i ∈ {1, 2, . . . , k} such that x1x2 · · · xk is
217
+ a word for a power of ρn. Such an i has to exist, as x1x2 · · · xk is a word for a power of
218
+ ρn. Then set i2 := i + 1. By cancellativity in Mn, since x1 · · · xi and x1 · · · xk are both
219
+ words for a power of ρn, the word xi+1 · · · xk must also be a word for a power of ρn. Hence
220
+ one can go on, arguing the same with the word xi+1 · · · xk. Again by cancellativity, this
221
+ decomposition must be maximal.
222
+
223
+ ODD AND EVEN FIBONACCI LATTICES ARISING FROM A GARSIDE MONOID
224
+ 5
225
+ Now assume that the decomposition is not unique, that is, assume that y1|y2| · · · |yℓ
226
+ and z1|z2| · · · |zℓ′ are two decompositions of the word x1x2 · · · xk satisfying the properties
227
+ of the statement. As both y1 and z1 are words for a power of ρn, if y1 ̸= z1, then one
228
+ word must be strict prefix of the other, say z1 is a strict prefix of y1. But this contradicts
229
+ the maximality of the decomposition y1|y2| · · · |yℓ: indeed if y1 = x1x2 · · · xi2−1 and z1 =
230
+ x1x2 · · · xp with p < i2 − 1, we can decompose y1 nontrivially as x1x2 · · · xp|xp+1 · · · xi2−1,
231
+ and by cancellativity both x1 · · · xp and xp+1 · · · xi2−1 are words for powers of ρn.
232
+
233
+ Example 2.2. Consider the word ρ3ρ1ρ7ρ1ρ7ρ5ρ4ρ7ρ7ρ1ρ7ρ6 in M7. We claim that this is a
234
+ word for the Garside element ρ8
235
+ 7 of M7. Indeed, using the defining relation ρ1ρ7ρi = ρi+1ρ7
236
+ with i = 5 and 6, we get that
237
+ ρ3(ρ1ρ7ρ1ρ7ρ5)ρ4ρ7ρ7(ρ1ρ7ρ6) = ρ3ρ3
238
+ 7ρ4ρ4
239
+ 7,
240
+ and we observe also applying defining relations that
241
+ ρ3ρ3
242
+ 7ρ4ρ4
243
+ 7 = ρ1ρ7ρ2ρ2
244
+ 7ρ4 = ρ1ρ7ρ1ρ7ρ1ρ7ρ4 = ρ1ρ7ρ1ρ7ρ5ρ7 = ρ1ρ7ρ6ρ2
245
+ 7 = ρ4
246
+ 7.
247
+ The decomposition according to Proposition 2.1 is given by
248
+ ρ3ρ1ρ7ρ1ρ7ρ5ρ4
249
+
250
+ ��
251
+
252
+ :=y1
253
+ | ρ7
254
+ ����
255
+ :=y2
256
+ | ρ7
257
+ ����
258
+ :=y3
259
+ | ρ1ρ7ρ6
260
+ � �� �
261
+ :=y4
262
+ .
263
+ It is indeed clear by considering λ(u) for u prefixes of y1 or y4 that whenever u is a proper
264
+ prefix, we do not have λ(u) equal to a multiple of 7, which is a necessary condition for a
265
+ word to represent a power of ρ7.
266
+ Lemma 2.3. Let 1 ≤ k ≤ n. Then
267
+ S ∩ {x ∈ Div(∆n) | x ≤ ρkρk
268
+ n} = {ρ1, ρ2, . . . , ρk}.
269
+ Proof. We argue by induction on k. The result is clear for k = 1, as no defining relation of
270
+ Mn can be applied to the word ρ1ρn. Now let k > 1. Observe that
271
+ ρkρk
272
+ n = (ρ1ρn)k = (ρ1ρn)(ρ1ρn)k−1.
273
+ In particular we have ρ1 ≤ ρkρk
274
+ n and by induction, we get ρ1ρnρi ≤ ρkρk
275
+ n for all 1 ≤ i ≤ k−1.
276
+ As ρ1ρnρi = ρi+1ρn we get that {ρ1, ρ2, . . . , ρk} ⊆ S ∩ {x ∈ Div(∆n) | x ≤ ρkρk
277
+ n}.
278
+ It remains to show that no other ρi can be a left-divisor of ρkρk
279
+ n. Hence assume that
280
+ i > k and ρi ≤ ρkρk
281
+ n. Hence there is a word x1x2 · · · xp for ρkρk
282
+ n, where xi ∈ S for all i,
283
+ such that x1 = ρi. As the words x1x2 · · · xp and ρkρk
284
+ n represent the same element, they
285
+ can be related by a finite sequence of words w0 = x1x2 · · · xp, w1, . . . , wq = ρkρk
286
+ n, where
287
+ each wi is a word with letters in S and wi+1 is obtained from wi by applying a single
288
+ relation somewhere in the word. As the first letter of w0 differs from the first letter of
289
+ wq, there must exist some 0 ≤ ℓ < q such that wℓ begins by ρi but wℓ+1 does not. It
290
+ follows that the relation allowing one to pass from wℓ to wℓ+1 has to be applied at the
291
+ beginning of the word wℓ. But the only possible relation with one side beginning by ρi
292
+ is ρiρn = ρ1ρnρi−1. It follows that ρ1ρnρi−1 ≤ ρkρk
293
+ n = (ρ1ρn)k. By cancellativity, we get
294
+ that ρi−1 ≤ (ρ1ρn)k−1 = ρk−1ρk−1
295
+ n
296
+ . By induction this forces one to have i − 1 ≤ k − 1,
297
+ contradicting our assumption that i > k.
298
+
299
+ Similarly, we have
300
+ Lemma 2.4. Let 1 ≤ k ≤ n. Then
301
+ S ∩ {x ∈ Div(∆n) | x ≤R ρk
302
+ n} = {ρn, ρn−1, . . . , ρn−k+1}.
303
+
304
+ 6
305
+ THOMAS GOBET AND BAPTISTE ROGNERUD
306
+ Proof. As for Lemma 2.3, we argue by induction on k. The result is clear for k = 1. Hence
307
+ assume that k > 1. As (ρ1ρn)n−jρj = ρn−j+1
308
+ n
309
+ , we get that ρj ≤R ρk
310
+ n for all j such that
311
+ n − j + 1 ≤ k, that is, for all j ≥ n − k + 1. It remains to show that no other ρj can
312
+ right-divide ρk
313
+ n. Hence assume that ρj ≤R ρk
314
+ n, where j < n − k + 1. Arguing as in the
315
+ proof of Lemma 2.3, we see that ρ1ρnρj = ρj+1ρn must be a right-divisor of ρk
316
+ n, hence by
317
+ cancellativity that ρj+1 ≤R ρk−1
318
+ n
319
+ . By induction this forces j + 1 ≥ n − k + 2, contradicting
320
+ our assumtion that j < n − k + 1.
321
+
322
+ For x ∈ Div(∆n), let d(x) := max{k ≥ 0 | ρk
323
+ n ≤ x}. Let 0 ≤ i ≤ n + 1 and let
324
+ Di
325
+ n := {x ∈ Div(∆n) | d(x) = i}.
326
+ Note that
327
+ Div(∆n) =
328
+
329
+ 0≤i≤n+1
330
+ Di
331
+ n.
332
+ We have Dn
333
+ n = {ρn
334
+ n}, Dn+1
335
+ n
336
+ = {∆n}.
337
+ Lemma 2.5. Let x ∈ Div(∆n) and i = d(x). Let x′ ∈ Mn such that x = ρi
338
+ nx′. Note that
339
+ x′ ∈ D0
340
+ n. Let x1x2 · · · xk be a word for x, where xi ∈ S for all i = 1, . . . , k. Then there is
341
+ 1 ≤ ℓ ≤ k such that x1x2 · · · xℓ is a word for ρi
342
+ n (and hence xℓ+1 · · · xk is a word for x′ by
343
+ cancellativity). In other words, any word for x has a prefix which is a word for ρi
344
+ n.
345
+ Proof. It suffices to show that if z1z2 · · · zp is an expression for x such that z1z2 · · · zq is
346
+ an expression for ρi
347
+ n (q ≤ p, then one cannot apply a defining relation of Mn on the word
348
+ z1z2 · · · zp simultaneously involving letters of the word z1z2 · · · zq and letters of the word
349
+ zq+1 · · · zp. Let us consider the three possible cases where this could occur: one could have
350
+ ρ1ρn|ρj, ρ1|ρnρj, or ρj+1|ρn (1 ≤ j < n), where the | separates the letters zq and zq+1.
351
+ The last two cases cannot happen, since one would have zq+1 = ρn, hence zq+1 · · · zp would
352
+ be a word for x′ beginning by ρn, contradicting the fact that x′ ∈ D0
353
+ n. It remains to show
354
+ that the case ρ1ρn|ρj cannot happen. Hence assume that zq−1 = ρ1, zq = ρn, zq+1 = ρj.
355
+ By cancellativity, as z1z2 · · · zq is a word for ρi
356
+ n, it implies that ρ1 ≤R ρi−1
357
+ n
358
+ . By lemma 2.4,
359
+ this implies that n − (i − 1) + 1 = 1, hence that i = n + 1.
360
+ Since x ∈ Div(∆n) and
361
+ x = ρn+1
362
+ n
363
+ x′ = ∆nx′, we get x′ = 1, contradicting the fact that zq+1 = ρj.
364
+
365
+ Lemma 2.6. Let i, j ∈ {0, 1, . . . , n + 1}, with i ̸= j. Let x ∈ Di
366
+ n, y ∈ Dj
367
+ n. Assume that
368
+ x ≤ y. Then i < j and x < ρj
369
+ n ≤ y.
370
+ Proof. It is clear that i < j, since ρi
371
+ n ≤ y as ρi
372
+ n ≤ x, hence j < i would contradict y ∈ Dj
373
+ n.
374
+ In particular x < y. Let x′, y′ such that x = ρi
375
+ nx′ and y = ρj
376
+ ny′. Note that x′, y′ both lie
377
+ in D0
378
+ n. Since x ≤ y and Mn is cancellative, we get that x′ < ρj−i
379
+ n y′. It implies that there
380
+ exists a word x1x2 · · · xk for ρj−i
381
+ n
382
+ y′ (xi ∈ S) and 1 ≤ ℓ < k such that x1x2 · · · xℓ is a word
383
+ for x′. Now by lemma 2.5, there is 0 ≤ ℓ′ ≤ k such that x1x2 · · · xℓ′ is a word for ρj−i
384
+ n . If
385
+ ℓ′ ≤ ℓ, then ρj−i
386
+ n
387
+ ≤ x′, contradicting the fact that x′ ∈ D0
388
+ n. Hence ℓ′ > ℓ, and x′ < ρj−i
389
+ n .
390
+ Multiplying by ρi
391
+ n on the left we get x < ρj
392
+ n.
393
+
394
+ Lemma 2.7. Let z1, z2 ∈ Di
395
+ n. Let 1 ≤ k1 < k2 ≤ n and assume that there are two cover
396
+ relations z1 ≤· ρk1
397
+ n , z2 ≤· ρk2
398
+ n in (Div(∆n), ≤). Then z1 < z2.
399
+ Proof. As z1 ≤ ρk1
400
+ n , z2 ≤ ρk2
401
+ n
402
+ are cover relations, there are 1 ≤ j1, j2 ≤ n such that
403
+ z1ρj1 = ρk1
404
+ n , z2ρj2 = ρk2
405
+ n . By lemma 2.4, for ℓ ∈ {1, 2} we have jℓ ∈ {n − kℓ + 1, . . . , n} and
406
+ ρkℓ
407
+ n = ρjℓ+kℓ−1−n
408
+ n
409
+ (ρ1ρn)n−jℓρjℓ.
410
+ In particular, we have
411
+ zℓ = ρjℓ+kℓ−1−n
412
+ n
413
+ (ρ1ρn)n−jℓ
414
+
415
+ ODD AND EVEN FIBONACCI LATTICES ARISING FROM A GARSIDE MONOID
416
+ 7
417
+ and as (ρ1ρn)n−jℓ = ρn−jℓρn−jℓ
418
+ n
419
+ , by lemma 2.3 we see that ρn cannot be a left divisor of
420
+ (ρ1ρn)n−jℓ, and hence that d(zℓ) = jℓ + kℓ − 1 − n. But d(zℓ) = i for ℓ ∈ {1, 2}, and since
421
+ k1 < k2 we deduce that j1 > j2. Since zℓ = ρi
422
+ n(ρ1ρn)n−jℓ, we get that z1 < z2, which
423
+ concludes the proof.
424
+
425
+ Theorem 2.8. The poset (Div(∆n), ≤) is a lattice. Given i, j ∈ {0, 1, . . . , n+1} with i ≤ j
426
+ and x ∈ Di
427
+ n, y ∈ Dj
428
+ n, we have
429
+ x ∧ y = x ∧i
430
+ ��
431
+ i
432
+ {z ∈ Di
433
+ n | z ≤ y}
434
+
435
+ ,
436
+ where ∨i and ∧i denote the meet and join on the restriction of the left-divisibility order on
437
+ Di
438
+ n, which itself forms a lattice. Note that if i = j we simply get x ∧ y = x ∧i y.
439
+ Proof. The proof is by induction on n. We have Div(∆0) = {•}, and Div(∆1) = {1, ρ1, ρ2
440
+ 1},
441
+ which is a lattice. Hence assume that n ≥ 2. By Proposition 3.16 below, the restriction of
442
+ the left-divisibility to Di
443
+ n yields an isomorphism of poset with Div(∆n−i) if i ̸= 0, n+1, while
444
+ the restriction to D0
445
+ n yields an isomorphism of poset with Div(∆n−1), and the restriction to
446
+ Dn+1
447
+ n
448
+ an isomorphism of posets with Div(∆0) = {•}. In particular, by induction, all these
449
+ posets are lattices. As the poset (Div(∆n), ≤) is finite and admits a maximal element, it
450
+ suffices to show that x ∧ y as defined by the formula above is indeed the join of x and y.
451
+ It is clear that x∧y ≤ x. Let us show that x∧y ≤ y. If i = j this is clear, hence assume
452
+ that i < j. By lemma 2.6 we see that
453
+
454
+ i
455
+ {z ∈ Di
456
+ n | z ≤ y} =
457
+
458
+ i
459
+ {z ∈ Di
460
+ n | z ≤ ρj
461
+ n}.
462
+ It suffices to check that �
463
+ i{z ∈ Di
464
+ n | z ≤ ρj
465
+ n} ≤ ρj
466
+ n. Note that
467
+
468
+ i
469
+ {z ∈ Di
470
+ n | z ≤ ρj
471
+ n} =
472
+
473
+ i
474
+ {z ∈ Di
475
+ n | z ≤ ρj
476
+ n and (z ≤· x ≤ ρj
477
+ n ⇒ x /∈ Di
478
+ n)}.
479
+ Now by lemma 2.6, if z ∈ Di
480
+ n and x is any element such that z ≤· x ≤ ρj
481
+ n and x /∈ Di
482
+ n, then
483
+ x = ρk
484
+ n for some k (necessarily smaller than or equal to j). It implies that
485
+
486
+ i
487
+ {z ∈ Di
488
+ n | z ≤ ρj
489
+ n} =
490
+
491
+ i
492
+ {z ∈ Di
493
+ n | z ≤ ρj
494
+ n and z ≤· ρk
495
+ n for some k ≤ j}.
496
+ By lemma 2.7, we have that
497
+
498
+ i
499
+ {z ∈ Di
500
+ n | z ≤ ρj
501
+ n and z ≤· ρk
502
+ n for some k ≤ j}
503
+ has to be an element of the set {z ∈ Di
504
+ n | z ≤ ρj
505
+ n and z ≤· ρk
506
+ n for some k ≤ j}, hence that
507
+ it is in particular a left-divisor of ρj
508
+ n (and hence of y).
509
+ Now assume that u ≤ x, y. We can assume that u ∈ Di
510
+ n, otherwise by lemma 2.6 we
511
+ have u < ρi
512
+ n ≤ x ∧ y. As u ≤ y, we have that u ≤ �
513
+ i{z ∈ Di
514
+ n | z ≤ y}. And hence, that
515
+ u ≤ x ∧i
516
+ ��
517
+ i{z ∈ Di
518
+ n | z ≤ y}
519
+
520
+ = x ∧ y.
521
+
522
+ 3. Schröder trees and words for the Garside element
523
+ 3.1. labelling of Schröder trees. A rooted plane tree is a tree embedded in the plane
524
+ with one distinguished vertex called the root. The vertices of degree 1 are called the leaves
525
+ of the tree and the other vertices are called inner vertices. One can consider rooted trees
526
+ as directed graphs by orienting the edges from the root toward the leaves. If there is an
527
+ oriented edge from a vertex v to a vertex w, we say that v is the parent of w and w is a
528
+ child of v. As can be seen in Figure 2, we draw the trees with their root on the top and the
529
+
530
+ 8
531
+ THOMAS GOBET AND BAPTISTE ROGNERUD
532
+ leaves on the bottom. The planar embedding induces a total ordering (from left to right)
533
+ on the children of each vertex, hence we can speak about the leftmost child of a vertex.
534
+ Alternatively one has a useful recursive definition of a rooted plane tree: it is either the
535
+ empty tree with no inner vertex and a single leaf or a tuple T = (r, Tr) where r is the root
536
+ vertex and Tr is an ordered list of rooted plane trees. If T is a tree with the first definition,
537
+ the vertex r is its root and the list Tr is the list of subtrees, ordered from left to right,
538
+ obtained by removing the root r and all the edges adjacent to r in T.
539
+ Definition 3.1.
540
+ (1) A Schröder tree is a rooted plane tree in which each inner vertex has at least two
541
+ children.
542
+ (2) A binary tree is a rooted plane tree in which each inner vertex has exactly two
543
+ children.
544
+ (3) The size of a tree is its number of leaves.
545
+ (4) The height of a tree is the number of vertices in a maximal chain of descendants.
546
+ (5) The Schröder tree on n leaves in which every child of the root is a leaf is called
547
+ the Schröder bush. We denote it by δn.
548
+ (6) The Schröder tree given by the binary tree in which every right child (resp. every
549
+ left child) is a leaf is called a left comb (resp. a right comb).
550
+ · · ·
551
+ Figure 2. From left to right: the unique Schröder tree with 1 leaf, the unique
552
+ Schröder tree with two leaves, the three Schröder trees with 3 leaves.
553
+ Then the
554
+ Schröder bush and on its right a left comb.
555
+ The Schröder trees are counted by the so-called little Schröder numbers. The sequence
556
+ starts with 1, 1, 3, 11, 45, 197, 903, 4279, 20793, ... and is referred as A001003 in [11].
557
+ We will label (and read the labels of) the vertices and the leaves of our trees using the
558
+ so-called post-order traversal. This is a recursive algorithm that visits each vertex and leaf
559
+ of the tree exactly once. Concretely, if T =
560
+
561
+ r, (T1, . . . , Tk)
562
+
563
+ is a rooted planar tree, then
564
+ we recursively apply the algorithm to T1, T2 until Tk and finally we visit the root r. When
565
+ the algorithm meets an empty tree it visits its leaf and then, the recursion stops and it
566
+ goes up one level in the recursive process. The first vertex visited by the algorithm is the
567
+ leftmost leaf of T, then the algorithm moves to its parent v (but does not visit v) and visits
568
+ the second subtree of v starting with the leftmost leaf and so on. We refer to Figure 3 for
569
+ an illustration where the first vertex visited by the algorithm is labeled by 1, the second
570
+ by 2 and so on. The last vertex visited by the algorithm is always the root of T. Let m, n
571
+ be two integers such that m ≥ n − 1. We then label a Schröder tree T with n ≥ 2 leaves
572
+ by labelling its vertices one after the other with respect to the total order defined by the
573
+ post-order traversal, using the following rules:
574
+ (1) Let v be the leftmost child of a vertex w. Then w is the root of a Schröder tree
575
+
576
+ w, (T1, · · · , Tk)
577
+
578
+ and v is the root of T1. The label λ(v) of v is equal to the number
579
+ of leaves of the forest consisting of all the trees T2, · · · , Tk.
580
+
581
+ ODD AND EVEN FIBONACCI LATTICES ARISING FROM A GARSIDE MONOID
582
+ 9
583
+ 20
584
+ 11
585
+ 3
586
+ 1
587
+ 2
588
+ 6
589
+ 4
590
+ 5
591
+ 10
592
+ 7
593
+ 8
594
+ 9
595
+ 12
596
+ 19
597
+ 15
598
+ 13 14
599
+ 18
600
+ 16 17
601
+ Figure 3. Post-order traversal of a Schröder tree of size 12.
602
+ (2) If v is not the leftmost child of a vertex of T, we consider LD(v) the set of its
603
+ leftmost descendants consisting of the leftmost child of v and its leftmost child and
604
+ so one. Then the label of v is m − �
605
+ w∈LD(v) λ(w). Note that using the post-order
606
+ traversal, the label of the leftmost descendants of a vertex v are already determined
607
+ when we visit v.
608
+ The result is a labelled Schröder tree that we denote by Lm(T).
609
+ This procedure is
610
+ illustrated in Figure 4.
611
+ Definition 3.2. Let Lm(T) be a labelled Schröder tree with n leaves labelled by m ≥ n−1.
612
+ The sum of the labels of the vertices of T is called its weight (with respect to m).
613
+ Lemma 3.3. Let T be a Schröder tree with n leaves and m ≥ n − 1. Then the integers
614
+ labelling Lm(T) are strictly nonnegative with the exception of the root which may be labelled
615
+ by 0.
616
+ Proof. If a vertex is a leftmost child, then its label is a number of leaves, hence it is positive.
617
+ If v is not a leftmost child, then it is labelled by m − �
618
+ w∈LD(v) λ(w). Each λ(w) is equal
619
+ to a certain number of leaves of T and the set of leaves associated to distinct vertices of
620
+ LD(v) do not intersect. Moreover, exactly one element of LD(v) is a leaf and this leaf is
621
+ not counted in �
622
+ w∈LD(v) λ(w). We therefore have
623
+ (3.1)
624
+
625
+
626
+
627
+ w∈LD(v)
628
+ λ(w)
629
+
630
+  + 1 ≤ n,
631
+ hence m − �
632
+ w∈LD(v) λ(w) ≥ 0. Moreover if �
633
+ w∈LD(v) λ(w) = m, then by (3.1) we must
634
+ have m = n − 1. It follows that v has n descendants since the leftmost leaf which is a
635
+ descendant of v is not counted, hence v is the root of T.
636
+
637
+ This labelling is almost determined by the recursive structure of the tree, as shown by
638
+ the following result.
639
+ Lemma 3.4. Let T =
640
+
641
+ r, (T1, . . . , Tk)
642
+
643
+ be a Schröder tree and v be a vertex of Ti for
644
+ i ∈ {1, . . . , k}. Then,
645
+ (1) If v is not the root of T1, then its label in Lm(T) is equal to its label in Lm(Ti).
646
+ (2) If v is the root of T1, then its label in Lm(T1) is equal to the sum of the labels of v
647
+ and of the root of T in Lm(T).
648
+ Proof. Let v be a vertex of Ti. If v is a leftmost child in T which is not the root of T1,
649
+ then its label is a number of leaves of a certain forest which is contained in Ti. Hence this
650
+ number is the same in the big tree T or in the extracted tree Ti. If v is not a leftmost
651
+ child, then its label is determined by the labels of its leftmost descendants, hence it is the
652
+ same in the tree T as in the extracted tree Ti since we have just shown that the labels of
653
+ leftmost descendants which are not the root of T1 agree. The root of T1 has a different
654
+ behaviour since in T it is a leftmost child and this is not the case in T1. Hence if v is the
655
+ root of T1, denoting by λ1 the label of v in T1, we have λ1(v) = m − �
656
+ w∈LD(v) λ1(w). The
657
+
658
+ 10
659
+ THOMAS GOBET AND BAPTISTE ROGNERUD
660
+ labels of the descendants of v are the same in T and in T1, that is, we have λ1(w) = λ(w)
661
+ for all w ∈ LD(v). In T, the label of the root r is given by
662
+ λ(r) = m − λ(v) −
663
+
664
+ w∈LD(v)
665
+ λ(w) = m − λ(v) −
666
+
667
+ w∈LD(v)
668
+ λ1(w).
669
+ Hence we have λ(r) + λ(v) = λ1(v).
670
+
671
+ 3.2. Words for the Garside element in terms of Schröder trees. Reading the la-
672
+ belled tree Lm(T) using the post-order traversal and associating the generator ρi to the
673
+ letter i with the convention that ρ0 = e, gives a map Φm from the set of Schröder trees
674
+ labelled by m to the set S⋆ of words for the elements of the monoid Mm. We refer to
675
+ Figure 4 for an illustration.
676
+ 0
677
+ 5
678
+ 5
679
+ 1
680
+ 11
681
+ 10
682
+ 1
683
+ 11
684
+ 9
685
+ 2
686
+ 11 11
687
+ 11
688
+ 8
689
+ 2
690
+ 1
691
+ 11
692
+ 10
693
+ 1
694
+ 11
695
+ Figure
696
+ 4. Example
697
+ of
698
+ the
699
+ labelling
700
+ of
701
+ a
702
+ Schröder
703
+ tree
704
+ of
705
+ size
706
+ 12
707
+ with
708
+ m
709
+ =
710
+ 11.
711
+ The
712
+ corresponding
713
+ element
714
+ in
715
+ the
716
+ monoid
717
+ M11
718
+ is
719
+ ρ1ρ11ρ5ρ1ρ11ρ10ρ2ρ11ρ11ρ9ρ5ρ11ρ1ρ11ρ2ρ1ρ11ρ10ρ8.
720
+ Definition 3.5. Let T be a non-empty Schröder tree. If T has a subtree T1 satisfying the
721
+ three following properties:
722
+ (1) The root r1 of T1 is not the root of T, hence it has a parent r0 which has at least
723
+ two children,
724
+ (2) The root r1 has exactly two children,
725
+ (3) The right subtree of T1 is the empty tree with only one leave.
726
+ Then, we can construct another tree �T by contracting the edge r0 − r1, in other words by
727
+ removing the root r1 of T1 and attaching the two subtrees of T1 to r0. See Figure 5 for an
728
+ illustration. We call such a transformation, or the inverse transformation, a local move.
729
+ Note that, since r0 has at least two children in the configuration described above (see also
730
+ the left picture in Figure 5), we get that r0 has at least three children in the configuration
731
+ obtained after applying the local move. In particular, to apply a local move in the other
732
+ direction, we need to have a Schröder tree �T with a subtree T1 satisfying :
733
+ (1) The parent r0 of T1 (which is allowed to be the root of T) has at least three children,
734
+ (2) The tree T1 is not the last child of r0, and is directly followed by an empty tree
735
+ with only one leaf.
736
+ r0
737
+ Sk
738
+ r1
739
+ r2
740
+ A1
741
+ Sk+2
742
+ ←→
743
+ r0
744
+ Sk
745
+ r2
746
+ A1
747
+ Sk+2
748
+ Figure 5. Local move.
749
+
750
+ ODD AND EVEN FIBONACCI LATTICES ARISING FROM A GARSIDE MONOID
751
+ 11
752
+ Formally, if the subtree of T with root r0 is S =
753
+
754
+ r0, (S1, · · · , Sk, T1, Sk+2, · · · , Sr)
755
+
756
+ and
757
+ the subtree T1 is
758
+
759
+ r1, (A1, A2)
760
+
761
+ , then we obtain the tree �T by replacing S by
762
+
763
+ r0, (S1, · · · , Sk, A1, A2, Sk+2, · · · , Sr)
764
+
765
+ .
766
+ Lemma 3.6. Let T and S be two Schröder trees with n leaves. Then one can pass from
767
+ the tree T to the tree S by applying a sequence of local moves.
768
+ Proof. It is enough to show that T can be transformed into the Schröder bush δn–recall
769
+ that this is the Schröder tree in which every child of the root is a leaf–by a sequence of
770
+ local moves. The Schröder tree S can then be transformed as well into δn, and hence T
771
+ can be transformed into S. We argue by induction on the number of leaves. For n = 1 and
772
+ n = 2 there is nothing to prove. If T has a subtree S which is not of the form δk, then we
773
+ can transform S into δk for some k by applying the induction hypothesis to S. Hence we
774
+ can assume that T =
775
+
776
+ r, (δn1, · · · , δnk)
777
+
778
+ with � ni = n. If T is not equal to δn, then it has
779
+ at least a non-empty subtree S. If S has only two leaves, then we can apply a local move to
780
+ remove its root and to attach the two leaves to the root of T. If it has more than 3 leaves,
781
+ by induction there is a sequence of local moves from S to a left comb. Then, by repeatedly
782
+ applying a local move at the root of the left comb, we remove all the inner vertices of the
783
+ left comb and attach all its leaves to the root of T. Applying this to all subtrees S of T
784
+ wich are not empty, we end up getting δn.
785
+
786
+ Lemma 3.7. Let T be a Schröder tree with n leaves and m ≥ n − 1. Then Φm(T) is a
787
+ word for ρn−1(ρm)n−1ρm−n+1 in Mm. In particular if m = n − 1, then it is a word for the
788
+ Garside element of Mn−1.
789
+ Proof. If T = δn is the Schröder tree with only one root and n leaves, then Φm(T) =
790
+ ρn−1(ρm)n−1ρm−n+1. If T is another Schröder tree, then by Lemma 3.6 there is a sequence
791
+ of local moves from T to δn. To finish the proof it is enough to show that applying a local
792
+ move to a Schröder tree T amounts to applying a relation of the monoid Mm to Φm(T).
793
+ This is easily obtained by staring at Figure 5.
794
+ Indeed, if T is the tree at the left of Figure 5, then the label of r2 is 1, the label of the
795
+ leaf on its right is m and the label of r1 is a certain integer ℓ. Since r1 is not the root of
796
+ T, we have 1 ≤ ℓ. Moreover, since r1 is not a leaf of T, we have ℓ < m. Hence in Φm(T)
797
+ we have the factor ρ1ρmρℓ with 1 ≤ ℓ ≤ m − 1.
798
+ If �T denotes the right tree of Figure 5, then the label of r2 is ℓ + 1. Indeed r2 is a
799
+ leftmost child in �T if and only if r1 is a leftmost child in T. In this case its label is the
800
+ number of leaves of the forest in its right and in �T there is precisely one more leaf in this
801
+ forest than in T. In the other case, the label of r2 in �T is m − �
802
+ w∈LD(r2) λ(w). The label
803
+ of r1 is ℓ = m − 1 − �
804
+ w∈LD(r2) λ(w). So the label of r2 is ℓ + 1. The leaf on the right of r2
805
+ in �T is labelled by m, hence Φm( �T) is obtained by replacing ρ1ρmρℓ in Φm(T) by ρℓ+1ρm,
806
+ and vice-versa.
807
+
808
+ Proposition 3.8. For m = n−1, the map Φm from the set of Schröder trees with n leaves
809
+ to the set of words for ρn
810
+ n−1 in Mn−1 is surjective.
811
+ Proof. We have to show that to each word y for ρn
812
+ n−1 ∈ Mn−1, we can attach a Schröder
813
+ tree T with n leaves, in such a way that Φm(T) = y. The word y and the word ρn
814
+ n−1
815
+ can be transformed into each other by applying a sequence of defining relations of Mm.
816
+ We already know that the word ρn
817
+ n−1 is in the image of Φm since it is the image of the
818
+ Schröder bush. To conclude the proof, we therefore need to show the following claim: given
819
+ a Schröder tree S, if the corresponding labelling has a substring of the form 1mℓ (resp.
820
+ (ℓ + 1)m) with 1 ≤ ℓ ≤ m − 1, then we are necessarily in the configuration of the left
821
+
822
+ 12
823
+ THOMAS GOBET AND BAPTISTE ROGNERUD
824
+ picture in Figure 5 (resp. the right picture), and hence we can apply a local move. Indeed,
825
+ as one can pass from the word ρn
826
+ n−1 to the word y by a sequence of defining relations
827
+ let y0 = ρn
828
+ n−1, y1, . . . , yk = y be expressions of ρn
829
+ n−1 such that yi is obtained from yi−1
830
+ by applying a single relation in Mm.
831
+ Applying the relation on y0 = Φm(T) to get y1
832
+ corresponds to applying a local move on T to get a Schröder tree T1 and as seen in the
833
+ proof of lemma 3.7, we get Φm(T1) = y1.
834
+ To show the claim, assume that S is a Schröder tree with labelling having a substring
835
+ of the form 1mℓ with 1 ≤ ℓ ≤ m − 1. Note that m can only be the label of a leaf. Let v be
836
+ the parent of that leaf. It is a root of a family of trees, say (v, T1, . . . , Tk) and our leaf with
837
+ label m corresponds to one of the trees Ti (which has to be empty). It is clear that such a
838
+ tree cannot be T1: indeed, as T1 is the leftmost child of v, in that case m = n − 1 would
839
+ be the number of leafs in the forest T2, . . . , Tk, which is at most n − 1. As m = n − 1,
840
+ the only possibility would be that v is the root of S, hence m would be the first label and
841
+ therefore could not be preceded by a label 1. Hence m labels one of the trees T2, . . . , Tk,
842
+ say Ti. It follows that the label 1 preceding m is the label of the root of Ti−1. If i = 2
843
+ then k = 2 as the label 1 is then the label of the leftmost child of v, meaning that there is
844
+ only one leaf in the forest T2, . . . , Tk. In that case, it only remains to show that v cannot
845
+ be the root of S to match the configuration in the left picture of Figure 5. But this is
846
+ clear for if v was the root of S, the last label would be m corresponding to T2, hence
847
+ no ℓ could appear. Hence v is not the root of S, and its label is ℓ. Now if i ̸= 2, then
848
+ i − 1 ̸= 1. The root v′ of Ti−1 is labelled by 1 and as v′ is not the leftmost child of v, we
849
+ have 1 = λ(v′) = m−�
850
+ w∈LD(v′) λ(w), yielding �
851
+ w∈LD(v′) λ(w) = m−1. This means that
852
+ there are m leaves in Ti−1, and as there is one leaf in Ti and m = n−1, the only possibility
853
+ is that i − 1 = 1 and k = 2, contradicting i ̸= 2.
854
+ Now, assume that S is a Schröder tree with labelling having a substring of the form
855
+ (ℓ + 1)m with 1 ≤ ℓ ≤ m − 1. Again, m can only label a leaf. Let v be the parent of that
856
+ leaf as above, which is a root of a family T1, . . . , Tk of trees with Ti corresponding to our
857
+ leaf for some i. We need to show that i ̸= 1 and k ≥ 3. In the previous case we have seen
858
+ that if i = 1, then m = n − 1 is the number of leaves in T2, . . . , Tk, forcing v to be the root
859
+ of S and m to be the first label in S. Hence i ≥ 2. If k = 2 (hence i = 2), then the root of
860
+ T1 is labelled by 1 = ℓ + 1, contradicting 1 ≤ ℓ. Hence k ≥ 2.
861
+
862
+ Lemma 3.9.
863
+ (1) Let T be a Schröder tree with n leaves labelled by m ≥ n − 1. Then,
864
+ the weight of T is nm.
865
+ (2) Let w be a vertex of T which is not a leaf and v its leftmost child, that is w is the
866
+ root of a Schröder tree
867
+
868
+ w, (T1, · · · , Tk)
869
+
870
+ and v is the root of T1. Then the weight of
871
+ the forest F = (T2, · · · , Tk) attached to w is λ(v)m, and the labelling of of a vertex
872
+ in a tree Ti for i ≥ 2 is the same as its labelling inside T.
873
+ Proof. The first result is proved by induction on the number of leaves. If the tree has one
874
+ leaf the result holds by definition of our labelling. Let T = (r, T1, · · · , Tk) be a Schröder
875
+ tree, where Ti has ni leaves. By induction, the tree Ti has weight mni for i ≥ 1. Us-
876
+ ing Lemma 3.4, the sum of the labels of the vertices of the tree Ti (in T) is equal to mni
877
+ for i ≥ 2 and the sum of the labels of the vertices of T1 and of the root of T is equal to
878
+ mn1. Hence, the tree T has weight �k
879
+ i=1 mni = mn. For the second point, the number of
880
+ leaves of the forest F is equal to λ(v). Hence by the first point, the forest F has weight
881
+ λ(v)m.
882
+
883
+ Proposition 3.10. Let m ≥ n − 1. Then the map Φm from the set of Schröder trees with
884
+ n leaves to the set of words for the element ρn−1(ρm)n−1ρm−n+1 ∈ Mm is injective.
885
+
886
+ ODD AND EVEN FIBONACCI LATTICES ARISING FROM A GARSIDE MONOID
887
+ 13
888
+ Proof. Let T = (r, T1, · · · , Tk) be a Schröder tree with n leaves labelled by m. This proof is
889
+ purely combinatorial and it only involves the word W in N obtained by reading the labels
890
+ of the tree in post-order. The first step of the proof is to remark that one can recover the
891
+ decomposition ‘root and list of subtrees’ of a Schröder tree just by looking at W. We will
892
+ illustrate the algorithm in Example 3.11 below. Precisely we want to split the word W
893
+ into a certain number of factors W = W1 · · · Wk such that each subword Wi is equal to the
894
+ word obtained by reading the labels of Lm(Ti) in post-order.
895
+ The first letter w1 of W is the label of the leftmost leaf r1 of T and by induction we will
896
+ find the letters w2, w3, · · · , wi corresponding to the ancestors r2, r3, · · · , ri of r1. Since the
897
+ labels of these vertices count a number of leaves of T, when �i
898
+ j=1 wj = n − 1, then all the
899
+ leaves of T have been counted so ri is the root of T1 and we stop the induction.
900
+ If we have found the letter wk corresponding to rk ̸= r, then wk is the number of leaves
901
+ of the right forest attached to the parent rk+1 of rk. By Lemma 3.9, the weight of F is
902
+ m · wk, hence the word obtained by reading the vertices of F is wk+1 · · · wi where i is the
903
+ smallest integer such that �i
904
+ j=k+1 wj = mwk. All these letters correspond to the vertices
905
+ of F, hence the next letter is the label of the vertex read after F in the post-order traversal,
906
+ which is the vertex rk+1.
907
+ Since the word W only contains strictly non-negative integers (except possibly the label
908
+ of the root of T), at each step of the induction the value w1 +· · ·+wi strictly increases and
909
+ the induction stops. If wn1 is the letter corresponding to the leftmost child of the root of T,
910
+ then the word w1 · · · wn1 is the word obtained by reading all the vertices of the subtree T1.
911
+ By Lemma 3.4, this is almost the word obtained by reading Lm(T1) we just need to ‘correct’
912
+ the label of the root of T1 by adding the label of the root of T which is the last letter wl of
913
+ W. To conclude the word consisting of the labels of T1 is WT1 = w1 · · · wn1−1(wn1 + wl).
914
+ Let �
915
+ W be the word obtained by removing the letters w1, · · · , wn1 and wl. We use the
916
+ same procedure to extract the subwords corresponding to the other subtrees of T. Due
917
+ to the asymmetry of Lemma 3.4, there is a slight difference. We have found all the labels
918
+ w1, w2, · · · , wt of the vertices r1, r2, · · · , rt of the left branch of Ti when �t
919
+ j=1 wj = m and
920
+ there is no need to ‘correct’ the word as above.
921
+ We are now ready to prove that Φm is injective.
922
+ If the words of two trees T =
923
+ (r, (T1, · · · , Tk)) and S = (s, (S1, · · · , Sl)) obtained by reading the labels of their vertices
924
+ in post-order are equal, then by the discussion above we have k = l and for i ∈ {1, · · · , k},
925
+ the words obtained by reading the vertices of the subtrees Lm(Ti) and Lm(Si) are equal.
926
+ By induction on the number of leaves, we have Si = Ti for i = 1, · · · , k and we get that
927
+ T = S.
928
+
929
+ Example 3.11. We illustrate the decomposition involved in the proof of Proposition 3.10
930
+ with the example of Figure 4. We consider the leftmost subtree T1 of T with n = 7 leaves
931
+ and which is labelled by m = 11. We have Φ11(T1) = ρ1ρ11ρ5ρ1ρ11ρ10ρ2ρ11ρ11ρ9ρ5. The
932
+ first letter 1 tels us that the forest on the right of the leftmost leaf r1 has 1 vertex. Its
933
+ weight is m = 11. Hence ρ11 labels the only vertex of the forest and the next letter 5
934
+ corresponds to the parent r2 of r1. Since 1 + 5 = 6 we know that it is the leftmost child
935
+ of the root. Hence the word ρ1ρ11ρ5 is obtained by reading the vertices of the leftmost
936
+ subtree S of T1. We apply the ‘correction’ and we get ρ1ρ11ρ10 = Φ11(S). The rest of the
937
+ word ρ1ρ11ρ10ρ2ρ11ρ11ρ9 corresponds to the other subtrees of T1 and it splits as ρ1ρ11ρ10
938
+ and ρ2ρ11ρ11ρ9.
939
+ Combining Proposition 3.8 and Proposition 3.10 we get our main result of the section:
940
+ Theorem 3.12. For m = n − 1, the map Φm from the set of Schröder trees with n leaves
941
+ to the set of words for ρn
942
+ n−1 in Mn−1 is bijective.
943
+
944
+ 14
945
+ THOMAS GOBET AND BAPTISTE ROGNERUD
946
+ Corollary 3.13. The following two graphs are isomorphic under Φn−1:
947
+ (1) The graph of words for ρn
948
+ n−1 in Mn−1, where vertices are given by expressions of
949
+ ρn
950
+ n−1 and there is an edge between two expressions whenever they differ by applica-
951
+ tion of a single relation,
952
+ (2) The graph of Schröder trees with n leaves, where vertices are given by Schröder trees
953
+ and there is an edge between two trees whenever they differ by application of a local
954
+ move.
955
+ Proof. The previous theorem gives the bijection between the sets of vertices. The proof of
956
+ Lemma 3.7 shows that whenever one can apply a local move, one can apply a relation on
957
+ the corresponding words. The proof of Proposition 3.8 shows that whenever one can apply
958
+ a relation on words, a local move can be applied on the corresponding trees.
959
+
960
+ We illustrate the situation for M3 in Figure 6 below.
961
+ Corollary 3.14. The number of words for the Garside element of Mn is a little Schröder
962
+ number A001003 [11].
963
+ Lemma 3.15. Let T = (r, S1, · · · , Sk) be a Schröder tree with n leaves labelled by m = n−1.
964
+ Then, the word obtained by reading all the labels of a subtree Sj is a word for ρljn where lj
965
+ is the number of leaves of Sj.
966
+ Proof. Let us assume that the tree Sj has s + 1 leaves. By Lemma 3.7, the labels of the
967
+ subtree Sj is a word for ρsρs
968
+ n−1ρn−1−s. If s = 0, then we have a word for ρn−1. Otherwise,
969
+ we can apply the relations [8, Lemma 4.5] with i = s and j = n−1. Alternatively, using the
970
+ Schröder trees, it is easy to see that these relations comes from the following modifications
971
+ of the trees.
972
+ The word ρsρs
973
+ n−1ρn−1−s correspond to the case where the tree Sj is the
974
+ Schröder bush with s + 1 leaves. Using our local moves, we can modify it to the left comb.
975
+ The corresponding word is now (ρ1ρs)sρn−1−s. Now we can inductively apply the local
976
+ move to contract the edge between the root of T and the root left comb. The result is s+1
977
+ empty trees attached to the root of T and the corresponding word is ρs+1
978
+ n−1.
979
+
980
+ Proposition 3.16. Let n ≥ 1. We have the following isomorphisms of posets:
981
+ (1) D0
982
+ n ∼= Div(∆n−1), Dn+1
983
+ n
984
+ ∼= Div(∆0) = {•},
985
+ (2) For all 1 ≤ i ≤ n, Di
986
+ n ∼= Div(∆n−i),
987
+ where every set is ordered by the restriction of the left-divisibility order in the monoid Mk
988
+ for suitable k.
989
+ Proof. We begin by proving the second statement. An element x of Di
990
+ n can be written in the
991
+ form ρi
992
+ nx′, where x′ is uniquely determined by cancellativity, and such that ρn is not a left-
993
+ divisor of x′. In particular, there is y a divisor of ∆n such that ρi
994
+ nx′y = ρn+1
995
+ n
996
+ , and y ̸= 1. We
997
+ associate a tree (or rather a family of trees) to x as follows. Write x′ as a product a1a2 · · · aj
998
+ of elements of S. Complete the word ρi
999
+ na1a2 · · · aj to a word ρi
1000
+ na1a2 · · · ajb1b2 · · · bℓ for ∆n,
1001
+ i.e., choose a word b1b2 · · · bℓ for y.
1002
+ There are several possibilités for the bi’s, but the
1003
+ condition that x ∈ Di
1004
+ n ensures that, writing the corresponding Schröder tree in the form
1005
+ (r, T1, T2, . . . , Ti, S1, S2, · · · Sd), where the i first trees are empty trees with a single leaf,
1006
+ then a1a2 · · · aj has all its labels inside S1. Indeed, the labelling a1a2 · · · aj begins at the
1007
+ beginning (in the post-order convention) of the tree S1 since the trees T1, T2, . . . , Ti yield
1008
+ the label ρi
1009
+ n, and if another tree among S2, . . . , Sd was partly labelled by the ai’s, then a
1010
+ power of ρn would left-divide x′, since the word obtained from S1 is a power of ρn (lemma
1011
+ 3.15). It is then possible to reduce all the trees S1, S2, . . . , Sd to a single tree S still having
1012
+ the labelling a1, a2, . . . , aj at the beginning, by first reducing S2, . . . , Sd to a set of empty
1013
+
1014
+ ODD AND EVEN FIBONACCI LATTICES ARISING FROM A GARSIDE MONOID
1015
+ 15
1016
+ ρ2ρ1ρ3ρ2ρ1ρ3
1017
+ ρ3ρ1ρ3ρ2ρ3
1018
+ ρ3ρ1ρ3ρ1ρ3ρ1
1019
+ ρ3ρ2ρ3ρ3ρ1
1020
+ ρ2ρ3ρ3ρ1ρ3
1021
+ ρ3ρ3ρ3ρ3
1022
+ ρ3ρ3ρ1ρ3ρ2
1023
+ ρ3ρ2ρ1ρ3ρ2ρ1
1024
+ ρ1ρ3ρ1ρ3ρ1ρ3
1025
+ ρ1ρ3ρ2ρ3ρ3
1026
+ ρ1ρ3ρ2ρ1ρ3ρ2
1027
+ 1
1028
+ 2
1029
+ 2
1030
+ 1
1031
+ 3
1032
+ 3
1033
+ 3
1034
+ 2
1035
+ 1
1036
+ 3
1037
+ 3
1038
+ 3
1039
+ 1
1040
+ 1
1041
+ 1
1042
+ 3
1043
+ 3
1044
+ 3
1045
+ 1
1046
+ 2
1047
+ 3
1048
+ 3
1049
+ 1
1050
+ 2
1051
+ 3
1052
+ 3
1053
+ 3
1054
+ 3
1055
+ 3
1056
+ 3
1057
+ 3
1058
+ 3
1059
+ 3
1060
+ 2
1061
+ 1
1062
+ 3
1063
+ 3
1064
+ 1
1065
+ 2
1066
+ 2
1067
+ 1
1068
+ 3
1069
+ 1
1070
+ 1
1071
+ 1
1072
+ 3
1073
+ 3
1074
+ 3
1075
+ 2
1076
+ 1
1077
+ 3
1078
+ 3
1079
+ 3
1080
+ 2
1081
+ 1
1082
+ 3
1083
+ 2
1084
+ 1
1085
+ 3
1086
+ Figure 6. Illustration of Corollary 3.13 for n = 4: the graph of reduced words for
1087
+ ∆3 and the isomorphic graph of Schröder trees on 4 = 3 + 1 leaves.
1088
+ trees �T2, . . . , �Td′ with single leafs, and then merging S1 and �T2 using a local move, then
1089
+ merging the resulting tree with �T3, and so on (see Figure 7 for an illustration). In this way
1090
+ we associate to x a Schröder tree of the form (r, T1, T2, . . . , Ti, S), where the Tk’s are empty
1091
+ trees with a single leaf, and the labelling corresponding to the chosen word a1a2 · · · aj is an
1092
+ initial section of the tree S (in fact, in algebraic terms, what we did is modify the word for
1093
+ y to get a suitable one yielding a unique tree after the empty trees). Note that by initial
1094
+ section we mean a prefix of the word obtained from the labelling of S read in post-order,
1095
+ where we exclude the label of the root, i.e., if the root has a label, then the prefix is strict.
1096
+ We denote by Sn,i the set of such Schröder trees, that is, those Schröder trees on n leaves
1097
+ with i + 1 child of the root, and such that the i first child are leafs. Note that the tree
1098
+ that we attached to x depends on a choice of word for x, but applying a defining relation
1099
+
1100
+ 16
1101
+ THOMAS GOBET AND BAPTISTE ROGNERUD
1102
+ in the word x corresponds to applying a local move in the tree S, and this cannot make S
1103
+ split into several trees since the root of S is frozen (its label corresponds to the last letter
1104
+ of y ̸= 1). Hence we can apply all local moves with all labels in the (strict) initial section
1105
+ corresponding to a word for x, and we keep a Schröder tree on n−i+1 leaves. In this way,
1106
+ forgetting the i first empty trees, what we attached to x is an equivalence class of a (strict)
1107
+ initial section of a Schröder tree on n − i + 1 leaves under local moves, that is, a divisor
1108
+ of ∆n−i. This mapping is injective since one can recover a word for x from the obtained
1109
+ Schröder tree on n − i + 1 leaves easily by mapping S to (r, T1, . . . , Ti, S), labelling such a
1110
+ tree, and reading the word obtained by reading the i first empty trees and then the initial
1111
+ section.
1112
+ It remains to show that it is surjective. Hence consider an initial section of a Schröder
1113
+ tree S on n − i leaves. We must show that, in the tree (r, T1, T2, . . . , Ti, S), the initial
1114
+ section of S is a word a1a2 · · · aj which labels an element x′ of D0
1115
+ n. Assume that ρn is a
1116
+ left-divisor of x′. Then, using local moves only involving those labels in the initial section
1117
+ of S corresponding to a word for x′, one can transform (r, T1, T2, . . . , Ti, S) into a tree of the
1118
+ form (r, T1, T2, . . . , Ti, Ti+1, S′
1119
+ 1, . . . , S′
1120
+ e), i.e., S can be split into several trees, the first one
1121
+ (corresponding to ρn) being an empty tree. This is a contradiction: to split S into several
1122
+ trees, one would need to apply a local move involving the root of S, which is frozen since
1123
+ the initial section does not cover the root. Hence x′ ∈ D0
1124
+ n, and our mapping is surjective.
1125
+ This completes the proof of the second point, as it is clear that our mappings preserve
1126
+ left-divisibility.
1127
+ For the first point, we have Dn+1
1128
+ n
1129
+ = {ρn+1
1130
+ n
1131
+ }, hence there is nothing to prove. To show
1132
+ that D0
1133
+ n ∼= Div(∆n−1), one proceeds in a similar way as in the proof of point 1. Let x ∈ D0
1134
+ n
1135
+ and let y such that xy = ∆n. Choose words for x and y, and consider the corresponding
1136
+ Schröder tree T = (r, T1, . . . , Tk). Since x ∈ D0
1137
+ n, the initial section of T corresponding to
1138
+ the word for x must be a proper initial section of T1. Using local moves on T2, . . . , Tk (which
1139
+ amounts to changing the word for y), we can find a Schröder tree that is equivalent to T
1140
+ under local moves, and that is of the form (r, �T1, �T2), where �T1 still has the chosen word
1141
+ for x as a proper initial section, and �T2 is the empty tree with only one leaf. In particular
1142
+ �T1 is a Schröder tree on n leaf. Applying defining relations to words for x amounts to
1143
+ applying local moves inside the first tree, and arguing as in the first point this establishes
1144
+ the isomorphism of posets between D0
1145
+ n and Div(∆n−1).
1146
+
1147
+ r
1148
+ Ti
1149
+ S1
1150
+ �T1
1151
+ �T2
1152
+ −→
1153
+ r
1154
+ Ti
1155
+ r1
1156
+ S1
1157
+ �T1
1158
+ �T2
1159
+ −→
1160
+ r
1161
+ Ti
1162
+ r2
1163
+ r1
1164
+ S1
1165
+ �T1
1166
+ �T2
1167
+ =
1168
+ r
1169
+ Ti
1170
+ S
1171
+ Figure 7. Illustration for the proof of Proposition 3.16.
1172
+
1173
+ ODD AND EVEN FIBONACCI LATTICES ARISING FROM A GARSIDE MONOID
1174
+ 17
1175
+ 4. Enumerative results
1176
+ We have already seen (Theorem 3.12) that the words for ρn+1
1177
+ n
1178
+ are in bijection with
1179
+ Schröder trees on n+1 leaves. In this section, we give some additional enumerative results
1180
+ for several families of particular elements of Mn.
1181
+ 4.1. Number of simple elements.
1182
+ Corollary 4.1. Let n ≥ 2, and let An := |Div(∆n)|. Then
1183
+ An = 2A0 + 2An−1 +
1184
+ n−2
1185
+
1186
+ i=1
1187
+ Ai.
1188
+ (4.1)
1189
+ It follows that An = F2n, where F0, F1, F2, . . . denotes the Fibonacci sequence 1, 2, 3, 5, 8, ...
1190
+ inductively defined by F0 = 1, F1 = 2, and Fi = Fi−1 + Fi−2 for all i ≥ 2. The sequence of
1191
+ the Ans is referred as A001906 in [11].
1192
+ Proof. The equality (4.1) follows immediately from the disjoint union Div(∆n) = �
1193
+ 0≤i≤n+1 Di
1194
+ n
1195
+ and Proposition 3.16. We have A0 = F0, A1 = 3 = F2, and it is elementary to check that
1196
+ the inductive formula given by 4.1 is also satisfied by the sequence F2n. This shows that
1197
+ An = F2n for all n ≥ 0.
1198
+
1199
+ Definition 4.2. We call the lattice (Div(∆n), ≤) the even Fibonacci lattice.
1200
+ 4.2. Number of left-divisors of the lcm of the atoms and odd Fibonacci lat-
1201
+ tice. The set DivL(ρn
1202
+ n) of left-divisors of ρn
1203
+ n also forms a lattice under the restriction
1204
+ of left-divisibility, since it is an order ideal in the lattice (Div(∆n), ≤). In terms of the
1205
+ Garside monoid Mn, the element ρn
1206
+ n is both the left- and right-lcm of the generators
1207
+ S = {ρ1, ρ2, . . . , ρn} (see [8, Corollary 4.17]). For n ≥ 1 we set Bn := |DivL(ρn
1208
+ n)|.
1209
+ Lemma 4.3. We have Bn = F2n−1 for all n ≥ 1. The sequence of the Bns is referred as
1210
+ A001519 in [11].
1211
+ Proof. Let x ∈ Div(∆n). We claim that x ∈ DivL(ρn
1212
+ n) if and only if ρnx ∈ Div(∆n). Indeed,
1213
+ if x ≤ ρn
1214
+ n, there is y ∈ Mn such that xy = ρn
1215
+ n. We then have ρnxy = ρn+1
1216
+ n
1217
+ = ∆n, hence
1218
+ ρnx is a left-divisor of ∆n. Conversely, assume that ρnx ∈ Div(∆n). It follows that there
1219
+ is y ∈ Div(∆n) such that ρnxy = ∆n = ρn+1
1220
+ n
1221
+ . By cancellativity we get that xy = ρn
1222
+ n, hence
1223
+ x ∈ DivL(ρn
1224
+ n).
1225
+ It follows that DivL(ρn
1226
+ n) is in bijection with the set
1227
+ {ρnx | x ∈ Div(∆n)} ∩ Div(∆n).
1228
+ But this set is nothing but �
1229
+ 1≤i≤n+1 Di
1230
+ n. It follows that
1231
+ Bn = |Div(∆n)| − |D0
1232
+ n| = |Div(∆n)| − |Div(∆n−1)|,
1233
+ where the last equality follows from point (1) of Proposition 3.16. By Corollary 4.1 we
1234
+ thus get that
1235
+ Bn = An − An−1 = F2n − F2n−2 = F2n−1,
1236
+ which concludes the proof.
1237
+
1238
+ Definition 4.4. We call the lattice (DivL(ρn
1239
+ n), ≤) the odd Fibonacci lattice.
1240
+ Both lattices for M3 are depicted in Figure 1.
1241
+ Remark 4.5. Note that the set of right-divisors of ρn
1242
+ n also has cardinality Bn: in fact, the
1243
+ two posets (DivL(ρn
1244
+ n), ≤L) and (DivR(ρn
1245
+ n), ≤R) are anti-isomorphic via x �→ x, where x is
1246
+ the element of Mn such that xx = ρn
1247
+ n (this element is unique by right-cancellativity).
1248
+
1249
+ 18
1250
+ THOMAS GOBET AND BAPTISTE ROGNERUD
1251
+ 4.3. Number of words for the divisors of the Garside element.
1252
+ Lemma 4.6. Let T1 and T2 be two Schröder trees with n leaves labelled by m ≥ n − 1, and
1253
+ denote by m1 and m2 the corresponding words obtained by reading the labels in post-order.
1254
+ If the words m1 and m2 have a common prefix x1x2 · · · xl, then xi labels a leftmost child in
1255
+ T1 if and only if it labels a leftmost child in T2.
1256
+ Proof. We prove the result by induction on the number of leaves. If x1 · · · xl is obtained
1257
+ by reading all the vertices of T1 = (r, S1, · · · , Sk), then m1 = x1 · · · xl = m2 and by
1258
+ Proposition 3.10, we have T1 = T2, hence there is nothing to prove. Otherwise, let Sj be
1259
+ the first subtree of T1 which is not covered by the word x1 · · · xl, similarly let Uk the first
1260
+ subtree of T2 = (r, U1, · · · Uv) which is not covered by x1 · · · xl. Looking at the proof of
1261
+ Proposition 3.10, we see that the first subtrees S1, · · · , Sj−1 are completely determined by
1262
+ the word x1 · · · xl, hence we have j = k and Si = Ui for all i < k. Let xs be the letter of
1263
+ x1 · · · xl labelling the first vertex of Sj. Let m′
1264
+ 1 be the subword of m1 and m′
1265
+ 2 the subword
1266
+ of m2 starting at the xs. As explained in the proof of Proposition 3.10, we can determine
1267
+ the subword mj
1268
+ 1 of m′
1269
+ 1 which correspond to Sj. The trees Uj and Sj do not need to have the
1270
+ same number of leaves. If one of the trees, say Uj, has less leaves, then one can apply local
1271
+ moves in the trees Uj, Uj+1, · · · Uv as in the proof of Proposition 3.16 in order to obtain
1272
+ a tree ˜Uj with the same number of leaves as Sj. This will modify the word m′
1273
+ 2, but not
1274
+ the prefix xs · · · xl, and xi labels a leftmost child in Uj if and only if it labels a leftmost
1275
+ child in ˜Uj (see Figure 7 for an illustration). After doing the modification, we consider the
1276
+ subword mj
1277
+ 2 corresponding to the tree ˜Uj and apply the induction hypothesis to mj
1278
+ 1 and
1279
+ mj
1280
+ 2.
1281
+
1282
+ Theorem 4.7. The set of words for the left-divisors of ρn+1
1283
+ n
1284
+ is in bijection with the set of
1285
+ Schröder trees with n + 2 leaves.
1286
+ Proof. Let us denote by sk the number of Schröder trees with k + 1 leaves, and dk the
1287
+ number of words for the divisors of ρk+1
1288
+ k
1289
+ .
1290
+ Recall that Div(∆n) = �
1291
+ 0≤i≤n+1 Di
1292
+ n, and let di
1293
+ n be the number of words for the elements
1294
+ of Di
1295
+ n. If i = n + 1, then ρn+1
1296
+ n
1297
+ is the only element of Di
1298
+ n and by Theorem 3.12, there are
1299
+ sn words for this element, hence we have dn+1
1300
+ n
1301
+ = sn.
1302
+ Let 0 ≤ i ≤ n and w = x1 · · · xl be a word for an element of Di
1303
+ n. The word w is a strict
1304
+ prefix of a Schröder tree T = (r, S1, · · · , Sk). By Lemma 2.5, w = w1w2 where w1 is a word
1305
+ for ρi
1306
+ n and ρn is not a left divisor of w2 (when i = 0 the word w1 is empty). Let Sj be the
1307
+ last subtree of T which has a vertex labelled by a letter of w1. We can apply a succession
1308
+ of defining relations to w1 in order to obtain ρi
1309
+ n. These relations correspond to local move
1310
+ in the trees S1, · · · , Sj which collapse all the trees S1, · · · Sj to empty trees. In order to
1311
+ reduce Sj to a list of empty trees we must use its root. Since the root is always the last
1312
+ label of the tree in post-order, the word w1 covers all the first j trees which have in total
1313
+ i leaves. Since ρn does not divide w2, we see that w2 is a (possibly empty) strict prefix
1314
+ of Sj+1. It is also possible to modify the trees Sj+2, · · · , Sk without changing the first j
1315
+ trees. Indeed, as in the proof of Proposition 3.16 we can reduce the trees Sj+2, · · · , Sk to
1316
+ empty trees and then merge them (until we can) to Sj+1.
1317
+ • When i = 0, after modification we obtain a tree ˜T = (r, ˜S, L) where L the empty
1318
+ tree, ˜S is a tree with n leaves and w = w2 is a strict prefix of ˜S.
1319
+ • When 1 ≤ i ≤ n, we obtain a tree ˜T = (r, S1, · · · , Sj, �Sj+1) and w2 is a strict prefix
1320
+ of the tree �Sj+1 with n + 1 − i leaves.
1321
+ In both cases, the tree �Sj+1 is obtained by possibly introducing new vertices to Sj+1,
1322
+ and as Figure 7 shows, these new vertices occur after the vertices of Sj+1, in post-order,
1323
+
1324
+ ODD AND EVEN FIBONACCI LATTICES ARISING FROM A GARSIDE MONOID
1325
+ 19
1326
+ hence w2 is still a strict prefix of �Sj+1. Hence, we see that in the decomposition w = w1w2
1327
+ of Lemma 2.5, the word w1 is obtained by reading all the vertices of a Schröder tree with
1328
+ i leaves and w2 is a strict prefix of a Schröder tree, denoted by ˜S, with li + 1 leaves where
1329
+ li = n − i leaves if i ̸= 0 and li = n − 1 if i = 0.
1330
+ Let w = w1w2 be a word of an element of Di
1331
+ n with w2 having t letters. Let ˜S be a
1332
+ Schröder tree with li + 1 leaves having w2 as a strict prefix. Then, we construct a word
1333
+ γ(w) by first extracting ˜S, then labelling it accordingly to its number of leaves (i.e., with
1334
+ m = li) and finally taking its first t letters in post-order. Algebraically, it is easy to see
1335
+ how the word γ(w) is obtained from w2: if wi is the label of a leftmost child in ˜S, we have
1336
+ γ(w)i = wi. Otherwise, since the tree ˜Sj has li + 1 leaves, we have γ(w)i = wi − n + (li).
1337
+ A priori γ(w) depends on the choice of a tree ˜S, but Lemma 4.6 tells us that γ(w) only
1338
+ depends on w2. The word γ(w) is a prefix of a Schröder tree with li + 1 leaves, hence it
1339
+ is a word for a divisor of ∆li. We have obtained a map γ from the set of words for the
1340
+ elements of Di
1341
+ n to the set of words for the divisors of ∆li.
1342
+ Conversely, if z is a word of length k for a divisor of ∆li, it is a prefix (strict since the
1343
+ root is not contributing) of a Schröder tree S with li +1 leaves. We can view S as a subtree
1344
+ of a Schröder tree with n + 1 leaves by considering:
1345
+ • T = (r, S, L) when i = 0;
1346
+ • T = (r, δi, S) when i ≥ 1.
1347
+ Reading up to the first k letters of the subtree S produces a word w = w1w2 of an
1348
+ element of Di
1349
+ n such that γ(w) = z. Hence γ is surjective and we set ǫ(z) = w2. As before
1350
+ ǫ(z) only depends on z, not on the tree having z as a prefix.
1351
+ When i = 0, the map γ is injective, indeed if w and z are two words such that γ(w) =
1352
+ γ(z), then by Lemma 4.6 the labels of the leftmost child in γ(w) and γ(z) are the same,
1353
+ hence w and z are equal. This proves that d0
1354
+ n = dn−1.
1355
+ When i ≥ 1, then γ is far from being injective, since it forgets the first part of the tree.
1356
+ The set of words for the elements of Di
1357
+ n is the disjoint union of two sets E1 and E2 where
1358
+ E1 is the set of words w = w1w2 where w1 covers exactly one tree S1 and E2 is the set
1359
+ of words where w1 covers at least two trees. Note that when i = 1, the set E2 is empty
1360
+ otherwise both sets are non-empty. Indeed E2 contains at least all the words of the form
1361
+ ρi
1362
+ nw2 and E1 contains at least the words of the form ρi−1ρi−1
1363
+ n
1364
+ ρn−i−1w2 which correspond
1365
+ to the Schröder bush δi attached as the leftmost subtree of a Schröder tree.
1366
+ If z is a word for a divisor of ∆li, we compute the cardinality of the preimage of z by γ
1367
+ by looking at γ−1(z) ∩ E1 and γ−1(z) ∩ E2. If i = 1, we obviously only consider the first
1368
+ case. The elements of γ−1(z) ∩ E1 are obtained by concatenation of the word of a single
1369
+ Schröder tree with i leaves and ǫ(z), and the elements of γ−1(z) ∩ E2 are concatenation
1370
+ of the words of a forest with i leaves made of at least two Schröder tree and ǫ(z). Such a
1371
+ forest is nothing but a Schröder tree with i-leaves from which the root has been removed.
1372
+ So we have
1373
+ |γ−1(z) ∩ E1| = si−1 = |γ−1(z) ∩ E2|.
1374
+ Taking the sum on all possible words z, we have d1
1375
+ n = s0 · dn−1 and di
1376
+ n = 2 · si−1 · dn−i
1377
+ when n ≥ i ≥ 2.
1378
+ We have obtained:
1379
+ d0
1380
+ n = dn−1;
1381
+ d1
1382
+ n = s0 · dn−1 = dn−1;
1383
+ and
1384
+ di
1385
+ n = 2 · si−1 · dn−i when n ≥ i ≥ 2 and dn+1
1386
+ n
1387
+ = sn.
1388
+
1389
+ 20
1390
+ THOMAS GOBET AND BAPTISTE ROGNERUD
1391
+ By induction on the number of leaves, we have di = si+1, for every i ≤ n − 1, and
1392
+ dn = 2sn + 2
1393
+ n
1394
+
1395
+ i=2
1396
+ si−1sn−i+1 + sn
1397
+ = 3sn + 2
1398
+ n−1
1399
+
1400
+ i=1
1401
+ sisn−i.
1402
+ Using generating functions, it is not difficult to check that this implies that dn = sn+1, see
1403
+ for example [13, Theorem 5].
1404
+
1405
+ References
1406
+ [1] D. Bessis, The dual braid monoid, Ann. Sci. École Norm. Sup. 36 (2003), 647-683.
1407
+ [2] J. Birman, K.H. Ko, and S.J. Lee, A New Approach to the Word and Conjugacy Problems in the
1408
+ Braid Groups, Adv. in Math. 139 (1998), 322–353.
1409
+ [3] E. Brieskorn and K. Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972), 245–271.
1410
+ [4] P. Dehornoy, F. Digne, D. Krammer, E. Godelle, and J. Michel. Foundations of Garside theory, Tracts
1411
+ in Mathematics 22, Europ. Math. Soc. (2015).
1412
+ [5] P. Dehornoy and L. Paris, Gaussian groups and Garside groups, two generalisations of Artin groups,
1413
+ Proc. London Math. Soc. (3) 79 (1999), no. 3, 569-604.
1414
+ [6] P. Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), 273-302.
1415
+ [7] F.A. Garside, The braid group and other groups, Quart. J. Math. Oxford Ser. 20 (1969), no. 2,
1416
+ 235–254.
1417
+ [8] T. Gobet, On some torus knot groups and submonoids of the braid groups, J. Algebra 607 (2022),
1418
+ Part B, 260-289.
1419
+ [9] T. Gobet, A new Garside structure on torus knot groups and some complex braid groups, preprint
1420
+ (2022), https://arxiv.org/abs/2209.02291.
1421
+ [10] J-L. Loday, Realization of the Stasheff polytope, Arch. Math., 83 (2004), 267-278.
1422
+ [11] OEIS Foundation Inc, The On-Line Encyclopedia of Integer Sequences, Published electronically at
1423
+ https://oeis.org
1424
+ [12] M. Picantin, Petits groupes gaussiens, PhD Thesis, Université de Caen, 2000.
1425
+ [13] F. Qi, B. Guo Some explicit and recursive formulas of the large and little Schröder numbers, Arab
1426
+ Journal of Mathematical Sciences Vol: 23, Issue: 2, Page: 141-147 (2017).
1427
+ Institut Denis Poisson, CNRS UMR 7350, Faculté des Sciences et Techniques, Université
1428
+ de Tours, Parc de Grandmont, 37200 TOURS, France
1429
+ Email address: thomas.gobet@lmpt.univ-tours.fr
1430
+ Institut de Mathématiques de Jussieu, Paris Rive Gauche (IMJ-PRG), Campus des Grands
1431
+ Moulins, Université de Paris - Boite Courrier 7012, 8 Place Aurélie Nemours, 75205 PARIS
1432
+ Cedex 13, France
1433
+ Email address: baptiste.rognerud@imj-prg.fr
1434
+
39AyT4oBgHgl3EQf1_mj/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
39E2T4oBgHgl3EQfjgft/content/tmp_files/2301.03970v1.pdf.txt ADDED
@@ -0,0 +1,1472 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03970v1 [math.GR] 10 Jan 2023
2
+ Ulam stability of lamplighters and Thompson groups
3
+ Francesco Fournier-Facio and Bharatram Rangarajan
4
+ January 11, 2023
5
+ Abstract
6
+ We show that a large family of groups is uniformly stable relative to unitary groups
7
+ equipped with submultiplicative norms, such as the operator, Frobenius, and Schatten
8
+ p-norms. These include lamplighters Γ ≀ Λ where Λ is infinite and amenable, as well as
9
+ several groups of dynamical origin such as the classical Thompson groups F, F ′, T and
10
+ V . We prove this by means of vanishing results in asymptotic cohomology, a theory
11
+ introduced by the second author, Glebsky, Lubotzky and Monod, which is suitable
12
+ for studying uniform stability.
13
+ Along the way, we prove some foundational results
14
+ in asymptotic cohomology, and use them to prove some hereditary features of Ulam
15
+ stability. We further discuss metric approximation properties of such groups, taking
16
+ values in unitary or symmetric groups.
17
+ 1
18
+ Introduction
19
+ Let Γ be a countable discrete group, and let U be a family of finite-dimensional unitary
20
+ groups. The problem of stability asks whether every almost-homomorphism Γ → U ∈ U
21
+ is close to a homomorphism. To formalize this we need to choose a norm, and a way to
22
+ interpret these approximate notions. We focus on the classical setting of uniform defects and
23
+ distances, with respect to submultiplicative norms.
24
+ Let U := {(U(k), ∥·∥)} be a family of finite-dimensional unitary groups equipped with bi-
25
+ invariant submultiplicative norms ∥·∥ (we allow U(k) to appear multiple times with different
26
+ norms). For instance ∥ · ∥ could be the operator norm - the most classical case - or more
27
+ generally a Schatten p-norm. Given a map φ : Γ → U(k), we define its defect to be
28
+ def(φ) := sup
29
+ g,h∈Γ
30
+ ∥φ(gh) − φ(g)φ(h)∥.
31
+ Given another map ψ : Γ → U(k), we define the distance between them to be
32
+ dist(φ, ψ) := sup
33
+ g∈Γ
34
+ ∥φ(g) − ψ(g)∥.
35
+ Definition 1.1. A uniform asymptotic homomorphism is a sequence of maps φn : Γ → U(kn)
36
+ such that def(φn) → 0. We denote this simply by φ : Γ → U. We say that φ, ψ : Γ → U are
37
+ uniformly asymptotically close if they have the same range degrees and dist(φn, ψn) → 0.
38
+ The group Γ is uniformly U-stable if every uniform asymptotic homomorphism is uni-
39
+ formly asymptotically close to a sequence of homomorphisms.
40
+ 1
41
+
42
+ We can also talk quantitatively about stability, by asking how close a homomorphism we
43
+ can choose, in terms of the defect. This leads to the notion of stability with a linear estimate,
44
+ which will be relevant for us and which we define precisely in Section 2.1.
45
+ Early mentions of similar problems can be found in the works of von Neumann [vN29]
46
+ and Turing [Tur38]. In [Ula60, Chapter 6] Ulam discussed more general versions of stability,
47
+ which has since inspired a large body of work. Uniform U-stability has been studied mostly
48
+ when U is the family of unitary groups equipped with the operator norm, for which the
49
+ notion is typically referred to as Ulam stability. In this contest, Kazhdan proved stability of
50
+ amenable groups [Kaz82], while Burger, Ozawa and Thom proved stability of certain special
51
+ linear groups over S-integers, and instability of groups admitting non-trivial quasimorphisms
52
+ [BOT13].
53
+ More recently, the second author, Glebsky, Lubotzky and Monod proved Ulam stabil-
54
+ ity of certain lattices in higher rank Lie groups, with respect to arbitrary submultiplicative
55
+ norms [GLMR23]. For the proof, they introduce a new cohomology theory, called asymptotic
56
+ cohomology, and prove that stability is implied by the vanishing of certain asymptotic co-
57
+ homology classes α ∈ H2
58
+ a(Γ, V). We refer the reader to Section 2.2 for the relevant definitions.
59
+ The goal of this paper is to further the understanding of asymptotic cohomology, and
60
+ apply this to prove new stability results.
61
+ The main one is the stability of the classical
62
+ Thompson groups:
63
+ Theorem 1.2 (Section 5). Thompson’s groups F, F ′, T and V are uniformly U-stable, with
64
+ a linear estimate.
65
+ As remarked by Arzhantseva and P˘aunescu [AP15, Open problem], the analogous state-
66
+ ment for pointwise stability in permutation of F would imply that F is not sofic, thus proving
67
+ at once the existence of a non-sofic group and the non-amenability of F: two of the most
68
+ remarkable open problems in modern group theory. We will discuss these problems and their
69
+ relation to our results in Section 7.
70
+ Theorem 1.2 for F and F ′ will follow from a stability result for certain lamplighters.
71
+ Given groups Γ, Λ, the corresponding lamplighter (or restricted wreath product) is the group
72
+ Γ ≀ Λ = (⊕ΛΓ) ⋊ Λ, where Λ acts by shifting the coordinates.
73
+ Theorem 1.3. Let Γ, Λ be two countable groups, where Λ is infinite and amenable. Then
74
+ Γ ≀ Λ is uniformly U-stable, with a linear estimate.
75
+ By itself, Theorem 1.3 provides a plethora of examples of uniformly U-stable groups, to a
76
+ degree of flexibility that was not previously available. For instance, using classical embedding
77
+ results [HNN49] it immediately implies the following:
78
+ Corollary 1.4. Every countable group embeds into a 3-generated group which is uniformly
79
+ U-stable, with a linear estimate.
80
+ In particular, this gives a proof that there exist uncountably many finitely generated
81
+ uniformly U-stable groups, a fact which could also be obtained by applying Kazhdan’s The-
82
+ orem [Kaz82] to an infinite family of finitely generated amenable groups, such as the one
83
+ constructed by B. H. Neumann [Neu37].
84
+ 2
85
+
86
+ In order to obtain stability of F and F ′ from Theorem 1.3, we exploit coamenability.
87
+ Recall that a subgroup Λ ≤ Γ is coamenable if the coset space Γ/Λ admits a Γ-invariant
88
+ mean. It is well known that F ′ and F contain a coamenable lamplighter F ≀ Z. Therefore the
89
+ stability of F and F ′ (Corollary 5.8) follows from Theorem 1.3, and the following result:
90
+ Proposition 1.5. Let Λ ≤ Γ be coamenable. If Λ is uniformly U-stable with a linear estimate,
91
+ then so is Γ.
92
+ This can be seen as a relative version of the celebrated result of Kazhdan, stating that
93
+ amenable groups are uniformly U-stable [Kaz82]. To complete the picture, we also prove
94
+ another relative version of Kazhdan’s Theorem, which is sort of dual to Proposition 1.5:
95
+ Proposition 1.6. Let N ≤ Γ be an amenable normal subgroup. If Γ is uniformly U-stable
96
+ with a linear estimate, then so is Γ/N.
97
+ The fact that Theorem 1.2 follows from Theorem 1.3 and Proposition 1.5 is not special
98
+ to Thompson’s group F: this phenomenon is typical of several groups of piecewise linear and
99
+ piecewise projective homeomorphisms, which enjoy some kind of self-similarity properties
100
+ (Theorem 5.1 and Corollary 5.2). Stability of T and V then follow from these results, to-
101
+ gether with a bounded generation argument analogous to the one from [BOT13] (Corollaries
102
+ 5.11 and 5.12).
103
+ As we mentioned above, the tool underlying the proofs of Theorem 1.3 and Proposition
104
+ 1.5 is asymptotic cohomology, in particular the vanishing of certain classes in degree 2. In
105
+ this framework, Theorem 1.3 takes the following form:
106
+ Theorem 1.7. Let Γ, Λ be two countable groups, where Λ is infinite and amenable. Then
107
+ Hn
108
+ a(Γ ≀ Λ, V) = 0 for all n ≥ 1 and all finitary dual asymptotic Banach ∗Γ-modules V.
109
+ Here the word finitary refers to the fact that these modules arise from stability problems
110
+ with respect to finite-dimensional unitary representations. This hypothesis is crucial: see
111
+ Remark 6.1. Propositions 1.5 and 1.6 also follow from results in asymptotic cohomology,
112
+ that this time does not need the finitary assumption:
113
+ Proposition 1.8. Let Λ ≤ Γ be coamenable. Then the restriction map Hn
114
+ a(Γ, V) → Hn
115
+ a(Λ, V)
116
+ is injective, for all n ≥ 0 and all dual asymptotic Banach ∗Γ-modules V.
117
+ Proposition 1.9. Let N ≤ Γ be an amenable normal subgroup. Then the pullback map
118
+ Hn
119
+ a(Γ/N, V) → Hn
120
+ a(Γ, V) is an isomorphism, for all n ≥ 0 and all dual asymptotic Banach
121
+ ∗(Γ/N)-modules V.
122
+ Despite the lack of a general theorem connecting the two theories, asymptotic cohomology
123
+ seems to be closely connected to bounded cohomology, a well-established cohomology theory
124
+ [Joh72, Gro82, Iva85, Mon01, Fri17] that has become a fundamental tool in rigidity theory.
125
+ The vanishing result for asymptotic cohomology of lattices leading to stability [GLMR23]
126
+ follows closely the vanishing result for bounded cohomology of high-rank lattices [BM99,
127
+ BM02, MS04]. Similarly, our proofs of Theorem 1.7 and Propositions 1.8 and 1.9 follow
128
+ closely the corresponding bounded-cohomological results: for Theorem 1.7 this was recently
129
+ proven by Monod [Mon22], while for Proposition 1.8 this is a foundational result in bounded
130
+ cohomology [Mon01, 8.6] (see also [MP03]), and Proposition 1.9 is an analogue of Gromov’s
131
+ 3
132
+
133
+ Mapping Theorem [Gro82]. Note that the bounded cohomology of T and V has also been
134
+ recently computed [FFLM21, MN21, And22], but only with trivial real coefficients, and our
135
+ proofs are of a different nature.
136
+ We thus hope that the steps we undertake to prove our main results will be useful to
137
+ produce more computations in asymptotic cohomology, and therefore more examples of uni-
138
+ formly U-stable, and in particular Ulam stable, groups.
139
+ Our results have applications to the study of approximating properties of groups. While
140
+ questions on pointwise approximation, such as soficity, hyperlinearity, and matricial finite-
141
+ ness, are in some sense disjoint from the content of this paper, our stability results imply
142
+ that some of the groups considered in this paper are not uniformly approximable with respect
143
+ to the relevant families U (Corollary 7.6). We are also able to treat the case of symmetric
144
+ groups endowed with the Hamming distance, by a more direct argument (Proposition 7.7).
145
+ We end this introduction by proposing a question. There is a notion of strong Ulam stabil-
146
+ ity, where the approximations take values in unitary groups of possibly infinite-dimensional
147
+ Hilbert spaces, with the operator norm. It is a well-known open question whether strong
148
+ Ulam stability coincides with amenability. In this direction it is known that strong Ulam
149
+ stable groups have no non-abelian free subgroups [BOT13, Theorem 1.2], but there exist
150
+ groups without non-abelian free subgroups that are not strong Ulam stable [Alp20].
151
+ On the other hand, our results also prove uniform U-stability stability of the piecewise
152
+ projective groups of Monod [Mon13] and Lodha–Moore [LM16], which are nonamenable and
153
+ without free subgroups (see Section 5.2). Therefore we ask the following:
154
+ Question 1.10. Let Γ be a countable group without non-abelian free subgroups.
155
+ Is Γ
156
+ uniformly U-stable (with a linear estimate)? Or at least Ulam stable?
157
+ In particular, are all countable torsion groups Ulam stable?
158
+ In other words: if Γ is not Ulam stable, must Γ contain a non-abelian free subgroup? To
159
+ our knowledge it is not every known if groups admitting non-trivial quasimorphisms must
160
+ contain non-abelian free subgroups: see [Man05] and [Cal10] for partial results in this direc-
161
+ tion.
162
+ Conventions: All groups are assumed to be discrete and countable. The set of natu-
163
+ ral numbers N starts at 0. A non-principal ultrafilter ω on N is fixed for the rest of the paper.
164
+ Outline: We start in Section 2 by reviewing the framework of asymptotic cohomology
165
+ and its applications to stability, as developed in [GLMR23]. In Section 3 we discuss hered-
166
+ itary properties for Ulam stability, and prove Propositions 1.5 and 1.6. We then move to
167
+ lamplighters and prove Theorem 1.3 in Section 4, then to Thompson groups proving Theorem
168
+ 1.2 in Section 5. In Section 6 we provide examples showing that some of our results and some
169
+ of the results from [GLMR23] are sharp, and conclude in Section 7 by discussing applications
170
+ to the study of metric approximations of groups.
171
+ Acknowledgements: The authors are indebted to Alon Dogon, Lev Glebsky, Alexander
172
+ Lubotzky and Nicolas Monod for useful conversations.
173
+ 4
174
+
175
+ 2
176
+ Uniform stability and asymptotic cohomology
177
+ In this section, we shall briefly summarize the notion of defect diminishing that allows us
178
+ to formulate the stability problem as a problem of lifting of homomorphisms with abelian
179
+ kernel, which in turn motivates the connection to second cohomology. For a more detailed
180
+ description, refer to Section 2 in [GLMR23].
181
+ 2.1
182
+ Uniform stability and defect diminishing
183
+ We begin by reviewing some basic notions of ultraproducts and non-standard analysis, be-
184
+ fore formulating the stability problem as a homomorphism lifting problem. For this, it is
185
+ convenient to describe a uniform asymptotic homomorphism (which is a sequence of maps)
186
+ as one map of ultraproducts. This in turn allows us to perform a soft analysis to obtain
187
+ a (true) homomorphism to a quotient group. Recall that ω is a fixed non-principal ultra-
188
+ filter on N. The algebraic ultraproduct �
189
+ ω Xn of an indexed collection {Xn}n∈N of sets is
190
+ defined to be �
191
+ ω Xn := �
192
+ n∈N Xn/ ∼ where for {xn}n∈N, {yn}n∈N ∈ �
193
+ n∈N Xn, we define
194
+ {xn}n∈N ∼ {yn}n∈N if {n : xn = yn} ∈ ω. Ultraproducts can be made to inherit algebraic
195
+ structures of their building blocks. For instance, for a group Γ, the ultraproduct �
196
+ ω Γ, called
197
+ the ultrapower and denoted ∗Γ, is itself a group. Another important example we will use is
198
+ the field of hyperreals ∗R, the ultrapower of R.
199
+ Objects (sets, functions, etc.) that arise as ultraproducts of standard objects are referred
200
+ to as internal. Important examples of non-internal objects are the subsets ∗Rb of bounded
201
+ hyperreals, consisting of elements {xn}ω ∈ ∗R for which there exists S ∈ ω and C ∈ R≥0 such
202
+ that |xn| ≤ C for every n ∈ S, and the subset ∗Rinf of infinitesimals, consisting of elements
203
+ {xn}ω ∈ ∗R such that for every real ε > 0, there exists S ∈ ω such that |xn| < ε for every
204
+ n ∈ S.
205
+ For x, y ∈ ∗R, write x = Oω(y) if x/y ∈ ∗Rb, and write x = oω(y) if x/y ∈ ∗Rinf. In
206
+ particular, x ∈ ∗Rb is equivalent to x = Oω(1) while ε ∈ ∗Rinf is equivalent to ε = oω(1). The
207
+ subset ∗Rb forms a valuation ring with ∗Rinf being the unique maximal ideal, with quotient
208
+ ∗Rb/∗Rinf ∼= R. The quotient map st : ∗Rb → R is known as the standard part map or limit
209
+ along the ultrafilter ω. The previous construction can also be replicated for Banach spaces.
210
+ Let {Wn}n∈N be a family of Banach spaces. Then W = �
211
+ ω Wn can be given the structure
212
+ of a ∗R-vector space. In fact, it also comes equipped with a ∗R-valued norm, allowing us to
213
+ define the external subsets Wb and Winf. The quotient ˜
214
+ W := Wb/Winf is a real Banach space.
215
+ Given a uniform asymptotic homomorphism {φn : Γ → U(kn)}n∈N with def(φn) =: εn →
216
+ 0, construct the internal map φ : ∗Γ → �
217
+ ω U(kn) where φ := �
218
+ ω φn, with (hyperreal) defect
219
+ ε := {εn}ω ∈ ∗Rinf. Then the question of uniform stability with a linear estimate can be
220
+ rephrased as asking whether there exists an internal homomorphism ψ : ∗Γ → �
221
+ ω U(kn) such
222
+ that their (hyperreal) distance satisfies dist(φ, ψ) := {dist(φn, ψn)}ω = Oω(ε).
223
+ The advantage of rephrasing the question in terms of internal maps is that an internal
224
+ map φ : ∗Γ → �
225
+ ω U(kn) with defect ε ∈ ∗Rinf induces a true homomorphism ˜φ : ∗Γ →
226
+
227
+ ω U(kn)/B(ε) where B(ε) is the (external) normal subgroup of �
228
+ ω U(kn) comprising ele-
229
+ ments that are at a distance Oω(ε) from the identity. In particular, the question of uniform
230
+ stability with a linear estimate can equivalently be rephrased as asking whether given such
231
+ an internal map φ, can the homomorphism ˜φ : ∗Γ → �
232
+ ω U(kn)/B(ε) be lifted to an internal
233
+ 5
234
+
235
+ homomorphism ψ : ∗Γ → �
236
+ ω U(kn).
237
+ Reinterpreting uniform stability with a linear estimate as a homomorphism lifting problem
238
+ motivates a cohomological approach to capturing the obstruction. However, the obstacle here
239
+ is that the kernel B(ε) of the lifting problem is not abelian. This can be handled by lifting
240
+ in smaller steps so that each step involves an abelian kernel. Define a normal subgroup I(ε)
241
+ of B(ε) comprising elements that are at a distance of oω(ε) from the identity. Then we can
242
+ attempt to lift ˜φ : ∗Γ → �
243
+ ω U(kn)/B(ε) to an internal map ψ : ∗Γ → �
244
+ ω U(kn) that is a
245
+ homomorphism modulo I(ε). The problem is simpler from the cohomological point of view:
246
+ since the norms are submultiplicative, the kernel B(ε)/I(ε) of this lifting problem is abelian.
247
+ The group Γ is said to have the defect diminishing property with respect to U if such a lift
248
+ exists; more explicitly, Γ has the defect diminishing property if for every uniform asymptotic
249
+ homomorphism φ : Γ → U there exists a uniform asymptotic homomorphism ψ with the
250
+ same range such that dist(φ, ψ) = Oω(def(φ)) and def(ψ) = oω(def(φ)).
251
+ Theorem 2.1 ([GLMR23, Theorem 2.3.11]). Γ has the defect diminishing property with
252
+ respect to U if and only if Γ is uniformly U-stable with a linear estimate.
253
+ The obstruction to such a homomorphism lifting, with an abelian kernel B(ε)/I(ε), can
254
+ be carefully modeled using a cohomology H•
255
+ a(Γ, W) so that H2
256
+ a(Γ, W) = 0 implies the defect
257
+ diminishing property (and consequently, uniform stability with a linear estimate).
258
+ Here
259
+ W = �
260
+ ω u(kn) is an internal Lie algebra of �
261
+ ω U(kn) equipped with an asymptotic action of
262
+ the ultrapower ∗Γ constructed from the uniform asymptotic homomorphism φ that we start
263
+ out with. The logarithm of the defect map
264
+ ∗Γ × ∗Γ →
265
+
266
+ ω
267
+ U(kn) : (g1, g2) �→ φ(g1)φ(g2)φ(g1g2)−1
268
+ would correspond to an asymptotic 2-cocycle in H2
269
+ a(Γ, W). Such a cocycle is a coboundary
270
+ in this setting (that is, it represents the zero class in H2
271
+ a(Γ, W)), if and only if the defect
272
+ diminishing property holds for the asymptotic homomorphism φ.
273
+ 2.2
274
+ Asymptotic cohomology
275
+ The reduction to a lifting problem with abelian kernel motivates a cohomology theory of Γ
276
+ with coefficients in the internal Lie algebra W = �
277
+ ω u(kn) of �
278
+ ω U(kn), equipped with an
279
+ asymptotic conjugation action of Γ. In this section we review the formal definition of this
280
+ cohomology, and state some results from [GLMR23] that we shall need to work with it.
281
+ Let (Vn)n≥1 be a sequence of Banach spaces, and let V := �
282
+ ω
283
+ Vn be their algebraic ultra-
284
+ product: we refer to such V as an internal Banach space. For v ∈ V we denote by ∥v∥ the
285
+ hyperreal (∥vn∥)ω ∈ ∗R. We then denote by
286
+ Vb := {v ∈ V : ∥v∥ ∈ ∗Rb};
287
+ Vinf := {v ∈ V : ∥v∥ ∈ ∗Rinf}.
288
+ Then the quotient ˜V := Vb/Vinf is a real Banach space, whose norm is induced by the
289
+ ultralimit of ∥ · ∥ on Vb. For each Vn denote by V #
290
+ n its continuous dual, and let V# be the
291
+ corresponding algebraic ultraproduct. The pairing ⟨·, ·⟩n : V #
292
+ n × Vn → R induces a pairing
293
+ V# × V → ∗R which descends to ˜V# × ˜V → R. We call V# the internal dual of V.
294
+ 6
295
+
296
+ Now let Γ be a countable discrete group, and let π : ∗Γ×V → V be an internal map which
297
+ preserves ∥ · ∥ and induces an isometric linear action ˜π : ∗Γ × ˜V → ˜V of ∗Γ. Such a map π
298
+ is referred to as an asymptotic ∗Γ-action on V. We then call (π, V), or V, if π is understood
299
+ from context, an asymptotic Banach ∗Γ-module. Given an internal Banach ∗Γ-module (π, V),
300
+ the contragradient on each coordinate induces an internal map π# : ∗Γ × V# → V# mak-
301
+ ing (π#, V#) into an asymptotic Banach ∗Γ-module. We call a module V a dual asymptotic
302
+ Banach ∗Γ-module if V is the dual of some asymptotic ∗Γ-module denoted V♭. We decorate
303
+ these definitions with the adjective finitary if each Vn is finite-dimensional.
304
+ Now for each m ≥ 0 define the internal Banach space L∞((∗Γ)m, V) := �
305
+ ω
306
+ ℓ∞(Γm, Vn)
307
+ (note that m is fixed and n runs through the natural numbers with respect to the ultrafilter
308
+ ω). Similarly to before, for f ∈ L∞((∗Γ)m, V) we denote ∥f∥ := (∥fn∥)ω ∈ ∗R and
309
+ L∞
310
+ b ((∗Γ)m, V) := {f ∈ L∞((∗Γ)m, V) : ∥f∥ ∈ ∗Rb};
311
+ L∞
312
+ inf((∗Γ)m, V) := {f ∈ L∞((∗Γ)m, V) : ∥f∥ ∈ ∗Rinf}.
313
+ Given an asymptotic ∗Γ-action π on V, we can construct a natural asymptotic ∗Γ-action
314
+ ρm : ∗Γ × L∞((∗Γ)m, V) → L∞((∗Γ)m, V) given by
315
+ (ρm(g)(f))(g1, g2, . . . , gm) := πG(g)f(g−1g1, . . . , g−1gm)
316
+ (1)
317
+ Then the quotient
318
+ ˜L∞((∗Γ)m, V) := L∞
319
+ b ((∗Γ)m, V)/L∞
320
+ inf((∗Γ)m, V)
321
+ is again a real Banach space equipped with an isometric ∗Γ-action induced coordinate-wise
322
+ by ρm, which defines the invariant subspaces ˜L∞((∗Γ)m, V)
323
+ ∗Γ.
324
+ Now define the internal coboundary map
325
+ dm : L∞((∗Γ)m, V) → L∞((∗Γ)m+1, V);
326
+ dm(f)(g0, . . . , gm) :=
327
+ m
328
+
329
+ j=0
330
+ (−1)jf(g0, . . . , ˆgj, . . . , gm),
331
+ (2)
332
+ which descends to coboundary maps
333
+ ˜
334
+ dm : ˜L∞((∗Γ)m, V) → ˜L∞((∗Γ)m+1, V).
335
+ Since ˜
336
+ dm is ∗Γ-equivariant, it defines the cochain complex:
337
+ 0
338
+ ˜
339
+ d0
340
+ −→ ˜L∞(∗Γ, V)
341
+ ∗Γ
342
+ ˜
343
+ d1
344
+ −→ ˜L∞((∗Γ)2, V)
345
+ ∗Γ
346
+ ˜d2
347
+ −→ ˜L∞((∗Γ)3, V)
348
+ ∗Γ
349
+ ˜
350
+ d3
351
+ −→ · · ·
352
+ Definition 2.2 ([GLMR23, Definition 4.2.2]). The m-th asymptotic cohomology of Γ with
353
+ coefficients in V is
354
+ Hm
355
+ a (Γ, V) := ker(
356
+ ˜
357
+ dm+1)/ im( ˜
358
+ dm).
359
+ 7
360
+
361
+ Other resolutions may also be used to compute asymptotic cohomology. Recall ([Mon01,
362
+ 5.3.2]) that a regular Γ-space S is said to be a Zimmer-amenable Γ-space if there exists a Γ-
363
+ equivariant conditional expectation m : L∞(Γ×S) → L∞(S). Let S be a regular Γ-space with
364
+ a Zimmer-amenable action of Γ, and let L∞((∗S)m, V) := �
365
+ ω
366
+ L∞
367
+ w∗(Sm, Vn) (where L∞
368
+ w∗(Sm, Vn)
369
+ is the space of bounded weak-∗ measurable function classes from Sm to Vn). Again, the
370
+ asymptotic ∗Γ-action on V gives rise to a natural asymptotic ∗Γ-action on L∞((∗Γ)m, V) as
371
+ in (1), making L∞((∗S)m, V) an asymptotic Banach ∗Γ-module. The coboundary maps too
372
+ can be defined just as in (2), to construct the cochain complex, and we have:
373
+ Theorem 2.3 ([GLMR23, Theorem 4.3.3]). Let S be a Zimmer-amenable Γ-space, and V
374
+ be a dual asymptotic Banach ∗Γ-module. Then H•
375
+ a(Γ, V) can be computed as the asymptotic
376
+ cohomology of the cochain complex
377
+ 0
378
+ ˜
379
+ d0
380
+ −→ ˜L∞(∗S, V)
381
+ ∗Γ
382
+ ˜
383
+ d1
384
+ −→ ˜L∞((∗S)2, V)
385
+ ∗Γ
386
+ ˜
387
+ d2
388
+ −→ ˜L∞((∗S)3, V)
389
+ ∗Γ
390
+ ˜
391
+ d3
392
+ −→ · · ·
393
+ In the context of uniform U-stability, the relevant asymptotic Banach ∗Γ-module we shall
394
+ be interested is the ultraproduct W = �
395
+ ω u(kn), where u(kn) is the Lie algebra of U(kn). Note
396
+ that we are only considering finite-dimensional unitary groups, so such a module is finitary.
397
+ Given a uniform asymptotic homomorphism φ : ∗Γ → �
398
+ ω U(n) with defect def(φ) ≤ω ε ∈
399
+ ∗Rinf, this can be used to construct the asymptotic action π : ∗Γ × W → W given by
400
+ π(g)v = φ(g)vφ(g)−1, making W an asymptotic Banach ∗Γ-module. We call such a module
401
+ an Ulam ∗Γ-module supported on U.
402
+ Also, consider the map α : ∗Γ × ∗Γ → W given by
403
+ α(g1, g2) = 1
404
+ ε log(φ(g1)φ(g2)φ(g1g2)−1).
405
+ (3)
406
+ This map α induces an inhomogeneous 2-cocycle ˜α : ∗Γ × ∗Γ →
407
+ ˜
408
+ W, and thus defines
409
+ a class in H2
410
+ a(Γ, W), under the usual correspondence between inhomogeneous cochains and
411
+ invariant homogeneous cochains [GLMR23, Theorem 4.2.4]. We call such a class an Ulam
412
+ class supported on U. This class vanishes, i.e. ˜α is a coboundary, precisely when φ has the
413
+ defect diminishing property. Thus Theorem 2.1 yields:
414
+ Theorem 2.4 ([GLMR23, Theorem 4.2.4]). Γ is uniformly U-stable with respect to U if and
415
+ only if all Ulam classes supported on U vanish. In particular, if H2
416
+ a(Γ, W) = 0 for every Ulam
417
+ ∗Γ-module supported on U, then Γ is uniformly U-stable, with a linear estimate.
418
+ 3
419
+ Hereditary properties
420
+ In this section, we first prove Proposition 1.8 and deduce Proposition 1.5 from it; then
421
+ analogously we prove Proposition 1.9 and deduce Proposition 1.6 from it. Both stability
422
+ statements are not symmetric, and in fact we will see in Section 6 that the converses do not
423
+ hold.
424
+ 3.1
425
+ More on Zimmer-amenability
426
+ For the proofs of Propositions 1.8 and 1.9, we will need a more precise version of Theorem 2.3
427
+ in a special case. A regular Γ-space S is said to be discrete if it is a countable set equipped
428
+ 8
429
+
430
+ with the counting measure. It follows from the equivalent characterizations in [AEG94] that
431
+ a discrete Γ-space is Zimmer-amenable precisely when each point stabilizer is amenable. In
432
+ particular:
433
+ 1. If Λ ≤ Γ is a subgroup, then the action of Λ on Γ by left multiplication is free, so Γ is
434
+ a discrete Zimmer-amenable Λ-space.
435
+ 2. If N ≤ Γ is an amenable subgroup, then the action of Γ on the coset space Γ/N has
436
+ stabilizers equal to conjugates of N, so Γ/N is a discrete Zimmer-amenable Γ-space.
437
+ For such spaces, we can provide an explicit chain map that implements the isomorphism
438
+ in cohomology from Theorem 2.3. Indeed, the proof of Theorem 2.3 works by starting with
439
+ a Γ-homotopy equivalence between the two complexes:
440
+ 0 → L∞(Γ) → L∞(Γ2) → L∞(Γ3) → · · ·
441
+ 0 → L∞(S) → L∞(S2) → L∞(S3) → · · ��
442
+ which is then extended internally to the asymptotic version of these complexes. The case
443
+ of dual asymptotic coefficients follows via some suitable identifications of the corresponding
444
+ complexes (see the paragraph preceding [GLMR23, Theorem 4.20]). In the case of a discrete
445
+ group Γ and a discrete Zimmer-amenable Γ-space, the homotopy equivalence above can be
446
+ chosen to be the orbit map
447
+ om
448
+ b : L∞(Sm) −→ L∞(Γm)
449
+ om
450
+ b (f)(g1, . . . , gm) = f(g1b, . . . , gmb);
451
+ where b ∈ S is some choice of basepoint [Fri17, Section 4.9]. Therefore in this case we obtain
452
+ the following more explicit version of Theorem 2.3:
453
+ Theorem 3.1. Let S be a discrete Zimmer-amenable Γ-space, with a basepoint b ∈ S, and
454
+ let V be a dual asymptotic Banach ∗Γ-module. Then the orbit map
455
+ om
456
+ b : L∞((∗S)m, V) −→ L∞((∗Γ)m, V)
457
+ om
458
+ b (f)(g1, . . . , gm) = f(g1b, . . . , gmb);
459
+ induces induces an isomorphism between H•
460
+ a(Γ, V) and the cohomology of the complex
461
+ 0
462
+ ˜
463
+ d0
464
+ −→ ˜L∞(∗S, V)
465
+ ∗Γ
466
+ ˜
467
+ d1
468
+ −→ ˜L∞((∗S)2, V)
469
+ ∗Γ
470
+ ˜
471
+ d2
472
+ −→ ˜L∞((∗S)3, V)
473
+ ∗Γ
474
+ ˜
475
+ d3
476
+ −→ · · ·
477
+ In the two basic examples of discrete Zimmer-amenable spaces from above, we obtain:
478
+ Corollary 3.2. Let Λ ≤ Γ be a subgroup, and let V be a dual asymptotic Banach ∗Γ-
479
+ module, which restricts to a dual asymptotic Banach ∗Λ-module.
480
+ Then the restriction of
481
+ cochains L∞((∗Γ)m, V) → L∞((∗Λ)m, V) induces an isomorphism between H•
482
+ a(Λ, V) and the
483
+ cohomology of the complex:
484
+ 0
485
+ ˜
486
+ d0
487
+ −→ ˜L∞(∗Γ, V)
488
+ ∗Λ
489
+ ˜
490
+ d1
491
+ −→ ˜L∞((∗Γ)2, V)
492
+ ∗Λ
493
+ ˜
494
+ d2
495
+ −→ ˜L∞((∗Γ)3, V)
496
+ ∗Λ
497
+ ˜
498
+ d3
499
+ −→ · · ·
500
+ Proof. Seeing Γ as a discrete Zimmer-amenable Λ-space, with basepoint 1 ∈ Γ, the orbit map
501
+ is nothing but the restriction of cochains, and we conclude by Theorem 3.1.
502
+ 9
503
+
504
+ Corollary 3.3. Let N ≤ Γ be an amenable normal subgroup, and let V be a dual asymptotic
505
+ Banach ∗(Γ/N)-module, which pulls back to a dual asymptotic Banach ∗Γ-module. Then the
506
+ pullback of cochains L∞((∗(Γ/N))m, V) → L∞((∗Γ)m, V) induces an isomorphism between
507
+ H•
508
+ a(Γ, V) and H•
509
+ a(Γ/N, V).
510
+ Proof. Seeing Γ/N as a discrete Zimmer-amenable Γ-space, with basepoint the coset N, the
511
+ orbit map is nothing but the pullback of cochains. So Theorem 3.1 yields an isomorphism
512
+ between H•
513
+ a(Γ, V) and the cohomology of the complex:
514
+ 0
515
+ ˜
516
+ d0
517
+ −→ ˜L∞(∗(Γ/N), V)
518
+ ∗Γ
519
+ ˜
520
+ d1
521
+ −→ ˜L∞((∗(Γ/N))2, V)
522
+ ∗Γ
523
+ ˜
524
+ d2
525
+ −→ ˜L∞((∗(Γ/N))3, V)
526
+ ∗Γ
527
+ ˜d3
528
+ −→ · · ·
529
+ But since the action of ∗Γ on both ∗(Γ/N) and V factors through ∗(Γ/N), the above complex
530
+ coincides with the standard one computing H•
531
+ a(Γ/N, V).
532
+ We will use these explicit isomorphisms in this section. Later, for the proof of Theorem
533
+ 1.7, non-discrete Zimmer-amenable spaces will also appear, but in that case we will only need
534
+ the existence of an abstract isomorphism as in Theorem 2.3.
535
+ 3.2
536
+ Restrictions and coamenability
537
+ Let Λ ≤ Γ be a (not necessarily coamenable) subgroup, and V be a dual asymptotic Ba-
538
+ nach ∗Γ-module, which restricts to a dual asymptotic Banach ∗Λ-module. The restriction
539
+ ˜L∞((∗Γ)•, V)
540
+ ∗Γ → ˜L∞((∗Λ)•, V)
541
+ ∗Λ induces a map in cohomology, called the restriction map,
542
+ and denoted
543
+ res• : H•
544
+ a(Γ, V) → H•
545
+ a(Λ, V).
546
+ This map behaves well with respect to Ulam classes:
547
+ Lemma 3.4. Let W be an Ulam ∗Γ-module supported on U. Then W is also an Ulam ∗Λ-
548
+ module supported on U, and the restriction map res2 : H2
549
+ a(Γ, W) → H2
550
+ a(Λ, W) sends Ulam
551
+ classes to Ulam classes.
552
+ Proof. Let φ : Γ → U be a uniform asymptotic homomorphism, and let W be the corre-
553
+ sponding Ulam ∗Γ-module. Then restricting φn to Λ for each n yields a uniform asymptotic
554
+ homomorphism φ|Λ : Λ → U, with def(φ|Λ) ≤ω def(φ) and endows W with an asymptotic
555
+ ∗Λ-action making it into an Ulam ∗Λ-module supported on U. The cocycle corresponding to
556
+ φ is defined via the map
557
+ α : ∗Γ × ∗Γ → W : (g1, g2) �→ 1
558
+ ε log(φ(g1)φ(g2)φ(g1g2)−1).
559
+ Since def(φ|Λ) ≤ω ε, restricting α to ∗Λ × ∗Λ yields a valid cocycle associated to the
560
+ uniform asymptotic homomorphism φΛ. It follows that the chain map ˜L∞((∗Γ)•, V)
561
+ ∗Γ →
562
+ ˜L∞((∗Λ)•, V)
563
+ ∗Λ preserves the set of cocycles defined via uniform asymptotic homomorphisms,
564
+ and therefore preserves Ulam classes.
565
+ Now suppose that Λ ≤ Γ is coamenable. This means, by definition, that there exists a
566
+ Γ-invariant mean on Γ/Λ; that is, there exists a linear functional m : ℓ∞(Γ/Λ) → R such
567
+ that
568
+ 1. m(1Γ/Λ) = 1, where 1Γ/Λ denotes the constant function.
569
+ 10
570
+
571
+ 2. |m(f)| ≤ ∥f∥ for all f ∈ ℓ∞(Γ/Λ).
572
+ 3. m(g · f) = m(f) for all g ∈ Γ and all f ∈ ℓ∞(Γ/Λ).
573
+ As with the absolute case [GLMR23, Lemma 3.20], we have the following:
574
+ Lemma 3.5. Suppose that Λ ≤ Γ is coamenable, and let V be a dual asymptotic Banach
575
+ ∗Γ-module. Then there exists an internal map m : L∞(∗Γ/∗Λ, V) → V which induces a map
576
+ ˜m : ˜L∞(∗Γ/∗Λ, V) → ˜V with the following properties:
577
+ 1. If ˜f is the constant function equal to ˜v ∈ ˜V, then ˜m( ˜f) = ˜v.
578
+ 2. ∥ ˜m( ˜f)∥ ≤ ∥ ˜f∥ for all ˜f ∈ ˜L∞(∗Γ/∗Λ, V).
579
+ 3. ˜m(g · ˜f) = ˜m( ˜f) for all g ∈ ∗Γ and all ˜f ∈ ˜L∞(∗Γ/∗Λ, V).
580
+ Proof. Consider f = {fn}ω ∈ L∞(∗Γ/∗Λ, V). Since V is a dual asymptotic ∗Γ-module with
581
+ predual V♭, for each λ ∈ V♭, we get an internal map
582
+ f λ : ∗Γ/∗Λ → ∗R : x �→ f(x)(λ).
583
+ Note that f λ being internal, it is of the form {f λ
584
+ n}ω where f λ
585
+ n ∈ ℓ∞(Γ/Λ). This allows us to
586
+ construct the internal map mλ
587
+ in : L∞(∗Γ/∗Λ, V) → ∗R as
588
+
589
+ in(f) = {m
590
+
591
+ f λ
592
+ n
593
+
594
+
595
+ and finally min : L∞(∗Γ/∗Λ, V) → V as
596
+ min(f)(λ) = mλ
597
+ in(f)
598
+ It is straightforward to check that min as defined induces a linear map ˜m : ˜L∞(∗Γ/∗Λ, V) → ˜V.
599
+ As for ∗Γ-equivariance, this follows from the observation that (g · f)λ(x) = π(g)f(g−1x)(λ)
600
+ while (g·f λ)(x) = f(g−1x)(λ). The conditions on ˜m follow from the definition and properties
601
+ of the Γ-invariant mean m on ℓ∞(Γ/Λ).
602
+ We are now ready to prove Proposition 1.8. The proof goes along the lines of [Mon01,
603
+ Proposition 8.6.2].
604
+ Proposition (Proposition 1.8). Let Λ ≤ Γ be coamenable. Then the restriction map Hn
605
+ a(Γ, V) →
606
+ Hn
607
+ a(Λ, V) is injective, for all n ≥ 0 and all dual asymptotic Banach ∗Γ-modules V.
608
+ Proof. We implement the asymptotic cohomology of Λ using the complex ˜L∞((∗Γ)•, V)
609
+ ∗Λ
610
+ from Corollary 3.2. Since the chain map that defines the restriction map factors through
611
+ this complex, and the chain map ˜L∞((∗Γ)•, V)
612
+ ∗Λ → ˜L∞((∗Λ)•, V)
613
+ ∗Λ induces an isomorphism
614
+ in cohomology (Corollary 3.2), it suffices to show that the chain inclusion ˜L∞((∗Γ)•, V)
615
+ ∗Γ →
616
+ ˜L∞((∗Γ)•, V)
617
+ ∗Λ induces an injective map in cohomology. Henceforth, we will refer to this as
618
+ the restriction map.
619
+ Our goal is construct a transfer map, that is a linear map trans• : H•
620
+ a(Λ, V) → H•
621
+ a(Γ, V)
622
+ such that trans• ◦ res• is the identity on H•
623
+ a(Λ, V). Then it follows at once that res• must be
624
+ injective. By the above paragraph, we may do this by constructing an internal chain map
625
+
626
+ trans
627
+ • : ˜L∞((∗Γ)•, V)
628
+ ∗Λ → ˜L∞((∗Λ)•, V)
629
+ ∗Γ that restricts to the identity on ˜L∞((∗Λ)•, V)
630
+ ∗Γ.
631
+ 11
632
+
633
+ Let f ∈ L∞((∗Γ)k, V) be such that ˜f ∈ ˜L∞((∗Γ)k, V)
634
+ ∗Λ. For each x ∈ (∗Γ)k, define
635
+ fx : ∗Γ → V
636
+ fx(g) := π(g)f(g−1x)
637
+ In other words, fx(g) is just (ρ1(g)f)(x) as in (1). Since ˜f ∈ ˜L∞((∗Γ)k, V)
638
+ ∗Λ, for any γ ∈ ∗Λ
639
+ and g ∈ ∗Γ,
640
+ fx(gγ) − fx(g) ∈ Vinf
641
+ Let us choose representatives of left ∗Λ-cosets in ∗Γ and restrict fx to this set of repre-
642
+ sentatives so that we can regard fx as an internal map fx : ∗Γ/∗Λ → V. Moreover, since
643
+ fx ∈ L∞(∗Γ/∗Λ, V), we can apply the mean m constructed in Lemma 3.5 to define the internal
644
+ map transk(f) : L∞((∗Γ)k, V) → L∞((∗Γ)k, V) by
645
+ transk(f)(x) = m(fx)
646
+ Since ˜m is ∗Γ-invariant, this means that for g ∈ ∗Γ, m(fgx) − π(g)m(fx) ∈ Vinf, and implies
647
+ that
648
+ (transk(f))(gx) − π(g) transk(f)(x) ∈ Vinf.
649
+ This establishes that for f ∈ L∞((∗Γ)k, V) with ˜f ∈ ˜L∞((∗Γ)k, V)
650
+ ∗Λ, we have
651
+
652
+ transk(f) ∈
653
+ ˜L∞((∗Γ)k, V)
654
+ ∗Γ. Therefore trans• induces a chain map
655
+ ˜
656
+ trans
657
+ • : ˜L∞((∗Γ)•, V)
658
+ ∗Λ → ˜L∞((∗Λ)•, V)
659
+ ∗Γ.
660
+ Finally, if ˜f is already ∗Γ-invariant, then fx is constant up to infinitesimals, and thus m(fx)
661
+ is equal, up to an infinitesimal, to the value of that constant, which is f(x). This shows that
662
+
663
+ trans
664
+ k is the identity when restricted to ˜L∞((∗Λ)•, V)
665
+ ∗Γ, and concludes the proof.
666
+ Proposition 1.5 is now an easy consequence.
667
+ Proposition (Proposition 1.5). Let Λ ≤ Γ be coamenable. If Λ is uniformly U-stable with a
668
+ linear estimate, then so is Γ.
669
+ Proof. Suppose that Λ is uniformly U-stable with a linear estimate, and let Γ be a coamenable
670
+ supergroup of Λ. We aim to show that Γ is also uniformly U-stable with a linear estimate.
671
+ By Theorem 2.4, it suffices to show that all Ulam classes supported on U vanish in H2
672
+ a(Γ, W),
673
+ where W is an Ulam ∗Γ-module. Now by Proposition 1.8, it suffices to show that the images
674
+ of such classes under the restriction map res2 : H2
675
+ a(Γ, W) → H2
676
+ a(Λ, W) vanish, since the latter
677
+ is injective. By Lemma 3.4 these are Ulam classes of Λ. But since Λ is uniformly U-stable
678
+ with a linear estimate, by Theorem 2.4 again, all Ulam classes in H2
679
+ a(Λ, W) vanish, and we
680
+ conclude.
681
+ 3.3
682
+ Pullbacks and amenable kernels
683
+ Let N ≤ Γ be an amenable normal subgroup, and let V be a dual asymptotic Banach ∗(Γ/N)-
684
+ module, which pulls back to a dual asymptotic Banach ∗Γ-module. Precomposing cochains by
685
+ the projection ∗Γ → ∗(Γ/N) defines the pullback p• : H•
686
+ a(Γ/N, V) → H•
687
+ a(Γ, V). The following
688
+ can be proven via a similar argument as in Lemma 3.4:
689
+ Lemma 3.6. Let W be an Ulam ∗(Γ/N)-module. Then W is also an Ulam ∗Γ-module, and
690
+ the pullback p2 : H2
691
+ a(Γ/N, W) → H2
692
+ a(Γ, W) sends Ulam classes to Ulam classes.
693
+ 12
694
+
695
+ With this language, Proposition 1.9 is just a reformulation of Corollary 3.3:
696
+ Proposition (Proposition 1.9). Let N ≤ Γ be an amenable normal subgroup. Then the
697
+ pullback Hn
698
+ a(Γ/N, V) → Hn
699
+ a(Γ, V) is an isomorphism, for all n ≥ 0 and all dual asymptotic
700
+ Banach ∗Γ-modules V.
701
+ And we deduce Proposition 1.6 analogously:
702
+ Proposition (Proposition 1.6). Let N ≤ Γ be an amenable normal subgroup. If Γ is uni-
703
+ formly U-stable with a linear estimate, then so is Γ/N.
704
+ Proof. Suppose that Γ is uniformly U-stable with a linear estimate, and let N be an amenable
705
+ normal subgroup of Γ. We aim to show that Γ/N is also uniformly U-stable with a linear
706
+ estimate. By Theorem 2.4, it suffices to show that all Ulam classes supported on U vanish
707
+ in H2
708
+ a(Γ/N, W), where W is an Ulam ∗(Γ/N)-module. Now by Proposition 1.9, it suffices
709
+ to show that the pullback of such classes under H2
710
+ a(Γ/N, W) → H2
711
+ a(Γ, W) vanish, since the
712
+ latter is an isomorphism. By Lemma 3.6 these are Ulam classes of Γ. But since Γ is uniformly
713
+ U-stable with a linear estimate, by Theorem 2.4 again, all Ulam classes in H2
714
+ a(Γ, W) vanish,
715
+ and we conclude.
716
+ 4
717
+ Asymptotic cohomology of lamplighters
718
+ In this section we prove Theorem 1.7, which we recall for the reader’s convenience:
719
+ Theorem. Let Γ, Λ be two countable groups, where Λ is infinite and amenable.
720
+ Then
721
+ Hn
722
+ a(Γ ≀ Λ, V) = 0 for all n ≥ 1 and all finitary dual asymptotic Banach ∗Γ-modules V.
723
+ Remark 4.1. In fact, the theorem will hold for a larger class of coefficients, obtained as
724
+ ultraproducts of separable Banach spaces. This does not however lead to a stronger stability
725
+ result: see Remark 6.1.
726
+ We start by finding a suitable Zimmer-amenable Γ-space:
727
+ Lemma 4.2 ([Mon22, Corollary 8, Proposition 9]). Let Γ, Λ be two countable groups, where
728
+ Λ is amenable. Let µ0 be a distribution of full support on Γ, and let µ be the product measure
729
+ on S := ΓΛ. Then S is a Zimmer-amenable (Γ ≀ Λ)-space.
730
+ The reason why this space is useful for computations is that it is highly ergodic. Recall that
731
+ a Γ-space S is ergodic if every Γ-invariant function S → R is essentially constant. When S is
732
+ doubly ergodic, that is the diagonal action of Γ on S ×S is ergodic, we even obtain ergodicity
733
+ with separable coefficients, meaning that for every Γ-module E, every Γ-equivariant map
734
+ S → E is essentially constant [Mon22, 2.A, 4.B].
735
+ Lemma 4.3 (Kolmogorov [Mon22, 2.A, 4.B]). Let Γ, Λ be two countable groups, where Λ is
736
+ infinite, and let S be as in Lemma 4.2. Then Sm is an ergodic (Γ≀Λ)-space, for every m ≥ 1.
737
+ For our purposes, we will need an approximate version of ergodicity (namely, almost
738
+ invariant functions are almost constant) and also the module E will only be endowed with
739
+ an approximate action of Γ. The ergodicity assumption still suffices to obtain this:
740
+ 13
741
+
742
+ Lemma 4.4. Let S be a probability measure Γ-space, and suppose that the action of Γ on S
743
+ is ergodic. Then whenever f : S → R is a measurable function such that ∥g · f − f∥ < ε for
744
+ all g ∈ Γ, there exists a constant c ∈ R such that |f(s) − c| < ε for almost every s ∈ S.
745
+ Proof. We define F : S → R : s �→ esssupg∈Γf(g−1s). By construction, F is Γ-invariant,
746
+ and moreover ∥F − f∥ < ε. By ergodicity, F is essentially equal to a constant c, and thus
747
+ |f(s) − c| < ε for a.e. s ∈ S.
748
+ Lemma 4.5. Let S be a probability measure Γ-space, and suppose that the action of Γ on
749
+ S × S is ergodic. Suppose moreover, that E is a separable Banach space endowed with a map
750
+ Γ × E → E : v �→ g · v such that ∥g · v∥ = ∥v∥ for all g ∈ Γ, v ∈ E.
751
+ Then whenever f : S → E is a measurable function such that ∥g · f − f∥ < ε for all
752
+ g ∈ Γ, where (g · f)(s) = g · f(g−1s), there exists a vector v ∈ E such that ∥f(s) − v∥ < 3ε
753
+ for almost every s ∈ S.
754
+ Proof. We define F : S × S → R : (s, t) �→ ∥f(s) − f(t)∥. Then
755
+ ∥g · F − F∥ = ess sup| ∥g · f(g−1s) − g · f(g−1t)∥ − ∥f(s) − f(t)∥ |
756
+ ≤ ess sup∥g · f(g−1s) − g · f(g−1t) − (f(s) − f(t))∥ ≤ 2∥g · f − f∥ < 2ε.
757
+ By the previous lemma, there exists a constant c such that |F(s, t) − c| < 2ε for all ε > 0. If
758
+ c < ε, then |f(s) − f(t)| < 3ε for a.e. s, t ∈ S, which implies the statement.
759
+ Otherwise, ∥f(s) − f(t)∥ > ε for a.e. s, t ∈ S. Let D ⊂ E be a countable dense subset.
760
+ Then for each d ∈ D the set f −1(Bε/2(d)) is a measurable subset of S, and the union of
761
+ such sets covers S. Since D is countable, there must exist d ∈ D such that f −1(Bε/2(d)) has
762
+ positive measure. But for all s, t in this set, ∥f(s) − f(t)∥ < ε, a contradiction.
763
+ We thus obtain:
764
+ Proposition 4.6. Let S be a doubly ergodic Γ-space. Let (Vn)n≥1 be a sequence of separable
765
+ dual Banach spaces such that V = �
766
+ ω
767
+ Vn has the structure of a dual asymptotic Banach
768
+ Γ-module be the corresponding asymptotic ∗Γ-module. Then the natural inclusion ˜V
769
+ ∗Γ →
770
+ ˜L∞(∗S, V)
771
+ ∗Γ is an isomorphism.
772
+ Proof. Let f ∈ L∞
773
+ b (∗S, V) = �
774
+ ω
775
+ L∞(S, Vn) be a lift of an element ˜f ∈ ˜L∞(∗S, V)
776
+ ∗Γ. We write
777
+ f = (fn)ω. Then fact that ˜f is ∗Γ-invariant means that for every sequence (gn)n∈N ⊂ Γ it holds
778
+ (gn·fn−fn)ω ∈ L∞
779
+ inf(∗S, V). Since this holds for every sequence (gn)n∈N, a diagonal argument
780
+ implies that there exists ε ∈ ∗Rinf such that for every g ∈ Γ it holds (g · fn −fn)ω ∈ ∗Rinf. It
781
+ then follows from Lemma 4.5 that there exist (vn)ω ∈ V such that (fn − 1vn) ∈ L∞
782
+ inf(∗S, V).
783
+ Therefore f represents the same element of ˜L∞(∗S, V) as the image of an element of V. Since
784
+ ˜f is ∗Γ-invariant, the corresponding element is actually in ˜V
785
+ ∗Γ.
786
+ We are finally ready to prove Theorem 1.7:
787
+ Proof of Theorem 1.7. Let Γ, Λ be countable groups, where Λ is infinite and amenable. By
788
+ Lemma 4.2, using the same notation, S is a Zimmer-amenable (Γ ≀ Λ)-space. Therefore we
789
+ can apply Theorem 2.3, and obtain that the following complex computes H∗
790
+ a(Γ ≀ Λ; V):
791
+ 0
792
+ ˜
793
+ d0
794
+ −→ ˜L∞(∗S, V)
795
+ ∗Γ
796
+ ˜
797
+ d1
798
+ −→ ˜L∞((∗S)2, V)
799
+ ∗Γ
800
+ ˜
801
+ d2
802
+ −→ ˜L∞((∗S)3, V)
803
+ ∗Γ
804
+ ˜
805
+ d3
806
+ −→ · · ·
807
+ 14
808
+
809
+ Now by Lemma 4.3, Sm is a doubly ergodic (Γ ≀ Λ)-space, for every m ≥ 1. Thus Proposition
810
+ 4.6 applies, and the natural inclusion ˜V
811
+ ∗Γ → ˜L∞((∗S)m, V)
812
+ ∗Γ is an isomorphism for every
813
+ m ≥ 1. Thus the above complex is isomorphic to
814
+ 0
815
+ ˜
816
+ d0
817
+ −→ ˜V
818
+ ∗Γ
819
+ ˜
820
+ d1
821
+ −→ ˜V
822
+ ∗Γ
823
+ ˜
824
+ d2
825
+ −→ ˜V
826
+ ∗Γ
827
+ ˜d3
828
+ −→ · · ·
829
+ Each differential ˜
830
+ dm is an alternating sum of (m+1) terms all equal to each other. Therefore
831
+ ˜
832
+ dm is the identity whenever m is even, and it vanishes whenever m is odd. The conclusion
833
+ follows.
834
+ 5
835
+ Thompson groups
836
+ In this section we prove Theorem 1.2. The statement for F ′ will be a special case of a more
837
+ general result for a large family of self-similar groups. The most general statement is the
838
+ following:
839
+ Theorem 5.1. Let Γ be a group, Γ0 a subgroup with the following properties:
840
+ 1. There exists g ∈ Γ such that the groups {giΓ0g−i : i ∈ Z} pairwise commute;
841
+ 2. Every finite subset of Γ is contained in some conjugate of Γ0.
842
+ Then Hn
843
+ a(Γ, V) = 0 for all n ≥ 1 and all finitary dual asymptotic Banach ∗Γ-modules V. In
844
+ particular, Γ is uniformly U-stable, with a linear estimate.
845
+ The theorem applies to the following large family of groups of homeomorphisms of the
846
+ real line:
847
+ Corollary 5.2. Let Γ be a proximal, boundedly supported group of orientation-preserving
848
+ homeomorphisms of the line. Then Hn
849
+ a(Γ, V) = 0 for all n ≥ 1 and all finitary dual asymptotic
850
+ Banach ∗Γ-modules V. In particular, Γ is uniformly U-stable, with a linear estimate.
851
+ Remark 5.3. The fact that such groups have no quasimorphisms is well-known: see e.g.
852
+ [GG17, FFL21, Mon22].
853
+ We refer the reader to Section 5.2 for the relevant definitions. In Corollary 5.8 we will
854
+ apply Corollary 5.2 to Thompson’s group F ′; the result for Thompson’s group F will follow
855
+ from Proposition 1.5. We deduce the stability of Thompson’s group T and V from these
856
+ general criteria in Section 5.3.
857
+ 5.1
858
+ Self-similar groups
859
+ In this section we prove Theorem 5.1. This will be done in a series of lemmas:
860
+ Lemma 5.4. Let Γ be a group, and suppose that there exists g ∈ Γ and Γ0 ≤ Γ such that
861
+ {giΓ0g−i : i ∈ Z} pairwise commute. Then there exists an epimorphism Γ0 ≀ Z → ⟨Γ0, g⟩ with
862
+ amenable (in fact, metabelian) kernel.
863
+ This is well-known and stated without proof in [Mon22]. We include a proof for com-
864
+ pleteness.
865
+ 15
866
+
867
+ Proof. To make a clear distinction, we denote by H the abstract group Γ0, and by Γ0 the
868
+ subgroup of Γ. So we want to construct an epimorphism H ≀Z → ⟨Γ0, g⟩ ≤ Γ with metabelian
869
+ kernel. We define naturally
870
+ ϕ((gi)i∈Z, p) =
871
+ ��
872
+ i∈Z
873
+ tigit−i
874
+
875
+ tp.
876
+ Note that this product is well-defined since there are only finitely many non-identity terms,
877
+ and the order does not matter since different conjugates commute. By construction ϕ is
878
+ injective on Hi, that is the copy of H supported on the i-th coordinate in H ≀ Z.
879
+ Let
880
+ K := ker ϕ ∩ �
881
+ i Hi, and note that K is the kernel of the retraction H ≀ Z → Z restricted to
882
+ ker ϕ. So it suffices to show that K is abelian.
883
+ Let g, h ∈ K and write them as (gi)i∈Z and (hi)i∈Z (we omit the Z-coordinate since it is
884
+ always 0). We need to show that g and h commute. We have
885
+ 1Γ = ϕ(g) =
886
+
887
+ i∈Z
888
+ tigit−i
889
+ and thus
890
+ g0 =
891
+
892
+ i̸=0
893
+ tigit−i ∈ Γ.
894
+ But now g0 belongs to a group generated by conjugates of Γ0 in Γ that commute with it. In
895
+ particular this implies that g0 and h0 commute in Γ. Since ϕ|H0 is injective, this shows that
896
+ g0 and h0 commute in H0. Running the same argument on the other coordinates, we obtain
897
+ that gi and hi commute in Hi, for all i ∈ Z, and thus g and h commute.
898
+ The next facts are all contained in the literature:
899
+ Lemma 5.5 ([Mon22, Proposition 10]). Suppose that Γ0 ≤ Γ is such that every finite subset
900
+ of Γ is contained in some Γ-conjugate of Γ0. Then Γ0 is coamenable in Γ.
901
+ Lemma 5.6 ([MP03]). Let K ≤ H ≤ Γ.
902
+ 1. If K is coamenable in Γ, then H is coamenable in Γ;
903
+ 2. If K is coamenable in H and H is coamenable in Γ, then K is coamenable in Γ.
904
+ Remark 5.7. We warn the reader that if K is coamenable in Γ, then K need not be
905
+ coamenable in H [MP03].
906
+ We are now ready to prove Theorem 5.1:
907
+ Proof of Theorem 5.1. Let Γ, Γ0 and g be as in the statement. By Lemma 5.4, there exists
908
+ a map Γ0 ≀ Z → ⟨Γ0, g⟩ with metabelian kernel. By Theorem 1.7 and Proposition 1.9, we
909
+ have Hn
910
+ a(⟨Γ0, g⟩, V) for all n ≥ 1 and all finitary dual asymptotic Banach ∗Γ-modules V. Now
911
+ by Lemma 5.5, Γ0 is coamenable in Γ. Finally, by Lemma 5.6, ⟨Γ0, g⟩ is coameanble in Γ.
912
+ Proposition 1.8 allows to conclude.
913
+ 5.2
914
+ Groups of homeomorphisms of the line
915
+ Let Γ be a group acting by homeomorphisms on the real line. We say that the action is
916
+ proximal if for all reals a < b and c < d there exists g ∈ Γ such that g · a < c < d < g · b.
917
+ The support of g ∈ Γ is the set {x ∈ R : g · x ̸= x}. We say that Γ is boundedly supported if
918
+ every element has bounded support. Note that boundedly supported homeomorphisms are
919
+ automatically orientation-preserving.
920
+ 16
921
+
922
+ Proof of Corollary 5.2. Let Γ be as in the statement. Let Γ0 be the subgroup of elements
923
+ whose support is contained in [0, 1]. Let g ∈ Γ be such that g(0) > 1: such an element exists
924
+ because the action of Γ is proximal. Then it follows by induction, and the fact that Γ is
925
+ orientation-preserving, that the intervals {gi[0, 1] : i ∈ Z} are pairwise disjoint. Therefore
926
+ the conjugates giΓ0g−i pairwise commute.
927
+ Since Γ is boundedly supported, for every finite subset A ⊂ Γ there exists n such that
928
+ the support of each element of A is contained in [−n, n]. By proximality, there exists h ∈ Γ
929
+ such that h(0) < −n and h(1) > n. Then hΓ0h−1 is the subgroup of elements whose support
930
+ is contained in [−n, n], in particular it contains A.
931
+ Thus Theorem 5.1 applies and we conclude.
932
+ Let us now show how to obtain the statements on F and F ′ from Theorem 1.2 from
933
+ Corollary 5.2 and Proposition 1.5.
934
+ We refer the reader to [CFP96] for more details on
935
+ Thompson’s groups.
936
+ Thompson’s group F is the group of orientation-preserving piecewise linear homeomor-
937
+ phisms of the interval, with breakpoints in Z[1/2] and slopes in 2Z. The derived subgroup F ′
938
+ coincides with the subgroup of boundedly supported elements. The action of F ′ (and thus
939
+ F) on [0, 1] preserves Z[1/2] ∩ (0, 1), and acts highly transitively on it; that is, for every pair
940
+ of ordered n-tuples in Z[1/2] ∩ (0, 1) there exists an element of F ′ sending one to the other.
941
+ Corollary 5.8. Thompson’s groups F and F ′ are uniformly U-stable, with a linear estimate.
942
+ Proof. We identify (0, 1) with the real line. The group F ′ is boundedly supported, and it is
943
+ proximal, since it acts transitively on ordered pairs of a dense set. Therefore Corollary 5.2
944
+ applies and F ′ is uniformly U-stable, with a linear estimate.
945
+ Since the quotient F/F ′ is abelian, thus amenable, we see that F ′ is coamenable in F, and
946
+ thus conclude from Proposition 1.5 that F ′ is uniformly U-stable, with a linear estimate.
947
+ Remark 5.9. We could also deduce the stability of F from the stability of F ′ more directly,
948
+ without appealing to Proposition 1.5. Indeed, since F ′ is uniformly U-stable, simple, and
949
+ not linear, every homomorphism F ′ → U(n) is trivial - something we will come back to in
950
+ the next section. Therefore uniform U-stability of F ′ implies that every uniform asymptotic
951
+ homomorphism F ′ → U is uniformly close to the trivial one. It follows that every uniform
952
+ asymptotic homomorphism F → U is uniformly asymptotically close to one that factors
953
+ through Z2. We conclude by the stability of amenable groups [Kaz82, GLMR23].
954
+ Other groups to which these criteria apply include more piecewise linear groups [BS16],
955
+ such as the Stein–Thompson groups [Ste92], or the golden ratio Thompson group of Cleary
956
+ [Cle00, BNR21]. In such generality some more care is needed, since the commutator subgroup
957
+ is sometimes a proper subgroup of the boundedly supported subgroup. The criteria also apply
958
+ for the piecewise proejective groups of Monod [Mon13] and Lodha–Moore [LM16]. In this
959
+ case, further care is needed, since the role of the commutator subgroup in the proofs above
960
+ has to be taken by the double commutator subgroup [BLR18]. This ties back to Question
961
+ 1.10 from the introduction.
962
+ 5.3
963
+ T and V
964
+ In this section, we show how our previous results allow to prove stability of groups of home-
965
+ omorphisms of the circle and of the Cantor set as well. For simplicity of the exposition, we
966
+ 17
967
+
968
+ only focus on Thompson’s groups T and V , but the proofs generalize to some analogously
969
+ defined groups, with the appropriate modifications. Our proof will involve a bounded gen-
970
+ eration argument for stability that was pioneered in [BOT13]. We will only use it a simple
971
+ version thereof, closer to the one from [BC20]. Recall that Γ is said to be boundedly generated
972
+ by the collection of subgroups H if there exists k ≥ 1 such that the sets {H1 · · · Hk : Hi ∈ H}
973
+ cover Γ.
974
+ Lemma 5.10. Let Γ be a discrete group. Suppose that there exists a subgroup H ≤ Γ with
975
+ the following properties:
976
+ 1. Every homomorphism H → U(n) is trivial;
977
+ 2. H is uniformly U-stable (with a linear estimate);
978
+ 3. Γ is boundedly generated by the conjugates of H.
979
+ Then Γ is uniformly U-stable (with a linear estimate).
980
+ Proof. Let φn : Γ → U(dn) be a uniform asymptotic homomorphism with def(φn) =: εn.
981
+ Then φn|H : H → U(dn) is a uniform asymptotic homomorphism of H, therefore it is δn-
982
+ close to a homomorphism, where δn → 0. But by assumption such a homomorphism must
983
+ be trivial, so ∥φn(h) − Ikn∥ ≤ δn for all n. The same holds for all conjugates of H, up to
984
+ replacing δn by δn + 2εn.
985
+ By bounded generation, there exists k ≥ 1 such that each g ∈ Γ can be written as
986
+ g = h1 · · · hk, where each hi belongs to a conjugate of H. We estimate:
987
+ ∥φn(g) − Idn∥ =
988
+ �����φn
989
+ � k
990
+
991
+ i=1
992
+ hi
993
+
994
+ − Idn
995
+ ����� ≤
996
+ �����φn
997
+ �k−1
998
+
999
+ i=1
1000
+ hi
1001
+
1002
+ φn(hk) − Idn
1003
+ ����� + εn
1004
+ =
1005
+ �����φn
1006
+ �k−1
1007
+
1008
+ i=1
1009
+ hi
1010
+
1011
+ − Idn
1012
+ ����� + ∥φn(hk) − Idn∥ + εn ≤ · · ·
1013
+ · · · ≤
1014
+ k
1015
+
1016
+ i=1
1017
+ ∥φn(hi) − Idn∥ + kεn ≤ k(δn + εn).
1018
+ Therefore φn is k(δn + εn)-close to the trivial homomorphism, and we conclude.
1019
+ Thompson’s group T is the group of orientation-preserving piecewise linear homeomor-
1020
+ phisms of the circle R/Z preserving Z[1/2]/Z, with breakpoints in Z[1/2]/Z, and slopes in
1021
+ 2Z. Given x ∈ Z[1/2]/Z, the stabilizer of x is naturally isomorphic to F. Moreover, the germ
1022
+ stabilizer T(x) (i.e. the group consisting of elements that fix pointwise some neighbourhood
1023
+ of x) is isomorphic to F ′.
1024
+ Corollary 5.11. Thompson’s group T is uniformly U-stable with a linear estimate.
1025
+ Proof. We claim that Lemma 5.10 applies with H = T(0) ∼= F ′. Item 1. follows from the
1026
+ fact F ′ does not embed into U(n) (for instance because it contains F as a subgroup, which
1027
+ is finitely generated and not residually finite, and so cannot be linear by Mal’cev’s Theorem
1028
+ [Mal40]), and F ′ is simple [CFP96]. Also, F ′ is uniformly U-stable with a linear estimate,
1029
+ by Corollary 5.8. Therefore we are left to show the bounded generation statement. We will
1030
+ 18
1031
+
1032
+ show that for every g ∈ T there exist x, y ∈ Z[1/2]/Z such that g ∈ T(x)T(y). This suffices
1033
+ because T acts transitively on Z[1/2]/Z, so T(x) and T(y) are both conjugate to H = T(0).
1034
+ Let 1 ̸= g ∈ T, and choose x ̸= y ∈ Z[1/2]/Z such that g(y) /∈ {x, y}. Let I be a small
1035
+ dyadic arc around y such that x /∈ I and x, y /∈ g(I). Choose an element f ∈ T(x) such
1036
+ that f(I) = g(I). Let h be an element supported on I such that h|I = f −1g|I. Since x /∈ I,
1037
+ we also have h ∈ T(x). Moreover h−1f −1g|I = id|I, so h−1f −1g ∈ G(y). We conclude that
1038
+ g = fh · h−1f −1g ∈ T(x)T(y).
1039
+ Thompson’s group V can be described as a group of homeomorphisms of the dyadic Cantor
1040
+ set X := 2N. A dyadic brick is a clopen subset of the form Xσ := σ × 2N>k, for some σ ∈ 2k,
1041
+ and every two dyadic bricks are canonically homeomorphic via Xσ → Xτ : σ × x �→ τ × x.
1042
+ An element g ∈ V is defined by two finite partitions of V of the same size into dyadic bricks,
1043
+ that are sent to each other via canonical homeomorphisms.
1044
+ Corollary 5.12. Thompson’s group V is uniformly U-stable, with a linear estimate.
1045
+ The proof is very similar to the proof for T, so we only sketch it:
1046
+ Sketch of proof. Let x ∈ 2N be a dyadic point, that is a sequence that is eventually all 0,
1047
+ and let V (x) denote the subgroup of V consisting of elements that fix a neighbourhood of x
1048
+ pointwise. The same argument as in the proof of Corollary 5.11 shows that V is boundedly
1049
+ generated by conjugates of V (x).
1050
+ Now V (x) is isomorphic to a directed union of copies of V , which is finitely generated
1051
+ and simple [CFP96], so by Mal’cev’s Theorem every homomorphism V (x) → U(n) is trivial.
1052
+ Finally, V (x) contains a copy V0 of V such that the pair (V (x), V0) satisfies the hypotheses of
1053
+ Theorem 5.1 (see [And22, Proposition 4.3.4] and its proof). We conclude by Lemma 5.10.
1054
+ 6
1055
+ Sharpness of our results
1056
+ In this section we point out certain ways in which our results are sharp, by providing explicit
1057
+ counterexamples to generalizations and converses.
1058
+ Remark 6.1. There is a notion of strong Ulam stability, where one takes U to include unitary
1059
+ groups of infinite-dimensional Hilbert spaces as well, typically equipped with the operator
1060
+ norm. It is shown in [BOT13] that a subgroup of a strongly Ulam stable group is Ulam
1061
+ stable. Therefore it is clear that Theorem 1.3 does not hold for strong Ulam stability. Even
1062
+ restricting to separable Hilbert spaces does not help: it follows from the construction in
1063
+ [BOT13] that if a countable group contains a free subgroup, then separable Hilbert spaces
1064
+ already witness the failure of strong Ulam stability.
1065
+ The framework of stability via asymptotic cohomology can be developed in this general
1066
+ setting as well, with dual asymptotic Banach modules that are not finitary. Therefore the
1067
+ counterexample above shows that Theorem 1.7 really needs the finitary assumption. The fact
1068
+ that we could obtain dual asymptotic Banach modules obtained as ultraproducts of separable
1069
+ spaces, analogously to [Mon22], does not help, since the dual asymptotic Banach modules
1070
+ arising from a stability problem over infinite-dimensional Hilbert spaces are not of this form,
1071
+ even when the Hilbert space are separable.
1072
+ 19
1073
+
1074
+ Remark 6.2. We proved in Proposition 1.5 that if Λ is coamenable in Γ and Λ is uniformly
1075
+ U-stable with a linear estimate, then so is Γ. The converse does not hold. Let Fn be a free
1076
+ group of rank n ≥ 2. Then Λ := �
1077
+ n≥1 Fn admits a non-trivial quasimorphism, so it is not
1078
+ uniformly U(1)-stable [BOT13], in particular it is not uniformly U-stable. However, Λ is
1079
+ coamenable in Fn ≀ Z, which is uniformly U-stable with a linear estimate by Theorem 1.3.
1080
+ On the other hand, if we replace “coamenable” by “finite index”, then the converse does
1081
+ hold. This follows from the induction procedure in [BOT13] for Ulam stability, as detailed
1082
+ in [Gam11, Lemma II.22]; the same proof can be generalized to all submultiplicative norms
1083
+ [GLMR23, Lemma 4.3.6].
1084
+ Remark 6.3. We proved in Proposition 1.6 that if N is an amenable normal subgroup of Γ,
1085
+ and Γ is uniformly U-stable with a linear estimate, then so is Γ/N. The converse does not
1086
+ hold. Let Γ be the lift of Thompson’s group T, that is, the group of orientation-preserving
1087
+ homeomorphisms of R that commute with the group Z of integer translations and induce T
1088
+ on the quotient R/Z. These groups fit into a central extension
1089
+ 1 → Z → Γ → T → 1.
1090
+ Now T is uniformly U-stable with a linear estimate, by Corollary 5.11, however Γ is not:
1091
+ it is not even uniformly U(1)-stable, by [BOT13], since it has a non-trivial quasimorphism
1092
+ [GS87].
1093
+ The next two remarks show that some results from [GLMR23] are also sharp.
1094
+ Remark 6.4. The fundamental result of [GLMR23] is that the vanishing of asymptotic
1095
+ cohomology implies uniform U-stability. The converse does not hold. Indeed, since u(1) ∼= R
1096
+ with trivial adjoint action (because U(1) is abelian), it follows that the implication of Theorem
1097
+ 2.4 specializes to: If H2
1098
+ a(Γ, ∗R) = 0, then Γ is uniformly U(1)-stable, where ∗R is seen as a
1099
+ dual asymptotic ∗Γ-module with a trivial ∗Γ action.
1100
+ Now, let again Γ be the lift of Thompson’s group T, so that Γ contains a central subgroup
1101
+ Z with Γ/Z ∼= T. The fact that Γ is not uniformly U(1)-stable implies that H2
1102
+ a(Γ, ∗R) ̸= 0.
1103
+ But Proposition 1.9 then shows that H2
1104
+ a(T, ∗R) ̸= 0 either. However, T is uniformly U-stable
1105
+ with a linear estimate, by Corollary 5.11. Morally, this is due to the fact that H2
1106
+ b(Γ, R) ∼=
1107
+ H2
1108
+ b(T, R) ∼= R, but the former is spanned by a quasimorphisms, while the latter is not (see
1109
+ e.g. [Cal09, Chapter 5]).
1110
+ Remark 6.5. In [BOT13] it is shown that groups admitting non-trivial quasimorphisms are
1111
+ not uniformly U(1)-stable. In [GLMR23, Proposition 1.0.6] this result is sharpened: the
1112
+ authors show that Γ is uniformly U(1)-stable if and only if the non-zero element in the image
1113
+ of H2
1114
+ b(Γ, Z) in H2
1115
+ b(Γ, R) have Gromov norm ∥·∥ bounded away from 0. They use this to show
1116
+ that a finitely presented group is uniformly U(1)-stable if and only if it admits no non-trivial
1117
+ quasimorphism [GLMR23, Corollary 1.0.10].
1118
+ The hypothesis of finite presentability is necessary. Let Γn denote the lift of Thompson’s
1119
+ group T to R/nZ. That is, Γn is the group of orientation-preserving homeomorphisms of the
1120
+ topological circle R/nZ, which commute with the cyclic group of rotations Z/nZ and induce
1121
+ T on the quotient R/Z. Now T has no unbounded quasimorphisms (see e.g. [Cal09, Chapter
1122
+ 5]), and so Γn also has no unbounded quasimorphisms (this follows from the left exactness
1123
+ of the quasimorphism functor [Cal09, Remark 2.90]). Therefore the group Γ := �
1124
+ n≥2 Γn has
1125
+ no unbounded quasimorphisms.
1126
+ 20
1127
+
1128
+ However, we claim that Γ is not uniformly U(1)-stable. By [GLMR23, Proposition 1.0.6],
1129
+ it suffices to show that there exist bounded cohomology classes 0 ̸= ρn ∈ im(H2
1130
+ b(Γ, Z) →
1131
+ H2
1132
+ b(Γ, R) such that ∥ρn∥ → 0. We let ρn be the Euler class of the representation Γ → Γn →
1133
+ Homeo+(R/nZ), which admits an integral representative and so lies in the image of H2
1134
+ b(Γ, Z)
1135
+ (see [Ghy01] for more information about Euler classes of circle actions). Moreover, using the
1136
+ terminology of [Bur11], the representation is minimal, unbounded, and has a centralizer of
1137
+ order n. Therefore ∥ρn∥ = 1/2n by [Bur11, Corollary 1.6], and we conclude.
1138
+ Note that Γ is countable but infinitely generated. It would be interesting to produce a
1139
+ finitely generated example (which would necessarily be infinitely presented).
1140
+ 7
1141
+ Approximation properties
1142
+ In this section we discuss open problems about approximation properties of the groups treated
1143
+ in this paper, and their relation to our results. We recall the following notions:
1144
+ Definition 7.1. Let G be a family of metric groups. We say that Γ is (pointwise, uniformly)
1145
+ G-approximable if there exists a (pointwise, uniform) asymptotic homomorphism φn : Γ →
1146
+ Gn ∈ G that is moreover asymptotically injective, meaning that for all g ∈ Γ, g ̸= 1 it holds
1147
+ lim inf
1148
+ n→∞ φn(g) > 0.
1149
+ The above terminology is not standard: most of the literature only deals with the point-
1150
+ wise notion, and refers to that as G-approximability. The notion of uniform approximability
1151
+ appeared in [FF21] with the name of strong G-approximability.
1152
+ Example 7.2. If G is the family of symmetric groups equipped with the normalized Hamming
1153
+ distance, then pointwise G-approximable groups are called sofic [Gro99, Wei00].
1154
+ If G is the family of unitary groups equipped with the Hilbert–Schmidt distance, then
1155
+ pointwise G-approximable groups are called hyperlinear [R˘08].
1156
+ All amenable and residually finite groups are sofic, and all sofic groups are hyperlinear.
1157
+ It is a major open question to determine whether there exists a non-sofic group.
1158
+ In our context of submultiplicative norms on unitary groups, the following two notions of
1159
+ approximability have been studied:
1160
+ Example 7.3. Let G be the family of unitary groups equipped with the operator norm.
1161
+ Then pointwise G-approximable groups are called MF [CDE13]. All amenable groups are
1162
+ MF [TWW17]. It is an open problem to determine whether there exists a non-MF group.
1163
+ Let G be the family of unitary groups equipped with the Frobenius norm, or more generally
1164
+ with a Schatten p-norm, for 1 < p < ∞. Groups that are not pointwise G-approximable have
1165
+ been constructed in [DCGLT20, LO20]. This is one of the very few cases in which a non-
1166
+ example for pointwise approximability is known.
1167
+ The following observation is well-known, and due to Glebsky and Rivera [GR09] and
1168
+ Arzhantseva and P˘aunescu in the pointwise symmetric case [AP15]. We give a general proof
1169
+ for reference:
1170
+ Proposition 7.4. Let G be a family of metric groups that are locally residually finite, and
1171
+ let Γ be a finitely generated group. Suppose that Γ is (pointwise, uniformly) G-stable and
1172
+ (pointwise, uniformly) G-approximable. Then Γ is residually finite.
1173
+ 21
1174
+
1175
+ The hypothesis on G covers all cases above. When the groups in G are finite, this is clear,
1176
+ and when they are linear, this follows from Mal’cev’s Theorem [Mal40].
1177
+ Proof. We proceed with the proof without specifying the type of asymptotic homomorphisms,
1178
+ closeness, and approximability: the reader should read everything as pointwise, or everything
1179
+ as uniform.
1180
+ Let φ : Γ → G be an asymptotically injective asymptotic homomorphism. By stability,
1181
+ there exists a sequence of homomorphisms ψ : Γ → G which is asymptotically close to φ.
1182
+ Since φ is asymptotically injective, for each g ∈ Γ there exists N such that φn(g) ≥ ρ for all
1183
+ n ≥ N and some ρ = ρ(g) > 0. Up to taking a larger N, we also have that ψn(g) ≥ ρ/2, in
1184
+ particular ψn(g) ̸= 1. Since ψn(Γ) is a finitely generated subgroup of Gn ∈ G, it is residually
1185
+ finite by hypothesis, and so ψn(g) survives in some finite quotient of ψn(Γ). Since this is also
1186
+ a finite quotient of Γ, we conclude that Γ is residually finite.
1187
+ In the special case of pointwise stability and Thompson’s group F, we obtain the following
1188
+ more general version of a remark of Arzhantseva and Paunescu [AP15, Open problem]:
1189
+ Corollary 7.5. Let G be the family of symmetric groups with the normalized Hamming
1190
+ distance, the family of unitary groups with the Hilbert–Schmidt norm, or the family of unitary
1191
+ groups with the operatorn norm. If Thompson’s group F is pointwise G-stable, then it is not
1192
+ pointwise G-approximable, and in particular it is non-amenable.
1193
+ As we mentioned in the introduction, the amenability of Thompson’s group F is one of
1194
+ the most outstanding open problems in modern group theory.
1195
+ Proof. Thompson’s group F is not residually finite [CFP96]. So it follows from Proposition
1196
+ 7.4 that it cannot be simultaneously pointwise G-stable and pointwise G-approximable. The
1197
+ last statement follows from the fact that amenable groups are sofic, hyperlinear, and MF.
1198
+ On the other hand, our results allow to settle the uniform approximability of Thompson’s
1199
+ groups, with respect to unitary groups and submultiplicative norms:
1200
+ Corollary 7.6. As usual, let U be the family of unitary groups equipped with submultiplicative
1201
+ norms. Then Thompson’s groups F, F ′, T and V are not uniformly U-approximable. The
1202
+ same holds for Γ ≀ Λ, whenever Λ is infinite and amenable, and Γ is non-abelian.
1203
+ We remark that Thompson’s groups T and V are generally regarded as good candidates
1204
+ for counterexamples to approximability problems.
1205
+ Proof. The statement for F, T and V follows from Theorem 1.2 and Proposition 7.4, together
1206
+ with the fact that they are not residually finite, and the statement for F ′ (which is not finitely
1207
+ generated) follows from the fact that F ′ contains a copy of F [CFP96]. The lamplighter case
1208
+ follows from Theorem 1.3 and Proposition 7.4, together with the fact that such lamplighters
1209
+ are not residually finite [Gru57].
1210
+ We do not know whether Thompson’s groups are uniformly G-approximable, when G is
1211
+ the family of unitary groups equipped with the Hilbert–Schmidt norm, and we conjecture
1212
+ that this is not the case. In the next section, we examine the case of symmetric groups via
1213
+ a more direct argument.
1214
+ 22
1215
+
1216
+ 7.1
1217
+ Approximations by symmetric groups
1218
+ We end by proving, by a cohomology-free argument, that some of the groups studied in this
1219
+ paper are not uniformly approximable by symmetric groups, in a strong sense. For the rest
1220
+ of this section, we denote by S the family of symmetric groups equipped with the normalized
1221
+ Hamming distance. Our main result is an analogue of Corollary 5.2 for this approximating
1222
+ family (see Section 5.2 for the relevant definitions):
1223
+ Proposition 7.7. Let Γ be a proximal, boundedly supported group of orientation-preserving
1224
+ homeomorphisms of the line. Then every uniform asymptotic homomorphism φn : Γ′ →
1225
+ Skn ∈ S is uniformly asymptotically close to the trivial one. In particular, Γ′ is uniformly
1226
+ S-stable, and not uniformly S-approximable.
1227
+ The non-approximability follows from the fact that Γ′ is non-trivial (see Lemma 7.8).
1228
+ Note that for Γ as in the statement, Γ′ is simple [GG17, Theorem 1.1], so in particular every
1229
+ homomorphism Γ′ → Skn is trivial.
1230
+ The proof relies on known results on the flexible uniform stability of amenable groups
1231
+ [BC20] and uniform perfection of groups with proximal actions [GG17]. The finiteness of the
1232
+ groups in S will play a crucial role. We start with the following lemma:
1233
+ Lemma 7.8. Let Γ be as in Proposition 7.7. Then Γ′ is non-trivial, and the action of Γ′ on
1234
+ the line has no global fixpoints.
1235
+ Proof. If Γ′ is trivial, then Γ is abelian. This contradicts that the action is proximal and
1236
+ boundedly supported. Indeed, given g ∈ Γ, since g is centralized, the action of Γ on R must
1237
+ preserve the support of g, which is a proper subset of R. But then the action cannot be
1238
+ proximal.
1239
+ Now the set of global fixpoints of Γ′ is a closed subset X ⊂ R. Since Γ′ is normal in Γ,
1240
+ the action of Γ preserves X. But the action of Γ on R is proximal, in particular every orbit
1241
+ is dense, and since X is closed we obtain X = R. That is, Γ′ acts trivially on R. Since Γ
1242
+ is a subgroup of Homeo+(R), this implies that Γ′ is trivial, which contradicts the previous
1243
+ paragraph.
1244
+ We proceed with the proof:
1245
+ Proof of Proposition 7.7. It follows from [GG17, Theorem 1.1] that Γ′ is 2-uniformly perfect;
1246
+ that is, every element of Γ′ may be written as the product of at most 2 commutators (this
1247
+ uses the proximality hypothesis). Therefore it suffices to show that there exists a constant C
1248
+ such that for all g, h ∈ Γ′ it holds dkn(φn([g, h]), idkn) ≤ Cεn, where dkn denotes the Hamming
1249
+ distance on Skn and εn := def(φn). We drop the subscript n on φ and ε for clarity.
1250
+ Now let g, h ∈ Γ′, and let I, J ⊂ R be bounded intervals such that g is supported on I
1251
+ and h is supported on J. Since Γ′ acts without global fixpoints by Lemma 7.8, there exists
1252
+ t ∈ Γ′ such that t · inf(J) > sup(I). Since Γ′ is orientation-preserving, the same holds for
1253
+ all powers of t. In particular [g, tiht−i] = 1 for all i ≥ 1. Next, we apply [BC20, Theorem
1254
+ 1.2] to the amenable group ⟨t⟩, to obtain an integer N such that kn ≤ N ≤ (1 + 1218ε)kn
1255
+ and a permutation τ in SN such that dN(φ(t)i, τ i) ≤ 2039ε for all i ∈ Z. Here dN denotes
1256
+ the normalized Hamming distance on the symmetric group SN, and φ is extended to a map
1257
+ 23
1258
+
1259
+ φ : Γ′ → SN with every φ(g) fixing each point in {kn + 1, . . . , N}.
1260
+ We compute (using
1261
+ τ N! = idN):
1262
+ dkn(φ([g, h]), idkn) ≤ dN(φ([g, h]), idN) ≤ dN([φ(g), φ(h)], idN) + O(ε)
1263
+ = dN([φ(g), τ N!φ(h)τ −N!], idN) + O(ε)
1264
+ ≤ dN([φ(g), φ(tN!)φ(h)φ(t−N!)], idN) + O(ε)
1265
+ ≤ dN(φ([g, tN!ht−N!]), idN) + O(ε)
1266
+ = dN(φ(1), idN) + O(ε) ≤ O(ε).
1267
+ Thus, there exists a constant C independent of g and h (C = 20000 suffices) such that
1268
+ dkn(φ([g, h]), idkn) ≤ Cε, which concludes the proof.
1269
+ Corollary 7.9. Consider the Thompson groups F ′, F, T.
1270
+ 1. Every asymptotic homomorphism φn : F ′ → Skn ∈ S is uniformly asymptotically close
1271
+ to the trivial one.
1272
+ 2. Every asymptotic homomorphism φn : F → Skn ∈ S is uniformly asymptotically close
1273
+ to one that factors through the abelianization.
1274
+ 3. Every asymptotic homomorphism φn : T → Skn ∈ S is uniformly asymptotically close
1275
+ to the trivial one.
1276
+ Proof. Item 1. is an instance of Proposition 7.7: indeed F ′ satisfies the hypotheses for Γ,
1277
+ and F ′′ = F ′ since F ′ is simple. For Item 2., pick a section σ : Ab(F) → F, and define
1278
+ ψn(g) := φn(σ(Ab(g))). Using that ψn|F ′ is uniformly asymptotically close to the sequence
1279
+ of trivial maps, we obtain that φn and ψn are uniformly asymptotically close, and ψn factors
1280
+ as F → Ab(F)
1281
+ φn◦σ
1282
+ −−−→ Skn. Finally, Item 3. follows again from Item 1. and the fact that every
1283
+ element of T can be written as a product of two elements in isomorphic copies of F ′ (see the
1284
+ proof of Corollary 5.11).
1285
+ The corollary immediately implies that F, F ′ and T are not uniformly S-approximable,
1286
+ and that F ′ and T are uniformly S-stable. Since F has infinite abelianization, it follows from
1287
+ [BC20, Theorem 1.4] that it is not uniformly S-stable. However the corollary together with
1288
+ [BC20, Theorem 1.2] implies that it is flexibly uniformly S-stable; that is, every uniform
1289
+ asymptotic homomorphism is uniformly close to a sequence of homomorphisms taking values
1290
+ in a symmetric group of slightly larger degree. The case of Thompson’s group V can also be
1291
+ treated analogously (see the sketch of proof of Corollary 5.12).
1292
+ References
1293
+ [AEG94]
1294
+ S. Adams, G. A. Elliott, and T. Giordano. Amenable actions of groups. Trans. Amer. Math.
1295
+ Soc., 344(2):803–822, 1994.
1296
+ [Alp20]
1297
+ A. Alpeev. Lamplighters over non-amenable groups are not strongly Ulam stable. arXiv preprint
1298
+ arXiv:2009.11738, 2020.
1299
+ [And22]
1300
+ K. Andritsch.
1301
+ Bounded cohomology of groups acting on Cantor sets.
1302
+ arXiv preprint
1303
+ arXiv:2210.00459, 2022.
1304
+ 24
1305
+
1306
+ [AP15]
1307
+ G. Arzhantseva and L. P˘aunescu. Almost commuting permutations are near commuting per-
1308
+ mutations. J. Funct. Anal., 269(3):745–757, 2015.
1309
+ [BC20]
1310
+ O. Becker and M. Chapman. Stability of approximate group actions: uniform and probabilistic.
1311
+ J. Eur. Math. Soc. (JEMS), To appear. arXiv: 2005.06652, 2020.
1312
+ [BLR18]
1313
+ J. Burillo, Y. Lodha, and L. Reeves. Commutators in groups of piecewise projective homeomor-
1314
+ phisms. Adv. Math., 332:34–56, 2018.
1315
+ [BM99]
1316
+ M. Burger and N. Monod. Bounded cohomology of lattices in higher rank Lie groups. J. Eur.
1317
+ Math. Soc. (JEMS), 1(2):199–235, 1999.
1318
+ [BM02]
1319
+ M. Burger and N. Monod. Continuous bounded cohomology and applications to rigidity theory.
1320
+ Geom. Funct. Anal., 12(2):219–280, 2002.
1321
+ [BNR21]
1322
+ J. Burillo, B. Nucinkis, and L. Reeves. An irrational-slope Thompson’s group. Publ. Mat.,
1323
+ 65(2):809–839, 2021.
1324
+ [BOT13]
1325
+ M. Burger, N. Ozawa, and A. Thom. On Ulam stability. Israel J. Math., 193(1):109–129, 2013.
1326
+ [BS16]
1327
+ R. Bieri and R. Strebel.
1328
+ On groups of PL-homeomorphisms of the real line, volume 215 of
1329
+ Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2016.
1330
+ [Bur11]
1331
+ M. Burger. An extension criterion for lattice actions on the circle. In Geometry, rigidity, and
1332
+ group actions, Chicago Lectures in Math., pages 3–31. Univ. Chicago Press, Chicago, IL, 2011.
1333
+ [Cal09]
1334
+ D. Calegari. scl, volume 20 of MSJ Memoirs. Mathematical Society of Japan, Tokyo, 2009.
1335
+ [Cal10]
1336
+ D. Calegari. Quasimorphisms and laws. Algebr. Geom. Topol., 10(1):215–217, 2010.
1337
+ [CDE13]
1338
+ J. R. Carri´on, M. Dadarlat, and C. Eckhardt. On groups with quasidiagonal C∗-algebras. J.
1339
+ Funct. Anal., 265(1):135–152, 2013.
1340
+ [CFP96]
1341
+ J. W. Cannon, W. J. Floyd, and W. R. Parry. Introductory notes on Richard Thompson’s
1342
+ groups. Enseign. Math. (2), 42(3-4):215–256, 1996.
1343
+ [Cle00]
1344
+ S. Cleary. Regular subdivision in Z[ 1+
1345
+
1346
+ 5
1347
+ 2
1348
+ ]. Illinois J. Math., 44(3):453–464, 2000.
1349
+ [DCGLT20] M. De Chiffre, L. Glebsky, A. Lubotzky, and A. Thom. Stability, cohomology vanishing, and
1350
+ nonapproximable groups. Forum Math. Sigma, 8:Paper No. e18, 37, 2020.
1351
+ [FF21]
1352
+ F. Fournier-Facio.
1353
+ Ultrametric analogues of Ulam stability of groups.
1354
+ arXiv preprint
1355
+ arXiv:2105.00516, 2021.
1356
+ [FFL21]
1357
+ F. Fournier-Facio and Y. Lodha. Second bounded cohomology of groups acting on 1-manifolds
1358
+ and applications to spectrum problems. arXiv preprint arXiv:2111.07931, 2021.
1359
+ [FFLM21]
1360
+ F. Fournier-Facio, C. L¨oh, and M. Moraschini. Bounded cohomology and binate groups. J.
1361
+ Aust. Math. Soc., To appear. arXiv:2111.04305, 2021.
1362
+ [Fri17]
1363
+ R. Frigerio. Bounded cohomology of discrete groups, volume 227 of Mathematical Surveys and
1364
+ Monographs. American Mathematical Society, Providence, RI, 2017.
1365
+ [Gam11]
1366
+ C. Gamm.
1367
+ ε-representations of groups and Ulam stability.
1368
+ Master’s thesis, Georg-August-
1369
+ Universit¨at G¨ottingen, 2011.
1370
+ [GG17]
1371
+ S. R. Gal and J. Gismatullin. Uniform simplicity of groups with proximal action. Trans. Amer.
1372
+ Math. Soc. Ser. B, 4:110–130, 2017. With an appendix by N. Lazarovich.
1373
+ [Ghy01]
1374
+ E. Ghys. Groups acting on the circle. Enseign. Math. (2), 47(3-4):329–407, 2001.
1375
+ [GLMR23]
1376
+ L. Glebsky, A. Lubotzky, N. Monod, and B. Rangarajan. Asymptotic cohomology and uniform
1377
+ stability for lattices in semisimple groups. arXiv preprint arXiv:2301.00476, 2023.
1378
+ [GR09]
1379
+ L. Glebsky and L. M. Rivera. Almost solutions of equations in permutations. Taiwanese J.
1380
+ Math., 13(2A):493–500, 2009.
1381
+ [Gro82]
1382
+ M. Gromov. Volume and bounded cohomology. Inst. Hautes ´Etudes Sci. Publ. Math., (56):5–99
1383
+ (1983), 1982.
1384
+ 25
1385
+
1386
+ [Gro99]
1387
+ M. Gromov.
1388
+ Endomorphisms of symbolic algebraic varieties.
1389
+ J. Eur. Math. Soc. (JEMS),
1390
+ 1(2):109–197, 1999.
1391
+ [Gru57]
1392
+ K. W. Gruenberg. Residual properties of infinite soluble groups. Proc. London Math. Soc. (3),
1393
+ 7:29–62, 1957.
1394
+ [GS87]
1395
+ E. Ghys and V. Sergiescu. Sur un groupe remarquable de diff´eomorphismes du cercle. Comment.
1396
+ Math. Helv., 62(2):185–239, 1987.
1397
+ [HNN49]
1398
+ G. Higman, B. H. Neumann, and H. Neumann. Embedding theorems for groups. J. London
1399
+ Math. Soc., 24:247–254, 1949.
1400
+ [Iva85]
1401
+ N. V. Ivanov. Foundations of the theory of bounded cohomology. volume 143, pages 69–109,
1402
+ 177–178. 1985. Studies in topology, V.
1403
+ [Joh72]
1404
+ B. E. Johnson. Cohomology in Banach algebras. Memoirs of the American Mathematical Society,
1405
+ No. 127. American Mathematical Society, Providence, R.I., 1972.
1406
+ [Kaz82]
1407
+ D. Kazhdan. On ε-representations. Israel J. Math., 43(4):315–323, 1982.
1408
+ [LM16]
1409
+ Y. Lodha and J. T. Moore. A nonamenable finitely presented group of piecewise projective
1410
+ homeomorphisms. Groups Geom. Dyn., 10(1):177–200, 2016.
1411
+ [LO20]
1412
+ A. Lubotzky and I. Oppenheim. Non p-norm approximated groups. J. Anal. Math., 141(1):305–
1413
+ 321, 2020.
1414
+ [Mal40]
1415
+ A. Malcev. On isomorphic matrix representations of infinite groups. Rec. Math. [Mat. Sbornik]
1416
+ N.S., 8 (50):405–422, 1940.
1417
+ [Man05]
1418
+ J. F. Manning. Geometry of pseudocharacters. Geom. Topol., 9:1147–1185, 2005.
1419
+ [MN21]
1420
+ N. Monod and S. Nariman.
1421
+ Bounded and unbounded cohomology of homeomorphism and
1422
+ diffeomorphism groups. arXiv preprint arXiv:2111.04365, 2021.
1423
+ [Mon01]
1424
+ N. Monod. Continuous bounded cohomology of locally compact groups, volume 1758 of Lecture
1425
+ Notes in Mathematics. Springer-Verlag, Berlin, 2001.
1426
+ [Mon13]
1427
+ N. Monod.
1428
+ Groups of piecewise projective homeomorphisms.
1429
+ Proc. Natl. Acad. Sci. USA,
1430
+ 110(12):4524–4527, 2013.
1431
+ [Mon22]
1432
+ N. Monod. Lamplighters and the bounded cohomology of Thompson’s group. Geom. Funct.
1433
+ Anal., 32(3):662–675, 2022.
1434
+ [MP03]
1435
+ N. Monod and S. Popa. On co-amenability for groups and von Neumann algebras. C. R. Math.
1436
+ Acad. Sci. Soc. R. Can., 25(3):82–87, 2003.
1437
+ [MS04]
1438
+ N. Monod and Y. Shalom. Cocycle superrigidity and bounded cohomology for negatively curved
1439
+ spaces. J. Differential Geom., 67(3):395–455, 2004.
1440
+ [Neu37]
1441
+ B. H. Neumann. Some remarks on infinite groups. Journal of the London Mathematical Society,
1442
+ 1(2):120–127, 1937.
1443
+ [R˘08]
1444
+ F. R˘adulescu.
1445
+ The von Neumann algebra of the non-residually finite Baumslag group
1446
+ ⟨a, b|ab3a−1 = b2⟩ embeds into Rω. In Hot topics in operator theory, volume 9 of Theta Ser.
1447
+ Adv. Math., pages 173–185. Theta, Bucharest, 2008.
1448
+ [Ste92]
1449
+ M. Stein. Groups of piecewise linear homeomorphisms. Trans. Amer. Math. Soc., 332(2):477–
1450
+ 514, 1992.
1451
+ [Tur38]
1452
+ A. M. Turing. Finite approximations to Lie groups. Ann. of Math. (2), 39(1):105–111, 1938.
1453
+ [TWW17]
1454
+ A. Tikuisis, S. White, and W. Winter. Quasidiagonality of nuclear C∗-algebras. Ann. of Math.
1455
+ (2), 185(1):229–284, 2017.
1456
+ [Ula60]
1457
+ S. M. Ulam. A collection of mathematical problems. Interscience Tracts in Pure and Applied
1458
+ Mathematics, no. 8. Interscience Publishers, New York-London, 1960.
1459
+ [vN29]
1460
+ J. von Neumann. Beweis des Ergodensatzes und des H-Theorems in der neuen Mechanik. Z.
1461
+ Phys., 57(1):30–70, 1929.
1462
+ 26
1463
+
1464
+ [Wei00]
1465
+ B. Weiss. Sofic groups and dynamical systems. Sankhy¯a Ser. A, 62(3):350–359, 2000. Ergodic
1466
+ theory and harmonic analysis (Mumbai, 1999).
1467
+ Department of Mathematics, ETH Z¨urich, Switzerland
1468
+ E-mail address: francesco.fournier@math.ethz.ch
1469
+ Einstein Institute of Mathematics, Hebrew University of Jerusalem, Israel
1470
+ E-mail address: bharatrm.rangarajan@mail.huji.ac.il
1471
+ 27
1472
+
39E2T4oBgHgl3EQfjgft/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
39FRT4oBgHgl3EQfozcR/content/2301.13610v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:539a7654f6e224c10cd8a3ab176bbd71388eaa5b8142f4c1ce6bd600aac4996c
3
+ size 444079
39FRT4oBgHgl3EQfozcR/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41f6e068b827b132833c3f8b46a459afb20c1c8a97efd3ba373ff42c631086e7
3
+ size 4390957
39FRT4oBgHgl3EQfozcR/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54423f571ceedbe35d050a7ac382f1df547e4e1fdaa766b51fafdbe87ab81335
3
+ size 143752
3NFAT4oBgHgl3EQflB25/content/tmp_files/2301.08615v1.pdf.txt ADDED
@@ -0,0 +1,865 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.08615v1 [hep-ph] 20 Jan 2023
2
+ Photo-production of lowest Σ∗
3
+ 1/2− state within the Regge-effective Lagrangian approach
4
+ Yun-He Lyu,1 Han Zhang,1 Neng-Chang Wei,2 Bai-Cian Ke,1 En Wang,1 and Ju-Jun Xie3, 2, 4
5
+ 1School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China
6
+ 2School of Nuclear Sciences and Technology, University of Chinese Academy of Sciences, Beijing 101408, China
7
+ 3Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
8
+ 4Southern Center for Nuclear-Science Theory (SCNT), Institute of Modern Physics,
9
+ Chinese Academy of Sciences, Huizhou 516000, Guangdong Province, China
10
+ (Dated: January 23, 2023)
11
+ Since the lowest Σ∗ state, with quantum numbers spin-parity JP = 1/2−, is far from estab-
12
+ lished experimentally and theoretically, we have performed a theoretical study on the Σ∗
13
+ 1/2− photo-
14
+ production within the Regge-effective Lagrangian approach. Taking into account that the Σ∗
15
+ 1/2−
16
+ couples to the ¯KN channel, we have considered the contributions from the t-channel K exchange
17
+ diagram. Moreover, these contributions from t-channel K∗ exchange, s-channel nucleon pole, u-
18
+ channel Σ exchange, and the contact term, are considered. The differential and total cross sections
19
+ of the process γn → K+Σ∗−
20
+ 1/2− are predicted with our model parameters. The results should be
21
+ helpful to search for the Σ∗
22
+ 1/2− state experimentally in future.
23
+ PACS numbers:
24
+ I.
25
+ INTRODUCTION
26
+ The study of the low-lying excited Λ∗ and Σ∗ hyperon
27
+ resonances is one of the most important issues in hadron
28
+ physics.
29
+ Especially, since the Λ(1405) was discovered
30
+ experimentally [1, 2], its nature has called many atten-
31
+ tions [3–8], and one explanation for Λ(1405) is that it
32
+ is a ¯KN hadronic molecular state [9–14]. In addition,
33
+ the isospin I = 1 partner of the Λ(1405), the lowest
34
+ Σ∗
35
+ 1/2− is crucial to understand the light baryon spec-
36
+ tra. At present, there is a Σ∗(1620) with JP = 1/2−
37
+ listed in the latest version of Review of Particle Physics
38
+ (RPP) [15]. It should be stressed that the Σ∗(1620) state
39
+ is a one-star baryon resonance, and many studies indicate
40
+ that the lowest Σ∗
41
+ 1/2− resonance is still far from estab-
42
+ lished, and its mass was predicted to lie in the range of
43
+ 1380 ∼ 1500 MeV [13, 16–19]. Thus, searching for the
44
+ lowest Σ∗
45
+ 1/2− is helpful to understand the low-lying ex-
46
+ cited baryons with JP = 1/2− and the light flavor baryon
47
+ spectra.
48
+ The analyses of the relevant data of the process
49
+ K−p → Λπ+π− suggest that there may exist a Σ∗
50
+ 1/2−
51
+ resonance with mass about 1380 MeV [16, 17], which
52
+ is consistent with the predictions of the unquenched
53
+ quark models [20].
54
+ The analyses of the K∗Σ photo-
55
+ production also indicate that the Σ∗
56
+ 1/2− is possibly buried
57
+ under the Σ∗(1385) peak with mass of 1380 MeV [21],
58
+ and it is proposed to search for the Σ∗
59
+ 1/2− in the pro-
60
+ cess Λc → ηπ+Λ [22]. A more delicate analysis of the
61
+ CLAS data on the process γp → KΣπ [23] suggests that
62
+ the Σ∗
63
+ 1/2− peak should be around 1430 MeV [13].
64
+ In
65
+ Refs. [24, 25], we suggest to search for such state in the
66
+ processes of χc0(1P) → ¯ΣΣπ and χc0(1P) → ¯ΛΣπ. In
67
+ addition, Ref. [26] has found one Σ∗
68
+ 1/2− state with mass
69
+ around 1400 MeV by solving coupled channel scattering
70
+ equations, and Ref. [27] suggests to search for this state
71
+ in the photo-production process γp → K+Σ∗0
72
+ 1/2−.
73
+ It’s worth mentioning that a Σ∗(1480) resonance with
74
+ JP = 1/2− has been listed on the previous version of
75
+ RPP [28].
76
+ As early as 1970, the Σ∗(1480) resonance
77
+ was reported in the Λπ+, Σπ, and p ¯K0 channels of the
78
+ π+p scattering in the Princeton-Pennsylvania Accelera-
79
+ tor 15-in.∼hydrogen bubble chamber [29, 30]. In 2004,
80
+ a bump structure around 1480 MeV was observed in the
81
+ K0
82
+ Sp(¯p) invariant mass spectrum of the inclusive deep
83
+ inelastic ep scattering by the ZEUS Collaboration [31].
84
+ Furthermore, a signal for a resonance at 1480 ± 15 MeV
85
+ with width of 60 ± 15 MeV was observed in the process
86
+ pp → K+pY ∗0 [32]. Theoretically, the Σ∗(1480) was in-
87
+ vestigated within different models [33–36]. In Ref. [36],
88
+ the S-wave meson-baryon interactions with strangeness
89
+ S = −1 were studied within the unitary chiral approach,
90
+ and one narrow pole with pole position of 1468−i 13 MeV
91
+ was found in the second Riemann sheet, which could be
92
+ associated with the Σ∗(1480) resonance. However, the
93
+ Σ∗(1480) signals are insignificant, and the existence of
94
+ this state still needs to be confirmed within more precise
95
+ experimental measurements.
96
+ As we known, the photo-production reactions have
97
+ been used to study the excited hyperon states Σ∗ and Λ∗,
98
+ and the Crystal Ball [37–39], LEPS [40], and CLAS [23]
99
+ Collaborations have accumulated lots of relevant exper-
100
+ imental data.
101
+ For instance, with these data, we have
102
+ analyzed the process γp → KΛ∗(1405) to deepen the un-
103
+ derstanding of the Λ∗(1405) nature in Ref. [41]. In order
104
+ to confirm the existence of the Σ∗(1480), we propose to
105
+ investigate the process γN → KΣ∗(1480) 1 within the
106
+ 1 Here after, we denote Σ∗(1480) as the lowest Σ∗
107
+ 1/2− state unless
108
+ otherwise stated.
109
+
110
+ 2
111
+ Regge-effective Lagrange approach.
112
+ Considering the Σ∗(1480) signal was first observed
113
+ in the π+Λ invariant mass distribution of the process
114
+ π+p → π+K+Λ, and the significance is about 3 ∼
115
+ 4σ [30], we search for the charged Σ∗(1480) in the process
116
+ γn → K+Σ∗−
117
+ 1/2−, which could also avoid the contribu-
118
+ tions of possible excited Λ∗ states. We will consider the
119
+ t-, s-, u-channels diagrams in the Born approximation
120
+ by employing the effective Lagrangian approach, and the
121
+ t-channel K/K∗ exchanges terms within Regge model.
122
+ Then we will calculate the differential and total cross
123
+ sections of the process γn → K+Σ∗−
124
+ 1/2− reaction, which
125
+ are helpful to search for Σ∗
126
+ 1/2− experimentally.
127
+ This paper is organized as follows. In Sec. II, the the-
128
+ oretical formalism for studying the γn → K+Σ∗−(1480)
129
+ reactions are presented. The numerical results of total
130
+ and differential cross sections and discussion are shown
131
+ in Sec. III. Finally, a brief summary is given in the last
132
+ section.
133
+ II.
134
+ FORMALISM
135
+ The reaction mechanisms of the Σ∗(1480) (≡ Σ∗)
136
+ photo-production process are depicted in the Fig. 1,
137
+ where we have taken into account the contributions from
138
+ the t-channel K and K∗ exchange term, s-channel nu-
139
+ cleon pole term, u-channel Σ exchange term, and the
140
+ contact term, respectively.
141
+ γ(k1)
142
+ K(k2)
143
+ N(p1)
144
+ Σ∗(p2)
145
+ K, K∗
146
+ γ
147
+ K
148
+ N
149
+ Σ∗
150
+ N
151
+ γ
152
+ Σ∗
153
+ N
154
+ K
155
+ γ
156
+ K
157
+ N
158
+ Σ∗
159
+ Σ
160
+ (a)
161
+ (b)
162
+ (c)
163
+ (d)
164
+ FIG. 1: The mechanisms of the γn → K+Σ∗−
165
+ 1/2− process. (a)
166
+ t-channel K/K∗ exchange terms, (b) s-channel nuclear term,
167
+ (c) u-channel Σ exchange term, and (d) contact term. The
168
+ k1, k2, p1, and p2 stand for the four-momenta of the initial
169
+ photon, kaon, neutron, and Σ∗(1480), respectively.
170
+ To compute the scattering amplitudes of the Feynman
171
+ diagrams shown in Fig. 1 within the effective Lagrangian
172
+ approach, we use the Lagrangian densities for the elec-
173
+ tromagnetic and strong interaction vertices as used in
174
+ Refs. [27, 42–46]
175
+ LγKK = −ie
176
+
177
+ K† (∂µK) −
178
+
179
+ ∂µK†�
180
+ K
181
+
182
+ Aµ,
183
+ (1)
184
+ LγKK∗ = gγKK∗ǫµναβ∂µAν∂αK∗
185
+ βK,
186
+ (2)
187
+ LγNN = −e ¯N
188
+
189
+ γµˆe −
190
+ ˆκN
191
+ 2MN
192
+ σµν∂ν
193
+
194
+ AµN,
195
+ (3)
196
+ LγΣΣ∗ = eµΣΣ∗
197
+ 2MN
198
+ ¯Σγ5σµν∂νAµΣ∗ + h.c.,
199
+ (4)
200
+ LKNΣ = −igKNΣ ¯Nγ5ΣK + h.c.,
201
+ (5)
202
+ LK∗NΣ∗ = igK∗NΣ∗
203
+
204
+ 3
205
+ ¯K∗µ ¯Σ∗γµγ5N + h.c.
206
+ (6)
207
+ LKNΣ∗ = gKNΣ∗ ¯K ¯
208
+ Σ∗N + h.c.,
209
+ (7)
210
+ where e(=
211
+
212
+ 4πα) is the elementary charge unit, Aµ is the
213
+ photon filed, and ˆe ≡ (1+τ3)/2 denotes the charge opera-
214
+ tor acting on the nucleon field. ˆκN ≡ κpˆe+κn(1−ˆe) is the
215
+ anomalous magnetic moment, and we take κn = −1.913
216
+ for neutron [15]. MN and MΣ denote the masses of nu-
217
+ cleon and the ground-state of Σ hyperon, respectively.
218
+ The strong coupling gKNΣ is taken to be 4.09 from
219
+ Ref. [47].
220
+ The gγKK∗ = 0.254 GeV−1 is determined
221
+ from the experimental data of ΓK∗→K+γ [15] and the
222
+ value of gK∗NΣ∗ = −3.26 − i0.06 is taken from Ref [26].
223
+ In addition, the coupling gKNΣ∗ = 8.74 GeV is taken
224
+ from Ref. [36], and the transition magnetic moment
225
+ µΣΣ∗ = 1.28 is taken from Ref. [27]
226
+ With the effective interaction Lagrangian densities
227
+ given above, the invariant scattering amplitudes are de-
228
+ fined as
229
+ M = ¯uΣ∗(p2, sΣ∗)Mµ
230
+ huN(k2, sp)ǫµ(k1, λ),
231
+ (8)
232
+ where uΣ∗ and uN stand for the Dirac spinors, respec-
233
+ tively, while ǫµ(k1, λ) is the photon polarization vector
234
+ and the sub-indice h corresponds to different diagrams
235
+ of Fig. 1. The reduced amplitudes Mµ
236
+ h are written as
237
+
238
+ K∗ =
239
+ egγKK∗gK∗NΣ∗
240
+
241
+ 3MK∗(t − M 2
242
+ K∗)ǫαβµνk1αk2βγνγ5,
243
+ (9)
244
+
245
+ K− = −2iegKNΣ∗
246
+ t − M 2
247
+ K
248
+
249
+ 2 ,
250
+ (10)
251
+
252
+ Σ− = −i
253
+ eµΣΣ∗gKNΣ
254
+ 2Mn(u − M 2
255
+ Σ∗)(q/u − MΣ)σµνk1ν, (11)
256
+
257
+ n =
258
+ κngKNΣ∗
259
+ 2Mn(s − M 2n)σµνk1ν(q/s + Mn).
260
+ (12)
261
+ In order to keep the full photoproduction amplitudes
262
+ considered here gauge invariant, we adopt the amplitude
263
+ of the contact term
264
+
265
+ c = −iegKNΣ∗
266
+
267
+ 2
268
+ p2 · k1
269
+ ,
270
+ (13)
271
+ for γn → K+Σ∗−
272
+ 1/2−.
273
+
274
+ 3
275
+ It is known that the Reggeon exchange mechanism
276
+ plays a crucial role at high energies and forward an-
277
+ gles [48–51], thus we will adopt Regge model for mod-
278
+ eling the t-channel K and K∗ contributions by replacing
279
+ the usual pole-like Feynman propagator with the corre-
280
+ sponding Regge propagators as follows,
281
+ 1
282
+ t − M 2
283
+ K
284
+ → FRegge
285
+ K
286
+ =
287
+ � s
288
+ sK
289
+ 0
290
+ �αK(t)
291
+ πα′
292
+ K
293
+ sin(παK(t))Γ(1 + αK(t)),(14)
294
+ 1
295
+ t − M 2
296
+ K∗
297
+ → FRegge
298
+ K∗
299
+ =
300
+ � s
301
+ sK∗
302
+ 0
303
+ �αK∗(t)
304
+ πα′
305
+ K∗
306
+ sin(παK∗(t))Γ(αK∗(t)),(15)
307
+ with αK(t) = 0.7 GeV−2 × (t − M 2
308
+ K) and αK∗(t) = 1 +
309
+ 0.83 Gev−2 × (t − M 2
310
+ K∗) the linear Reggeon trajectory.
311
+ The constants sK
312
+ 0 and sK∗
313
+ 0
314
+ are determined to be 3.0 GeV2
315
+ and 1.5 GeV2, respectively [52]. Here, the α′
316
+ K and α′
317
+ K∗
318
+ are the Regge-slopes.
319
+ Then, the full photo-production amplitudes for γn →
320
+ K+Σ∗−
321
+ 1/2− reaction can be expressed as
322
+ Mµ =
323
+
324
+
325
+ K− + Mµ
326
+ c
327
+ � �
328
+ t − M 2
329
+ K−
330
+
331
+ FRegge
332
+ K
333
+ + Mµ
334
+ Σ−fu
335
+ + Mµ
336
+ K∗
337
+
338
+ t − M 2
339
+ K∗
340
+
341
+ FRegge
342
+ K∗
343
+ + Mµ
344
+ nfs,
345
+ (16)
346
+ While FRegge
347
+ K
348
+ and FRegge
349
+ K∗
350
+ stand for the Regge propaga-
351
+ tors. The form factors fs and fu are included to suppress
352
+ the large momentum transfer of the intermediate par-
353
+ ticles and describe their off-shell behavior, because the
354
+ intermediate hadrons are not point-like particles.
355
+ For
356
+ s-channel and u-channel baryon exchanges, we use the
357
+ following form factors [42, 53]
358
+ fi(q2
359
+ i ) =
360
+
361
+ Λ4
362
+ i
363
+ Λ4
364
+ i + (q2
365
+ i − M 2
366
+ i )2
367
+ �2
368
+ , i = s, u
369
+ (17)
370
+ with Mi and qi being the masses and four-momenta of
371
+ the intermediate baryons, and the Λi is the cut-off values
372
+ for baryon exchange diagrams.
373
+ In this work, we take
374
+ Λs = Λu = 1.5 GeV, and will discuss the results with
375
+ different cut-off.
376
+ Finally, the unpolarized differential cross section in the
377
+ center of mass (c.m.) frame for the γn → KΣ∗−
378
+ 1/2− reac-
379
+ tion reads
380
+
381
+ dΩ = MNMΣ∗|⃗kc.m.
382
+ 1
383
+ ||⃗pc.m.
384
+ 1
385
+ |
386
+ 8π2(s − M 2
387
+ N)2
388
+
389
+ λ,sp,sΣ∗
390
+ |M|2,
391
+ (18)
392
+ where s denotes the invariant mass square of the center
393
+ of mass (c.m.) frame for Σ∗
394
+ 1/2− photo-production. Here
395
+ ⃗kc.m.
396
+ 1
397
+ and ⃗pc.m.
398
+ 1
399
+ are the three-momenta of the photon and
400
+ K meson in the c.m.
401
+ frame, while dΩ = 2πdcosθc.m.,
402
+ with θc.m. the polar outgoing K scattering angle.
403
+ III.
404
+ NUMERICAL RESULTS AND
405
+ DISCUSSIONS
406
+ In this section, we show our numerical results of the dif-
407
+ ferential and total cross sections for the γn → K+Σ∗−
408
+ 1/2−
409
+ reaction.
410
+ The masses of the mesons and baryons are
411
+ taken from RPP [15], as given in Table I. In addition, the
412
+ mass and width of the Σ(1480) are M = 1480 ± 15 GeV
413
+ and Γ = 60 ± 15 GeV, respectively [28].
414
+ TABLE I: Particle masses used in this work.
415
+ Particle
416
+ Mass (MeV)
417
+ n
418
+ 939.565
419
+ Σ−
420
+ 1197.449
421
+ K+
422
+ 493.677
423
+ K−
424
+ 493.677
425
+ K∗
426
+ 891.66
427
+ First we show the angle dependence of the differential
428
+ cross sections for the γn → K+Σ∗−
429
+ 1/2− reaction in Fig. 2,
430
+ where the the center-of-mass energies W = √s varies
431
+ from 2.0 to 2.8 GeV. The black curves labeled as ‘Total’
432
+ show the results of all the contributions from the t-, s-,
433
+ u-channels, and contact term. The blue-dot curves and
434
+ red-dashed curves stand for the contributions from the
435
+ u-channel Σ exchange and t-channel K exchange mecha-
436
+ nism, respectively. The magenta-dot-dashed curves and
437
+ the green-dot curves correspond to the contributions
438
+ from the s-channel and t-channel K∗ exchange diagrams,
439
+ respectively, while the cyan-dot-dashed curves represent
440
+ the contribution from the contact term. According to the
441
+ differential cross sections, one can find that the t-channel
442
+ K meson exchange term plays an important role at for-
443
+ ward angles for the process γn → K+Σ∗−
444
+ 1/2−, mainly due
445
+ to the Regge effects of the t-change K exchange. The
446
+ K-Reggeon exchange shows steadily increasing behavior
447
+ with cosθc.m. and falls off drastically at very forward an-
448
+ gles. In addition, the u-channel Σ exchange term mainly
449
+ contribute to the backward angles for both processes.
450
+ It should be stressed that the contribution from the t-
451
+ channel K∗ exchange term is very small and could be
452
+ safely neglected for the process γn → K+Σ∗−
453
+ 1/2−, which
454
+ is consistent with the results of Ref. [27].
455
+ In addition to the the differential cross sections, we
456
+ have also calculated the total cross section of the γn →
457
+ K+Σ∗−
458
+ 1/2− reaction as a function of the initial photon en-
459
+ ergy. The results are shown in Fig. 3. The black curve
460
+ labeled as ‘Total’ shows the results of all the contribu-
461
+ tions, including t-, s-, u- channels and contact term. The
462
+ blue-dot and red-dashed curves stand for the contribu-
463
+ tions from the u- channel Σ exchange and t- channel
464
+ K exchange mechanism, respectively. The magenta-dot-
465
+ dashed and the green-dot curves show the contribution of
466
+ s-channel and t-channel K∗ exchange diagrams, respec-
467
+ tively, while the cyan-dot-dashed curve represents the
468
+
469
+ 4
470
+ 0
471
+ 0.5
472
+ 1
473
+ 1.5
474
+ 2
475
+ 2.5
476
+ 3
477
+ 3.5
478
+ 4
479
+ 4.5
480
+ dσ/dcosθc.m. (µb)
481
+ cosθc.m.
482
+ W=2.0 GeV
483
+ K-t
484
+ K*-t
485
+ s-channel
486
+ u-channel
487
+ contact term
488
+ Total
489
+ W=2.1 GeV
490
+ W=2.2 GeV
491
+ 0
492
+ 0.5
493
+ 1
494
+ 1.5
495
+ 2
496
+ 2.5
497
+ 3
498
+ 3.5
499
+ 4
500
+ 4.5
501
+ W=2.3 GeV
502
+ W=2.4 GeV
503
+ W=2.5 GeV
504
+ 0
505
+ 0.5
506
+ 1
507
+ 1.5
508
+ 2
509
+ 2.5
510
+ 3
511
+ 3.5
512
+ 4
513
+ 4.5
514
+ -1
515
+ -0.5
516
+ 0
517
+ 0.5
518
+ 1
519
+ W=2.6 GeV
520
+ -1
521
+ -0.5
522
+ 0
523
+ 0.5
524
+ 1
525
+ W=2.7 GeV
526
+ -1
527
+ -0.5
528
+ 0
529
+ 0.5
530
+ 1
531
+ W=2.8 GeV
532
+ FIG. 2: (Color online) γn → K+Σ∗−
533
+ 1/2− differential cross sections as a function of cosθc.m. are plotted for γn-invariant mass
534
+ intervals (in GeV units). The black curve labeled as ‘Total’ shows the results of all the contributions, including t-, s-, u- channels
535
+ and contact term. The blue-dot and red-dashed curves stand for the contributions from the effective Lagrangian approach u-
536
+ channel Σ exchange and t- channel K exchange mechanism, respectively. The magenta-dot-dashed and the green-dot-dashed
537
+ curves show the contribution of s-channel and t-channel K∗ exchange diagrams, respectively, while the cyan-dot-dashed curve
538
+ represent the contribution of the contact term.
539
+ contribution of the contact term. For the γn → K+Σ∗−
540
+ 1/2−
541
+ reaction its total cross section attains a maximum value
542
+ of about 4.3 µb at Eγ = 2.3 GeV. It is expected that the
543
+ Σ∗(1480) could be observed by future experiments in the
544
+ process γn → K+Σ∗− (1480) → Σ−π0/Σ0π−/Σ−γ.
545
+ Finally, we also show the total cross section for γn →
546
+ K+Σ∗−
547
+ 1/2− with the cut-off Λs/u = 1.2, 1.5, and 1.8 GeV
548
+ in Fig. 4, where one can find the total cross sections are
549
+ weakly dependence on the value of the cut-off. Since the
550
+ precise couplings of the Σ(1480) are still unknown, the
551
+
552
+ 5
553
+ 0
554
+ 0.5
555
+ 1
556
+ 1.5
557
+ 2
558
+ 2.5
559
+ 3
560
+ 3.5
561
+ 4
562
+ 4.5
563
+ 5
564
+ 5.5
565
+ 1.5
566
+ 2
567
+ 2.5
568
+ 3
569
+ 3.5
570
+ 4
571
+ σ (µb)
572
+ Eγ (GeV)
573
+ K-t
574
+ K*-t
575
+ s-channel
576
+ u-channel
577
+ contact term
578
+ Total
579
+ FIG. 3:
580
+ (Color online) Total cross section for γn
581
+
582
+ K+Σ∗
583
+ 1/2− is plotted as a function of the lab energy Eγ. The
584
+ black curve labeled as ‘Total’ shows the results of all the con-
585
+ tributions, including t-,s-,u- channels and contact term. The
586
+ blue-dot and red-dashed curves stand for the contributions
587
+ from the effective Lagrangian approach u- channel Σ exchange
588
+ and t- channel K exchange mechanism, respectively.
589
+ The
590
+ magenta-dot-dashed and the green-dot curves show the con-
591
+ tribution of s-channel and t-channel K∗ exchange diagrams,
592
+ respectively, while the cyan-dot-dashed curve represents the
593
+ contribution of the contact term.
594
+ 0
595
+ 0.5
596
+ 1
597
+ 1.5
598
+ 2
599
+ 2.5
600
+ 3
601
+ 3.5
602
+ 4
603
+ 4.5
604
+ 5
605
+ 5.5
606
+ 1.5
607
+ 2
608
+ 2.5
609
+ 3
610
+ 3.5
611
+ 4
612
+ σ (µb)
613
+ Eγ (GeV)
614
+ Λs,u = 1.2 GeV
615
+ Λs,u = 1.5 GeV
616
+ Λs,u = 1.8 GeV
617
+ FIG. 4:
618
+ (Color online) Total cross section for γn
619
+
620
+ K+Σ∗
621
+ 1/2− with the cut-off Λs/u = 1.2, 1.5, and 1.8 GeV.
622
+ future experiment would be helpful to constrain these
623
+ couplings if the state Σ(1480) is confirmed.
624
+ IV.
625
+ SUMMARY
626
+ The lowest Σ∗−
627
+ 1/2− is far from established, and its ex-
628
+ istence is important to understand the low-lying excited
629
+ baryon with JP = 1/2−. There are many experimen-
630
+ tal hints of the Σ∗(1480), which has been listed in the
631
+ previous version of the Review of Particle Physics. We
632
+ propose to search for this state in the photoproduction
633
+ process to confirm its existence.
634
+ Assuming that the JP
635
+ =
636
+ 1/2− low lying state
637
+ Σ∗ (1480) has a sizeable coupling to the ¯KN according
638
+ the study of Ref. [36], we have phenomenologically inves-
639
+ tigated the γn → K+Σ∗−
640
+ 1/2− reaction by considering the
641
+ contributions from the t-channel K/K∗ exchange term,
642
+ s-channel nucleon term, u-channel Σ exchange term, and
643
+ contact term within the Regge-effective Lagrange ap-
644
+ proach.
645
+ The differential cross sections and total cross
646
+ sections for these processes are calculated with our model
647
+ parameters. The total cross section of γn → K+Σ∗−
648
+ 1/2−
649
+ is about 4.3 µb around Eγ = 2.3 GeV. We encourage
650
+ our experimental colleagues to measure γn → K+Σ∗−
651
+ 1/2−
652
+ process.
653
+ Acknowledgements
654
+ This
655
+ work
656
+ is
657
+ supported
658
+ by
659
+ the
660
+ National
661
+ Natu-
662
+ ral Science Foundation of China under Grant Nos.
663
+ 12192263, 12075288, 11735003, and 11961141012, the
664
+ Natural Science Foundation of Henan under Grand No.
665
+ 222300420554.
666
+ It is also supported by the Project of
667
+ Youth Backbone Teachers of Colleges and Universities
668
+ of Henan Province (2020GGJS017), the Youth Talent
669
+ Support Project of Henan (2021HYTP002), the Open
670
+ Project of Guangxi Key Laboratory of Nuclear Physics
671
+ and Nuclear Technology, No.NLK2021-08, the Youth In-
672
+ novation Promotion Association CAS.
673
+ [1] R. H. Dalitz and S. F. Tuan, A possible resonant state
674
+ in pion-hyperon scattering, Phys. Rev. Lett. 2 (1959),
675
+ 425-428.
676
+ [2] M. H. Alston, L. W. Alvarez, P. Eberhard, M. L. Good,
677
+ W. Graziano, H. K. Ticho and S. G. Wojcicki, Study of
678
+ Resonances of the Σπ System, Phys. Rev. Lett. 6 (1961),
679
+ 698-702.
680
+ [3] J. A. Oller and U. G. Meissner, Chiral dynamics in the
681
+ presence of bound states: Kaon nucleon interactions re-
682
+ visited, Phys. Lett. B 500 (2001), 263-272.
683
+ [4] D. Jido, J. A. Oller, E. Oset, A. Ramos and U. G. Meiss-
684
+ ner, Chiral dynamics of the two Λ(1405) states, Nucl.
685
+ Phys. A 725 (2003), 181-200.
686
+ [5] N.
687
+ Isgur
688
+ and
689
+ G.
690
+ Karl,
691
+ P
692
+ Wave
693
+ Baryons
694
+ in
695
+ the
696
+ Quark
697
+ Model,
698
+ Phys.
699
+ Rev.
700
+ D
701
+ 18
702
+ (1978),
703
+ 4187
704
+ doi:10.1103/PhysRevD.18.4187
705
+ [6] S. Capstick and N. Isgur, Baryons in a relativized quark
706
+ model with chromodynamics, Phys. Rev. D 34 (1986)
707
+ no.9, 2809-2835.
708
+ [7] A. Zhang, Y. R. Liu, P. Z. Huang, W. Z. Deng,
709
+ X. L. Chen and S. L. Zhu, JP = 1/2− pentaquarks in
710
+ Jaffe and Wilczek’s diquark model, HEPNP 29 (2005),
711
+ 250.
712
+ [8] C. G. Callan, Jr. and I. R. Klebanov, Bound State Ap-
713
+ proach to Strangeness in the Skyrme Model, Nucl. Phys.
714
+ B 262 (1985), 365-382.
715
+
716
+ 6
717
+ [9] E. Oset and A. Ramos, Nonperturbative chiral approach
718
+ to s wave ¯KN interactions, Nucl. Phys. A 635 (1998),
719
+ 99-120
720
+ [10] T. Hyodo, S. I. Nam, D. Jido and A. Hosaka, Flavor
721
+ SU(3) breaking effects in the chiral unitary model for me-
722
+ son baryon scatterings, Phys. Rev. C 68 (2003), 018201.
723
+ [11] T. Hyodo and D. Jido, The nature of the Λ(1405) res-
724
+ onance in chiral dynamics, Prog. Part. Nucl. Phys. 67
725
+ (2012), 55-98.
726
+ [12] Z. H. Guo and J. A. Oller, Meson-baryon reactions with
727
+ strangeness -1 within a chiral framework, Phys. Rev. C
728
+ 87 (2013) no.3, 035202.
729
+ [13] L. Roca and E. Oset, Isospin 0 and 1 resonances from
730
+ πΣ photoproduction data, Phys. Rev. C 88 (2013) no.5,
731
+ 055206.
732
+ [14] J. X. Lu, L. S. Geng, M. Doering and M. Mai, Cross-
733
+ channel constraints on resonant antikaon-nucleon scat-
734
+ tering, [arXiv:2209.02471 [hep-ph]].
735
+ [15] R. L. Workman et al. [Particle Data Group], Review of
736
+ Particle Physics, PTEP 2022 (2022), 083C01
737
+ [16] J. J. Wu, S. Dulat and B. S. Zou, Evidence for a new
738
+ Σ∗ resonance with Jp = 1/2− in the old data of K−p →
739
+ Λπ+π− reaction, Phys. Rev. D 80 (2009), 017503.
740
+ [17] J. J. Wu, S. Dulat and B. S. Zou, Further evidence for the
741
+ Σ∗ resonance with Jp = 1/2− around 1380 MeV, Phys.
742
+ Rev. C 81 (2010), 045210.
743
+ [18] H. Zhang, J. Tulpan, M. Shrestha and D. M. Manley,
744
+ Multichannel parametrization of ¯KN scattering ampli-
745
+ tudes and extraction of resonance parameters, Phys. Rev.
746
+ C 88 (2013) no.3, 035205.
747
+ [19] H. Kamano, S. X. Nakamura, T. S. H. Lee and T. Sato,
748
+ Dynamical coupled-channels model of K−p reactions. II.
749
+ Extraction of Λ∗ and Σ∗ hyperon resonances, Phys. Rev.
750
+ C 92 (2015) no.2, 025205.
751
+ [20] C. Helminen and D. O. Riska, Low lying qqqq¯q states in
752
+ the baryon spectrum, Nucl. Phys. A 699 (2002), 624-648.
753
+ [21] P. Gao, J. J. Wu and B. S. Zou, Possible Σ( 1
754
+ 2
755
+ −) under
756
+ the Σ∗(1385) peak in KΣ∗ photoproduction, Phys. Rev.
757
+ C 81 (2010), 055203.
758
+ [22] J. J. Xie and L. S. Geng, Σ∗
759
+ 1/2−(1380) in the Λ+
760
+ c → ηπ+Λ
761
+ decay, Phys. Rev. D 95 (2017) no.7, 074024.
762
+ [23] K. Moriya et al. [CLAS], Measurement of the Σπ photo-
763
+ production line shapes near the Λ(1405), Phys. Rev. C
764
+ 87 (2013) no.3, 035206.
765
+ [24] E. Wang, J. J. Xie and E. Oset, χc0(1P) decay into ¯Σ Σπ
766
+ in search of an I = 1, 1/2− baryon state around ¯KN
767
+ threshold, Phys. Lett. B 753 (2016), 526-532.
768
+ [25] L. J. Liu, E. Wang, J. J. Xie, K. L. Song and J. Y. Zhu,
769
+ Λ(1405) production in the process χc0(1P) → ¯ΛΣπ,
770
+ Phys. Rev. D 98 (2018) no.11, 114017.
771
+ [26] K. P. Khemchandani, A. Mart´ınez Torres and J. A. Oller,
772
+ Hyperon resonances coupled to pseudoscalar- and vector-
773
+ baryon channels, Phys. Rev. C 100 (2019) no.1, 015208.
774
+ [27] S. H. Kim, K. P. Khemchandani, A. Martinez Torres,
775
+ S. i. Nam and A. Hosaka, Photoproduction of Λ∗ and Σ∗
776
+ resonances with JP = 1/2− off the proton, Phys. Rev. D
777
+ 103 (2021) no.11, 114017.
778
+ [28] M. Tanabashi et al. [Particle Data Group], Review of
779
+ Particle Physics, Phys. Rev. D 98 (2018) no.3, 030001.
780
+ [29] Y. L. Pan and F. L. Forman, Evidence for a lambda-pion-
781
+ plus resonance at 1480 MeV, Phys. Rev. Lett. 23 (1969),
782
+ 806-808
783
+ [30] Y. L. Pan and F. L. Forman, Observation of the Y ∗
784
+ 1 (1480)
785
+ in the Σπ+ and p ¯K0 systems - comments on spin and
786
+ su(3) multiplet assignment,” Phys. Rev. Lett. 23 (1969),
787
+ 808-811.
788
+ [31] S. Chekanov et al. [ZEUS], Evidence for a narrow bary-
789
+ onic state decaying to K0
790
+ Sp and K0
791
+ S ¯p in deep inelastic
792
+ scattering at HERA, Phys. Lett. B 591 (2004), 7-22
793
+ [32] I. Zychor, V. Koptev, M. Buscher, A. Dzyuba, I. Keshe-
794
+ lashvili, V. Kleber, H. R. Koch, S. Krewald, Y. Maeda
795
+ and S. Mikirtichyants, et al. Evidence for an excited hy-
796
+ peron state in pp → pK+Y ∗
797
+ 0 , Phys. Rev. Lett. 96 (2006),
798
+ 012002.
799
+ [33] Y. Oh, Ξ and Ω baryons in the Skyrme model,” Phys.
800
+ Rev. D 75 (2007), 074002.
801
+ [34] C. Garcia-Recio, M. F. M. Lutz and J. Nieves, Quark
802
+ mass dependence of s wave baryon resonances, Phys.
803
+ Lett. B 582 (2004), 49-54.
804
+ [35] Y. s. Oh, H. c. Kim and S. H. Lee, Properties of baryon
805
+ anti-decuplet, Phys. Rev. D 69 (2004), 094009.
806
+ [36] J. A. Oller, On the strangeness -1 S-wave meson-baryon
807
+ scattering, Eur. Phys. J. A 28 (2006), 63-82
808
+ [37] A. Starostin et al. [Crystal Ball], Measurement of K−p →
809
+ ηΛ near threshold, Phys. Rev. C 64 (2001), 055205.
810
+ [38] R. Manweiler, R. V. Cadman, H. Spinka, V. V. Abaev,
811
+ D. Allen, C. E. Allgower,
812
+ J. Alyea, M. A. Bates,
813
+ V. S. Bekrenev and W. J. Briscoe, et al. Measurement
814
+ of the K−p → Σ0π0 reaction between 514-MeV/c and
815
+ 750-MeV/c, Phys. Rev. C 77 (2008), 015205.
816
+ [39] S. Prakhov et al. Measurement of π0Λ, ¯K0N, and π0Σ0
817
+ production in K−p interactions for pK− between 514 and
818
+ 750 MeV/c, Phys. Rev. C 80 (2009), 025204.
819
+ [40] K. Hicks et al. [LEPS], Cross Sections and Beam Asym-
820
+ metries for K+Σ∗− photoproduction from the deuteron
821
+ at Eγ = 1.5 - 2.4 GeV, Phys. Rev. Lett. 102 (2009),
822
+ 012501.
823
+ [41] E. Wang, J. J. Xie, W. H. Liang, F. K. Guo and E. Oset,
824
+ Role of a triangle singularity in the γp → K+Λ(1405)
825
+ reaction, Phys. Rev. C 95 (2017) no.1, 015205
826
+ [42] N. C. Wei, A. C. Wang, F. Huang and K. Nakayama,
827
+ Nucleon and ∆ resonances in γn → K + Σ− photopro-
828
+ duction, Phys. Rev. D 105 (2022) no.9, 094017.
829
+ [43] A. C. Wang, N. C. Wei and F. Huang, Analysis of the
830
+ γn → K+Σ− (1385) photoproduction, Phys. Rev. D 105
831
+ (2022) no.3, 034017.
832
+ [44] A. C. Wang, W. L. Wang and F. Huang, Nucleon and ∆
833
+ resonances in γp → K+Σ0(1385) photoproduction, Phys.
834
+ Rev. D 101 (2020) no.7, 074025.
835
+ [45] J. J. Xie, E. Wang and J. Nieves, Re-analysis of the
836
+ Λ(1520) photoproduction reaction, Phys. Rev. C 89
837
+ (2014) no.1, 015203.
838
+ [46] E. Wang, J. J. Xie and J. Nieves, Regge signatures from
839
+ CLAS Λ(1520) photoproduction data at forward angles,
840
+ Phys. Rev. C 90 (2014) no.6, 065203.
841
+ [47] T. A. Rijken, M. M. Nagels and Y. Yamamoto, Baryon-
842
+ baryon interactions: Nijmegen extended-soft-core mod-
843
+ els, Prog. Theor. Phys. Suppl. 185 (2010), 14-71.
844
+ [48] A. Donnachie and P. V. Landshoff, Exclusive rho Pro-
845
+ duction in Deep Inelastic Scattering, Phys. Lett. B 185
846
+ (1987), 403
847
+ [49] V. Y. Grishina, L. A. Kondratyuk, W. Cassing, M. Mi-
848
+ razita and P. Rossi, Comparative Regge analysis of Λ, Σ0,
849
+ Λ(1520) and Θ+ production in γp, πp and pp reactions,
850
+ Eur. Phys. J. A 25 (2005), 141-150
851
+ [50] Y. Y. Wang, L. J. Liu, E. Wang and D. M. Li, Study
852
+ on the reaction of γp → f1(1285)p in Regge-effective La-
853
+
854
+ 7
855
+ grangian approach, Phys. Rev. D 95 (2017) no.9, 096015.
856
+ [51] J. He, Theoretical study of the Λ(1520) photoproduction
857
+ off proton target based on the new CLAS data, Nucl.
858
+ Phys. A 927 (2014), 24-35
859
+ [52] M. Guidal, J. M. Laget and M. Vanderhaeghen, Pion
860
+ and kaon photoproduction at high-energies: Forward and
861
+ intermediate angles, Nucl. Phys. A 627 (1997), 645-678.
862
+ [53] F. Huang, H. Haberzettl and K. Nakayama, Combined
863
+ analysis of η′ production reactions: γN → η′N, NN →
864
+ NNη′, and πN → η′N, Phys. Rev. C 87 (2013), 054004.
865
+
3NFAT4oBgHgl3EQflB25/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3dE3T4oBgHgl3EQfPwmd/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5612889c59ba24c903ab0d9bd4f7695d3fcb1e4e598f0169c76291e42dab1423
3
+ size 2490413
3dFRT4oBgHgl3EQfoTds/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b52bb0aa7b312cb838c321e40278db52bb15c886a3cf22e14d076c3a02d974ba
3
+ size 4063277
4dE1T4oBgHgl3EQf6QUq/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,496 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf,len=495
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
3
+ page_content='03520v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
4
+ page_content='FA] 9 Jan 2023 CLASSIFYING WEAK PHASE RETRIEVAL P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
5
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
6
+ page_content=' CASAZZA AND F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
7
+ page_content=' AKRAMI Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
8
+ page_content=' We will give several surprising equivalences and consequences of weak phase retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
9
+ page_content=' These results give a complete understanding of the dif- ference between weak phase retrieval and phase retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
10
+ page_content=' We also answer two longstanding open problems on weak phase retrieval: (1) We show that the families of weak phase retrievable frames {xi}m i=1 in Rn are not dense in the family of m-element sets of vectors in Rn for all m ≥ 2n − 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
11
+ page_content=' (2) We show that any frame {xi}2n−2 i=1 containing one or more canonical basis vectors in Rn cannot do weak phase retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
12
+ page_content=' We provide numerous examples to show that the obtained results are best possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
13
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
14
+ page_content=' Introduction The concept of frames in a separable Hilbert space was originally introduced by Duffin and Schaeffer in the context of non-harmonic Fourier series [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
15
+ page_content=' Frames are a more flexible tool than bases because of the redundancy property that make them more applicable than bases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
16
+ page_content=' Phase retrieval is an old problem of recovering a signal from the absolute value of linear measurement coefficients called intensity measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
17
+ page_content=' Phase retrieval and norm retrieval have become very active areas of research in applied mathematics, computer science, engineering, and more today.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
18
+ page_content=' Phase retrieval has been defined for both vectors and subspaces (projections) in all separable Hilbert spaces, (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
19
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
20
+ page_content=', [3], [4], [5], [6], [9], [10] and [11]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
21
+ page_content=' The concept of weak phase retrieval weakened the notion of phase retrieval and it has been first defined for vectors in ([8] and [7]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
22
+ page_content=' The rest of the paper is organized as follows: In Section 2, we give the basic definitions and certain preliminary results to be used in the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
23
+ page_content=' Weak phase retrieval by vectors is introduced in section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
24
+ page_content=' In section 4 we show that any family of vectors {xi}2n−2 i=1 doing weak phase retrieval cannot contain a unit vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
25
+ page_content=' In section 5, we show that the weak phase retrievable frames are not dense in all frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
26
+ page_content=' And in section 6 we give several surprising equivalences and consequences of weak phase retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
27
+ page_content=' These results give a complete understanding of the difference between weak phase retrieval and phase retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
28
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
29
+ page_content=' preliminaries First we give the background material needed for the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
30
+ page_content=' Let H be a finite or infinite dimensional real Hilbert space and B(H) the class of all bounded linear operators defined on H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
31
+ page_content=' The natural numbers and real numbers are denoted by “N” and “R”, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
32
+ page_content=' We use [m] instead of the set {1, 2, 3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
33
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
34
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
35
+ page_content=', m} and use [{xi}i∈I] instead of span{xi}i∈I, where I is a finite or countable subset of N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
36
+ page_content=' We 2010 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
37
+ page_content=' 42C15, 42C40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
38
+ page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
39
+ page_content=' Real Hilbert frames, Full spark, Phase retrieval, Weak phase retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
40
+ page_content=' The first author was supported by NSF DMS 1609760.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
41
+ page_content=' 1 2 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
42
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
43
+ page_content=' CASAZZA AND F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
44
+ page_content=' AKRAMI denote by Rn a n dimensional real Hilbert space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
45
+ page_content=' We start with the definition of a real Hilbert space frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
46
+ page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
47
+ page_content=' A family of vectors {xi}i∈I in a finite or infinite dimensional separable real Hilbert space H is a frame if there are constants 0 < A ≤ B < ∞ so that A∥x∥2 ≤ � i∈I |⟨x, xi⟩|2 ≤ B∥x∥2, for all f ∈ H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
48
+ page_content=' The constants A and B are called the lower and upper frame bounds for {xi}i∈I, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
49
+ page_content=' If an upper frame bound exists, then {xi}i∈I is called a B-Bessel seqiemce or simply Bessel when the constant is implicit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
50
+ page_content=' If A = B, it is called an A-tight frame and in case A = B = 1, it is called a Parseval frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
51
+ page_content=' The values {⟨x, xi⟩}∞ i=1 are called the frame coefficients of the vector x ∈ H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
52
+ page_content=' It is immediate that a frame must span the space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
53
+ page_content=' We will need to work with Riesz sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
54
+ page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
55
+ page_content=' A family X = {xi}i∈I in a finite or infinite dimensional real Hilbert space H is a Riesz sequence if there are constants 0 < A ≤ B < ∞ satisfying A � i∈I |ci|2 ≤ ∥ � i∈I cixi∥2 ≤ B � i∈I |ci|2 for all sequences of scalars {ci}i∈I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
56
+ page_content=' If it is complete in H, we call X a Riesz basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
57
+ page_content=' For an introduction to frame theory we recommend [12, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
58
+ page_content=' Throughout the paper the orthogonal projection or simply projection will be a self- adjoint positive projection and {ei}∞ i=1 will be used to denote the canonical basis for the real space Rn, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
59
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
60
+ page_content=', a basis for which ⟨ei, ej⟩ = δi,j = � 1 if i = j, 0 if i ̸= j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
61
+ page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
62
+ page_content=' A family of vectors {xi}i∈I in a real Hilbert space H does phase (norm) retrieval if whenever x, y ∈ H, satisfy |⟨x, xi⟩| = |⟨y, xi⟩| for all i ∈ I, then x = ±y (∥x∥ = ∥y∥).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
63
+ page_content=' Phase retrieval was introduced in reference [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
64
+ page_content=' See reference [1] for an introduc- tion to norm retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
65
+ page_content=' Note that if {xi}i∈I does phase (norm) retrieval, then so does {aixi}i∈I for any 0 < ai < ∞ for all i ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
66
+ page_content=' But in the case where |I| = ∞, we have to be careful to maintain frame bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
67
+ page_content=' This always works if 0 < infi∈I ai ≤ supi∈Iai < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
68
+ page_content=' But this is not necessary in general [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
69
+ page_content=' The complement property is an essential issue here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
70
+ page_content=' Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
71
+ page_content=' A family of vectors {xi}i∈I in a finite or infinite dimensional real Hilbert space H has the complement property if for any subset J ⊂ I, either span{xi}i∈J = H or span{xi}i∈Jc = H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
72
+ page_content=' Fundamental to this area is the following for which the finite dimensional case appeared in [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
73
+ page_content=' WEAK PHASE RETRIEVAL 3 Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
74
+ page_content=' A family of vectors {xi}i∈I does phase retrieval in Rn if and only if it has the complement property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
75
+ page_content=' We recall: Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
76
+ page_content=' A family of vectors {xi}m i=1 in Rn is full spark if for every I ⊂ [m] with |I| = n , {xi}i∈I is linearly independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
77
+ page_content=' Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
78
+ page_content=' If {xi}m i=1 does phase retrieval in Rn, then m ≥ 2n− 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
79
+ page_content=' If m = 2n− 1, {xi}m i=1 does phase retrieval if and only if it is full spark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
80
+ page_content=' We rely heavily on a significant result from [2]: Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
81
+ page_content=' If {xi}2n−2 i=1 does weak phase retrieval in Rn then for every I ⊂ [2n−2], if x ⊥ span{xi}i∈I and y ⊥ {xi}i∈Ic then x ∥x∥ + y ∥y∥ and x ∥x∥ − y ∥y∥ are disjointly supported.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
82
+ page_content=' In particular, if ∥x∥ = ∥y∥ = 1, then x + y and x − y are disjointly supported.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
83
+ page_content=' Hence, if x = (a1, a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
84
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
85
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
86
+ page_content=' , an) then y = (ǫ1a1, ǫ2a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
87
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
88
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
89
+ page_content=' , ǫnan), where ǫi = ±1 for i = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
90
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
91
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
92
+ page_content=', n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
93
+ page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
94
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
95
+ page_content=' The above theorem may fail if ∥x∥ ̸= ∥y∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
96
+ page_content=' For example, consider the weak phase retrievable frame in R3: \uf8ee \uf8ef\uf8ef\uf8f0 1 1 1 −1 1 1 1 −1 1 1 1 −1 \uf8f9 \uf8fa\uf8fa\uf8fb Also, x = (0, 1, −1) is perpendicular to rows 1 and 2 and y = (0, 1 2, 1 2) is orthogonal to rows 2 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
97
+ page_content=' But x + y = (0, 3 2, 1 2) and x − y = (0, −1 2 , −3 2 ) and these are not disjointly supported.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
98
+ page_content=' But if we let them have the same norm we get x = (0, 1, −1) and y = (0, 1, 1) so x + y = (0, 1, 0) and x − y = (0, 0, 1) and these are disjointly supported.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
99
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
100
+ page_content=' Weak phase retrieval The notion of “Weak phase retrieval by vectors” in Rn was introduced in [8] and was developed further in [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
101
+ page_content=' One limitation of current methods used for retrieving the phase of a signal is computing power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
102
+ page_content=' Recall that a generic family of (2n − 1)- vectors in Rn satisfies phaseless reconstruction, however no set of (2n − 2)-vectors can (See [7] for details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
103
+ page_content=' By generic we are referring to an open dense set in the set of (2n − 1)-element frames in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
104
+ page_content=' Definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
105
+ page_content=' Two vectors x = (a1, a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
106
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
107
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
108
+ page_content=' , an) and y = (b1, b2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
109
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
110
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
111
+ page_content=' , bn) in Rn weakly have the same phase if there is a |θ| = 1 so that phase(ai) = θphase(bi) for all i ∈ [n], for which ai ̸= 0 ̸= bi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
112
+ page_content=' If θ = 1, we say x and y weakly have the same signs and if θ = −1, they weakly have the opposite signs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
113
+ page_content=' Therefore with above definition the zero vector in Rn weakly has the same phase with all vectors in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
114
+ page_content=' For x ∈ R, sgn(x) = 1 if x > 0 and sgn(x) = −1 if x < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
115
+ page_content=' Definition 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
116
+ page_content=' A family of vectors {xi}m i=1 does weak phase retrieval in Rn if for any x = (a1, a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
117
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
118
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
119
+ page_content=' , an) and y = (b1, b2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
120
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
121
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
122
+ page_content=' , bn) in Rn with |⟨x, xi⟩| = |⟨y, xi⟩| for all i ∈ [m], then x and y weakly have the same phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
123
+ page_content=' A fundamental result here is 4 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
124
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
125
+ page_content=' CASAZZA AND F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
126
+ page_content=' AKRAMI Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
127
+ page_content=' [8] Let x = (a1, a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
128
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
129
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
130
+ page_content=' , an) and y = (b1, b2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
131
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
132
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
133
+ page_content=' , bn) in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
134
+ page_content=' The following are equivalent: (1) We have sgn(aiaj) = sgn(bibj), for all 1 ≤ i ̸= j ≤ n (2) Either x, y have weakly the same sign or they have the opposite signs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
135
+ page_content=' It is clear that if {xi}m i=1 does weak phase retrieval in Rn, then {cixi}m i=1 does weak phase retrieval as long as ci > 0 for all i = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
136
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
137
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
138
+ page_content=', m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
139
+ page_content=' The following appears in [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
140
+ page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
141
+ page_content=' If X = {xi}m i=1 does weak phase retrieval in Rn, then m ≥ 2n − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
142
+ page_content=' Finally, we have: Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
143
+ page_content=' [7] If a frame X = {xi}2n−2 i=1 does weak phase retrieval in Rn, then X is a full spark frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
144
+ page_content=' Clearly the converse of above theorem is not hold, for example {(1, 0), (0, 1)} is full spark frame that fails weak phase retrieval in R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
145
+ page_content=' If {xi}i∈I does phase retrieval and R is an invertible operator on the space then {Rxi}i∈I does phase retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
146
+ page_content=' This follows easily since |⟨x, Rxi⟩| = |⟨y, Rxi⟩| implies |⟨R∗x, xi⟩| = |⟨R∗y, xi⟩|, and so R∗x = θR∗y for |θ| = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
147
+ page_content=' Since R is invertible, x = θy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
148
+ page_content=' This result fails badly for weak phase retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
149
+ page_content=' For example, let e1 = (1, 0), e2 = (0, 1), x1 = ( 1 √ 2, 1 √ 2, x2 = ( 1 √ 2, −1 √ 2) in R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
150
+ page_content=' Then {e1, e2} fails weak phase retrieval, {x1, x2} does weak phase retrieval and Uei = xi is a unitary operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
151
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
152
+ page_content=' Frames Containing Unit Vectors Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
153
+ page_content=' Any frame {xi}2n−2 i=1 whith one or more canonical basis vectors in Rn cannot do weak phase retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
154
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
155
+ page_content=' We proceed by way of contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
156
+ page_content=' Recall that {xi}2n−2 i=1 must be full spark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
157
+ page_content=' Let {ei}n i=1 be the canonical orthonormal basis of Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
158
+ page_content=' Assume I ⊂ {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
159
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
160
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
161
+ page_content=', 2n−2} with |I| = n − 1 and assume x = (a1, a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
162
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
163
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
164
+ page_content=' , an), y = (b1, b2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
165
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
166
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
167
+ page_content=' , bn) with ∥x∥ = ∥y∥ = 1 and x ⊥ X = span{xi}i∈I and y ⊥ span{xi}2n−2 i=n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
168
+ page_content=' After reindexing {ei}n i=1 and {xi}2n−2 i=1 }, we assume x1 = e1, I = {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
169
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
170
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
171
+ page_content=', n−1 and Ic = {n, n+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
172
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
173
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
174
+ page_content=' , 2n− 2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
175
+ page_content=' Since ⟨x, x1⟩ = a1 = 0, by Theorem 2, b1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
176
+ page_content=' Let P be the projection on span{ei}n i=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
177
+ page_content=' So {Pxi}2n−2 i=n is (n − 1)-vectors in an (n − 1)-dimensional space and y is orthogonal to all these vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
178
+ page_content=' So there exist {ci}2n−2 i=n not all zero so that 2n−2 � i=n ciPxi = 0 and so 2n−1 � i=n cixi(1)x1 − 2n−2 � i=n cixi = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
179
+ page_content=' That is, our vectors are not full spark, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
180
+ page_content=' □ Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
181
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
182
+ page_content=' The fact that there are (2n− 2) vectors in the theorem is critical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
183
+ page_content=' For example, e1, e2, e1 + e2 is full spark in R2, so it does phase retrieval - and hence weak phase retrieval - despite the fact that it contains both basis vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
184
+ page_content=' The converse of Theorem 5 is not true in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
185
+ page_content=' Example 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
186
+ page_content=' Consider the full spark frame X = {(1, 2, 3), (0, 1, 0), (0, −2, 3), (1, −2, −3)} in R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
187
+ page_content=' Every set of its two same coordinates, {(1, 2), (0, 1), (0, −2), (1, −2)}, {(1, 3), (0, 0), (0, 3), (1, −3)}, and WEAK PHASE RETRIEVAL 5 {(2, 3), (1, 0), (−2, 3), (−2, −3)} do weak phase retrieval in R2, but by Theorem 5, X cannot do weak phase retrieval in R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
188
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
189
+ page_content=' Weak Phase Retrievable Frames are not Dense in all Frames If m ≥ 2n − 1 and {xi}m i=1 is full spark then it has complement property and hence does phase retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
190
+ page_content=' Since the full spark frames are dense in all frames, it follows that the frames doing phase retrieval are dense in all frames with ≥ 2n − 1 vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
191
+ page_content=' We will now show that this result fails for weak phase retrievable frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
192
+ page_content=' The easiest way to get very general frames failing weak phase retrieval is: Choose x, y ∈ Rn so that x + y, x − y do not have the same or opposite signs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
193
+ page_content=' Let X1 = x⊥ and Y1 = y⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
194
+ page_content=' Then span{X1, X2} = Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
195
+ page_content=' Choose {xi}n−1 i=1 vectors spanning X1 and {xi}2n−2 i=n be vectors spanning X2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
196
+ page_content=' Then {xi}2n−2 i=1 is a frame for Rn with x ⊥ xi, for i = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
197
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
198
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
199
+ page_content=', n − 1 and y ⊥ xi, for all i = n, n + 1, , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
200
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
201
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
202
+ page_content=' , 2n − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
203
+ page_content=' It follows that |⟨x + y, xi⟩| = |⟨x − y, xi⟩|, for all i = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
204
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
205
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
206
+ page_content=' , n, but x, y do not have the same or opposite signs and so {xi}2n−2 i=1 fails weak phase retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
207
+ page_content=' Definition 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
208
+ page_content=' If X is a subspace of Rn, we define the sphere of X as SX = {x ∈ X : ∥x∥ = 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
209
+ page_content=' Definition 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
210
+ page_content=' If X, Y are subspaces of Rn, we define the distance between X and Y as d(X, Y ) = supx∈SXinfy∈SY ∥x − y∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
211
+ page_content=' It follows that if d(X, Y ) < ǫ then for any x ∈ X there is a z ∈ SY so that ∥ x ∥x∥ − z∥ < ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
212
+ page_content=' Letting y = ∥x∥z we have that ∥y∥ = ∥x∥ and ∥x − y∥ < ǫ∥x∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
213
+ page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
214
+ page_content=' Let X, Y be hyperplanes in Rn and unit vectors x ⊥ X, y ⊥ Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
215
+ page_content=' If d(X, Y ) < ǫ then min{∥x − y∥, ∥x + y∥} < 6ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
216
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
217
+ page_content=' Since span{y, Y } = Rn, x = ay + z for some z ∈ Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
218
+ page_content=' By replacing y by −y if necessary, we may assume 0 < a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
219
+ page_content=' By assumption, there is some w ∈ X with ∥w∥ = ∥z∥ so that ∥w − z∥ < ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
220
+ page_content=' Now a = a∥y∥ = ∥ay∥ = ∥x − z∥ ≥ ∥x − w∥ − ∥w − z∥ ≥ ∥x∥ − ǫ = 1 − ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
221
+ page_content=' So, 1 − a < ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
222
+ page_content=' Also, 1 = ∥x∥2 = a2 + ∥w∥2 implies a < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
223
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
224
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
225
+ page_content=' 0 < 1 − a < ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
226
+ page_content=' 1 = ∥x∥2 = ∥ay + z∥2 = a2∥y∥2 + ∥z∥2 = a2 + ∥z∥2 ≥ (1 − ǫ)2 + ∥z∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
227
+ page_content=' So ∥z∥2 ≤ 1 − (1 − ǫ)2 = 2ǫ − ǫ2 ≤ 2ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
228
+ page_content=' Finally, ∥x − y∥2 = ∥(ay + z) − y∥2 ≤ (∥(1 − a)y∥ + ∥z∥)2 ≤ (1 − a)2∥y∥2 + ∥z∥2 + 2(1 − a)∥y∥∥z∥ < ǫ2 + 2ǫ + 2 √ 2ǫ2 < 6ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
229
+ page_content=' 6 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
230
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
231
+ page_content=' CASAZZA AND F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
232
+ page_content=' AKRAMI □ Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
233
+ page_content=' Let X, Y be hyperplanes in Rn, {xi}n−1 i=1 be a unit norm basis for X and {yi}n−1 i=1 be a unit norm basis for Y with basis bounds B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
234
+ page_content=' If �n−1 i=1 ∥xi − yi∥ < ǫ then d(X, Y ) < 2ǫB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
235
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
236
+ page_content=' Let 0 < A ≤ B < ∞ be upper and lower basis bounds for the two bases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
237
+ page_content=' Given a unit vector x = �n−1 i=1 aixi ∈ X, let y = �n−1 i=1 aiyi ∈ Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
238
+ page_content=' We have that sup1≤i≤n−1|ai| ≤ B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
239
+ page_content=' We compute: ∥x − y∥ = ∥ n−1 � i=1 ai(xi − yi)∥ ≤ n−1 � i=1 |ai|∥xi − yi∥ ≤ (sup1≤i≤n−1|ai|) n−1 � i=1 ∥xi − yi∥ ≤ Bǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
240
+ page_content=' So ∥y∥ ≥ ∥x∥ − ∥x − y∥ ≥ 1 − Bǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
241
+ page_content=' ����x − y ∥y∥ ���� ≤ ∥x − y∥ + ����y − y ∥y∥ ���� ≤ Bǫ + 1 ∥y∥∥(1 − ∥y∥)y∥ = Bǫ + (1 − ∥y∥) ≤ 2Bǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
242
+ page_content=' It follows that d(X, Y ) < 2Bǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
243
+ page_content=' □ Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
244
+ page_content=' Let {xi}n i=1 be a basis for Rn with unconditional basis constant B and assume yi ∈ Rn satisfies �n i=1 ∥xi − yi∥ < ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
245
+ page_content=' Then {yi}n i=1 is a basis for Rn which is 1 + ǫB-equivalent to {xi}n i=1 and has unconditional basis constant B(1 + ǫB)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
246
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
247
+ page_content=' Fix {ai}n i=1 and compute ∥ n � i=1 aiyi∥ ≤ ∥ n � i=1 aixi∥ + ∥ n � i=1 |ai|(xi − yi)∥ ≤ ∥ n � i=1 aixi∥ + (sup1≤i≤n|ai|) n � i=1 ∥xi − yi∥ ≤ ∥ n � i=1 aixi∥ + (sup1≤i≤n|ai|)ǫ ≤ ∥ n � i=1 aixi∥ + ǫB∥ n � i=1 aixi∥ = (1 + ǫB)∥ n � i=1 aixi∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
248
+ page_content=' WEAK PHASE RETRIEVAL 7 Similarly, ∥ n � i=1 |ai|yi∥ ≥ (1 − ǫB)∥ n � i=1 aixi∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
249
+ page_content=' So {xi}n i=1 is (1 + ǫB)-equivalent to {yi}n i=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
250
+ page_content=' For ǫi = ±1, ∥ n � i=1 ǫiaiyi∥ ≤ (1 + ǫB)∥ n � i=1 ǫiaixi∥ ≤ B(1 + ǫB)∥ n � i=1 aixi∥ ≤ B(1 + ǫB)2∥ n � i=1 aiyi∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
251
+ page_content=' and so {yi}n i=1 is a B(1 + ǫB) unconditional basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
252
+ page_content=' □ Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
253
+ page_content=' The family of m-element weak phase retrieval frames are not dense in the set of m-element frames in Rn for all m ≥ 2n − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
254
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
255
+ page_content=' We may assume m = 2n−2 since for larger m we just repeat the (2n-2) vec- tors over and over until we get m vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
256
+ page_content=' Let {ei}n i=1 be the canonical orthonormal basis for Rn and let xi = ei for i = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
257
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
258
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
259
+ page_content=' , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
260
+ page_content=' By [10], there is an orthonormal sequence {xi}2n−2 i=n+1 so that {xi}2n−2 i=1 is full spark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
261
+ page_content=' Let I = {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
262
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
263
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
264
+ page_content=', n − 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
265
+ page_content=' Let X = span{xi}n−1 i=1 and Y = span{xi}2n−2 i=n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
266
+ page_content=' Then x = en ⊥ X and there is a ∥y∥ = 1 with y ⊥ Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
267
+ page_content=' Note that ⟨x − y, en⟩ ̸= 0 ̸= ⟨x + y, en⟩, for otherwise, x = ±y ⊥ span{xi}i̸=n, contradicting the fact that the vectors are full spark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
268
+ page_content=' So there is a j = n and a δ > 0 so that |(x + y)(j)|, |(x − y)(j)| ≥ δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
269
+ page_content=' We will show that there exists an 0 < ǫ so that whenever {yi}2n−2 i=1 are vectors in Rn satisfying �n i=1 ∥xi − yi∥ < ǫ, then {yi}n i=1 fails weak phase retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
270
+ page_content=' Fix 0 < ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
271
+ page_content=' Assume {yi}2n−2 i=1 are vectors so that �2n−2 i=1 ∥xi−yi∥ < ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
272
+ page_content=' Choose unit vectors x′ ⊥ span{yi}i∈I, y′ ⊥ span{yi}i∈Ic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
273
+ page_content=' By Proposition 2 and Lemma 1, we may choose ǫ small enough (and change signs if necessary) so that ∥x−x′∥, ∥y−y′∥ < δ 4B .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
274
+ page_content=' Hence, since the unconditional basis constant is B, |[(x + y) − (x′ + y′)](j)| ≤ |(x − x′)j| + |(y − y′)(j)| < B∥x − x′∥ + B∥y − y′∥ ≤ 2B δ 4B = δ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
275
+ page_content=' It follows that |(x′ + y′)(j)| ≥ |(x + y)(j)| − |[(x + y) − (x′ + y′)](j)| ≥ δ − 1 2δ = δ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
276
+ page_content=' Similarly, |(x′ − y′)(j)| > δ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
277
+ page_content=' So x′ + y′, x′ − y′ are not disjointly supported and so {yi}2n−2 i=1 fails weak phase retrieval by Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
278
+ page_content=' □ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
279
+ page_content=' Classifying Weak Phase Retrieval In this section we will give several surprising equivalences and consequences of weak phase retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
280
+ page_content=' These results give a complete understanding of the difference between weak phase retrieval and phase retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
281
+ page_content=' Now we give a surprising and very strong classification of weak phase retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
282
+ page_content=' 8 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
283
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
284
+ page_content=' CASAZZA AND F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
285
+ page_content=' AKRAMI Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
286
+ page_content=' Let {xi}2n−2 i=1 be non-zero vectors in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
287
+ page_content=' The following are equivalent: (1) The family {xi}2n−2 i=1 does weak phase retrieval in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
288
+ page_content=' (2) If x, y ∈ Rn and (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
289
+ page_content='1) |⟨x, xi⟩| = |⟨y, xi⟩| for all i = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
290
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
291
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
292
+ page_content=' , 2n − 2, then one of the following holds: (a) x = ±y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
293
+ page_content=' (b) x and y are disjointly supported.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
294
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
295
+ page_content=' (1) ⇒ (2): Given the assumption in the theorem, assume (a) fails and we will show that (b) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
296
+ page_content=' Let x = (a1, a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
297
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
298
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
299
+ page_content=' , an), y = (b1, b2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
300
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
301
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
302
+ page_content=' , bn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
303
+ page_content=' Since {xi}2n−2 i=1 does weak phase retrieval, replacing y by −y if necessary, Equation 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
304
+ page_content='1 implies aj = bj whenever aj ̸= 0 ̸= bj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
305
+ page_content=' Let I = {1 ≤ i ≤ 2n − 2 : ⟨x, xi⟩ = ⟨y, yi⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
306
+ page_content=' Then x + y ⊥ xi for all i ∈ Ic and x − y ⊥ xi for all i ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
307
+ page_content=' By Theorem 2, x + y ∥x + y + x − y ∥x − y∥ and x + y ∥x + y∥ − x − y ∥x − y∥ are disjointly supported.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
308
+ page_content=' Assume there is a 1 ≤ j ≤ n with aj = bj ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
309
+ page_content=' Then (x + y)(j) ∥x + y∥ + (x − y)(j) ∥x − y∥ = 2aj ∥x + y∥ and (x + y)(j) ∥x + y∥ − (x − y)(j) ∥x − y∥ = 2aj ∥x + y∥, Contradicting Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
310
+ page_content=' (2) ⇒ (1): This is immediate since (a) and (b) give the conditions for weak phase retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
311
+ page_content=' □ Phase retrieval is when (a) in the theorem holds for every x, y ∈ Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
312
+ page_content=' So this the- orem shows clearly the difference between weak phase retrieval and phase retrieval: namely when (b) holds at least once.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
313
+ page_content=' Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
314
+ page_content=' If {xi}2n−2 i=1 does weak phase retrieval in Rn, then there are disjointly supported non-zero vectors x, y ∈ Rn satisfying: |⟨x, xi⟩| = |⟨y, xi⟩| for all i = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
315
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
316
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
317
+ page_content=' , 2n − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
318
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
319
+ page_content=' Since {xi}2n−2 i=1 must fail phase retrieval, (b) of Theorem 7 must hold at least once.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
320
+ page_content=' □ Definition 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
321
+ page_content=' Let {ei}n i=1 be the canonical orthonormal basis of Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
322
+ page_content=' If J ⊂ [n], we define PJ as the projection onto span{ei}i∈J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
323
+ page_content=' Theorem 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
324
+ page_content=' Let {xi}m i=1 be unit vectors in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
325
+ page_content=' The following are equivalent: (1) Whenever I ⊂ [2n − 2] and 0 ̸= x ⊥ xi for i ∈ I and 0 ̸= y ⊥ xi for i ∈ Ic, there is no j ∈ [n] so that ⟨x, ej⟩ = 0 = ⟨y, ej⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
326
+ page_content=' (2) For every J ⊂ [n] with |J| = n − 1, {Pjxi}2n−2 i=1 does phase retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
327
+ page_content=' (3) For every J ⊂ [n] with |J| < n, {PJxi}2n−2 i=1 does phase retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
328
+ page_content=' WEAK PHASE RETRIEVAL 9 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
329
+ page_content=' (1) ⇒ (2): We prove the contrapositive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
330
+ page_content=' So assume (2) fails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
331
+ page_content=' Then choose J ⊂ [n] with |J| = n − 1, J = [n] \\ {j}, and {PJxi}2n−2 i=1 fails phase retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
332
+ page_content=' In particular, it fails complement property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
333
+ page_content=' That is, there exists I ⊂ [2n− 2] and span {PJxi}i∈I ̸= PJRn and span {Pjxi}i∈Ic ̸= PJRn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
334
+ page_content=' So there exists norm one vectors x, y in PJRn with PJx = x ⊥ PJxi for all i ∈ I and PJy = y ⊥ PJxi for all i ∈ Ic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
335
+ page_content=' Extend x, y to all of Rn by setting x(j) = y(j) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
336
+ page_content=' Hence, x ⊥ xi for i ∈ I and y ⊥ xi for i ∈ Ic, proving (1) fails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
337
+ page_content=' (2) ⇒ (3): This follows from the fact that every projection of a set of vectors doing phase retrieval onto a subset of the basis also does phase retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
338
+ page_content=' (3) ⇒ (2): This is obvious.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
339
+ page_content=' (3) ⇒ (1): We prove the contrapositive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
340
+ page_content=' So assume (1) fails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
341
+ page_content=' Then there is a I ⊂ [2n− 2] and 0 ̸= x ⊥ xi for i ∈ I and 0 ̸= y ⊥ xi for i ∈ Ic and a j ∈ [n] so that ⟨x, ej⟩ = ⟨y, ej⟩ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
342
+ page_content=' It follows that x = PJx, y = PJy are non zero and x ⊥ Pjxi for all i ∈ I and y ⊥ Pjxi for i ∈ Ic, so {PJxi}2n−2 i=1 fails phase retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
343
+ page_content=' □ Remark 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
344
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
345
+ page_content=' The assumptions in the theorem are necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
346
+ page_content=' That is, in general, {xi}m i=1 can do weak phase retrieval and {PJxi}m i=1 may fail phase retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
347
+ page_content=' For example, in R3 consider the row vectors {xi}4 i=1 of: \uf8ee \uf8ef\uf8ef\uf8f0 1 1 1 −1 1 1 1 −1 1 1 1 −1 \uf8f9 \uf8fa\uf8fa\uf8fb This set does weak phase retrieval, but if J = {2, 3} then x = (0, 1, −1) ⊥ PJxi for i = 1, 2 and y = (0, 1, 1) ⊥ xi for i = 3, 4 and {PJxi}4 i=1 fails phase retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
348
+ page_content=' Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
349
+ page_content=' Assume {xi}2n−2 i=1 does weak phase retrieval in Rn and for every J ⊂ [n] {PJxi}2n−2 i=1 does phase retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
350
+ page_content=' Then if x, y ∈ Rn and |⟨x, xi⟩| = |⟨y, xi⟩| for all i = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
351
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
352
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
353
+ page_content=' , 2n − 2, then there is a J ⊂ [n] so that x(j) = � aj ̸= 0 for j ∈ J 0 for j ∈ Jc y(j) = � 0 for j ∈ J bj ̸= 0 for j ∈ Jc Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
354
+ page_content=' Let {ei}n i=1 be the unit vector basis of Rn and for I ⊂ [n], let PI be the projection onto XI = span{ei}i∈I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
355
+ page_content=' For every m ≥ 1, there are vectors {xi}m i=1 so that for every I ⊂ [1, n], {PIxi}m i=1 is full spark in XI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
356
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
357
+ page_content=' We do this by induction on m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
358
+ page_content=' For m=1, let x1 = (1, 1, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
359
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
360
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
361
+ page_content=', 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
362
+ page_content=' This satisfies the theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
363
+ page_content=' So assume the theorem holds for {xi}m i=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
364
+ page_content=' Choose I ⊂ [1, n] with |I| = k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
365
+ page_content=' Choose J ⊂ I with |J| = k − 1 and let XJ = span{xi}i∈J ∪ {xi}i∈Ic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
366
+ page_content=' Then XJ is a hyperplane in Rn for every J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
367
+ page_content=' Since there only exist finitely many such J′s there is a vector xm+1 /∈ XJ for every J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
368
+ page_content=' We will show that {xi}m+1 i=1 satisfies the theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
369
+ page_content=' Let I ⊂ [1, n] and J ⊂ I with |J| = |I|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
370
+ page_content=' If PIxm+1 /∈ XJ, then {PIxi}i∈J is linearly independent by the induction hypothesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
371
+ page_content=' On the other hand, if m + 1 ∈ J then xm+1 /∈ XJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
372
+ page_content=' But, if PIxm+1 ∈ span{PIxi}i∈J\\m+1, since (I − PI)xm+1 ∈ span{ei}i∈Ic, it follows that xm+1 ∈ XJ, which is a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
373
+ page_content=' □ 10 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
374
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
375
+ page_content=' CASAZZA AND F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
376
+ page_content=' AKRAMI Remark 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
377
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
378
+ page_content=' In the above proposition, none of the xi can have a zero coordinate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
379
+ page_content=' Since if it does, projecting the vectors onto that coordinate produces a zero vector and so is not full spark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
380
+ page_content=' References [1] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
381
+ page_content=' Akrami, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
382
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
383
+ page_content=' Casazza, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
384
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
385
+ page_content=' Hasankhani Fard, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
386
+ page_content=' Rahimi, A note on norm retrievable real Hilbert space frames, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
387
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
388
+ page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
389
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
390
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
391
+ page_content=' (517)2, (2023) 126620.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
392
+ page_content=' [2] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
393
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
394
+ page_content=' Casazza, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
395
+ page_content=' Akrami, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
396
+ page_content=' Rahimi, fundamental results on weak phase retrieval, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
397
+ page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
398
+ page_content=' Anal, arXiv: 2110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
399
+ page_content='06868, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
400
+ page_content=' [3] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
401
+ page_content=' Bahmanpour, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
402
+ page_content=' Cahill, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
403
+ page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
404
+ page_content=' Casazza, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
405
+ page_content=' Jasper, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
406
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
407
+ page_content=' Woodland, Phase retrieval and norm retrieval, arXiv:1409.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
408
+ page_content='8266, (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
409
+ page_content=' [4] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
410
+ page_content=' Balan, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
411
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
412
+ page_content=' Casazza, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
413
+ page_content=' Edidin, On signal reconstruction without phase, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
414
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
415
+ page_content=' Harmonic Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
416
+ page_content=' 20, 3, (2006), 345-356.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
417
+ page_content=' [5] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
418
+ page_content=' Botelho-Andrade, Peter G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
419
+ page_content=' Casazza, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
420
+ page_content=' Cheng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
421
+ page_content=' Haas, and Tin T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
422
+ page_content=' Tran, Phase retrieval in ℓ2(R), arXiv:1804.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
423
+ page_content='01139v1, (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
424
+ page_content=' [6] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
425
+ page_content=' Botelho-Andrade, Peter G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
426
+ page_content=' Casazza, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
427
+ page_content=' Cheng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
428
+ page_content=' Haas, and Tin T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
429
+ page_content=' Tran, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
430
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
431
+ page_content=' Tremain, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
432
+ page_content=' Xu, Phase retrieval by hyperplanes, Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
433
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
434
+ page_content=' Soc, comtemp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
435
+ page_content=' math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
436
+ page_content=' 706, (2018), 21-31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
437
+ page_content=' [7] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
438
+ page_content=' Botelho-Andrade, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
439
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
440
+ page_content=' Casazza, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
441
+ page_content=' Ghoreishi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
442
+ page_content=' Jose, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
443
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
444
+ page_content=' Tremain, Weak phase retrieval and phaseless reconstruction, arXiv:1612.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
445
+ page_content='08018, (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
446
+ page_content=' [8] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
447
+ page_content=' Botelho-Andrade, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
448
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
449
+ page_content=' Casazza, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
450
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
451
+ page_content=' Nguyen, And J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
452
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
453
+ page_content=' Tremain, Phase retrieval versus phaseless reconstruction, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
454
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
455
+ page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
456
+ page_content=' Appl, 436, 1, (2016), 131-137.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
457
+ page_content=' [9] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
458
+ page_content=' Cahill, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
459
+ page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
460
+ page_content=' Casazza, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
461
+ page_content=' Daubechies, Phase retrieval in infinite dimensional Hilbert spaces, Transactions of the AMS, Series B, 3, (2016), 63-76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
462
+ page_content=' [10] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
463
+ page_content=' Cahill, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
464
+ page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
465
+ page_content=' Casazza, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
466
+ page_content=' Peterson and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
467
+ page_content=' Woodland, Phase retrivial by projections, Houston Journal of Mathematics 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
468
+ page_content=' 2, (2016), 537-558.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
469
+ page_content=' [11] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
470
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
471
+ page_content=' Casazza, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
472
+ page_content=' Ghoreishi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
473
+ page_content=' Jose, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
474
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
475
+ page_content=' Tremain, Norm retrieval and phase Retrieval by projections, Axioms, 6, (2017), 1-15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
476
+ page_content=' [12] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
477
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
478
+ page_content=' Casazza and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
479
+ page_content=' Kutyniok, Finite Frames, Theory and applications, Birkhauser, (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
480
+ page_content=' [13] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
481
+ page_content=' Christensen, An introduction to frames and Riesz bases, Birkhauser, Boston (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
482
+ page_content=' [14] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
483
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
484
+ page_content=' Duffin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
485
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
486
+ page_content=' Schaeffer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
487
+ page_content=' A class of nonharmonic Fourier series, Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
488
+ page_content=' Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
489
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
490
+ page_content=' Soc, 72, (1952), 341-366.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
491
+ page_content=' Department of Mathematics, University of Missouri, Columbia, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
492
+ page_content=' Email address: casazzapeter40@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
493
+ page_content='com Department of Mathematics, University of Maragheh, Maragheh, Iran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
494
+ page_content=' Email address: fateh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
495
+ page_content='akrami@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
496
+ page_content='com' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQf6QUq/content/2301.03520v1.pdf'}
4dE4T4oBgHgl3EQf0w2N/content/2301.05285v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e3ab6d442bd90145c5eb19d9df1aabcad3b31f127cc327329a88bd27b1e33b0
3
+ size 10347457
4tAyT4oBgHgl3EQfpPhP/content/2301.00521v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c728933abe951dc0ec2fc3dfc451e030170dcd17de532e535240688cdc4d59c8
3
+ size 5359541
4tAyT4oBgHgl3EQfpPhP/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f658f0af871eb96533b8f59e9364e12d0f69d81b71416823bd0fd77d4787ece
3
+ size 7995437
8dE3T4oBgHgl3EQfqgpk/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddf0f55b395550979521f960ae4872c7ac3da606ce571f84a4bd9b2d54ef6c3e
3
+ size 2949165
8dE3T4oBgHgl3EQfqgpk/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3450f1cec8b9e358b21cd4297d4f30851b9152a07929939c6703b2a32a756fc
3
+ size 115839
9dE1T4oBgHgl3EQfoAQF/content/2301.03314v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8938e95429b8f8b367bd1a48b7f0d3e84481e507ae762e54edfb240393d926eb
3
+ size 362631
9dE1T4oBgHgl3EQfoAQF/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:960a438dff308b0f08811c206d46e79c4936612577a27d4572ff45d606e65fca
3
+ size 2621485
9dE1T4oBgHgl3EQfoAQF/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87bd59cacc5f32c9668eddb9b742dbf1827923b063db8619c22c4332fde871f5
3
+ size 103720
A9AyT4oBgHgl3EQf3_rL/content/tmp_files/2301.00780v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
A9AyT4oBgHgl3EQf3_rL/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
AtFLT4oBgHgl3EQfFC_E/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:532d9c1f51433f016f862ad4119d9ca4f32e013ba941aac24a85677f4290266c
3
+ size 9371693
BdAzT4oBgHgl3EQfh_0J/content/tmp_files/2301.01491v1.pdf.txt ADDED
@@ -0,0 +1,3401 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Higher order Bernstein-B´ezier and N´ed´elec finite elements for the
2
+ relaxed micromorphic model
3
+ Adam Sky1,
4
+ Ingo Muench2,
5
+ Gianluca Rizzi3
6
+ and
7
+ Patrizio Neff4
8
+ January 5, 2023
9
+ Abstract
10
+ The relaxed micromorphic model is a generalized continuum model that is well-posed in the space
11
+ X = [H 1]3 × [H (curl)]3. Consequently, finite element formulations of the model rely on H 1-conforming
12
+ subspaces and N´ed´elec elements for discrete solutions of the corresponding variational problem. This work
13
+ applies the recently introduced polytopal template methodology for the construction of N´ed´elec elements.
14
+ This is done in conjunction with Bernstein-B´ezier polynomials and dual numbers in order to compute hp-
15
+ FEM solutions of the model. Bernstein-B´ezier polynomials allow for optimal complexity in the assembly
16
+ procedure due to their natural factorization into univariate Bernstein base functions. In this work, this
17
+ characteristic is further augmented by the use of dual numbers in order to compute their values and their
18
+ derivatives simultaneously. The application of the polytopal template methodology for the construction of
19
+ the N´ed´elec base functions allows them to directly inherit the optimal complexity of the underlying Bernstein-
20
+ B´ezier basis. We introduce the Bernstein-B´ezier basis along with its factorization to univariate Bernstein
21
+ base functions, the principle of automatic differentiation via dual numbers and a detailed construction of
22
+ N´ed´elec elements based on Bernstein-B´ezier polynomials with the polytopal template methodology. This is
23
+ complemented with a corresponding technique to embed Dirichlet boundary conditions, with emphasis on
24
+ the consistent coupling condition. The performance of the elements is shown in examples of the relaxed
25
+ micromorphic model.
26
+ Key words: N´ed´elec elements, Bernstein-B´ezier elements, relaxed micromorphic model, dual numbers, au-
27
+ tomatic differentiation, hp-FEM, generalized continua.
28
+ 1
29
+ Introduction
30
+ One challenge that arises in the computation of materials with a pronounced micro-structure is the necessity of
31
+ modelling the complex geometry of the domain as a whole, in order to correctly capture its intricate kinematics.
32
+ In other words, unit-cell geometries in metamaterials or various hole-shapes in porous media have to be accounted
33
+ for in order to assert the viability of the model. Naturally, this correlates with the resolution of the discretization
34
+ in finite element simulations, resulting in longer computation times.
35
+ The relaxed micromorphic model [35] offers an alternative approach by introducing a continuum model with
36
+ enriched kinematics, accounting for the independent distortion arising from the micro-structure. As such, for
37
+ each material point, the model introduces the microdistortion field P in addition to the standard displacement
38
+ field u. Consequently, each material point is endowed with twelve degrees of freedom, effectively turning into
39
+ an affine-deformable micro-body with its own orientation. In contrast to the classical micromorphic model [17]
40
+ 1Corresponding author: Adam Sky, Institute of Structural Mechanics, Statics and Dynamics, Technische Universit¨at Dortmund,
41
+ August-Schmidt-Str. 8, 44227 Dortmund, Germany, email: adam.sky@tu-dortmund.de
42
+ 2Ingo Muench, Institute of Structural Mechanics, Statics and Dynamics, Technische Universit¨at Dortmund, August-Schmidt-Str.
43
+ 8, 44227 Dortmund, Germany, email: ingo.muench@tu-dortmund.de
44
+ 3Gianluca Rizzi, Institute of Structural Mechanics, Statics and Dynamics, Technische Universit¨at Dortmund, August-Schmidt-
45
+ Str. 8, 44227 Dortmund, Germany, email: gianluca.rizzi@tu-dortmund.de
46
+ 4Patrizio Neff,
47
+ Chair for Nonlinear Analysis and Modelling, Faculty of Mathematics, Universit¨at Duisburg-Essen, Thea-
48
+ Leymann Str. 9, 45127 Essen, Germany, email: patrizio.neff@uni-due.de
49
+ 1
50
+ arXiv:2301.01491v1 [math.NA] 4 Jan 2023
51
+
52
+ by Eringen [15] and Mindlin [29], the relaxed micromorphic model does not employ the full gradient of the
53
+ microdistortion DP in its energy functional but rather its skew-symmetric part Curl P , designated as the
54
+ micro-dislocation. Therefore, the micro-dislocation Curl P remains a second-order tensor, whereas DP is a
55
+ third-order tensor.
56
+ Further, the model allows the transition between materials with a pronounced micro-
57
+ structure and homogeneous materials using the characteristic length scale parameter Lc, which governs the
58
+ influence of the micro-structure. In highly homogeneous materials the characteristic length scale parameter
59
+ approaches zero Lc → 0, and for materials with a pronounced micro-structure its value is related to the size of
60
+ the underlying unit-cell geometry. Recent works demonstrate the effectiveness of the model in the simulation
61
+ of band-gap metamaterials [7, 10, 13, 27, 28] and shielding against elastic waves [4, 40, 41, 46].
62
+ Furthermore,
63
+ analytical solutions are already available for bending [43], torsion [42], shear [44], and extension [45] kinematics.
64
+ We note that the usage of the curl operator in the free energy functional directly influences the appropriate
65
+ Hilbert spaces for existence and uniqueness of the related variational problem. Namely, the relaxed micromorphic
66
+ model is well-posed in {u, P } ∈ X = [H 1]3 × [H (curl)]3 [18,34], although the regularity of the microdistortion
67
+ can be improved to P ∈ [H 1]3×3 for certain smoothness of the data [22, 38]. As shown in [52], the X -space
68
+ asserts well-posedness according to the Lax-Milgram theorem, such that H 1-conforming subspaces and N´ed´elec
69
+ elements [9,30,31] inherit the well-posedness property as well.
70
+ In this work we apply the polytopal template methodology introduced in [50] in order to construct higher
71
+ order N´ed´elec elements based on Bernstein polynomials [23] and apply the formulation to the relaxed micro-
72
+ morphic model. Bernstein polynomials are chosen due to their optimal complexity property in the assembly
73
+ procedure [1]. We further enhance this feature by employing dual numbers [16] in order to compute the values of
74
+ the base functions and their derivatives simultaneously. The polytopal template methodology allows to extend
75
+ this property to the assembly of the N´ed´elec base functions, resulting in fast computations. Alternatively, the
76
+ formulation of higher order elements on the basis of Legendre polynomials can be found in [48, 54, 58]. The
77
+ construction of low order N´ed´elec elements can be found in [5, 51] and specifically in the context of the the
78
+ relaxed micromorphic model in [47,49,52,53].
79
+ This paper is structured as follows. First, we introduce the relaxed micromorphic model and its limit cases
80
+ with respect to the characteristic length scale parameter Lc, after which we reduce it to a model of antiplane
81
+ shear [55]. Next, we shortly discuss Bernstein polynomials and dual numbers for automatic differentiation. The
82
+ B´ezier polynomial basis for triangles and tetrahedra is introduced, along with its factorization, highlighting
83
+ its compatibility with dual numbers. We consider a numerical example in antiplane shear for two-dimensional
84
+ elements, a three-dimensional example for convergence of cylindrical bending, and a benchmark for the behaviour
85
+ of the model with respect to the characteristic length scale parameter Lc. Lastly, we present our conclusions
86
+ and outlook.
87
+ The following definitions are employed throughout this work:
88
+ • vectors are indicated by bold letters. Non-bold letters represent scalars;
89
+ • in general, formulas are defined using the Cartesian basis, where the base vectors are denoted by e1, e2
90
+ and e3;
91
+ • three-dimensional domains in the physical space are denoted with V ⊂ R3. The corresponding reference
92
+ domain is given by Ω;
93
+ • analogously, in two dimensions we employ A ⊂ R2 for the physical domain and Γ for the reference domain;
94
+ • curves on the physical domain are denoted by s, whereas curves in the reference domain by µ;
95
+ • the tangent and normal vectors in the physical domain are given by t and n, respectively. Their counter-
96
+ parts in the reference domain are τ for tangent vectors and ν for normal vectors.
97
+ 2
98
+
99
+ 2
100
+ The relaxed micromorphic model
101
+ The relaxed micromorphic model [35] is governed by a free energy functional, incorporating the gradient of the
102
+ displacement field Du, the microdistortion P and the Curl of the microdistortion
103
+ I(u, P ) = 1
104
+ 2
105
+
106
+ V
107
+ ⟨sym(Du − P ), Ce sym(Du − P )⟩ + ⟨sym P , Cmicro sym P ⟩
108
+ + ⟨skew(Du − P ), Cc skew(Du − P )⟩ + µmacroL2
109
+ c⟨Curl P , L Curl P ⟩ dV
110
+
111
+
112
+ V
113
+ ⟨u, f⟩ + ⟨P , M⟩ dV → min
114
+ w.r.t.
115
+ {u, P } ,
116
+ (2.1)
117
+ where the Curl operator for second order tensors is defined row-wise as
118
+ Curl P =
119
+
120
+
121
+ curl(
122
+ �P11
123
+ P12
124
+ P13
125
+
126
+ )
127
+ curl(
128
+ �P21
129
+ P22
130
+ P23
131
+
132
+ )
133
+ curl(
134
+
135
+ P31
136
+ P32
137
+ P33
138
+
139
+ )
140
+
141
+ � =
142
+
143
+
144
+ P13,y − P12,z
145
+ P11,z − P13,x
146
+ P12,x − P11,y
147
+ P23,y − P22,z
148
+ P21,z − P23,x
149
+ P22,x − P21,y
150
+ P33,y − P32,z
151
+ P31,z − P33,x
152
+ P32,x − P31,y
153
+
154
+ � ,
155
+ curl p = ∇ × p ,
156
+ p : V ⊂ R3 → R3 ,
157
+ (2.2)
158
+ and curl(·) is the vectorial curl operator. The displacement field and the microdistortion field are functions of
159
+ the reference domain
160
+ u : V ⊂ R3 → R3 ,
161
+ P : V ⊂ R3 → R3×3 .
162
+ (2.3)
163
+ The tensors Ce, Cmicro, L ∈ R3×3×3×3 are standard positive definite fourth order elasticity tensors. For isotropic
164
+ materials they take the form
165
+ Ce = λe1 ⊗ 1 + 2µe J ,
166
+ Cmicro = λmicro1 ⊗ 1 + 2µmicro J .
167
+ (2.4)
168
+ where 1 is the second order identity tensor and J is the fourth order identity tensor. The fourth order tensor
169
+ Cc ∈ R3×3×3×3 is a positive semi-definite material tensor related to Cosserat micro-polar continua and accounts
170
+ for infinitesimal rotations Cc : so(3) → so(3), where so(3) is the space of skew-symmetric matrices.
171
+ For isotropic materials there holds Cc = 2µc J, where µc ≥ 0 is called the Cosserat couple modulus. Further,
172
+ for simplicity, we assume L = J in the following. The macroscopic shear modulus is denoted by µmacro and
173
+ Lc represents the characteristic length scale motivated by the geometry of the microstructure. The forces and
174
+ micro-moments are given by f and M, respectively.
175
+ Equilibrium is found at minima of the energy functional, which is strictly convex (also for Cc ≡ 0). As such,
176
+ we consider variations with respect to its parameters, namely the displacement and the microdistortion. Taking
177
+ variations of the energy functional with respect to the displacement field u yields
178
+ δuI =
179
+
180
+ V
181
+ ⟨sym Dδu, Ce sym(Du − P )⟩ + ⟨skew Dδu, Cc skew(Du − P )⟩ − ⟨δu, f⟩ dV = 0 .
182
+ (2.5)
183
+ The variation with respect to the microdistortion P results in
184
+ δP I =
185
+
186
+ V
187
+ ⟨sym δP , Ce sym(Du − P )⟩ + ⟨skew δP , Cc skew(Du − P )⟩
188
+ − ⟨sym δP , Cmicro sym P ⟩ − µmacroL2
189
+ c⟨Curl δP , Curl P ⟩ + ⟨δP , M⟩ dV = 0 .
190
+ (2.6)
191
+ From the total variation we extract the bilinear form
192
+ a({δu, δP }, {u, P }) =
193
+
194
+ V
195
+ ⟨sym(Dδu − δP ), Ce sym(Du − P )⟩ + ⟨sym δP , Cmicro sym P ⟩
196
+ + ⟨skew(Dδu − δP ), Cc skew(Du − P )⟩ + µmacroL2
197
+ c⟨Curl δP , Curl P ⟩ dV ,
198
+ (2.7)
199
+ and linear form of the loads
200
+ l({δu, δP }) =
201
+
202
+ V
203
+ ⟨δu, f⟩ + ⟨δP , M⟩ dV .
204
+ (2.8)
205
+ 3
206
+
207
+ Applying integration by parts to Eq. (2.5) yields
208
+
209
+ ∂V
210
+ ⟨δu , [Ce sym(Du − P ) + Cc skew(Du − P )] n⟩ dA
211
+
212
+
213
+ V
214
+ ⟨δu , Div[Ce sym(Du − P ) + Cc skew(Du − P )] − f⟩ dV = 0 .
215
+ (2.9)
216
+ Likewise, integration by parts of Eq. (2.6) results in
217
+
218
+ V
219
+ ⟨δP , Ce sym(Du − P ) + Cc skew(Du − P ) − Cmicro sym P − µmacroL2
220
+ c Curl Curl P + M⟩ dV
221
+ − µmacroL2
222
+ c
223
+
224
+ ∂V
225
+ ⟨δP , Curl P × n⟩ dA = 0 .
226
+ (2.10)
227
+ The strong form is extracted from Eq. (2.9) and Eq. (2.10) by splitting the boundary
228
+ A = AD ∪ AN ,
229
+ AD ∩ AN = ∅ ,
230
+ (2.11)
231
+ into a Dirichlet boundary with embedded boundary conditions and a Neumann boundary with natural boundary
232
+ conditions, such that no tractions are imposed on the Neumann boundary
233
+ − Div[Ce sym(Du − P ) + Cc skew(Du − P )] = f
234
+ in
235
+ V ,
236
+ (2.12a)
237
+ −Ce sym(Du − P ) − Cc skew(Du − P ) + Cmicro sym P + µmacro L2
238
+ c Curl Curl P = M
239
+ in
240
+ V ,
241
+ (2.12b)
242
+ u = �u
243
+ on
244
+ Au
245
+ D ,
246
+ (2.12c)
247
+ P × n = �P × n
248
+ on
249
+ AP
250
+ D , (2.12d)
251
+ [Ce sym(Du − P ) + Cc skew(Du − P )] n = 0
252
+ on
253
+ Au
254
+ N ,
255
+ (2.12e)
256
+ Curl P × n = 0
257
+ on
258
+ AP
259
+ N .
260
+ (2.12f)
261
+ The force stress tensor �σ := Ce sym(Du − P ) + Cc skew(Du − P ) is symmetric if and only if Cc ≡ 0, a case
262
+ which is permitted. Problem. 2.12 represents a tensorial Maxwell-problem coupled to linear elasticity. We
263
+ observe that the Dirichlet boundary condition for the microdistortion controls only its tangential components.
264
+ It is unclear, how to control the micro-movements of a material point without also affecting the displacement.
265
+ Therefore, the relaxed micromorphic model introduces the so called consistent coupling condition [11]
266
+ P × n = D�u × n
267
+ on
268
+ AP
269
+ D ,
270
+ (2.13)
271
+ where the prescribed displacement on the Dirichlet boundary �u automatically dictates the tangential component
272
+ of the microdistortion on that same boundary. Consequently, the consistent coupling condition enforces the
273
+ definitions AD = Au
274
+ D = AP
275
+ D and AN = Au
276
+ N = AP
277
+ N (see Fig. 2.1). Further, the consistent coupling condition
278
+ substitutes Eq. (2.12d).
279
+ The set of equations in Problem. 2.12 remains well-posed for Cc ≡ 0 due to the
280
+ generalized Korn inequality for incompatible tensor fields [24–26,36]. The inequality relies on a non-vanishing
281
+ Dirichlet boundary for the microdistortion field AP
282
+ D ̸= ∅, which the consistent coupling condition guarantees.
283
+ 2.1
284
+ Limits of the characteristic length scale parameter - a true two scale model
285
+ In the relaxed micromorphic model the characteristic length Lc takes the role of a scaling parameter between
286
+ the well-defined macro and the micro scales. This property, unique to the relaxed micromorphic model, allows
287
+ the theory to interpolate between materials with a pronounced micro-structure and homogeneous materials,
288
+ thus relating the characteristic length scale parameter Lc to the size of the micro-structure in metamaterials.
289
+ In the lower limit Lc → 0 the continuum is treated as homogeneous and the solution of the classical Cauchy
290
+ continuum theory is retrieved [3,32]. This can be observed by reconsidering Eq. (2.12b) for Lc = 0,
291
+ −Ce sym(Du − P ) − Cc skew(Du − P ) + Cmicro sym P = M ,
292
+ (2.14)
293
+ which can now be used to express the microdistortion P algebraically
294
+ sym P = (Ce + Cmicro)−1(sym M + Ce sym Du) ,
295
+ skew P = C−1
296
+ c
297
+ skew M + skew Du .
298
+ (2.15)
299
+ 4
300
+
301
+ x
302
+ y
303
+ n
304
+ f
305
+ M
306
+ V
307
+ AD = Au
308
+ D = AP
309
+ D
310
+ AN = Au
311
+ N = AP
312
+ N
313
+ Figure 2.1: The domain in the relaxed micromorphic model with Dirichlet and Neumann boundaries under
314
+ internal forces and micro-moments. The Dirichlet boundary of the microdistortion is given by the consistent
315
+ coupling condition. The model can capture the complex kinematics of an underlying micro-structure.
316
+ Setting M = 0 corresponds to Cauchy continua, where micro-moments are not accounted for. Thus, one finds
317
+ Cc skew(Du − P ) = 0 ,
318
+ Ce sym(Du − P ) = Cmicro sym P ,
319
+ sym P = (Ce + Cmicro)−1Ce sym Du .
320
+ (2.16)
321
+ Applying the former results to Eq. (2.12a) yields
322
+ − Div[Ce sym(Du − P )] = − Div[Cmicro(Ce + Cmicro)−1Ce sym Du] = − Div[Cmacro sym Du] = f ,
323
+ (2.17)
324
+ where the definition
325
+ Cmacro = Cmicro(Ce + Cmicro)−1Ce
326
+ (2.18)
327
+ relates the meso- and micro-elasticity tensors to the classical macro-elasticity tensor of the Cauchy continuum.
328
+ In fact, Cmacro contains the material constants that arise from standard homogenization for large periodic
329
+ structures [3,32]. For isotropic materials one can directly express the macro parameters [33]
330
+ µmacro =
331
+ µe µmicro
332
+ µe + µmicro
333
+ ,
334
+ 2µmacro + 3λmacro =
335
+ (2µe + 3λe)(2µmicro + 3λmicro)
336
+ (2µe + 3λe) + (2µmicro + 3λmicro)
337
+ (2.19)
338
+ in terms of the parameters of the relaxed micromorphic model.
339
+ In the upper limit Lc → +∞, the stiffness of the micro-body becomes dominant. As the characteristic
340
+ length Lc can be viewed as a zoom-factor into the microstructure, the state Lc → +∞ can be interpreted as the
341
+ entire domain being the micro-body itself. However, this is only theoretically possible as in practice, the limit is
342
+ given by the size of one unit cell. Since the energy functional being minimized contains µmacroL2
343
+ c∥ Curl P ∥2, on
344
+ contractible domains and bounded energy this implies the reduction of the microdistortion to a gradient field
345
+ P → Dv due to the classical identity
346
+ Curl Dv = 0
347
+ ∀ v ∈ [C ∞(V )]3 ,
348
+ (2.20)
349
+ thus asserting finite energies of the relaxed micromorphic model for arbitrarily large characteristic length values
350
+ Lc. The corresponding energy functional in terms of the reduced kinematics {u, v} : V → R3 now reads
351
+ I(u, v) = 1
352
+ 2
353
+
354
+ V
355
+ ⟨sym(Du − Dv), Ce sym(Du − Dv)⟩ + ⟨sym Dv, Cmicro sym Dv⟩
356
+ + ⟨skew(Du − Dv), Cc skew(Du − Dv)⟩ dV −
357
+
358
+ V
359
+ ⟨u, f⟩ + ⟨Dv, M⟩ dV ,
360
+ (2.21)
361
+ such that variation with respect to the two vector fields u and v leads to
362
+ δuI =
363
+
364
+ V
365
+ ⟨sym Dδu, Ce sym(Du − Dv)⟩ + ⟨skew Dδu, Cc skew(Du − Dv)⟩ − ⟨δu, f⟩ dV = 0 ,
366
+ (2.22a)
367
+ δvI =
368
+
369
+ V
370
+ ⟨sym Dδv, Ce sym(Du − Dv)⟩ + ⟨skew Dδv, Cc skew(Du − Dv)⟩
371
+ − ⟨sym Dδv, Cmicro sym Dv⟩ + ⟨Dδv, M⟩ dV = 0 .
372
+ (2.22b)
373
+ 5
374
+
375
+ The resulting bilinear form is given by
376
+ a({δu, δv}, {u, v}) =
377
+
378
+ V
379
+ ⟨sym(Dδu − Dδv), Ce sym(Du − Dv)⟩ + ⟨sym Dδv, Cmicro sym Dv⟩
380
+ + ⟨skew(Dδu − Dδv), Cc skew(Du − Dv)⟩ dV .
381
+ (2.23)
382
+ By partial integration of Eq. (2.22a) and Eq. (2.22b) one finds the equilibrium equations
383
+ − Div[Ce sym(Du − Dv) + Cc skew(Du − Dv)] = f
384
+ in
385
+ V ,
386
+ (2.24a)
387
+ − Div[Ce sym(Du − Dv) + Cc skew(Du − Dv)] + Div[Cmicro sym Dv] = Div M
388
+ in
389
+ V .
390
+ (2.24b)
391
+ We can now substitute the right-hand side of Eq. (2.24a) into Eq. (2.24b) to find
392
+ − Div(Cmicro sym Dv) = f − Div M .
393
+ (2.25)
394
+ Clearly, setting v = u satisfies both local equilibrium equations Eq. (2.24a) and Eq. (2.24b) for f = 0. Further,
395
+ the consistent coupling condition Eq. (2.13) is also automatically satisfied, asserting the equivalence of the
396
+ tangential projections of both fields on the boundary of the domain.
397
+ Since, as shown in [32, 52] using the
398
+ extended Brezzi theorem, the case Lc → +∞ is well-posed (including Cc ≡ 0), the solution v = u is the unique
399
+ solution to the bilinear form Eq. (2.23) with the right-hand side
400
+ l({δu, δv}) = ⟨Dδv, M⟩ dV .
401
+ (2.26)
402
+ Effectively, equation Eq. (2.25) implies that the limit Lc → +∞ defines a classical Cauchy continuum with a
403
+ finite stiffness governed by Cmicro, representing the upper limit of the stiffness for the relaxed micromorphic
404
+ continuum [32], where the corresponding forces read m = Div M. We emphasize that this interpretation of
405
+ Cmicro is impossible in the classical micromorphic model since there the limit Lc → +∞ results in a constant
406
+ microdistortion field P : V → R3×3 as its full gradient DP is incorporated via µmacroL2
407
+ c∥DP ∥2 into the energy
408
+ functional [6].
409
+ 2.2
410
+ Antiplane shear
411
+ We introduce the relaxed micromorphic model of antiplane shear1 [55] by reducing the displacement field to
412
+ u =
413
+ �0,
414
+ 0,
415
+ u�T ,
416
+ (2.27)
417
+ such that u = u(x, y) is a function of the x − y-plane. Consequently, its gradient reads
418
+ Du =
419
+
420
+
421
+ 0
422
+ 0
423
+ 0
424
+ 0
425
+ 0
426
+ 0
427
+ u,x
428
+ u,y
429
+ 0
430
+
431
+ � .
432
+ (2.28)
433
+ The structure of the microdistortion tensor is chosen accordingly
434
+ P =
435
+
436
+
437
+ 0
438
+ 0
439
+ 0
440
+ 0
441
+ 0
442
+ 0
443
+ p1
444
+ p2
445
+ 0
446
+
447
+ � ,
448
+ Curl P =
449
+
450
+
451
+ 0
452
+ 0
453
+ 0
454
+ 0
455
+ 0
456
+ 0
457
+ 0
458
+ 0
459
+ p2,x − p1,y
460
+
461
+ � =
462
+
463
+
464
+ 0
465
+ 0
466
+ 0
467
+ 0
468
+ 0
469
+ 0
470
+ 0
471
+ 0
472
+ curl2Dp
473
+
474
+ � .
475
+ (2.29)
476
+ 1Note that the antiplane shear model encompasses 1 + 2 = 3 degrees of freedom and is the simplest non-trivial active version
477
+ for the relaxed micromorphic model, as the one-dimensional elongation ansatz features only 1 + 1 = 2 degrees of freedom and
478
+ eliminates the curl operator
479
+ I(u, p) = 1
480
+ 2
481
+
482
+ s
483
+ (λe + 2µe)|u′ − p|2 + (λmicro + 2µmicro)|p|2 ds −
484
+
485
+ s
486
+ u f + p m ds → min
487
+ w.r.t.
488
+ {u, p} ,
489
+ since Du = u′ e1 ⊗ e1 and P = p e1 ⊗ e1, such that skew(Du − P ) = 0 and Curl P = 0. This is not to be confused with uniaxial
490
+ extension, which entails 1 + 3 = 4 degrees of freedom [45].
491
+ 6
492
+
493
+ Analogously to the displacement field u, the microdistortion P is also set to be a function of the {x, y}-variables
494
+ P = P (x, y). We observe the following sym-skew decompositions of the gradient and microdistortion tensors
495
+ sym P = 1
496
+ 2
497
+
498
+
499
+ 0
500
+ 0
501
+ p1
502
+ 0
503
+ 0
504
+ p2
505
+ p1
506
+ p2
507
+ 0
508
+
509
+ � ,
510
+ sym(Du − P ) = 1
511
+ 2
512
+
513
+
514
+ 0
515
+ 0
516
+ u,x − p1
517
+ 0
518
+ 0
519
+ u,y − p2
520
+ u,x − p1
521
+ u,y − p2
522
+ 0
523
+
524
+ � ,
525
+ skew(Du − P ) = 1
526
+ 2
527
+
528
+
529
+ 0
530
+ 0
531
+ p1 − u,x
532
+ 0
533
+ 0
534
+ p2 − u,y
535
+ u,x − p1
536
+ u,y − p2
537
+ 0
538
+
539
+ � .
540
+ (2.30)
541
+ Clearly, there holds
542
+ tr[sym P ] = tr[sym(Du − P )] = tr[skew(Du − P )] = 0 ,
543
+ (2.31)
544
+ such that the contraction with the material tensors reduces to
545
+ Ce sym(Du − P ) = 2µe sym(Du − P ) ,
546
+ Cmicro sym(Du − P ) = 2µmicro sym P ,
547
+ Cc skew(Du − P ) = 2µc skew(Du − P ) .
548
+ (2.32)
549
+ As such, the quadratic forms of the energy functional are given by
550
+ ⟨sym(Du − P ), Ce sym(Du − P )⟩ = µe∥∇u − p∥2 ,
551
+ (2.33a)
552
+ ⟨skew(Du − P ), Cc skew(Du − P )⟩ = µc∥∇u − p∥2 ,
553
+ (2.33b)
554
+ ⟨sym P , Cmicro sym P ⟩ = µmicro∥p∥2 ,
555
+ (2.33c)
556
+ with the definitions
557
+ ∇u =
558
+ �u,x
559
+ u,y
560
+
561
+ ,
562
+ p =
563
+ �p1
564
+ p2
565
+
566
+ .
567
+ (2.34)
568
+ The resulting energy functional for antiplane shear reads therefore
569
+ I(u, p) = 1
570
+ 2
571
+
572
+ A
573
+ (µe + µc)∥∇u − p∥2 + µmicro∥p∥2 + µmacroL2
574
+ c∥curl2Dp∥2 dA −
575
+
576
+ A
577
+ u f + ⟨p, m⟩ dA .
578
+ (2.35)
579
+ In order to maintain consistency with the three-dimensional model we must choose µc = 0. The reasoning for
580
+ this choice is explained upon in Remark 2.1 (see also Fig. 2.2). Consequently, the energy functional is given by
581
+ I(u, p) = 1
582
+ 2
583
+
584
+ A
585
+ µe∥∇u − p∥2 + µmicro∥p∥2 + µmacroL2
586
+ c∥curl2Dp∥2 dA
587
+
588
+
589
+ A
590
+ u f + ⟨p, m⟩ dA → min
591
+ w.r.t.
592
+ {u, p} .
593
+ (2.36)
594
+ Note that on two-dimensional domains the differential operators are reduced to
595
+ ∇u =
596
+ �u,x
597
+ u,y
598
+
599
+ ,
600
+ R∇u =
601
+ � u,y
602
+ −u,x
603
+
604
+ ,
605
+ R =
606
+
607
+ 0
608
+ 1
609
+ −1
610
+ 0
611
+
612
+ ,
613
+ curl2Dp = div(Rp) = p2,x − p1,y ,
614
+ (2.37)
615
+ where we note that curl2D is just a rotated divergence. Taking variations of the energy functional with respect
616
+ to the displacement field results in
617
+ δuI =
618
+
619
+ A
620
+ µe⟨∇δu, ∇u − p⟩ − δu f dA = 0 ,
621
+ (2.38)
622
+ and variation with respect to the microdistortion yields
623
+ δpI =
624
+
625
+ A
626
+ µe⟨δp, ∇u − p⟩ − µmicro⟨δp, p⟩ − µmacroL2
627
+ c(curl2Dδp)curl2Dp + ⟨δp, m⟩ dA = 0 .
628
+ (2.39)
629
+ 7
630
+
631
+ Consequently, one finds the bilinear and linear forms
632
+ a({δu, δp}, {u, p}) =
633
+
634
+ A
635
+ µe⟨∇δu − δp, ∇u − p⟩ + µmicro⟨δp, p⟩ + µmacroL2
636
+ c(curl2Dδp)curl2Dp dA ,
637
+ (2.40a)
638
+ l({δu, δp}) =
639
+
640
+ A
641
+ δu f + ⟨δp, m⟩ dA .
642
+ (2.40b)
643
+ Partial integration of Eq. (2.38) results in
644
+
645
+ ∂A
646
+ δu ⟨µe(∇u − p), n⟩ ds −
647
+
648
+ A
649
+ δu [µe div(∇u − p) + f] dA = 0 ,
650
+ (2.41)
651
+ and analogously for Eq. (2.39), yielding
652
+
653
+ A
654
+ ⟨δp, µe(∇u − p) − µmicro p − µmacroL2
655
+ cR∇curl2Dp + m⟩ dA −
656
+
657
+ ∂A
658
+ ⟨δp, µmacroL2
659
+ c(curl2Dp) t⟩ ds = 0 . (2.42)
660
+ Consequently, the strong form reads
661
+ −µe div(∇u − p) = f
662
+ in
663
+ A ,
664
+ (2.43a)
665
+ −µe(∇u − p) + µmicro p + µmacroL2
666
+ cR∇curl2Dp = m
667
+ in
668
+ A ,
669
+ (2.43b)
670
+ u = �u
671
+ on
672
+ su
673
+ D ,
674
+ (2.43c)
675
+ ⟨p, t⟩ = ⟨�p, t⟩
676
+ on
677
+ sP
678
+ D ,
679
+ (2.43d)
680
+ ⟨∇u, n⟩ = ⟨p, n⟩
681
+ on
682
+ su
683
+ N ,
684
+ (2.43e)
685
+ curl2Dp = 0
686
+ on
687
+ sP
688
+ N .
689
+ (2.43f)
690
+ The consistent coupling condition accordingly reduces to
691
+ ⟨p, t⟩ = ⟨∇�u, t⟩
692
+ on
693
+ sD = sP
694
+ D = su
695
+ D .
696
+ (2.44)
697
+ Remark 2.1
698
+ Note that without setting µc = 0 in the antiplane shear model, the analogous result to Eq. (2.17) in the limit
699
+ Lc → 0 would read
700
+
701
+ � µmicro [µe + µc]
702
+ µe + µc + µmicro
703
+
704
+
705
+ ��
706
+
707
+ ̸=µmacro
708
+ ∆u = f ,
709
+ (2.45)
710
+ where the relation to the macro parameter µmacro in Eq. (2.19) is lost. Further, the limit defined in Eq. (2.16)
711
+ with M = 0 yields the contradiction
712
+ sym P = (Ce + Cmicro)−1Ce sym Du ,
713
+ Cc skew P = Cc skew Du ,
714
+ (2.46)
715
+ since the equations degenerate to
716
+ p =
717
+ µe
718
+ µe + µmicro
719
+ ∇u ,
720
+ µcp = µc∇u ,
721
+ (2.47)
722
+ due to the equivalent three-dimensional forms for antiplane shear. Choosing µmicro = 0 leads to a loss of structure
723
+ in the strong form Problem. 2.43, while satisfying Eq. (2.47). As such, we must set the Cosserat couple modulus
724
+ µc = 0 to preserve the structure of the equations and satisfy both Eq. (2.19) and Eq. (2.47).
725
+ Although the relaxed micromorphic model includes the Cosserat model as a singular limit for Cmicro → +∞
726
+ (µmicro → +∞), it is impossible to deduce the Cosserat model of antiplane shear as a limit of the antiplane
727
+ relaxed micromorphic model, since one needs to satisfy Eq. (2.47) for µc > 0 and µmicro → +∞, which is
728
+ impossible.
729
+ 8
730
+
731
+ The kinematic reduction of the relaxed micromorphic model to antiplane shear and its behaviour in the limit
732
+ cases of its material parameters is depicted in Fig. 2.2.
733
+ relaxed micromorphic
734
+ Cosserat elasticity
735
+ linear elasticity
736
+ with Cmacro
737
+ antiplane relaxed
738
+ micromorphic
739
+ antiplane Cosserat
740
+ elasticity
741
+ antiplane linear
742
+ elasticity
743
+ with µmacro
744
+ Lc → 0
745
+ Cmicro → +∞ ,
746
+ µc > 0
747
+ Lc → 0 ,
748
+ µc ��� 0
749
+ µmicro → +∞ ,
750
+ µc > 0
751
+ (contradiction)
752
+ antiplane
753
+ shear
754
+ antiplane
755
+ shear
756
+ antiplane
757
+ shear
758
+ antiplane linear
759
+ elasticity
760
+ with µmicro
761
+ linear elasticity
762
+ with Cmicro
763
+ Lc → +∞
764
+ Lc → +∞
765
+ two-scale
766
+ model
767
+ two-scale
768
+ model
769
+ non-
770
+ commutative
771
+ Figure 2.2: Kinematic reduction of the relaxed micromorphic model to antiplane shear and consistency at limit
772
+ cases according to Remark 2.1 and Section 2.1. The two-scale nature of the relaxed micromorphic model can
773
+ be clearly observed.
774
+ 3
775
+ Polynomial basis
776
+ In this section we briefly introduce Bernstein polynomials and dual numbers. Bernstein polynomials are used
777
+ to construct both the H 1-conforming subspace and, in conjunction with the polytopal template methodology,
778
+ the N´ed´elec elements. The computation of derivatives of the Bernstein base functions is achieved by employing
779
+ dual numbers, thus enabling the calculation of the value and the derivative of a base function simultaneously.
780
+ 3.1
781
+ Bernstein polynomials
782
+ Bernstein polynomials of order p are given by the binomial expansion of the barycentric representation of the
783
+ unit line
784
+ 1 = (λ1 + λ2)p = ((1 − ξ) + ξ)p =
785
+ p
786
+
787
+ i=0
788
+ �p
789
+ i
790
+
791
+ ξi(1 − ξ)p−i =
792
+ p
793
+
794
+ i=0
795
+ p!
796
+ i!(p − i)!ξi(1 − ξ)p−i ,
797
+ (3.1)
798
+ 9
799
+
800
+ b4
801
+ 0(ξ)
802
+ b4
803
+ 1(ξ)
804
+ b4
805
+ 2(ξ)
806
+ b4
807
+ 3(ξ)
808
+ b4
809
+ 4(ξ)
810
+ ξ
811
+ 1
812
+ 1
813
+ 0
814
+ 1
815
+ 1/2
816
+ 1/2
817
+ Figure 3.1: Bernstein base functions of degree p = 4 on the unit domain. Their sum forms a partition of unity.
818
+ The base functions are symmetric for ξ = 0.5 with respect to their indices and always positive.
819
+ where ξ ∈ [0, 1]. The Bernstein polynomial reads
820
+ bp
821
+ i (ξ) =
822
+ �p
823
+ i
824
+
825
+ ξi(1 − ξ)p−i .
826
+ (3.2)
827
+ A direct result of the binomial expansion is that Bernstein polynomials form a partition of unity, see also Fig. 3.1
828
+ p
829
+
830
+ i=0
831
+ bp
832
+ i (ξ) = 1 .
833
+ (3.3)
834
+ Another consequence is that Bernstein polynomials are non-negative and less than or equal to 1
835
+ 0 ≤ bp
836
+ i (ξ) ≤ 1 ,
837
+ ξ ∈ [0, 1] .
838
+ (3.4)
839
+ A necessary condition for the use of Bernstein polynomials in finite element approximations is for them to span
840
+ the entire polynomial space.
841
+ Theorem 3.1 (Span of Bernstein polynomials)
842
+ The span of Bernstein polynomials forms a basis of the one-dimensional polynomial space
843
+ Pp(ξ) = span{bp
844
+ i } ,
845
+ ξ ⊆ R .
846
+ (3.5)
847
+ Proof. First we observe
848
+ dim(span{bp
849
+ i }) = dim Pp(ξ) = p + 1 .
850
+ (3.6)
851
+ The proof of linear independence is achieved by contradiction. Let the set span{bp
852
+ i } with 0 < i ≤ p be linearly
853
+ dependent, then there exists some combination with at least one non-zero constant ci ̸= 0 such that
854
+ p
855
+
856
+ i=1
857
+ cibp
858
+ i (ξ) = 0 ,
859
+ d
860
+
861
+ p
862
+
863
+ i=1
864
+ cibp
865
+ i (ξ) = 0 .
866
+ (3.7)
867
+ However, by the partition of unity property Eq. (3.3), only the full combination (0 ≤ i ≤ p) generates a constant
868
+ and by the exact sequence property the kernel of the differentiation operator is exactly the space of constants
869
+ ker(∂) = R. The linear independence of the full span also follows from the partition of unity property, since
870
+ constants cannot be constructed otherwise.
871
+ 10
872
+
873
+ Bernstein polynomials can be evaluated efficiently using the recursive formula
874
+ bp
875
+ 0(ξ) = (1 − ξ)p ,
876
+ bp
877
+ i+1(ξ) =
878
+ (p − i)ξ
879
+ (p + 1)(1 − ξ)bp
880
+ i (ξ) ,
881
+ i ∈ {0, 1, ..., p − 1} ,
882
+ (3.8)
883
+ which allows for fast evaluation of the base functions.
884
+ Remark 3.1
885
+ Note that the formula Eq. (3.8) implies limξ→1 bp
886
+ i+1(ξ) = ∞. As such, evaluations using the formula are required
887
+ to use ξ < 1 preferably with additional tolerance. The limit case ξ = 1 is zero for all Bernstein base functions
888
+ aside from the last function belonging to the vertex, which simply returns one
889
+ bp
890
+ i (1) = 0
891
+ ∀ i ̸= p ,
892
+ bp
893
+ p(1) = 1 .
894
+ (3.9)
895
+ 3.2
896
+ Dual numbers
897
+ Dual numbers [16] can be used to define define an augmented algebra, where the derivative of a function can
898
+ be computed simultaneously with the evaluation of the function. This enhancement is also commonly used
899
+ in forward automatic differentiation [8, 37], not to be confused with numerical differentiation, since unlike in
900
+ numerical differentiation, automatic differentiation is no approximation and yields the exact derivative. The
901
+ latter represents an alternative method to finding the derivatives of base functions, as opposed to explicit
902
+ formulas or approximations. Dual numbers augment the classical numbers by adding a non-zero number ε with
903
+ a zero square ε2 = 0.
904
+ Definition 3.1 (Dual number)
905
+ The dual number is defined by
906
+ x + x′ε ,
907
+ ε ≪ 1 ,
908
+ (3.10)
909
+ where x′ is the derivative (only in automatic differentiation), ε is an abstract number (infinitesimal) and formally
910
+ ε2 = 0.
911
+ The augmented algebra results automatically from the definition of the dual number.
912
+ Definition 3.2 (Augmented dual algebra)
913
+ The standard algebraic operations take the following form for dual numbers
914
+ 1. Addition and subtraction
915
+ (x + x′ε) ± (y + y′ε) = x ± y + (x′ ± y′)ε .
916
+ (3.11)
917
+ 2. Multiplication
918
+ (x + x′ε)(y + y′ε) = xy + (xy′ + x′y)ε ,
919
+ (3.12)
920
+ since formally ε2 = 0.
921
+ 3. Division is achieved by first defining the inverse element
922
+ (x + x′ε)(y + y′ε) = 1
923
+ ⇐⇒
924
+ y = 1
925
+ x,
926
+ y′ = − x′
927
+ x2 ,
928
+ (3.13)
929
+ such that
930
+ (x + x′ε)/(y + y′ε) = x/y + (x′/y − xy′/y2)ε .
931
+ (3.14)
932
+ Application of the above definitions to polynomials
933
+ p(x + ε) =
934
+
935
+
936
+ i=0
937
+ ci(x + ε)i =
938
+
939
+
940
+ i=0
941
+ 1
942
+
943
+ j=0
944
+ ci
945
+ �i
946
+ j
947
+
948
+ xi−jεj =
949
+
950
+
951
+ i=0
952
+ cixi + ε
953
+
954
+
955
+ i=1
956
+ i cixi−1 = p(x) + p′(x)ε ,
957
+ (3.15)
958
+ allows the extension to various types of analytical functions with a power-series representation (such as trigono-
959
+ metric or hyperbolic).
960
+ 11
961
+
962
+ v1
963
+ v3
964
+ v2
965
+ Γ
966
+ ν
967
+ τ
968
+ ξ
969
+ η
970
+ x1
971
+ x3
972
+ x2
973
+ Ae
974
+ t
975
+ n
976
+ x
977
+ y
978
+ x : Γ → Ae
979
+ Figure 4.1: Barycentric mapping of the reference triangle to an element in the physical domain.
980
+ Definition 3.3 (General dual numbers function)
981
+ A function of a dual number is defined in general by
982
+ f(x + ε) = f(x) + f ′(x)ε ,
983
+ (3.16)
984
+ being a fundamental formula for forward automatic differentiation.
985
+ The definition of dual numbers makes them directly applicable to the general rules of differentiation, such as
986
+ the chain rule or product rule, in which case the derivative is simply the composition of previous computations
987
+ with ε. The logic of dual numbers can be understood intuitively by the directional derivative
988
+ d
989
+ dxf(x) = ∂x′f(x) = d
990
+ dεf(x + x′ε)
991
+ ����
992
+ ε=0
993
+ = lim
994
+ ε→0
995
+ f(x + x′ε) − f(x)
996
+ ε
997
+ ,
998
+ (3.17)
999
+ where dividing by ε and setting ε = 0 are deferred to the last step of the computation, being the extraction of
1000
+ the derivative and equivalent to the operation f(x + ε) − f(x) with the augmented algebra of dual numbers.
1001
+ In this work we apply dual numbers for the computation of Bernstein polynomials using the recursive formula
1002
+ Eq. (3.8), thus allowing to iteratively compute each base function simultaneously with its derivative.
1003
+ 4
1004
+ Triangular elements
1005
+ The triangle elements are mapped from the reference element Γ to the physical domain Ae via barycentric
1006
+ coordinates
1007
+ x(ξ, η) = (1 − ξ − η)x1 + η x2 + ξ x3 ,
1008
+ x : Γ → Ae ,
1009
+ Γ = {(ξ, η) ∈ [0, 1]2 | ξ + η ≤ 1} ,
1010
+ (4.1)
1011
+ where xi represent the coordinates of the vertices of one triangle in the physical domain, see Fig. 4.1. The
1012
+ corresponding Jacobi matrix reads
1013
+ J = Dx =
1014
+ �x3 − x1,
1015
+ x2 − x1
1016
+
1017
+ ∈ R2×2 .
1018
+ (4.2)
1019
+ 4.1
1020
+ The Bernstein-B´ezier basis for triangles
1021
+ The base functions on the triangle reference element are defined using the binomial expansion of the barycentric
1022
+ coordinates on the domain Γ
1023
+ 1 = (λ1 + λ2 + λ3)p = ([1 − ξ − η] + η + ξ)p .
1024
+ (4.3)
1025
+ As such, the B´ezier base functions read
1026
+ bp
1027
+ ij(λ1, λ2, λ3) =
1028
+
1029
+ p
1030
+ i
1031
+ � �
1032
+ p − i
1033
+ j
1034
+
1035
+ λp−i−j
1036
+ 1
1037
+ λj
1038
+ 2λi
1039
+ 3 ,
1040
+ (4.4)
1041
+ 12
1042
+
1043
+ (a)
1044
+ (b)
1045
+ (c)
1046
+ Figure 4.2: Cubic vertex (a), edge (b) and cell (c) B´ezier base functions on the reference triangle.
1047
+ (0,0)
1048
+ (1,0)
1049
+ (1,1)
1050
+ (0,1)
1051
+ α
1052
+ β
1053
+ Γ
1054
+ (0,0)
1055
+ (1,0)
1056
+ (0,1)
1057
+ ξ
1058
+ η
1059
+ ξ : α → Γ
1060
+ Figure 4.3: Duffy transformation from a quadrilateral to a triangle by collapse of the coordinate system.
1061
+ with the equivalent bivariate form
1062
+ bp
1063
+ ij(ξ, η) =
1064
+ �p
1065
+ i
1066
+ � �p − i
1067
+ j
1068
+
1069
+ (1 − ξ − η)p−i−jηjξi ,
1070
+ (4.5)
1071
+ of which some examples are depicted in Fig. 4.2. The Duffy transformation
1072
+ ξ : [0, 1]2 → Γ ,
1073
+ {α, β} �→ {ξ, η} ,
1074
+ (4.6)
1075
+ given by the relations
1076
+ ξ = α ,
1077
+ α = ξ ,
1078
+ η = (1 − α)β ,
1079
+ β =
1080
+ η
1081
+ 1 − ξ ,
1082
+ (4.7)
1083
+ allows to view the triangle as a collapsed quadrilateral, see Fig. 4.3. Inserting the Duffy map into the definition
1084
+ of the B´ezier base function yields the split
1085
+ bp
1086
+ ij(ξ, η) =
1087
+ �p
1088
+ i
1089
+ � �p − i
1090
+ j
1091
+
1092
+ (1 − ξ − η)p−i−jηjξi
1093
+ =
1094
+ �p
1095
+ i
1096
+ � �p − i
1097
+ j
1098
+
1099
+ (1 − α − [1 − α]β)p−i−j(1 − α)jβjαi
1100
+ =
1101
+ �p
1102
+ i
1103
+ � �p − i
1104
+ j
1105
+
1106
+ (1 − α)p−i−j(1 − β)p−i−j(1 − α)jβjαi
1107
+ (4.8)
1108
+ =
1109
+ �p
1110
+ i
1111
+
1112
+ (1 − α)p−iαi
1113
+ �p − i
1114
+ j
1115
+
1116
+ (1 − β)p−i−jβj
1117
+ = bp
1118
+ i (α) bp−i
1119
+ j
1120
+ (β) .
1121
+ In other words, the Duffy transformation results in a natural factorization of the B´ezier triangle into Bernstein
1122
+ base functions [1]. The latter allows for fast evaluation using sum factorization. Further, it is now clear that
1123
+ B´ezier triangles are given by the interpolation of B´ezier curves, where the degree of the polynomial decreases
1124
+ 13
1125
+
1126
+ ξ
1127
+ η
1128
+ outer B´ezier curve with p = 3
1129
+ inner B´ezier curves with p < 3
1130
+ control polygon of η-curves
1131
+ outer B´ezier curves with p = 3
1132
+ inner B´ezier curves with p = 3
1133
+ Figure 4.4: B´ezier triangle built by interpolating B´ezier curves with an ever decreasing polynomial degree.
1134
+ v1
1135
+ v3
1136
+ v2
1137
+ ξ
1138
+ η
1139
+ Figure 4.5: Traversal order of base functions. The purple lines represent the order in which the base functions
1140
+ are constructed by the factorized evaluation. Note that the traversal order on each edge is intrinsically from
1141
+ the lower to the higher vertex index.
1142
+ between each curve, see Fig. 4.4. In order to compute gradients on the reference domain one applies the chain
1143
+ rule
1144
+ ∇ξbp
1145
+ ij = (Dαξ)−T ∇αbp
1146
+ ij ,
1147
+ Dαξ =
1148
+ � 1
1149
+ 0
1150
+ −β
1151
+ 1 − α
1152
+
1153
+ ,
1154
+ (Dαξ)−T =
1155
+ 1
1156
+ 1 − α
1157
+ �1 − α
1158
+ β
1159
+ 0
1160
+ 1
1161
+
1162
+ .
1163
+ (4.9)
1164
+ The factorization is naturally suited for the use of dual numbers since the α-gradient of a base function reads
1165
+ ∇αbp
1166
+ ij(α, β) =
1167
+
1168
+ ���
1169
+ bp−i
1170
+ j
1171
+ d
1172
+ dαbp
1173
+ i
1174
+ bp
1175
+ i
1176
+ d
1177
+ dβ bp−i
1178
+ j
1179
+
1180
+ ��� ,
1181
+ (4.10)
1182
+ such that only the derivatives of the Bernstein base functions with respect to their parameter are required.
1183
+ The Duffy transformation induces an intrinsic optimal order of traversal of the base functions, compare
1184
+ Fig. 4.5, namely
1185
+ (i, j) = (0, 0) → (0, 1) → ... → (2, 2) → ... → (i, p − i) → ... → (p, 0) ,
1186
+ (4.11)
1187
+ which respects a clockwise orientation of the element, compare [52]. Thus, the order of the sequence of discrete
1188
+ values on common edges is determined by the global orientation. In order to relate a base function to a polytopal
1189
+ piece of the element, one observes the following result.
1190
+ Observation 4.1 (Triangle base functions)
1191
+ The polytope of each base function bp
1192
+ ij(ξ, η) can be determined as follows:
1193
+ 14
1194
+
1195
+ • The indices (0, 0), (0, p) and (p, 0) represent the first, second and last vertex base functions, respectively.
1196
+ • The indices (0, j) with 0 < j < p and (i, 0) with 0 < i < p represent the first and second edge base
1197
+ functions, respectively. Base functions of the slanted edge are given by (i, p − i) with 0 < i < p.
1198
+ • The remaining index combinations are cell base functions.
1199
+ With the latter observation, the construction of vertex-, edge- and cell base functions follows the intrinsic
1200
+ traversal order induced by the Duffy transformation and relates to a specific polytope via index-pairs.
1201
+ 4.2
1202
+ N´ed´elec elements of the second type
1203
+ We construct the base functions for the N´ed´elec element of the second type using the polytopal template
1204
+ methodology introduced in [50]. The template sets read
1205
+ T1 = {e2, e1} ,
1206
+ T2 = {e1 + e2, e1} ,
1207
+ T3 = {e1 + e2, −e2} ,
1208
+ T12 = {e2, −e1} ,
1209
+ T13 = {e1, e2} ,
1210
+ T23 = {(1/2)(e1 − e2), e1 + e2} ,
1211
+ T123 = {e1, e2} .
1212
+ (4.12)
1213
+ The space of B´ezier polynomials is split across the polytopes of the reference triangle into
1214
+ Bp(Γ) =
1215
+ � 3
1216
+
1217
+ i=1
1218
+ Vp
1219
+ i (Γ)
1220
+
1221
+
1222
+
1223
+
1224
+
1225
+
1226
+ j∈J
1227
+ Ep
1228
+ j (Γ)
1229
+
1230
+
1231
+ � ⊕ Cp
1232
+ 123(Γ) ,
1233
+ J = {(1, 2), (1, 3), (2, 3)} ,
1234
+ (4.13)
1235
+ where Vp
1236
+ i are the sets of the vertex base functions, Ep
1237
+ j are the sets of edge base functions, Cp
1238
+ 123 is the set of cell
1239
+ base functions, and the ⊕ indicates summation over non-overlapping spaces. Consequently, the N´ed´elec basis
1240
+ is given by
1241
+ N p
1242
+ II =
1243
+ � 3
1244
+
1245
+ i=1
1246
+ Vp
1247
+ i ⊗ Ti
1248
+
1249
+
1250
+
1251
+
1252
+
1253
+
1254
+ j∈J
1255
+ Ep
1256
+ j ⊗ Tj
1257
+
1258
+
1259
+ � ⊕ {Cp
1260
+ 123 ⊗ T123} ,
1261
+ J = {(1, 2), (1, 3), (2, 3)} .
1262
+ (4.14)
1263
+ Using the B´ezier basis one finds the following base functions, which inherit the optimal complexity of the
1264
+ underlying basis.
1265
+ Definition 4.1 (B´ezier-N´ed´elec II triangle basis)
1266
+ The following base functions are defined on the reference triangle.
1267
+ • On the edges the base function reads
1268
+ e12 :
1269
+ ϑ(ξ, η) = bp
1270
+ 00e2 ,
1271
+ ϑ(ξ, η) = bp
1272
+ 0p(e1 + e2) ,
1273
+ ϑ(ξ, η) = bp
1274
+ 0je2 ,
1275
+ 0 < j < p ,
1276
+ e13 :
1277
+ ϑ(ξ, η) = bp
1278
+ 00e1 ,
1279
+ ϑ(ξ, η) = bp
1280
+ p0(e1 + e2) ,
1281
+ ϑ(ξ, η) = bp
1282
+ i0e1 ,
1283
+ 0 < i < p ,
1284
+ e23 :
1285
+ ϑ(ξ, η) = bp
1286
+ 0pe1 ,
1287
+ ϑ(ξ, η) = −bp
1288
+ p0e2 ,
1289
+ ϑ(ξ, η) = (1/2) bp
1290
+ i,p−i(e1 − e2) ,
1291
+ 0 < i < p ,
1292
+ (4.15)
1293
+ where the first two base functions for each edge are the vertex-edge base functions and the third equation
1294
+ generates pure edge base functions.
1295
+ • The cell base functions read
1296
+ c123 :
1297
+ ϑ(ξ, η) = −bp
1298
+ 0je1 ,
1299
+ 0 < j < p ,
1300
+ ϑ(ξ, η) = bp
1301
+ i0e2 ,
1302
+ 0 < i < p ,
1303
+ ϑ(ξ, η) = bp
1304
+ i,p−i(e1 + e2) ,
1305
+ 0 < i < p ,
1306
+ ϑ(ξ, η) = bp
1307
+ ije2 ,
1308
+ 0 < i < p ,
1309
+ 0 < j < p − i ,
1310
+ ϑ(ξ, η) = bp
1311
+ ije1 ,
1312
+ 0 < i < p ,
1313
+ 0 < j < p − i ,
1314
+ (4.16)
1315
+ 15
1316
+
1317
+ where the first three are the respective edge-cell base functions. The remaining two are pure cell base
1318
+ functions.
1319
+ 4.3
1320
+ N´ed´elec elements of the first type
1321
+ In order to construct the N´ed´elec element of the first type we rely on the construction of the kernel introduced
1322
+ in [58] via the exact de Rham sequence and the polytopal template for the non-kernel base functions following
1323
+ [50]. The complete N´ed´elec space reads
1324
+ N p
1325
+ I = N 0
1326
+ I ⊕
1327
+
1328
+
1329
+
1330
+
1331
+ j∈J
1332
+ ∇Ep+1
1333
+ j
1334
+
1335
+
1336
+ � ⊕ ∇Cp+1
1337
+ 123 ⊕
1338
+ � 2
1339
+
1340
+ i=1
1341
+ Vp
1342
+ i ⊗ Ti
1343
+
1344
+
1345
+
1346
+
1347
+
1348
+
1349
+ j∈J
1350
+ Ep
1351
+ j ⊗ Tj
1352
+
1353
+
1354
+ � ⊕ {Cp
1355
+ 123 ⊗ T123} ,
1356
+ J = {(1, 2), (1, 3), (2, 3)} ,
1357
+ (4.17)
1358
+ where we relied on the decomposition Eq. (4.14). Applying the construction to the B´ezier basis yields the
1359
+ following base functions.
1360
+ Definition 4.2 (B´ezier-N´ed´elec I triangle basis)
1361
+ We define the base functions on the reference triangle.
1362
+ • On the edges we employ the lowest order N´ed´elec base functions and the edge gradients
1363
+ e12 :
1364
+ ϑ(ξ, η) = ϑI
1365
+ 1 ,
1366
+ ϑ(ξ, η) = ∇ξbp+1
1367
+ 0j
1368
+ ,
1369
+ 0 < j < p + 1 ,
1370
+ e13 :
1371
+ ϑ(ξ, η) = ϑI
1372
+ 2 ,
1373
+ ϑ(ξ, η) = ∇ξbp+1
1374
+ i0
1375
+ ,
1376
+ 0 < i < p + 1 ,
1377
+ e23 :
1378
+ ϑ(ξ, η) = ϑI
1379
+ 3 ,
1380
+ ϑ(ξ, η) = ∇ξbp+1
1381
+ i,p+1−i ,
1382
+ 0 < i < p + 1 .
1383
+ (4.18)
1384
+ • The cell functions read
1385
+ c123 :
1386
+ ϑ(ξ, η) = bp
1387
+ 00ϑI
1388
+ 3 ,
1389
+ ϑ(ξ, η) = bp
1390
+ 0pϑI
1391
+ 2 ,
1392
+ ϑ(ξ, η) = bp
1393
+ 0j(ϑI
1394
+ 3 − ϑI
1395
+ 2) ,
1396
+ 0 < j < p ,
1397
+ ϑ(ξ, η) = bp
1398
+ i0(ϑI
1399
+ 1 + ϑI
1400
+ 3) ,
1401
+ 0 < i < p ,
1402
+ ϑ(ξ, η) = bp
1403
+ i,p−i(ϑI
1404
+ 1 − ϑI
1405
+ 2) ,
1406
+ 0 < i < p ,
1407
+ ϑ(ξ, η) = bp
1408
+ ij(ϑI
1409
+ 1 − ϑI
1410
+ 2 + ϑI
1411
+ 3) ,
1412
+ 0 < i < p ,
1413
+ 0 < j < p − i ,
1414
+ ϑ(ξ, η) = ∇ξbp+1
1415
+ ij
1416
+ ,
1417
+ 0 < i < p + 1 ,
1418
+ 0 < j < p + 1 − i ,
1419
+ (4.19)
1420
+ where the last formula gives the cell gradients and the remaining base functions are non-gradients.
1421
+ The definition relies on the base functions of the lowest order N´ed´elec element of the first type [5,50]
1422
+ ϑI
1423
+ 1(ξ, η) =
1424
+
1425
+ η
1426
+ 1 − ξ
1427
+
1428
+ ,
1429
+ ϑI
1430
+ 2(ξ, η) =
1431
+ �1 − η
1432
+ ξ
1433
+
1434
+ ,
1435
+ ϑI
1436
+ 3(ξ, η) =
1437
+ � η
1438
+ −ξ
1439
+
1440
+ .
1441
+ (4.20)
1442
+ 5
1443
+ Tetrahedral elements
1444
+ The tetrahedral elements are mapped from the reference tetrahedron Ω by the three-dimensional barycentric
1445
+ coordinates onto the physical domain Ve, see Fig. 5.1
1446
+ x(ξ, η, ζ) = (1 − ξ − η − ζ)x1 + ζ x2 + η x3 + ξ x4 ,
1447
+ x : Ω → Ve ,
1448
+ Ω = {(ξ, η, ζ) ∈ [0, 1]3 | ξ + η + ζ ≤ 1} .
1449
+ (5.1)
1450
+ 16
1451
+
1452
+ ξ
1453
+ η
1454
+ ζ
1455
+
1456
+ v1
1457
+ v4
1458
+ v3
1459
+ v2
1460
+ τ
1461
+ ν
1462
+ Ve
1463
+ x2
1464
+ x1
1465
+ x3
1466
+ x4
1467
+ x
1468
+ y
1469
+ z
1470
+ t
1471
+ n
1472
+ x : Ω → Ve
1473
+ Figure 5.1: Barycentric mapping of the reference tetrahedron to an element in the physical domain.
1474
+ The corresponding Jacobi matrix reads
1475
+ J = Dx =
1476
+ �x4 − x1,
1477
+ x3 − x1,
1478
+ x2 − x1
1479
+
1480
+ ∈ R3×3 .
1481
+ (5.2)
1482
+ 5.1
1483
+ The Bernstein-B´ezier basis for tetrahedra
1484
+ Analogously to triangle elements, the B´ezier tetrahedra on the unit tetrahedron Ω are defined using the barycen-
1485
+ tric coordinates by expanding the coefficients of
1486
+ (λ1 + λ2 + λ3 + λ4)p = ([1 − ξ − η − ζ] + ζ + η + ξ)p = 1 ,
1487
+ (5.3)
1488
+ thus finding
1489
+ bp
1490
+ ijk(λ1, λ2, λ3, λ4) =
1491
+ �p
1492
+ i
1493
+ � �p − i
1494
+ j
1495
+ � �p − i − j
1496
+ k
1497
+
1498
+ λp−i−j−k
1499
+ 1
1500
+ λk
1501
+ 2λj
1502
+ 3λk
1503
+ 4 ,
1504
+ (5.4)
1505
+ with the equivalent trivariate form
1506
+ bp
1507
+ ijk(ξ, η, ζ) =
1508
+
1509
+ p
1510
+ i
1511
+ � �
1512
+ p − i
1513
+ j
1514
+ � �p − i − j
1515
+ k
1516
+
1517
+ (1 − ξ − η − ζ)p−i−j−kζkηjξi .
1518
+ (5.5)
1519
+ We construct the Duffy transformation by mapping the unit tetrahedron as a collapsed hexahedron
1520
+ ξ : [0, 1]3 → Ω ,
1521
+ {α, β, γ} �→ {ξ, η, ζ} ,
1522
+ (5.6)
1523
+ using the relations
1524
+ ξ = α ,
1525
+ η = (1 − α)β ,
1526
+ ζ = (1 − α)(1 − β)γ ,
1527
+ α = ξ ,
1528
+ β =
1529
+ η
1530
+ 1 − ξ ,
1531
+ γ =
1532
+ ζ
1533
+ 1 − ξ − η ,
1534
+ (5.7)
1535
+ as depicted in Fig. 5.2. Applying the Duffy transformation to B´ezier tetrahedra
1536
+ bp
1537
+ ijk(ξ, η, ζ) =
1538
+ �p
1539
+ i
1540
+ � �p − i
1541
+ j
1542
+ � �p − i − j
1543
+ k
1544
+
1545
+ (1 − ξ − η − ζ)p−i−j−kζkηjξi
1546
+ =
1547
+
1548
+ p
1549
+ i
1550
+ � �
1551
+ p − i
1552
+ j
1553
+ � �
1554
+ p − i − j
1555
+ k
1556
+
1557
+ (1 − α − (1 − α)β − (1 − α)(1 − β)γ)p−i−j−k
1558
+ · (1 − α)k(1 − β)kγk(1 − α)jβjαi
1559
+ =
1560
+ �p
1561
+ i
1562
+ � �p − i
1563
+ j
1564
+ � �p − i − j
1565
+ k
1566
+
1567
+ (1 − α)p−i−j−k(1 − β)p−i−j−k(1 − γ)p−i−j−k
1568
+ (5.8)
1569
+ · (1 − α)k(1 − β)kγk(1 − α)jβjαi
1570
+ =
1571
+ �p
1572
+ i
1573
+
1574
+ (1 − α)p−iαi
1575
+ �p − i
1576
+ j
1577
+
1578
+ (1 − β)p−i−jβj
1579
+ �p − i − j
1580
+ k
1581
+
1582
+ (1 − γ)p−i−j−kγk
1583
+ = bp
1584
+ i (α)bp−i
1585
+ j
1586
+ (β)bp−i−j
1587
+ k
1588
+ (γ) ,
1589
+ 17
1590
+
1591
+ α
1592
+ β
1593
+ γ
1594
+ (0,0,0)
1595
+ (1,0,0)
1596
+ (0,0,1)
1597
+ (1,1,0)
1598
+ (1,1,1)
1599
+ (0,1,1)
1600
+ ξ
1601
+ η
1602
+ ζ
1603
+
1604
+ (0,0,0)
1605
+ (1,0,0)
1606
+ (0,1,0)
1607
+ (0,0,1)
1608
+ ξ : α → Ω
1609
+ Figure 5.2: Duffy mapping of the unit hexahedron to the unit tetrahedron.
1610
+ leads to an intrinsic factorization via univariate Bernstein base functions, which allow for fast evaluations
1611
+ using sum factorization [1]. Further, since the pair bp−i
1612
+ j
1613
+ (β)bp−i−j
1614
+ k
1615
+ (γ) spans a B´ezier triangle, it is clear that
1616
+ the multiplication with bp
1617
+ i (α) interpolates between that triangle and a point in space, effectively spanning a
1618
+ tetrahedron. In order to compute gradients the chain rule is employed with respect to the Duffy transformation
1619
+ ∇ξbp
1620
+ ijk = (Dαξ)−T ∇αbp
1621
+ ijk ,
1622
+ Dαξ =
1623
+
1624
+
1625
+ 1
1626
+ 0
1627
+ 0
1628
+ −β
1629
+ 1 − α
1630
+ 0
1631
+ (β − 1)γ
1632
+ (α − 1)γ
1633
+ (1 − α)(1 − β)
1634
+
1635
+ � ,
1636
+ (Dαξ)−T =
1637
+ 1
1638
+ (1 − α)(1 − β)
1639
+
1640
+
1641
+ (1 − α)(1 − β)
1642
+ (1 − β)β
1643
+ γ
1644
+ 0
1645
+ 1 − β
1646
+ γ
1647
+ 0
1648
+ 0
1649
+ 1
1650
+
1651
+ � .
1652
+ (5.9)
1653
+ We use dual numbers to compute the derivative of each Bernstein base function and construct the α-gradient
1654
+ ∇αbp
1655
+ ijk(α, β, γ) =
1656
+
1657
+ �������
1658
+ bp−i
1659
+ j
1660
+ bp−i−j
1661
+ k
1662
+ d
1663
+ dαbp
1664
+ i
1665
+ bp
1666
+ i bp−i−j
1667
+ k
1668
+ d
1669
+ dβ bp−i
1670
+ j
1671
+ bp
1672
+ i bp−i
1673
+ j
1674
+ d
1675
+ dγ bp−i−j
1676
+ k
1677
+
1678
+ �������
1679
+ .
1680
+ (5.10)
1681
+ The Duffy transformation results in the optimal order of traversal of the base functions depicted in Fig. 5.3.
1682
+ Note that the traversal order agrees with the oriental definitions introduced in [52] and each oriented face has
1683
+ the same order of traversal as the triangle Fig. 4.5. We relate the base functions to their respective polytopes
1684
+ using the index triplets.
1685
+ Observation 5.1 (Tetrahedron base functions)
1686
+ The polytope of each base function bp
1687
+ ijk(ξ, η, ζ) is determined as follows.
1688
+ • the indices (0, 0, 0), (0, 0, p), (0, p, 0) and (p, 0, 0) represent the respective vertex base functions;
1689
+ • the first edge is associated with the triplet (0, 0, k) where 0 < k < p, the second with (0, j, 0) where 0 < j < p
1690
+ and the third with (i, 0, 0) where 0 < i < p. The slated edges are given by (0, j, p − j) with 0 < j < p,
1691
+ (i, 0, p − i) with 0 < i < p and (i, p − i, 0) with 0 < i < p, respectively;
1692
+ • the base functions of the first face are given by (0, j, k) with 0 < j < p and 0 < k < p − j. The second face
1693
+ is associated with the base functions given by the triplets (i, 0, k) with 0 < i < p and 0 < k < p − i. The
1694
+ base functions of the third face are related to the indices (i, j, 0) with 0 < i < p and 0 < j < p − i. Lastly,
1695
+ the base functions of the slated face are given by (i, j, p − i − j) with 0 < i < p and 0 < j < p − i;
1696
+ • the remaining indices correspond to the cell base functions.
1697
+ Examples of B´ezier base functions on their respective polytopes are depicted in Fig. 5.4.
1698
+ 18
1699
+
1700
+ ξ
1701
+ η
1702
+ ζ
1703
+ v1
1704
+ v4
1705
+ v3
1706
+ v2
1707
+ Figure 5.3: Order of traversal of tetrahedral B´ezier base functions on the unit tetrahedron. The traversal order
1708
+ on each face agrees with an orientation of the vertices fijk = {vi, vj, vk} such that i < j < k. The traversal
1709
+ order on each edge is from the lower index vertex to the higher index vertex.
1710
+ (a)
1711
+ (b)
1712
+ (c)
1713
+ (d)
1714
+ Figure 5.4: Quartic B´ezier vertex (a), edge (b), face (c), and cell (c) base functions on the reference tetrahedron.
1715
+ 19
1716
+
1717
+ 5.2
1718
+ N´ed´elec elements of the second type
1719
+ The B´ezier polynomial space is split according to the polytopes of the reference tetrahedron
1720
+ Bp(Ω) =
1721
+ � 4
1722
+
1723
+ i=1
1724
+ Vp
1725
+ i (Ω)
1726
+
1727
+
1728
+
1729
+
1730
+
1731
+
1732
+ j∈J
1733
+ Ep
1734
+ j (Ω)
1735
+
1736
+
1737
+ � ⊕
1738
+ ��
1739
+ k∈K
1740
+ Fp
1741
+ k(Ω)
1742
+
1743
+ ⊕ Cp
1744
+ 1234(Ω) ,
1745
+ J = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} ,
1746
+ K = {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)} ,
1747
+ (5.11)
1748
+ where Vp
1749
+ i are the sets of vertex base functions, Ep
1750
+ j are the sets of edge base functions, Fp
1751
+ k are the sets of face
1752
+ base functions and Cp
1753
+ 1234 is the set of cell base functions. We apply the template sets from [50]
1754
+ T1 = {e3, e2, e1} ,
1755
+ T2 = {e1 + e2 + e3, e2, e1} ,
1756
+ T3 = {e1 + e2 + e3, −e3, e1} ,
1757
+ T4 = {e1 + e2 + e3, −e3, −e2} ,
1758
+ T12 = {e3, −e2, −e1} ,
1759
+ T13 = {e2, e3, −e1} ,
1760
+ T14 = {e1, e3, e2} ,
1761
+ T23 = {e2, e1 + e2 + e3, −e1} ,
1762
+ T24 = {e1, e1 + e2 + e3, e2} ,
1763
+ T34 = {e1, e1 + e2 + e3, −e3} ,
1764
+ T123 = {e3, e2, −e1} ,
1765
+ T124 = {e3, e1, e2} ,
1766
+ T134 = {e2, e1, −e3} ,
1767
+ T234 = {e2, e1, e1 + e2 + e3} ,
1768
+ T1234 = {e3, e2, e1} ,
1769
+ (5.12)
1770
+ to span the N´ed´elec element of the second type
1771
+ N p
1772
+ II =
1773
+ � 4
1774
+
1775
+ i=1
1776
+ Vp
1777
+ i ⊗ Ti
1778
+
1779
+
1780
+
1781
+
1782
+
1783
+
1784
+ j∈J
1785
+ Ep
1786
+ j ⊗ Tj
1787
+
1788
+
1789
+ � ⊕
1790
+ ��
1791
+ k∈K
1792
+ Fp
1793
+ k ⊗ Tk
1794
+
1795
+ ⊕ {Cp
1796
+ 1234 ⊗ T1234} ,
1797
+ J = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} ,
1798
+ K = {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)} .
1799
+ (5.13)
1800
+ We can now define the B´ezier-N´ed´elec element of the second type for arbitrary powers while inheriting optimal
1801
+ complexity.
1802
+ Definition 5.1 (B´ezier-N´ed´elec II tetrahedral basis)
1803
+ We define the base functions on the reference tetrahedron:
1804
+ • on the edges the base functions read
1805
+ e12 :
1806
+ ϑ(ξ, η, ζ) = bp
1807
+ 000e3 ,
1808
+ ϑ(ξ, η, ζ) = bp
1809
+ 00p(e1 + e2 + e3) ,
1810
+ ϑ(ξ, η, ζ) = bp
1811
+ 00ke3 ,
1812
+ 0 < k < p ,
1813
+ e13 :
1814
+ ϑ(ξ, η, ζ) = bp
1815
+ 000e2 ,
1816
+ ϑ(ξ, η, ζ) = bp
1817
+ 0p0(e1 + e2 + e3) ,
1818
+ ϑ(ξ, η, ζ) = bp
1819
+ 0j0e2 ,
1820
+ 0 < j < p ,
1821
+ e14 :
1822
+ ϑ(ξ, η, ζ) = bp
1823
+ 000e1 ,
1824
+ ϑ(ξ, η, ζ) = bp
1825
+ p00(e1 + e2 + e3) ,
1826
+ ϑ(ξ, η, ζ) = bp
1827
+ i00e1 ,
1828
+ 0 < i < p ,
1829
+ e23 :
1830
+ ϑ(ξ, η, ζ) = bp
1831
+ 00pe2 ,
1832
+ ϑ(ξ, η, ζ) = −bp
1833
+ 0p0e3 ,
1834
+ ϑ(ξ, η, ζ) = bp
1835
+ 0j,p−je2 ,
1836
+ 0 < j < p ,
1837
+ e24 :
1838
+ ϑ(ξ, η, ζ) = bp
1839
+ 00pe1 ,
1840
+ ϑ(ξ, η, ζ) = −bp
1841
+ p00e3 ,
1842
+ ϑ(ξ, η, ζ) = bp
1843
+ i0,p−ie1 ,
1844
+ 0 < i < p ,
1845
+ e34 :
1846
+ ϑ(ξ, η, ζ) = bp
1847
+ 0p0e1 ,
1848
+ ϑ(ξ, η, ζ) = −bp
1849
+ p00e2 ,
1850
+ ϑ(ξ, η, ζ) = bp
1851
+ i,p−i,0e1 ,
1852
+ 0 < i < p ,
1853
+ (5.14)
1854
+ where the first two base functions on each edge are the vertex-edge base functions;
1855
+ 20
1856
+
1857
+ • the face base functions are given by
1858
+ f123 :
1859
+ ϑ(ξ, η, ζ) = −bp
1860
+ 00ke2 ,
1861
+ 0 < k < p ,
1862
+ ϑ(ξ, η, ζ) = bp
1863
+ 0j0e3 ,
1864
+ 0 < j < p ,
1865
+ ϑ(ξ, η, ζ) = bp
1866
+ 0j,p−j(e1 + e2 + e3) ,
1867
+ 0 < j < p ,
1868
+ ϑ(ξ, η, ζ) = bp
1869
+ 0jke3 ,
1870
+ 0 < j < p ,
1871
+ 0 < k < p − j ,
1872
+ ϑ(ξ, η, ζ) = bp
1873
+ 0jke2 ,
1874
+ 0 < j < p ,
1875
+ 0 < k < p − j ,
1876
+ f124 :
1877
+ ϑ(ξ, η, ζ) = −bp
1878
+ 00ke1 ,
1879
+ 0 < k < p ,
1880
+ ϑ(ξ, η, ζ) = bp
1881
+ i00e3 ,
1882
+ 0 < i < p ,
1883
+ ϑ(ξ, η, ζ) = bp
1884
+ i0,p−i(e1 + e2 + e3) ,
1885
+ 0 < i < p ,
1886
+ ϑ(ξ, η, ζ) = bp
1887
+ i0ke3 ,
1888
+ 0 < i < p ,
1889
+ 0 < k < p − i ,
1890
+ ϑ(ξ, η, ζ) = bp
1891
+ i0ke1 ,
1892
+ 0 < i < p ,
1893
+ 0 < k < p − i ,
1894
+ f134 :
1895
+ ϑ(ξ, η, ζ) = −bp
1896
+ 0j0e1 ,
1897
+ 0 < j < p ,
1898
+ ϑ(ξ, η, ζ) = bp
1899
+ i00e2 ,
1900
+ 0 < i < p ,
1901
+ ϑ(ξ, η, ζ) = bp
1902
+ i,p−i,0(e1 + e2 + e3) ,
1903
+ 0 < i < p ,
1904
+ ϑ(ξ, η, ζ) = bp
1905
+ ij0e2 ,
1906
+ 0 < i < p ,
1907
+ 0 < j < p − i ,
1908
+ ϑ(ξ, η, ζ) = bp
1909
+ ij0e1 ,
1910
+ 0 < i < p ,
1911
+ 0 < j < p − i ,
1912
+ f234 :
1913
+ ϑ(ξ, η, ζ) = −bp
1914
+ 0j,p−je1 ,
1915
+ 0 < j < p ,
1916
+ ϑ(ξ, η, ζ) = bp
1917
+ i0,p−ie2 ,
1918
+ 0 < i < p ,
1919
+ ϑ(ξ, η, ζ) = −bp
1920
+ i,p−i,0e3 ,
1921
+ 0 < i < p ,
1922
+ ϑ(ξ, η, ζ) = bp
1923
+ ij,p−i−je2 ,
1924
+ 0 < i < p ,
1925
+ 0 < j < p − i ,
1926
+ ϑ(ξ, η, ζ) = bp
1927
+ ij,p−i−je1 ,
1928
+ 0 < i < p ,
1929
+ 0 < j < p − i ,
1930
+ (5.15)
1931
+ where the first three formulas for each face are the edge-face base functions;
1932
+ • finally, the cell base functions read
1933
+ c1234 :
1934
+ ϑ(ξ, η, ζ) = −bp
1935
+ 0jke1 ,
1936
+ 0 < j < p ,
1937
+ 0 < k < p − j ,
1938
+ ϑ(ξ, η, ζ) = bp
1939
+ i0ke2 ,
1940
+ 0 < i < p ,
1941
+ 0 < k < p − i ,
1942
+ ϑ(ξ, η, ζ) = −bp
1943
+ ij0e3 ,
1944
+ 0 < i < p ,
1945
+ 0 < j < p − i ,
1946
+ ϑ(ξ, η, ζ) = bp
1947
+ ij,p−i−j(e1 + e2 + e3) ,
1948
+ 0 < i < p ,
1949
+ 0 < j < p − i ,
1950
+ ϑ(ξ, η, ζ) = bp
1951
+ ijke3 ,
1952
+ 0 < i < p ,
1953
+ 0 < j < p − i ,
1954
+ 0 < k < p − i − j ,
1955
+ ϑ(ξ, η, ζ) = bp
1956
+ ijke2 ,
1957
+ 0 < i < p ,
1958
+ 0 < j < p − i ,
1959
+ 0 < k < p − i − j ,
1960
+ ϑ(ξ, η, ζ) = bp
1961
+ ijke1 ,
1962
+ 0 < i < p ,
1963
+ 0 < j < p − i ,
1964
+ 0 < k < p − i − j ,
1965
+ (5.16)
1966
+ where the first four formulas are the face-cell base functions.
1967
+ 5.3
1968
+ N´ed´elec elements of the first type
1969
+ In order to construct the N´ed´elec element of first type on tetrahedra we introduce the template sets
1970
+ T1 = {ϑI
1971
+ 4, ϑI
1972
+ 5, ϑI
1973
+ 6} ,
1974
+ T2 = {−ϑI
1975
+ 2, −ϑI
1976
+ 3, ϑI
1977
+ 6} ,
1978
+ T3 = {−ϑI
1979
+ 3, −ϑI
1980
+ 5} ,
1981
+ T12 = {ϑI
1982
+ 4 − ϑI
1983
+ 2, ϑI
1984
+ 5 − ϑI
1985
+ 3} ,
1986
+ T13 = {ϑI
1987
+ 1 + ϑI
1988
+ 4, ϑI
1989
+ 6 − ϑI
1990
+ 3} ,
1991
+ T14 = {ϑI
1992
+ 1 + ϑI
1993
+ 5, ϑI
1994
+ 2 + ϑI
1995
+ 6} ,
1996
+ T23 = {ϑI
1997
+ 1 − ϑI
1998
+ 2, ϑI
1999
+ 6 − ϑI
2000
+ 5} ,
2001
+ T24 = {ϑI
2002
+ 1 − ϑI
2003
+ 3, ϑI
2004
+ 4 + ϑI
2005
+ 6} ,
2006
+ T34 = {ϑI
2007
+ 2 − ϑI
2008
+ 3, ϑI
2009
+ 4 − ϑI
2010
+ 5} ,
2011
+ T123 = {ϑI
2012
+ 1 − ϑI
2013
+ 2 + ϑI
2014
+ 4} ,
2015
+ T124 = {ϑI
2016
+ 1 − ϑI
2017
+ 3 + ϑI
2018
+ 5} ,
2019
+ T134 = {ϑI
2020
+ 2 − ϑI
2021
+ 3 + ϑI
2022
+ 6} ,
2023
+ T234 = {ϑI
2024
+ 4 − ϑI
2025
+ 5 + ϑI
2026
+ 6} ,
2027
+ (5.17)
2028
+ 21
2029
+
2030
+ which are based on the lowest order N´ed´elec base functions on the unit tetrahedron
2031
+ ϑ1(ξ, η, ζ) =
2032
+
2033
+
2034
+ ζ
2035
+ ζ
2036
+ 1 − ξ − η
2037
+
2038
+ � ,
2039
+ ϑ2(ξ, η, ζ) =
2040
+
2041
+
2042
+ η
2043
+ 1 − ξ − ζ
2044
+ η
2045
+
2046
+ � ,
2047
+ ϑ3(ξ, η, ζ) =
2048
+
2049
+
2050
+ 1 − η − ζ
2051
+ ξ
2052
+ ξ
2053
+
2054
+ � ,
2055
+ ϑ4(ξ, η, ζ) =
2056
+
2057
+
2058
+ 0
2059
+ ζ
2060
+ −η
2061
+
2062
+ � ,
2063
+ ϑ5(ξ, η, ζ) =
2064
+
2065
+
2066
+ ζ
2067
+ 0
2068
+ −ξ
2069
+
2070
+ � ,
2071
+ ϑ6(ξ, η, ζ) =
2072
+
2073
+
2074
+ η
2075
+ −ξ
2076
+ 0
2077
+
2078
+ � .
2079
+ (5.18)
2080
+ For the non-gradient cell functions we use the construction introduced in [2]
2081
+ Rp =
2082
+
2083
+ (p + 1)bp
2084
+ i−ej∇λj −
2085
+ ij
2086
+ p + 1∇ξbp+1
2087
+ i
2088
+ | i ∈ Io
2089
+
2090
+ ,
2091
+ (5.19)
2092
+ where Io is the set of multi-indices of cell functions, ej is the unit multi-index with the value one at position
2093
+ j and ij is the value of the i-multi-index at position j. Note that only the first term in the cell functions is
2094
+ required to span the next space in the sequence due to
2095
+ curl
2096
+
2097
+ [p + 1]bp
2098
+ i−ej∇ξλj −
2099
+ ij
2100
+ p + 1∇ξbp+1
2101
+ i
2102
+
2103
+ = curl([p + 1]bp
2104
+ i−ej∇ξλj) .
2105
+ (5.20)
2106
+ However, without the added gradient the function would not belong to [Pp]3 ⊕ξ ×[�P]3 and consequently, would
2107
+ not be part of the N´ed´elec space. By limiting Rp to Rp
2108
+ ∗ such that Rp
2109
+ ∗ contains only the surface permutations
2110
+ with ∇λj = ej and the cell permutations with j ∈ {1, 2}, one retrieves the necessary base functions. The
2111
+ sum of the lowest order N´ed´elec base functions, the template base functions, gradient base functions, and the
2112
+ non-gradient cell base functions yields exactly (p+4)(p+3)(p+1)/2, thus satisfying the required dimensionality
2113
+ of the N´ed´elec space. The complete space reads
2114
+ N p
2115
+ I = N 0
2116
+ I ⊕
2117
+ ��
2118
+ i∈I
2119
+ ∇Ep+1
2120
+ i
2121
+
2122
+
2123
+
2124
+
2125
+
2126
+
2127
+ j∈J
2128
+ ∇Fp+1
2129
+ j
2130
+
2131
+
2132
+ � ⊕ ∇Cp+1
2133
+ 1234 ⊕
2134
+ � 3
2135
+
2136
+ k=1
2137
+ Vp
2138
+ k ⊗ Tk
2139
+
2140
+
2141
+ ��
2142
+ i∈I
2143
+ Ep
2144
+ i ⊗ Ti
2145
+
2146
+
2147
+
2148
+
2149
+
2150
+
2151
+ j∈J
2152
+ Fp
2153
+ j ⊗ Tj
2154
+
2155
+
2156
+ � ⊕ Rp+1
2157
+
2158
+ ,
2159
+ I = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} ,
2160
+ J = {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)}
2161
+ .
2162
+ (5.21)
2163
+ Here, the B´ezier basis is used to construct the higher order N´ed´elec base functions of the first type.
2164
+ Definition 5.2 (B´ezier-N´ed´elec I tetrahedral basis)
2165
+ The base functions are defined on the reference tetrahedron:
2166
+ • for the edges we use the lowest order base functions from Eq. (5.18). The remaining edge base functions
2167
+ are given by the gradients
2168
+ e12 :
2169
+ ϑ(ξ, η, ζ) = ϑI
2170
+ 1 ,
2171
+ ϑ(ξ, η, ζ) = ∇ξbp+1
2172
+ 00k ,
2173
+ 0 < k < p + 1 ,
2174
+ e13 :
2175
+ ϑ(ξ, η, ζ) = ϑI
2176
+ 2 ,
2177
+ ϑ(ξ, η, ζ) = ∇ξbp+1
2178
+ 0j0 ,
2179
+ 0 < j < p + 1 ,
2180
+ e14 :
2181
+ ϑ(ξ, η, ζ) = ϑI
2182
+ 3 ,
2183
+ ϑ(ξ, η, ζ) = ∇ξbp+1
2184
+ i00 ,
2185
+ 0 < i < p + 1 ,
2186
+ e23 :
2187
+ ϑ(ξ, η, ζ) = ϑI
2188
+ 4 ,
2189
+ ϑ(ξ, η, ζ) = ∇ξbp+1
2190
+ 0j,p+1−j ,
2191
+ 0 < j < p + 1 ,
2192
+ e24 :
2193
+ ϑ(ξ, η, ζ) = ϑI
2194
+ 5 ,
2195
+ ϑ(ξ, η, ζ) = ∇ξbp+1
2196
+ i0,p+1−i ,
2197
+ 0 < i < p + 1 ,
2198
+ e34 :
2199
+ ϑ(ξ, η, ζ) = ϑI
2200
+ 6 ,
2201
+ ϑ(ξ, η, ζ) = ∇ξbp+1
2202
+ 00k ,
2203
+ 0 < i < p + 1 ;
2204
+ (5.22)
2205
+ 22
2206
+
2207
+ • on faces we employ both template base functions and gradients
2208
+ f123 :
2209
+ ϑ(ξ, η, ζ) = bp
2210
+ 000ϑI
2211
+ 4 ,
2212
+ ϑ(ξ, η, ζ) = −bp
2213
+ 00pϑI
2214
+ 2 ,
2215
+ ϑ(ξ, η, ζ) = bp
2216
+ 00k(ϑI
2217
+ 4 − ϑI
2218
+ 2) ,
2219
+ 0 < k < p ,
2220
+ ϑ(ξ, η, ζ) = bp
2221
+ 0j0(ϑI
2222
+ 1 + ϑI
2223
+ 4) ,
2224
+ 0 < j < p ,
2225
+ ϑ(ξ, η, ζ) = bp
2226
+ 0j,p−j(ϑI
2227
+ 1 − ϑI
2228
+ 2) ,
2229
+ 0 < j < p ,
2230
+ ϑ(ξ, η, ζ) = bp
2231
+ 0jk(ϑI
2232
+ 1 − ϑI
2233
+ 2 + ϑI
2234
+ 4) ,
2235
+ 0 < j < p ,
2236
+ 0 < k < p − j ,
2237
+ ϑ(ξ, η, ζ) = ∇ξbp+1
2238
+ 0jk ,
2239
+ 0 < j < p + 1 ,
2240
+ 0 < k < p + 1 − j ,
2241
+ f124 :
2242
+ ϑ(ξ, η, ζ) = bp
2243
+ 000ϑI
2244
+ 5 ,
2245
+ ϑ(ξ, η, ζ) = −bp
2246
+ 00pϑI
2247
+ 3 ,
2248
+ ϑ(ξ, η, ζ) = bp
2249
+ 00k(ϑI
2250
+ 5 − ϑI
2251
+ 3) ,
2252
+ 0 < k < p ,
2253
+ ϑ(ξ, η, ζ) = bp
2254
+ i00(ϑI
2255
+ 1 + ϑI
2256
+ 5) ,
2257
+ 0 < i < p ,
2258
+ ϑ(ξ, η, ζ) = bp
2259
+ i0,p−i(ϑI
2260
+ 1 − ϑI
2261
+ 3) ,
2262
+ 0 < i < p ,
2263
+ ϑ(ξ, η, ζ) = bp
2264
+ i0k(ϑI
2265
+ 1 − ϑI
2266
+ 3 + ϑI
2267
+ 5) ,
2268
+ 0 < i < p ,
2269
+ 0 < k < p − i ,
2270
+ ϑ(ξ, η, ζ) = ∇ξbp+1
2271
+ i0k ,
2272
+ 0 < i < p + 1 ,
2273
+ 0 < k < p + 1 − i ,
2274
+ f134 :
2275
+ ϑ(ξ, η, ζ) = bp
2276
+ 000ϑI
2277
+ 6 ,
2278
+ ϑ(ξ, η, ζ) = −bp
2279
+ 0p0ϑI
2280
+ 3 ,
2281
+ ϑ(ξ, η, ζ) = bp
2282
+ 0j0(ϑI
2283
+ 6 − ϑI
2284
+ 3) ,
2285
+ 0 < j < p ,
2286
+ ϑ(ξ, η, ζ) = bp
2287
+ i00(ϑI
2288
+ 2 + ϑI
2289
+ 6) ,
2290
+ 0 < i < p ,
2291
+ ϑ(ξ, η, ζ) = bp
2292
+ i,p−i,0(ϑI
2293
+ 2 − ϑI
2294
+ 3) ,
2295
+ 0 < i < p ,
2296
+ ϑ(ξ, η, ζ) = bp
2297
+ ij0(ϑI
2298
+ 2 − ϑI
2299
+ 3 + ϑI
2300
+ 6) ,
2301
+ 0 < i < p ,
2302
+ 0 < j < p − i ,
2303
+ ϑ(ξ, η, ζ) = ∇ξbp+1
2304
+ ij0 ,
2305
+ 0 < i < p + 1 ,
2306
+ 0 < j < p + 1 − i ,
2307
+ f234 :
2308
+ ϑ(ξ, η, ζ) = bp
2309
+ 00pϑI
2310
+ 6 ,
2311
+ ϑ(ξ, η, ζ) = −bp
2312
+ 0p0ϑI
2313
+ 5 ,
2314
+ ϑ(ξ, η, ζ) = bp
2315
+ 0j,p−j(ϑI
2316
+ 6 − ϑI
2317
+ 5) ,
2318
+ 0 < j < p ,
2319
+ ϑ(ξ, η, ζ) = bp
2320
+ i0,p−i(ϑI
2321
+ 4 + ϑI
2322
+ 6) ,
2323
+ 0 < i < p ,
2324
+ ϑ(ξ, η, ζ) = bp
2325
+ i,p−i,0(ϑI
2326
+ 4 − ϑI
2327
+ 5) ,
2328
+ 0 < i < p ,
2329
+ ϑ(ξ, η, ζ) = bp
2330
+ ij,p−i−j(ϑI
2331
+ 4 − ϑI
2332
+ 5 + ϑI
2333
+ 6) ,
2334
+ 0 < i < p ,
2335
+ 0 < j < p − i ,
2336
+ ϑ(ξ, η, ζ) = ∇ξbp+1
2337
+ ij,p−i.j ,
2338
+ 0 < i < p + 1 ,
2339
+ 0 < j < p + 1 − i ;
2340
+ (5.23)
2341
+ • the cell base functions read
2342
+ c1234 :
2343
+ ϑ(ξ, η, ζ) = (p + 2)bp+1
2344
+ i−1,jke1 −
2345
+ i
2346
+ p + 2∇ξbp+2
2347
+ ijk ,
2348
+ 0 < i < p + 2 ,
2349
+ 0 < j < p + 2 − i ,
2350
+ 0 < k < p + 2 − i − j
2351
+ ,
2352
+ ϑ(ξ, η, ζ) = (p + 2)bp+1
2353
+ i,j−1,ke2 −
2354
+ j
2355
+ p + 2∇ξbp+2
2356
+ ijk ,
2357
+ 0 < i < p + 2 ,
2358
+ 0 < j < p + 2 − i ,
2359
+ 0 < k < p + 2 − i − j
2360
+ ,
2361
+ ϑ(ξ, η, ζ) = (p + 2)bp+1
2362
+ ij0 e3 −
2363
+ 1
2364
+ p + 2∇ξbp+2
2365
+ ij1 ,
2366
+ 0 < i < p + 2 ,
2367
+ 0 < j < p + 2 − i ,
2368
+ ϑ(ξ, η, ζ) = ∇ξbp+1
2369
+ ijk ,
2370
+ 0 < i < p + 1 ,
2371
+ 0 < j < p + 1 − i ,
2372
+ 0 < k < p + 1 − i − j
2373
+ .
2374
+ (5.24)
2375
+ 23
2376
+
2377
+ 6
2378
+ Numerical quadrature
2379
+ Although the base functions are expressed using (α, β, γ) the domain is either the reference triangle or the
2380
+ reference tetrahedron, which require fewer quadrature points than their counterparts given by the Duffy trans-
2381
+ formation (quad or hexahedron). As such, we employ a mixture of the efficient quadrature points introduced
2382
+ in [14,19,39,56,57] for triangles and tetrahedra, where we avoid quadrature schemes with points on the edges
2383
+ or faces of the reference domain due to the recursion formula of the Bernstein polynomials Eq. (3.8). The
2384
+ quadrature points are mapped to their equivalent expression in (α, β, γ). Consequently, the integration over the
2385
+ reference triangle or tetrahedron reads
2386
+
2387
+ Ae
2388
+ f(x, y) dA =
2389
+
2390
+ Γ
2391
+ (f ◦ (ξ, η))(α, β) | det J| dΓ ,
2392
+
2393
+ Ve
2394
+ f(x, y, z) dV =
2395
+
2396
+
2397
+ (f ◦ (ξ, η, ζ))(α, β, γ) | det J| dΩ .
2398
+ (6.1)
2399
+ For the lower order elements we use the Lagrangian-N´ed´elec construction from [52,53].
2400
+ 7
2401
+ Boundary conditions
2402
+ The degrees of freedom in [12] commute between the continuous and discrete spaces.
2403
+ As such, they allow
2404
+ to exactly satisfy the consistent coupling condition [11].
2405
+ We note that the functionals can be viewed as a
2406
+ hierarchical system of Dirichlet boundary problems. In the case of hierarchical base functions [58], they can
2407
+ be solved independently. However, here the boundary value of each polytope is required in advance due to the
2408
+ non-hierarchical nature of Bernstein polynomials. In other words, one must first solve the problem for vertices,
2409
+ then for edges, afterwards for faces, and finally for the cell. In our case the degrees of freedom for the cell are
2410
+ irrelevant since a cell is never part of the boundary.
2411
+ 7.1
2412
+ Boundary vertices
2413
+ The finite element mesh identifies each vertex with a tuple of coordinates. It suffices to evaluate the displacement
2414
+ field at the vertex
2415
+ ud
2416
+ i = �u
2417
+ ����
2418
+ xi
2419
+ .
2420
+ (7.1)
2421
+ If the field is vectorial, each component is evaluated at the designated vertex. The boundary conditions of the
2422
+ microdistortion field are associated with tangential projections and as such do not have vertex-type degrees of
2423
+ freedom. This is the case since a vertex does not define a unique tangential plane.
2424
+ 7.2
2425
+ Boundary edges
2426
+ The edge functionals from [12] for the H 1-conforming subspace
2427
+ lij(u) =
2428
+
2429
+ si
2430
+ ∂qj
2431
+ ∂s
2432
+ ∂u
2433
+ ∂s ds ,
2434
+ q ∈ Pp(s) ,
2435
+ (7.2)
2436
+ can be reformulated for a reference edge on a unit domain α ∈ [0, 1]. We parametrize the edge via
2437
+ x(α) = (1 − α)x1 + αx2 .
2438
+ (7.3)
2439
+ As such, the following relation exists between the unit parameter and the arc-length parameter
2440
+ t = d
2441
+ dαx = x2 − x1 ,
2442
+ ds = ∥dx∥ = ∥x2 − x1∥dα = ∥t∥dα .
2443
+ (7.4)
2444
+ 24
2445
+
2446
+ α
2447
+ 0
2448
+ 1
2449
+ ξ : α → Γ
2450
+ ξ2
2451
+ ξ1
2452
+ Γ
2453
+ τ
2454
+ ξ
2455
+ η
2456
+ x2
2457
+ x1
2458
+ A
2459
+ t
2460
+ x
2461
+ y
2462
+ x : Γ → A
2463
+ Figure 7.1: Barycentric mapping of edges from the unit domain to the reference triangle and onto the physical
2464
+ domain.
2465
+ By the chain rule we find
2466
+ du
2467
+ ds = du
2468
+
2469
+
2470
+ ds = ∥t∥−1 du
2471
+ dα ,
2472
+ (7.5)
2473
+ for some function u. On edges, the test and trial functions are Bernstein polynomials parametrized by the unit
2474
+ domain. The function representing the boundary condition �u(x) however, is parametrized by the Cartesian
2475
+ coordinates of the physical space. We find its derivative with respect to the arc-length parameter by observing
2476
+ d
2477
+ ds �u = ⟨ d
2478
+ dsx, ∇x�u⟩ .
2479
+ (7.6)
2480
+ The derivative of the coordinates with respect to the arc-length is simply the normed tangent vector
2481
+ d
2482
+ dsx = dx
2483
+
2484
+
2485
+ ds = ∥t∥−1t .
2486
+ (7.7)
2487
+ Consequently, the edge boundary condition is given by
2488
+
2489
+ si
2490
+ ∂qj
2491
+ ∂s
2492
+ ∂u
2493
+ ∂s ds =
2494
+ � 1
2495
+ 0
2496
+
2497
+ ∥t∥−1 dqj
2498
+
2499
+ � �
2500
+ ∥t∥−1 du
2501
+
2502
+
2503
+ ∥t∥ dα
2504
+ =
2505
+ � 1
2506
+ 0
2507
+
2508
+ ∥t∥−1 dqj
2509
+
2510
+
2511
+ ⟨∥t∥−1t, ∇x�u⟩∥t∥ dα =
2512
+
2513
+ si
2514
+ ∂qj
2515
+ ∂s
2516
+ ∂�u
2517
+ ∂s ds
2518
+ ∀ qj ∈ Pp(α) ,
2519
+ (7.8)
2520
+ and can be solved by assembling the stiffness matrix of the edge and the load vector induced by the prescribed
2521
+ displacement field �u, representing volume forces
2522
+ kij =
2523
+ � 1
2524
+ 0
2525
+
2526
+ ∥t∥−1 dni
2527
+
2528
+ � �
2529
+ ∥t∥−1 dnj
2530
+
2531
+
2532
+ ∥t∥ dα ,
2533
+ fi =
2534
+ � 1
2535
+ 0
2536
+ ⟨∥t∥−1t, ∇x�u⟩
2537
+
2538
+ ∥t∥−1 dni
2539
+
2540
+
2541
+ ∥t∥ dα .
2542
+ (7.9)
2543
+ Next we consider the Dirichlet boundary conditions for the microdistortion with the N´ed´elec space of the
2544
+ second type NII. The problem reads
2545
+
2546
+ si
2547
+ qj⟨t, p⟩ ds =
2548
+
2549
+ si
2550
+ qj⟨t, ∇x�u⟩ ds
2551
+ ∀ qj ∈ Pp(si) .
2552
+ (7.10)
2553
+ Observe that on the edge the test functions qj are chosen to be the Bernstein polynomials. Further, by the
2554
+ polytopal template construction of the NII-space there holds ⟨t, θi⟩|s = ni(α). Therefore, the components of
2555
+ the corresponding stiffness matrix and load vectors read
2556
+ kij =
2557
+ � 1
2558
+ 0
2559
+ ni nj∥t∥ dα ,
2560
+ fi =
2561
+ � 1
2562
+ 0
2563
+ ni⟨t, ∇x�u⟩∥t∥ dα .
2564
+ (7.11)
2565
+ 25
2566
+
2567
+ Note that in order to maintain the exactness property, the degree of the N´ed´elec spaces N p
2568
+ I , N p
2569
+ II is always one
2570
+ less than the degree of the subspace Bp+1.
2571
+ Lastly, we consider the N´ed´elec element of the first type. The problem is given by
2572
+
2573
+ si
2574
+ qj⟨t, p⟩ ds =
2575
+
2576
+ si
2577
+ qj⟨t, ∇x�u⟩ ds
2578
+ ∀ qj ∈ Pp(si) .
2579
+ (7.12)
2580
+ We define
2581
+ qi = d
2582
+ dαnp+1
2583
+ i
2584
+ ,
2585
+ (7.13)
2586
+ and observe that on the edges the N´ed´elec base functions yield
2587
+ ⟨t, θj⟩ = ⟨t, ∇xnp+1
2588
+ j
2589
+ ⟩ = d
2590
+ dαnp+1
2591
+ j
2592
+ .
2593
+ (7.14)
2594
+ Therefore, the components of the stiffness matrix and the load vector result in
2595
+ kij =
2596
+ � 1
2597
+ 0
2598
+ dnp+1
2599
+ i
2600
+
2601
+ dnp+1
2602
+ j
2603
+
2604
+ ∥t∥ dα ,
2605
+ fi =
2606
+ � 1
2607
+ 0
2608
+ dnp+1
2609
+ i
2610
+
2611
+ ⟨t, ∇x�u⟩∥t∥ dα .
2612
+ (7.15)
2613
+ 7.3
2614
+ Boundary faces
2615
+ We start with the face boundary condition for the H 1-conforming subspace. The problem reads
2616
+
2617
+ Ai
2618
+ ⟨∇fqj, ∇fu⟩ dA =
2619
+
2620
+ Ai
2621
+ ⟨∇fqj, ∇f �u⟩ dA
2622
+ ∀ qj ∈ Pp(Ai) .
2623
+ (7.16)
2624
+ The surface is parameterized by the barycentric mapping from the unit triangle Γ = {(ξ, η) ∈ [0, 1]2 | ξ +η ≤ 1}.
2625
+ The surface gradient is given by
2626
+ ∇f �u = ∇x�u −
2627
+ 1
2628
+ ∥n∥2 ⟨∇x�u, n⟩n ,
2629
+ (7.17)
2630
+ where n is the surface normal. The surface gradient can also be expressed via
2631
+ ∇fu = ei∂x
2632
+ i u = gβ∂ξ
2633
+ βu ,
2634
+ β ∈ {1, 2} ,
2635
+ (7.18)
2636
+ where ∂x
2637
+ β are partial derivates with respect to the physical coordinates, ∂ξ
2638
+ β are partial derivatives with respect
2639
+ to the reference domain and gβ are the contravariant base vectors. The Einstein summation convention over
2640
+ corresponding indices is implied. The covariant base vectors are given by
2641
+ gβ = ∂x
2642
+ ∂ξβ .
2643
+ (7.19)
2644
+ One can find the contravariant vector orthogonal to the surface by
2645
+ g3 = n = g1 × g2 .
2646
+ (7.20)
2647
+ We define the mixed transformation matrix
2648
+ T =
2649
+
2650
+ g1 , g2 , g3�
2651
+ .
2652
+ (7.21)
2653
+ Due to the orthogonality relation ⟨gi, gj⟩ = δ j
2654
+ i the transposed inverse of T is clearly
2655
+ T −T =
2656
+
2657
+ g1 , g2 , g3
2658
+
2659
+ .
2660
+ (7.22)
2661
+ Thus, we can compute the surface gradient of functions parametrized by the reference triangle via
2662
+ ∇fu =
2663
+
2664
+ g1 , g2�
2665
+ ∇ξu = T −T
2666
+
2667
+ ∇ξu ,
2668
+ T −T
2669
+
2670
+ =
2671
+
2672
+ g1 , g2�
2673
+ .
2674
+ (7.23)
2675
+ 26
2676
+
2677
+ Further, there holds the following relation between the physical surface and the reference surface
2678
+ dA = ∥n∥dΓ = ∥g3∥dΓ =
2679
+
2680
+ ⟨g1 × g2, g3⟩ dΓ =
2681
+
2682
+ det T dΓ .
2683
+ (7.24)
2684
+ Consequently, we can write the components of the stiffness matrix and load vector as
2685
+ kij =
2686
+
2687
+ Γ
2688
+ ⟨T −T
2689
+
2690
+ ∇ξni, T −T
2691
+
2692
+ ∇ξnj⟩
2693
+
2694
+ det T dΓ ,
2695
+ fi =
2696
+
2697
+ Γ
2698
+ ⟨T −T
2699
+
2700
+ ∇ξni, ∇x�u − (det T )−1⟨∇x�u, n⟩n⟩
2701
+
2702
+ det T dΓ =
2703
+
2704
+ Γ
2705
+ ⟨T −T
2706
+
2707
+ ∇ξni, ∇x�u⟩
2708
+
2709
+ det T dΓ ,
2710
+ (7.25)
2711
+ with the orthogonality ⟨gβ, n⟩ = 0 for β ∈ {1, 2}.
2712
+ In order to embed the consistent coupling boundary condition to the microdistortion we deviate from the
2713
+ degrees of freedom defined in [12] and apply the simpler H (divR)-projection
2714
+ ⟨qi, p, ⟩H(divR) = ⟨qi, ∇f �u⟩H(divR)
2715
+ ∀ qi ∈ N p
2716
+ I (A)
2717
+ or
2718
+ ∀ qi ∈ N p
2719
+ II(A) .
2720
+ (7.26)
2721
+ Due to ker(curl) = ∇H 1 the problem reduces to
2722
+
2723
+ Ai
2724
+ ⟨qj, p⟩ + ⟨curl2Dqj, curl2Dp⟩ dA =
2725
+
2726
+ Ai
2727
+ ⟨qj, ∇f �u⟩ dA
2728
+ ∀ qj ∈ N p
2729
+ I (A)
2730
+ or
2731
+ ∀ qj ∈ N p
2732
+ II(A) .
2733
+ (7.27)
2734
+ We express the co- and contravariant Piola transformation from the two-dimensional reference domain to the
2735
+ three-dimensional physical domain using
2736
+ θi = T −T
2737
+
2738
+ ϑi ,
2739
+ divx R θi =
2740
+ 1
2741
+
2742
+ det T
2743
+ divξ R ϑi .
2744
+ (7.28)
2745
+ Thus, the stiffness matrix components and load vector components read
2746
+ kij =
2747
+
2748
+ Γ
2749
+ ⟨T −T
2750
+
2751
+ ϑi, T −T
2752
+
2753
+ ϑj⟩ + ⟨(det T )−1/2 divξ R ϑi, (det T )−1/2 divξ R ϑj⟩
2754
+
2755
+ det T dΓ ,
2756
+ fi =
2757
+
2758
+ Γ
2759
+ ⟨T −T
2760
+
2761
+ ϑi, ∇x�u − (det T )−1⟨∇x�u, n⟩n⟩
2762
+
2763
+ det T dΓ =
2764
+
2765
+ Γ
2766
+ ��T −T
2767
+
2768
+ ϑi, ∇x�u⟩
2769
+
2770
+ det T dΓ ,
2771
+ (7.29)
2772
+ where we again make use of the orthogonality between the surface tangent vectors and its normal vector.
2773
+ 8
2774
+ Numerical examples
2775
+ In the following we test the finite element formulations with an artificial analytical solution in the antiplane shear
2776
+ model and with an analytical solution for an infinite plane under cylindrical bending in the three dimensional
2777
+ model. Finally, we benchmark the ability of the finite element formulations to correctly interpolate between
2778
+ micro Cmicro and macro Cmacro stiffnesses as described by the characteristic length scale parameter Lc. The
2779
+ majority of convergence results are presented by measuring the error in the Lebesgue norm over the domain
2780
+ ∥�u − uh∥L2 =
2781
+ ��
2782
+ V
2783
+ ∥�u − uh∥2 dV ,
2784
+ ∥ �P − P h∥L2 =
2785
+ ��
2786
+ V
2787
+ ∥ �P − P h∥2 dV ,
2788
+ (8.1)
2789
+ in which context {�u, �P } and {uh, P h} are the analytical and approximate subspace solutions, respectively.
2790
+ 8.1
2791
+ Compatible microdistortion
2792
+ In [53] we explored the conditions for which the microdistortion p reduces to a gradient field, i.e. p is compatible.
2793
+ By defining the micro-moment with a scalar potential
2794
+ m = ∇100 − x2 − y2
2795
+ 10
2796
+ = −1
2797
+ 5
2798
+ �x
2799
+ y
2800
+
2801
+ ,
2802
+ (8.2)
2803
+ 27
2804
+
2805
+ and constructing an analytical solution for the displacement field
2806
+ �u = sin
2807
+ �x2 + y2
2808
+ 5
2809
+
2810
+ ,
2811
+ (8.3)
2812
+ we can recover the analytical solution of the microdistortion
2813
+ p =
2814
+ 1
2815
+ µe + µmicro
2816
+ (m + µe∇�u) = 1
2817
+ 2
2818
+
2819
+ −1
2820
+ 5
2821
+ �x
2822
+ y
2823
+
2824
+ + 2
2825
+ 5
2826
+ �x cos([x2 + y2]/5)
2827
+ y cos([x2 + y2]/5)
2828
+ ��
2829
+ = 1
2830
+ 5
2831
+ �x cos([x2 + y2]/5)
2832
+ y cos([x2 + y2]/5)
2833
+
2834
+ − 1
2835
+ 10
2836
+ �x
2837
+ y
2838
+
2839
+ ,
2840
+ (8.4)
2841
+ where for simplicity we set all material constants to one. Since m is a gradient field, the microdistortion p is
2842
+ also reduced to a gradient field and curl2Dp = 0, see [53]. Note that this result is specific to antiplane shear
2843
+ and does not generalize to the full three-dimensional model, compare [52]. We note that the microdistortion
2844
+ is not equal to the gradient of the displacement field and as such, their tangential projections on an arbitrary
2845
+ boundary are not automatically the same. However, for both the gradient of the displacement field and the
2846
+ micro-moment is the tangential projection on the boundary of the circular domain A = {x ∈ R2 | ∥x∥ ≤ 10}
2847
+ equal to zero
2848
+ ⟨∇t, �u⟩
2849
+ ����
2850
+ ∂A
2851
+ = ⟨t, m⟩
2852
+ ����
2853
+ ∂A
2854
+ = 0 ,
2855
+ (8.5)
2856
+ and as such the microdistortion belongs to p ∈ H0(curl, A).
2857
+ Consequently, we can set sD = ∂A and the
2858
+ consistent coupling condition remains compatible.
2859
+ With the displacement and the microdistortion fields at
2860
+ hand we derive the corresponding forces
2861
+ f = 1
2862
+ 25
2863
+
2864
+ 2x2 sin
2865
+ �x2 + y2
2866
+ 5
2867
+
2868
+ + 2y2 sin
2869
+ �x2 + y2
2870
+ 5
2871
+
2872
+ − 10 cos
2873
+ �x2 + y2
2874
+ 5
2875
+
2876
+ − 5
2877
+
2878
+ .
2879
+ (8.6)
2880
+ The approximation of the displacement and microdistortion fields using linear and higher order elements is
2881
+ shown in Fig. 8.1. We note that even with almost 3000 finite elements and 6000 degrees of freedom the linear
2882
+ formulation is incapable of finding an adequate approximation. On the other side of the spectrum, the higher
2883
+ order approximation (degree 7) with 57 elements and 4097 degrees of freedom yields very accurate results in
2884
+ the interior of the domain. However, the exterior of the domain is captured rather poorly. This is the case since
2885
+ the geometry of the circular domain is being approximated by linear triangles. Thus, in this setting, a finer
2886
+ mesh captures the geometry in a more precise manner. The effects of the geometry on the approximation of the
2887
+ solution are also clearly visible in the convergence graphs in Fig. 8.2; only after a certain accuracy in the domain
2888
+ description is achieved do the finite elements retrieve their predicted convergence rates, compare [52,53]. This
2889
+ is clearly observable when comparing the convergence curves of the linear and seventh order elements. The
2890
+ linear element generates quadratic convergence p + 1 = 1 + 1 = 2, whereas the seventh-order element yields
2891
+ the convergence slope 7 (where 8 is expected).
2892
+ Although the seventh-order formulation encompasses more
2893
+ degrees of freedom, it employs a coarser mesh and as such, generates higher errors at the boundary. The errors
2894
+ themselves can be traced back to the consistent coupling condition since, for a non-perfect circle the gradient
2895
+ of the displacement field induces tangential projections on the imperfect boundary. The influence of the latter
2896
+ effect is even more apparent in the convergence of the microdistortion, where the higher order formulations are
2897
+ unable to perform optimally on coarse meshes.
2898
+ 8.2
2899
+ Cylindrical bending
2900
+ In order to test the capability of the finite element formulations to capture the intrinsic behaviour of the relaxed
2901
+ micromorphic model, we compare with analytical solutions of boundary-value problems. The first example
2902
+ considers the displacement and microdistortion fields under cylindrical bending [43] for infinitely extended
2903
+ plates. Let the plates be defined as V = (−∞, ∞)2 × [−1/2, 1/2], than the analytical solution for cylindrical
2904
+ bending reads
2905
+ u = κ
2906
+
2907
+
2908
+ −xz
2909
+ 0
2910
+ x2/2
2911
+
2912
+ � ,
2913
+ P = −κ
2914
+
2915
+
2916
+ [41z + 20
2917
+
2918
+ 82 sech(
2919
+
2920
+ 41/2) sinh(
2921
+
2922
+ 82z)]/1681
2923
+ 0
2924
+ x
2925
+ 0
2926
+ 0
2927
+ 0
2928
+ −x
2929
+ 0
2930
+ 0
2931
+
2932
+ � ,
2933
+ (8.7)
2934
+ 28
2935
+
2936
+ (a)
2937
+ (b)
2938
+ (c)
2939
+ (d)
2940
+ (e)
2941
+ (f)
2942
+ (g)
2943
+ (h)
2944
+ (i)
2945
+ (j)
2946
+ (k)
2947
+ (l)
2948
+ Figure 8.1: Depiction of the displacement field (a)-(c) and the microdistortion field (d)-(f) for the antiplane
2949
+ shear problem, for the linear element under h-refinement with 225, 763 and 2966 elements, corresponding to
2950
+ 485, 1591 and 6060 degrees of freedom. The p-refinement of the displacement field on the coarsest mesh of 57
2951
+ elements is visualized in (g)-(l) with p ∈ {3, 5, 7}, corresponding to 731, 2072 and 4097 degrees of freedom.
2952
+ 29
2953
+
2954
+ 11
2955
+ NA144
2956
+ 44103
2957
+ 104
2958
+ 105
2959
+ 10−3
2960
+ 10−1
2961
+ 101
2962
+ degrees of freedom
2963
+ ∥�u − uh∥L2
2964
+ L1 × N 0
2965
+ I
2966
+ L2 × N 1
2967
+ II
2968
+ B3 × N 2
2969
+ II
2970
+ B5 × N 4
2971
+ II
2972
+ B7 × N 6
2973
+ II
2974
+ O(h2)
2975
+ O(h7)
2976
+ (a)
2977
+ 103
2978
+ 104
2979
+ 105
2980
+ 10−3
2981
+ 10−1
2982
+ 101
2983
+ degrees of freedom
2984
+ ∥�p − ph∥L2
2985
+ L1 × N 0
2986
+ I
2987
+ L2 × N 1
2988
+ II
2989
+ B3 × N 2
2990
+ II
2991
+ B5 × N 4
2992
+ II
2993
+ B7 × N 6
2994
+ II
2995
+ O(h)
2996
+ O(h2)
2997
+ (b)
2998
+ Figure 8.2: Convergence of displacement (a) and the microdistortion (b) under h-refinement for multiple poly-
2999
+ nomial degrees for the antiplane shear problem.
3000
+ where sech(x) = 1/ cosh(x), and for the following values of material constants
3001
+ λe = λmicro = 0 ,
3002
+ µe = µmacro = 1/2 ,
3003
+ µc = 0 ,
3004
+ Lc = 1 ,
3005
+ µmicro = 20 .
3006
+ (8.8)
3007
+ The intensity of the curvature parameter κ of the plate is chosen to be κ = 14/200.
3008
+ Remark 8.1
3009
+ The particular case of the cylindrical bending for which λe = λmicro = 0 (equivalent to a zero micro-Poisson’s
3010
+ ratio) has been solved, along with its more general case (λe ̸= λmicro ̸= 0), in [43]. The advantage of considering
3011
+ this particular case is that a cut out finite plate of the infinite domain automatically exhibits the consistent
3012
+ coupling boundary conditions on its side surfaces.
3013
+ Remark 8.2
3014
+ Note that the general analytical solution for cylindrical bending does not depend on µc, so we can set µc = 0
3015
+ without loss of generality, compare [43].
3016
+ We define the finite domain V = [−10, 10]2 × [−1/2, 1/2] and the boundaries
3017
+ AD1 = {−10} × [−10, 10] × [−1/2, 1/2] ,
3018
+ AD2 = {10} × [−10, 10] × [−1/2, 1/2] ,
3019
+ AN = ∂V \ {AD1 ⊕ AD2} .
3020
+ (8.9)
3021
+ Additionally, on the Dirichlet boundary we impose the translated analytical solution �u = u −
3022
+ �0
3023
+ 0
3024
+ 3.5�T .
3025
+ The displacement field and the last row of the microdistortion are depicted in Fig. 8.3. The displacement
3026
+ field is dominated by its quadratic term and captured correctly.
3027
+ The last row of the microdistortion is a
3028
+ linear function and easily approximated even with linear elements. On the contrary, the P11 component of
3029
+ the microdistortion is a hyperbolic function of the z-axis.
3030
+ The results of its approximation at x = y = 0
3031
+ (the centre of the plane) are given in Fig. 8.4. We observe that even increasing the number of linear finite
3032
+ elements to the extreme only results in better oscillations around the analytical solution. In comparison, higher
3033
+ order formulations converge towards the expected hyperbolic behaviour. The approximation of the quadratic
3034
+ N´ed´elec element of the first type is nearly perfect, whereas its second type counterpart clearly deviates from
3035
+ the analytical solution at z ≈ −0.25. Taking the cubic second type element yields the desired result. This
3036
+ phenomenon is an evident indicator of the prominent role of the Curl of the microdistortion in this type of
3037
+ problems. Firstly, the microdistortion is a non-gradient field. Secondly, the Curl of the analytical solution
3038
+ induces an hyperbolic sine term. Such functions are often approximated using at least cubic terms in power
3039
+ series, thus explaining the necessity of such high order elements for correct computations.
3040
+ 30
3041
+
3042
+ (a)
3043
+ (b)
3044
+ Figure 8.3: Displacement (a) and last row of the microdistortion (b) for the quadratic formulation using the
3045
+ N´ed´elec element of the first type.
3046
+ −0.5
3047
+ 0
3048
+ 0.5
3049
+ −1
3050
+ 0
3051
+ 1
3052
+ ·10−2
3053
+ z-axis
3054
+ P11(z)
3055
+ ne = 5640
3056
+ ne = 44592
3057
+ ne = 354720
3058
+ (a)
3059
+ −0.5
3060
+ 0
3061
+ 0.5
3062
+ −1
3063
+ 0
3064
+ 1
3065
+ ·10−2
3066
+ z-axis
3067
+ P11(z)
3068
+ B2 × N 1
3069
+ I
3070
+ B3 × N 2
3071
+ I
3072
+ L2 × N 1
3073
+ II
3074
+ B3 × N 2
3075
+ II
3076
+ B4 × N 3
3077
+ II
3078
+ (b)
3079
+ Figure 8.4: Convergence of the lowest order formulation under h-refinement with 732, 5640 and 44592 elements
3080
+ (a) and of the higher order formulations under p-refinement using 732 elements(b) towards the analytical solution
3081
+ (dashed curve) of the P11(z) component at x = y = 0.
3082
+ 31
3083
+
3084
+ 8.3
3085
+ Bounded stiffness property
3086
+ The characteristic length scale parameter Lc allows the relaxed micromorphic model to capture the transition
3087
+ from highly homogeneous materials to materials with a pronounced micro-structure by governing the influence
3088
+ of the micro-structure on the overall behaviour of the model. We demonstrate this property of the model with
3089
+ an example, where we vary Lc and measure the resulting energy.
3090
+ Let the domain be given by the axis-symmetric cube V = [−1, 1]3 with a total Dirichlet boundary
3091
+ AD1 = {(x, y, z) ∈ [−1, 1]3 | x = ±1} ,
3092
+ AD2 = {(x, y, z) ∈ [−1, 1]3 | y = ±1} ,
3093
+ AD3 = {(x, y, z) ∈ [−1, 1]3 | z = ±1} ,
3094
+ (8.10)
3095
+ we embed the periodic boundary conditions
3096
+ �u
3097
+ ����
3098
+ AD1
3099
+ =
3100
+
3101
+
3102
+ (1 − y2) sin(π[1 − z2])/10
3103
+ 0
3104
+ 0
3105
+
3106
+ � ,
3107
+ �u
3108
+ ����
3109
+ AD2
3110
+ =
3111
+
3112
+
3113
+ 0
3114
+ (1 − x2) sin(π[1 − z2])/10
3115
+ 0
3116
+
3117
+ � ,
3118
+ �u
3119
+ ����
3120
+ AD3
3121
+ =
3122
+
3123
+
3124
+ 0
3125
+ 0
3126
+ (1 − y2) sin(π[1 − x2])/10
3127
+
3128
+ � .
3129
+ (8.11)
3130
+ The material parameters are chosen as
3131
+ λmacro = 2 ,
3132
+ µmacro = 1 ,
3133
+ λmicro = 10 ,
3134
+ µmicro = 5 ,
3135
+ µc = 1 ,
3136
+ (8.12)
3137
+ thus giving rise to the following meso-parameters via Eq. (2.19)
3138
+ λe = 2.5 ,
3139
+ µe = 1.25 .
3140
+ (8.13)
3141
+ The displacement field as well as some examples of the employed meshes are shown in Fig. 8.5. In order to
3142
+ compute the upper and lower bound on the energy we utilize the equivalent Cauchy model formulation with
3143
+ the micro- and macro elasticity parameters. In order to assert the high accuracy of the solution of the bounds
3144
+ we employ tenth order finite elements. The progression of the energy in dependence of the characteristic length
3145
+ parameter Lc is given in Fig. 8.6. We observe the high mesh dependency of the lower order formulations, where
3146
+ the energy is clearly overestimated. The higher order formulations all capture the upper bound correctly but
3147
+ diverge with respect to the result of the lower bound. Notably, the approximation using the N´ed´elec element
3148
+ of the first type is more accurate than the equivalent formulation with the N´ed´elec element of the second type,
3149
+ thus indicating the non-negligible involvement of the micro-dislocation in the energy. Using standard mesh
3150
+ coarseness the cubic element formulation with N´ed´elec elements of the first type yields satisfactory results. In
3151
+ order to achieve the same on highly coarse meshes, one needs to employ seventh order elements.
3152
+ 9
3153
+ Conclusions and outlook
3154
+ The intrinsic behaviour of the relaxed micromorphic model is revealed by the analytical solutions to boundary
3155
+ value problems. Clearly, the continuum exhibits hyperbolic and trigonometric solutions, which are not easily
3156
+ approximated by low order finite elements. The example provided in Section 8.2 demonstrates that cubic and
3157
+ higher order finite elements yield excellent results in approximate solutions of the model.
3158
+ The polytopal template methodology introduced in [50] allows to easily and flexibly construct H (curl)-
3159
+ conforming vectorial finite elements that inherit many of the characteristics of an underlying H 1-conforming
3160
+ basis, which can be chosen independently. In this work, we made use of Bernstein-B´ezier polynomials. The
3161
+ latter boast optimal complexity properties manifesting in the form of sum factorization. The natural decom-
3162
+ position of their multi-variate versions into multiplications of univariate Bernstein base functions via the Duffy
3163
+ transformation allows to construct optimal iterators for their evaluation using recursion formulas. Further, this
3164
+ characteristic makes the use of dual numbers in the computation of their derivatives ideal. Finally, the intrinsic
3165
+ order of traversal induced by the factorization is exploited optimally by the choice of clock-wise orientation
3166
+ of the reference element. The consequence of these combined features is a high-performance hp-finite element
3167
+ program.
3168
+ 32
3169
+
3170
+ (a)
3171
+ (b)
3172
+ (c)
3173
+ Figure 8.5: Displacement field of the Cauchy model on the coarsest mesh of 48 finite elements of the tenth order
3174
+ (a) and depictions of the meshes with 384 (b) and 3072 (c) elements, respectively.
3175
+ The ability of the relaxed micromorphic model to interpolate between the energies of homogeneous materials
3176
+ and materials with an underlying micro-structure using the characteristic length scale parameter Lc is demon-
3177
+ strated in Section 8.3. It is also shown that in order to correctly capture the span of energies for the values of
3178
+ Lc either fine-discretizations or higher order elements are required.
3179
+ The excellent performance of the proposed higher order finite elements in the linear static case is a precur-
3180
+ sor for their application in the dynamic setting, which is important since the relaxed micromorphic model is
3181
+ often employed in the computation of elastic waves (e.g., for acoustic metamaterials), where solutions for high
3182
+ frequency ranges are commonly needed.
3183
+ The proposed computational scheme is lacking in its description of curved geometries. Due to the consistent
3184
+ coupling condition, this can easily lead to errors emanating from the boundary. Consequently, a topic for future
3185
+ works would be the investigation of curved finite elements [20,21] and their behaviour with respect to the model.
3186
+ Acknowledgements
3187
+ Angela Madeo and Gianluca Rizzi acknowledge support from the European Commission through the funding
3188
+ of the ERC Consolidator Grant META-LEGO, N◦ 101001759.00
3189
+ Patrizio Neff acknowledges support in the framework of the DFG-Priority Programme 2256 “Variational
3190
+ Methods for Predicting Complex Phenomena in Engineering Structures and Materials”, Neff 902/10-1, Project-
3191
+ No. 440935806.
3192
+ 10
3193
+ References
3194
+ [1] Ainsworth, M., Andriamaro, G., Davydov, O.: Bernstein–B´ezier finite elements of arbitrary order and optimal assembly
3195
+ procedures. SIAM Journal on Scientific Computing 33(6), 3087–3109 (2011)
3196
+ [2] Ainsworth, M., Fu, G.: Bernstein–B´ezier bases for tetrahedral finite elements. Computer Methods in Applied Mechanics and
3197
+ Engineering 340, 178–201 (2018)
3198
+ [3] Aivaliotis, A., Tallarico, D., d’Agostino, M.V., Daouadji, A., Neff, P., Madeo, A.: Frequency- and angle-dependent scattering
3199
+ of a finite-sized meta-structure via the relaxed micromorphic model. Archive of Applied Mechanics 90(5), 1073–1096 (2020)
3200
+ [4] Alberdi, R., Robbins, J., Walsh, T., Dingreville, R.: Exploring wave propagation in heterogeneous metastructures using the
3201
+ relaxed micromorphic model. Journal of the Mechanics and Physics of Solids 155, 104540 (2021)
3202
+ [5] Anjam, I., Valdman, J.: Fast MATLAB assembly of FEM matrices in 2d and 3d: Edge elements. Applied Mathematics and
3203
+ Computation 267, 252–263 (2015)
3204
+ [6] Barbagallo, G., Madeo, A., d’Agostino, M.V., Abreu, R., Ghiba, I.D., Neff, P.:
3205
+ Transparent anisotropy for the relaxed
3206
+ micromorphic model: Macroscopic consistency conditions and long wave length asymptotics. International Journal of Solids
3207
+ and Structures 120, 7–30 (2017)
3208
+ 33
3209
+
3210
+ 10−3
3211
+ 100
3212
+ 103
3213
+ 0.1
3214
+ 0.5
3215
+ 0.9
3216
+ Lc
3217
+ I
3218
+ ne = 384
3219
+ ne = 3072
3220
+ ne = 24576
3221
+ ne = 48000
3222
+ Cmacro
3223
+ Cmicro
3224
+ (a)
3225
+ 10−3
3226
+ 100
3227
+ 103
3228
+ 0.1
3229
+ 0.5
3230
+ 0.9
3231
+ Lc
3232
+ I
3233
+ ne = 384
3234
+ ne = 3072
3235
+ ne = 24576
3236
+ Cmacro
3237
+ Cmicro
3238
+ (b)
3239
+ 10−3
3240
+ 100
3241
+ 103
3242
+ 0.1
3243
+ 0.5
3244
+ 0.9
3245
+ Lc
3246
+ I
3247
+ ne = 384 , B3 × N 2
3248
+ I
3249
+ ne = 3072 , B3 × N 2
3250
+ I
3251
+ ne = 384 , B3 × N 2
3252
+ II
3253
+ ne = 3072 , B3 × N 2
3254
+ II
3255
+ Cmacro
3256
+ Cmicro
3257
+ (c)
3258
+ 10−3
3259
+ 100
3260
+ 103
3261
+ 0.1
3262
+ 0.5
3263
+ 0.9
3264
+ Lc
3265
+ I
3266
+ B5 × N 4
3267
+ I
3268
+ B7 × N 6
3269
+ I
3270
+ B5 × N 4
3271
+ II
3272
+ B7 × N 6
3273
+ II
3274
+ Cmacro
3275
+ Cmicro
3276
+ (d)
3277
+ Figure 8.6: Energy progression of the relaxed micromorphic model with respect to Lc using the linear (a),
3278
+ quadratic (b) and cubic (c) finite element formulations. The energy computed with the coarsest mesh of 48
3279
+ elements is depicted in (d) for various polynomial powers.
3280
+ 34
3281
+
3282
+ [7] Barbagallo, G., Tallarico, D., D’Agostino, M.V., Aivaliotis, A., Neff, P., Madeo, A.: Relaxed micromorphic model of transient
3283
+ wave propagation in anisotropic band-gap metastructures. International Journal of Solids and Structures 162, 148–163 (2019)
3284
+ [8] Baydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M.: Automatic differentiation in machine learning: a survey. Journal
3285
+ of Machine Learning Research 18, 1–43 (2018)
3286
+ [9] Bergot, M., Lacoste, P.: Generation of higher-order polynomial basis of N´ed´elec H(curl) finite elements for Maxwell’s equa-
3287
+ tions. Journal of Computational and Applied Mathematics 234(6), 1937–1944 (2010). Eighth International Conference on
3288
+ Mathematical and Numerical Aspects of Waves (Waves 2007)
3289
+ [10] d’Agostino, M.V., Barbagallo, G., Ghiba, I.D., Eidel, B., Neff, P., Madeo, A.: Effective description of anisotropic wave
3290
+ dispersion in mechanical band-gap metamaterials via the relaxed micromorphic model. Journal of Elasticity 139(2), 299–329
3291
+ (2020)
3292
+ [11] d’Agostino, M.V., Rizzi, G., Khan, H., Lewintan, P., Madeo, A., Neff, P.: The consistent coupling boundary condition
3293
+ for the classical micromorphic model: existence, uniqueness and interpretation of parameters.
3294
+ Continuum Mechanics and
3295
+ Thermodynamics (2022)
3296
+ [12] Demkowicz, L., Monk, P., Vardapetyan, L., Rachowicz, W.: De Rham diagram for hp-finite element spaces. Computers and
3297
+ Mathematics with Applications 39(7), 29–38 (2000)
3298
+ [13] Demore, F., Rizzi, G., Collet, M., Neff, P., Madeo, A.: Unfolding engineering metamaterials design: Relaxed micromorphic
3299
+ modeling of large-scale acoustic meta-structures. Journal of the Mechanics and Physics of Solids 168, 104995 (2022)
3300
+ [14] Dunavant, D.A.: High degree efficient symmetrical Gaussian quadrature rules for the triangle.
3301
+ International Journal for
3302
+ Numerical Methods in Engineering 21(6), 1129–1148 (1985)
3303
+ [15] Eringen, A.: Microcontinuum Field Theories. I. Foundations and Solids. Springer-Verlag New York (1999)
3304
+ [16] Fike, J.A., Alonso, J.J.: Automatic differentiation through the use of hyper-dual numbers for second derivatives. In: S. Forth,
3305
+ P. Hovland, E. Phipps, J. Utke, A. Walther (eds.) Recent Advances in Algorithmic Differentiation, pp. 163–173. Springer
3306
+ Berlin Heidelberg, Berlin, Heidelberg (2012)
3307
+ [17] Forest, S.: Continuum thermomechanics of nonlinear micromorphic, strain and stress gradient media. Philosophical Transac-
3308
+ tions of the Royal Society A 378(20190169) (2020)
3309
+ [18] Ghiba, I.D., Neff, P., Madeo, A., Placidi, L., Rosi, G.: The relaxed linear micromorphic continuum: Existence, uniqueness
3310
+ and continuous dependence in dynamics. Mathematics and Mechanics of Solids 20(10), 1171–1197 (2015)
3311
+ [19] Ja´skowiec, J., Sukumar, N.:
3312
+ High-order cubature rules for tetrahedra.
3313
+ International Journal for Numerical Methods in
3314
+ Engineering 121(11), 2418–2436 (2020)
3315
+ [20] Johnen, A., Remacle, J.F., Geuzaine, C.: Geometrical validity of curvilinear finite elements. Journal of Computational Physics
3316
+ 233, 359–372 (2013)
3317
+ [21] Johnen, A., Remacle, J.F., Geuzaine, C.: Geometrical validity of high-order triangular finite elements.
3318
+ Engineering with
3319
+ Computers 30(3), 375–382 (2014)
3320
+ [22] Knees, D., Owczarek, S., Neff, P.: A local regularity result for the relaxed micromorphic model based on inner variations.
3321
+ Journal of Mathematical Analysis and Applications 519(2), 126806 (2023)
3322
+ [23] Lai, M.J., Schumaker, L.L.: Spline Functions on Triangulations. Cambridge University Press (2007)
3323
+ [24] Lewintan, P., M¨uller, S., Neff, P.: Korn inequalities for incompatible tensor fields in three space dimensions with conformally
3324
+ invariant dislocation energy. Calculus of Variations and Partial Differential Equations 60(4), 150 (2021)
3325
+ [25] Lewintan, P., Neff, P.: Lp-versions of generalized Korn inequalities for incompatible tensor fields in arbitrary dimensions with
3326
+ p-integrable exterior derivative. Comptes Rendus Math´ematique 359(6), 749–755 (2021)
3327
+ [26] Lewintan, P., Neff, P.: Neˇcas–Lions lemma revisited: An Lp-version of the generalized Korn inequality for incompatible tensor
3328
+ fields. Mathematical Methods in the Applied Sciences 44(14), 11392–11403 (2021)
3329
+ [27] Madeo, A., Barbagallo, G., Collet, M., d’Agostino, M.V., Miniaci, M., Neff, P.: Relaxed micromorphic modeling of the interface
3330
+ between a homogeneous solid and a band-gap metamaterial: New perspectives towards metastructural design. Mathematics
3331
+ and Mechanics of Solids 23(12), 1485–1506 (2018)
3332
+ [28] Madeo, A., Neff, P., Ghiba, I.D., Rosi, G.: Reflection and transmission of elastic waves in non-local band-gap metamaterials:
3333
+ A comprehensive study via the relaxed micromorphic model. Journal of the Mechanics and Physics of Solids 95, 441–479
3334
+ (2016)
3335
+ [29] Mindlin, R.: Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis 16, 51–78 (1964)
3336
+ [30] Nedelec, J.C.: Mixed finite elements in R3. Numerische Mathematik 35(3), 315–341 (1980)
3337
+ [31] N´ed´elec, J.C.: A new family of mixed finite elements in R3. Numerische Mathematik 50(1), 57–81 (1986)
3338
+ [32] Neff, P., Eidel, B., d’Agostino, M.V., Madeo, A.: Identification of scale-independent material parameters in the relaxed
3339
+ micromorphic model through model-adapted first order homogenization. Journal of Elasticity 139(2), 269–298 (2020)
3340
+ [33] Neff, P., Forest, S.: A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure.
3341
+ modelling, existence of minimizers, identification of moduli and computational results. Journal of Elasticity 87(2), 239–276
3342
+ (2007)
3343
+ [34] Neff, P., Ghiba, I.D., Lazar, M., Madeo, A.: The relaxed linear micromorphic continuum: well-posedness of the static problem
3344
+ and relations to the gauge theory of dislocations. The Quarterly Journal of Mechanics and Applied Mathematics 68(1), 53–84
3345
+ (2015)
3346
+ 35
3347
+
3348
+ [35] Neff, P., Ghiba, I.D., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: the relaxed linear micromorphic continuum.
3349
+ Continuum Mechanics and Thermodynamics 26(5), 639–681 (2014)
3350
+ [36] Neff, P., Pauly, D., Witsch, K.J.: Maxwell meets Korn: A new coercive inequality for tensor fields with square-integrable
3351
+ exterior derivative. Mathematical Methods in the Applied Sciences 35(1), 65–71 (2012)
3352
+ [37] Neidinger, R.D.: Introduction to automatic differentiation and MATLAB object-oriented programming. SIAM Review 52(3),
3353
+ 545–563 (2010)
3354
+ [38] Owczarek, S., Ghiba, I.D., Neff, P.: A note on local higher regularity in the dynamic linear relaxed micromorphic model.
3355
+ Mathematical Methods in the Applied Sciences 44(18), 13855–13865 (2021)
3356
+ [39] Papanicolopulos, S.A.: Efficient computation of cubature rules with application to new asymmetric rules on the triangle. J.
3357
+ Comput. Appl. Math. 304, 73–83 (2016)
3358
+ [40] Perez-Ramirez, L.A., Rizzi, G., Madeo, A.: Multi-element metamaterial’s design through the relaxed micromorphic model.
3359
+ arXiv:2210.14697 (2022)
3360
+ [41] Rizzi, G., d’Agostino, M.V., Neff, P., Madeo, A.: Boundary and interface conditions in the relaxed micromorphic model:
3361
+ Exploring finite-size metastructures for elastic wave control.
3362
+ Mathematics and Mechanics of Solids p. 10812865211048923
3363
+ (2021)
3364
+ [42] Rizzi, G., H¨utter, G., Khan, H., Ghiba, I.D., Madeo, A., Neff, P.: Analytical solution of the cylindrical torsion problem for
3365
+ the relaxed micromorphic continuum and other generalized continua (including full derivations). Mathematics and Mechanics
3366
+ of Solids p. 10812865211023530 (2021)
3367
+ [43] Rizzi, G., H¨utter, G., Madeo, A., Neff, P.: Analytical solutions of the cylindrical bending problem for the relaxed micromorphic
3368
+ continuum and other generalized continua. Continuum Mechanics and Thermodynamics 33(4), 1505–1539 (2021)
3369
+ [44] Rizzi, G., H¨utter, G., Madeo, A., Neff, P.: Analytical solutions of the simple shear problem for micromorphic models and
3370
+ other generalized continua. Archive of Applied Mechanics 91(5), 2237–2254 (2021)
3371
+ [45] Rizzi, G., Khan, H., Ghiba, I.D., Madeo, A., Neff, P.: Analytical solution of the uniaxial extension problem for the relaxed
3372
+ micromorphic continuum and other generalized continua (including full derivations). Archive of Applied Mechanics (2021)
3373
+ [46] Rizzi, G., Neff, P., Madeo, A.: Metamaterial shields for inner protection and outer tuning through a relaxed micromorphic
3374
+ approach. Philosophical Transactions of the Royal Society A 380(2231) (2022)
3375
+ [47] Sarhil, M., Scheunemann, L., Schr¨oder, J., Neff, P.: Size-effects of metamaterial beams subjected to pure bending: on boundary
3376
+ conditions and parameter identification in the relaxed micromorphic model. arXiv:2210.17117 (2022)
3377
+ [48] Sch¨oberl, J., Zaglmayr, S.: High order N´ed´elec elements with local complete sequence properties. COMPEL - The international
3378
+ Journal for Computation and Mathematics in Electrical and Electronic Engineering 24(2), 374–384 (2005)
3379
+ [49] Schr¨oder, J., Sarhil, M., Scheunemann, L., Neff, P.: Lagrange and H (curl, B) based finite element formulations for the relaxed
3380
+ micromorphic model. Computational Mechanics (2022)
3381
+ [50] Sky, A., Muench, I.: Polytopal templates for the formulation of semi-continuous vectorial finite elements of arbitrary order.
3382
+ arXiv:2210.03525 (2022)
3383
+ [51] Sky, A., Muench, I., Neff, P.: On [H 1]3×3, [H (curl)]3 and H (symCurl) finite elements for matrix-valued Curl problems. Journal
3384
+ of Engineering Mathematics 136(1), 5 (2022)
3385
+ [52] Sky, A., Neunteufel, M., Muench, I., Sch¨oberl, J., Neff, P.: Primal and mixed finite element formulations for the relaxed
3386
+ micromorphic model. Computer Methods in Applied Mechanics and Engineering 399, 115298 (2022)
3387
+ [53] Sky, A., Neunteufel, M., M¨unch, I., Sch¨oberl, J., Neff, P.: A hybrid H 1 × H (curl) finite element formulation for a relaxed
3388
+ micromorphic continuum model of antiplane shear. Computational Mechanics 68(1), 1–24 (2021)
3389
+ [54] Solin, P., Segeth, K., Dolezel, I.: Higher-Order Finite Element Methods (1st ed.). Chapman and Hall/CRC (2003)
3390
+ [55] Voss, J., Baaser, H., Martin, R.J., Neff, P.: More on anti-plane shear. Journal of Optimization Theory and Applications
3391
+ 184(1), 226–249 (2020)
3392
+ [56] Witherden, F., Vincent, P.: On the identification of symmetric quadrature rules for finite element methods. Computers &
3393
+ Mathematics with Applications 69(10), 1232–1241 (2015)
3394
+ [57] Xiao, H., Gimbutas, Z.: A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions.
3395
+ Computers & Mathematics with Applications 59(2), 663–676 (2010)
3396
+ [58] Zaglmayr, S.:
3397
+ High order finite element methods for electromagnetic field computation.
3398
+ Ph.D. thesis, Johannes Kepler
3399
+ Universit¨at Linz (2006). URL https://www.numerik.math.tugraz.at/~zaglmayr/pub/szthesis.pdf
3400
+ 36
3401
+
BdAzT4oBgHgl3EQfh_0J/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CNAzT4oBgHgl3EQfTvwq/content/tmp_files/2301.01253v1.pdf.txt ADDED
@@ -0,0 +1,1062 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Deep Learning for bias-correcting comprehensive
2
+ high-resolution Earth system models
3
+ Philipp Hess1,2, Stefan Lange2, and Niklas Boers1,2,3
4
+ 1Earth System Modelling, School of Engineering & Design, Technical University of Munich,
5
+ Munich, Germany
6
+ 2Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany
7
+ 3Global Systems Institute and Department of Mathematics, University of Exeter, Exeter, UK
8
+ Key Points:
9
+ • A generative adversarial network is shown to improve daily precipitation fields from
10
+ a state-of-the-art Earth system model.
11
+ • Biases in long-term temporal distributions are strongly reduced by the generative
12
+ adversarial network.
13
+ • Our network-based approach can be complemented with quantile mapping to fur-
14
+ ther improve precipitation fields.
15
+ –1–
16
+ arXiv:2301.01253v1 [physics.ao-ph] 16 Dec 2022
17
+
18
+ Abstract
19
+ The accurate representation of precipitation in Earth system models (ESMs) is crucial for
20
+ reliable projections of the ecological and socioeconomic impacts in response to anthropogenic
21
+ global warming. The complex cross-scale interactions of processes that produces precipi-
22
+ tation are challenging to model, however, inducing potentially strong biases in ESM fields,
23
+ especially regarding extremes. State-of-the-art bias correction methods only address errors
24
+ in the simulated frequency distributions locally, at every individual grid cell. Improving
25
+ unrealistic spatial patterns of the ESM output, which would require spatial context, has
26
+ not been possible so far. Here, we show that a post-processing method based on physically
27
+ constrained generative adversarial networks (GANs) can correct biases of a state-of-the-art,
28
+ CMIP6-class ESM both in local frequency distributions and in the spatial patterns at once.
29
+ While our method improves local frequency distributions equally well as gold-standard bias-
30
+ adjustment frameworks it strongly outperforms any existing methods in the correction of
31
+ spatial patterns, especially in terms of the characteristic spatial intermittency of precipita-
32
+ tion extremes.
33
+ 1 Introduction
34
+ Precipitation is a crucial climate variable and changing amounts, frequencies, or spatial
35
+ distributions have potentially severe ecological and socioeconomic impacts.
36
+ With global
37
+ warming projected to continue in the coming decades, assessing the impacts of changes
38
+ in precipitation characteristics is an urgent challenge (Wilcox & Donner, 2007; Boyle &
39
+ Klein, 2010; IPCC, 2021). Climate impact models are designed to assess the impacts of
40
+ global warming on, for example, ecosystems, crop yields, vegetation and other land-surface
41
+ characteristics, infrastructure, water resources, or the economy in general (Kotz et al., 2022),
42
+ using the output of climate or Earth system models (ESMs) as input. Especially for reliable
43
+ assessments of the ecological and socioeconomic impacts, accurate ESM precipitation fields
44
+ to feed the impact models are therefore crucial.
45
+ ESMs are integrated on spatial grids with finite resolution. The resolution is limited
46
+ by the computational resources that are necessary to perform simulations on decadal to
47
+ centennial time scales. Current state-of-the-art ESMs have a horizontal resolution on the
48
+ order of 100km, in exceptional cases going down to 50km. Smaller-scale physical processes
49
+ that are relevant for the generation of precipitation operate on scales below the size of
50
+ individual grid cells. These can therefore not be resolved explicitly in ESMs and have to
51
+ included as parameterizations of the resolved prognostic variables. These include droplet
52
+ interactions, turbulence, and phase transitions in clouds that play a central role in the
53
+ generation of precipitation.
54
+ The limited grid resolution hence introduces errors in the simulated precipitation fields,
55
+ leading to biases in short-term spatial patterns and long-term summary statistics. These
56
+ biases need to be addressed prior to passing the ESM precipitation fields to impact mod-
57
+ els. In particular, climate impact models are often developed and calibrated with input
58
+ data from reanalysis data rather than ESM simulations. These reanalyses are created with
59
+ data assimilation routines and combine various observations with high-resolution weather
60
+ models. They hence provide a much more realistic input than the ESM simulations and
61
+ statistical bias correction methods are necessary to remove biases in the ESM simulations
62
+ output and to make them more similar to the reanalysis data for which the impact models
63
+ are calibrated. Quantile mapping (QM) is a standard technique to correct systematic errors
64
+ in ESM simulations. QM estimates a mapping between distributions from historical sim-
65
+ ulations and observations that can thereafter be applied to future simulations in order to
66
+ provide more accurate simulated precipitation fields to impact models (D´equ´e, 2007; Tong
67
+ et al., 2021; Gudmundsson et al., 2012; Cannon et al., 2015).
68
+ State-of-the-art bias correction methods such as QM are, however, confined to address
69
+ errors in the simulated frequency distributions locally, i.e., at every grid cell individually.
70
+ –2–
71
+
72
+ Unrealistic spatial patterns of the ESM output, which would require spatial context, have
73
+ therefore so far not been addressed by postprocessing methods. For precipitation this is
74
+ particularly important because it has characteristic high intermittency not only in time,
75
+ but also in its spatial patterns. Mulitvariate bias correction approaches have recently been
76
+ developed, aiming to improve spatial dependencies (Vrac, 2018; Cannon, 2018). However,
77
+ these approaches are typically only employed in regional studies, as the dimension of the
78
+ input becomes too large for global high-resolution ESM simulations. Moreover, such meth-
79
+ ods have been reported to suffer from instabilities and overfitting, while differences in their
80
+ applicability and assumptions make them challenging to use (Fran¸cois et al., 2020).
81
+ Here, we employ a recently introduced postprocessing method (Hess et al., 2022) based
82
+ on a cycle-consistent adversarial network (CycleGAN) to consistently improve both local
83
+ frequency distributions and spatial patterns of state-of-art high-resolution ESM precipita-
84
+ tion fields. Artificial neural networks from computer vision and image processing have been
85
+ successfully applied to various tasks in Earth system science, ranging from weather forecast-
86
+ ing (Weyn et al., 2020; Rasp & Thuerey, 2021) to post-processing (Gr¨onquist et al., 2021;
87
+ Price & Rasp, 2022), by extracting spatial features with convolutional layers (LeCun et al.,
88
+ 2015). Generative adversarial networks (Goodfellow et al., 2014) in particular have emerged
89
+ as a promising architecture that produces sharp images that are necessary to capture the
90
+ high-frequency variability of precipitation (Ravuri et al., 2021; Price & Rasp, 2022; Harris et
91
+ al., 2022). GANs have been specifically developed to be trained on unpaired image datasets
92
+ (Zhu et al., 2017). This makes them a natural choice for post-processing the output of cli-
93
+ mate projections, which – unlike weather forecasts – are not nudged to follow the trajectory
94
+ of observations; due to the chaotic nature of the atmosphere small deviations in the initial
95
+ conditions or parameters lead to exponentially diverging trajectories (Lorenz, 1996). As a
96
+ result, numerical weather forecasts lose their deterministic forecast skill after approximately
97
+ two weeks at most and century-scale climate simulations do not agree with observed daily
98
+ weather records. Indeed the task of climate models is rather to produce accurate long-term
99
+ statistics that to agree with observations.
100
+ We apply our CycleGAN approach to correct global high-resolution precipitation simu-
101
+ lations of the GFDL-ESM4 model (Krasting et al., 2018) as a representative ESM from the
102
+ Climate Model Intercomparison Project phase 6 (CMIP6). So far, GANs-based approaches
103
+ have only been applied to postprocess ESM simulations either in a regional context (Fran¸cois
104
+ et al., 2021), or to a very-low-resolution global ESM (Hess et al., 2022). We show here that
105
+ a suitably designed CycleGAN is capable of improving even the distributions and spatial
106
+ patterns of precipitation fields from a state-of-the-art comprehensive ESM, namely GFDL-
107
+ ESM4. In particular, in contrast to rather specific existing methods for postprocessing ESM
108
+ output for climate impact modelling, we will show that the CycleGAN is general and can
109
+ readily be applied to different ESMs and observational datasets used as ground truth.
110
+ In order to assure that physical conservation laws are not violated by the GAN-based
111
+ postprocessing, we include a suitable physical constraint, enforcing that the overall global
112
+ sum of daily precipitation values is not changed by the GAN-based transformations; es-
113
+ sentially, this assures that precipitation is only spatially redistributed (see Methods). By
114
+ framing bias correction as an image-to-image translation task, our approach corrects both
115
+ spatial patterns of daily precipitation fields on short time scales and temporal distributions
116
+ aggregated over decadal time scales. We evaluate the skill to improve spatial patterns and
117
+ temporal distributions against the gold-standard ISIMIP3BASD framework (Lange, 2019),
118
+ which relies strongly on QM.
119
+ Quantifying the “realisticness” of spatial precipitation patterns is a key problem in
120
+ current research (Ravuri et al., 2021). We use spatial spectral densities and the fractal
121
+ dimension of spatial patterns as a measure to quantify the similarity of intermittent and un-
122
+ paired precipitation fields. We will show that our CycleGAN is indeed spatial context-aware
123
+ and strongly improves the characteristic intermittency in spatial precipitation patterns. We
124
+ –3–
125
+
126
+ will also show that our CycleGAN combined with a subseqeunt application of ISIMIP3BASD
127
+ routine leads to the best overall performance.
128
+ 2 Results
129
+ We evaluate our CycleGAN method on two different tasks and time scales. First, the
130
+ correction of daily rainfall frequency distributions at each grid cell locally, aggregated from
131
+ decade-long time series. Second, we quantify the ability to improve spatial patterns on daily
132
+ time scales. Our GAN approach is compared to the raw GFDL-ESM4 model output, as well
133
+ as to the ISIMIP3BASD methodology applied to the GFDL-ESM4 output.
134
+ 2.1 Temporal distributions
135
+ 10
136
+ 6
137
+ 10
138
+ 5
139
+ 10
140
+ 4
141
+ 10
142
+ 3
143
+ 10
144
+ 2
145
+ 10
146
+ 1
147
+ 100
148
+ Histogram
149
+ a
150
+ 0
151
+ 98.4
152
+ 99.7
153
+ 99.94
154
+ 99.98
155
+ 99.993
156
+ 99.997
157
+ W5E5v2 precipitation percentiles
158
+ W5E5v2
159
+ GFDL-ESM4
160
+ ISIMIP3BASD
161
+ GAN
162
+ GAN (unconstrained)
163
+ GAN-ISIMIP3BASD
164
+ 0
165
+ 25
166
+ 50
167
+ 75
168
+ 100
169
+ 125
170
+ 150
171
+ Precipitation [mm/d]
172
+ 10
173
+ 8
174
+ 10
175
+ 7
176
+ 10
177
+ 6
178
+ 10
179
+ 5
180
+ 10
181
+ 4
182
+ 10
183
+ 3
184
+ 10
185
+ 2
186
+ 10
187
+ 1
188
+ Absolute error
189
+ b
190
+ Figure
191
+ 1: Histograms of relative precipitation frequencies over the entire globe and test
192
+ period (2004-2014). (a) The histograms are shown for the W5E5v2 ground truth (black),
193
+ GFDL-ESM4 (red), ISIMIP3BASD (magenta), GAN (cyan), unconstrained GAN (orange),
194
+ and the constrained-GAN-ISIMIP3BASD combination (blue).
195
+ (b) Distances of the his-
196
+ tograms to the W5E5v2 ground truth are shown for the same models as in (a). Percentiles
197
+ corresponding to the W5E5v2 precipitation values are given on the second x-axis at the
198
+ top. Note that GFDL-ESM4 overestimates the frequencies of strong and extreme rainfall
199
+ events. All compared methods show similar performance in correcting the local frequency
200
+ distributions.
201
+ –4–
202
+
203
+ We compute global histograms of relative precipitation frequencies using daily time
204
+ series (Fig. 1a). The GFDL-ESM4 model overestimates frequencies in the tail, namely for
205
+ events above 50 mm/day (i.e., the 99.7th percentile). Our GAN-based method as well as
206
+ ISIMIP3BASD and the GAN-ISIMIP3BASD combination correct the histogram to match
207
+ the W5E5v2 ground truth equally well, as can be also seen in the absolute error of the
208
+ histograms (Fig. 1b).
209
+ Comparing the differences in long-term averages of precipitation per grid cell (Fig. 2
210
+ and Methods), large biases are apparent in the GFDL-ESM4 model output, especially in
211
+ the tropics. The double-peaked Intertropical Convergence Zone (ITCZ) bias is visible. The
212
+ double-ITCZ bias can also be inferred from the latitudinal profile of the precipitation mean
213
+ in Fig. 3.
214
+ Table 1 summarizes the annual biases shown in Fig. 2 as absolute averages, and addi-
215
+ tionally for the four seasons. The GAN alone reduces the annual bias of the GFDL-ESM4
216
+ model by 38.7%. The unconstrained GAN performs better than the physically constrained
217
+ one, with bias reductions of 50.5%. As expected, the ISIMIP3BASD gives even better results
218
+ for correcting the local mean, since it is specifically designed to accurately transform the
219
+ local frequency distributions. It is therefore remarkable that applying the ISIMIP3BASD
220
+ procedure on the constrained GAN output improves the post-processing further, leading to
221
+ a local bias reduction of the mean by 63.6%, compared to ISIMIP3BASD with 59.4%. For
222
+ seasonal time series the order in which the methods perform is the same as for the annual
223
+ data.
224
+ Besides the error in the mean, we also compute differences in the 95th percentile for each
225
+ grid cell, shown in Fig. S1 and as mean absolute errors in Table 1. Also in this case of heavy
226
+ precipitation values we find that ISIMIP3BASD outperforms the GAN, but that combining
227
+ GAN and ISIMIP3BASD leads to best agreement of the locally computed quantiles.
228
+ Table 1: The globally averaged absolute value of the grid cell-wise difference in the long-
229
+ term precipitation average, as well as the 95th percentile, between the W5E5v2 ground truth
230
+ and GFDL-ESM4, ISIMIP3BASD, GAN, unconstrained GAN, and the GAN-ISIMIP3BASD
231
+ combination for annual and seasonal time series (in [mm/day]). The relative improvement
232
+ over the raw GFDL-ESM4 climate model output is shown as percentages for each method.
233
+ Season
234
+ Percentile
235
+ GFDL-
236
+ ESM4
237
+ ISIMIP3-
238
+ BASD
239
+ %
240
+ GAN
241
+ %
242
+ GAN
243
+ (unconst.)
244
+ %
245
+ GAN-
246
+ ISIMIP3-
247
+ BASD
248
+ %
249
+ Annual
250
+ -
251
+ 0.535
252
+ 0.217
253
+ 59.4
254
+ 0.328
255
+ 38.7
256
+ 0.265
257
+ 50.5
258
+ 0.195
259
+ 63.6
260
+ DJF
261
+ -
262
+ 0.634
263
+ 0.321
264
+ 49.4
265
+ 0.395
266
+ 37.7
267
+ 0.371
268
+ 41.5
269
+ 0.308
270
+ 51.4
271
+ MAM
272
+ -
273
+ 0.722
274
+ 0.314
275
+ 56.5
276
+ 0.419
277
+ 42.0
278
+ 0.378
279
+ 47.6
280
+ 0.285
281
+ 60.5
282
+ JJA
283
+ -
284
+ 0.743
285
+ 0.289
286
+ 61.1
287
+ 0.451
288
+ 39.3
289
+ 0.357
290
+ 52.0
291
+ 0.280
292
+ 62.3
293
+ SON
294
+ -
295
+ 0.643
296
+ 0.327
297
+ 49.1
298
+ 0.409
299
+ 36.4
300
+ 0.362
301
+ 43.7
302
+ 0.306
303
+ 52.4
304
+ Annual
305
+ 95th
306
+ 2.264
307
+ 1.073
308
+ 52.6
309
+ 1.415
310
+ 37.5
311
+ 1.213
312
+ 46.4
313
+ 0.945
314
+ 58.3
315
+ DJF
316
+ 95th
317
+ 2.782
318
+ 1.496
319
+ 46.2
320
+ 1.725
321
+ 38.0
322
+ 1.655
323
+ 40.5
324
+ 1.432
325
+ 48.5
326
+ MAM
327
+ 95th
328
+ 2.948
329
+ 1.482
330
+ 49.7
331
+ 1.805
332
+ 38.8
333
+ 1.661
334
+ 43.7
335
+ 1.337
336
+ 54.6
337
+ JJA
338
+ 95th
339
+ 2.944
340
+ 1.366
341
+ 53.6
342
+ 1.852
343
+ 37.1
344
+ 1.532
345
+ 48.0
346
+ 1.247
347
+ 57.6
348
+ SON
349
+ 95th
350
+ 2.689
351
+ 1.495
352
+ 44.4
353
+ 1.741
354
+ 35.3
355
+ 1.592
356
+ 40.8
357
+ 1.366
358
+ 49.2
359
+ –5–
360
+
361
+ Figure
362
+ 2: Bias in the long-term average precipitation over the entire test set between
363
+ the W5E5v2 ground truth (a) and GFDL-ESM4 (b), ISIMIP3BASD (c), GAN (d), uncon-
364
+ strained GAN (e) and the GAN-ISIMIP3BASD combination (f).
365
+ 2.2 Spatial patterns
366
+ We compare the ability of the GAN to improve spatial patterns based on the W5E5v2
367
+ ground truth, against the GFDL-ESM4 simulations and the ISIMIP3BASD method applied
368
+ to the GFDL-ESM4 simulations. To model realistic precipitation fields, the characteristic
369
+ spatial intermittency needs to be captured accurately.
370
+ We compute the spatial power spectral density (PSD) of global precipitation fields,
371
+ averaged over the test set for each method. GFDL-ESM4 shows noticeable deviations from
372
+ W5E5v2 in the PSD (Fig. 4). Our GAN can correct these over the entire range of wave-
373
+ –6–
374
+
375
+ W5E5v2 mean [mm/d]
376
+ GFDL-ESM4
377
+ a
378
+ b
379
+ N.09
380
+
381
+ S.09
382
+ 0
383
+ ISIMIP3BASD
384
+ GAN
385
+ N.09
386
+
387
+ 60°S
388
+ GAN (unconstrained)
389
+ GAN-ISIMIP3BASD
390
+ e
391
+ f
392
+ N.09
393
+
394
+ S.09
395
+ 120°W
396
+ 60°W
397
+ 0
398
+ 60°E
399
+ 120°E
400
+ 120°W
401
+ 60°W
402
+
403
+ 60°E
404
+ 120°E
405
+ 7.5
406
+ -7.5 -5.0 -2.5
407
+ 0.0
408
+ 2.5
409
+ 5.0
410
+ Bias [mm/d]80 S
411
+ 60 S
412
+ 40 S
413
+ 20 S
414
+ 0
415
+ 20 N
416
+ 40 N
417
+ 60 N
418
+ 80 N
419
+ Latitude
420
+ 0
421
+ 1
422
+ 2
423
+ 3
424
+ 4
425
+ 5
426
+ 6
427
+ 7
428
+ Mean precipitation [mm/d]
429
+ W5E5v2
430
+ GFDL-ESM4: MAE = 0.241
431
+ ISIMIP3BASD: MAE = 0.120
432
+ GAN: MAE = 0.226
433
+ GAN (unconstrained): MAE = 0.102
434
+ GAN-ISIMIP3BASD: MAE = 0.068
435
+ Figure
436
+ 3: Precipitation averaged over longitudes and the entire test set period from the
437
+ W5E5v2 ground truth (black) and GFDL-ESM4 (red), ISIMIP3BASD (magenta), GAN
438
+ (cyan), unconstrained GAN (orange) and the GAN-ISIMIP3BASD combination (blue). To
439
+ quantify the differences between the shown lines, we show their mean absolute error w.r.t
440
+ the W5E5v2 ground truth in the legend. These values are different from the ones shown in
441
+ Table 1 as the average is taken here over the longitudes without their absolute value. The
442
+ GAN-ISIMIP3BASD approach shows the lowest error.
443
+ lengths, closely matching the W5E5v2 ground truth. Improvements over ISIMIP3BASD
444
+ are especially pronounced in the range of high frequencies (low wavelengths), which are
445
+ responsible for the intermittent spatial variability of daily precipitation fields. Adding the
446
+ physical constraint to the GAN does not affect the ability to produce realistic PSD distribu-
447
+ tions. After applying ISIMIP3BASD to the GAN-processed fields, most of the improvements
448
+ generated by the GAN are retained, as shown by the GAN-ISIMIP3BASD results.
449
+ For a second way to quantifying how realistic the simulated and post-processed pre-
450
+ cipitation fields are, with a focus on high-frequency spatial intermittency, we investigate
451
+ the fractal dimension (Edgar & Edgar, 2008) of the lines separating grid cells with daily
452
+ rainfall sums above and below a given quantile threshold (see Methods). For a sample and
453
+ qualitative comparison of precipitation fields over the South American continent see Fig. S2.
454
+ The daily spatial precipitation fields are first converted to binary images using a quantile
455
+ threshold. The respective quantiles are determined from the precipitation distribution over
456
+ the entire test set period and globe. The mean of the fractal dimension computed with box-
457
+ counting (see Methods) (Lovejoy et al., 1987; Meisel et al., 1992; Husain et al., 2021) for each
458
+ time slice is then investigated (Fig. 5). Both the GFDL-ESM4 simulations themselves and
459
+ the results of applying the ISIMIP3BASD post-processing to them exhibit spatial patterns
460
+ with a lower fractal dimension than the W5E5v2 ground truth, implying too low spatial
461
+ intermittency. In contrast, the GAN translates spatial fields simulated by GFDL-ESM4 in
462
+ a way that results in closely matching fractal dimensions over the entire range of quantiles.
463
+ 3 Discussion
464
+ Postprocessing climate projections is a fundamentally different task from postprocessing
465
+ weather forecast simulations (Hess et al., 2022). In the latter case, data-driven postprocess-
466
+ ing methods, e.g. based on deep learning, to minimize differences between paired samples
467
+ –7–
468
+
469
+ 128
470
+ 256
471
+ 512
472
+ 1024
473
+ 2048
474
+ 4096
475
+ 8192
476
+ Wavelength [km]
477
+ 10
478
+ 6
479
+ 10
480
+ 5
481
+ 10
482
+ 4
483
+ 10
484
+ 3
485
+ 10
486
+ 2
487
+ PSD [a.u]
488
+ W5E5v2
489
+ GFDL-ESM4
490
+ ISIMIP3BASD
491
+ GAN
492
+ GAN (unconstrained)
493
+ GAN-ISIMIP3BASD
494
+ Figure 4: The power spectral density (PSD) of the spatial precipitation fields is shown as
495
+ an average over all samples in the test set for the W5E5v2 ground truth (black) and GFDL-
496
+ ESM4 (red), ISIMIP3BASD (magenta), GAN (cyan, dashed), unconstrained GAN (orange,
497
+ dashed-dotted) and the constrained-GAN-ISIMIP3BASD combination (blue, dotted). The
498
+ GANs and W5E5v2 ground truth agree so closely that they are indistinguishable. In contrast
499
+ to ISIMIP3BASD, the GAN can correct the intermittent spectrum accurately over the entire
500
+ range down to the smallest wavelengths.
501
+ of variables such as spatial precipitation fields (Hess & Boers, 2022). Beyond time scales of
502
+ a few days, however, the chaotic nature of the atmosphere leads to exponentially diverging
503
+ trajectories, and for climate or Earth system model output there is no observation-based
504
+ ground truth to directly compare to. We therefore frame the post-processing of ESM projec-
505
+ tions, with applications for subsequent 195 impact modelling in mind, as an image-to-image
506
+ translation task with unpaired samples.
507
+ To this end we apply a recently developed postprocessing method based on physically
508
+ constrained CycleGANs to global simulations of a state-of-the-art, high-resolution ESM
509
+ from the CMIP6 model ensemble, namely the GFDL-ESM4 (Krasting et al., 2018; O' Neill
510
+ et al., 2016). We evaluate our method against the gold-standard bias correction framework
511
+ ISIMIP3BASD. Our model can be trained on unpaired samples that are characteristic for
512
+ climate simulations. It is able to correct the ESM simulations in two regards: temporal
513
+ distributions over long time scales, including extremes in the distrivutions’ tails, as well
514
+ as spatial patterns of individual global snap shots of the model output. The latter is not
515
+ possible with established methods.
516
+ Our GAN-based approach is designed as a general
517
+ framework that can be readily applied to different ESMs and observational target datasets.
518
+ This is in contrast to existing bias-adjustment methods that are often tailored to specific
519
+ applications.
520
+ We chose to correct precipitation because it is arguably one of the hardest variables
521
+ to represent accurately in ESMs. So far, GANs have only been applied to regional studies
522
+ or low-resolution global ESMs (Fran¸cois et al., 2021; Hess et al., 2022). The GFDL-ESM4
523
+ model simulations are hence chosen in order to test if our CycleGAN approach would lead
524
+ –8–
525
+
526
+ 0.4
527
+ 0.5
528
+ 0.6
529
+ 0.7
530
+ 0.8
531
+ 0.9
532
+ Quantile
533
+ 1.3
534
+ 1.4
535
+ 1.5
536
+ 1.6
537
+ 1.7
538
+ Fractal dimension
539
+ W5E5v2
540
+ GFDL-ESM4: MAE = 0.048
541
+ ISIMIP3BASD: MAE = 0.037
542
+ GAN: MAE = 0.002
543
+ GAN (unconstrained): MAE = 0.002
544
+ GAN-ISIMIP3BASD: MAE = 0.004
545
+ Figure 5: The fractal dimension (see Methods) of binary global precipitation fields is com-
546
+ pared as averages for different quantile thresholds.
547
+ Results are shown for the W5E5v2
548
+ ground truth (black) and GFDL-ESM4 (red), ISIMIP3BASD (magenta), GAN (cyan), un-
549
+ constrained GAN (orange, dashed), and the GAN-ISIMIP3BASD combination (blue). The
550
+ GAN can accurately reproduce the fractal dimension of the W5E5v2 ground truth spatial
551
+ precipitation fields over all quantile thresholds, clearly outperforming the ISIMIP3BASD
552
+ basline.
553
+ to improvements even when postprocessing global high-resolution simulations of one of the
554
+ most complex and sophisticated ESMs to date. In the same spirit, we evaluate our ap-
555
+ proach against a very strong baseline given by the state-of-the-art bias correction framework
556
+ ISIMIP3BASD, which is based on a trend-preserving QM method (Lange, 2019).
557
+ Comparing long-term summary statistics, our method yields histograms of relative pre-
558
+ cipitation frequencies that very closely agree with corresponding histograms from reanalysis
559
+ data (Fig. 1). The means that the extremes in the far end of the tail are accurately cap-
560
+ tured, with similar skill to the ISIMIP3BASD baseline that is mainly designed for this task.
561
+ Differences in the grid cell-wise long-term average show that the GAN skillfully reduces bi-
562
+ ases (Fig. 2); in particular, the often reported double-peaked ITCZ bias of the GFDL-ESM4
563
+ simulations, which is a common feature of most climate models (Tian & Dong, 2020), is
564
+ strongly reduced (Fig. 3). The ISIMIP3BASD method - being specifically designed for this
565
+ - produces slightly lower biases for grid-cell-wise averages than the GAN; we show that
566
+ combining both methods by first applying the GAN and then the ISIMIP3BASD procedure
567
+ leads to the overall best performance.
568
+ Regarding the correction of spatial patterns of the modelled precipitation fields, we
569
+ compare the spectral density and fractal dimensions of the spatial precipitation fields. Our
570
+ results show that indeed only the GAN can capture the characteristic spatial intermittency
571
+ of precipitation closely (Figs. 4 and 5). We believe that the measure of fractal dimension
572
+ is also relevant for other fields such as nowcasting and medium-range weather forecasting,
573
+ where blurriness in deep learning-based predictions is often reported (Ravuri et al., 2021)
574
+ and needs to be further quantified.
575
+ –9–
576
+
577
+ Post-processing methods for climate projections have to be able to preserve the trends
578
+ that result from the non-stationary dynamics of the Earth system on long-time scales. We
579
+ have therefore introduced the architecture constraint of preserving the global precipitation
580
+ amount on every day in the climate model output (Hess et al., 2022). We find that this does
581
+ not affect the quality of the spatial patterns that are produced by our CycleGAN method.
582
+ However, the skill of correcting mean error biases is slightly reduced by the constraint. This
583
+ can be expected in part as the constraint is constructed to follow the global mean of the
584
+ ESM. Hence, biases in the global ESM mean can influence the constrained GAN. This also
585
+ motivates our choice to demonstrate the combination of the constrained GAN with the QM-
586
+ based ISIMIP3BASD procedure, since it can be applied to future climate scenarios, making
587
+ it more suitable for actual applications than the unconstrained architecture.
588
+ There are several directions to further develop or approach. The architecture employed
589
+ here has been built for equally spaced two-dimensional images. Extending the CycleGAN
590
+ architecture to perform convolutions on the spherical surface, e.g. using graph neural net-
591
+ works, might lead to more efficient and accurate models. Moreover, GANs are comparably
592
+ difficult to train, which could make it challenging to identify suitable network architectures.
593
+ Using large ensembles of climate simulations could provide additional training data that
594
+ could further improve the performance. Another straightforward extension of our method
595
+ would be the inclusion of further input variables or the prediction additional high-impact
596
+ physical variables, such as near-surface temperatures that are also important for regional
597
+ impact models.
598
+ 4 Methods
599
+ 4.1 Training data
600
+ We use global fields of daily precipitation with a horizontal resolution of 1◦ from the
601
+ GFDL-ESM4 Earth system model (Krasting et al., 2018) and the W5E5v2 reanalysis prod-
602
+ uct (Cucchi et al., 2020; WFDE5 over land merged with ERA5 over the ocean (W5E5 v2.0),
603
+ 2021) as observation-based ground truth.
604
+ The W5E5v2 dataset is based on the ERA5
605
+ (Hersbach et al., 2020) reanalysis and has been bias-adjusted using the Global Precipitation
606
+ Climatology Centre (GPCC) full data monthly product v2020 (Schneider et al., 2011) over
607
+ land and the Global Precipitation Climatology Project (GPCP) v2.3 dataset (Huffman et
608
+ al., 1997) over the ocean. Both datasets have been regridded to the same 1◦ horizontal
609
+ resolution using bilinear interpolation following (Beck et al., 2019). We split the dataset
610
+ into three periods for training (1950-2000), validation (2001-2003), and testing (2004-2014).
611
+ This corresponds to 8030 samples for training, 1095 for validation, and 4015 for testing.
612
+ During pre-processing, the training data is log-transformed with ˜x = log(x+ϵ)−log(ϵ) with
613
+ ϵ = 0.0001, following Rasp and Thuerey (2021), to account for zeros in the transform. The
614
+ data is then normalized to the interval [−1, 1] following (Zhu et al., 2017).
615
+ 4.2 Cycle-consistent generative adversarial networks
616
+ This section gives a brief overview of the CycleGAN used in this study. We refer to
617
+ (Zhu et al., 2017; Hess et al., 2022) for a more comprehensive description and discussion.
618
+ Generative adversarial networks learn to generate images that are nearly indistinguishable
619
+ from real-world examples through a two-player game (Goodfellow et al., 2014).
620
+ In this
621
+ set-up, a first network G, the so-called generator, produces images with the objective to
622
+ fool a second network D, the discriminator, which has to classify whether a given sample
623
+ is generated (“fake”) or drawn from a real-world dataset (“real”). Mathematically this can
624
+ be formalized as
625
+ G∗ = min
626
+ G
627
+ max
628
+ D
629
+ LGAN(D, G),
630
+ (1)
631
+ –10–
632
+
633
+ with G∗ being the optimal generator network. The loss function LGAN(D, G) can be defined
634
+ as
635
+ LGAN(D, G) = Ey∼py(y)[log(D(y))] + Ex∼px(x)[log(1 − D(G(x)))],
636
+ (2)
637
+ where py(y) is the distribution of the real-world target data and samples from px(x) are
638
+ used as inputs by G to produce realistic images. The CycleGAN (Zhu et al., 2017) consists
639
+ of two generator-discriminator pairs, where the generators G and F learn inverse mappings
640
+ between two domains X and Y . This allows to define an additional cycle-consistency loss
641
+ that constraints the training of the networks, i.e.
642
+ Lcycle(G, F) = Ex∼px(x)[||F(G(x)) − x||1]
643
+ (3)
644
+ + Ey∼py(y)[||G(F(y)) − y||1].
645
+ It measures the error caused by a translation cycle of an image to the other domain and
646
+ back. Further, an additional loss term is introduced to regularize the networks to be close
647
+ to an identity mapping with,
648
+ Lident(G, F) = Ex∼px(x)[||G(x) − x||1]
649
+ (4)
650
+ + Ey∼py(y)[||F(y) − y||1].
651
+ In practice, the log-likelihood loss can be replaced by a mean squared error loss to facilitate
652
+ a more stable training.
653
+ Further, the generator loss is reformulated to be minimized by
654
+ inverting the labels, i.e.
655
+ LGenerator = Ex∼px(x)[(DX(G(x)) − 1)2]
656
+ + Ey∼py(y)[(DY (F(y)) − 1)2]
657
+ (5)
658
+ + λLcycle(G, F) + ˜λLident(G, F),
659
+ where λ and ˜λ are set to 10 and 5 respectively following (Zhu et al., 2017). The corresponding
660
+ loss term for the discriminator networks is given by
661
+ LDiscriminator = Ey∼py(y)[(DY (y) − 1)2] + Ex∼px(x)[(DX(G(x)))2]
662
+ (6)
663
+ + Ex∼px(x)[(DX(x) − 1)2] + Ey∼py(y)[(DY (F(y)))2].
664
+ (7)
665
+ The weights of the generator and discriminator networks are then optimized with the ADAM
666
+ (Kingma & Ba, 2014) optimizer using a learning rate of 2e−4 and updated in an alternating
667
+ fashion. We train the network for 350 epochs and a batch size of 1, saving model checkpoints
668
+ every other epoch. We evaluate the checkpoints on the validation dataset to determine the
669
+ best model instance.
670
+ 4.3 Network Architectures
671
+ Both the generator and discriminator have fully convolutional architectures. The gen-
672
+ erator uses ReLU activation functions, instance normalization, and reflection padding. The
673
+ discriminator uses leaky ReLU activations with slope 0.2 instead, together with instance
674
+ normalization. For a more detailed description, we refer to our previous study (Hess et al.,
675
+ 2022). The network architectures in this study are the same, only with a change in the
676
+ number of residual layers in the generator network from 6 to 7.
677
+ The final layer of the generator can be constrained to preserve the global sum of the
678
+ input, i.e. by rescaling
679
+ ˜yi = yi
680
+ �Ngrid
681
+ i
682
+ xi
683
+ �Ngrid
684
+ i
685
+ yi
686
+ ,
687
+ (8)
688
+ –11–
689
+
690
+ where xi and yi are grid cell values of the generator input and output respectively and
691
+ Ngrid is the number of grid cells. The generator without this constraint will be referred
692
+ to as unconstrained in this study. The global physical constraint enforces that the global
693
+ daily precipitation sum is not affected by the CycleGAN postprocessing and hence remains
694
+ identical to the original value from the GFDL-ESM4 simualtions. This is motivated by the
695
+ observation that large-scale average trends in precipitation follow the Clausius-Clapeyron
696
+ relation (Traxl et al., 2021), which is based on thermodynamic relations and hence can be
697
+ expected to be modelled well in GFDL-ESM4.
698
+ 4.4 Quantile mapping-based bias adjustment
699
+ We compare the performance of our GAN-based method to the bias adjustment method
700
+ ISMIP3BASD v3.0.1 (Lange, 2019, 2022) that has been developed for phase 3 of the Inter-
701
+ Sectoral Impact Model Intercomparison Project (Warszawski et al., 2014; Frieler et al.,
702
+ 2017). This state-of-the-art bias-adjustment method is based on a trend-preserving quantile
703
+ mapping (QM) framework. It represents a very strong baseline for comparison as it has
704
+ been developed prior to this study and used not only in ISIMIP3 but also to prepare many
705
+ of the climate projections that went into the Interactive Atlas produced as part of the 6th
706
+ assessment report of working group 1 of the Intergovernmental Panel on Climate Change
707
+ (IPCC, https://interactive-atlas.ipcc.ch/). In QM, a transformation between the cumulative
708
+ distribution functions (CDFs) of the historical simulation and observations is fitted and then
709
+ applied to future simulations. The CDFs can either be empirical or parametric, the latter
710
+ being a Bernoulli-gamma distribution for the precipitation in this study. The CFDs are
711
+ fitted and mapped for each grid cell and day of the year separately. For bias-adjusting the
712
+ GFDL-ESM4 simulation, parametric QM was found to give the best results, while empirical
713
+ CDFs are used in combination with the GAN.
714
+ To evaluate the methods in this study we define the grid cell-wise bias as the difference
715
+ in long-term averages as,
716
+ Bias(ˆy, y) = 1
717
+ T
718
+ T
719
+
720
+ t=1
721
+ ˆyt − 1
722
+ T
723
+ T
724
+
725
+ t=1
726
+ yt,
727
+ (9)
728
+ where T is the number of time steps, ˆyt and ˆyt the modelled and observed precipitation
729
+ respectively at time step t.
730
+ 4.5 Evaluating spatial patterns
731
+ Quantifying how realistic spatial precipitation fields are is an ongoing research question
732
+ in itself, which has become more important with the application of deep learning to weather
733
+ forecasting and post-processing. In these applications, neural networks often achieve error
734
+ statistics and skill scores competitive with physical models, while the output fields can
735
+ at the same time show unphysical characteristics, such as blurring or excessive smoothing.
736
+ Ravuri et al. (2021) compare the spatial intermittency, which is characteristic of precipitation
737
+ fields, using the power spectral density (PSD) computed from the spatial fields; in the latter
738
+ study, the PSD-based quantification was complemented by interviews with a large number
739
+ of meteorological experts. We propose the fractal dimension of binary precipitation fields
740
+ as an alternative to quantify how realistic the patterns are.
741
+ We compute the fractal dimension via the box-counting algorithm (Lovejoy et al., 1987;
742
+ Meisel et al., 1992). It quantifies how spatial patterns, for example coastlines (Husain et
743
+ al., 2021), change with the scale of measurement. The box-counting algorithm divides the
744
+ image into squares and counts the number of squares that cover the binary pattern of
745
+ interest, Nsquares. The size of the squares, i.e. the scale of measurement, is then reduced
746
+ iteratively by a factor s. The fractal dimension Dfractal can then be determined from the
747
+ slope of the resulting log-log scaling, i.e.,
748
+ –12–
749
+
750
+ Dfractal = log(Nsquares)
751
+ log(s)
752
+ .
753
+ (10)
754
+ Competing interests
755
+ The authors declare no competing interests.
756
+ Data availability
757
+ The W5E5 data is available for download at https://doi.org/10.48364/ISIMIP.342217.
758
+ The GFDL-ESM4 data can be downloaded at https://esgf-node.llnl.gov/projects/
759
+ cmip6/.
760
+ Code availability
761
+ The Python code for processing and analysing the data, together with the PyTorch
762
+ Lightning (Falcon et al., 2019) code is available at https://github.com/p-hss/earth
763
+ system model gan bias correction.git. The ISIMIP3BASD code in (Lange, 2022) is
764
+ used for this study.
765
+ Acknowledgments
766
+ NB and PH acknowledge funding by the Volkswagen Foundation, as well as the European
767
+ Regional Development Fund (ERDF), the German Federal Ministry of Education and Re-
768
+ search and the Land Brandenburg for supporting this project by providing resources on the
769
+ high performance computer system at the Potsdam Institute for Climate Impact Research.
770
+ N.B. acknowledges funding by the European Union’s Horizon 2020 research and innovation
771
+ programme under grant agreement No 820970 and under the Marie Sklodowska-Curie grant
772
+ agreement No. 956170, as well as from the Federal Ministry of Education and Research
773
+ under grant No. 01LS2001A. SL acknowledges funding from the European Union’s Horizon
774
+ 2022 research and innovation programme under grant agreement no. 101081193 Optimal
775
+ High Resolution Earth System Models for Exploring Future Climate Changes (OptimESM).
776
+ References
777
+ Beck, H. E., Wood, E. F., Pan, M., Fisher, C. K., Miralles, D. G., Van Dijk, A. I., . . .
778
+ Adler, R. F. (2019). MSWEP V2 global 3-hourly 0.1◦ precipitation: methodology
779
+ and quantitative assessment. Bulletin of the American Meteorological Society, 100(3),
780
+ 473–500. doi: 10.1175/BAMS-D-17-0138.1
781
+ Boyle, J., & Klein, S. A. (2010). Impact of horizontal resolution on climate model forecasts
782
+ of tropical precipitation and diabatic heating for the TWP-ICE period. Journal of
783
+ Geophysical Research: Atmospheres, 115(D23). doi: 10.1029/2010JD014262
784
+ Cannon, A. J. (2018). Multivariate quantile mapping bias correction: an n-dimensional
785
+ probability density function transform for climate model simulations of multiple vari-
786
+ ables. Climate dynamics, 50(1), 31–49.
787
+ Cannon, A. J., Sobie, S. R., & Murdock, T. Q. (2015). Bias correction of GCM precipi-
788
+ tation by quantile mapping: How well do methods preserve changes in quantiles and
789
+ extremes? Journal of Climate, 28(17), 6938–6959. doi: 10.1175/JCLI-D-14-00754.1
790
+ Cucchi, M., Weedon, G. P., Amici, A., Bellouin, N., Lange, S., M¨uller Schmied, H.,
791
+ . . . Buontempo, C. (2020). Wfde5: bias-adjusted era5 reanalysis data for impact
792
+ studies. Earth System Science Data, 12(3), 2097–2120. Retrieved from https://
793
+ essd.copernicus.org/articles/12/2097/2020/ doi: 10.5194/essd-12-2097-2020
794
+ –13–
795
+
796
+ D´equ´e, M. (2007). Frequency of precipitation and temperature extremes over France in an
797
+ anthropogenic scenario: Model results and statistical correction according to observed
798
+ values. Global and Planetary Change, 57(1-2), 16–26.
799
+ Edgar, G. A., & Edgar, G. A. (2008). Measure, topology, and fractal geometry (Vol. 2).
800
+ Springer.
801
+ Falcon, W., et al. (2019). PyTorch Lightning. GitHub repository. Retrieved from https://
802
+ github.com/PyTorchLightning/pytorch-lightning
803
+ Fran¸cois, B., Vrac, M., Cannon, A. J., Robin, Y., & Allard, D. (2020). Multivariate bias
804
+ corrections of climate simulations: which benefits for which losses? Earth System Dy-
805
+ namics, 11(2), 537–562. Retrieved from https://esd.copernicus.org/articles/
806
+ 11/537/2020/ doi: 10.5194/esd-11-537-2020
807
+ Fran¸cois, B., Thao, S., & Vrac, M. (2021). Adjusting spatial dependence of climate model
808
+ outputs with cycle-consistent adversarial networks. Climate Dynamics, 57(11), 3323–
809
+ 3353.
810
+ Frieler, K., Lange, S., Piontek, F., Reyer, C. P., Schewe, J., Warszawski, L., . . . others
811
+ (2017).
812
+ Assessing the impacts of 1.5 c global warming–simulation protocol of the
813
+ inter-sectoral impact model intercomparison project (isimip2b). Geoscientific Model
814
+ Development, 10(12), 4321–4345.
815
+ Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., . . .
816
+ Bengio, Y.
817
+ (2014).
818
+ Generative adversarial nets.
819
+ Advances in neural information
820
+ processing systems, 27.
821
+ Gr¨onquist, P., Yao, C., Ben-Nun, T., Dryden, N., Dueben, P., Li, S., & Hoefler, T. (2021).
822
+ Deep learning for post-processing ensemble weather forecasts. Philosophical Transac-
823
+ tions of the Royal Society A, 379(2194), 20200092. doi: 10.1098/rsta.2020.0092
824
+ Gudmundsson, L., Bremnes, J. B., Haugen, J. E., & Engen-Skaugen, T. (2012). Downscaling
825
+ RCM precipitation to the station scale using statistical transformations–a comparison
826
+ of methods. Hydrology and Earth System Sciences, 16(9), 3383–3390.
827
+ Harris, L., McRae, A. T., Chantry, M., Dueben, P. D., & Palmer, T. N. (2022). A generative
828
+ deep learning approach to stochastic downscaling of precipitation forecasts.
829
+ arXiv
830
+ preprint arXiv:2204.02028.
831
+ Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Hor´anyi, A., Mu˜noz-Sabater, J., . . .
832
+ Th´epaut, J.-N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal
833
+ Meteorological Society, 146(730), 1999–2049. doi: 10.1002/qj.3803
834
+ Hess, P., & Boers, N.
835
+ (2022).
836
+ Deep learning for improving numerical weather pre-
837
+ diction of heavy rainfall.
838
+ Journal of Advances in Modeling Earth Systems, 14(3),
839
+ e2021MS002765.
840
+ Hess, P., Dr¨uke, M., Petri, S., Strnad, F. M., & Boers, N. (2022). Physically constrained
841
+ generative adversarial networks for improving precipitation fields from earth system
842
+ models. Nature Machine Intelligence (accepted). Retrieved from https://arxiv.org/
843
+ abs/2209.07568 doi: 10.48550/ARXIV.2209.07568
844
+ Huffman, G. J., Adler, R. F., Arkin, P., Chang, A., Ferraro, R., Gruber, A., . . . Schneider,
845
+ U. (1997). The global precipitation climatology project (gpcp) combined precipitation
846
+ dataset. Bulletin of the american meteorological society, 78(1), 5–20.
847
+ Husain, A., Reddy, J., Bisht, D., & Sajid, M. (2021). Fractal dimension of coastline of
848
+ australia. Scientific Reports, 11(1), 1–10.
849
+ IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Work-
850
+ ing Group I to the Sixth Assessment Report of the Intergovernmental Panel on
851
+ Climate Change (V. Masson-Delmotte et al., Eds.).
852
+ Cambridge University Press.
853
+ Retrieved from https://www.ipcc.ch/report/sixth-assessment-report-working
854
+ -group-i/ (In Press)
855
+ Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
856
+ preprint arXiv:1412.6980.
857
+ Kotz, M., Levermann, A., & Wenz, L. (2022). The effect of rainfall changes on economic
858
+ production. Nature, 601(7892), 223–227.
859
+ Krasting, J. P., John, J. G., Blanton, C., McHugh, C., Nikonov, S., Radhakrishnan, A.,
860
+ –14–
861
+
862
+ . . . Zhao, M. (2018). NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6
863
+ CMIP. Earth System Grid Federation. doi: 10.22033/ESGF/CMIP6.1407
864
+ Lange, S.
865
+ (2019).
866
+ Trend-preserving bias adjustment and statistical downscaling with
867
+ isimip3basd (v1. 0). Geoscientific Model Development, 12(7), 3055–3070.
868
+ Lange, S. (2022, June). Isimip3basd. Zenodo. Retrieved from https://doi.org/10.5281/
869
+ zenodo.6758997 doi: 10.5281/zenodo.6758997
870
+ LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
871
+ Lorenz, E. N.
872
+ (1996).
873
+ Predictability: A problem partly solved.
874
+ In Proc. seminar on
875
+ predictability (Vol. 1).
876
+ Lovejoy, S., Schertzer, D., & Tsonis, A.
877
+ (1987).
878
+ Functional box-counting and multiple
879
+ elliptical dimensions in rain. Science, 235(4792), 1036–1038.
880
+ Meisel, L., Johnson, M., & Cote, P. (1992). Box-counting multifractal analysis. Physical
881
+ Review A, 45(10), 6989.
882
+ O' Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., . . .
883
+ others (2016). The scenario model intercomparison project (scenariomip) for cmip6.
884
+ Geoscientific Model Development, 9(9), 3461–3482.
885
+ Price, I., & Rasp, S. (2022). Increasing the accuracy and resolution of precipitation forecasts
886
+ using deep generative models. In International conference on artificial intelligence and
887
+ statistics (pp. 10555–10571).
888
+ Rasp, S., & Thuerey, N.
889
+ (2021).
890
+ Data-driven medium-range weather prediction with a
891
+ resnet pretrained on climate simulations: A new model for weatherbench. Journal of
892
+ Advances in Modeling Earth Systems, 13(2), e2020MS002405.
893
+ Ravuri, S., Lenc, K., Willson, M., Kangin, D., Lam, R., Mirowski, P., . . . Mohamed, S.
894
+ (2021). Skillful precipitation nowcasting using deep generative models of radar. Nature,
895
+ 597, 672–677. doi: 10.1038/s41586-021-03854-z
896
+ Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., & Ziese, M. (2011).
897
+ Gpcc full data reanalysis version 6.0 at 0.5: Monthly land-surface precipitation from
898
+ rain-gauges built on gts-based and historic data. GPCC Data Rep., doi, 10, 585.
899
+ Tian, B., & Dong, X. (2020). The double-itcz bias in cmip3, cmip5, and cmip6 models based
900
+ on annual mean precipitation. Geophysical Research Letters, 47(8), e2020GL087232.
901
+ Tong, Y., Gao, X., Han, Z., Xu, Y., Xu, Y., & Giorgi, F.
902
+ (2021).
903
+ Bias correction of
904
+ temperature and precipitation over China for RCM simulations using the QM and
905
+ QDM methods. Climate Dynamics, 57(5), 1425–1443.
906
+ Traxl, D., Boers, N., Rheinwalt, A., & Bookhagen, B. (2021). The role of cyclonic activity
907
+ in tropical temperature-rainfall scaling. Nature communications, 12(1), 1–9.
908
+ Vrac, M. (2018). Multivariate bias adjustment of high-dimensional climate simulations:
909
+ the rank resampling for distributions and dependences (r2d2) bias correction. Hy-
910
+ drology and Earth System Sciences, 22(6), 3175–3196.
911
+ Retrieved from https://
912
+ hess.copernicus.org/articles/22/3175/2018/ doi: 10.5194/hess-22-3175-2018
913
+ Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., & Schewe, J. (2014).
914
+ The inter-sectoral impact model intercomparison project (isi–mip): project framework.
915
+ Proceedings of the National Academy of Sciences, 111(9), 3228–3232.
916
+ Weyn, J. A., Durran, D. R., & Caruana, R. (2020). Improving data-driven global weather
917
+ prediction using deep convolutional neural networks on a cubed sphere. Journal of
918
+ Advances in Modeling Earth Systems, 12(9), e2020MS002109.
919
+ Wfde5 over land merged with era5 over the ocean (w5e5 v2.0). (2021). ISIMIP Repository.
920
+ Retrieved from https://doi.org/10.48364/ISIMIP.342217
921
+ doi: 10.48364/ISIMIP
922
+ .342217
923
+ Wilcox, E. M., & Donner, L. J. (2007). The frequency of extreme rain events in satellite
924
+ rain-rate estimates and an atmospheric general circulation model. Journal of Climate,
925
+ 20(1), 53–69.
926
+ Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation
927
+ using cycle-consistent adversarial networks. In Proceedings of the IEEE international
928
+ conference on computer vision (pp. 2223–2232).
929
+ –15–
930
+
931
+ Supporting Information for ”Deep Learning for
932
+ bias-correcting comprehensive high-resolution Earth
933
+ system models”
934
+ Philipp Hess1,2, Stefan Lange2, and Niklas Boers1,2,3
935
+ 1Earth System Modelling, School of Engineering & Design, Technical University of Munich, Munich, Germany
936
+ 2Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany
937
+ 3Global Systems Institute and Department of Mathematics, University of Exeter, Exeter, UK
938
+ Contents of this file
939
+ 1. Figure S1 to S2
940
+ January 4, 2023, 1:28am
941
+ arXiv:2301.01253v1 [physics.ao-ph] 16 Dec 2022
942
+
943
+ X - 2
944
+ :
945
+ Figure S1.
946
+ Bias maps as in Fig.
947
+ 2 but with the 95th percentile instead of the mean.
948
+ Global mean absolute errors (MAEs) are given in the respective titles. Combining the GAN with
949
+ ISIMIP3BASD achieves the lowest error compared to the other methods.
950
+ January 4, 2023, 1:28am
951
+
952
+ W5E5v2 95th percentile [mm/d]
953
+ GFDL-ESM4: MAE = 2.264
954
+ b
955
+ a
956
+ N.09
957
+
958
+ S.09
959
+ 0
960
+ 25
961
+ 50
962
+ 120°W
963
+ 60°W
964
+
965
+ 60°E
966
+ 120°E
967
+ 120°W
968
+ 60°W
969
+
970
+ 60°E
971
+ 120°E
972
+ ISIMIP3BASD: MAE = 1.073
973
+ GAN: MAE =
974
+ 1.415
975
+ d
976
+ N.09
977
+
978
+ S.09
979
+ 120°W
980
+ 60°W
981
+ .0
982
+ 60°E
983
+ 120°E
984
+ 60°W
985
+
986
+ 60°E
987
+ 120°W
988
+ 120°E
989
+ GAN (unconstrained): MAE
990
+ 1.213
991
+ GAN-ISIMIP3BASD: MAE
992
+ 0.945
993
+ =
994
+ e
995
+ 2
996
+ 120°W
997
+ 60°W
998
+
999
+ 60°E
1000
+ 120°E
1001
+ 120°W
1002
+ 60°W
1003
+
1004
+ 60°E
1005
+ 120°E
1006
+ -20 -i5 -i0 -5 0
1007
+ 5
1008
+ 10
1009
+ 15
1010
+ 20
1011
+ Differences in the 95th percentile [mm/d]:
1012
+ X - 3
1013
+ a
1014
+ 50°S
1015
+ 25°S
1016
+
1017
+ 100°W
1018
+ 75°W
1019
+ 50°W
1020
+ 25°W
1021
+ W5E5v2
1022
+ c
1023
+ 50°S
1024
+ 25°S
1025
+
1026
+ 100°W
1027
+ 75°W
1028
+ 50°W
1029
+ 25°W
1030
+ ISIMIP3BASD
1031
+ b
1032
+ 50°S
1033
+ 25°S
1034
+
1035
+ 100°W
1036
+ 75°W
1037
+ 50°W
1038
+ 25°W
1039
+ GFDL-ESM4
1040
+ d
1041
+ 50°S
1042
+ 25°S
1043
+
1044
+ 100°W
1045
+ 75°W
1046
+ 50°W
1047
+ 25°W
1048
+ GAN-ISIMIP3BASD
1049
+ 5
1050
+ 10
1051
+ 15
1052
+ 20
1053
+ 25
1054
+ 30
1055
+ 35
1056
+ Precipitation [mm/d]
1057
+ Figure S2.
1058
+ Qualitative comparison of precipitation fields at the same date (December 21st
1059
+ 2014) over the South American continent. The region is used for a comparison of the fractal
1060
+ dimension in binary precipitation patterns.
1061
+ January 4, 2023, 1:28am
1062
+
CNAzT4oBgHgl3EQfTvwq/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
ENAyT4oBgHgl3EQfSPf9/content/tmp_files/2301.00085v1.pdf.txt ADDED
@@ -0,0 +1,1124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00085v1 [math.CO] 31 Dec 2022
2
+ On the chromatic number of random regular
3
+ hypergraphs
4
+ Patrick Bennett∗
5
+ Department of Mathematics,
6
+ Western Michigan University
7
+ Kalamazoo MI 49008
8
+ Alan Frieze†
9
+ Department of Mathematical Sciences,
10
+ Carnegie Mellon University,
11
+ Pittsburgh PA 15213.
12
+ Abstract
13
+ We estimate the likely values of the chromatic and independence numbers of the
14
+ random r-uniform d-regular hypergraph on n vertices for fixed r, large fixed d, and
15
+ n → ∞.
16
+ 1
17
+ Introduction
18
+ The study of the chromatic number of random graphs has a long history. It begins with the
19
+ work of Bollob´as and Erd˝os [6] and Grimmett and McDiarmid [13] who determined χ(Gn,p),
20
+ p constant to within a factor 2, w.h.p. Matula [17] reduced this to a factor of 3/2. Then
21
+ we have the discovery of martingale concentration inequalities by Shamir and Spencer [18]
22
+ leading to the breakthrough by Bollob´as [5] who determined χ(Gn,p) asymptotically for p
23
+ constant.
24
+ The case of p → 0 proved a little more tricky, but �Luczak [15] using ideas from Frieze [10]
25
+ and [17] determined χ(Gn,p), p = c/n asymptotically for large c. �Luczak [16] showed that
26
+ w.h.p. χ(Gn,p), p = c/n took one of two values. It was then that the surprising power of
27
+ the second moment method was unleashed by Achlioptas and Naor [3]. Since then there has
28
+ been much work tightening our estimates for the k-colorability threshold, k ≥ 3 constant.
29
+ See for example Coja-Oghlan [7].
30
+ Random regular graphs of low degree were studied algorithmically by several authors e.g.
31
+ Achlioptas and Molloy [2] and by Shi and Wormald [19]. Frieze and �Luczak [12] introduced
32
+ ∗Research supported in part by Simons Foundation Grant #426894.
33
+ †Research supported in part by NSF Grant DMS1661063
34
+ 1
35
+
36
+ a way of using our knowledge of χ(Gn,p), p = c/n to tackle χ(Gn,r) where Gn,r denotes a
37
+ random r-regular graph and where p = r/n. Subsequently Achlioptas and Moore [2] showed
38
+ via the second moment method that w.h.p. χ(Gn,r) was one of 3 values. This was tightened
39
+ basically to one value by Coja-Oghlan, Efthymiou and Hetterich [8].
40
+ For random hypergraphs, Krivelevich and Sudakov [14] established the asymptotic chromatic
41
+ number for χ(Hr(n, p) for
42
+ �n−1
43
+ r−1
44
+
45
+ p sufficiently large. Here Hr(n, p) is the binomial r-uniform
46
+ hypergraph where each of the
47
+ �n
48
+ r
49
+
50
+ possible edges is included with probability p. There are
51
+ several possibilities of a proper coloring of the vertices of a hypergraph. Here we concentrate
52
+ on the case where a vertex coloring is proper if no edge contains vertices of all the same color.
53
+ Dyer, Frieze and Greehill [9] and Ayre, Coja-Oghlan and Greehill [1] established showed that
54
+ w.h.p. χ(Hr(n, p) took one or two values. When it comes to what ew denote by χ(Hr(n, d),
55
+ a random d-regular, r-uniform hypergraph, we are not aware of any results at all. In this
56
+ paper we extend the approach of [12] to this case:
57
+ Theorem 1. For all fixed r and ε > 0 there exists d0 = d0(r, ε) such that for any fixed
58
+ d ≥ d0 we have that w.h.p.
59
+ �������
60
+ χ(Hr(n, d)) −
61
+
62
+ (r−1)d
63
+ r log d
64
+
65
+ 1
66
+ r−1
67
+
68
+ (r−1)d
69
+ r log d
70
+
71
+ 1
72
+ r−1
73
+ �������
74
+ ≤ ε,
75
+ �������
76
+ α(Hr(n, d)) −
77
+
78
+ r log d
79
+ (r−1)d
80
+
81
+ 1
82
+ r−1 n
83
+
84
+ r log d
85
+ (r−1)d
86
+
87
+ 1
88
+ r−1 n
89
+ �������
90
+ ≤ ε
91
+ (1)
92
+ Here α refers to the independence number of a hypergraph.
93
+ 2
94
+ Preliminaries
95
+ 2.1
96
+ Tools
97
+ We will be using the following forms of Chernoff’s bound (see, e.g., [11]).
98
+ Lemma 2 (Chernoff bound). Let X ∼ Bin(n, p). Then for all 0 < λ < np
99
+ P(|X − np| ≥ λ) ≤ 2 exp
100
+
101
+ − λ2
102
+ 3np
103
+
104
+ .
105
+ (2)
106
+ Lemma 3 (McDiarmid’s inequality). Let X = f(⃗Z) where ⃗Z = (Z1, . . . Zt) and the Zi are
107
+ independent random variables. Assume the function f has the property that whenever ⃗z, ⃗w
108
+ differ in only one coordinate we have |f(⃗z) − f(⃗w)| ≤ c. Then for all λ > 0 we have
109
+ P(|X − E[X]| ≥ λ) ≤ 2 exp
110
+
111
+ − λ2
112
+ 2c2t
113
+
114
+ .
115
+ (3)
116
+ Bal and the first author [4] showed the following.
117
+ 2
118
+
119
+ Theorem 4 (Claim 4.2 in [4]). Fix r ≥ 3, d ≥ 2, and 0 < c < r−1
120
+ r . Let z2 be the unique
121
+ positive number such that
122
+ z2
123
+
124
+ (z2 + 1)r−1 − zr−1
125
+ 2
126
+
127
+ (z2 + 1)r − zr
128
+ 2
129
+ = c
130
+ (4)
131
+ and let
132
+ z1 =
133
+ d
134
+ r [(z2 + 1)r − zr
135
+ 2].
136
+ (5)
137
+ Let h(x) = x log x. If it is the case that
138
+ h
139
+ �d
140
+ r
141
+
142
+ + h(dc) + h(d(1 − c)) − h(c) − h(1 − c) − h(d) − d
143
+ r log z1 − dc log z2 < 0
144
+ (6)
145
+ then w.h.p. α(Hr(n, d)) < cn.
146
+ Krivelevich and Sudakov [14] proved the following.
147
+ Theorem 5 (Theorem 5.1 in [14]). For all fixed r and ε > 0 there exists d0 = d0(r, ε) such
148
+ that whenever D = D(p) :=
149
+ �n−1
150
+ r−1
151
+
152
+ p ≥ d0 we have that
153
+ �������
154
+ χ(Hr(n, p)) −
155
+
156
+ (r−1)D
157
+ r log D
158
+
159
+ 1
160
+ r−1
161
+
162
+ (r−1)D
163
+ r log D
164
+
165
+ 1
166
+ r−1
167
+ �������
168
+ ≤ ε,
169
+ �������
170
+ α(Hr(n, p)) −
171
+
172
+ r log D
173
+ (r−1)D
174
+
175
+ 1
176
+ r−1 n
177
+
178
+ r log D
179
+ (r−1)D
180
+
181
+ 1
182
+ r−1 n
183
+ �������
184
+ ≤ ε
185
+ with probability at least 1 ��� o(1/n).
186
+ 3
187
+ Proof
188
+ In this section we prove Theorem 1. First we give an overview. We show in Subsection 3.1
189
+ that the upper bound on α follows from Theorem 4 and some straightforward calculations.
190
+ Then the lower bound on χ follows as well. Thus we will be done once we prove the upper
191
+ bound on χ (since that proves the lower bound on α). This will be in Subsection 3.2. For
192
+ that we follow the methods of Frieze and �Luczak [12].
193
+ We will assume r ≥ 3 since Frieze and �Luczak [12] covered the graph case. We will use
194
+ standard asymptotic notation, and we will use big-O notation to suppress any constants
195
+ depending on r but not d. Thus, for example we will write r = O(1) and d−1 = O(1) but
196
+ not d = O(1). This is convenient for us because even though our theorem is for fixed d, it
197
+ requires d to be sufficiently large.
198
+ 3
199
+
200
+ 3.1
201
+ Upper bound on the independence number
202
+ We will apply Theorem 4 to show an upper bound on α(Hr(n, d)). Fix ε, r (but not d) and
203
+ let c = c(d) := (1 + ε)
204
+
205
+ r log d
206
+ (r−1)d
207
+
208
+ 1
209
+ r−1. Let z2 be as defined in (4) and z1 be as defined in (5).
210
+ We see that
211
+ Lemma 6.
212
+ z2 =
213
+ c
214
+ 1 − c + O (cr)
215
+ Proof. After some algebra, we re-write (4) as
216
+ z2 −
217
+ zr
218
+ 2
219
+ (1 + z2)r−1 =
220
+ c
221
+ 1 − c.
222
+ and the claim follows.
223
+ Now we check (6).
224
+ h
225
+ �d
226
+ r
227
+
228
+ + h(dc) + h(d(1 − c)) − h(c) − h(1 − c) − h(d) − d
229
+ r log z1 − dc log z2
230
+ =d
231
+ r log
232
+ �d
233
+ r
234
+
235
+ + dc log(dc) + d(1 − c) log(d(1 − c)) − c log c − (1 − c) log(1 − c)
236
+ − d log d − d
237
+ r log z1 − dc log z2
238
+ =dc log
239
+
240
+ c
241
+ (1 − c)z2
242
+
243
+ + d
244
+ r log [(z2 + 1)r − zr
245
+ 2] + d log(1 − c) − c log c − (1 − c) log(1 − c). (7)
246
+ Now note that the first term of (7) is
247
+ dc log
248
+
249
+ c
250
+ (1 − c)z2
251
+
252
+ = dc log
253
+
254
+ c
255
+ (1 − c)
256
+
257
+ c
258
+ 1−c + O (cr+1)
259
+
260
+
261
+ = dc log
262
+
263
+ 1
264
+ 1 + O (cr)
265
+
266
+ = O
267
+
268
+ dcr+1�
269
+ .
270
+ The second term of (7) is
271
+ d
272
+ r log [(z2 + 1)r − zr
273
+ 2] = d
274
+ r log
275
+ ��
276
+ 1
277
+ 1 − c + O
278
+
279
+ cr+1��r
280
+
281
+
282
+ c
283
+ 1 − c + O
284
+
285
+ cr+1��r�
286
+ = d
287
+ r log
288
+ ��
289
+ 1
290
+ 1 − c
291
+ �r �
292
+ 1 − cr + O
293
+
294
+ cr+1���
295
+ = d
296
+ r log
297
+
298
+ 1
299
+ 1 − c
300
+ �r
301
+ + d
302
+ r log
303
+
304
+ 1 − cr + O
305
+
306
+ cr+1��
307
+ = −d log(1 − c) − d
308
+ r cr + O
309
+
310
+ dcr+1�
311
+ .
312
+ 4
313
+
314
+ The last term of (7) is
315
+ (1 − c) log(1 − c) = O(c).
316
+ Therefore (7) becomes
317
+ − d
318
+ r cr − c log c + O
319
+
320
+ c + dcr+1�
321
+ = − c
322
+ �d
323
+ rcr−1 + log c
324
+
325
+ + O
326
+
327
+ c + dcr+1�
328
+ = − c
329
+
330
+ d
331
+ r (1 + ε)r−1 r log d
332
+ (r − 1)d + log
333
+
334
+ (1 + ε)
335
+ � r log d
336
+ (r − 1)d
337
+
338
+ 1
339
+ r−1��
340
+ + O
341
+
342
+ c + dcr+1�
343
+ = − c
344
+
345
+ (1 + ε)r−1 log d
346
+ r − 1 − log d
347
+ r − 1 + O(log log d)
348
+
349
+ + O
350
+
351
+ c + dcr+1�
352
+ = − Ω (c log d) .
353
+ It follows from Theorem 4 that w.h.p.
354
+ α(Hr(n, d)) ≤ (1 + ε)
355
+ � r log d
356
+ (r − 1)d
357
+
358
+ 1
359
+ r−1
360
+ .
361
+ (8)
362
+ 3.2
363
+ Upper bound on the chromatic number
364
+ Our proof of the upper bound uses the method of Frieze and �Luczak [12]. We will generate
365
+ Hr(n, d) in a somewhat complicated way. The way we generate it will allow us to use known
366
+ results on Hr(n, p) due to Krivelevich and Sudakov [14].
367
+ Set
368
+ m :=
369
+ �d − d1/2 log d
370
+ r
371
+
372
+ n.
373
+ (9)
374
+ Let H∗
375
+ r(n, m) be an r-uniform multi-hypergraph with m edges, where each multi-edge consists
376
+ of r independent uniformly random vertices chosen with replacement.
377
+ We will generate
378
+ H∗
379
+ r(n, m) as follows. We have n sets (“buckets” ) V1, . . . Vn and a set of rm points P :=
380
+ {p1, . . . prm}. We put each point pi into a uniform random bucket Vφ(i) independently. We
381
+ let R = {R1, . . . , Rm} be a uniform random partition of P into sets of size r. Of course, the
382
+ idea here is that the buckets Vi represent vertices and the parts of the partition R represent
383
+ edges. Thus Ri defines a hyper-edge {φ(j) : j ∈ Ri} for i = 1, 2, . . . , m. We denote the
384
+ hypergraph defined by R by HR.
385
+ Note that since r ≥ 3 the expected number of pairs of multi-edges in H∗
386
+ r(n, m) is at most
387
+ �n
388
+ r
389
+ ��m
390
+ 2
391
+ � �
392
+ 1
393
+ �n
394
+ r
395
+
396
+ �2
397
+ = O
398
+ �m2
399
+ nr
400
+
401
+ = O(n−1).
402
+ 5
403
+
404
+ Thus, w.h.p. there are no multi-edges. Now the expected number of “loops” (edges containing
405
+ the same vertex twice) is at most
406
+ nm
407
+ �r
408
+ 2
409
+ � �1
410
+ n
411
+ �2
412
+ = O(1).
413
+ Thus w.h.p. there are at most log n loops. We now remove all multi-edges and loops, and
414
+ say that M is the (random) number of edges remaining, where m − log n ≤ M ≤ m. The
415
+ remaining hypergraph is distributed as H(n, M), the random hypergraph with M edges
416
+ chosen uniformly at random without replacement. Next we estimate the chromatic number
417
+ of Hr(n, M).
418
+ Claim 1. W.h.p. we have
419
+ �������
420
+ χ(Hr(n, M)) −
421
+
422
+ (r−1)d
423
+ r log d
424
+
425
+ 1
426
+ r−1
427
+
428
+ (r−1)d
429
+ r log d
430
+
431
+ 1
432
+ r−1
433
+ �������
434
+ ≤ ε
435
+ 2,
436
+ �������
437
+ α(Hr(n, M)) −
438
+
439
+ r log D
440
+ (r−1)D
441
+
442
+ 1
443
+ r−1 n
444
+
445
+ r log D
446
+ (r−1)D
447
+
448
+ 1
449
+ r−1 n
450
+ �������
451
+ ≤ ε
452
+ 2.
453
+ Proof. We will use Theorem 5 together with a standard argument for comparing Hr(n, p)
454
+ with Hr(n, m). Set p := m/
455
+ �n
456
+ r
457
+
458
+ and apply Theorem 5 with ε replaced with ε/4 so we get
459
+ �������
460
+ χ(Hr(n, p)) −
461
+
462
+ (r−1)D
463
+ r log D
464
+
465
+ 1
466
+ r−1
467
+
468
+ (r−1)D
469
+ r log D
470
+
471
+ 1
472
+ r−1
473
+ �������
474
+ ≤ ε
475
+ 4
476
+ (10)
477
+ with probability at least 1 − o(1/n). Note that here
478
+ D =
479
+ �n − 1
480
+ r − 1
481
+
482
+ p =
483
+ �n − 1
484
+ r − 1
485
+
486
+ m/
487
+ �n
488
+ r
489
+
490
+ = rm/n = d − d1/2 log d.
491
+ Now since d, D can be chosen to be arbitrarily large and d = D + O(D1/2 log D) we can
492
+ replace D with d in (10) without changing the left hand side by more than ε/4 to obtain
493
+ �������
494
+ χ(Hr(n, p)) −
495
+
496
+ (r−1)d
497
+ r log d
498
+
499
+ 1
500
+ r−1
501
+
502
+ (r−1)d
503
+ r log d
504
+
505
+ 1
506
+ r−1
507
+ �������
508
+ ≤ ε
509
+ 2
510
+ (11)
511
+ with probability at least 1−o(1/n). But now note that with probability Ω(n−1/2) the number
512
+ of edges in Hr(n, p) is precisely M. Thus we have that
513
+ �������
514
+ χ(Hr(n, M)) −
515
+
516
+ (r−1)d
517
+ r log d
518
+
519
+ 1
520
+ r−1
521
+
522
+ (r−1)d
523
+ r log d
524
+
525
+ 1
526
+ r−1
527
+ �������
528
+ ≤ ε
529
+ 2
530
+ with probability at least 1 − o(n−1/2). This proves the first inequality, and the second one
531
+ follows similarly.
532
+ 6
533
+
534
+ Now we will start to transform Hr(n, m) to the random regular hypergraph Hr(n, d). This
535
+ transformation will involve first removing some edges from vertices of degree larger than d,
536
+ and then adding some edges to vertices of degree less than d. We define the rank of a point
537
+ pi ∈ Vj, to be the number of points pi′ ∈ Vj such that i′ ≤ i. We form a new set of points
538
+ P ′ ⊆ P and a partition R′ of P ′ as follows. For any Rk ∈ R containing a point with rank
539
+ more than d, we delete Rk from R and delete all points of Rk from P. Note that each bucket
540
+ contains at most r points of P ′. Note also that R′ is a uniform random partition of P ′. We
541
+ let HR′ be the natural hypergraph associated with R′.
542
+ Now we would like to put some more points into the buckets until each bucket has exactly d
543
+ points, arriving at some set of points P ′′ ⊇ P ′. We would also like a uniform partition R′′ of
544
+ P ′′ into sets of size r, and we would like R′′ to have many of the same parts as R′. We will
545
+ accomplish this by constructing a sequence P ′
546
+ 1 := P ′ ⊆ P ′
547
+ 2 ⊆ . . . ⊆ P ′
548
+ ℓ =: P ′′ of point sets
549
+ and a sequence R′
550
+ 1 := R′, R′
551
+ 2, . . . , R′
552
+ ℓ =: R′′ where R′
553
+ j is a uniform random partition of P ′
554
+ j.
555
+ We construct P ′
556
+ j+1, R′
557
+ j+1 from P ′
558
+ j, R′
559
+ j as follows. Suppose |R′
560
+ j| = a (in other words R′
561
+ j has
562
+ a parts), so |P ′
563
+ j| = ra. P ′
564
+ j+1 will simply be P ′
565
+ j plus r new points. Now we will choose a
566
+ random value K ∈ {1, . . . , r} using the distribution P[K = k] = qk(a), where qk(a) is defined
567
+ as follows.
568
+ Definition 1. Consider a random partition of ra+r points into a+1 parts of size r, and fix
569
+ some set Q of r points. Then for 1 ≤ k ≤ r, the number qk(a) is defined to be the probability
570
+ that Q meets exactly k parts of the partition.
571
+ We will then remove a uniform random set of K − 1 parts from R′
572
+ j, leaving Kr points in
573
+ P ′
574
+ j+1 which are not in any remaining part of R′
575
+ j. We partition those points into K parts of
576
+ size r such that each part contains at least one new point (each such partition being equally
577
+ likely), arriving at our partition R′
578
+ j+1.
579
+ We claim that R′
580
+ j+1 is a uniform random partition of P ′
581
+ j+1 into parts of size r. Indeed, first
582
+ consider the r new points that are in P ′
583
+ j+1 which were not in P ′
584
+ j. The probability that a
585
+ uniform random partition of P ′
586
+ j+1 would have exactly k parts containing at least one new
587
+ point is qk. So we can generate such a random partition as follows: first choose a random
588
+ value K with P[K = k] = qk; next we choose a uniform random set of (K − 1)r points from
589
+ P ′
590
+ j; next we choose a partition of the set of points consisting of P ′
591
+ j+1 \ P ′
592
+ j together with the
593
+ points from P ′
594
+ j we chose in the last step, where the partition we choose is uniformly random
595
+ from among all partitions such that each part contains at least one point of P ′
596
+ j+1 \P ′
597
+ j; finally,
598
+ we choose a uniform partition of the rest of the points. In our case this partition of the rest
599
+ of the points comprises the current partition of the “unused” (a − K + 1)r points. At the
600
+ end of this process we have that HR′′ is distributed as Hr(n, d).
601
+ 7
602
+
603
+ 3.2.1
604
+ Bounding the number of low degree vertices in HR′
605
+ We define some sets of buckets. We show that w.h.p. there are few small buckets i.e few
606
+ vertices of low degree in the hypregraph HR′. Let S0 be the buckets with at most d−3d1/2 log d
607
+ points of P ′, and let S1 be the buckets with at most d−2d1/2 log d points of P. Let S2 be the
608
+ set of buckets that, when we remove points from P ′ to get P, have at least d1/2 log d points
609
+ removed. Then S0 ⊆ S1 ∪ S2. Our goal is to bound the probability that S0 is too large.
610
+ Fix a bucket Vj and let X ∼ Bin
611
+
612
+ rm, 1
613
+ n
614
+
615
+ be the number of points of P in Vj. Then the
616
+ probability that Vj is in S1 satisfies
617
+ P[Vj ∈ S1] = P
618
+
619
+ X ≤ d − 2d1/2 log d
620
+
621
+ = P
622
+
623
+ X − rm
624
+ n ≤ −d1/2 log d
625
+
626
+ ≤ exp
627
+
628
+
629
+ d log2 d
630
+ 3(d − d1/2 log d)
631
+
632
+ = exp
633
+
634
+ −Ω
635
+
636
+ log2 d
637
+ ��
638
+ ,
639
+ where for our inequality we have used the Chernoff bound (Lemma 2). Therefore E[|S0|] ≤
640
+ exp
641
+
642
+ −Ω
643
+
644
+ log2 d
645
+ ��
646
+ n. Now we argue that |S1| is concentrated using McDiarmid’s inequality
647
+ (Lemma 3). For our application we let X = |S1| which is a function (say f) of the vector
648
+ (Z1, . . . Zrm) where Zi tells us which bucket the ith point of P went into. Moving a point
649
+ from one bucket to another can only change |S1| by at most 1 so we use c = 1. Thus we get
650
+ the bound
651
+ P(|X − E[X]| ≥ n2/3) ≤ 2 exp
652
+
653
+ − n4/3
654
+ 2rm
655
+
656
+ = o(1).
657
+ (12)
658
+ Now we handle S2. For 1 ≤ j ≤ n let Yj be the number of parts Rk ∈ R such that Rk
659
+ contains a point in the bucket Vj as well as a point in some bucket Vj′ where |Vj′| > d. Note
660
+ that if Vj ∈ S2 then Yj ≥ d1/2 log d. We view Rk as a set of r points, say {q1, . . . , qr} each
661
+ going into a uniform random bucket. Say qi goes to bucket Vji. The probability that Rk is
662
+ counted by Yj is at most
663
+ rP[j1 = j and |Vj1| > d] + r(r − 1)P[j1 = j and |Vj2| > d]
664
+ = r
665
+ nP[|Vj1| > d
666
+ ��j1 = j] + r(r − 1)
667
+ n
668
+ P[|Vj2| > d
669
+ ��j1 = j]
670
+ ≤ r2
671
+ n P[|Vj1| > d
672
+ ��j1 = j]
673
+ ≤ r2
674
+ n P[Bin(rm − 1, 1/n) ≥ d] = r2
675
+ n exp
676
+
677
+ −Ω
678
+
679
+ log2 d
680
+ ��
681
+ .
682
+ Thus we have
683
+ E[Yj] = m · r2
684
+ n exp
685
+
686
+ −Ω
687
+
688
+ log2 d
689
+ ��
690
+ ≤ rd exp
691
+
692
+ −Ω
693
+
694
+ log2 d
695
+ ��
696
+ = rd1/2 exp
697
+
698
+ −Ω
699
+
700
+ log2 d
701
+ ��
702
+ and so Markov’s inequality gives us
703
+ P
704
+
705
+ Yj ≥ d1/2 log d
706
+
707
+ ≤ rd exp
708
+
709
+ −Ω
710
+
711
+ log2 d
712
+ ��
713
+ d1/2 log d
714
+ = exp
715
+
716
+ −Ω
717
+
718
+ log2 d
719
+ ��
720
+ 8
721
+
722
+ and so E[|S2|] = n exp
723
+
724
+ −Ω
725
+
726
+ log2 d
727
+ ��
728
+ . We use McDiarmid’s inequality once more, this time
729
+ with X = |S2|.
730
+ A change in choice of bucket changes |S2| by at most one and so (12)
731
+ continues to hold. Thus
732
+ |S0| = n exp
733
+
734
+ −Ω
735
+
736
+ log2 d
737
+ ��
738
+ .
739
+ w.h.p.
740
+ 3.2.2
741
+ A property of independent subsets of Hr(n, m)
742
+ Fix 1 ≤ j ≤ r − 1. Set
743
+ a :=
744
+
745
+ 1 + ε
746
+ 2
747
+ � � r log d
748
+ (r − 1)d
749
+
750
+ 1
751
+ r−1
752
+ ,
753
+ κj := 10d
754
+ r
755
+ �r
756
+ j
757
+
758
+ aj,
759
+ p := d(r − 1)!
760
+ nr−1
761
+ .
762
+ The expected number of independent sets A in Hr(n, p) of size at most an such that there
763
+ are κjn edges each having j vertices in A is at most
764
+ an
765
+
766
+ s=1
767
+ �n
768
+ s
769
+
770
+ (1 − p)(s
771
+ r)
772
+ ��s
773
+ j
774
+ �� n
775
+ r−j
776
+
777
+ κjn
778
+
779
+ pκjn
780
+
781
+ an
782
+
783
+ s=1
784
+ exp
785
+
786
+
787
+ s log
788
+ �en
789
+ s
790
+
791
+
792
+ �s
793
+ r
794
+
795
+ p + κjn log
796
+
797
+ e(an)j
798
+ j!
799
+ nr−j
800
+ (r−j)!p
801
+ κjn
802
+
803
+
804
+
805
+
806
+
807
+ =
808
+ an
809
+
810
+ s=1
811
+ exp
812
+
813
+ s log
814
+ �en
815
+ s
816
+
817
+
818
+ �s
819
+ r
820
+
821
+ p + κjn log
822
+ �eaj
823
+ 10
824
+ ��
825
+ ≤ an · exp
826
+ ��
827
+ log
828
+ �e
829
+ a
830
+
831
+ − 10d
832
+ r
833
+ �r
834
+ j
835
+
836
+ aj−1 log
837
+ �10
838
+ e
839
+ ��
840
+ an
841
+
842
+ = o(1/n)
843
+ where the last line follows since as d → ∞ we have
844
+ log
845
+ �e
846
+ a
847
+
848
+
849
+ 1
850
+ r − 1 log d
851
+ and
852
+ 10d
853
+ r
854
+ �r
855
+ j
856
+
857
+ aj−1 log
858
+ �10
859
+ e
860
+
861
+ = Ω
862
+
863
+ d
864
+ r−j
865
+ j−1 log− j−1
866
+ r−1 d
867
+
868
+ ≫ log d.
869
+ Thus with probability 1 − o(1/n), Hr(n, p) has a coloring using (1 + ε/2)
870
+
871
+ (r−1)d
872
+ r log d
873
+
874
+ 1
875
+ r−1 colors
876
+ such that for each color class A and for each 1 ≤ j ≤ r − 1 there are at most κjn edges with
877
+ j vertices in A. The hypergraph Hr(n, m), m =
878
+ �n
879
+ r
880
+
881
+ p will have this property w.h.p..
882
+ 3.2.3
883
+ Transforming HR′ into Hr(n, d)
884
+ Now we will complete the transformation to the random regular hypergraph Hr(n, d). We
885
+ are open to the possibility that doing so will render our coloring no longer proper, since this
886
+ 9
887
+
888
+ process will involve changing some edges which might then be contained in a color class. We
889
+ will keep track of how many such “bad” edges there are and then repair our coloring at the
890
+ end.
891
+ We have to add at most (3d1/2 log d + d exp
892
+
893
+ −Ω
894
+
895
+ log2 d
896
+ ��
897
+ )n < (4d1/2 log d)n points, which
898
+ takes at most as many steps.
899
+ For each color class A of HR′ define XA,j = XA,j(i) to
900
+ be the number of edges with j vertices in A at step i. We have already established that
901
+ XA,j(0) ≤ κjn. This follows from Section 3.2.2 and the fact that we have removed edges
902
+ from H(n, m) to obtain HR′. Let Ei be the event that at step i we have that for each color
903
+ class A and for each 1 ≤ j ≤ r − 1 we have XA,j(i) ≤ 2κjn. Then, assuming Ei holds, the
904
+ probability that XA,j increases at step i is at most
905
+
906
+ 1≤k≤r, jℓ≥1
907
+ j1+···+jk=j
908
+
909
+ 1≤ℓ≤k
910
+ 2κjℓn
911
+ nd/r =
912
+
913
+ 1≤k≤r, jℓ≥1
914
+ j1+···+jk=j
915
+
916
+ 1≤ℓ≤k
917
+ 20
918
+ � r
919
+ jk
920
+
921
+ ajk ≤
922
+
923
+ 1≤k≤r, jℓ≥1
924
+ j1+···+jk=j
925
+ 20r2r2aj ≤ 40r2r2aj.
926
+ Also, the largest possible increase in XA,j in one step is r. Thus, the final value of XA,j
927
+ after at most (4d1/2 log d)n steps is stochastically dominated by κjn + rY where Y
928
+
929
+ Bin
930
+
931
+ (4d1/2 log d)n, 40r2r2aj�
932
+ . An easy application of the Chernoff bound tells us
933
+ P (Y > 2E[Y ]) ≤ exp(−Ω(n)).
934
+ (13)
935
+ Note that here
936
+ 2E[Y ]
937
+ κjn
938
+ = 8d1/2 log d · 40r2r2ajn
939
+ 10d
940
+ �r
941
+ j
942
+
943
+ ajn/r
944
+ = O(d−1/2 log d) < 1
945
+ for sufficiently large d. Thus, using (13) and the union bound over all color classes A, we
946
+ have w.h.p. the final value of XA,j is at most κjn + 2E[Y ] ≤ 2κjn for all 1 ≤ j ≤ r − 1.
947
+ Now we address “bad” edges, i.e. edges contained in a color class. Assuming Ei holds, the ex-
948
+ pected number of new edges contained in any color class at step i is at most r(40)r2r2+2rar =
949
+ O
950
+ �� log d
951
+ d
952
+
953
+ r
954
+ r−1�
955
+ (because it would have to be one of the colors of one of the vertices we are
956
+ adding points to). Thus the expected number of bad edges created in (4d1/2 log d)n steps
957
+ is stochastically dominated by Z ∼ r · Bin
958
+
959
+ (4d1/2 log d)n, O
960
+ ��log d
961
+ d
962
+
963
+ r
964
+ r−1� �
965
+ .
966
+ Another easy
967
+ application of Chernoff shows that w.h.p. Z ≤ 2E[Z] = O(d−1/2n).
968
+ We repair the coloring as follows. First we uncolor one vertex from each bad edge, and let
969
+ the set of uncolored vertices be U where |U| = u = O
970
+
971
+ d−1/2n
972
+
973
+ . Let
974
+ δ := ε
975
+ 2
976
+ �(r − 1)d
977
+ r log d
978
+
979
+ 1
980
+ r−1
981
+ .
982
+ We claim that for every S ⊆ U, |S| = s, the hypergraph induced on S has at most δs/r
983
+ edges. This will complete our proof since it implies that the minimum degree is at most δ
984
+ and so U can be recolored using a fresh set of δ colors, yielding a coloring of Hr(n, d) using
985
+ 10
986
+
987
+ at most
988
+ χ(Hr(n, M)) + δ ≤
989
+
990
+ 1 + ε
991
+ 2
992
+ � �(r − 1)d
993
+ r log d
994
+
995
+ 1
996
+ r−1
997
+ + ε
998
+ 2
999
+ �(r − 1)d
1000
+ r log d
1001
+
1002
+ 1
1003
+ r−1
1004
+ = (1 + ε)
1005
+ �(r − 1)d
1006
+ r log d
1007
+
1008
+ 1
1009
+ r−1
1010
+ colors. The expected number of sets S with more than δs/r edges is at most
1011
+
1012
+ 1≤s≤u
1013
+ �n
1014
+ s
1015
+ ���ds
1016
+ r
1017
+
1018
+ δs/r
1019
+
1020
+ 1
1021
+ �dn
1022
+ r
1023
+ ��dn−r
1024
+ r
1025
+
1026
+ . . .
1027
+ �dn−δs+r
1028
+ r
1029
+
1030
+
1031
+
1032
+ 1≤s≤u
1033
+ �ne
1034
+ s
1035
+ �s �(dse/r)re
1036
+ δs/r
1037
+ �δs/r
1038
+ (r!)δs/r
1039
+ (dn − δs)δs
1040
+
1041
+
1042
+ 1≤s≤u
1043
+
1044
+ ne
1045
+ s
1046
+
1047
+ dse
1048
+ (dn − δs)r
1049
+ �δ �er · r!
1050
+ δs
1051
+ �δ/r�s
1052
+ .
1053
+ (14)
1054
+ Now for 1 ≤ s ≤ √n the term in (14) is at most
1055
+
1056
+ O(n) ·
1057
+
1058
+ O(n−1/2)
1059
+ �δ · O(1)
1060
+ �s
1061
+ = o(1/n)
1062
+ since δ can be made arbitrarily large by choosing d large. Meanwhile for √n ≤ s ≤ u we
1063
+ have that the term in (14) is at most
1064
+
1065
+ O(n1/2) · O(1) ·
1066
+
1067
+ O(n−1/2)
1068
+ �δ/r�s
1069
+ = o(1/n).
1070
+ Now since (14) has O(n) terms the whole sum is o(1) and we are done. This completes the
1071
+ proof of Theorem 1.
1072
+ 4
1073
+ Summary
1074
+ We have asymptotically computed the chromatic number of random r-uniform, d-regular
1075
+ hypergraphs when proper colorings mean that no edge is mono-chromatic. It would seem
1076
+ likely that the approach we took would extend to other definitions of proper coloring. We
1077
+ have not attempted to use second moment calculations to further narrow our estimates.
1078
+ These would seem to be two natural lines of further research.
1079
+ References
1080
+ [1] P. Ayre, A. Coja-Oghlan and C. Greenhill, Hypergraph coloring up to condensation,
1081
+ Random Structures and Algorithms 54 (2019) 615 - 652.
1082
+ 11
1083
+
1084
+ [2] D. Achlioptas and C. Moore, The Chromatic Number of Random Regular Graphs,
1085
+ In Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds) Approximation, Random-
1086
+ ization, and Combinatorial Optimization. Algorithms and Techniques. RANDOM AP-
1087
+ PROX 2004 2004. Lecture Notes in Computer Science, vol 3122. Springer, Berlin, Hei-
1088
+ delberg. Approximation, Randomization, and Combinatorial Optimization. Algorithms
1089
+ and Techniques (2004) 219–228.
1090
+ [3] D. Achlioptas and A. Naor, The two possible values of the chromatic number of a
1091
+ random graph, Annals of Mathematics 162 (2005) 1335-1351.
1092
+ [4] D. Bal and P. Bennett, The Matching Process and Independent Process in Random Regular Graphs and Hypergraphs.
1093
+ [5] B. Bollob´as, The chromatic number of random graphs, Combinatorica 8 (1988) 49-55.
1094
+ [6] B. Bollob´as and P. Erd˝os, Cliques in random graphs, Mathematical Proceedings of the
1095
+ Cambridge Philosophical Society 80 (1976) 419-427.
1096
+ [7] A. Coja-Oghlan, Upper-Bounding the k-Colorability Threshold by Counting Covers,
1097
+ Electronic Journal of Combinatorics 20 (2013).
1098
+ [8] A. Coja-Oghlan, C. Efthymiou and S. Hetterich, On the chromatic number of random
1099
+ regular graphs, Journal of Combinatorial Theory B 116 (2016) 367-439.
1100
+ [9] M. Dyer, A.M. Frieze and C. Greenhill, On the chromatic number of a random hyper-
1101
+ graph, Journal of Combinatorial Theorey B 113 (2015) 68-122.
1102
+ [10] A.M. Frieze, On the independence number of random graphs, Discrete Mathematics 81
1103
+ (1990) 171-176.
1104
+ [11] A.M. Frieze and M. Karo´nski, Introduction to Random Graphs, Cambridge University
1105
+ Press, 2015.
1106
+ [12] A.M. Frieze and T. �Luczak, On the independence and chromatic numbers of random
1107
+ regular graphs, Journal of Combinatorial Theory. Series B 54 (1992) 123-132.
1108
+ [13] G. Grimmett and C. McDiarmid, On colouring random graphs, Mathematical Proceed-
1109
+ ings of the Cambridge Philosophical Society 77 (1975) 313-324.
1110
+ [14] M. Krivelevich and B. Sudakov, The chromatic numbers of random hypergraphs, Ran-
1111
+ dom Structures Algorithms 12 (1998) 381-403.
1112
+ [15] T. �Luczak, The chromatic number of random graphs, Combinatorica 11 (19990) 45-54.
1113
+ [16] T. �Luczak, A note on the sharp concentration of the chromatic number of random
1114
+ graphs, Combinatorica 11 (1991) 295-297.
1115
+ [17] D. Matula, Expose-and-Merge Exploration and the Chromatic Number of a Random
1116
+ Graph, Combinatorica 7 (1987) 275-284.
1117
+ 12
1118
+
1119
+ [18] E. Shamir and J. Spencer, Sharp concentration of the chromatic number od random
1120
+ graphs Gn,p, Combinatorica 7 (1987) 121-129.
1121
+ [19] L. Shi and N. Wormald, Coloring random regular graphs, Combinatorics, Probability
1122
+ and Computing 16 (2007) 459-494.
1123
+ 13
1124
+
ENAyT4oBgHgl3EQfSPf9/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,362 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf,len=361
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
3
+ page_content='00085v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
4
+ page_content='CO] 31 Dec 2022 On the chromatic number of random regular hypergraphs Patrick Bennett∗ Department of Mathematics, Western Michigan University Kalamazoo MI 49008 Alan Frieze† Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA 15213.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
5
+ page_content=' Abstract We estimate the likely values of the chromatic and independence numbers of the random r-uniform d-regular hypergraph on n vertices for fixed r, large fixed d, and n → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
6
+ page_content=' 1 Introduction The study of the chromatic number of random graphs has a long history.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
7
+ page_content=' It begins with the work of Bollob´as and Erd˝os [6] and Grimmett and McDiarmid [13] who determined χ(Gn,p), p constant to within a factor 2, w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
8
+ page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
9
+ page_content='p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
10
+ page_content=' Matula [17] reduced this to a factor of 3/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
11
+ page_content=' Then we have the discovery of martingale concentration inequalities by Shamir and Spencer [18] leading to the breakthrough by Bollob´as [5] who determined χ(Gn,p) asymptotically for p constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
12
+ page_content=' The case of p → 0 proved a little more tricky, but �Luczak [15] using ideas from Frieze [10] and [17] determined χ(Gn,p), p = c/n asymptotically for large c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
13
+ page_content=' �Luczak [16] showed that w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
14
+ page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
15
+ page_content='p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
16
+ page_content=' χ(Gn,p), p = c/n took one of two values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
17
+ page_content=' It was then that the surprising power of the second moment method was unleashed by Achlioptas and Naor [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
18
+ page_content=' Since then there has been much work tightening our estimates for the k-colorability threshold, k ≥ 3 constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
19
+ page_content=' See for example Coja-Oghlan [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
20
+ page_content=' Random regular graphs of low degree were studied algorithmically by several authors e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
21
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
22
+ page_content=' Achlioptas and Molloy [2] and by Shi and Wormald [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
23
+ page_content=' Frieze and �Luczak [12] introduced ∗Research supported in part by Simons Foundation Grant #426894.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
24
+ page_content=' †Research supported in part by NSF Grant DMS1661063 1 a way of using our knowledge of χ(Gn,p), p = c/n to tackle χ(Gn,r) where Gn,r denotes a random r-regular graph and where p = r/n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
25
+ page_content=' Subsequently Achlioptas and Moore [2] showed via the second moment method that w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
26
+ page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
27
+ page_content='p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
28
+ page_content=' χ(Gn,r) was one of 3 values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
29
+ page_content=' This was tightened basically to one value by Coja-Oghlan, Efthymiou and Hetterich [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
30
+ page_content=' For random hypergraphs, Krivelevich and Sudakov [14] established the asymptotic chromatic number for χ(Hr(n, p) for �n−1 r−1 � p sufficiently large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
31
+ page_content=' Here Hr(n, p) is the binomial r-uniform hypergraph where each of the �n r � possible edges is included with probability p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
32
+ page_content=' There are several possibilities of a proper coloring of the vertices of a hypergraph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
33
+ page_content=' Here we concentrate on the case where a vertex coloring is proper if no edge contains vertices of all the same color.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
34
+ page_content=' Dyer, Frieze and Greehill [9] and Ayre, Coja-Oghlan and Greehill [1] established showed that w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
35
+ page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
36
+ page_content='p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
37
+ page_content=' χ(Hr(n, p) took one or two values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
38
+ page_content=' When it comes to what ew denote by χ(Hr(n, d), a random d-regular, r-uniform hypergraph, we are not aware of any results at all.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
39
+ page_content=' In this paper we extend the approach of [12] to this case: Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
40
+ page_content=' For all fixed r and ε > 0 there exists d0 = d0(r, ε) such that for any fixed d ≥ d0 we have that w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
41
+ page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
42
+ page_content='p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
43
+ page_content=' ������� χ(Hr(n, d)) − � (r−1)d r log d � 1 r−1 � (r−1)d r log d � 1 r−1 ������� ≤ ε, ������� α(Hr(n, d)) − � r log d (r−1)d � 1 r−1 n � r log d (r−1)d � 1 r−1 n ������� ≤ ε (1) Here α refers to the independence number of a hypergraph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
44
+ page_content=' 2 Preliminaries 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
45
+ page_content='1 Tools We will be using the following forms of Chernoff’s bound (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
46
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
47
+ page_content=', [11]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
48
+ page_content=' Lemma 2 (Chernoff bound).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
49
+ page_content=' Let X ∼ Bin(n, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
50
+ page_content=' Then for all 0 < λ < np P(|X − np| ≥ λ) ≤ 2 exp � − λ2 3np � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
51
+ page_content=' (2) Lemma 3 (McDiarmid’s inequality).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
52
+ page_content=' Let X = f(⃗Z) where ⃗Z = (Z1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
53
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
54
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
55
+ page_content=' Zt) and the Zi are independent random variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
56
+ page_content=' Assume the function f has the property that whenever ⃗z, ⃗w differ in only one coordinate we have |f(⃗z) − f(⃗w)| ≤ c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
57
+ page_content=' Then for all λ > 0 we have P(|X − E[X]| ≥ λ) ≤ 2 exp � − λ2 2c2t � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
58
+ page_content=' (3) Bal and the first author [4] showed the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
59
+ page_content=' 2 Theorem 4 (Claim 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
60
+ page_content='2 in [4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
61
+ page_content=' Fix r ≥ 3, d ≥ 2, and 0 < c < r−1 r .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
62
+ page_content=' Let z2 be the unique positive number such that z2 � (z2 + 1)r−1 − zr−1 2 � (z2 + 1)r − zr 2 = c (4) and let z1 = d r [(z2 + 1)r − zr 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
63
+ page_content=' (5) Let h(x) = x log x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
64
+ page_content=' If it is the case that h �d r � + h(dc) + h(d(1 − c)) − h(c) − h(1 − c) − h(d) − d r log z1 − dc log z2 < 0 (6) then w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
65
+ page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
66
+ page_content='p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
67
+ page_content=' α(Hr(n, d)) < cn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
68
+ page_content=' Krivelevich and Sudakov [14] proved the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
69
+ page_content=' Theorem 5 (Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
70
+ page_content='1 in [14]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
71
+ page_content=' For all fixed r and ε > 0 there exists d0 = d0(r, ε) such that whenever D = D(p) := �n−1 r−1 � p ≥ d0 we have that ������� χ(Hr(n, p)) − � (r−1)D r log D � 1 r−1 � (r−1)D r log D � 1 r−1 ������� ≤ ε, ������� α(Hr(n, p)) − � r log D (r−1)D � 1 r−1 n � r log D (r−1)D � 1 r−1 n ������� ≤ ε with probability at least 1 − o(1/n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
72
+ page_content=' 3 Proof In this section we prove Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
73
+ page_content=' First we give an overview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
74
+ page_content=' We show in Subsection 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
75
+ page_content='1 that the upper bound on α follows from Theorem 4 and some straightforward calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
76
+ page_content=' Then the lower bound on χ follows as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
77
+ page_content=' Thus we will be done once we prove the upper bound on χ (since that proves the lower bound on α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
78
+ page_content=' This will be in Subsection 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
79
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
80
+ page_content=' For that we follow the methods of Frieze and �Luczak [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
81
+ page_content=' We will assume r ≥ 3 since Frieze and �Luczak [12] covered the graph case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
82
+ page_content=' We will use standard asymptotic notation, and we will use big-O notation to suppress any constants depending on r but not d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
83
+ page_content=' Thus, for example we will write r = O(1) and d−1 = O(1) but not d = O(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
84
+ page_content=' This is convenient for us because even though our theorem is for fixed d, it requires d to be sufficiently large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
85
+ page_content=' 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
86
+ page_content='1 Upper bound on the independence number We will apply Theorem 4 to show an upper bound on α(Hr(n, d)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
87
+ page_content=' Fix ε, r (but not d) and let c = c(d) := (1 + ε) � r log d (r−1)d � 1 r−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
88
+ page_content=' Let z2 be as defined in (4) and z1 be as defined in (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
89
+ page_content=' We see that Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
90
+ page_content=' z2 = c 1 − c + O (cr) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
91
+ page_content=' After some algebra, we re-write (4) as z2 − zr 2 (1 + z2)r−1 = c 1 − c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
92
+ page_content=' and the claim follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
93
+ page_content=' Now we check (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
94
+ page_content=' h �d r � + h(dc) + h(d(1 − c)) − h(c) − h(1 − c) − h(d) − d r log z1 − dc log z2 =d r log �d r � + dc log(dc) + d(1 − c) log(d(1 − c)) − c log c − (1 − c) log(1 − c) − d log d − d r log z1 − dc log z2 =dc log � c (1 − c)z2 � + d r log [(z2 + 1)r − zr 2] + d log(1 − c) − c log c − (1 − c) log(1 − c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
95
+ page_content=' (7) Now note that the first term of (7) is dc log � c (1 − c)z2 � = dc log � c (1 − c) � c 1−c + O (cr+1) � � = dc log � 1 1 + O (cr) � = O � dcr+1� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
96
+ page_content=' The second term of (7) is d r log [(z2 + 1)r − zr 2] = d r log �� 1 1 − c + O � cr+1��r − � c 1 − c + O � cr+1��r� = d r log �� 1 1 − c �r � 1 − cr + O � cr+1��� = d r log � 1 1 − c �r + d r log � 1 − cr + O � cr+1�� = −d log(1 − c) − d r cr + O � dcr+1� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
97
+ page_content=' 4 The last term of (7) is (1 − c) log(1 − c) = O(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
98
+ page_content=' Therefore (7) becomes − d r cr − c log c + O � c + dcr+1�� = − c �d rcr−1 + log c � + O � c + dcr+1� = − c � d r (1 + ε)r−1 r log d (r − 1)d + log � (1 + ε) � r log d (r − 1)d � 1 r−1�� + O � c + dcr+1� = − c � (1 + ε)r−1 log d r − 1 − log d r − 1 + O(log log d) � + O � c + dcr+1� = − Ω (c log d) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
99
+ page_content=' It follows from Theorem 4 that w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
100
+ page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
101
+ page_content='p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
102
+ page_content=' α(Hr(n, d)) ≤ (1 + ε) � r log d (r − 1)d � 1 r−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
103
+ page_content=' (8) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
104
+ page_content='2 Upper bound on the chromatic number Our proof of the upper bound uses the method of Frieze and �Luczak [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
105
+ page_content=' We will generate Hr(n, d) in a somewhat complicated way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
106
+ page_content=' The way we generate it will allow us to use known results on Hr(n, p) due to Krivelevich and Sudakov [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
107
+ page_content=' Set m := �d − d1/2 log d r � n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
108
+ page_content=' (9) Let H∗ r(n, m) be an r-uniform multi-hypergraph with m edges, where each multi-edge consists of r independent uniformly random vertices chosen with replacement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
109
+ page_content=' We will generate H∗ r(n, m) as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
110
+ page_content=' We have n sets (“buckets” ) V1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
111
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
112
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
113
+ page_content=' Vn and a set of rm points P := {p1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
114
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
115
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
116
+ page_content=' prm}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
117
+ page_content=' We put each point pi into a uniform random bucket Vφ(i) independently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
118
+ page_content=' We let R = {R1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
119
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
120
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
121
+ page_content=' , Rm} be a uniform random partition of P into sets of size r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
122
+ page_content=' Of course, the idea here is that the buckets Vi represent vertices and the parts of the partition R represent edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
123
+ page_content=' Thus Ri defines a hyper-edge {φ(j) : j ∈ Ri} for i = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
124
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
125
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
126
+ page_content=' , m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
127
+ page_content=' We denote the hypergraph defined by R by HR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
128
+ page_content=' Note that since r ≥ 3 the expected number of pairs of multi-edges in H∗ r(n, m) is at most �n r ��m 2 � � 1 �n r � �2 = O �m2 nr � = O(n−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
129
+ page_content=' 5 Thus, w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
130
+ page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
131
+ page_content='p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
132
+ page_content=' there are no multi-edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
133
+ page_content=' Now the expected number of “loops” (edges containing the same vertex twice) is at most nm �r 2 � �1 n �2 = O(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
134
+ page_content=' Thus w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
135
+ page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
136
+ page_content='p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
137
+ page_content=' there are at most log n loops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
138
+ page_content=' We now remove all multi-edges and loops, and say that M is the (random) number of edges remaining, where m − log n ≤ M ≤ m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
139
+ page_content=' The remaining hypergraph is distributed as H(n, M), the random hypergraph with M edges chosen uniformly at random without replacement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
140
+ page_content=' Next we estimate the chromatic number of Hr(n, M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
141
+ page_content=' Claim 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
142
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
143
+ page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
144
+ page_content='p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
145
+ page_content=' we have ������� χ(Hr(n, M)) − � (r−1)d r log d � 1 r−1 � (r−1)d r log d � 1 r−1 ������� ≤ ε 2, ������� α(Hr(n, M)) − � r log D (r−1)D � 1 r−1 n � r log D (r−1)D � 1 r−1 n ������� ≤ ε 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
146
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
147
+ page_content=' We will use Theorem 5 together with a standard argument for comparing Hr(n, p) with Hr(n, m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
148
+ page_content=' Set p := m/ �n r � and apply Theorem 5 with ε replaced with ε/4 so we get ������� χ(Hr(n, p)) − � (r−1)D r log D � 1 r−1 � (r−1)D r log D � 1 r−1 ������� ≤ ε 4 (10) with probability at least 1 − o(1/n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
149
+ page_content=' Note that here D = �n − 1 r − 1 � p = �n − 1 r − 1 � m/ �n r � = rm/n = d − d1/2 log d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
150
+ page_content=' Now since d, D can be chosen to be arbitrarily large and d = D + O(D1/2 log D) we can replace D with d in (10) without changing the left hand side by more than ε/4 to obtain ������� χ(Hr(n, p)) − � (r−1)d r log d � 1 r−1 � (r−1)d r log d � 1 r−1 ������� ≤ ε 2 (11) with probability at least 1−o(1/n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
151
+ page_content=' But now note that with probability Ω(n−1/2) the number of edges in Hr(n, p) is precisely M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
152
+ page_content=' Thus we have that ������� χ(Hr(n, M)) − � (r−1)d r log d � 1 r−1 � (r−1)d r log d � 1 r−1 ������� ≤ ε 2 with probability at least 1 − o(n−1/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
153
+ page_content=' This proves the first inequality, and the second one follows similarly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
154
+ page_content=' 6 Now we will start to transform Hr(n, m) to the random regular hypergraph Hr(n, d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
155
+ page_content=' This transformation will involve first removing some edges from vertices of degree larger than d, and then adding some edges to vertices of degree less than d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
156
+ page_content=' We define the rank of a point pi ∈ Vj, to be the number of points pi′ ∈ Vj such that i′ ≤ i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
157
+ page_content=' We form a new set of points P ′ ⊆ P and a partition R′ of P ′ as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
158
+ page_content=' For any Rk ∈ R containing a point with rank more than d, we delete Rk from R and delete all points of Rk from P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
159
+ page_content=' Note that each bucket contains at most r points of P ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
160
+ page_content=' Note also that R′ is a uniform random partition of P ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
161
+ page_content=' We let HR′ be the natural hypergraph associated with R′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
162
+ page_content=' Now we would like to put some more points into the buckets until each bucket has exactly d points, arriving at some set of points P ′′ ⊇ P ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
163
+ page_content=' We would also like a uniform partition R′′ of P ′′ into sets of size r, and we would like R′′ to have many of the same parts as R′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
164
+ page_content=' We will accomplish this by constructing a sequence P ′ 1 := P ′ ⊆ P ′ 2 ⊆ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
165
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
166
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
167
+ page_content=' ⊆ P ′ ℓ =: P ′′ of point sets and a sequence R′ 1 := R′, R′ 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
168
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
169
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
170
+ page_content=' , R′ ℓ =: R′′ where R′ j is a uniform random partition of P ′ j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
171
+ page_content=' We construct P ′ j+1, R′ j+1 from P ′ j, R′ j as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
172
+ page_content=' Suppose |R′ j| = a (in other words R′ j has a parts), so |P ′ j| = ra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
173
+ page_content=' P ′ j+1 will simply be P ′ j plus r new points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
174
+ page_content=' Now we will choose a random value K ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
175
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
176
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
177
+ page_content=' , r} using the distribution P[K = k] = qk(a), where qk(a) is defined as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
178
+ page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
179
+ page_content=' Consider a random partition of ra+r points into a+1 parts of size r, and fix some set Q of r points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
180
+ page_content=' Then for 1 ≤ k ≤ r, the number qk(a) is defined to be the probability that Q meets exactly k parts of the partition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
181
+ page_content=' We will then remove a uniform random set of K − 1 parts from R′ j, leaving Kr points in P ′ j+1 which are not in any remaining part of R′ j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
182
+ page_content=' We partition those points into K parts of size r such that each part contains at least one new point (each such partition being equally likely), arriving at our partition R′ j+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
183
+ page_content=' We claim that R′ j+1 is a uniform random partition of P ′ j+1 into parts of size r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
184
+ page_content=' Indeed, first consider the r new points that are in P ′ j+1 which were not in P ′ j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
185
+ page_content=' The probability that a uniform random partition of P ′ j+1 would have exactly k parts containing at least one new point is qk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
186
+ page_content=' So we can generate such a random partition as follows: first choose a random value K with P[K = k] = qk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
187
+ page_content=' next we choose a uniform random set of (K − 1)r points from P ′ j;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
188
+ page_content=' next we choose a partition of the set of points consisting of P ′ j+1 \\ P ′ j together with the points from P ′ j we chose in the last step, where the partition we choose is uniformly random from among all partitions such that each part contains at least one point of P ′ j+1 \\P ′ j;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
189
+ page_content=' finally, we choose a uniform partition of the rest of the points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
190
+ page_content=' In our case this partition of the rest of the points comprises the current partition of the “unused” (a − K + 1)r points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
191
+ page_content=' At the end of this process we have that HR′′ is distributed as Hr(n, d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
192
+ page_content=' 7 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
193
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
194
+ page_content='1 Bounding the number of low degree vertices in HR′ We define some sets of buckets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
195
+ page_content=' We show that w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
196
+ page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
197
+ page_content='p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
198
+ page_content=' there are few small buckets i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
199
+ page_content='e few vertices of low degree in the hypregraph HR′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
200
+ page_content=' Let S0 be the buckets with at most d−3d1/2 log d points of P ′, and let S1 be the buckets with at most d−2d1/2 log d points of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
201
+ page_content=' Let S2 be the set of buckets that, when we remove points from P ′ to get P, have at least d1/2 log d points removed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
202
+ page_content=' Then S0 ⊆ S1 ∪ S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
203
+ page_content=' Our goal is to bound the probability that S0 is too large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
204
+ page_content=' Fix a bucket Vj and let X ∼ Bin � rm, 1 n � be the number of points of P in Vj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
205
+ page_content=' Then the probability that Vj is in S1 satisfies P[Vj ∈ S1] = P � X ≤ d − 2d1/2 log d � = P � X − rm n ≤ −d1/2 log d � ≤ exp � − d log2 d 3(d − d1/2 log d) � = exp � −Ω � log2 d �� , where for our inequality we have used the Chernoff bound (Lemma 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
206
+ page_content=' Therefore E[|S0|] ≤ exp � −Ω � log2 d �� n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
207
+ page_content=' Now we argue that |S1| is concentrated using McDiarmid’s inequality (Lemma 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
208
+ page_content=' For our application we let X = |S1| which is a function (say f) of the vector (Z1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
209
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
210
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
211
+ page_content=' Zrm) where Zi tells us which bucket the ith point of P went into.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
212
+ page_content=' Moving a point from one bucket to another can only change |S1| by at most 1 so we use c = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
213
+ page_content=' Thus we get the bound P(|X − E[X]| ≥ n2/3) ≤ 2 exp � − n4/3 2rm � = o(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
214
+ page_content=' (12) Now we handle S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
215
+ page_content=' For 1 ≤ j ≤ n let Yj be the number of parts Rk ∈ R such that Rk contains a point in the bucket Vj as well as a point in some bucket Vj′ where |Vj′| > d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
216
+ page_content=' Note that if Vj ∈ S2 then Yj ≥ d1/2 log d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
217
+ page_content=' We view Rk as a set of r points, say {q1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
218
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
219
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
220
+ page_content=' , qr} each going into a uniform random bucket.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
221
+ page_content=' Say qi goes to bucket Vji.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
222
+ page_content=' The probability that Rk is counted by Yj is at most rP[j1 = j and |Vj1| > d] + r(r − 1)P[j1 = j and |Vj2| > d] = r nP[|Vj1| > d ��j1 = j] + r(r − 1) n P[|Vj2| > d ��j1 = j] ≤ r2 n P[|Vj1| > d ��j1 = j] ≤ r2 n P[Bin(rm − 1, 1/n) ≥ d] = r2 n exp � −Ω � log2 d �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
223
+ page_content=' Thus we have E[Yj] = m · r2 n exp � −Ω � log2 d �� ≤ rd exp � −Ω � log2 d �� = rd1/2 exp � −Ω � log2 d �� and so Markov’s inequality gives us P � Yj ≥ d1/2 log d � ≤ rd exp � −Ω � log2 d �� d1/2 log d = exp � −Ω � log2 d �� 8 and so E[|S2|] = n exp � −Ω � log2 d �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
224
+ page_content=' We use McDiarmid’s inequality once more, this time with X = |S2|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
225
+ page_content=' A change in choice of bucket changes |S2| by at most one and so (12) continues to hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
226
+ page_content=' Thus |S0| = n exp � −Ω � log2 d �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
227
+ page_content=' w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
228
+ page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
229
+ page_content='p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
230
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
231
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
232
+ page_content='2 A property of independent subsets of Hr(n, m) Fix 1 ≤ j ≤ r − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
233
+ page_content=' Set a := � 1 + ε 2 � � r log d (r − 1)d � 1 r−1 , κj := 10d r �r j � aj, p := d(r − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
234
+ page_content=' nr−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
235
+ page_content=' The expected number of independent sets A in Hr(n, p) of size at most an such that there are κjn edges each having j vertices in A is at most an � s=1 �n s � (1 − p)(s r) ��s j �� n r−j � κjn � pκjn ≤ an � s=1 exp \uf8f1 \uf8f2 \uf8f3s log �en s � − �s r � p + κjn log \uf8eb \uf8ede(an)j j!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
236
+ page_content=' nr−j (r−j)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
237
+ page_content='p κjn \uf8f6 \uf8f8 \uf8fc \uf8fd \uf8fe = an � s=1 exp � s log �en s � − �s r � p + κjn log �eaj 10 �� ≤ an · exp �� log �e a � − 10d r �r j � aj−1 log �10 e �� an � = o(1/n) where the last line follows since as d → ∞ we have log �e a � ∼ 1 r − 1 log d and 10d r �r j � aj−1 log �10 e � = Ω � d r−j j−1 log− j−1 r−1 d � ≫ log d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
238
+ page_content=' Thus with probability 1 − o(1/n), Hr(n, p) has a coloring using (1 + ε/2) � (r−1)d r log d � 1 r−1 colors such that for each color class A and for each 1 ≤ j ≤ r − 1 there are at most κjn edges with j vertices in A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
239
+ page_content=' The hypergraph Hr(n, m), m = �n r � p will have this property w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
240
+ page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
241
+ page_content='p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
242
+ page_content='. 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
243
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
244
+ page_content='3 Transforming HR′ into Hr(n, d) Now we will complete the transformation to the random regular hypergraph Hr(n, d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
245
+ page_content=' We are open to the possibility that doing so will render our coloring no longer proper, since this 9 process will involve changing some edges which might then be contained in a color class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
246
+ page_content=' We will keep track of how many such “bad” edges there are and then repair our coloring at the end.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
247
+ page_content=' We have to add at most (3d1/2 log d + d exp � −Ω � log2 d �� )n < (4d1/2 log d)n points, which takes at most as many steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
248
+ page_content=' For each color class A of HR′ define XA,j = XA,j(i) to be the number of edges with j vertices in A at step i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
249
+ page_content=' We have already established that XA,j(0) ≤ κjn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
250
+ page_content=' This follows from Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
251
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
252
+ page_content='2 and the fact that we have removed edges from H(n, m) to obtain HR′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
253
+ page_content=' Let Ei be the event that at step i we have that for each color class A and for each 1 ≤ j ≤ r − 1 we have XA,j(i) ≤ 2κjn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
254
+ page_content=' Then, assuming Ei holds, the probability that XA,j increases at step i is at most � 1≤k≤r, jℓ≥1 j1+···+jk=j � 1≤ℓ≤k 2κjℓn nd/r = � 1≤k≤r, jℓ≥1 j1+···+jk=j � 1≤ℓ≤k 20 � r jk � ajk ≤ � 1≤k≤r, jℓ≥1 j1+···+jk=j 20r2r2aj ≤ 40r2r2aj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
255
+ page_content=' Also, the largest possible increase in XA,j in one step is r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
256
+ page_content=' Thus, the final value of XA,j after at most (4d1/2 log d)n steps is stochastically dominated by κjn + rY where Y ∼ Bin � (4d1/2 log d)n, 40r2r2aj� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
257
+ page_content=' An easy application of the Chernoff bound tells us P (Y > 2E[Y ]) ≤ exp(−Ω(n)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
258
+ page_content=' (13) Note that here 2E[Y ] κjn = 8d1/2 log d · 40r2r2ajn 10d �r j � ajn/r = O(d−1/2 log d) < 1 for sufficiently large d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
259
+ page_content=' Thus, using (13) and the union bound over all color classes A, we have w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
260
+ page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
261
+ page_content='p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
262
+ page_content=' the final value of XA,j is at most κjn + 2E[Y ] ≤ 2κjn for all 1 ≤ j ≤ r − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
263
+ page_content=' Now we address “bad” edges, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
264
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
265
+ page_content=' edges contained in a color class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
266
+ page_content=' Assuming Ei holds, the ex- pected number of new edges contained in any color class at step i is at most r(40)r2r2+2rar = O �� log d d � r r−1� (because it would have to be one of the colors of one of the vertices we are adding points to).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
267
+ page_content=' Thus the expected number of bad edges created in (4d1/2 log d)n steps is stochastically dominated by Z ∼ r · Bin � (4d1/2 log d)n, O ��log d d � r r−1� � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
268
+ page_content=' Another easy application of Chernoff shows that w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
269
+ page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
270
+ page_content='p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
271
+ page_content=' Z ≤ 2E[Z] = O(d−1/2n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
272
+ page_content=' We repair the coloring as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
273
+ page_content=' First we uncolor one vertex from each bad edge, and let the set of uncolored vertices be U where |U| = u = O � d−1/2n � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
274
+ page_content=' Let δ := ε 2 �(r − 1)d r log d � 1 r−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
275
+ page_content=' We claim that for every S ⊆ U, |S| = s, the hypergraph induced on S has at most δs/r edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
276
+ page_content=' This will complete our proof since it implies that the minimum degree is at most δ and so U can be recolored using a fresh set of δ colors, yielding a coloring of Hr(n, d) using 10 at most χ(Hr(n, M)) + δ ≤ � 1 + ε 2 � �(r − 1)d r log d � 1 r−1 + ε 2 �(r − 1)d r log d � 1 r−1 = (1 + ε) �(r − 1)d r log d � 1 r−1 colors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
277
+ page_content=' The expected number of sets S with more than δs/r edges is at most � 1≤s≤u �n s ���ds r � δs/r � 1 �dn r ��dn−r r � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
278
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
279
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
280
+ page_content=' �dn−δs+r r � ≤ � 1≤s≤u �ne s �s �(dse/r)re δs/r �δs/r (r!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
281
+ page_content=' )δs/r (dn − δs)δs ≤ � 1≤s≤u � ne s � dse (dn − δs)r �δ �er · r!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
282
+ page_content=' δs �δ/r�s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
283
+ page_content=' (14) Now for 1 ≤ s ≤ √n the term in (14) is at most � O(n) · � O(n−1/2) �δ · O(1) �s = o(1/n) since δ can be made arbitrarily large by choosing d large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
284
+ page_content=' Meanwhile for √n ≤ s ≤ u we have that the term in (14) is at most � O(n1/2) · O(1) · � O(n−1/2) �δ/r�s = o(1/n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
285
+ page_content=' Now since (14) has O(n) terms the whole sum is o(1) and we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
286
+ page_content=' This completes the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
287
+ page_content=' 4 Summary We have asymptotically computed the chromatic number of random r-uniform, d-regular hypergraphs when proper colorings mean that no edge is mono-chromatic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
288
+ page_content=' It would seem likely that the approach we took would extend to other definitions of proper coloring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
289
+ page_content=' We have not attempted to use second moment calculations to further narrow our estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
290
+ page_content=' These would seem to be two natural lines of further research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
291
+ page_content=' References [1] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
292
+ page_content=' Ayre, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
293
+ page_content=' Coja-Oghlan and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
294
+ page_content=' Greenhill, Hypergraph coloring up to condensation, Random Structures and Algorithms 54 (2019) 615 - 652.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
295
+ page_content=' 11 [2] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
296
+ page_content=' Achlioptas and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
297
+ page_content=' Moore, The Chromatic Number of Random Regular Graphs, In Jansen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
298
+ page_content=', Khanna, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
299
+ page_content=', Rolim, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
300
+ page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
301
+ page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
302
+ page_content=', Ron, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
303
+ page_content=' (eds) Approximation, Random- ization, and Combinatorial Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
304
+ page_content=' Algorithms and Techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
305
+ page_content=' RANDOM AP- PROX 2004 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
306
+ page_content=' Lecture Notes in Computer Science, vol 3122.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
307
+ page_content=' Springer, Berlin, Hei- delberg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
308
+ page_content=' Approximation, Randomization, and Combinatorial Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
309
+ page_content=' Algorithms and Techniques (2004) 219–228.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
310
+ page_content=' [3] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
311
+ page_content=' Achlioptas and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
312
+ page_content=' Naor, The two possible values of the chromatic number of a random graph, Annals of Mathematics 162 (2005) 1335-1351.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
313
+ page_content=' [4] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
314
+ page_content=' Bal and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
315
+ page_content=' Bennett, The Matching Process and Independent Process in Random Regular Graphs and Hypergraphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
316
+ page_content=' [5] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
317
+ page_content=' Bollob´as, The chromatic number of random graphs, Combinatorica 8 (1988) 49-55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
318
+ page_content=' [6] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
319
+ page_content=' Bollob´as and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
320
+ page_content=' Erd˝os, Cliques in random graphs, Mathematical Proceedings of the Cambridge Philosophical Society 80 (1976) 419-427.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
321
+ page_content=' [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
322
+ page_content=' Coja-Oghlan, Upper-Bounding the k-Colorability Threshold by Counting Covers, Electronic Journal of Combinatorics 20 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
323
+ page_content=' [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
324
+ page_content=' Coja-Oghlan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
325
+ page_content=' Efthymiou and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
326
+ page_content=' Hetterich, On the chromatic number of random regular graphs, Journal of Combinatorial Theory B 116 (2016) 367-439.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
327
+ page_content=' [9] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
328
+ page_content=' Dyer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
329
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
330
+ page_content=' Frieze and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
331
+ page_content=' Greenhill, On the chromatic number of a random hyper- graph, Journal of Combinatorial Theorey B 113 (2015) 68-122.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
332
+ page_content=' [10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
333
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
334
+ page_content=' Frieze, On the independence number of random graphs, Discrete Mathematics 81 (1990) 171-176.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
335
+ page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
336
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
337
+ page_content=' Frieze and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
338
+ page_content=' Karo´nski, Introduction to Random Graphs, Cambridge University Press, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
339
+ page_content=' [12] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
340
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
341
+ page_content=' Frieze and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
342
+ page_content=' �Luczak, On the independence and chromatic numbers of random regular graphs, Journal of Combinatorial Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
343
+ page_content=' Series B 54 (1992) 123-132.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
344
+ page_content=' [13] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
345
+ page_content=' Grimmett and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
346
+ page_content=' McDiarmid, On colouring random graphs, Mathematical Proceed- ings of the Cambridge Philosophical Society 77 (1975) 313-324.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
347
+ page_content=' [14] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
348
+ page_content=' Krivelevich and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
349
+ page_content=' Sudakov, The chromatic numbers of random hypergraphs, Ran- dom Structures Algorithms 12 (1998) 381-403.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
350
+ page_content=' [15] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
351
+ page_content=' �Luczak, The chromatic number of random graphs, Combinatorica 11 (19990) 45-54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
352
+ page_content=' [16] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
353
+ page_content=' �Luczak, A note on the sharp concentration of the chromatic number of random graphs, Combinatorica 11 (1991) 295-297.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
354
+ page_content=' [17] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
355
+ page_content=' Matula, Expose-and-Merge Exploration and the Chromatic Number of a Random Graph, Combinatorica 7 (1987) 275-284.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
356
+ page_content=' 12 [18] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
357
+ page_content=' Shamir and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
358
+ page_content=' Spencer, Sharp concentration of the chromatic number od random graphs Gn,p, Combinatorica 7 (1987) 121-129.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
359
+ page_content=' [19] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
360
+ page_content=' Shi and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
361
+ page_content=' Wormald, Coloring random regular graphs, Combinatorics, Probability and Computing 16 (2007) 459-494.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
362
+ page_content=' 13' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENAyT4oBgHgl3EQfSPf9/content/2301.00085v1.pdf'}
GtAzT4oBgHgl3EQfUvxQ/content/tmp_files/2301.01271v1.pdf.txt ADDED
@@ -0,0 +1,1442 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01271v1 [econ.GN] 15 Dec 2022
2
+ On the notion of measurable utility on a
3
+ connected and separable topological space:
4
+ an order isomorphism theorem.∗
5
+ Gianmarco Caldini
6
+ 7 February 2020
7
+ Abstract
8
+ The aim of this article is to define a notion of cardinal utility function called
9
+ measurable utility and to define it on a connected and separable subset of a weakly
10
+ ordered topological space. The definition is equivalent to the ones given by Frisch
11
+ in 1926 and by Shapley in 1975 and postulates axioms on a set of alternatives that
12
+ allow both to ordinally rank alternatives and to compare their utility differences.
13
+ After a brief review of the philosophy of utilitarianism and the history of utility
14
+ theory, the paper introduces the mathematical framework to represent intensity
15
+ comparisons of utility and proves a list of topological lemmas that will be used in
16
+ the main result. Finally, the article states and proves a representation theorem,
17
+ see Theorem 5, for a measurable utility function defined on a connected and sep-
18
+ arable subset of a weakly ordered topological space equipped with another weak
19
+ order on its cartesian product. Under some assumptions on the order relations,
20
+ Theorem 5 proves existence and uniqueness, up to positive affine transformations,
21
+ of an order isomorphism with the real line.
22
+ ∗I am grateful to Professor Massimo Marinacci for letting me know about the open problem.
23
+ 1
24
+
25
+ Introduction
26
+ Together with notions such as value, money, market and economic agents, utility has
27
+ been one of the most controversial concepts in the whole history of economic theory.
28
+ The most important debate can be considered the one around the question whether it
29
+ is possible to define a clear and rigorous concept of utility and an appropriate notion
30
+ of unit of measurement for utility, seen as a quantity like the physical ones. In the first
31
+ chapter we will give a short introduction to the evolution of the concept of utility from
32
+ both a philosophical and a historical point of view. Our treatment is far from being
33
+ exhaustive. For an extensive treatment of history of utility and utility measurements,
34
+ we refer the interested reader to Stigler [39], Majumdar [26], Adams [1], Luce and
35
+ Suppes [24], Fishburn [15], [16], [17] and Moscati [29].
36
+ The second chapter will shift from the descriptive part to more formal concepts
37
+ and will be used to introduce the usual mathematical framework of decision theory.
38
+ Moreover, we will introduce definitions and axioms that will enable us to represent
39
+ comparisons of the intensity that a decision maker feels about the desirability of different
40
+ alternatives. For this aim, we will follow the construction of Suppes and Winet [40]
41
+ and Shapley [36].
42
+ The third and last chapter will be entirely devoted to the proof of Shapley’s theo-
43
+ rem, extending the domain of alternatives X from a convex subset of R to a connected
44
+ and separable subset of a topological space, hence providing a generalization of his
45
+ theorem. Our intended goal is to define a rigorous notion of a specific kind of cardinal
46
+ utility function, not only able to rank alternatives, but also to compare utility differ-
47
+ ences. In particular, we define a “twofold” utility function in line with the primordial
48
+ axiomatization of Frisch [18], calling it a measurable utility function. In mathematical
49
+ terms, we will prove a specific order-isomorphism theorem between a totally ordered,
50
+ connected and separable subset of a topological space and the real line.
51
+ 1
52
+ Philosophy and history of utility theory
53
+ Theory of felicity, theory of justice, theory of morality, theory of virtue and theory of
54
+ utility are among the most important theories of moral philosophy and, as such, they
55
+ are constantly sources of questions that often do not find an immediate answer. When
56
+ a human being acts, or when she makes a decision, she is, at the same time, looking for
57
+ 1
58
+
59
+ justifications, either positive or normative, for the decision she has just made. We, as
60
+ human beings, are constantly trying to prove that what we did was the best thing to
61
+ do, in some well-defined sense, or, at least, the less harmful. These justifications take
62
+ into account the means, the ends and all the possible paths we have to reach our goals.
63
+ Moral philosophy is the science that comes into place when we formulate questions
64
+ about the ends, the means and the possible ways to achieve them.
65
+ Moral philosophy is essentially composed by principles, also called norms, on what
66
+ is good and what is bad. They allow to define and to judge human actions, means and
67
+ ends. Sometimes, norms take the form of universal laws to which all human beings
68
+ are subjected.
69
+ Nevertheless, the formulation of moral laws or rules that prescribe
70
+ what a single agent should do or not do are intrinsically tied with history. Historical
71
+ experiences determine our vision of the world. Our moral philosophy is the result of
72
+ different heritages that formed a common culture in which values like human respect, an
73
+ idea of equality between human beings and impartiality are among the most important.
74
+ Together with this general definition of morality, there exist the similar concepts of
75
+ ethics and of role morality - a specific form of professional morality. It was Jeremy Ben-
76
+ tham, in an unfinished manuscript which was posthumously published in 1834, to define
77
+ the neologism deontology in the title of his book Deontology or the Science of Morality.
78
+ The manuscript stated, for the first and only time, the particular aspects of Bentham’s
79
+ utilitarian theory as moral philosophy. This passage is clearly mentioned in Sørensen
80
+ [37]:
81
+ [...] pointing out to each man on each occasion what course of conduct promises to be in
82
+ the highest degree conducive to his happiness: to his own happiness, first and last; to the
83
+ happiness of others, no farther than in so far as his happiness is promoted by promoting
84
+ theirs, than his interest coincides with theirs (p. 5).
85
+ In this passage we can see how Bentham considered deontology to be primarily
86
+ aimed at one’s own private felicity. Nevertheless, this does not bring any selfish concern.
87
+ Bentham’s goal can be identified with the objective study and measurement of passions
88
+ and feelings, pleasures and pains, will and action. Among these particular pleasures are
89
+ those stemming from sympathy - in Adam Smith’s sense - and they include the genuine
90
+ pleasure being happy for the good of others.
91
+ In this light, Bentham spent his life in search of the cardinal principle of ethics
92
+ and he found it in Epicurean ethics of hedonism. Hedonism comes from Greek ῾ηδον´η,
93
+ which means pleasure. Thus, classic utilitarianism, founded on hedonism, started from
94
+ 2
95
+
96
+ the principle that pleasure is an intrinsic positive value and sorrow is an intrinsic neg-
97
+ ative value. It is, for this reason, somehow curious that Bentham conception, founded
98
+ on pleasure, had been called utilitarianism, from the simple observation that what is
99
+ useful is not necessarily pleasant or providing pleasure. We need always to take into
100
+ account that the term utility is intended in a functional sense; what gives utility is what
101
+ contributes the most to the individual, or universal, pleasure.
102
+ Classical utilitarian philosophers considered utilitarianism well-founded and realistic
103
+ thanks to the fact that it is based on pleasure. It is well-founded as its norms are jus-
104
+ tified by an intrinsic, absolute value, that does not need any further justification. It is
105
+ realistic because they thought human being to ultimately seek the maximum pleasure
106
+ and the minimum sorrow. More specifically, human beings try to choose the action
107
+ that will provide the maximum excess of pleasure against grief.
108
+ For Bentham, what really matters is the total amount of pleasure, intended as
109
+ the total excess of pleasure against sorrow: the only reasons for human actions are the
110
+ quests for pleasure, avoiding sorrow: they are the sources of our ideas, our judgments
111
+ and our determinations. Human moral judgments become statements on happiness;
112
+ pleasure (or felicity) is good and sorrow is bad. Utilitarian moral can be considered as
113
+ a “calculated hedonism”, that carefully evaluates the characteristics of pleasure. Wise
114
+ is the man that is able to restrain from an immediate pleasure for a future good that,
115
+ in comparison, will be more beneficial. On the other side, being able to evaluate the
116
+ positive or negative consequences of an action without making mistakes is fundamental.
117
+ Hence, the correct utilitarian person should reach some kind of “moral arithmetic” that
118
+ allows the correct calculations to be carried out. Far from being a unanimously accepted
119
+ doctrine, we cannot forget to mention that Alessandro Manzoni wrote an essay [27] in
120
+ which he strongly criticized Bentham’s utilitarianism, saying that it is utterly wrong to
121
+ think that human beings build their moral values judgment of their actions on utility.1
122
+ From this explanation of utilitarianism, Bentham’s evaluation criterion of actions
123
+ follows as an immediate corollary: the maximum happiness for the maximum number
124
+ of people. Again, happiness is intended as state of pleasure, or absence of grief. Hence,
125
+ individual pleasure becomes no more the ultimate goal: it is the universal pleasure to
126
+ be hegemonic.2
127
+ 1Manzoni [27] wrote: ”Non ci vuol molto a scoprir qui un falso ragionamento fondato sull’alterazione
128
+ d’un fatto. Altro `e che l’utilit`a sia un motivo, cio`e uno de’ motivi per cui gli uomini si determinano
129
+ nella scelta dell’azioni, altro `e che sia, per tutti gli uomini, il motivo per eccellenza, l’unico motivo
130
+ delle loro determinazioni (p.775).
131
+ 2This tension between individual pleasure and universal pleasure is one of the principal difficulties
132
+ 3
133
+
134
+ This view of utilitarianism admits, at least in our minds, the conception of the
135
+ existence of a scale of pleasure in which pleasure and sorrow can be added and sub-
136
+ tracted. In other words, the idea of a calculus of felicity and grief is not completely
137
+ absurd, both in intrapersonal and interpersonal compensations.
138
+ 1.1
139
+ Brief history of utilitarianism
140
+ Although it is possible to find utilitarian reasonings in Aristotele’s works, it is com-
141
+ monly agreed that the beginning of the history of utility can be identified with 18th
142
+ century moral philosophy. To be even more specific, Bentham’s ideas were not isolated,
143
+ since they were already present in works by his illuministic predecessors like Richard
144
+ Cumberland, Francis Hutcheson and Cesare Beccaria. Especially Hutcheson [20] had
145
+ already defined good as pleasure and good objects as objects that create pleasure. The
146
+ novelty of Bentham was to treat pleasure as a measurable quantity, thus making the
147
+ utilitarian doctrine directly applicable to issues like tax policies and legislation. In-
148
+ deed, not only did Bentham argue that individual pleasure was measurable, but also
149
+ that happiness of different people could be compared. Stark [38] cited in his article
150
+ Bentham’s writings in the following way:
151
+ Fortunes unequal: by a particle of wealth, if added to him who has least, more happiness
152
+ will be produced, than if added to the wealth of him who has most (vol. 1, p. 103).
153
+ Stark [38] continues:
154
+ The quantity of happiness produced by a particle of wealth (each particle being the same
155
+ magnitude) will be less and less every particle (vol. 1, p. 113).
156
+ It is easy to see how this last concept and the well-known idea of decreasing
157
+ marginal utility are related.
158
+ In the pioneering work of Jevons [21], utility functions were the primitive mathe-
159
+ matical notion to formalize and quantify Bentham’s calculus of pleasure. Utility func-
160
+ tions were tools to measure and scale the amount of well-being of human beings. It
161
+ seems clear, at this point, how the starting role of utility functions was cardinal,3 in the
162
+ sense that utility or, better, pleasure differences were well-founded and realistic notions
163
+ with a strong moral philosophy justification.
164
+ of utilitarian moral philosophy.
165
+ 3Note that before the work of Hicks and Allen [19], economists spoke about measurable utility and
166
+ not of cardinal utility.
167
+ 4
168
+
169
+ Summing up, in the beginning, utility functions were designed for the mere purpose
170
+ of a calculus of pleasure and sorrow. However, even if the philosophical concept made
171
+ sense, the difficulties in the quantification of any experimental measurement of pleasure
172
+ led cardinal utility theory to be seen more just like a thought process rather than a
173
+ science.
174
+ However, utility theory did not rise from philosophy alone, but it was object of
175
+ study of other sciences such as statistics, with the so-called St. Petersburg paradox,
176
+ and psychophysics, the study of physical stimuli and their relation to sensory reactions.
177
+ These two phenomena can be considered the starting point of the law of decreasing
178
+ marginal utility. It was Nicolas Bernoulli that, originally, invented what is now called
179
+ the St. Petersburg puzzle, which offered the theoretical explanation for the law of de-
180
+ creasing marginal utility of wealth. The standard version of the puzzle is the following:
181
+ a fair coin is tossed until it lands “head” on the ground. At that point, the player wins
182
+ 2n dollars, where n is the number of times the coin was flipped. How much should one
183
+ be willing to pay for playing this game? In other words, what is the expected value of
184
+ the game, given the probability of “head” being 0.5? The mathematical answer is
185
+
186
+
187
+ i=1
188
+ 1
189
+ 2i · 2i = 1 + 1 + · · · = ∞.
190
+ The only rationale for this conundrum is that, if it makes sense to maximize expected
191
+ utility and if people are willing to participate to the St. Petersburg game for only a
192
+ finite amount of money, then their marginal utility as a function of wealth must be,
193
+ somewhere, decreasing.
194
+ Neither Bentham nor Bernoulli thought as decreasing marginal utility as a phe-
195
+ nomenon in need of scientific justifications. Nevertheless, this came as an immediate
196
+ consequence from the psychophysical theories discovered by Weber [42] and generalized
197
+ by Fechner [13]. One of the most important questions posed by psychophysics is what is
198
+ the functional link between different degrees of a given stimulus and a given sensation.
199
+ What Weber did was an in-depth study to try to measure the smallest detectable change
200
+ (also called “just noticeable difference” or “minimum perceptible threshold”) in stimuli
201
+ like heat, weight and pitch. Moreover, Fechner took this “just noticeable difference”
202
+ as a unit of measurement, constructing a scale for subjective sensations. From their
203
+ studies we now have the so-called Weber’s law and Fechner’s laws: the former states
204
+ that the relative increase of a stimulus needed to produce a just noticeable change is
205
+ 5
206
+
207
+ constant and, the latter, that the magnitude of sensation is a logarithmic function of
208
+ the stimulus.
209
+ In conclusion, if wealth is a stimulus, then Benthamian utility must be the cor-
210
+ responding sensation.
211
+ In this light, St.
212
+ Petersburg puzzle can be seen as just one
213
+ materialization of these laws.
214
+ At the end of 19th century, the marginalist revolution paved the way for an ordinal
215
+ approach to the notion of utility. In fact, this was because one of the main economic
216
+ problems of late 19th century was the need of a theory of demand. One of the leading
217
+ figures that founded neoclassical theory with scientific and analytic rigor was Vilfredo
218
+ Pareto. Pareto is considered the father of the so-called ordinal approach. It was a notion
219
+ of utility that was purely comparative and it left out from the theory the initial idea for
220
+ which utility theory was developed: the existence of psychophysical and physiological
221
+ substrates. Pareto’s theory was so successful that was considered a revolution in the
222
+ notion of utility. The ordinal approach was extremely successful because it solved the
223
+ classic consumer problem based on indifference curves, and the notion of utility had a
224
+ central role in its construction. The key aspect was the replacement of marginal utility
225
+ - a notion that was meaningless in an ordinal approach - with the trick of marginal rate
226
+ of substitutions along indifference curves.
227
+ Interesting are the writings of Francis Edgeworth [10] and Pareto [31], starting
228
+ from very different assumptions and arriving at different conclusions.
229
+ Edgeworth’s
230
+ main contribution can be summarized in the synthesis of Bentham’s utilitarianism and
231
+ Fechner’s psychophysics: his ideas were based on the unit of utility seen as a just
232
+ perceivable increment of pleasure. Moreover, he was interested also in an inter-personal
233
+ unit of utility to be able to carry out welfare comparisons among people. Edgeworth
234
+ was completely aware of the impossibility of testing these implications, but he was a
235
+ strong supporter of the idea of possible comparisons of happiness among people.
236
+ Pareto, on the other hand, denied Edgeworth’s intuition of comparisons of utility.
237
+ Instead, Pareto [31] reckoned the theoretical possibility of a cardinal notion of utility,
238
+ seen as the limit of the purely comparative notion he developed. Nevertheless, he also
239
+ argued that such a notion of perfect precision is not attainable and that pleasure is only
240
+ imperfectly measurable.4 Summing up, Edgeworth’s and Pareto’s ways of conceiving
241
+ measurable utility must be differentiated and utility theory is still today based on the
242
+ Paretian notion mainly because of its use in the theory of demand and in the general
243
+ 4However, Pareto [32] writes: “There is no reason for not accepting it [cardinal utility], with the
244
+ reservation that it must be verified by the results deduced from it (p. 73).”
245
+ 6
246
+
247
+ equilibrium theory.
248
+ In 1950, ordinalism was the well-established mainstream ideology in utility theory
249
+ and the cardinal notion of utility was almost completely abandoned. Nevertheless, the
250
+ purely comparative approach was not convincing everyone, mainly because people’s
251
+ introspection suggested the existence something more. One of the main supporters of
252
+ cardinalism was Maurice Allais who explicitly wrote in [4]:
253
+ The concept of cardinal utility [...] has almost been rejected the literature for half a cen-
254
+ tury. This rejection, based on totally unjustified prejudices, deprived economic analysis
255
+ of an indispensable tool (p. 1).
256
+ Allais [4] admits that the theory of general economic equilibrium can be fully de-
257
+ scribed in an ordinal world, but he immediately lists a series of theories that cannot
258
+ be adequately developed without a rigorous and well-defined concept of cardinal utility
259
+ and interpersonal comparisons. Some examples are the theory of dynamic evolution of
260
+ the economy, the theory of fiscal policy, of income transfers, of collective preferences,
261
+ social welfare analysis and political choices, of risk, of insurance and the theory of
262
+ cooperative games. Then, Allais goes even further in his defense of cardinal utility,
263
+ arguing that even the theory of demand could become more intuitive - and with a
264
+ simpler exposition - if we could appeal to a notion of intensity of preferences. In any
265
+ case, as long as the conclusions of price theory do not change significantly using the
266
+ ordinal and the cardinal approach, we should prefer the purely comparative approach
267
+ by Occam’s razor. But the problems with group decision making, social choice theory
268
+ and cooperative game theory still cannot be solved. Indeed, while classical economists
269
+ considered distributional problems as a fundamental part of economic science, the ordi-
270
+ nalist approach to utility theory refused completely to deal with questions that involved
271
+ interpersonal comparisons of welfare. Economists became more interested in positive
272
+ statements, rather than normative ones and the accent was put on efficiency, rather
273
+ than equity. This was the case of the optimum allocations in the sense of Pareto. For
274
+ a complete overview of the main issues of welfare economics, the main problems with
275
+ an ordinal approach and the main literature, we refer the interested reader to Sen [35].
276
+ Hence, one of the main problems, still in the 21st century, is how is it possi-
277
+ ble to understand the intuitive tool of introspection to develop a rigorous theory that
278
+ economists can apply in their models and explain economic phenomena. The solution
279
+ does not exists yet. In the last years, the issue started getting the attention of few deci-
280
+ sion theorists mainly because of the powerful developments in the field of neuroscience
281
+ 7
282
+
283
+ and the new discipline of neuroeconomics. These fields of cognitive sciences are going
284
+ into the direction of overcoming the main difficulty of the founders of utilitarianism:
285
+ the difficulty of carrying out experiments on pleasure and pain and the construction of
286
+ a rigorous and well-defined scale of pleasure. Nevertheless, nothing is clear yet, mainly
287
+ because also the theoretical concept of cardinal utility is still vague. Cardinal utility
288
+ is still used as a name for a large number of formally distinct concepts and it misses a
289
+ precise and well-established definition that can be applied in decision-theoretic models.
290
+ During the 20th century a lot of methodologies to try to define a concept of
291
+ measurement of human sensation have been defined.
292
+ Definition 1. A scale is a rule for the assignment of numbers to aspects5 of objects or
293
+ events.
294
+ The result was the development of a full taxonomy of scales, with scales that differ
295
+ in terms of higher precision of measurement. For an extensive treatment of the theory
296
+ of measurement we refer the interested reader to Krantz et alii [22].
297
+ The issue of having a rigorous definition for cardinal utility was not solved by the
298
+ theory of measurement.
299
+ It was just translated in a different language: what is the
300
+ suitable scale for measuring a given aspect? The definition of a unit of measurement
301
+ for utility was not an easy task to solve. Even in physics, where experiments can be
302
+ carried out with relatively high precision, the way a unit of measurement is defined
303
+ is not perfect. One meter was originated as the 1/10-millionth of the distance from
304
+ the equator to the north pole along a meridian through Paris. Then, the International
305
+ Bureau of Weights and Measures, founded in 1875, defined the meter as the distance
306
+ of a particular bar made by platinum and iridium kept in S`evres, near Paris. More
307
+ recently, in 1983, the Geneva Conference on Weights and Measures defined the meter
308
+ as the distance light travels, in a vacuum, in 1/299,792,458 seconds with time measured
309
+ by a cesium-133 atomic clock which emits pulses of radiation at very rapid and regular
310
+ intervals.
311
+ Increases in science allow the unit of measurement to be duplicated with a better
312
+ and better level of precision. The comparison with the unit of measurement of the
313
+ quantity utility can be carried out with the philosophical question whether it is, for
314
+ some esoteric reason, intrinsically impossible to measure human beings’ pleasure or
315
+ whether economic science and neuroeconomics are so underdeveloped that we still have
316
+ 5For example: hardness, length, volume, density, . . .
317
+ 8
318
+
319
+ very poor precision in measuring human felicity.6
320
+ The same comparison can be done with light (or heat, color and wave lengths, as
321
+ it is mentioned by von Neumann and Morgenstern in [41]). For example, temperature
322
+ was, in the original concept, an ordinal quantity as long as the concept warmer was
323
+ known. Then, the first transition can be identified with the development of a more pre-
324
+ cise science of measurement: thermometry. With thermometry, a scale of temperature
325
+ that was unique up to linear transformations was constructed. The main feature was
326
+ the association of different temperatures with different classes of systems in thermal
327
+ equilibrium. Classes like these were called fixed points for the scale of temperatures.
328
+ Then, the second transition can be associated with the development of thermodynam-
329
+ ics, where the absolute zero was fixed, defining a reference point for the whole scale.
330
+ In physics, these phenomena had to be measured and the individual had to be able to
331
+ replicate results of such measurements every time. The same may apply to decision
332
+ theory and the notion of utility, someday. At the moment, the issue remains unclear,
333
+ even if even Pareto was not completely skeptical about the first transition from an
334
+ ordinal purely comparative approach to that of an equality relation for utility differ-
335
+ ences. Von Neumann and Morgenstern point out in [41] that the previous concept is
336
+ based on the same idea used by Euclid to describe the position on a line: the ordinal
337
+ utility concept of preference corresponds to Euclid’s notion of lying to the right of and
338
+ the derived concept of equality of utility differences with the geometrical congruence of
339
+ intervals.
340
+ Hence, the main question becomes whether the derived order relation on utility
341
+ differences can be observed and reproduced. Nobody can, at the moment, answer this
342
+ question.
343
+ 1.2
344
+ Axiomatization of utility theories
345
+ In 1900, at the International Congress of Mathematicians in Paris, David Hilbert an-
346
+ nounced that he was firmly convinced that the foundation of mathematics was almost
347
+ complete. Then, he listed 23 problems to be solved and to give full consistency to
348
+ mathematics. All the rest was considered, by him, just details. Some of the problems
349
+ 6Some authors, like Ellingsen [12], are certain, instead, that the philosophical question of whether
350
+ utility is intrinsically measurable or not is a spurious one, mainly because they see the issue of “mea-
351
+ surement” as a concept that is always invented and never discovered. In this light, our question can
352
+ be rephrased as whether it is possible to define a correct notion of measurement that allows some kind
353
+ of intrapersonal and interpersonal utility comparisons.
354
+ 9
355
+
356
+ consisted in the axiomatizations of some fields of mathematics. Indeed, at the begin-
357
+ ning of the 20th century, the idea of being able to solve every mathematical problem
358
+ led mathematicians to try develop all mathematical theory from a finite set of axioms.
359
+ The main advantage of the axiomatic method was to give a clean order and to remove
360
+ ambiguity to the theory as a whole. Axioms are the fundamental truths by which it
361
+ is possible to start modeling a theory. The careful definition of them is critical in the
362
+ development of a theory that does not contain contradictions.
363
+ As a result, almost all fields of science started a process of axiomatization, utility
364
+ theory as well.
365
+ The ordinal Paretian revolution was the fertile environment where
366
+ preferences started to be seen as primitive notions. Preference relations began to be
367
+ formalized as mathematical order relations on a set of alternatives X and became the
368
+ starting point of the whole theory of choice.
369
+ As a result, utility functions became
370
+ the derived object from the preference relations. The mainstream notion of ordinal
371
+ (Paretian) utility reached its maturity with the representation theorems by Eilenberg
372
+ [11] and Debreu [8], [9]. Subsequent work in decision theory shifted from decision theory
373
+ under certainty to choice problems under uncertainty, with the pioneering article of
374
+ Ramsey [33] on the “logic of partial belief.” In short, Ramsey [33] stated the necessity
375
+ of the development of a purely psychological method of measuring both probability
376
+ and beliefs, in strong contradiction with Keynes’ probability theory. Some years after,
377
+ the milestone works of von Neumann and Morgenstern [41] and Savage [34] gave full
378
+ authority to decision theory under uncertainty.
379
+ One of the first treatments of preference relations as a primitive notion can be
380
+ identified with Frisch [18], in his 1926 paper.
381
+ Ragnar Frisch was also the first to
382
+ formulate an axiomatic notion of utility difference. Hence, two kinds of axioms were
383
+ postulated by him: the first ones - called “axioms of the first kind” - regarded the
384
+ relation able to rank alternatives in a purely comparative way, while the second axioms
385
+ - named “axioms of the second kind” - reflected a notion of intensity of preference and
386
+ allowed utility differences to be compared.
387
+ So, in parallel to the axiomatization of
388
+ ordinal utility, also cardinal utility axiomatizations started to grow.
389
+ Frisch’s article did not have the deserved impact in the academic arena, mainly
390
+ because his article was written in French and published in a Norwegian mathematical
391
+ journal. Hence, the full mathematical formalization of these two notions of preference
392
+ axioms resulted almost ten years later from the 1930s debate by Oskar Lange [23] and
393
+ Franz Alt [5]. Lange [23] defined an order relation ≻ on the set of alternatives X with
394
+ the meaning that, for any two alternatives x, y ∈ X, x ≻ y reads “x is strictly preferred
395
+ 10
396
+
397
+ to y.” Then, a corresponding relation P on ordering differences is assumed with the
398
+ meaning that, for any x, y, z, w ∈ X, xyPzw reads “a change from y to x is strictly
399
+ preferred than a change from w to z.
400
+ More formally:
401
+ x ≻ y ⇐⇒ u(x) > u(y) for all x, y ∈ X
402
+ (1)
403
+ xyPzw ⇐⇒ u(x) − u(y) > u(z) − u(w) for all x, y, z, w ∈ X
404
+ (2)
405
+ The main theorem of Lange [23] can be stated as follows:
406
+ Theorem 1. If there exists a differentiable utility function u : R → R such that (1)
407
+ and (2) hold, then only positive affine transformations of that utility function represent
408
+ the given preferences ≻ and P.
409
+ It is immediate to see that Lange [23] provides only necessary conditions for a
410
+ utility function representation of preference relation. Moreover, it is relatively easy to
411
+ see that the assumption of differentiability of u can be largely relaxed. Hence, the issue
412
+ becomes whether it is possible to find sufficient conditions on the preference relations
413
+ under which Lange’s utility function - a cardinal utility function - exists. This was
414
+ done by Franz Alt in his 1936 article [5]. Alt postulated seven axioms that guaranteed
415
+ sufficient and necessary conditions for the existence of a continuous utility function
416
+ - unique up to positive affine transformations - based on a preference relation and a
417
+ utility-difference ordering relation. In his set of axioms, Alt defined a notion that can
418
+ be understood as the set of alternatives X to be connected.
419
+ With Frisch’s pioneering work of 1926 and 1930s debate by Lange and Alt, the
420
+ modern ingredients of cardinal utility axiomatization such as equations (1) and (2) and
421
+ connectedness of the domain of alternatives X started to be formalized. In those years,
422
+ a lot of different axiomatic models were studied, till the article of the famous philoso-
423
+ pher of science Patrick Suppes and his doctoral student Muriel Winet [40]. In their
424
+ 1955 paper, Suppes and Winet developed an abstract algebraic structure of axioms for
425
+ cardinal utility, called a difference structure, in line with old Frisch’s ideas and Lange’s
426
+ formalization: not only are individuals able to ordinally rank different alternatives, but
427
+ they are also able to compare and rank utility differences of alternatives. Indeed, Sup-
428
+ pes and Winet cited the work of Oskar Lange on the notion of utility differences and
429
+ stood in favor of the intuitive notion of introspection, elevating it to not just a mere
430
+ 11
431
+
432
+ intuition, but as a solid base where to build a notion of utility differences. Suppes and
433
+ Winet continued their article saying that, up to 1950s, no adequate axiomatization for
434
+ intensity comparison had been given. Hence, as Moscati [29] nicely highlights, they
435
+ were probably unaware of Alt’s representation theorem and this was probably due to
436
+ the fact that Alt [5] was published in German in a German journal. Suppes and Winet
437
+ postulated 11 axioms in total, some on the set of alternatives X and others on the
438
+ two order relations,7 providing sufficient and necessary condition for a cardinal utility
439
+ representation, unique up to positive affine transformations. Another approach to the
440
+ field of axiomatization of cardinal utility was taken twenty years later by Lloyd Shap-
441
+ ley. While axiomatizations `a la Suppes and Winet started developing a set-theoretic
442
+ abstract structure, Shapley substituted the usual long list of postulates with strong
443
+ topological conditions both on the domain of alternatives X and on the topology in-
444
+ duced by the order relations. Shapley [36] constructed a cardinal utility function u
445
+ satisfying some consistency axioms between the orders and assuming the domain of u
446
+ to be a convex subset of the real line. We will enter into the details of Shapley [36] in
447
+ the next chapters.
448
+ In conclusion, the notion of cardinal utility has always suffered a lack of conceptual
449
+ precision in its whole history and, for some authors like Ellingsen [12], it can be even
450
+ considered the main reason why scientists have disagreed over whether pleasure can be
451
+ measured or not.8 What is certain is that the history of cardinal utility, a part from some
452
+ sporadic articles, has been a persistent failure, mostly in its applications to economic
453
+ theory. While the main reason can be probably identified with the almost total absence
454
+ of any rigorous and proven experimental measurement of pleasure, it is fair to observe
455
+ that part of its failure must be given to the strong reluctant opinion of the mainstream
456
+ ordinal “party.” In fact, a large class of economists classify as “meaningless” even the
457
+ mere introspective idea of a comparison of utility difference, and not just the concept
458
+ itself, when formalized in a purely comparative environment. This position is shown to
459
+ be, with a gentle expression, “epistemological laziness.” We should always remember
460
+ that no real progress in economic science can be derived from purely abstract reasoning,
461
+ but only from the combined effort of empirical measurements with theoretical analysis,
462
+ always under the wise guide of the compass of history and philosophy.
463
+ 7The conditions these axioms impose are analogous to the conditions defined by Alt [5]: com-
464
+ pleteness, transitivity, continuity, and some form of additivity for the two order relations, and an
465
+ Archimedean property on the quaternary relation.
466
+ 8Ellingsen [12] writes about a “fallacy of identity” and “fallacy of unrelatedness.”
467
+ 12
468
+
469
+ 2
470
+ Preliminary results
471
+ The aim of this chapter is twofold. On one side, we introduce the mathematical frame-
472
+ work that enable us to represent intensity comparisons that a decision maker feels about
473
+ the desirability of different alternatives. For this aim, we follow the construction of Sup-
474
+ pes and Winet [40] and Shapley [36]. On the other side, we state and prove a list of
475
+ lemmas that will be used in Theorem 5 and that allow us to generalize Shapley’s proof
476
+ to a connected and separable subset of a topological space.
477
+ 2.1
478
+ Basic definitions
479
+ Definition 2. A relation on a set X is a subset ≿ of the cartesian product X × X,
480
+ where x ≿ y means (x, y) ∈ ≿.
481
+ In decision theory, ≿ is usually called a preference relation, with the interpretation
482
+ that, for any two elements x, y ∈ X, we write x ≿ y if a decision maker either strictly
483
+ prefers x to y or is indifferent between the two.
484
+ Definition 3. An equivalence relation on a set X is a relation R on X that satisfies
485
+ 1) Reflexivity: for all x ∈ X, we have xRx.
486
+ 2) Symmetry: for any two elements x, y ∈ X, if xRy, then yRx.
487
+ 3) Transitivity: for any three elements x, y and z ∈ X, if xRy and yRz, then xRz.
488
+ Definition 4. A relation ≿ on a set X is called a total order relation (or a simple order,
489
+ or a linear order) if it has the following properties:
490
+ 1) Completeness: for any two elements x, y ∈ X, either x ≿ y or y ≿ x or both.
491
+ 2) Antisymmetry: for any two elements x, y ∈ X, if x ≿ y and y ≿ x, then x = y.
492
+ 3) Transitivity: for any three elements x, y and z ∈ X, if x ≿ y and y ≿ z, then
493
+ x ≿ z.
494
+ Note that if ≿ is complete, then it is also reflexive. The relation ≿ induces, in
495
+ turns, two other relations. Specifically, for any two elements x, y ∈ X we write:
496
+ (i) x ≻ y if x ≿ y but not y ≿ x.
497
+ 13
498
+
499
+ (ii) x ∼ y if x ≿ y and y ≿ x.
500
+ It is easy to see, indeed, that if ≿ is reflexive and transitive, then ∼ is an equivalence
501
+ relation. Given an equivalence relation ∼ on a set X and an element x ∈ X, we define
502
+ a subset E of X, called the equivalence class determined by x, by the equation
503
+ E := {y ∈ X : y ∼ x}
504
+ Note that the equivalence class E determined by x contains x, since x ∼ x, hence
505
+ E is usually denoted as [x].
506
+ We will denote X/∼ the collection {[x] : x ∈ X} of
507
+ all equivalence classes, which is a partition of X: each x ∈ X belongs to one, and
508
+ only one, equivalence class. In decision theory, an equivalence class is often called an
509
+ indifference curve.
510
+ Definition 5. A relation ≿ on a set X is called a weak order if it is complete and
511
+ transitive.
512
+ The problem of finding a numerical representation for a preference relation ≿, i.e.
513
+ an order isomorphism between a generic set X and R, has been widely studied by math-
514
+ ematicians and is a familiar and well-understood concept. Such an order isomorphism
515
+ is called, in decision theory, a utility function. More formally:
516
+ Definition 6. A real-valued function u : X → R is a (Paretian) utility function for ≿
517
+ if for all x, y ∈ X we have
518
+ x ≿ y ⇐⇒ u(x) ≥ u(y)
519
+ Utility functions “shift” the pairwise comparisons that characterize the order rela-
520
+ tion ≿ and its properties in the more analytically convenient space of the real numbers.
521
+ Nevertheless, as a result, the only thing that is preserved is the order, and the real
522
+ numbers that are images of the utility function cannot be interpreted as a scale where
523
+ the decision maker can compare different intensities about the single desirability of any
524
+ two alternatives x, y ∈ X. What is important is the ranking given by the real num-
525
+ bers, according to the usual order of the ordered field (R, ≥). Indeed, one can easily
526
+ prove that every strictly increasing transformation of a utility function is again a utility
527
+ function. For this reason, utility functions are called ordinal and their study belong
528
+ to what is called ordinal utility theory. The main problem of ordinal utility theory is
529
+ to study sufficient and necessary conditions under which a relation ≿ admits a utility
530
+ representation. The original reference can be identified with Cantor [7], but the result
531
+ has been adapted by Debreu [8].
532
+ 14
533
+
534
+ In addition, to be able to solve optimization problems, one of the properties that
535
+ is desirable to have is continuity of the utility function. Debreu [8] is the first to state
536
+ the theorem in the way we are going to. Nevertheless, he proved it making explicit
537
+ reference to Eilenberg [11]. We state here a version of this very well-known theorem.
538
+ Definition 7. A weak order ≿ on a set X is said to be continuous if, for every y ∈ X,
539
+ the sets {x ∈ X : x ≻ y} and {x ∈ X : x ≺ y} are open.9
540
+ Theorem 2 (Eilenberg). Let ≿ be a complete and transitive relation on a connected
541
+ and separable topological space X. The following conditions are equivalent:
542
+ (i) ≿ is continuous.
543
+ (ii) ≿ admits a continuous utility function u : X → R.
544
+ One of the biggest theoretical problems of ordinal utility theory is that the expres-
545
+ sion
546
+ u(x) − u(y)
547
+ is a well-defined real number thanks to the algebraic properties of R, but it is meaning-
548
+ less in term of the interpretation of a difference of utility of two alternatives x, y ∈ X.
549
+ In other words, a Paretian utility function does not have an intrinsic introspective psy-
550
+ chological notion of intensity of the preferences. An immediate corollary of this remark
551
+ is that the concept of marginal utility (and what is known under the Gossen’s law of
552
+ decreasing marginal utility), based on the notion of different quotient, is meaningless.
553
+ More formally, the expression
554
+ du(x)
555
+ dx
556
+ = lim
557
+ h→0
558
+ u(x + h) − u(x)
559
+ h
560
+ has no meaning in this setting. Nevertheless, the concept of marginal utility has been a
561
+ milestone in economic theory, proving that this notion deserves an adequate theoretical
562
+ foundation.
563
+ 2.2
564
+ An overview on measurable utility theory
565
+ Let X be a set of alternatives. Pairs of alternatives (x, y) ∈ X × X are intended to
566
+ represent the prospect of replacing alternative y by alternative x, that can be read as
567
+ 9Note that this is the usual order topology on X.
568
+ 15
569
+
570
+ “x in lieu of y”. Define the binary relation ≽ on X ×X called intensity preference with
571
+ the following interpretation: for any two pairs (x, y) and (z, w) in X × X,
572
+ (x, y) ≽ (z, w)
573
+ is intended to mean that getting x over y gives at least as much added utility as getting
574
+ z over w or (if y ≿ x) at most as much added sadness. As a result, our decision maker
575
+ is endowed with a weak order preference relation ≿ on alternatives and an intensity
576
+ preference relation ≽ on pairs of alternatives.
577
+ Shapley [36] proves his theorem assuming X to be a convex subset of R. As a
578
+ result, the proof exploits the full algebraic power of the ordered field and the topological
579
+ properties of the linear continuum. Our aim is to generalize the set of alternatives X
580
+ to a connected and separable subset of a topological space, ordered with the binary
581
+ relations ≿ and ≽ and with the order topology induced by the weak order ≿.
582
+ We assume the following axioms for ≿ and ≽, as in Shapley [36].
583
+ Axiom 1. For all x, y, z ∈ X we have (x, z) ≽ (y, z) ⇐⇒ x ≿ y.
584
+ Axiom 1 (henceforth A1) is an assumption of consistency between the two order-
585
+ ings because it implies that the decision maker prefers to exchange z with x instead of
586
+ z with y if and only if she prefers x to y. Together with A1 we can formulate a dual
587
+ version of consistency, A1′, that can be derived from the whole set of axioms we are
588
+ going to assume later.10
589
+ Axiom 1′. For all x, y, z ∈ X we have (z, x) ≽ (z, y) ⇐⇒ y ≿ x.
590
+ We now introduce the main object of this thesis: a joint real-valued representation
591
+ for the two orders ≿ and ≽.
592
+ Definition 8. A real-valued function u : X → R is a measurable utility function for
593
+ (≿, ≽) if for each pair x, y ∈ X
594
+ x ≿ y ⇐⇒ u(x) ≥ u(y)
595
+ (3)
596
+ and if, for each quadruple x, y, z, w ∈ X
597
+ (x, y) ≽ (z, w) ⇐⇒ u(x) − u(y) ≥ u(z) − u(w).
598
+ (4)
599
+ The measurable terminology has nothing to do with measure theory, but it refers to
600
+ what is known as measurement theory, i.e. the field of science that established the for-
601
+ mal foundation of quantitative measurement and the assignment of numbers to objects
602
+ 10We mention A1′ as a form of axiom only because in this way we can refer to it in the proof of
603
+ Theorem 5, but we never assume it formally. A proof of it will be formulated forward with Lemma 13.
604
+ 16
605
+
606
+ in their structural correspondence. Indeed, not only is a measurable utility function
607
+ able to rank pairs of alternatives according to a preference relation, but it also repre-
608
+ sents the idea of magnitude and intensity of the preference relation among alternatives.
609
+ Therefore, the numerical value u(x) that a measurable utility function assigns to the
610
+ alternative x is assuming the role of a particular unit of measurement for pleasure, that
611
+ we call util.
612
+ Recall that an ordinal utility function u is unique up to strictly monotone trans-
613
+ formations f : Im(u) → R. Hence, a measurable utility function is not ordinal. Never-
614
+ theless, it is unique up to positive affine transformations. Recall that a positive affine
615
+ transformation is a special case of a strictly monotone transformation of the follow-
616
+ ing form f(x) = αx + β, with α > 0 and β ∈ R. Positive affine transformations are
617
+ order-preserving thanks to α > 0.
618
+ Proposition 1. A measurable utility function u : X → R for (≿, ≽) is unique up to
619
+ positive affine transformations.
620
+ Proof. If u(x) = αu(x) + β then we have
621
+ x ≿ y ⇐⇒ u(x) ≥ u(y) ⇐⇒ u(x) = αu(x) + β ≥ αu(y) + β = u(y)
622
+ and
623
+ (x, y) ≽ (z, w) ⇐⇒ u(x) − u(y) ≥ u(z) − u(w)
624
+ ⇐⇒ u(x) − u(y) = α[u(x) − u(y)] ≥ α[u(z) − u(w)] = u(z) − u(w).
625
+ As a result, u and u are two utility representations for (≿, ≽).
626
+ The whole class
627
+ of utility functions that are unique up to positive affine transformations are called
628
+ cardinal. Measurable utility functions are, therefore, cardinal and pertain to the so-
629
+ called cardinal utility theory.
630
+ Other two axioms (A2, A3) we need to introduce are the following:
631
+ Axiom 2. For all x, y, z, w ∈ X we have (x, y) ∼ (z, w) ⇐⇒ (x, z) ∼ (y, w).
632
+ Axiom 3. For all x, y, z, w ∈ X the set
633
+ {(x, y, z, w) ∈ X × X × X × X : (x, y) ≽ (z, w)}
634
+ is closed in the product topology.
635
+ Axiom 2 is a “crossover” property that characterizes difference comparisons of util-
636
+ ity, while Axiom 3 is a technical assumption defining the order relation ≽ as continuous.
637
+ 17
638
+
639
+ Shapley [36] proves his theorem on a domain of alternative outcomes that is a
640
+ nonempty, convex subset D of the real line where the preference order coincides with
641
+ the total order of (R, ≥). Moreover, ≽ is assumed to be a weak order on D × D such
642
+ that A1, A2 and A3 are satisfied.
643
+ Theorem 3 (Shapley). There exist a utility function u : D ⊆ R → R such that
644
+ x ≥ y ⇐⇒ u(x) ≥ u(y)
645
+ (5)
646
+ and
647
+ (x, y) ≽ (z, w) ⇐⇒ u(x) − u(y) ≥ u(z) − u(w)
648
+ (6)
649
+ for all x, y, z, w ∈ D. Moreover, this function is unique up to a positive affine transfor-
650
+ mation.
651
+ The theorem is stated as a sufficient condition, which is the most difficult part to
652
+ prove. The necessary condition of the theorem is easily proved and we state it here as
653
+ a proposition.
654
+ Proposition 2. If the pair (≥, ≽) has a continuous measurable utility function u : D ⊆
655
+ R → R, then ≥ is complete and transitive, ≽ is complete, transitive, continuous (A3)
656
+ and satisfies the crossover axiom (A2), and jointly ≥ and ≽ satisfy the consistency
657
+ axiom (A1).
658
+ Shapley’s construction of the measurable utility function of Theorem 3 is extremely
659
+ elegant, but has the drawback of being too specific as u is defined on a convex subset
660
+ of R. On the other side of the spectrum, as mentioned in the first chapter, the field
661
+ of utility axiomatization has been prolific in the 20th century and a copious number
662
+ of cardinal-utility derivations from preference-intensity axiomatizations were published.
663
+ One of the most important papers on this issue was the one published in 1955 by Patrick
664
+ Suppes and Muriel Winet. Recalling what described before, Suppes and Winet [40]
665
+ advanced an axiomatization of cardinal utility based on the assumption that individuals
666
+ are not only able to rank the utility of different alternatives, as is assumed in the ordinal
667
+ approach to utility, but are also capable of ranking the differences between the utilities
668
+ of commodities. Nevertheless, their 11 axioms on an abstract algebraic structure were
669
+ not fully satisfactory in terms of generality: it was too general. Indeed, some of their
670
+ axioms can be derived in Shapley [36], thanks to the topological properties of R.
671
+ The aim of this research is to settle somewhere in between, finding a representation
672
+ theorem for cardinal utility function (in particular, a measurable one) keeping the
673
+ 18
674
+
675
+ elegance of Shapley’s proof and generalizing the domain of alternatives into the direction
676
+ of Suppes and Winet [40]. We will state and prove a representation theorem for a
677
+ measurable utility function u : X → R where X is a connected and separable subset of
678
+ a topological space, ≿ and ≽ are weak orders and they satisfy (A1), (A2) and (A3).
679
+ Before doing this, we need to state and prove some topological preliminary results that
680
+ will be used in Theorem 5.11
681
+ 2.3
682
+ A few basic lemmas
683
+ Definition 9. Let X be a topological space. X is connected if it cannot be separated
684
+ into the union of two disjoint nonempty open subsets. Otherwise, such a pair of open
685
+ sets is called a separation of X.
686
+ Definition 10. Let X be a topological space. X is separable if there exists a countable
687
+ dense subset. A dense subset D of a space X is a subset such that its closure equals the
688
+ whole space, i.e. D = X.
689
+ Definition 11. A totally ordered set (L, ≿) having more than one element is called a
690
+ linear continuum if the following hold:
691
+ (a)
692
+ L has the least upper bound property.
693
+ (b)
694
+ If x ≻ y, there exists z such that x ≻ z ≻ y
695
+ We recall that a ray is a set of the following type (−∞, a) = {x ∈ L : x ≺ a}
696
+ and (−∞, a] = {x ∈ L : x ≾ a} in the case L does not have a minimum. In the
697
+ case L does have a minimum we write [xm, a) = {x ∈ L : xm ≾ x ≺ a} and [xm, a] =
698
+ {x ∈ L : xm ≾ x ≾ a}. Analogously for the sets (a, +∞), [a, +∞), (a, xM] , [a, xM], where
699
+ xM is the maximum of L in the case it existed.12
700
+ Given A ⊆ X, an element y ∈ X is an upper bound for a set A if y ≿ x for all
701
+ x ∈ A. It is a least upper bound for A if, in addition, it is the minimum of the set of all
702
+ upper bounds of A, that is if y′ ≿ x for all x ∈ A then y′ ≿ y. If ≿ is antisymmetric, the
703
+ least upper bound is unique and is denoted sup A. The greatest lower bound is defined
704
+ analogously and denoted inf A.
705
+ 11We thank Dr. Hendrik S. Brandsma for providing a feedback and insightful comments.
706
+ 12Note that in decision theory, rays of a set X equipped with a reflexive and transitive binary
707
+ relation ≿ are usually denoted with the following notation L(a, ≿) := (−∞, a] = {x ∈ X : x ≾ a} and
708
+ U(a, ≿) := [a, +∞) = {x ∈ X : x ≿ a}, L(a, ≻) := (−∞, a) and U(a, ≻) := (a, +∞).
709
+ 19
710
+
711
+ Lemma 1. Let ≿ be a total order on a connected set X. Then, X is a linear continuum
712
+ in the order topology.13
713
+ Proof. Suppose that a and b are two arbitrary but fixed elements of X such that a ≺ b.
714
+ If there is no element c ∈ X such that a ≺ c ≺ b, then X is the union of the open
715
+ rays (−∞, b) = {x ∈ X : x ≺ b} and (a, +∞) = {x ∈ X : a ≺ x} both of which are
716
+ open sets in the order topology and are also nonempty, as the first contains a, while
717
+ the second contains b. But this contradicts the fact that X is connected, so there must
718
+ exists an element c ∈ X such that a ≺ c ≺ b.
719
+ Now, to show the least upper bound property, let A be a nonempty subset of X
720
+ such that A is bounded above in X. Let B be the set of all the upper bounds in X of
721
+ set A, i.e.
722
+ B := {b ∈ X : b ≿ a for every a ∈ A}
723
+ which is nonempty. All we need to show is that B has the least element. If B has a
724
+ smallest element (or A has a largest element, which would then be the smallest element
725
+ of B), then that element is the least upper bound of A.
726
+ Let us assume, instead, that B has no smallest element. Then, for any element
727
+ b ∈ B, there exists an element b′ ∈ B such that b′ ≺ b, and so b ∈ (b′, +∞) ⊆ B with
728
+ (b′, +∞) being an open set in X. This shows that B is a nonempty open subset of X.
729
+ Therefore, B can be closed only in the case when B = X. But we know that B ⊂ X,
730
+ since A ⊆ X\B and A ̸= ∅, so it cannot be the case that B = X. Therefore, B has a
731
+ limit point b0 that does not belong to B. Then b0 is not an upper bound of set A, which
732
+ implies the existence of an element a ∈ A such that b0 ≺ a, we can also conclude that
733
+ b0 ∈ (−∞, a) ⊆ X\B, with (−∞, a) being an open set. This contradicts our choice of
734
+ b0 as a limit point of set B. Therefore, the set B of all the upper bounds in X of set A
735
+ must have a smallest element, and that element is the least upper bound of A.
736
+ Given A ⊆ X, we denote A or ClA the topological closure of A, that is defined as
737
+ the intersection of all closed sets containing A.
738
+ From now on denote X as a subset of a topological space (X, τ), unless otherwise
739
+ stated.
740
+ Lemma 2. Let ≿ be a complete, transitive and continuous order on a connected set X.
741
+ 13Note that the converse holds as well: ≿ is a total order on a connected set X if and only if X is a
742
+ linear continuum in the order topology.
743
+ 20
744
+
745
+ Given any x, y ∈ X, with x ≻ y, we have
746
+ x ≿ z ≿ y ⇒ z ∈ X
747
+ for all z ∈ (X, τ)
748
+ Proof. Suppose by contradiction that there exists z ∈ X\X such that x ≻ z ≻ y.
749
+ By the continuity of ≿, we can partition X into two nonempty disjoint open sets
750
+ {x ∈ X : x ≺ z} and {x ∈ X : x ≻ z}, which contradicts the connectedness of X.
751
+ Lemma 3. Suppose that jointly ≿ and ≽ satisfy A1. If ≽ is continuous , then ≿ is
752
+ continuous.
753
+ Proof. For all arbitrary but fixed y, z ∈ X, by A1 we have {x ∈ X : (x, z) ≽ (y, z)} =
754
+ {x : x ≿ y}. By A3, the set {x ∈ X : (x, z) ≽ (y, z)} is closed. Analogous is the case
755
+ for {x : y ≿ x}, derived from A1′.
756
+ Lemma 4. Fix y ∈ X, the set Iy := {x ∈ X : x ∼ y} is a closed set in X.
757
+ Proof. ≿ is continuous, so for every y ∈ X we have that {x ∈ X : x ≿ y} and
758
+ {x ∈ X : y ≿ x} are closed. Pick a point x such that x ≿ y and y ≿ x, that is x ∼ y.
759
+ So we have {x ∈ X : x ∼ y} = {x ∈ X : x ≿ y} ∩ {x ∈ X : y ≿ x} and the intersection
760
+ of two closed sets is closed.
761
+ Note that when ≿ is antisymmetric, the set Iy is a singleton and Lemma 4 reduces
762
+ to prove that X satisfies the T1 axiom of separation, that is every one-point set is closed.
763
+ Clearly, every Hausdorff space satisfies it.
764
+ Lemma 5. Let ≿ be a continuous total order on a connected set X. If A ⊆ X is a
765
+ nonempty closed set in the order topology and A is bounded above (below), then supA
766
+ (infA) belongs to A.14
767
+ Proof. Suppose supA /∈ A. Then supA ∈ X\A, which is open. By definition, there
768
+ exists a base element (a, b) such that
769
+ supA ∈ (a, b) ⊆ X\A.
770
+ A is bounded above so, by Lemma 1, sup A exists and there is an element a⋆ such that
771
+ a ≺ a⋆ ≺ sup A, then a⋆ ∈ (a, b) ⊆ X\A, so a⋆ is an upper bound of A smaller that
772
+ supA, reaching a contradiction. In the case X had a maximum, then consider the case
773
+ where sup A = max X. Let U := (x, sup A] be a basic neighborhood of sup A. Then, x
774
+ 14The lemma holds even in the case we relaxed connectedness. Nevertheless, we always need to as-
775
+ sume sup A exists. If we do not assume the existence of the least upper bound, an easy counterexample
776
+ is N ⊂ R that is closed in the order topology, but sup N /∈ N.
777
+ 21
778
+
779
+ cannot be an upper bound of A as x ≺ sup A. Hence, there exists an element a ∈ A
780
+ such that x ≺ a ≾ sup A. Thus, as x was generic, it follows that U ∩ A ̸= ∅. This
781
+ means that every neighborhood of sup A intersects A, that is sup A ∈ A. But A is
782
+ closed, hence sup A ∈ A and we can conclude sup A = max A.
783
+ The case of inf A is specular.
784
+ Now we define the notion of convergence in any topological space.
785
+ Definition 12. In an arbitrary topological space X, we say that a sequence x1, x2, . . .
786
+ of points of the space X converges to the point x of X provided that, corresponding to
787
+ each neighborhood U of x, there is a positive integer N such that xn ∈ U for all n ≥ N.
788
+ Moreover, let ≿ a total order. We write xn ↑ x if x1 ≾ x2 ≾ · · · ≾ xn ≾ . . . and
789
+ supnxn = x where sup is with respect to ≾. The definition xn ↓ x for a ≾-decreasing
790
+ sequence is analogous. We say that (xn) converges monotonically to a limit point x
791
+ when either xn ↑ x or xn ↓ x.
792
+ We now prove one of the fundamental lemmas that allow us to generalize Shapley’s
793
+ proof to a connected and separable subset of a topological space. Note that, as long
794
+ as Shapley [36] is working on R, sequences as “enough” to characterize the definition
795
+ of convergence.
796
+ This is due to the fact that there exists a countable collection of
797
+ neighborhoods around every point. This is not true in general, but it is for a specific
798
+ class of spaces that are said to satisfy the first countability axiom.15 A space X is said
799
+ to have a countable basis at the point x if there is a countable collection {Un}n∈N of
800
+ neighborhoods of x such that any neighborhood U of x contains at least one of the sets
801
+ Un. A space X that has a countable basis at each of its points is said to satisfy the
802
+ first countability axiom.
803
+ In general, however, sequences are not powerful enough to capture the idea of
804
+ convergence we want to capture in a generic topological space. Indeed, there could
805
+ be uncountably many neighborhoods around every point, so the countability of the
806
+ natural number index of sequences cannot “reach” these points. The ideal solution to
807
+ this problem is to define a more general object than a sequence, called a net, and talk
808
+ about net-convergence. One can also define a type of object called a filter and show
809
+ that filters also provide us a type of convergence which turns out to be equivalent to
810
+ net-convergence. With these more powerful tools in place of sequence convergence, one
811
+ can fully characterize the notion of convergence in any topological space.
812
+ 15There are far more general classes of spaces in which convergence can be fully characterized by se-
813
+ quences. We refer the interested reader to the notion of Fr´echet-Urysohn spaces and Sequential spaces.
814
+ 22
815
+
816
+ Nevertheless, we are now going to show that every connected, separable and totally
817
+ ordered set X satisfies the first countability axiom. In fact, we are going to prove even
818
+ more. We are going to show that X is metrizable, which means there exists a metric d
819
+ on the set X that induces the topology of X.16 We give other two definitions that will
820
+ be used to prove Lemma 6.
821
+ Definition 13. Suppose X is T1. Then X is said to be regular (or T3) if for each pair
822
+ consisting of a point x and a closed set B disjoint from x, there exist disjoint open sets
823
+ containing x and B, respectively.
824
+ Definition 14. If a space X has a countable basis for its topology, then X is said to
825
+ satisfy the second countability axiom, or to be second-countable.
826
+ Theorem 4 (Urysohn metrization theorem). Every regular space X with a count-
827
+ able basis is metrizable.
828
+ Lemma 6. Let ≿ be a continuous total order on a connected and separable topological
829
+ space X in the order topology and A ⊆ X. We have x ∈ A if and only if there exists a
830
+ sequence (xn) ∈ AN that converges monotonically to x.
831
+ The steps of the proof are the following:
832
+ (i) We show that X is regular17 and second-countable. By the Urysohn metrization
833
+ theorem, which provides sufficient (but not necessary) conditions for a space to
834
+ be metrizable, there exist a metric d that induces the topology of X.
835
+ (ii) Let A ⊆ X with X metrizable, then we have that x ∈ A if and only if there exists
836
+ a sequence of points of A converging to x.
837
+ (iii) Finally, we use the fact that in every totally ordered topological space X, every
838
+ sequence admits a monotone subsequence. Then, if a sequence converges, all of
839
+ its subsequences converge to the same limit. Thus, we can extract our monotone
840
+ converging sequence.
841
+ Lemma 7. A totally ordered topological space X is regular in the order topology.
842
+ Proof. It is basic topology to prove that every totally ordered set is Hausdorff, hence
843
+ it is T1. Now, suppose x ∈ X and B is a closed set, disjoint from x. So, x ∈ X\B,
844
+ 16A metrizable space always satisfies the first countability axiom.
845
+ 17In fact, one could prove that X is also normal.
846
+ 23
847
+
848
+ which is open. Then, by definition of open set, there exists a basis element (a, b) such
849
+ that x ∈ (a, b) and (a, b) ∩ B = ∅. Pick any a0 ∈ (a, x), and let U1 = (−∞, a0) , V1 =
850
+ (a0, ∞). If no such a0 exists (in our case it would, by connectedness of X), then let
851
+ U1 = (−∞, x), V1 = (a, ∞). In both cases, U1 ∩ V1 = ∅. Similar is the case of the other
852
+ side, pick b0 ∈ (x, b), and if that exists, denote U2 = (b0, ∞) , V2 = (−∞, b0) , and if
853
+ not, let U2 = (x, ∞), V2 = (−∞, b). Again, in both cases U2 ∩ V2 = ∅. As a result, we
854
+ obtained that, in both cases, x ∈ V1 ∩ V2 with V1 ∩ V2 open set and B ⊆ U1 ∪ U2, with
855
+ U1 ∪ U2 open set. As V1 ∩ V2 is disjoint from U1 ∪ U2, X is regular.
856
+ Lemma 8. A totally ordered, connected and separable topological space X is second-
857
+ countable.
858
+ Proof. Now we find a countable basis for the order topology of X. As X is separable,
859
+ then let D ⊆ X be countable and dense in X, i.e. D = X. Then, define
860
+ B := {(a, b) : a, b ∈ D with a ≺ b}
861
+ together with, if there exists a minimal element m := min X and a maximal element
862
+ M := max X, the set {[m, a), (a, M], a ∈ D}. In both cases, the collection B forms a
863
+ countable base for the topology of X. To prove this, we show that for each open set
864
+ (a, b) of the order topology of X and for every x ∈ (a, b) there is an element (a′, b′) ∈ B
865
+ such that x ∈ (a′, b′) ⊆ (a, b).
866
+ Suppose x ∈ (a, b) ⊂ X, then the open intervals (a, x) and (x, b) cannot be empty
867
+ by connectedness. Hence, there exist a′ ∈ (a, x) ∩ D and b′ ∈ (x, b) ∩ D. This follows
868
+ from the fact that D = X and x ∈ D = X if and only if every open set containing x
869
+ intersects D. Then, it follows that x ∈ (a′, b′) ⊆ (a, b).
870
+ Now, when m exists, suppose x = m, then x ∈ [m, a) and this set is nonempty
871
+ by connectedness. Hence, there exists an element a′′ ∈ [m, a) ∩ D. So, it follows that
872
+ x ∈ [m, a′′) ⊆ [m, a). Analogous is the case when M exists.
873
+ By Lemma 7 and Lemma 8 , X satisfies all the assumptions of the Urysohn metriza-
874
+ tion theorem, hence X is metrizable (and, a fortiori, it is first-countable).
875
+ Lemma 9. Let A ⊆ X with X metrizable, then x ∈ A if and only if there exists a
876
+ sequence of points of A converging to x.
877
+ Proof. Suppose xn → x with xn ∈ A. Then, every neighborhood U of x contains a
878
+ point of A, i.e. x ∈ A. Conversely, we use the fact that X is metrizable.18 Let x ∈ A
879
+ 18Note, once again, that here we do not need the full strength of metrizability. All we really need
880
+ 24
881
+
882
+ and let d be a metric that induces the order topology. For every n ∈ N, we take the
883
+ neighborhood Bd(x, 1
884
+ n), of x of radius 1
885
+ n and we choose xn to be a point such that, for
886
+ all n, xn ∈ Bd(x, 1
887
+ n) ∩ A. We show xn → x. Any open set U containing x contains an
888
+ ǫ-neighborhood Bd(x, ǫ) centered at x. Choosing N such that
889
+ 1
890
+ N < ǫ, then U contains
891
+ xn for all n ≥ N.
892
+ We can finally prove Lemma 6.
893
+ Proof. The if part comes trivially by definition. If there exists a sequence that converges
894
+ (monotonically) to x, then x ∈ A by Lemma 9.
895
+ Conversely, if x ∈ A, then by Lemma 9 we know that there exists a sequence in A
896
+ converging to x. Now we show that, in every totally ordered set (X, ≾), every sequence
897
+ from N → (X, ≾) has a monotone subsequence. Indeed, this is a property that has
898
+ nothing to do with the topology of X.
899
+ Let (xi)i∈N be a sequence with values in X.
900
+ We say that xk is a peak of the
901
+ sequence if h > k ⇒ xh ≾ xk (we admit a slight abuse of notation here, as it would be
902
+ better to call peak the index of the sequence, and not its image). We distinguish two
903
+ cases: if there are infinitely many peaks, then the subsequence of peaks is an infinite
904
+ non-increasing sequence and we are done. If there are only finitely many peaks, then
905
+ let i1 be the index such that xi1 is the successor of the last peak. Then, xi1 is not a
906
+ peak. Again, we find another index i2 > i1 such that xi2 ≿ xi1. Again, as xi2 is not a
907
+ peak, we can find another index i3 > i2 such that xi3 ≿ xi2 ≿ xi1. Keeping defining the
908
+ sequence in this way, we get, inductively, a non-decreasing sequence.
909
+ In conclusion, as by assumption we have a sequence (xn) ∈ AN converging to x,
910
+ this sequence admits a monotone subsequence. But, if a sequence converges to a point
911
+ x, then all of its subsequences converge to the same point x. Hence, there exists a
912
+ sequence that converges monotonically to x, proving Lemma 6.
913
+ Note that Lemma 6 could have been proven just using the notion of first countabil-
914
+ ity. Nevertheless, we decided to take the longer path of Urysohn metrization theorem to
915
+ is a countable collection of neighborhoods around x. Moreover, both connectedness and separability
916
+ are not necessary conditions. We refer the interested reader to the nice two-page paper of Lutzer [25],
917
+ that proves a linearly ordered space X is metrizable in the order topology if and only if the diagonal
918
+ ∆ := {(x, x) : x ∈ X} is a countable intersection of open subsets of X × X, i.e. the diagonal is a Gδ
919
+ set. Furthermore, this condition can be shown to be equivalent to have a σ-locally countable basis,
920
+ which is a condition more in the spirit of the Nagata-Smirnov metrization theorem which requires a
921
+ σ-locally finite basis.
922
+ 25
923
+
924
+ show how “well-behaved” a totally ordered, connected and separable topological space
925
+ can be.
926
+ Lemma 10. Let (X, ≿) be a topological space with the order topology. Let ≽ be another
927
+ order relation on X × X such that A1 and A3 hold,19 and suppose (xn), (yn) converge
928
+ to x and y respectively, and (wn), (zn) converge to w and z respectively. If for every
929
+ n ∈ N we have (xn, yn) ≽ (wn, zn) then (x, y) ≽ (w, z).
930
+ Proof. Denote the set A := {(x, y, w, z) ∈ X × X × X × X : (x, y) ≽ (w, z)} and pick
931
+ a sequence of points with values in A, that is pick (xn, yn, wn, zn) ∈ AN converging to
932
+ (x, y, w, z). By assumption, we have that xn → x, yn → y, wn → w, zn → z and this
933
+ is equivalent to (xn, yn, wn, zn) → (x, y, w, z). Indeed, a sequence in the product space
934
+ X × X × X × X converges to (x, y, w, z) if and only if it converges componentwise, i.e.
935
+ xn → x, yn → y, wn → w, zn → z. We now prove this fact.
936
+ Assume (xn, yn, wn, zn) → (x, y, w, z) in X ×X ×X ×X. Let U1, U2, U3, U4 be open
937
+ sets containing x, y, w, z, respectively. Then U1×U2×U3 ×U4 is a basis element (hence,
938
+ open) for the product topology containing (x, y, w, z). By definition of convergence, we
939
+ can find n0 such that for all n ≥ n0 we have (xn, yn, wn, zn) ∈ U1 × U2 × U3 × U4.
940
+ Thanks to the fact that projections are continuous functions, they preserve convergent
941
+ sequences and so for all n ≥ n0 we have xn ∈ U1, yn ∈ U2, wn ∈ U3, zn ∈ U4, i.e.
942
+ xn → x, yn → y, wn → w, zn → z.
943
+ Conversely, if xn → x, yn → y, wn → w, zn → z, let U⋆ be an open subset of
944
+ X×X×X×X such that (x, y, w, z) ∈ U⋆. By definition of product topology, we can find
945
+ U1 ⊆ X open in X, . . . , U4 ⊆ X open in X such that x ∈ U1, y ∈ U2, w ∈ U3, z ∈ U4. By
946
+ convergence, we have that for all i = 1, 2, 3, 4 there exists nki ∈ N such that for all n ≥
947
+ nki we have xn ∈ U1, yn ∈ U2, wn ∈ U3, zn ∈ U4. Now pick N := max{nk1, nk2, nk3, nk4}
948
+ and for every n ≥ N we have (xn, yn, wn, zn) ∈ U1 × U2 × U3 × U4 ⊆ U⋆. Hence, by
949
+ definition of convergence, (xn, yn, wn, zn) → (x, y, w, z).
950
+ Now we want to show (x, y, w, z) ∈ A, with A closed in the product topology.
951
+ We now prove that every closed set in the product topology is sequentially closed.20
952
+ This means we want to show that if we pick a sequence of points (xn, yn, wn, zn) with
953
+ values in A ⊆ X that is converging to a point (x, y, w, z) ∈ X, then (x, y, w, z) ∈ A.
954
+ Pick a sequence (xn, yn, wn, zn) with values in A ⊆ X that is converging to a point
955
+ 19Note that the order topology and A1 are redundant assumptions. The lemma follows immediately
956
+ by continuity of ≽ alone.
957
+ 20Note that when X is metrizable, a set C ⊆ X is closed ⇐⇒ C is sequentially closed.
958
+ 26
959
+
960
+ (x, y, w, z) ∈ X. Then, let U⋆ be any neighborhood of (x, y, w, z). By convergence,
961
+ there exist an n0 ∈ N such that for all n ≥ n0 we have (xn, yn, wn, zn) ∈ U⋆ and, in
962
+ particular, (xn, yn, wn, zn) ∈ U⋆ ∩ A. Since U⋆ was an arbitrary but fixed neighborhood
963
+ of (x, y, w, z), then (x, y, w, z) is in the closure of A, i.e. (x, y, w, z) ∈ A. But A is
964
+ closed, therefore A = A, so (x, y, w, z) ∈ A, hence (x, y) ≽ (w, z).
965
+ The proof of Theorem 5 in chapter 3, as in the original version of Shapley [36],
966
+ relies on two very interesting lemmas. Similar propositions have been taken as axioms
967
+ in environments that lack the topological assumptions on the set of alternatives X.
968
+ Lemma 11. Let (w,z) be an element of X × X. If x′, x′′, y ∈ X are such that:
969
+ (x′, y) ≽ (w, z) ≽ (x′′, y)
970
+ (7)
971
+ then there exists a unique, up to indifference, x⋆ ∈ X such that
972
+ (x⋆, y) ∼ (w, z)
973
+ (8)
974
+ and x′ ≿ x⋆ ≿ x′′.
975
+ Proof. Define x0 := inf{x ∈ X : (x, y) ≽ (w, z)} and denote A := {x ∈ X : (x, y) ≽
976
+ (w, z)} this set. The set A is nonempty as x′ ∈ A, A is bounded below by x′′ as we
977
+ have (w, z) ≽ (x′′, y) and, by transitivity and A1, we reach x ≿ x′′ for every x ∈ A.
978
+ Thus, x0 is such that x′ ≿ x0 ≿ x′′ and so x0 ∈ X by Lemma 2. Analogously, we define
979
+ x0 := sup{x ∈ X : (w, z) ≽ (x, y)} and denote B := {x ∈ X : (w, z) ≽ (x, y)} this set.
980
+ Then, B is nonempty as x′′ ∈ B, B is bounded above by x′ as we have (x′, y) ≽ (w, z)
981
+ and, by transitivity and A1, we reach x′ ≿ x for every x ∈ B. Thus, x0 is such that
982
+ x′ ≿ x0 ≿ x′′ and so x0 ∈ X by Lemma 2.
983
+ By A3, the sets A and B are closed and so, by Lemma 5, we have x0 ∈ A and
984
+ x0 ∈ B so that
985
+ (x0, y) ≽ (w, z) ≽ (x0, y)
986
+ By transitivity and by A1 we have x0 ≿ x0.
987
+ Assume now by contradiction that x0 ≻ x0. By Lemma 1 there exists x⋆ ∈ X such
988
+ that x0 ≺ x⋆ ≺ x0. But then, comparing x⋆ with (w, z), (x⋆, y) ≽ (w, z) can hold only
989
+ if x0 ∼ x⋆ ≻ x0, so x0 ∼ x⋆ and therefore x⋆ should be the infimum of A, reaching a
990
+ contradiction. Specular is the contradiction in the other case. Therefore, as there does
991
+ not exist any x⋆ ∈ X such that x0 ≺ x⋆ ≺ x0, we must conclude that x0 ∼ x0. By
992
+ transitivity and A1 we have
993
+ (x0, y) ∼ (w, z) ∼ (x0, y)
994
+ 27
995
+
996
+ This proves the existence of x⋆ ∈ X for which (8) holds.
997
+ Let x ∈ X be any other element of X for which (8) holds. By transitivity, (x⋆, y) ∼
998
+ (x, y). By A1, we have x⋆ ∼ x and this completes the proof.
999
+ Lemma 12. Let x, z ∈ X such that x ≻ z. Then, there exists a unique, up to indiffer-
1000
+ ence, y⋆ ∈ X such that
1001
+ (x, y⋆) ∼ (y⋆, z)
1002
+ and x ≻ y⋆ ≻ z.
1003
+ Proof. Define y0 to be the least upper bound of the set C := {y ∈ X : (x, y) ≽ (y, z)}.
1004
+ This set is nonempty as if we pick y = z we have (x, z) ≽ (z, z) that by A1 is equivalent
1005
+ to x ≿ z, that holds by assumption. C is also bounded from above by x as if we pick
1006
+ y = x we have (x, x) ≽ (x, z) that by A1′ is equivalent to z ≿ x, that, by completeness,
1007
+ contradicts the assumption of x ≻ z showing that x is an upper bound for C. Since C
1008
+ is nonempty and bounded above by x, by Lemma 2 we have y0 ∈ X.
1009
+ Similarly, by defining y0 to be the greatest lower bound of the set D := {y ∈ X :
1010
+ (y, z) ≽ (x, y)}. This set is nonempty as if we pick y = x we have (x, z) ≽ (x, x) that
1011
+ by A1′ is if and only if x ≿ z, that holds by assumption. This set is also bounded
1012
+ from below by z as if we pick y = z we have (z, z) ≽ (x, z) that by A1 is if and only
1013
+ if z ≿ x, that, by completeness, contradicts the assumption of x ≻ z showing that z is
1014
+ a lower bound for D. Since D is nonempty and bounded below by z, by Lemma 2 we
1015
+ have y0 ∈ X.
1016
+ By A3 the sets C and D are closed, so by Lemma 5 we have y0 ∈ C and y0 ∈ D,
1017
+ that is
1018
+ (x, y0) ≽ (y0, z) and (y0, z) ≽ (x, y0)
1019
+ (9)
1020
+ We show now that y0 ≿ y0. Suppose, by contradiction, y0 ≻ y0. By Lemma 1 there
1021
+ exists y⋆ ∈ X such that y0 ≻ y⋆ ≻ y0. Then, by definition of y0 we have (y⋆, z) ≺ (x, y⋆),
1022
+ while by the definition of y0 we have (x, y⋆) ≺ (y⋆, z). This contradiction shows that
1023
+ y0 ≿ y0. By A1 this is equivalent to
1024
+ (y0, z) ≽ (y0, z) for all z ∈ X.
1025
+ (10)
1026
+ By A1′ it is also equivalent to
1027
+ (x, y0) ≽ (x, y0) for all x ∈ X.
1028
+ (11)
1029
+ Putting together equation 9 with equations 10 and 11, we reach the loop
1030
+ (y0, z) ≽ (y0, z) ≽ (x, y0) ≽ (x, y0) ≽ (y0, z).
1031
+ 28
1032
+
1033
+ By transitivity, we have (y0, z) ∼ (y0, z) and (x, y0) ∼ (x, y0). By A1, we conclude that
1034
+ y0 ∼ y0.
1035
+ We conclude proving that from A1, A2 and A3 we can derive A1′.
1036
+ Lemma 13. Let X be a connected subset of a topological space.
1037
+ If ≿ is complete
1038
+ and transitive, ≽ is complete, transitive, satisfies A3 and A2, and jointly ≿ and ≽
1039
+ satisfy A1, then A1′ holds, that is, for all x, y, z ∈ X we have x ≿ y if and only if
1040
+ (z, y) ≽ (z, x).
1041
+ Proof. By contradiction, suppose A1′ fails. Then, there exist x, y, z ∈ X such that
1042
+ (z, y) ≽ (z, x) and x ≺ y. We consider two cases: y ≻ z and y ≾ z.
1043
+ If y ≻ z then, being (z, y) ≽ (z, x) by assumption, we have
1044
+ (x, x) ∼ (y, y) ≻ (z, y) ≽ (z, x)
1045
+ by A2 and A1, respectively. We apply Lemma 11 to find a w ∈ X such that
1046
+ (w, x) ∼ (z, y) and x ≿ w ≿ z.
1047
+ Being y ≻ x, we have
1048
+ (z, z) ∼ (y, y) ≻ (x, y) ∼ (w, z) ≿ (z, z)
1049
+ by A2, A1, A2, A1, respectively. This implies a contradiction in the case y ≻ z.
1050
+ Assume now y ≾ z. Being y ≾ z and x ≺ y, by transitivity we have x ≺ z. We
1051
+ can proceed as in the previous case, interchanging the roles of x and y and reversing
1052
+ all the inequalities.
1053
+ 3
1054
+ The theorem
1055
+ We can now state and prove Shapley’s theorem in our general version.
1056
+ Theorem 5. Let X be a connected and separable subset of a topological space. If ≿ is
1057
+ complete and transitive, ≽ is complete, transitive, satisfies A2 and A3, and jointly ≿
1058
+ and ≽ satisfy A1, then the pair (≿, ≽) can be represented by a continuous measurable
1059
+ utility function u: X → R, that is, for each pair x, y ∈ X,
1060
+ x ≿ y ⇐⇒ u(x) ≥ u(y)
1061
+ (12)
1062
+ and for each quadruple x, y, z, w ∈ X,
1063
+ (x, y) ≽ (z, w) ⇐⇒ u(x) − u(y) ≥ u(z) − u(w).
1064
+ (13)
1065
+ Moreover, u is unique up to positive affine transformations.
1066
+ 29
1067
+
1068
+ Proof. We first prove the result when ≿ is antisymmetric. In view of Lemma 1, through-
1069
+ out the proof we will consider suprema and infima of subsets of X.
1070
+ Suppose X is not a singleton, otherwise the result is trivially true. Let a0, a1 ∈ X
1071
+ be two distinct elements of X such that, without loss of generality, a1 ≻ a0.
1072
+ Assign u(a0) = 0 and u(a1) = 1. Now we want to show that u has a unique
1073
+ extension on X which is a measurable utility function for (≿, ≽). To ease notation,
1074
+ denote
1075
+ 1 := (a1, a0) , 0 := (a0, a0) , −1 := (a0, a1).
1076
+ Clearly, 1, 0, −1 ∈ X × X and, by A1 and A1′, 1 ≻ 0 ≻ −1. Then, by A2 we have
1077
+ (x, x) ∼ 0 for every x ∈ X. Moreover, for every y ∈ X we have either:
1078
+ (i) There exists a unique T1(y) ∈ X such that (T1(y), y) ∼ 1
1079
+ or
1080
+ (ii) 1 ≻ (x, y) for all x ∈ X
1081
+ Indeed, if (ii) fails, there exists x′ ∈ X such that (x′, y) ≽ 1. Since (x′, y) ≽ 1 ≽ 0 ∼
1082
+ (y, y), by Lemma 11 there exists an element T1(y) ∈ X such that (T1(y), y) ∼ 1. By
1083
+ A1 and antisymmetry of ≿ , (T1(y), y) ∼ (y′, y) implies T1(y) = y′, so T1(y) is unique.
1084
+ In addition, note that y ≺ T1(y). Indeed, (y, y) ∼ 0 ≺ 1 ∼ (T1(y), y), and so A1
1085
+ implies y ≺ T1(y). In a similar way as before, for every y ∈ X we have either:
1086
+ (i.bis) There exists a unique T−1(y) ∈ X such that (T−1(y), y) ∼ −1
1087
+ or
1088
+ (ii.bis) −1 ≺ (x, y) for all x ∈ X
1089
+ Indeed, if (ii.bis) fails, there exists x′ ∈ X such that (x′, y) ≼ −1. Since (x′, y) ≼ −1 ≼
1090
+ 0 ∼ (y, y), by Lemma 11 there exists an element T−1(y) ∈ X such that (T1(y), y) ∼ −1.
1091
+ By A1 and antisymmetry of ≿ , (T−1(y), y) ∼ (y′, y) implies T−1(y) = y′, so T−1(y) is
1092
+ unique.
1093
+ In addition, note that T−1(y) ≺ y. Indeed, (T−1(y), y) ∼ −1 ≺ 0 ∼ (y, y), and so
1094
+ A1 implies T−1(y) ≺ y.
1095
+ Now define a2 := T1(a1) if (i) holds for y = a1, i.e. if there exists a unique
1096
+ T1(a1) ∈ X such that (T1(a1), a1) ∼ 1. Similarly, set a3 := T1(a2) if (i) holds for y = a2,
1097
+ and continue in this way till (if ever) occurs y = an for which (ii) holds, i.e. 1 ≻ (x, an)
1098
+ for every x ∈ X. Analogously, we define a−1 := T−1(a0) if (i.bis) holds for y = a0, set
1099
+ a−2 := T−1(a−1) if (i.bis) holds for y = a−1, and continue in this way till (if ever) occurs
1100
+ y = a−n for which (ii.bis) holds.
1101
+ 30
1102
+
1103
+ Now define A := {. . . , a−2, a−1, a0, a1, a2, . . . }, with
1104
+ · · · ≺ a−2 ≺ a−1 ≺ a0 ≺ a1 ≺ a2 ≺ . . .
1105
+ The set A can be finite or infinite in either direction. If we consider now a sequence that
1106
+ from an index set Pa ⊆ Z maps to A, we define the following function a : Pa ⊆ Z → A.
1107
+ Now we start to extend u to A. Define the following:
1108
+ u(ap) = p
1109
+ for every p ∈ Pa.
1110
+ Clearly, we have (12), i.e. x ≿ y if and only if u(x) ≥ u(y) for every x, y that are images
1111
+ of the sequence a, so (12) holds on A.
1112
+ Now we show that (13) holds whenever x, y, z, w ∈ A ⊂ X, say x = ap, y = aq, z =
1113
+ ap−d where p, q, p − d ∈ Pa. Without loss of generality, assume d ≥ 0. We first prove
1114
+ the “equality” case of (13), that is
1115
+ (x, y) ∼ (z, w) ⇐⇒ u(x) − u(y) = u(z) − u(w)
1116
+ (14)
1117
+ By construction we have
1118
+ (ap, ap−1) ∼ 1 ∼ (aq, aq−1)
1119
+ so, by transitivity and A2, we have:
1120
+ (ap, aq) ∼ (ap−1, aq−1)
1121
+ Iterating this procedure finitely many times we reach:
1122
+ (x, y) = (ap, aq) ∼ (ap−d, aq−d) = (z, aq−d)
1123
+ (15)
1124
+ By transitivity, (z, aq−d) ∼ (z, w) and so, by A1 aq−d = w, so that u(aq−d) = u(w).
1125
+ By definition of u we can write
1126
+ u(x) − u(y) = u(ap) − u(aq) = p − q = u(ap−d) − u(aq−d) = u(z) − u(w)
1127
+ thus proving (14). Next we prove
1128
+ (x, y) ≻ (z, w) ⇐⇒ u(x) − u(y) > u(z) − u(w)
1129
+ (16)
1130
+ By transitivity, (z, aq−d) ≻ (z, w) and so, by A1′, w ≻ aq−d, so that u(w) > u(aq−d).
1131
+ By definition of u, from (15) we can write
1132
+ u(x) − u(y) = u(ap) − u(aq) = p − q = u(ap−d) − u(aq−d) > u(z) − u(w)
1133
+ thus proving (16).
1134
+ Summing up, both (12) and (13) hold on the terms of the set A. Using Lemma
1135
+ 12, now we want to extend u to the points of X that lie between terms of the set A.
1136
+ Set b0 := a0 and since a1 ≻ a0, by Lemma 12 there exists b1 ∈ X, with a1 ≻ b1 ≻ a0,
1137
+ 31
1138
+
1139
+ such that
1140
+ (a1, b1) ∼ (b1, a0)
1141
+ Now build the set B := {. . . , b−2, b−1, b0, b1, b2, . . . }, with
1142
+ · · · ≺ b−2 ≺ b−1 ≺ b0 ≺ b1 ≺ b2 ≺ . . .
1143
+ based on b0, b1, in the same way we constructed A from a0, a1. Also here, we can define
1144
+ a sequence that from an index set Pb ⊆ Z maps to B, that is, we define the following
1145
+ function b : Pb ⊆ Z → B.
1146
+ By construction we have
1147
+ (b2, b1) ∼ (b1, b0)
1148
+ Together with (a1, b1) ∼ (b1, a0), by transitivity we have (b2, b1) ∼ (a1, b1). By A1,
1149
+ b2 = a1. Analogously, one can verify that
1150
+ b2p = ap for every p ∈ Pa
1151
+ (17)
1152
+ So, the terms of the set B lie between the terms of the set A, i.e. the set B refines
1153
+ A and we can write
1154
+ A ⊆ B
1155
+ (18)
1156
+ Denote now c0 := b0 = a0 and we let c1 ∈ X be that element provided by Lemma
1157
+ 12 such that (b1, c1) ∼ (c1, b0). In the same way we constructed B from A, we can
1158
+ construct, from B, a third set C := {. . . , c−2, c−1, c0, c1, c2, . . . }, with
1159
+ · · · ≺ c−2 ≺ c−1 ≺ c0 ≺ c1 ≺ c2 ≺ . . .
1160
+ based on c0, c1. We can see that
1161
+ c2p = bp for every p ∈ Pc
1162
+ where Pc ⊆ Z is the collection of indexes of the sequence c : Pc ⊆ Z → C.
1163
+ The set C refines B
1164
+ B ⊆ C
1165
+ (19)
1166
+ We keep iterating this process, constructing sets that refine one another and, for
1167
+ ease of notation, we denote them in the following way:
1168
+ A0 := A
1169
+ and
1170
+ a0
1171
+ p := ap ∈ A0
1172
+ A1 := B
1173
+ and
1174
+ a1
1175
+ p := bp ∈ A1
1176
+ A2 := C
1177
+ and
1178
+ a2
1179
+ p := cp ∈ A2
1180
+ · · ·
1181
+ 32
1182
+
1183
+ These sets generalize the inclusions (18) and (19) as follows:
1184
+ A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ An ⊆ . . .
1185
+ (20)
1186
+ So, in general, an
1187
+ p for p ̸= 1 is obtained from the construction of (i) and (ii), applied to
1188
+ the points a0, an
1189
+ 1. The term an
1190
+ 1, for n > 0, is the “midpoint” between an−1
1191
+ 1
1192
+ and a0, that
1193
+ exists by Lemma 12. By iterating the construction of (17), we have that
1194
+ p
1195
+ 2n = q
1196
+ 2m =⇒ an
1197
+ p = am
1198
+ q
1199
+ In the spirit of (20), we extend u to all points in A∞ := �∞
1200
+ n=1 An by:
1201
+ u(an
1202
+ p) = p
1203
+ 2n
1204
+ for all an
1205
+ p ∈ An
1206
+ Relations (12) and (13) hold in this extended domain: given x, y, z, w ∈ �∞
1207
+ n=1 An,
1208
+ just take n large enough so that they become, up to indifference, terms of the set An
1209
+ and proceed in the same exact way as we did for the set A0.
1210
+ To complete the construction of u we only remain to show A∞ is dense in X,
1211
+ that is A∞ = X. We first show that none of the sets An has, for its sequences of
1212
+ points an, a point of accumulation in X. Indeed, fix n and suppose by contradiction
1213
+ that an
1214
+ pk converges monotonically to a⋆ ∈ X, where, without loss of generality, we
1215
+ assume an
1216
+ pk ↑ a⋆ with a⋆ ∈ X, i.e. (pk) is an increasing sequence of integers. Denote
1217
+ 1n := (an
1218
+ 1, a0) and we have, for every k ∈ N,
1219
+ (an
1220
+ 1+pk, an
1221
+ pk) ≽ 1n ≻ 0
1222
+ By Lemma 10, we have (a⋆, a⋆) ≽ 1n. So, by transitivity, we reach (a⋆, a⋆) ≻ 0, a
1223
+ contradiction. We conclude that, fixed n, none of the sequences an with values in An
1224
+ has a limit point in X.
1225
+ To prove A∞ = X, the implication A∞ ⊆ X is trivial by construction. Now we
1226
+ want to show A∞ ⊇ X, that is all the elements of X belong to the closure of A∞
1227
+ as well. Fix x ∈ X such that, without loss of generality, x ≿ a0. For n ≥ 1, define
1228
+ yn := sup{y ∈ An : x ≿ y}. Note that a0 ∈ {y ∈ An : x ≿ y}, so this set is nonempty
1229
+ and we can write x ≿ yn ≿ a0. By Lemma 2, yn ∈ X. Note further that, as shown
1230
+ before, An cannot have accumulation points in X so, as long as yn ∈ X, it follows
1231
+ yn cannot be an accumulation point of An. So, yn must belong to An and we denote
1232
+ yn := an
1233
+ pn. As a result, we have:
1234
+ an
1235
+ pn−k ≾ x ≺ an
1236
+ pn+k for every k > 0
1237
+ (21)
1238
+ We also have that
1239
+ 1n ≻ (x, yn)
1240
+ (22)
1241
+ 33
1242
+
1243
+ Indeed, if (22) were not true, then (x, an
1244
+ pn) ≽ 1n. We consider two cases: an
1245
+ 1+pn ≻ x or
1246
+ an
1247
+ 1+pn ≾ x. If an
1248
+ 1+pn ≻ x, then, thanks to A1, we reach the following contradiction:
1249
+ 1n ∼ (an
1250
+ 1+pn, an
1251
+ pn) ≻ (x, an
1252
+ pn) ≽ 1n
1253
+ (23)
1254
+ So an
1255
+ 1+pn ≾ x, but this contradicts (21), that is, it contradicts yn to be the supremum.
1256
+ Thus, (22) holds. In particular, by A1 and A2, we can write (x, yn) ≽ (yn, yn) ∼ 0,
1257
+ leading to
1258
+ 1n ≻ (x, yn) ≽ 0
1259
+ (24)
1260
+ Now, when n → ∞, as the sets An+1 ⊇ An ⊇ An−1 . . . are nested one into the
1261
+ other by (20), we can write, for every n ≥ 1, yn ≾ yn+1 ≾ x. Thus, the points yn form
1262
+ a non-decreasing sequence that is bounded from above by x. Call y⋆ the limit of this
1263
+ sequence, that is well-defined by Lemma 1. Since a0 ≾ y⋆ ≾ x, by Lemma 2 it follows
1264
+ that y⋆ ∈ X. In particular, by Lemma 6 we have y⋆ ∈ A∞, because, for every fixed
1265
+ n ≥ 1, yn is a term of the sets An, and so (yn) ∈ AN
1266
+ ∞.
1267
+ As to the 1n terms, for n fixed, we see that
1268
+ 1n ∼ (an
1269
+ 2, an
1270
+ 1) ∼ (an−1
1271
+ 1
1272
+ , an
1273
+ 1)
1274
+ We also have that, for every n ≥ 1, a0 ≾ an+1
1275
+ 1
1276
+ ≾ an
1277
+ 1.
1278
+ Thus, the points an
1279
+ 1 form, for n → ∞, a non-increasing sequence that is bounded
1280
+ from below by a0. Call a⋆ the limit of this sequence, that is well-defined by Lemma 1.
1281
+ Since a0 ≾ a⋆ ≾ a1, by Lemma 2 we have a⋆ ∈ X.
1282
+ Consider now (an−1
1283
+ 1
1284
+ , an
1285
+ 1) and (x, yn). By Lemma 10 and from (24) it follows that
1286
+ (a⋆, a⋆) ≽ (x, y⋆) ≽ 0
1287
+ Since, by A2, (a⋆, a⋆) ∼ 0, by transitivity (x, y⋆) ∼ 0, so that x ∼ y⋆, i.e. x = y⋆ as ≿
1288
+ is antisymmetric.
1289
+ Since x was arbitrarily chosen in X and y⋆ ∈ A∞, we can conclude x ∈ A∞, so
1290
+ that A∞ = X. Therefore, we can extend u by continuity to the whole set X by setting
1291
+ u(x) = lim
1292
+ n→∞ u(xn)
1293
+ if (xn) ∈ AN
1294
+ ∞ converges monotonically to x. Note that u : X → R is well-defined.
1295
+ Indeed, to prove it is well-posed we show that if xn and yn are two sequences that
1296
+ converge to x, then limn→∞ u(xn) = limn→∞ u(yn). This follows easily by continuity of
1297
+ u.21 In light of Lemma 6, it is easy to see that u satisfies (12) and (13).
1298
+ As to uniqueness, observe that any other u that satisfies (12) and (13) can be
1299
+ 21Recall that in every topological space X continuity implies sequential continuity. The converse
1300
+ holds if X is first-countable.
1301
+ 34
1302
+
1303
+ normalized so that u(a0) = 0 and u(a1) = 1. So, u must agree on u at each step of
1304
+ the constructive procedure for u just seen. Indeed, for a given u : X → R, define the
1305
+ following positive affine transformation f : Im(u) → R such that
1306
+ f(x) :=
1307
+ x − u(a0)
1308
+ u(a1) − u(a0)
1309
+ It is immediate to see that, for the equivalent utility function �u := f ◦ u, we have
1310
+ �u(a0) = 0 and �u(a1) = 1.
1311
+ Summing up, we proved Theorem 5 if ≿ is antisymmetric.
1312
+ Now we drop this
1313
+ assumption. Let X/∼ be the quotient space with respect to the equivalence relation
1314
+ ∼. The set {x ∈ X : x ∼ y} is a closed set in X by Lemma 4, so (X/∼, ˜≿) is a totally
1315
+ ordered connected and separable subset of a topological space, where ˜≿ is the total
1316
+ order induced by the weak order ≿.22 Therefore, the orders ≿ and ≽ induce orders ˜≿
1317
+ and ˜≽ on the quotient set X/∼, by setting, for all [x], [y] ∈ X/∼
1318
+ [x] ˜≿ [y] ⇐⇒ x ≿ y
1319
+ and, for all [x], [y], [z], [w] ∈ X/∼
1320
+ ([x], [y]) ˜≽ ([z], [w]) ⇐⇒ (x, y) ≽ (z, w)
1321
+ It is routine to show that the orders ˜≿ over X/∼ and ˜≽ over X/∼ × X/∼ inherit the
1322
+ same properties of ≿ and ≽ used in the theorem. So, by what has been proved so far,
1323
+ there exists ˜u : X/∼ → R that satisfies (12) and (13) for (˜≿, ˜≽). Let π : X → X/∼ be
1324
+ the quotient map. Then, the function u : X → R defined as u = ˜u ◦ π is a well-defined
1325
+ measurable utility function, i.e. it is easily seen to satisfy (12) and (13) for (≿, ≽).
1326
+ To conclude, we show that u satisfies (12) and (13). If x ∼ y then [x] = [y] and,
1327
+ by the theorem we have just proved, ˜u([x]) = ˜u([y]), which is (˜u ◦ π)(x) = (˜u ◦ π)(y),
1328
+ and so u(x) = u(y). If x ≻ y, then [x] ≻ [y], which implies ˜u([x]) > ˜u([y]), which is
1329
+ (˜u ◦ π)(x) > (˜u ◦ π)(y), and so u(x) > u(y).
1330
+ Conversely, assume u(x) ≥ u(y) and suppose by contradiction x � y that, by
1331
+ completeness, is y ≻ x. If u(x) = u(y) then ˜u([x]) = ˜u([y]) ⇐⇒ [x] = [y] ⇐⇒ x ∼ y,
1332
+ a contradiction. If u(x) > u(y) then ˜u([x]) > ˜u([y]) ⇐⇒ [x] > [y] ⇐⇒ x ≻ y, a
1333
+ contradiction. Hence, (12) holds for u.
1334
+ By definition, we have that ([x], [y]) ≽ ([z], [w])
1335
+ ⇐⇒
1336
+ (x, y) ≽ (z, w), for all
1337
+ [x],[y],[z],[w] ∈ X/∼. So, we can write (x, y) ≽ (z, w) ⇐⇒ ([x], [y]) ≽ ([z], [w]) ⇐⇒
1338
+ ˜u([x])−˜u([y]) ≥ ˜u([z])−˜u([w]) ⇐⇒ u(x)−u(y) ≥ u(z)−u(w). Hence, also (13) holds
1339
+ for u.
1340
+ 22That is, ˜≿ := ≿ /∼ ⊆ X/∼ × X/∼.
1341
+ 35
1342
+
1343
+ This completes the proof of Theorem 5.
1344
+ Graphically, we can build the following diagram to represent our construction.
1345
+ X
1346
+ X/∼
1347
+ R
1348
+ π
1349
+ u
1350
+ ˜u
1351
+ References
1352
+ [1] Adams, E.W. 1960. “Survey of Bernoullian utility theory.” Mathematical Thinking
1353
+ in the Measurement of Behavior, edited by Solomon, H., 151–268. Glencoe.
1354
+ [2] Allais, M. 1943. “A la Recherche d’une Discipline Economique. L’Economie Pure.”
1355
+ Ateliers Industria, Paris.
1356
+ [3] Allais, M. 1979. “The so-called Allais paradox and rational decisions under uncer-
1357
+ tainty.” Expected Utility Hypotheses and the Allais Paradox, edited by Allais, M.
1358
+ and Hagen, O., 437-681.
1359
+ [4] Allais, M. 1994. “The fundamental cardinalist approach and its prospects.” Cardi-
1360
+ nalism, edited by Allais, M. and Hagen, O., 289-306. Kluwer Academic Publishers.
1361
+ [5] Alt, F. 1936. “¨Uber die M¨assbarkeit des Nutzens.” Zeitschrift f¨ur National¨okonomie
1362
+ 7: 161-169.
1363
+ [6] Banakh, T., Gutik, O., Potiatynyk, O., and Ravsky, A. 2012. “Metrizability of
1364
+ Clifford topological semigroups.” Semigroup Forum 84: 301–307.
1365
+ [7] Cantor, G. 1895. “Beitr¨age zur Begr¨undung der transfiniten Mengenlehre.” Mathe-
1366
+ matische Annalen 46: 481–512.
1367
+ 36
1368
+
1369
+ [8] Debreu, G. 1954. “Representation of a preference ordering by a numerical function.”
1370
+ Decision Process, edited by Thrall, R.M., Davis, R. L. and C.H. Coombs, 159-165.
1371
+ John Wiley and Sons, New York.
1372
+ [9] Debreu, G. 1964. “Continuity properties of a Paretian utility.” International Eco-
1373
+ nomic Review 5: 285-293.
1374
+ [10] Edgeworth, F.Y. 1881. “Mathematical Psychics.” London, Kegan Paul.
1375
+ [11] Eilenberg, S. 1941. “Ordered Topological Spaces.” American Journal of Mathe-
1376
+ matics 63: 39-45.
1377
+ [12] Ellingsen, T. 1994. “Cardinal utility: a history of hedonimetry.” Cardinalism,
1378
+ edited by Allais, M. and Hagen, O., 105-165. Kluwer Academic Publishers.
1379
+ [13] Fechner, G.T. 1860. “Elemente der Psychophysik.” Leipzig, Breitkopf und H¨artel.
1380
+ [14] Feng, Z., and Heath, R. 2008. “Metrizability of topological semigroups on linearly
1381
+ ordered topological spaces.” Topology Proceedings 32: 83-88.
1382
+ [15] Fishburn, P.C. 1968. “Utility theory.” Management Science 14: 335-378.
1383
+ [16] Fishburn, P.C. 1970. “Utility Theory for Decision Making.” John Wiley and Sons,
1384
+ New York.
1385
+ [17] Fishburn, P.C. 1976. “Cardinal utility:
1386
+ An interpretive essay.” Rivista Inter-
1387
+ nazionale di Scienze Economiche e Commerciale 22: 1102-1114.
1388
+ [18] Frisch, R. 1926. “Sur un probleme d’economie pure.” Norsk Matematisk Forenings
1389
+ Skrifter 16: 1-40.
1390
+ [19] Hicks, J. R., and Allen, R. G. D. 1934. “A Reconsideration of the Theory of Value.”
1391
+ Economica 1: 52-76.
1392
+ [20] Hutcheson, P. 1728. “An Essay on the Nature and Conduct of the Passions and
1393
+ Affections.” edited by Osborn, J., and Longman, T., London.
1394
+ [21] Jevons, W.S. 1871. “The Theory of Political Economy.” London and New York,
1395
+ Macmillan.
1396
+ [22] Krantz, D.H., Luce, R.D., Suppes, P., and Tversky, A. 1971. “Foundations of
1397
+ Measurement.” New York and London, Academic Press.
1398
+ 37
1399
+
1400
+ [23] Lange, O. 1934. “The determinateness of the utility function.” Review of Economic
1401
+ Studies 1: 218-224.
1402
+ [24] Luce, R.D., and Suppes, P. 1965. “Preference, utility and subjective probability.”
1403
+ edited by Luce, R.D., Bush, R.R., and Galanter, E. Handbook of Mathematical
1404
+ Psychology 3. New York: Wiley.
1405
+ [25] Lutzer, D.J. 1969. “A metrization theorem for linearly orderable spaces.” Proceed-
1406
+ ings of the American Mathematical Society 22: 557-558.
1407
+ [26] Majumdar, T. 1958. “Behaviourist cardinalism in utility theory.” Economica 25:
1408
+ 26-33.
1409
+ [27] Manzoni, A. 1834. “Del sistema che fonda la morale sull’ utilit`a.” Osservazioni
1410
+ sulla morale cattolica., in Opere Varie, 1845, edited by Giuseppe Redaelli, Milano.
1411
+ [28] Marinacci, M. 2019. “Utility theory.” Unpublished.
1412
+ [29] Moscati, I. 2019. “Measuring Utility: From the Marginal Revolution to Behavioral
1413
+ Economics.” Oxford University Press, Oxford.
1414
+ [30] Munkres, J.R. 2000. “Topology.” 2nd ed., New York, NY: Pearson.
1415
+ [31] Pareto, V. 1906. “Manuale di Economia Politica con una Introduzione alla Scienza
1416
+ Sociali.” Societ`a Editrice Libraria, Milano
1417
+ [32] Pareto, V. 1911. “Economie mathematique” Encyclopedie des Sciences Mathema-
1418
+ tiques. Tome 1, vol. 4, Fasc. 4, Paris. English translation: 1955 “Mathematical
1419
+ Economics.” International Economic Papers 5: 58-102.
1420
+ [33] Ramsey, F. 1926. “Truth and probability.” In Ramsey, F. 1931. “The Foundations
1421
+ of Mathematics and Other Logical Essays.” New York, Harcourt Brace and Co.
1422
+ [34] Savage, L.J. 1954. “The Foundations of Statistics.” New York, John Wiley and
1423
+ Sons.
1424
+ [35] Sen, A.K. 1982. “Choice, Welfare and Measurement.” Blackwell, Oxford.
1425
+ [36] Shapley, L.S. 1975. “Cardinal Utility from Intensity Comparisons.” RAND Report,
1426
+ R-1683-PR.
1427
+ 38
1428
+
1429
+ [37] Sørensen, A. 2008. “Deontology - born and kept in servitude by utilitarianism.”
1430
+ Danish Yearbook of Philosophy 43: 69-96.
1431
+ [38] Stark, W. 1952. “Jeremy Bentham’s Economic Writings.” 1-3, London, George
1432
+ Allen and Unwin.
1433
+ [39] Stigler, G. 1950. “The development of utility theory.” Journal of Political Economy
1434
+ 58: 307-327 and 373-396.
1435
+ [40] Suppes, P., and Winet, M. 1955. “An axiomatization of utility based on the notion
1436
+ of utility differences.” Management Science 1: 186-202.
1437
+ [41] Von Neumann, J., and Morgenstern, O. 1947. “Theory of Games and Economic
1438
+ Behavior.” 2nd ed., Princeton, Princeton University Press.
1439
+ [42] Weber, E.H. 1846 “Die Lehre vom Tastsinne und Gemeingef¨uhle auf Versuche
1440
+ gegr¨undet.” Braunschweig, Wieweg und Sohn.
1441
+ 39
1442
+
GtAzT4oBgHgl3EQfUvxQ/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
H9E4T4oBgHgl3EQfIAys/content/2301.04909v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcfc187e6e20dc7f03a8982da6e1ac5120c9469737d16148883308bec63f21c6
3
+ size 408232
H9E4T4oBgHgl3EQfIAys/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:015040c13472ac89306ff6da97d7b6832ea99f4df49323e189fb8f58ac4e192c
3
+ size 2359341
H9E4T4oBgHgl3EQfIAys/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a0c169c142bd6b2549aaa540101f2e0c27c00fbff959a246b93ef0ae76a78a0
3
+ size 97021
JtE1T4oBgHgl3EQfYQS_/content/tmp_files/2301.03137v1.pdf.txt ADDED
@@ -0,0 +1,2321 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03137v1 [math.NT] 9 Jan 2023
2
+ Gaps on the intersection numbers of
3
+ sections on a rational elliptic surface
4
+ Renato Dias Costa
5
+ Abstract
6
+ Given a rational elliptic surface X over an algebraically closed field, we investigate whether a
7
+ given natural number k can be the intersection number of two sections of X. If not, we say that
8
+ k a gap number. We try to answer when gap numbers exist, how they are distributed and how to
9
+ identify them. We use Mordell-Weil lattices as our main tool, which connects the investigation
10
+ to the classical problem of representing integers by positive-definite quadratic forms.
11
+ Contents
12
+ 1
13
+ Introduction
14
+ 2
15
+ 2
16
+ Preliminaries
17
+ 4
18
+ 2.1
19
+ The Mordell-Weil Lattice
20
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21
+ 4
22
+ 2.2
23
+ Gap numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24
+ 6
25
+ 2.3
26
+ Bounds cmax, cmin for the contribution term . . . . . . . . . . . . . . . . . . . . . . .
27
+ 6
28
+ 2.4
29
+ The difference ∆ = cmax − cmin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
+ 8
31
+ 2.5
32
+ The quadratic form QX
33
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
+ 9
35
+ 3
36
+ Intersection with a torsion section
37
+ 10
38
+ 4
39
+ Existence of a pair of sections with a given intersection number
40
+ 11
41
+ 4.1
42
+ Necessary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
43
+ 11
44
+ 4.2
45
+ Sufficient conditions when ∆ ≤ 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
46
+ 12
47
+ 4.2.1
48
+ The case ∆ < 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
49
+ 12
50
+ 4.2.2
51
+ The case ∆ = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
52
+ 13
53
+ 4.3
54
+ Necessary and sufficient conditions for ∆ ≤ 2
55
+ . . . . . . . . . . . . . . . . . . . . . .
56
+ 14
57
+ 4.4
58
+ Summary of sufficient conditions
59
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
60
+ 15
61
+ 5
62
+ Main Results
63
+ 15
64
+ 5.1
65
+ No gap numbers in rank r ≥ 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
66
+ 15
67
+ 5.2
68
+ Gaps with probability 1 in rank r ≤ 2
69
+ . . . . . . . . . . . . . . . . . . . . . . . . . .
70
+ 17
71
+ 5.3
72
+ Identification of gaps when E(K) is torsion-free with rank r = 1
73
+ . . . . . . . . . . .
74
+ 18
75
+ 5.4
76
+ Surfaces with a 1-gap
77
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
78
+ 20
79
+ 6
80
+ Appendix
81
+ 23
82
+ 1
83
+
84
+ 1
85
+ Introduction
86
+ Description of the problem. Let X be a rational elliptic surface over an algebraically closed
87
+ field, i.e. a smooth, rational projective surface with a fibration π : X → P1 whose general fiber
88
+ is a smooth curve of genus 1. Assume also that π is relatively minimal, i.e. no fiber contains an
89
+ exceptional curve in its support. We use E/K to denote the generic fiber of π, which is an elliptic
90
+ curve over the function field K := k(P1). By the Mordell-Weil theorem, the set E(K) of K-points
91
+ is a finitely generated Abelian group, whose rank we denote by r. The points on E(K) are in
92
+ bijective correspondence with the sections of π, as well as with the exceptional curves on X, so
93
+ we use these terms interchangeably. This paper addresses the following question: given sections
94
+ P1, P2 ∈ E(K), what values can the intersection number P1 · P2 possibly attain?
95
+ Original motivation.
96
+ The problem originates from a previous investigation of conic bundles
97
+ on X, i.e. morphisms ϕ : X → P1 whose general fiber is a smooth curve of genus zero [Cos]. More
98
+ specifically, one of the ways to produce a conic bundle is by finding a pair of sections P1, P2 ∈ E(K)
99
+ with P1 · P2 = 1, so that the linear system |P1 + P2| induces a conic bundle ϕ|P1+P2| : X → P1
100
+ having P1 + P2 as a reducible fiber. We may ask under which conditions such a pair exists. An
101
+ immediate necessary condition is that r ≥ 1, for if r = 0 any two distinct sections must be disjoint
102
+ [SS19, Cor. 8.30]. Conversely, given that r ≥ 1, does X admit such a pair? The first observation
103
+ is that r ≥ 1 implies an infinite number of sections, so we should expect infinitely many values for
104
+ P1·P2 as P1, P2 run through E(K). Then the question is ultimately: what values may P1·P2 assume?
105
+ Mordell-Weil lattices. The computation of intersection numbers on a surface is a difficult prob-
106
+ lem in general. However, as we are concerned with sections on an elliptic surface, the information
107
+ we need is considerably more accessible. The reason for this lies in the Mordell-Weil lattice, a
108
+ concept first established in [Elk90], [Shi89], [Shi90]. It involves the definition of a Q-valued pair-
109
+ ing ⟨·, ·⟩ on E(K), called the height pairing [SS19, Section 6.5], inducing a positive-definite lattice
110
+ (E(K)/E(K)tor, ⟨·, ·⟩), named the Mordell-Weil lattice.
111
+ A key aspect of its construction is the
112
+ connection with the Néron-Severi lattice, so that the height pairing and the intersection pairing
113
+ of sections are strongly intertwined. In the case of rational elliptic surfaces, the possibilities for
114
+ the Mordell-Weil lattice have already been classified in [OS91], which gives us a good starting point.
115
+ Representation of integers.
116
+ The use of Mordell-Weil lattices in our investigation leads to
117
+ a classical problem in number theory, which is the representation of integers by positive-definite
118
+ quadratic forms. Indeed, the free part of E(K) is generated by r terms, so the height h(P) := ⟨P, P⟩
119
+ induces a positive-definite quadratic form on r variables with coefficients in Q. If O ∈ E(K) is the
120
+ neutral section and R is the set of reducible fibers of π, then by the height formula (2)
121
+ h(P) = 2 + 2(P · O) −
122
+
123
+ v∈R
124
+ contrv(P),
125
+ where the sum over v is a rational number which can be estimated. By clearing denominators,
126
+ we see that the possible values of P · O depend on a certain range of integers represented by a
127
+ positive-definite quadratic form with coefficients in Z. This point of view is explored in some parts
128
+ of the paper, where we apply results such as the classical Lagrange’s four-square theorem [HW79,
129
+ §20.5], the counting of integers represented by a binary quadratic form [Ber12, p. 91] and the more
130
+ recent Bhargava-Hanke’s 290-theorem on universal quadratic forms [BH, Thm. 1].
131
+ 2
132
+
133
+ Statement of results. Given k ∈ Z≥0 we investigate whether there is a pair of sections P1, P2 ∈
134
+ E(K) such that P1 · P2 = k. If such a pair does not exist, we say that X has a k-gap, or that k is
135
+ a gap number. Our first result is a complete identification of gap numbers in some cases:
136
+ Theorem 5.7. If E(K) is torsion-free with rank r = 1, we have the following characterization of
137
+ gap numbers on X according to the lattice T associated to the reducible fibers of π.
138
+ T
139
+ k is a gap number ⇔ none of
140
+ the following are perfect squares
141
+ E7
142
+ k + 1, 4k + 1
143
+ A7
144
+ k+1
145
+ 4 , 16k, ..., 16k + 9
146
+ D7
147
+ k+1
148
+ 2 , 8k + 1, ..., 8k + 4
149
+ A6 ⊕ A1
150
+ k+1
151
+ 7 , 28k − 3, ..., 28k + 21
152
+ E6 ⊕ A1
153
+ k+1
154
+ 3 , 12k + 1, ..., 12k + 9
155
+ D5 ⊕ A2
156
+ k+1
157
+ 6 , 24k + 1, ..., 24k + 16
158
+ A4 ⊕ A3
159
+ k+1
160
+ 10 , 40k − 4, ..., 40k + 25
161
+ A4 ⊕ A2 ⊕ A1
162
+ k+1
163
+ 15 , 60k − 11, ..., 60k + 45
164
+ We also explore the possibility of X having no gap numbers. We prove that, in fact, this is
165
+ always the case if the Mordell-Weil rank is big enough.
166
+ Theorem 5.2. If r ≥ 5, then X has no gap numbers.
167
+ On the other hand, for r ≤ 2 we show that gap numbers occur with probability 1.
168
+ Theorem 5.4. If r ≤ 2, then the set of gap numbers of X, i.e. G := {k ∈ N | k is a gap number of X}
169
+ has density 1 in N, i.e.
170
+ lim
171
+ n→∞
172
+ #G ∩ {1, ..., n}
173
+ n
174
+ = 1.
175
+ At last we answer the question from the original motivation, which consists in classifying the
176
+ rational elliptic surfaces with a 1-gap:
177
+ Theorem 5.8. X has a 1-gap if and only if r = 0 or r = 1 and π has a III∗ fiber.
178
+ 3
179
+
180
+ Structure of the paper. The text is organized as follows. Section 2 introduces the main objects,
181
+ namely the Mordell-Weil lattice, the bounds cmax, cmin for the contribution term, the difference
182
+ ∆ = cmax −cmin and the quadratic form QX induced by the height pairing. In Section 3 we explain
183
+ the role of torsion sections in the investigation. The key technical results are gathered in Section 4,
184
+ where we state necessary and sufficient conditions for having P1 · P2 = k for a given k. Section 5
185
+ contains the main results of the paper, namely: the description of gap numbers when E(K) is
186
+ torsion-free with r = 1 (Subsection 5.3), the absence of gap numbers for r ≥ 5 (Subsection 5.1),
187
+ density of gap numbers when r ≤ 2 (Subsection 5.2) and the classification of surfaces with a 1-gap
188
+ (Subsection 5.4). Section 6 is an appendix containing Table 8, which stores the relevant information
189
+ about the Mordell-Weil lattices of rational elliptic surfaces with r ≥ 1.
190
+ 2
191
+ Preliminaries
192
+ Throughout the paper X denotes a rational elliptic surface over an algebraically closed field
193
+ k of any characteristic. More precisely, X is a smooth rational projective surface with a fibration
194
+ π : X → P1, with a section, whose general fiber is a smooth curve of genus 1. We assume moreover
195
+ that π is relatively minimal (i.e. each fiber has no exceptional curve in its support) [SS19, Def.
196
+ 5.2]. The generic fiber of π is an elliptic curve E/K over K := k(P1). The set E(K) of K-points is
197
+ called the Mordell-Weil group of X, whose rank is called the Mordell-Weil rank of X, denoted by
198
+ r := rank E(K).
199
+ In what follows we introduce the main objects of our investigation and stablish some notation.
200
+ 2.1
201
+ The Mordell-Weil Lattice
202
+ We give a brief description of the Mordell-Weil lattice, which is the central tool used in the
203
+ paper. Although it can be defined on elliptic surfaces in general, we restrict ourselves to rational
204
+ elliptic surfaces. For more information on Mordell-Weil lattices, we refer the reader to the com-
205
+ prehensive introduction by Schuett and Shioda [SS19] in addition to the original sources, namely
206
+ [Elk90], [Shi89], [Shi90].
207
+ We begin by noting that points in E(K) can be regarded as curves on X and by defining the
208
+ lattice T and the trivial lattice Triv(X), which are needed to define the Mordell-Weil lattice.
209
+ Sections, points on E(K) and exceptional curves. The sections of π are in bijective cor-
210
+ respondence with points on E(K). Moreover, since X is rational and relatively minimal, points on
211
+ E(K) also correspond to exceptional curves on X [SS10, Section 8.2]. For this reason we identify
212
+ sections of π, points on E(K) and exceptional curves on X.
213
+ The lattice T and the trivial lattice Triv(X). Let O ∈ E(K) be the neutral section and
214
+ R := {v ∈ P1 | π−1(v) is reducible} the set of reducible fibers of π. The components of a fiber
215
+ π−1(v) are denoted by Θv,i, where Θv,0 is the only component intersected by O. The Néron-Severi
216
+ group NS(X) together with the intersection pairing is called the Néron-Severi lattice.
217
+ 4
218
+
219
+ We define the following sublattices of NS(X), which encode the reducible fibers of π:
220
+ Tv := Z⟨Θv,i | i ̸= 0⟩ for v ∈ R,
221
+ T :=
222
+
223
+ v∈R
224
+ Tv.
225
+ By Kodaira’s classification [SS19, Thm. 5.12], each Tv with v ∈ R is represented by a Dynkin
226
+ diagram Am, Dm or Em for some m. We also define the trivial lattice of X, namely
227
+ Triv(X) := Z⟨O, Θv,i | i ≥ 0, v ∈ R⟩.
228
+ Next we define the Mordell-Weil lattice and present the height formula.
229
+ The Mordell-Weil lattice. In order to give E(K) a lattice structure, we cannot use the inter-
230
+ section pairing directly, which only defines a lattice on NS(X) but not on E(K). This is achieved
231
+ by defining a Q-valued pairing, called the height pairing, given by
232
+ ⟨·, ·⟩ : E(K) × E(K) → Q
233
+ P, Q �→ −ϕ(P) · ϕ(Q),
234
+ where ϕ : E(K) → NS(X) ⊗Z Q is defined from the orthogonal projection with respect to Triv(X)
235
+ (for a detailed exposition, see [SS19, Section 6.5]). Moreover, dividing by torsion elements we get
236
+ a positive-definite lattice (E(K)/E(K)tor, ⟨·, ·⟩) [SS19, Thm. 6.20], called the Mordell-Weil lattice.
237
+ The height formula. The height pairing can be explicitly computed by the height formula [SS19,
238
+ Thm. 6.24]. For rational elliptic surfaces, it is given by
239
+ ⟨P, Q⟩ = 1 + (P · O) + (Q · O) − (P · Q) −
240
+
241
+ v∈R
242
+ contrv(P, Q),
243
+ (1)
244
+ h(P) := ⟨P, P⟩ = 2 + 2(P · O) −
245
+
246
+ v∈R
247
+ contrv(P),
248
+ (2)
249
+ where contrv(P) := contrv(P, P) and contrv(P, Q) are given by Table 1 [SS19, Table 6.1] assuming
250
+ P, Q meet π−1(v) at Θv,i, Θv,j resp. with 0 < i < j. If P or Q meets Θv,0, then contrv(P, Q) := 0.
251
+ The minimal norm. Since E(K) is finitely generated, there is a minimal positive value for h(P)
252
+ as P runs through E(K) with h(P) > 0. It is called the minimal norm, denoted by
253
+ µ := min{h(P) > 0 | P ∈ E(K)}.
254
+ The narrow Mordell-Weil lattice. An important sublattice of E(K) is the narrow Mordell-Weil
255
+ lattice E(K)0, defined as
256
+ E(K)0 := {P ∈ E(K) | P intersects Θv,0 for all v ∈ R}
257
+ = {P ∈ E(K) | contrv(P) = 0 for all v ∈ R}.
258
+ As a subgroup, E(K)0 is torsion-free; as a sublattice, it is a positive-definite even integral lattice
259
+ with finite index in E(K) [SS19, Thm. 6.44]. The importance of the narrow lattice can be explained
260
+ by its considerable size as a sublattice and by the easiness to compute the height pairing on it,
261
+ since all contribution terms vanish. A complete classification of the lattices E(K) and E(K)0 on
262
+ rational elliptic surfaces is found in [OS91, Main Thm.].
263
+ 5
264
+
265
+ Tv
266
+ A1
267
+ E7
268
+ A2
269
+ E6
270
+ An−1
271
+ Dn+4
272
+ Type of π−1(v)
273
+ III
274
+ III∗
275
+ IV
276
+ IV∗
277
+ In
278
+ I∗
279
+ n
280
+ contrv(P)
281
+ 1
282
+ 2
283
+ 3
284
+ 2
285
+ 2
286
+ 3
287
+ 4
288
+ 3
289
+ i(n−i)
290
+ n
291
+
292
+ 1
293
+ (i = 1)
294
+ 1 + n
295
+ 4
296
+ (i > 1)
297
+ contrv(P, Q)
298
+ -
299
+ -
300
+ 1
301
+ 3
302
+ 2
303
+ 3
304
+ i(n−j)
305
+ n
306
+ � 1
307
+ 2
308
+ (i = 1)
309
+ 1
310
+ 2 + n
311
+ 4
312
+ (i > 1)
313
+ Table 1: Local contributions from reducible fibers to the height pairing.
314
+ 2.2
315
+ Gap numbers
316
+ We introduce some convenient terminology to express the possibility of finding a pair of sections
317
+ with a given intersection number.
318
+ Definition 2.1. If there are no sections P1, P2 ∈ E(K) such that P1 · P2 = k, we say that X has
319
+ a k-gap or that k is a gap number of X.
320
+ Definition 2.2. We say that X is gap-free if for every k ∈ Z≥0 there are sections P1, P2 ∈ E(K)
321
+ such that P1 · P2 = k.
322
+ Remark 2.3. In case the Mordell-Weil rank is r = 0, we have E(K) = E(K)tor. In particular,
323
+ any two distinct sections are disjoint [SS19, Cor. 8.30], hence every k ≥ 1 is a gap number of X.
324
+ For positive rank, the description of gap numbers is less trivial, thus our focus on r ≥ 1.
325
+ 2.3
326
+ Bounds cmax, cmin for the contribution term
327
+ We define the estimates cmax, cmin for the contribution term �
328
+ v contrv(P) and state some
329
+ simple facts about them. We also provide an example to illustrate how they are computed.
330
+ The need for these estimates comes from the following. Suppose we are given a section P ∈ E(K)
331
+ whose height h(P) is known and we want to determine P · O. In case P ∈ E(K)0 we have a direct
332
+ answer, namely P · O = h(P)/2 − 1 by the height formula (2).
333
+ However if P /∈ E(K)0, the
334
+ computation of P · O depends on the contribution term cP := �
335
+ v∈R contrv(P), which by Table 1
336
+ depends on how P intersects the reducible fibers of π. Usually we do not have this intersection
337
+ data at hand, which is why we need estimates for cP not depending on P.
338
+ Definition 2.4. If the set R of reducible fibers of π is not empty, we define
339
+ cmax :=
340
+
341
+ v∈R
342
+ max{contrv(P) | P ∈ E(K)},
343
+ cmin := min {contrv(P) > 0 | P ∈ E(K), v ∈ R} .
344
+ Remark 2.5. The case R = ∅ only occurs when X has Mordell-Weil rank r = 8 (No. 1 in Table 8).
345
+ In this case E(K)0 = E(K) and �
346
+ v∈R contrv(P) = 0 ∀P ∈ E(K), hence we adopt the convention
347
+ cmax = cmin = 0.
348
+ 6
349
+
350
+ Remark 2.6. We use cmax, cmin as bounds for cP := �
351
+ v contrv(P). For our purposes it is not
352
+ necessary to know whether cP actually attains one of these bounds for some P, so that cmax, cmin
353
+ should be understood as hypothetical values.
354
+ We state some facts about cmax, cmin.
355
+ Lemma 2.7. Let X be a rational elliptic surface with Mordell-Weil rank r ≥ 1. If π admits a
356
+ reducible fiber, then:
357
+ i) cmin > 0.
358
+ ii) cmax < 4.
359
+ iii) cmin ≤ �
360
+ v∈R contrv(P) ≤ cmax ∀P /∈ E(K)0. For P ∈ E(K)0, only the second inequality holds.
361
+ iv) If �
362
+ v∈R contrv(P) = cmin, then contrv′(P) = cmin for some v′ and contrv(P) = 0 for v ̸= v′.
363
+ Proof. Item i) is immediate from the definition of cmin. For ii) it is enough to check the values
364
+ of cmax directly in Table 8. For iii), the second inequality follows from the definition of cmax and
365
+ clearly holds for any P ∈ E(K). If P /∈ E(K)0, then cP := �
366
+ v contrv(P) > 0, so contrv0(P) > 0
367
+ for some v0. Therefore cP ≥ contrv0(P) ≥ cmin.
368
+ For iv), let �
369
+ v contrv(P) = cmin. Assume by contradiction that there are distinct v1, v2 such
370
+ that contrvi(P) > 0 for i = 1, 2. By definition of cmin we have cmin ≤ contrvi(P) for i = 1, 2 so
371
+ cmin =
372
+
373
+ v
374
+ contrv(P) ≥ contrv1(P) + contrv2(P) ≥ 2cmin,
375
+ which is absurd because cmin > 0 by i). Therefore there is only one v′ with contrv′(P) > 0, while
376
+ contrv(P) = 0 for all v ̸= v′. In particular, contrv′(P) = cmin. ■
377
+ Explicit computation. Once we know the lattice T associated with the reducible fibers of π
378
+ (Section 2.1), the computation of cmax, cmin is simple. For a fixed v ∈ R, the extreme values of the
379
+ local contribution contrv(P) are given in Table 2, which is derived from Table 1. We provide an
380
+ example to illustrate this computation.
381
+ Tv
382
+ max{contrv(P) | P ∈ E(K)}
383
+ min{contrv(P) > 0 | P ∈ E(K)}
384
+ An−1
385
+ ℓ(n−ℓ)
386
+ n
387
+ , where ℓ :=
388
+ �n
389
+ 2
390
+
391
+ n−1
392
+ n
393
+ Dn+4
394
+ 1 + n
395
+ 4
396
+ 1
397
+ E6
398
+ 4
399
+ 3
400
+ 4
401
+ 3
402
+ E7
403
+ 3
404
+ 2
405
+ 3
406
+ 2
407
+ Table 2: Extreme values of contrv(P).
408
+ 7
409
+
410
+ Example: Let π with fiber configuration (I4, IV, III, I1). The reducible fibers are I4, IV, III, so
411
+ T = A3 ⊕ A2 ⊕ A1.
412
+ By Table 2, the maximal contributions for A3, A2, A1 are 2·2
413
+ 4
414
+ = 1,
415
+ 2
416
+ 3,
417
+ 1
418
+ 2
419
+ respectively. The minimal positive contributions are 1·3
420
+ 4 = 3
421
+ 4, 2
422
+ 3, 1
423
+ 2 respectively. Then
424
+ cmax = 1 + 2
425
+ 3 + 1
426
+ 2 = 13
427
+ 6 ,
428
+ cmin = min
429
+ �3
430
+ 4, 2
431
+ 3, 1
432
+ 2
433
+
434
+ = 1
435
+ 2.
436
+ 2.4
437
+ The difference ∆ = cmax − cmin
438
+ In this section we explain why the value of ∆ := cmax − cmin is relevant to our discussion,
439
+ specially in Subsection 4.2. We also verify that ∆ < 2 in most cases and identify the exceptional
440
+ ones in Table 3 and Table 4.
441
+ As noted in Subsection 2.3, in case P /∈ E(K)0 and h(P) is known, the difficulty of determining
442
+ P ·O lies in the contribution term cP := �
443
+ v∈R contrv(P). In particular, the range of possible values
444
+ for cP determines the possibilities for P · O. This range is measured by the difference
445
+ ∆ := cmax − cmin.
446
+ Hence a smaller ∆ means a better control over the intersection number P · O, which is why ∆
447
+ plays an important role in determining possible intersection numbers. In Subsection 4.3 we assume
448
+ ∆ ≤ 2 and state necessary and sufficient conditions for having a pair P1, P2 such that P1 · P2 = k
449
+ for a given k ≥ 0. If however ∆ > 2, the existence of such a pair is not guaranteed a priori, so a
450
+ case-by-case treatment is needed. Fortunately by Lemma 2.8 the case ∆ > 2 is rare.
451
+ Lemma 2.8. Let X be a rational elliptic surface with Mordell-Weil rank r ≥ 1. The only cases
452
+ with ∆ = 2 and ∆ > 2 are in Table 3 and 4 respectively. In particular we have ∆ < 2 whenever
453
+ E(K) is torsion-free.
454
+ No.
455
+ T
456
+ E(K)
457
+ cmax
458
+ cmin
459
+ 24
460
+ A⊕5
461
+ 1
462
+ A∗
463
+ 1
464
+ ⊕3 ⊕ Z/2Z
465
+ 5
466
+ 2
467
+ 1
468
+ 2
469
+ 38
470
+ A3 ⊕ A⊕3
471
+ 1
472
+ A∗
473
+ 1 ⊕ ⟨1/4⟩ ⊕ Z/2Z
474
+ 5
475
+ 2
476
+ 1
477
+ 2
478
+ 53
479
+ A5 ⊕ A⊕2
480
+ 1
481
+ ⟨1/6⟩ ⊕ Z/2Z
482
+ 5
483
+ 2
484
+ 1
485
+ 2
486
+ 57
487
+ D4 ⊕ A⊕3
488
+ 1
489
+ A∗
490
+ 1 ⊕ (Z/2Z)⊕2
491
+ 5
492
+ 2
493
+ 1
494
+ 2
495
+ 58
496
+ A⊕2
497
+ 3
498
+ ⊕ A1
499
+ A∗
500
+ 1 ⊕ Z/4Z
501
+ 5
502
+ 2
503
+ 1
504
+ 2
505
+ 61
506
+ A⊕3
507
+ 2
508
+ ⊕ A1
509
+ ⟨1/6⟩ ⊕ Z/3Z
510
+ 5
511
+ 2
512
+ 1
513
+ 2
514
+ Table 3: Cases with ∆ = 2
515
+ 8
516
+
517
+ No.
518
+ T
519
+ E(K)
520
+ cmax
521
+ cmin
522
+
523
+ 41
524
+ A2 ⊕ A⊕4
525
+ 1
526
+ 1
527
+ 6
528
+
529
+ 2
530
+ 1
531
+ 1
532
+ 2
533
+
534
+ ⊕ Z/2Z
535
+ 8
536
+ 3
537
+ 1
538
+ 2
539
+ 13
540
+ 6
541
+ 42
542
+ A⊕6
543
+ 1
544
+ A∗
545
+ 1
546
+ ⊕2 ⊕ (Z/2Z)⊕2
547
+ 3
548
+ 1
549
+ 2
550
+ 5
551
+ 2
552
+ 59
553
+ A3 ⊕ A2 ⊕ A⊕2
554
+ 1
555
+ ⟨1/12⟩ ⊕ Z/2Z
556
+ 8
557
+ 3
558
+ 1
559
+ 2
560
+ 13
561
+ 6
562
+ 60
563
+ A3 ⊕ A⊕4
564
+ 1
565
+ ⟨1/4⟩ ⊕ (Z/2Z)⊕2
566
+ 3
567
+ 1
568
+ 2
569
+ 5
570
+ 2
571
+ Table 4: Cases with ∆ > 2
572
+ Proof. By searching Table 8 for all cases with ∆ = 2 and ∆ > 2, we obtain Table 3 and Table 4
573
+ respectively. Notice in particular that in both tables the torsion part of E(K) is always nontrivial.
574
+ Consequently, if E(K) is torsion-free, then ∆ < 2. ■
575
+ 2.5
576
+ The quadratic form QX
577
+ We define the positive-definite quadratic form with integer coefficients QX derived from the
578
+ height pairing. The relevance of QX is due to the fact that some conditions for having P1 · P2 = k
579
+ for some P1, P2 ∈ E(K) can be stated in terms of what integers can be represented by QX (see
580
+ Corollary 4.2 and Proposition 4.12).
581
+ The definition of QX consists in clearing denominators of the rational quadratic form induced
582
+ by the height pairing; the only question is how to find a scale factor that works in every case. More
583
+ precisely, if E(K) has rank r ≥ 1 and P1, ..., Pr are generators of its free part, then q(x1, ..., xr) :=
584
+ h(x1P1 + ... + xrPr) is a quadratic form with coefficients in Q; we define QX by multiplying q by
585
+ some integer d > 0 so as to produce coefficients in Z. We show that d may always be chosen as the
586
+ determinant of the narrow lattice E(K)0.
587
+ Definition 2.9. Let X with r ≥ 1. Let P1, ..., Pr be generators of the free part of E(K). Define
588
+ QX(x1, ..., xr) := (det E(K)0) · h(x1P1 + ... + xrPr).
589
+ We check that the matrix representing QX has entries in Z, therefore QX has coefficients in Z.
590
+ Lemma 2.10. Let A be the matrix representing the quadratic form QX, i.e. Q(x1, ..., xr) = xtAx,
591
+ where x := (x1, ..., xr)t. Then A has integer entries. In particular, QX has integer coefficients.
592
+ Proof. Let P1, ..., Pr be generators of the free part of E(K) and let L := E(K)0. The free part of
593
+ E(K) is isomorphic to the dual lattice L∗ [OS91, Main Thm.], so we may find generators P 0
594
+ 1 , ..., P 0
595
+ r
596
+ of L such that the Gram matrix B0 := (⟨P 0
597
+ i , P 0
598
+ j ⟩)i,j of L is the inverse of the Gram matrix
599
+ B := (⟨Pi, Pj⟩)i,j of L∗.
600
+ 9
601
+
602
+ We claim that QX is represented by the adjugate matrix of B0, i.e. the matrix adj(B0) such
603
+ that B0 · adj(B0) = (det B0) · Ir, where Ir is the r × r identity matrix. Indeed, by construction B
604
+ represents the quadratic form h(x1P1 + ... + xrPr), therefore
605
+ QX(x1, ..., xr) = (det E(K)0) · h(x1P1 + ... + xrPr)
606
+ = (det B0) · xtBx
607
+ = (det B0) · xt(B0)−1x
608
+ = xtadj(B0)x,
609
+ as claimed. To prove that A := adj(B0) has integer coefficients, notice that the Gram matrix
610
+ B0 of L = E(K)0 has integer coefficients (as E(K)0 is an even lattice), then so does A. ■
611
+ We close this subsection with a simple consequence of the definition of QX.
612
+ Lemma 2.11. If h(P) = m for some P ∈ E(K), then QX represents d · m, where d := det E(K)0.
613
+ Proof. Let P1, ..., Pr be generators for the free part of E(K). Let P = a1P1 + ... + arPr + Q, where
614
+ ai ∈ Z and Q is a torsion element (possibly zero). Since torsion sections do not contribute to the
615
+ height pairing, then h(P − Q) = h(P) = m. Hence
616
+ QX(a1, ..., ar) = d · h(a1P1 + ... + arPr)
617
+ = d · h(P − Q)
618
+ = d · m. ■
619
+ 3
620
+ Intersection with a torsion section
621
+ Before dealing with more technical details in Section 4, we explain how torsion sections can be
622
+ of help in our investigation, specially in Subsection 4.2.
623
+ We first note some general properties of torsion sections. As the height pairing is positive-
624
+ definite on E(K)/E(K)tor, torsion sections are inert in the sense that for each Q ∈ E(K)tor we
625
+ have ⟨Q, P⟩ = 0 for all P ∈ E(K).
626
+ Moreover, in the case of rational elliptic surfaces, torsion
627
+ sections also happen to be mutually disjoint:
628
+ Theorem 3.1. [MP89, Lemma 1.1] On a rational elliptic surface, Q1 · Q2 = 0 for any distinct
629
+ Q1, Q2 ∈ E(K)tor. In particular, if O is the neutral section, then Q·O = 0 for all Q ∈ E(K)tor\{O}.
630
+ Remark 3.2. As stated in [MP89, Lemma 1.1], Theorem 3.1 holds for elliptic surfaces over C even
631
+ without assuming X is rational. However, for an arbitrary algebraically closed field the rationality
632
+ hypothesis is needed, and a proof can be found in [SS19, Cor. 8.30].
633
+ By taking advantage of the properties above, we use torsion sections to help us find P1, P2 ∈
634
+ E(K) such that P1 · P2 = k for a given k ∈ Z≥0. This is particularly useful when ∆ ≥ 2, in which
635
+ case E(K)tor is not trivial by Lemma 2.8.
636
+ The idea is as follows. Given k ∈ Z≥0, suppose we can find P ∈ E(K)0 with height h(P) = 2k.
637
+ By the height formula (2), P · O = k − 1 < k, which is not yet what we need. In the next lemma
638
+ we show that replacing O with a torsion section Q ̸= O gives P · Q = k, as desired.
639
+ 10
640
+
641
+ Lemma 3.3. Let P ∈ E(K)0 such that h(P) = 2k. Then P · Q = k for all Q ∈ E(K)tor \ {O}.
642
+ Proof. Assume there is some Q ∈ E(K)tor \ {O}. By Theorem 3.1, Q · O = 0 and by the height
643
+ formula (2), 2k = 2 + 2(P · O) − 0, hence P · O = k − 1. We use the height formula (1) for ⟨P, Q⟩
644
+ in order to conclude that P · Q = k. Since P ∈ E(K)0, it intersects the neutral component Θv,0 of
645
+ every reducible fiber π−1(v), so contrv(P, Q) = 0 for all v ∈ R. Hence
646
+ 0 = ⟨P, Q⟩
647
+ = 1 + P · O + Q · O − P · Q −
648
+
649
+ v∈R
650
+ contrv(P, Q)
651
+ = 1 + (k − 1) + 0 − P · Q − 0
652
+ = k − P · Q. ■
653
+ 4
654
+ Existence of a pair of sections with a given intersection number
655
+ Given k ∈ Z≥0, we state necessary and (in most cases) sufficient conditions for having
656
+ P1 ·P2 = k for some P1, P2 ∈ E(K). Necessary conditions are stated in generality in Subsection 4.1,
657
+ while sufficient ones depend on the value of ∆ and are treated separately in Subsection 4.2. In
658
+ Subsection 4.4, we collect all sufficient conditions proven in this section.
659
+ 4.1
660
+ Necessary Conditions
661
+ If k ∈ Z≥0, we state necessary conditions for having P1·P2 = k for some sections P1, P2 ∈ E(K).
662
+ We note that the value of ∆ is not relevant in this subsection, although it plays a decisive role for
663
+ sufficient conditions in Subsection 4.2.
664
+ Lemma 4.1. Let k ∈ Z≥0. If P1 · P2 = k for some P1, P2 ∈ E(K), then one of the following holds:
665
+ i) h(P) = 2 + 2k for some P ∈ E(K)0.
666
+ ii) h(P) ∈ [2 + 2k − cmax, 2 + 2k − cmin] for some P /∈ E(K)0.
667
+ Proof. Without loss of generality we may assume P2 is the neutral section, so that P1 · O = k. By
668
+ the height formula (2), h(P1) = 2 + 2k − c, where c := �
669
+ v contrv(P1). If P1 ∈ E(K)0, then c = 0
670
+ and h(P1) = 2 + 2k, hence i) holds. If P1 /∈ E(K)0, then cmin ≤ c ≤ cmax by Lemma 2.7. But
671
+ h(P1) = 2 + 2k − c, therefore 2 + 2k − cmax ≤ h(P1) ≤ 2 + 2k − cmin, i.e. ii) holds. ■
672
+ Corollary 4.2. Let k ∈ Z≥0. If P1 · P2 = k for some P1, P2 ∈ E(K), then QX represents some
673
+ integer in [d · (2 + 2k − cmax), d · (2 + 2k)], where d := det E(K)0.
674
+ Proof.
675
+ We apply Lemma 4.1 and rephrase it in terms of QX. If i) holds, then QX represents
676
+ d · (2 + 2k) by Lemma 2.11. But if ii) holds, then h(P) ∈ [2 + 2k − cmax, 2 + 2k − cmin] and by
677
+ Lemma 2.11, QX represents d · h(P) ∈ [d · (2 + 2k − cmax), d · (2 + 2k − cmin)]. In both i) and ii),
678
+ QX represents some integer in [d · (2 + 2k − cmax), d · (2 + 2k)]. ■
679
+ 11
680
+
681
+ 4.2
682
+ Sufficient conditions when ∆ ≤ 2
683
+ In this subsection we state sufficient conditions for having P1 · P2 = k for some P1, P2 ∈ E(K)
684
+ under the assumption that ∆ ≤ 2. By Lemma 2.8, this covers almost all cases (more precisely, all
685
+ but No. 41, 42, 59, 60 in Table 8). We treat ∆ < 2 and ∆ = 2 separately, as the latter needs more
686
+ attention.
687
+ 4.2.1
688
+ The case ∆ < 2
689
+ We first prove Lemma 4.3, which gives sufficient conditions assuming ∆ < 2, then Corollary 4.5,
690
+ which states sufficient conditions in terms of integers represented by QX.
691
+ This is followed by
692
+ Corollary 4.6, which is a simplified version of Corollary 4.5.
693
+ Lemma 4.3. Assume ∆ < 2 and let k ∈ Z≥0. If h(P) ∈ [2 + 2k − cmax, 2 + 2k − cmin] for some
694
+ P /∈ E(K)0, then P1 · P2 = k for some P1, P2 ∈ E(K).
695
+ Proof. Let O ∈ E(K) be the neutral section. By the height formula (2), h(P) = 2 + 2(P · O) − c,
696
+ where c := �
697
+ v contrv(P). Since h(P) ∈ [2 + 2k − cmax, 2 + 2k − cmin], then
698
+ 2 + 2k − cmax ≤ 2 + 2(P · O) − c ≤ 2 + 2k − cmin
699
+ ⇒ c − cmax
700
+ 2
701
+ ≤ P · O − k ≤ c − cmin
702
+ 2
703
+ .
704
+ Therefore P · O − k is an integer in I :=
705
+ � c−cmax
706
+ 2
707
+ , c−cmin
708
+ 2
709
+ �. We prove that 0 is the only integer in
710
+ I, so that P · O − k = 0, i.e. P · O = k. First notice that c ̸= 0, as P /∈ E(K)0. By Lemma 2.7 iii),
711
+ cmin ≤ c ≤ cmax, consequently c−cmax
712
+ 2
713
+ ≤ 0 ≤ c−cmin
714
+ 2
715
+ , i.e. 0 ∈ I. Moreover ∆ < 2 implies that I has
716
+ length cmax−cmin
717
+ 2
718
+ = ∆
719
+ 2 < 1, so I contains no integer except 0 as desired. ■
720
+ Remark 4.4. Lemma 4.3 also applies when cmax = cmin, in which case the closed interval degen-
721
+ erates into a point.
722
+ The following corollary of Lemma 4.3 states a sufficient condition in terms of integers represented
723
+ by the quadratic form QX (Section 2.5).
724
+ Corollary 4.5. Assume ∆ < 2 and let d := det E(K)0. If QX represents an integer not divisible
725
+ by d in the interval [d · (2+ 2k − cmax), d · (2+ 2k − cmin)], then P1 · P2 = k for some P1, P2 ∈ E(K).
726
+ Proof. Let a1, ..., ar ∈ Z such that QX(a1, ..., ar) ∈ [d · (2 + 2k − cmax), d · (2 + 2k − cmin)] with
727
+ d ∤ QX(a1, ..., ar). Let P := a1P1 + ... + arPr, where P1, ..., Pr are generators of the free part of
728
+ E(K). Then d ∤ QX(a1, ..., ar) = d · h(P), which implies that h(P) /∈ Z. In particular P /∈ E(K)0
729
+ since E(K)0 is an integer lattice. Moreover h(P) = 1
730
+ dQX(a1, ..., ar) ∈ [2 + 2k − cmax, 2 + 2k − cmin]
731
+ and we are done by Lemma 4.3. ■
732
+ 12
733
+
734
+ The next corollary, although weaker than Corollary 4.5, is more practical for concrete examples
735
+ and is frequently used in Subsection 5.4. It does not involve finding integers represented by QX,
736
+ but only finding perfect squares in an interval depending on the minimal norm µ (Subsection 2.1).
737
+ Corollary 4.6. Assume ∆ < 2. If there is a perfect square n2 ∈
738
+
739
+ 2+2k−cmax
740
+ µ
741
+ , 2+2k−cmin
742
+ µ
743
+
744
+ such that
745
+ n2µ /∈ Z, then P1 · P2 = k for some P1, P2 ∈ E(K).
746
+ Proof. Take P ∈ E(K) such that h(P) = µ. Since h(nP) = n2µ /∈ Z, we must have nP /∈ E(K)0
747
+ as E(K)0 is an integer lattice. Moreover h(nP) = n2µ ∈ [2 + 2k − cmax, 2 + 2k − cmin] and we are
748
+ done by Lemma 4.3. ■
749
+ 4.2.2
750
+ The case ∆ = 2
751
+ The statement of sufficient conditions for ∆ = 2 is almost identical to the one for ∆ < 2: the
752
+ only difference is that the closed interval Lemma 4.3 is substituted by a right half-open interval
753
+ in Lemma 4.8. This change, however, is associated with a technical difficulty in the case when a
754
+ section has minimal contribution term, thus the separate treatment for ∆ = 2.
755
+ The results are presented in the following order. First we prove Lemma 4.7, which is a statement
756
+ about sections whose contribution term is minimal.
757
+ Next we prove Lemma 4.8, which states
758
+ sufficient conditions for ∆ = 2, then Corollaries 4.9 and 4.10.
759
+ Lemma 4.7. Assume ∆ = 2.
760
+ If there is P ∈ E(K) such that �
761
+ v∈R contrv(P) = cmin, then
762
+ P · Q = P · O + 1 for every Q ∈ E(K)tor \ {O}.
763
+ Proof. If Q ∈ E(K)tor \ {O}, then Q · O = 0 by Theorem 3.1. Moreover, by the height formula (1),
764
+ 0 = ⟨P, Q⟩ = 1 + P · O + 0 − P · Q −
765
+
766
+ v∈R
767
+ contrv(P, Q). (∗)
768
+ Hence it suffices to show that contrv(P, Q) = 0 ∀v ∈ R. By Lemma 2.7 iv), contrv′(P) = cmin
769
+ for some v′ and contrv(P) = 0 for all v ̸= v′. In particular P meets Θv,0, hence contrv(P, Q) = 0
770
+ for all v ̸= v′. Thus from (∗) we see that contrv′(P, Q) is an integer, which we prove is 0.
771
+ We claim that Tv′ = A1, so that contrv′(P, Q) = 0 or 1
772
+ 2 by Table 1. In this case, as contrv′(P, Q)
773
+ is an integer, it must be 0, and we are done. To see that Tv′ = A1 we analyse contrv′(P). Since
774
+ ∆ = 2, then cmin = 1
775
+ 2 by Table 3 and contrv′(P) = cmin = 1
776
+ 2. By Table 1, this only happens if
777
+ Tv′ = An−1 and 1
778
+ 2 = i(n−i)
779
+ n
780
+ for some 0 ≤ i < n. The only possibility is i = 1, n = 2 and Tv′ = A1. ■
781
+ With the aid of Lemma 4.7 we are able to state sufficient conditions for ∆ = 2.
782
+ 13
783
+
784
+ Lemma 4.8. Assume ∆ = 2 and let k ∈ Z≥0. If h(P) ∈ [2 + 2k − cmax, 2 + 2k − cmin) for some
785
+ P /∈ E(K)0, then P1 · P2 = k for some P1, P2 ∈ E(K).
786
+ Proof. Let O ∈ E(K) be the neutral section. By the height formula (2), h(P) = 2 + 2(P · O) − c,
787
+ where c := �
788
+ v contrv(P). We repeat the arguments from Lemma 4.3, in this case with the right
789
+ half-open interval, so that the hypothesis that h(P) ∈ [2 + 2k − cmax, 2 + 2k − cmin), implies that
790
+ P · O − k is an integer in I′ :=
791
+ � c−cmax
792
+ 2
793
+ , c−cmin
794
+ 2
795
+ �.
796
+ Since I′ is half-open with length cmax−cmin
797
+ 2
798
+ = ∆
799
+ 2 = 1, then I′ contains exactly one integer. If
800
+ 0 ∈ I′, then P · O − k = 0, i.e. P · O = k and we are done. Hence we assume 0 /∈ I′.
801
+ We claim that P ·O = k −1. First, notice that if c > cmin, then the inequalities cmin < c ≤ cmax
802
+ give c−cmax
803
+ 2
804
+ ≤ 0 < c−cmin
805
+ 2
806
+ , i.e. 0 ∈ I′, which is a contradiction. Hence c = cmin. Since ∆ = 2, then
807
+ I′ = [−1, 0), whose only integer is −1. Thus P · O − k = −1, i.e. P · O = k − 1, as claimed.
808
+ Finally, let Q ∈ E(K)tor \ {O}, so that P · Q = P · O + 1 = k by Lemma 4.7 and we are done.
809
+ We remark that E(K)tor is not trivial by Table 3, therefore such Q exists. ■
810
+ The following corollaries are analogues to Corollary 4.5 and Corollary 4.6 adapted to ∆ = 2.
811
+ Similarly to the case ∆ < 2, Corollary 4.9 is stronger than Corollary 4.10, although the latter is
812
+ more practical for concrete examples. We remind the reader that µ denotes the minimal norm
813
+ (Subsection 2.1).
814
+ Corollary 4.9. Assume ∆ = 2 and let d := det E(K)0. If QX represents an integer not divisible
815
+ by d in the interval [d·(2+2k −cmax), d·(2+2k −cmin)), then P1 ·P2 = k for some P1, P2 ∈ E(K).
816
+ Proof. We repeat the arguments in Corollary 4.5, in this case with the half-open interval. ■
817
+ Corollary 4.10. Assume ∆ = 2. If there is a perfect square n2 ∈
818
+
819
+ 2+2k−cmax
820
+ µ
821
+ , 2+2k−cmin
822
+ µ
823
+
824
+ such that
825
+ n2µ /∈ Z, then P1 · P2 = k for some P1, P2 ∈ E(K).
826
+ Proof. We repeat the arguments in Corollary 4.6, in this case with the half-open interval. ■
827
+ 4.3
828
+ Necessary and sufficient conditions for ∆ ≤ 2
829
+ For completeness, we present a unified statement of necessary and sufficient conditions assuming
830
+ ∆ ≤ 2, which follows naturally from results in Subsections 4.1 and 4.2.
831
+ Lemma 4.11. Assume ∆ ≤ 2 and let k ∈ Z≥0. Then P1 · P2 = k for some P1, P2 ∈ E(K) if and
832
+ only if one of the following holds:
833
+ i) h(P) = 2 + 2k for some P ∈ E(K)0.
834
+ ii) h(P) ∈ [2 + 2k − cmax, 2 + 2k − cmin) for some P /∈ E(K)0.
835
+ iii) h(P) = 2 + 2k − cmin and �
836
+ v∈R contrv(P) = cmin for some P ∈ E(K).
837
+ Proof. If i) or iii) holds, then P · O = k directly by the height formula (2). But if ii) holds, it
838
+ suffices to to apply Lemma 4.3 when ∆ < 2 and by Lemma 4.8 when ∆ = 2.
839
+ Conversely, let P1·P2 = k. Without loss of generality, we may assume P2 = O, so that P1·O = k.
840
+ By the height formula (2), h(P1) = 2 + 2k − c, where c := �
841
+ v contrv(P1).
842
+ If c = 0, then P1 ∈ E(K)0 and h(P1) = 2+2k, so i) holds. Hence we let c ̸= 0, i.e. P1 /∈ E(K)0,
843
+ so that cmin ≤ c ≤ cmax by Lemma 2.7. In case c = cmin, then h(P1) = 2 + 2k − cmin and iii) holds.
844
+ Otherwise cmin < c ≤ cmax, which implies 2 + 2k − cmax ≤ h(P1) < 2 + 2k − cmin, so ii) holds. ■
845
+ 14
846
+
847
+ 4.4
848
+ Summary of sufficient conditions
849
+ For the sake of clarity, we summarize in a single proposition all sufficient conditions for having
850
+ P1 · P2 = k for some P1, P2 ∈ E(K) proven in this section.
851
+ Proposition 4.12. Let k ∈ Z≥0. If one of the following holds, then P1 · P2 = k for some P1, P2 ∈
852
+ E(K).
853
+ 1) h(P) = 2 + 2k for some P ∈ E(K)0.
854
+ 2) h(P) = 2k for some P ∈ E(K)0 and E(K)tor is not trivial.
855
+ 3) ∆ < 2 and there is a perfect square n2 ∈
856
+
857
+ 2+2k−cmax
858
+ µ
859
+ , 2+2k−cmin
860
+ µ
861
+
862
+ with n2µ /∈ Z, where µ is the
863
+ minimal norm (Subsection 2.1). In case ∆ = 2, consider the right half-open interval.
864
+ 4) ∆ < 2 and the quadratic form QX represents an integer not divisible by d := det E(K)0 in the
865
+ interval [d · (2 + 2k − cmax), d · (2 + 2k − cmin)]. In case ∆ = 2, consider the right half-open
866
+ interval.
867
+ Proof. In 1) a height calculation gives 2 + 2k = h(P) = 2 + 2(P · O) − 0, so P · O = k. For
868
+ 2), we apply Lemma 3.3 to conclude that P · Q = k for any Q ∈ E(K)tor \ {O}. In 3) we use
869
+ Corollary 4.6 when ∆ < 2 and Corollary 4.10 when ∆ = 2. In 4), we apply Corollary 4.5 if ∆ < 2
870
+ and Corollary 4.9 if ∆ = 2. ■
871
+ 5
872
+ Main Results
873
+ We prove the four main theorems of this paper, which are independent applications of the results
874
+ from Section 4. The first two are general attempts to describe when and how gap numbers occur:
875
+ Theorem 5.2 tells us that large Mordell-Weil groups prevent the existence of gaps numbers, more
876
+ precisely for Mordell-Weil rank r ≥ 5; in Theorem 5.4 we show that for small Mordell-Weil rank,
877
+ more precisely when r ≤ 2, then gap numbers occur with probability 1. The last two theorems,
878
+ on the other hand, deal with explicit values of gap numbers: Theorem 5.7 provides a complete
879
+ description of gap numbers in certain cases, while Theorem 5.8 is a classification of cases with a
880
+ 1-gap.
881
+ 5.1
882
+ No gap numbers in rank r ≥ 5
883
+ We show that if E(K) has rank r ≥ 5, then X is gap-free. Our strategy is to prove that for
884
+ every k ∈ Z≥0 there is some P ∈ E(K)0 such that h(P) = 2+2k, and by Proposition 4.12 1) we are
885
+ done. We accomplish this in two steps. First we show that this holds when there is an embedding
886
+ of A⊕
887
+ 1 or of A4 in E(K)0 (Lemma 5.1). Second, we show that if r ≥ 5, then such embedding exists,
888
+ hence X is gap-free (Theorem 5.2).
889
+ 15
890
+
891
+ Lemma 5.1. Assume E(K)0 has a sublattice isomorphic to A⊕4
892
+ 1
893
+ or A4. Then for every ℓ ∈ Z≥0
894
+ there is P ∈ E(K)0 such that h(P) = 2ℓ.
895
+ Proof.
896
+ First assume A⊕4
897
+ 1
898
+ ⊂ E(K)0 and let P1, P2, P3, P4 be generators for each factor A1 in
899
+ A⊕4
900
+ 1 . Then h(Pi) = 2 and ⟨Pi, Pj⟩ = 0 for distinct i, j = 1, 2, 3, 4.
901
+ By Lagrange’s four-square
902
+ theorem [HW79, §20.5] there are integers a1, a2, a3, a4 such that a2
903
+ 1 + a2
904
+ 2 + a2
905
+ 3 + a2
906
+ 4 = ℓ. Defining
907
+ P := a1P1 + a2P2 + a3P3 + a4P4 ∈ A⊕4
908
+ 1
909
+ ⊂ E(K)0, we have
910
+ h(P) = 2a2
911
+ 1 + 2a2
912
+ 2 + 2a2
913
+ 3 + 2a2
914
+ 4 = 2ℓ.
915
+ Now let A4 ⊂ E(K)0 with generators P1, P2, P3, P4.
916
+ Then h(Pi) = 2 for i = 1, 2, 3, 4 and
917
+ ⟨Pi, Pi+1⟩ = −1 for i = 1, 2, 3. We need to find integers x1, ..., x4 such that h(P) = 2ℓ, where
918
+ P := x1P1 + ... + x4P4 ∈ A4 ⊂ E(K)0. Equivalently, we need that
919
+ ℓ = 1
920
+ 2⟨P, P⟩ = x2
921
+ 1 + x2
922
+ 2 + x2
923
+ 3 + x2
924
+ 4 − x1x2 − x2x3 − x3x4.
925
+ Therefore ℓ must be represented by q(x1, ..., x4) := x2
926
+ 1 + x2
927
+ 2 + x2
928
+ 3 + x2
929
+ 4 − x1x2 − x2x3 − x3x4. We
930
+ prove that q represents all positive integers. Notice that q is positive-definite, since it is induced
931
+ by ⟨·, ·⟩. By Bhargava-Hanke’s 290-theorem [BH][Thm. 1], q represents all positive integers if and
932
+ only if it represents the following integers:
933
+ 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26,
934
+ 29, 30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203, 290.
935
+ The representation for each of the above is found in Table 5. ■
936
+ We now prove the main theorem of this section.
937
+ Theorem 5.2. If r ≥ 5, then X is gap-free.
938
+ Proof. We show that for every k ≥ 0 there is P ∈ E(K)0 such that h(P) = 2 + 2k, so that by
939
+ Proposition 4.12 1) we are done. Using Lemma 5.1 it suffices to prove that E(K)0 has a sublattice
940
+ isomorphic to A⊕4
941
+ 1
942
+ or A4.
943
+ The cases with r ≥ 5 are No.
944
+ 1-7 (Table 8).
945
+ In No.
946
+ 1-6, E(K)0 = E8, E7, E6, D6, D5, A5
947
+ respectively. Each of these admit an A4 sublattice [Nis96, Lemmas 4.2,4.3]. In No. 7 we claim that
948
+ E(K)0 = D4 ⊕ A1 has an A⊕4
949
+ 1
950
+ sublattice. This is the case because D4 admits an A⊕4
951
+ 1
952
+ sublattice
953
+ [Nis96, Lemma 4.5 (iii)]. ■
954
+ 16
955
+
956
+ n
957
+ x1, x2, x3, x4 with x2
958
+ 1 + x2
959
+ 2 + x2
960
+ 3 + x2
961
+ 4 − x1x2 − x2x3 − x3x4 = n
962
+ 1
963
+ 1, 0, 0, 0
964
+ 2
965
+ 1, 0, 1, 0
966
+ 3
967
+ 1, 1, 2, 0
968
+ 5
969
+ 1, 0, 2, 0
970
+ 6
971
+ 1, 1, −2, −1
972
+ 7
973
+ 1, 1, −2, 0
974
+ 10
975
+ 1, 0, 3, 0
976
+ 13
977
+ 2, 0, 3, 0
978
+ 14
979
+ 1, 2, 5, 1
980
+ 15
981
+ 1, 5, 5, 2
982
+ 17
983
+ 1, 0, 4, 0
984
+ 19
985
+ 1, 5, 3, −1
986
+ 21
987
+ 1, 5, 0, 0
988
+ 22
989
+ 1, 5, 0, −1
990
+ 23
991
+ 1, 6, 6, 2
992
+ 26
993
+ 1, 0, 5, 0
994
+ 29
995
+ 2, 0, 5, 0
996
+ 30
997
+ 1, 5, 0, −3
998
+ 31
999
+ 1, 3, −4, −2
1000
+ 34
1001
+ 3, 0, 5, 0
1002
+ 35
1003
+ 1, 2, −2, 4
1004
+ 37
1005
+ 1, 0, 6, 0
1006
+ 42
1007
+ 1, 1, −4, 3
1008
+ 58
1009
+ 3, 0, 7, 0
1010
+ 93
1011
+ 1, 1, −10, 0
1012
+ 110
1013
+ 1, −2, 3, −8
1014
+ 145
1015
+ 1, 0, 12, 0
1016
+ 203
1017
+ 1, −5, −9, 8
1018
+ 290
1019
+ 1, 0, 17, 0
1020
+ Table 5: Representation of the critical integers in Bhargava-Hanke’s 290-theorem.
1021
+ 5.2
1022
+ Gaps with probability 1 in rank r ≤ 2
1023
+ Fix a rational elliptic surface π : X → P1 with Mordell-Weil rank r ≤ 2. We prove that if k is
1024
+ a uniformly random natural number, then k is a gap number with probability 1. More precisely, if
1025
+ G := {k ∈ N | k is a gap number of X} is the set of gap numbers, then G ⊂ N has density 1, i.e.
1026
+ d(G) := lim
1027
+ n→∞
1028
+ #G ∩ {1, ..., n}
1029
+ n
1030
+ = 1.
1031
+ 17
1032
+
1033
+ We adopt the following strategy. If k ∈ N \ G, then P1 · P2 = k for some P1, P2 ∈ E(K) and
1034
+ by Corollary 4.2 the quadratic form QX represents some integer t depending on k. This defines a
1035
+ function N\G → T, where T is the set of integers represented by QX. Since QX is a quadratic form
1036
+ on r ≤ 2 variables, T has density 0 in N by Lemma 5.3. By analyzing the pre-images of N\G → T,
1037
+ in Theorem 5.4 we conclude that d(N \ G) = d(T) = 0, hence d(G) = 1 as desired.
1038
+ Lemma 5.3. Let Q be a positive-definite quadratic form on r = 1, 2 variables with integer coeffi-
1039
+ cients. Then the set of integers represented by Q has density 0 in N.
1040
+ Proof. Let S be the set of integers represented by Q. If d is the greatest common divisor of the
1041
+ coefficients of Q, let S′ be the set of integers representable by the primitive form Q′ := 1
1042
+ d · Q. By
1043
+ construction S′ is a rescaling of S, so d(S) = 0 if and only if d(S′) = 0.
1044
+ If r = 1, then Q′(x1) = x2
1045
+ 1 and S′ is the set of perfect squares, so clearly d(S′) = 0. If r = 2,
1046
+ then Q′ is a binary quadratic form and the number of elements in S′ bounded from above by x > 0
1047
+ is given by C ·
1048
+ x
1049
+ √log x + o(x) with C > 0 a constant and limx→∞
1050
+ o(x)
1051
+ x
1052
+ = 0 [Ber12, p. 91]. Thus
1053
+ d(S′) = lim
1054
+ x→∞
1055
+ C
1056
+ √log x + o(x)
1057
+ x
1058
+ = 0. ■
1059
+ We now prove the main result of this section.
1060
+ Theorem 5.4. Let π : X → P1 be a rational elliptic surface with Mordell-Weil rank r ≤ 2. Then
1061
+ the set G := {k ∈ N | k is a gap number of X} of gap numbers of X has density 1 in N.
1062
+ Proof. If r = 0, then the claim is trivial by Remark 2.3, hence we may assume r = 1, 2. We
1063
+ prove that S := N \ G has density 0.
1064
+ If S is finite, there is nothing to prove.
1065
+ Otherwise, let
1066
+ k1 < k2 < ... be the increasing sequence of all elements of S. By Corollary 4.2, for each n there is
1067
+ some tn ∈ Jkn := [d · (2 + 2kn − cmax), d · (2 + 2kn)] represented by the quadratic form QX. Let T
1068
+ be the set of integers represented by QX and define the function f : N \ G → T by kn �→ tn. Since
1069
+ QX has r = 1, 2 variables, T has density 0 by Lemma 5.3.
1070
+ For N > 0, let SN := S ∩ {1, ..., N} and TN := T ∩ {1, ..., N}.
1071
+ Since T has density zero,
1072
+ #TN = o(N), i.e.
1073
+ #TN
1074
+ N
1075
+ → 0 when N → ∞ and we need to prove that #SN = o(N). We analyze
1076
+ the function f restricted to SN. Notice that as tn ∈ Jkn, then kn ≤ N implies tn ≤ d · (2 + 2kn) ≤
1077
+ d · (2 + 2N). Hence the restriction g := f|SN can be regarded as a function g : SN → Td·(2+2k).
1078
+ We claim that #g−1(t) ≤ 2 for all t ∈ Td·(2+2N), in which case #SN ≤ 2 · #Td·(2+2N) = o(N)
1079
+ and we are done. Assume by contradiction that g−1(t) contains three distinct elements, say kℓ1 <
1080
+ kℓ2 < kℓ3 with t = tℓ1 = tℓ2 = tℓ3. Since tℓi ∈ Jkℓi for each i = 1, 2, 3, then t ∈ Jkℓ1 ∩ Jkℓ2 ∩ Jkℓ3. We
1081
+ prove that Jkℓ1 and Jkℓ3 are disjoint, which yields a contradiction. Indeed, since kℓ1 < kℓ2 < kℓ3,
1082
+ in particular kℓ3 − kℓ1 ≥ 2, therefore d · (2 + 2kℓ1) ≤ d · (2 + 2kℓ3 − 4). But cmax < 4 by Lemma 2.7,
1083
+ so d · (2 + 2kℓ1) < d · (2 + 2kℓ3 − cmax), i.e. max Jkℓ1 < min Jkℓ3. Thus Jkℓ1 ∩ Jkℓ3 = ∅, as desired. ■
1084
+ 5.3
1085
+ Identification of gaps when E(K) is torsion-free with rank r = 1
1086
+ The results in Subsections 5.1 and 5.2 concern the existence and the distribution of gap num-
1087
+ bers. In the following subsections we turn our attention to finding gap numbers explicitly. In this
1088
+ subsection we give a complete description of gap numbers assuming E(K) is torsion-free with rank
1089
+ r = 1. Such descriptions are difficult in the general case, but our assumption guarantees that each
1090
+ 18
1091
+
1092
+ E(K), E(K)0 is generated by a single element and that ∆ < 2 by Lemma 2.8, which makes the
1093
+ problem more accessible.
1094
+ We organize this subsection as follows. First we point out some trivial facts about generators
1095
+ of E(K), E(K)0 when r = 1 in Lemma 5.5. Next we state necessary and sufficient conditions for
1096
+ having P1 · P2 = k when E(K) is torsion-free with r = 1 in Lemma 5.6. As an application of the
1097
+ latter, we prove Theorem 5.7, which is the main result of the subsection.
1098
+ Lemma 5.5. Let X be a rational elliptic surface with Mordell-Weil rank r = 1. If P generates the
1099
+ free part of E(K), then
1100
+ a) h(P) = µ.
1101
+ b) 1/µ is an even integer.
1102
+ c) E(K)0 is generated by P0 := (1/µ)P and h(P0) = 1/µ.
1103
+ Proof. Item a) is clear. Items b), c) follow from the fact that E(K)0 is an even lattice and that
1104
+ E(K) ≃ L∗ ⊕ E(K)tor, where L := E(K)0 [OS91, Main Thm.]. ■
1105
+ In what follows we use Lemma 5.5 and results from Section 4 to state necessary and sufficient
1106
+ conditions for having P1 · P2 = k for some P1, P2 ∈ E(K) in case E(K) is torsion-free with r = 1.
1107
+ Lemma 5.6. Assume E(K) is torsion-free with rank r = 1. Then P1 · P2 = k for some P1, P2 ∈
1108
+ E(K) if and only if one of the following holds:
1109
+ i) µ · (2 + 2k) is a perfect square.
1110
+ ii) There is a perfect square n2 ∈
1111
+
1112
+ 2+2k−cmax
1113
+ µ
1114
+ , 2+2k−cmin
1115
+ µ
1116
+
1117
+ such that µ · n /∈ Z.
1118
+ Proof. By Lemma 5.5, E(K) is generated by some P with h(P) = µ and E(K)0 is generated by
1119
+ P0 := n0P, where n0 := 1
1120
+ µ ∈ 2Z.
1121
+ First assume that P1·P2 = k for some P1, P2. Without loss of generality we may assume P2 = O.
1122
+ Let P1 = nP for some n ∈ Z. We show that P1 ∈ E(K)0 implies i) while P1 /∈ E(K)0 implies ii).
1123
+ If P1 ∈ E(K)0, then n0 | n, hence P1 = nP = mP0, where m :=
1124
+ n
1125
+ n0. By the height formula (2),
1126
+ 2 + 2k = h(P1) = h(mP0) = m2 · 1
1127
+ µ. Hence µ · (2 + 2k) = m2, i.e. i) holds.
1128
+ If P1 /∈ E(K)0, then n0 ∤ n, hence µ · n =
1129
+ n
1130
+ n0 /∈ Z. Moreover, h(P1) = n2h(P) = n2µ and by
1131
+ the height formula (2), n2µ = h(P) = 2 + 2k − c, where c := �
1132
+ v contrv(P1) ̸= 0. The inequalities
1133
+ cmin ≤ c ≤ cmax then give 2+2k−cmax
1134
+ µ
1135
+ ≤ n2 ≤ 2+2k−cmin
1136
+ µ
1137
+ . Hence ii) holds.
1138
+ Conversely, assume i) or ii) holds. Since E(K) is torsion-free, ∆ < 2 by Lemma 2.8, so we may
1139
+ apply Lemma 4.3. If i) holds, then µ · (2 + 2k) = m2 for some m ∈ Z. Since mP0 ∈ E(K)0 and
1140
+ h(mP0) =
1141
+ m2
1142
+ µ
1143
+ = 2 + 2k, we are done by Lemma 4.3 i).
1144
+ If ii) holds, the condition µ · n /∈ Z
1145
+ is equivalent to n0 ∤ n, hence nP
1146
+ /∈ E(K)0.
1147
+ Moreover n2 ∈
1148
+
1149
+ 2+2k−cmax
1150
+ µ
1151
+ , 2+2k−cmin
1152
+ µ
1153
+
1154
+ , implies
1155
+ h(nP) = n2µ ∈ [2 + 2k − cmax, 2 + 2k − cmin]. By Lemma 4.3 ii), we are done. ■
1156
+ By applying Lemma 5.6 to all possible cases where E(K) is torsion-free with rank r = 1,
1157
+ we obtain the main result of this subsection.
1158
+ 19
1159
+
1160
+ Theorem 5.7. If E(K) is torsion-free with rank r = 1, then all the gap numbers of X are described
1161
+ in Table 6.
1162
+ No.
1163
+ T
1164
+ k is a gap number ⇔ none of
1165
+ the following are perfect squares
1166
+ first gap numbers
1167
+ 43
1168
+ E7
1169
+ k + 1, 4k + 1
1170
+ 1, 4
1171
+ 45
1172
+ A7
1173
+ k+1
1174
+ 4 , 16k, ..., 16k + 9
1175
+ 8, 11
1176
+ 46
1177
+ D7
1178
+ k+1
1179
+ 2 , 8k + 1, ..., 8k + 4
1180
+ 2, 5
1181
+ 47
1182
+ A6 ⊕ A1
1183
+ k+1
1184
+ 7 , 28k − 3, ..., 28k + 21
1185
+ 12, 16
1186
+ 49
1187
+ E6 ⊕ A1
1188
+ k+1
1189
+ 3 , 12k + 1, ..., 12k + 9
1190
+ 3, 7
1191
+ 50
1192
+ D5 ⊕ A2
1193
+ k+1
1194
+ 6 , 24k + 1, ..., 24k + 16
1195
+ 6, 11
1196
+ 55
1197
+ A4 ⊕ A3
1198
+ k+1
1199
+ 10 , 40k − 4, ..., 40k + 25
1200
+ 16, 20
1201
+ 56
1202
+ A4 ⊕ A2 ⊕ A1
1203
+ k+1
1204
+ 15 , 60k − 11, ..., 60k + 45
1205
+ 22, 27
1206
+ Table 6: Description of gap numbers when E(K) is torsion-free with r = 1.
1207
+ Proof. For the sake of brevity we restrict ourselves to No. 55. The other cases are treated similarly.
1208
+ Here cmax = 2·3
1209
+ 5 + 2·2
1210
+ 4 = 11
1211
+ 5 , cmin = min
1212
+
1213
+ 4
1214
+ 5, 3
1215
+ 4
1216
+
1217
+ = 3
1218
+ 4 and µ = 1/20.
1219
+ By Lemma 5.6, k is a gap number if and only if neither i) nor ii) occurs. Condition i) is that
1220
+ 2+2k
1221
+ 20
1222
+ = k+1
1223
+ 10
1224
+ is a perfect square. Condition ii) is that
1225
+
1226
+ 2+2k−cmax
1227
+ µ
1228
+ , 2+2k−cmin
1229
+ µ
1230
+
1231
+ = [40k − 4, 40k + 25]
1232
+ contains some n2 with 20 ∤ n. We check that 20 ∤ n for every n such that n2 = 40k + ℓ, with
1233
+ ℓ = −4, ..., 25. Indeed, if 20 | n, then 400 | n2 and in particular 40 | n2. Then 40 | (n2 − 40k) = ℓ,
1234
+ which is absurd. ■
1235
+ 5.4
1236
+ Surfaces with a 1-gap
1237
+ In Subsection 5.3 we take each case in Table 6 and describe all its gap numbers.
1238
+ In this
1239
+ subsection we do the opposite, which is to fix a number and describe all cases having it as a gap
1240
+ number. We remind the reader that our motivating problem (Section 1) was to determine when
1241
+ there are sections P1, P2 such that P1 · P2 = 1, which induce a conic bundle having P1 + P2 as a
1242
+ reducible fiber. The answer for this question is the main theorem of this subsection:
1243
+ Theorem 5.8. Let X be a rational elliptic surface. Then X has a 1-gap if and only if r = 0 or
1244
+ r = 1 and π has a III∗ fiber.
1245
+ 20
1246
+
1247
+ Our strategy for the proof is the following. We already know that a 1-gap exists whenever r = 0
1248
+ (Theorem 3.1) or when r = 1 and π has a III∗ fiber (Theorem 5.7, No. 43). Conversely, we need to
1249
+ find P1, P2 with P1 · P2 = 1 in all cases with r ≥ 1 and T ̸= E7.
1250
+ First we introduce two lemmas, which solve most cases with little computation, and leave the
1251
+ remaining ones for the proof of Theorem 5.8. In both Lemma 5.9 and Lemma 5.11 our goal is to
1252
+ analyze the narrow lattice E(K)0 and apply Proposition 4.12 to detect cases without a 1-gap.
1253
+ Lemma 5.9. If one of the following holds, then h(P) = 4 for some P ∈ E(K)0.
1254
+ a) The Gram matrix of E(K)0 has a 4 in its main diagonal.
1255
+ b) There is an embedding of An ⊕ Am in E(K)0 for some n, m ≥ 1.
1256
+ c) There is an embedding of An, Dn or En in E(K)0 for some n ≥ 3.
1257
+ Proof. Case a) is trivial. Assuming b), we take generators P1, P2 from An, Am respectively with
1258
+ h(P1) = h(P2) = 2. Since An, Am are in direct sum, ⟨P1, P2⟩ = 0, hence h(P1 + P2) = 4, as desired.
1259
+ If c) holds, then the fact that n ≥ 3 allows us to choose two elements P1, P2 among the generators
1260
+ of L1 = An, Dn or En such that h(P1) = h(P2) = 2 and ⟨P1, P2⟩ = 0. Thus h(P1 + P2) = 4 as
1261
+ claimed. ■
1262
+ Corollary 5.10. In the following cases, X does not have a 1-gap.
1263
+ • r ≥ 3 : all cases except possibly No. 20.
1264
+ • r = 1, 2 : cases No. 25, 26, 30, 32-36, 38, 41, 42, 46, 52, 54, 60.
1265
+ Proof. We look at column E(K)0 in Table 8 to find which cases satisfy one of the conditions a),
1266
+ b), c) from Lemma 5.9.
1267
+ a) Applies to No. 12, 17, 19, 22, 23, 25, 30, 32, 33, 36, 38, 41, 46, 52, 54, 60.
1268
+ b) Applies to No. 10, 11, 14, 15, 18, 24, 26, 34, 35, 42.
1269
+ c) Applies to No. 1-10, 13, 16, 21.
1270
+ In particular, this covers all cases with r ≥ 3 (No. 1-24) except No. 20. By Lemma 5.9 in each
1271
+ of these cases there is P ∈ E(K)0 with h(P) = 4 and we are done by Proposition 4.12 1). ■
1272
+ In the next lemma we also analyze E(K)0 to detect surfaces without a 1-gap.
1273
+ Lemma 5.11. Assume E(K)0 ≃ An for some n ≥ 1 and that E(K) has nontrivial torsion part.
1274
+ Then X does not have a 1-gap. This applies to cases No. 28, 39, 44, 48, 51, 57, 58 in Table 8.
1275
+ Proof. Take a generator P of E(K)0 with h(P) = 2 and apply Proposition 4.12 2). ■
1276
+ 21
1277
+
1278
+ We are ready to prove the main result of this subsection.
1279
+ Proof of Theorem 5.8. We need to show that in all cases where r ≥ 1 and T ̸= E7 there are
1280
+ P1, P2 ∈ E(K) such that P1 · P2 = 1. This corresponds to cases No. 1-61 except 43 in Table 8.
1281
+ The cases where r = 1 and E(K) is torsion-free can be solved by Theorem 5.10, namely No.
1282
+ 45-47, 49, 50, 55, 56. Adding these cases to the ones treated in Corollary 5.10 and Lemma 5.11,
1283
+ we have therefore solved the following:
1284
+ No. 1-19, 21-26, 28, 30, 32-36, 38, 39, 41-52, 54-58, 60.
1285
+ For the remaining cases, we apply Proposition 4.12 3), which involves finding perfect squares
1286
+ in the interval
1287
+
1288
+ 4−cmax
1289
+ µ
1290
+ , 4−cmin
1291
+ µ
1292
+
1293
+ (see Table 7), considering the half-open interval in the cases with
1294
+ ∆ = 2 (No. 53, 61).
1295
+ No.
1296
+ T
1297
+ E(K)
1298
+ µ
1299
+ I
1300
+ n2 ∈ I
1301
+ 20
1302
+ A⊕2
1303
+ 2
1304
+ ⊕ A1
1305
+ A∗
1306
+ 2 ⊕ ⟨1/6⟩
1307
+ 1
1308
+ 6
1309
+ [13, 23]
1310
+ 42
1311
+ 27
1312
+ E6
1313
+ A∗
1314
+ 2
1315
+ 2
1316
+ 3
1317
+ [4, 4]
1318
+ 22
1319
+ 29
1320
+ A5 ⊕ A1
1321
+ A∗
1322
+ 1 ⊕ ⟨1/6⟩
1323
+ 1
1324
+ 6
1325
+ [12, 21]
1326
+ 42
1327
+ 31
1328
+ A4 ⊕ A2
1329
+ 1
1330
+ 15
1331
+
1332
+ 2
1333
+ 1
1334
+ 1
1335
+ 8
1336
+
1337
+ 2
1338
+ 15
1339
+ [16, 21]
1340
+ 42
1341
+ 37
1342
+ A3 ⊕ A2 ⊕ A1
1343
+ A∗
1344
+ 1 ⊕ ⟨1/12⟩
1345
+ 1
1346
+ 12
1347
+ [22, 28]
1348
+ 52
1349
+ 40
1350
+ A⊕2
1351
+ 2
1352
+ ⊕ A⊕2
1353
+ 1
1354
+ ⟨1/6⟩⊕2
1355
+ 1
1356
+ 6
1357
+ [10, 21]
1358
+ 42
1359
+ 53
1360
+ A5 ⊕ A⊕2
1361
+ 1
1362
+ ⟨1/6⟩ ⊕ Z/2Z
1363
+ 1
1364
+ 6
1365
+ [9, 12]
1366
+ 32
1367
+ 59
1368
+ A3 ⊕ A2 ⊕ A⊕2
1369
+ 1
1370
+ ⟨1/12⟩ ⊕ Z/2Z
1371
+ 1
1372
+ 12
1373
+ [16, 42]
1374
+ 42, 52, 62
1375
+ 61
1376
+ A⊕3
1377
+ 2
1378
+ ⊕ A1
1379
+ ⟨1/6⟩ ⊕ Z/3Z
1380
+ 1
1381
+ 6
1382
+ [9, 12]
1383
+ 32
1384
+ Table 7: Perfect squares in the interval I :=
1385
+
1386
+ 4−cmax
1387
+ µ
1388
+ , 4−cmin
1389
+ µ
1390
+
1391
+ .
1392
+ In No. 59 we have ∆ > 2, so a particular treatment is needed. Let T = Tv1 ⊕ Tv2 ⊕ Tv3 ⊕ Tv4 =
1393
+ A3 ⊕ A2 ⊕ A1 ⊕ A1. If P generates the free part of E(K) and Q generates its torsion part, then
1394
+ h(P) =
1395
+ 1
1396
+ 12 and 4P + Q meets the reducible fibers at Θv1,2, Θv2,1, Θv3,1, Θv4,1 [Kur14][Example 1.7].
1397
+ By Table 1 and the height formula (2),
1398
+ 42
1399
+ 12 = h(4P + Q) = 2 + 2(4P + Q) · O − 2 · 2
1400
+ 4
1401
+ − 1 · 2
1402
+ 3
1403
+ − 1
1404
+ 2 − 1
1405
+ 2,
1406
+ hence (4P + Q) · O = 1, as desired. ■
1407
+ 22
1408
+
1409
+ 6
1410
+ Appendix
1411
+ We reproduce part of the table in [OS91, Main Th.] with data on Mordell-Weil lattices of
1412
+ rational elliptic surfaces with Mordell-Weil rank r ≥ 1. We only add columns cmax, cmin, ∆.
1413
+ No.
1414
+ r
1415
+ T
1416
+ E(K)0
1417
+ E(K)
1418
+ cmax
1419
+ cmin
1420
+
1421
+ 1
1422
+ 8
1423
+ 0
1424
+ E8
1425
+ E8
1426
+ 0
1427
+ 0
1428
+ 0
1429
+ 2
1430
+ 7
1431
+ A1
1432
+ E7
1433
+ E∗
1434
+ 8
1435
+ 1
1436
+ 2
1437
+ 1
1438
+ 2
1439
+ 0
1440
+ 3
1441
+ 6
1442
+ A2
1443
+ E6
1444
+ E∗
1445
+ 6
1446
+ 2
1447
+ 3
1448
+ 2
1449
+ 3
1450
+ 0
1451
+ 4
1452
+ A⊕2
1453
+ 1
1454
+ D6
1455
+ D∗
1456
+ 6
1457
+ 3
1458
+ 2
1459
+ 1
1460
+ 1
1461
+ 2
1462
+ 5
1463
+ 5
1464
+ A3
1465
+ D5
1466
+ D∗
1467
+ 5
1468
+ 1
1469
+ 3
1470
+ 4
1471
+ 1
1472
+ 4
1473
+ 6
1474
+ A2 ⊕ A1
1475
+ A5
1476
+ A∗
1477
+ 5
1478
+ 7
1479
+ 6
1480
+ 1
1481
+ 2
1482
+ 2
1483
+ 3
1484
+ 7
1485
+ A⊕3
1486
+ 1
1487
+ D4 ⊕ A1
1488
+ D∗
1489
+ 4 ⊕ A∗
1490
+ 1
1491
+ 3
1492
+ 2
1493
+ 1
1494
+ 2
1495
+ 1
1496
+ 8
1497
+ 4
1498
+ A4
1499
+ A4
1500
+ A∗
1501
+ 4
1502
+ 6
1503
+ 5
1504
+ 4
1505
+ 5
1506
+ 2
1507
+ 5
1508
+ 9
1509
+ D4
1510
+ D4
1511
+ D∗
1512
+ 4
1513
+ 1
1514
+ 1
1515
+ 0
1516
+ 10
1517
+ A3 ⊕ A1
1518
+ A3 ⊕ A1
1519
+ A∗
1520
+ 3 ⊕ A∗
1521
+ 1
1522
+ 3
1523
+ 2
1524
+ 1
1525
+ 2
1526
+ 1
1527
+ 11
1528
+ A⊕2
1529
+ 2
1530
+ A⊕2
1531
+ 2
1532
+ A∗
1533
+ 2
1534
+ ⊕2
1535
+ 4
1536
+ 3
1537
+ 2
1538
+ 3
1539
+ 2
1540
+ 3
1541
+ 12
1542
+ A2 ⊕ A⊕2
1543
+ 1
1544
+
1545
+
1546
+
1547
+
1548
+
1549
+ 4
1550
+ −1
1551
+ 0
1552
+ 1
1553
+ −1
1554
+ 2
1555
+ −1
1556
+ 0
1557
+ 0
1558
+ −1
1559
+ 2
1560
+ −1
1561
+ 1
1562
+ 0
1563
+ −1
1564
+ 2
1565
+
1566
+
1567
+
1568
+
1569
+
1570
+ 1
1571
+ 6
1572
+
1573
+
1574
+
1575
+
1576
+
1577
+ 2
1578
+ 1
1579
+ 0
1580
+ −1
1581
+ 1
1582
+ 5
1583
+ 3
1584
+ 1
1585
+ 0
1586
+ 3
1587
+ 6
1588
+ 3
1589
+ −1
1590
+ 1
1591
+ 3
1592
+ 5
1593
+
1594
+
1595
+
1596
+
1597
+
1598
+ 5
1599
+ 3
1600
+ 1
1601
+ 2
1602
+ 7
1603
+ 6
1604
+ 13
1605
+ A⊕4
1606
+ 1
1607
+ D4
1608
+ D∗
1609
+ 4 ⊕ Z/2Z
1610
+ 2
1611
+ 1
1612
+ 2
1613
+ 3
1614
+ 2
1615
+ 14
1616
+ A⊕4
1617
+ 1
1618
+ A⊕4
1619
+ 1
1620
+ A∗
1621
+ 1
1622
+ ⊕4
1623
+ 2
1624
+ 1
1625
+ 2
1626
+ 3
1627
+ 2
1628
+ 15
1629
+ 3
1630
+ A5
1631
+ A2 ⊕ A1
1632
+ A∗
1633
+ 2 ⊕ A∗
1634
+ 1
1635
+ 3
1636
+ 2
1637
+ 5
1638
+ 6
1639
+ 2
1640
+ 3
1641
+ 16
1642
+ D5
1643
+ A3
1644
+ A∗
1645
+ 3
1646
+ 5
1647
+ 4
1648
+ 1
1649
+ 1
1650
+ 4
1651
+ 17
1652
+ A4 ⊕ A1
1653
+
1654
+
1655
+
1656
+ 4
1657
+ −1
1658
+ 1
1659
+ −1
1660
+ 2
1661
+ −1
1662
+ 1
1663
+ −1
1664
+ 2
1665
+
1666
+
1667
+
1668
+ 1
1669
+ 10
1670
+
1671
+
1672
+
1673
+ 3
1674
+ 1
1675
+ −1
1676
+ 1
1677
+ 7
1678
+ 3
1679
+ −1
1680
+ 3
1681
+ 7
1682
+
1683
+
1684
+
1685
+ 17
1686
+ 10
1687
+ 1
1688
+ 2
1689
+ 6
1690
+ 5
1691
+ 18
1692
+ D4 ⊕ A1
1693
+ A⊕3
1694
+ 1
1695
+ A∗
1696
+ 1
1697
+ ⊕3
1698
+ 3
1699
+ 2
1700
+ 1
1701
+ 2
1702
+ 1
1703
+ 19
1704
+ A3 ⊕ A2
1705
+
1706
+
1707
+
1708
+ 2
1709
+ 0
1710
+ −1
1711
+ 0
1712
+ 2
1713
+ −1
1714
+ −1
1715
+ −1
1716
+ 4
1717
+
1718
+
1719
+
1720
+ 1
1721
+ 12
1722
+
1723
+
1724
+
1725
+ 7
1726
+ 1
1727
+ 2
1728
+ 1
1729
+ 7
1730
+ 2
1731
+ 2
1732
+ 2
1733
+ 4
1734
+
1735
+
1736
+
1737
+ 5
1738
+ 3
1739
+ 2
1740
+ 3
1741
+ 1
1742
+ 23
1743
+
1744
+ 20
1745
+ A⊕2
1746
+ 2
1747
+ ⊕ A1
1748
+ A2 ⊕ ⟨6⟩
1749
+ A∗
1750
+ 2 ⊕ ⟨1/6⟩
1751
+ 11
1752
+ 6
1753
+ 1
1754
+ 2
1755
+ 4
1756
+ 3
1757
+ 21
1758
+ A3 ⊕ A⊕2
1759
+ 1
1760
+ A3
1761
+ A∗
1762
+ 3 ⊕ Z/2Z
1763
+ 2
1764
+ 1
1765
+ 2
1766
+ 3
1767
+ 2
1768
+ 22
1769
+ A3 ⊕ A⊕2
1770
+ 1
1771
+ A1 ⊕ ⟨4⟩
1772
+ A∗
1773
+ 1 ⊕ ⟨1/4⟩
1774
+ 2
1775
+ 1
1776
+ 2
1777
+ 3
1778
+ 2
1779
+ 23
1780
+ A2 ⊕ A⊕3
1781
+ 1
1782
+ A1 ⊕
1783
+
1784
+ 4
1785
+ −2
1786
+ −2
1787
+ 4
1788
+
1789
+ A∗
1790
+ 1 ⊕ 1
1791
+ 6
1792
+
1793
+ 2
1794
+ 1
1795
+ 1
1796
+ 2
1797
+
1798
+ 13
1799
+ 6
1800
+ 1
1801
+ 2
1802
+ 5
1803
+ 3
1804
+ 24
1805
+ A⊕5
1806
+ 1
1807
+ A⊕3
1808
+ 1
1809
+ A∗
1810
+ 1
1811
+ ⊕3 ⊕ Z/2Z
1812
+ 5
1813
+ 2
1814
+ 1
1815
+ 2
1816
+ 2
1817
+ 25
1818
+ 2
1819
+ A6
1820
+
1821
+ 4
1822
+ −1
1823
+ −1
1824
+ 2
1825
+
1826
+ 1
1827
+ 7
1828
+
1829
+ 2
1830
+ 1
1831
+ 1
1832
+ 4
1833
+
1834
+ 12
1835
+ 7
1836
+ 6
1837
+ 7
1838
+ 6
1839
+ 7
1840
+ 26
1841
+ D6
1842
+ A⊕2
1843
+ 1
1844
+ A∗
1845
+ 1
1846
+ ⊕2
1847
+ 3
1848
+ 2
1849
+ 1
1850
+ 1
1851
+ 2
1852
+ 27
1853
+ E6
1854
+ A2
1855
+ A∗
1856
+ 2
1857
+ 4
1858
+ 3
1859
+ 4
1860
+ 3
1861
+ 0
1862
+ 28
1863
+ A5 ⊕ A1
1864
+ A2
1865
+ A∗
1866
+ 2 ⊕ Z/2Z
1867
+ 2
1868
+ 1
1869
+ 2
1870
+ 3
1871
+ 2
1872
+ 29
1873
+ A5 ⊕ A1
1874
+ A1 ⊕ ⟨6⟩
1875
+ A∗
1876
+ 1 ⊕ ⟨1/6⟩
1877
+ 2
1878
+ 1
1879
+ 2
1880
+ 3
1881
+ 2
1882
+ 30
1883
+ D5 ⊕ A1
1884
+ A1 ⊕ ⟨4⟩
1885
+ A∗
1886
+ 1 ⊕ ⟨1/4⟩
1887
+ 7
1888
+ 4
1889
+ 1
1890
+ 2
1891
+ 5
1892
+ 4
1893
+ 31
1894
+ A4 ⊕ A2
1895
+
1896
+ 8
1897
+ −1
1898
+ −1
1899
+ 2
1900
+
1901
+ 1
1902
+ 15
1903
+
1904
+ 2
1905
+ 1
1906
+ 1
1907
+ 8
1908
+
1909
+ 28
1910
+ 15
1911
+ 2
1912
+ 3
1913
+ 6
1914
+ 5
1915
+ 32
1916
+ D4 ⊕ A2
1917
+
1918
+ 4
1919
+ −2
1920
+ −2
1921
+ 4
1922
+
1923
+ 1
1924
+ 6
1925
+
1926
+ 2
1927
+ 1
1928
+ 1
1929
+ 2
1930
+
1931
+ 5
1932
+ 3
1933
+ 2
1934
+ 3
1935
+ 1
1936
+ 33
1937
+ A4 ⊕ A⊕2
1938
+ 1
1939
+
1940
+ 6
1941
+ −2
1942
+ −2
1943
+ 4
1944
+
1945
+ 1
1946
+ 10
1947
+
1948
+ 2
1949
+ 1
1950
+ 1
1951
+ 3
1952
+
1953
+ 11
1954
+ 5
1955
+ 1
1956
+ 2
1957
+ 17
1958
+ 10
1959
+ 34
1960
+ D4 ⊕ A⊕2
1961
+ 1
1962
+ A⊕2
1963
+ 1
1964
+ A∗
1965
+ 1
1966
+ ⊕2
1967
+ 2
1968
+ 1
1969
+ 2
1970
+ 3
1971
+ 2
1972
+ 35
1973
+ A⊕2
1974
+ 3
1975
+ A⊕2
1976
+ 1
1977
+ A∗
1978
+ 1
1979
+ ⊕2 ⊕ Z/2Z
1980
+ 2
1981
+ 3
1982
+ 4
1983
+ 5
1984
+ 4
1985
+ 36
1986
+ A⊕2
1987
+ 3
1988
+ ⟨4⟩⊕2
1989
+ ⟨1/4⟩⊕2
1990
+ 2
1991
+ 3
1992
+ 4
1993
+ 5
1994
+ 4
1995
+ 37
1996
+ A3 ⊕ A2 ⊕ A1
1997
+ A1 ⊕ ⟨12⟩
1998
+ A∗
1999
+ 1 ⊕ ⟨1/12⟩
2000
+ 13
2001
+ 6
2002
+ 1
2003
+ 2
2004
+ 5
2005
+ 3
2006
+ 38
2007
+ A3 ⊕ A⊕3
2008
+ 1
2009
+ A1 ⊕ ⟨4⟩
2010
+ A∗
2011
+ 1 ⊕ ⟨1/4⟩ ⊕ Z/2Z
2012
+ 5
2013
+ 2
2014
+ 1
2015
+ 2
2016
+ 2
2017
+ 39
2018
+ A⊕3
2019
+ 2
2020
+ A2
2021
+ A∗
2022
+ 2 ⊕ Z/3Z
2023
+ 2
2024
+ 2
2025
+ 3
2026
+ 4
2027
+ 3
2028
+ 40
2029
+ A⊕2
2030
+ 2
2031
+ ⊕ A⊕2
2032
+ 1
2033
+ ⟨6⟩⊕2
2034
+ ⟨1/6⟩⊕2
2035
+ 7
2036
+ 3
2037
+ 1
2038
+ 2
2039
+ 11
2040
+ 6
2041
+ 24
2042
+
2043
+ 41
2044
+ A2 ⊕ A⊕4
2045
+ 1
2046
+
2047
+ 4
2048
+ −2
2049
+ −2
2050
+ 4
2051
+
2052
+ 1
2053
+ 6
2054
+
2055
+ 2
2056
+ 1
2057
+ 1
2058
+ 2
2059
+
2060
+ 8
2061
+ 3
2062
+ 1
2063
+ 2
2064
+ 13
2065
+ 6
2066
+ 42
2067
+ A⊕6
2068
+ 1
2069
+ A⊕2
2070
+ 1
2071
+ A∗
2072
+ 1
2073
+ ⊕2 ⊕ (Z/2Z)2
2074
+ 3
2075
+ 1
2076
+ 2
2077
+ 5
2078
+ 2
2079
+ 43
2080
+ 1
2081
+ E7
2082
+ A1
2083
+ A∗
2084
+ 1
2085
+ 3
2086
+ 2
2087
+ 3
2088
+ 2
2089
+ 0
2090
+ 44
2091
+ A7
2092
+ A1
2093
+ A∗
2094
+ 1 ⊕ Z/2Z
2095
+ 2
2096
+ 7
2097
+ 8
2098
+ 11
2099
+ 8
2100
+ 45
2101
+ A7
2102
+ ⟨8⟩
2103
+ ⟨1/8⟩
2104
+ 2
2105
+ 7
2106
+ 8
2107
+ 11
2108
+ 8
2109
+ 46
2110
+ D7
2111
+ ⟨4⟩
2112
+ ⟨1/4⟩
2113
+ 7
2114
+ 4
2115
+ 1
2116
+ 3
2117
+ 4
2118
+ 47
2119
+ A6 ⊕ A1
2120
+ ⟨14⟩
2121
+ ⟨1/14⟩
2122
+ 31
2123
+ 14
2124
+ 1
2125
+ 2
2126
+ 12
2127
+ 7
2128
+ 48
2129
+ D6 ⊕ A1
2130
+ A1
2131
+ A∗
2132
+ 1
2133
+ 2
2134
+ 3
2135
+ 2
2136
+ 1
2137
+ 2
2138
+ 49
2139
+ E6 ⊕ A1
2140
+ ⟨6⟩
2141
+ ⟨1/6⟩
2142
+ 11
2143
+ 6
2144
+ 1
2145
+ 2
2146
+ 4
2147
+ 3
2148
+ 50
2149
+ D5 ⊕ A2
2150
+ ⟨12⟩
2151
+ ⟨1/12⟩
2152
+ 23
2153
+ 12
2154
+ 2
2155
+ 3
2156
+ 5
2157
+ 4
2158
+ 51
2159
+ A5 ⊕ A2
2160
+ A1
2161
+ A∗
2162
+ 1 ⊕ Z/3Z
2163
+ 13
2164
+ 6
2165
+ 2
2166
+ 3
2167
+ 3
2168
+ 2
2169
+ 52
2170
+ D5 ⊕ A⊕2
2171
+ 1
2172
+ ⟨4⟩
2173
+ ⟨1/4⟩ ⊕ Z/2Z
2174
+ 9
2175
+ 4
2176
+ 1
2177
+ 2
2178
+ 7
2179
+ 4
2180
+ 53
2181
+ A5 ⊕ A⊕2
2182
+ 1
2183
+ ⟨6⟩
2184
+ ⟨1/6⟩ ⊕ Z/2Z
2185
+ 5
2186
+ 2
2187
+ 1
2188
+ 2
2189
+ 2
2190
+ 54
2191
+ D4 ⊕ A3
2192
+ ⟨4⟩
2193
+ ⟨1/4⟩ ⊕ Z/2Z
2194
+ 2
2195
+ 3
2196
+ 4
2197
+ 5
2198
+ 4
2199
+ 55
2200
+ A4 ⊕ A3
2201
+ ⟨20⟩
2202
+ ⟨1/20⟩
2203
+ 11
2204
+ 5
2205
+ 3
2206
+ 4
2207
+ 29
2208
+ 20
2209
+ 56
2210
+ A4 ⊕ A2 ⊕ A1
2211
+ ⟨30⟩
2212
+ ⟨1/30⟩
2213
+ 71
2214
+ 30
2215
+ 1
2216
+ 2
2217
+ 28
2218
+ 15
2219
+ 57
2220
+ D4 ⊕ A⊕3
2221
+ 1
2222
+ A1
2223
+ A∗
2224
+ 1
2225
+ 5
2226
+ 2
2227
+ 1
2228
+ 2
2229
+ 2
2230
+ 58
2231
+ A⊕2
2232
+ 3
2233
+ ⊕ A1
2234
+ A1
2235
+ A∗
2236
+ 1 ⊕ Z/4Z
2237
+ 5
2238
+ 2
2239
+ 1
2240
+ 2
2241
+ 2
2242
+ 59
2243
+ A3 ⊕ A2 ⊕ A⊕2
2244
+ 1
2245
+ ⟨12⟩
2246
+ ⟨1/12⟩ ⊕ Z/2Z
2247
+ 8
2248
+ 3
2249
+ 1
2250
+ 2
2251
+ 13
2252
+ 6
2253
+ 60
2254
+ A3 ⊕ A⊕4
2255
+ 1
2256
+ ⟨4⟩
2257
+ ⟨1/4⟩ ⊕ Z/2Z
2258
+ 3
2259
+ 1
2260
+ 2
2261
+ 5
2262
+ 2
2263
+ 61
2264
+ A⊕3
2265
+ 2
2266
+ ⊕ A1
2267
+ ⟨6⟩
2268
+ ⟨1/6⟩ ⊕ Z/3Z
2269
+ 5
2270
+ 2
2271
+ 1
2272
+ 2
2273
+ 2
2274
+ Table 8:
2275
+ Mordell-Weil lattices of rational elliptic surfaces
2276
+ with Mordell-Weil rank r ≥ 1.
2277
+ 25
2278
+
2279
+ References
2280
+ [Ber12] P. Bernays. Über die Darstellung von positiven, ganzen Zahlen durch die primitive, binären
2281
+ quadratischen Formen einer nicht-quadratischen Diskriminante. PhD thesis, Göttingen,
2282
+ 1912.
2283
+ [BH]
2284
+ M. Bhargava and J. Hanke. Universal quadratic forms and the 290-Theorem. Preprint at
2285
+ http://math.stanford.edu/~vakil/files/290-Theorem-preprint.pdf.
2286
+ [Cos]
2287
+ R. D. Costa.
2288
+ Classification of fibers of conic bundles on rational elliptic surfaces.
2289
+ arXiv:2206.03549.
2290
+ [Elk90]
2291
+ N. D. Elkies. The Mordell-Weil lattice of a rational elliptic surface. Arbeitstagung Bonn,
2292
+ 1990.
2293
+ [HW79] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Clarendon
2294
+ Press, 1979.
2295
+ [Kur14] Y. Kurumadani. Pencil of cubic curves and rational elliptic surfaces.
2296
+ Master’s thesis,
2297
+ Kyoto University, 2014.
2298
+ [MP89] R. Miranda and U. Persson. Torsion groups of elliptic surfaces. Compositio Mathematica,
2299
+ 72(3):249–267, 1989.
2300
+ [Nis96]
2301
+ K. Nishiyama. The Jacobian fibrations on some K3 surfaces and their Mordell-Weil groups.
2302
+ Japanese Journal of Mathematics, 22(2), 1996.
2303
+ [OS91]
2304
+ K. Oguiso and T. Shioda. The Mordell-Weil lattice of a rational elliptic surface. Com-
2305
+ mentarii Mathematici Universitatis Sancti Pauli, 40, 1991.
2306
+ [Shi89]
2307
+ T. Shioda. The Mordell-Weil lattice and Galois representation, I, II, III. Proceedings of
2308
+ the Japan Academy, 65(7), 1989.
2309
+ [Shi90]
2310
+ T. Shioda. On the Mordell-Weil lattices. Commentarii Mathematici Universitatis Sancti
2311
+ Pauli, 39(7), 1990.
2312
+ [SS10]
2313
+ M. Schuett and T. Shioda.
2314
+ Elliptic surfaces.
2315
+ Advanced Studies in Pure Mathematics,
2316
+ 60:51–160, 2010.
2317
+ [SS19]
2318
+ M. Schuett and T. Shioda. Mordell-Weil Lattices, volume 70 of Ergebnisse der Mathematik
2319
+ und ihrer Grenzgebiete. Springer, 2019.
2320
+ 26
2321
+
JtE1T4oBgHgl3EQfYQS_/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
K9E0T4oBgHgl3EQfSgAu/content/tmp_files/2301.02222v1.pdf.txt ADDED
@@ -0,0 +1,2290 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ COMPUTING NONSURJECTIVE PRIMES ASSOCIATED TO GALOIS
2
+ REPRESENTATIONS OF GENUS 2 CURVES
3
+ BARINDER S. BANWAIT, ARMAND BRUMER, HYUN JONG KIM, ZEV KLAGSBRUN, JACOB MAYLE,
4
+ PADMAVATHI SRINIVASAN, AND ISABEL VOGT
5
+ Abstract. For a genus 2 curve C over Q whose Jacobian A admits only trivial geometric en-
6
+ domorphisms, Serre’s open image theorem for abelian surfaces asserts that there are only finitely
7
+ many primes ℓ for which the Galois action on ℓ-torsion points of A is not maximal. Building on
8
+ work of Dieulefait, we give a practical algorithm to compute this finite set. The key inputs are
9
+ Mitchell’s classification of maximal subgroups of PSp4(Fℓ), sampling of the characteristic polyno-
10
+ mials of Frobenius, and the Khare–Wintenberger modularity theorem. The algorithm has been
11
+ submitted for integration into Sage, executed on all of the genus 2 curves with trivial endomor-
12
+ phism ring in the LMFDB, and the results incorporated into the homepage of each such curve on
13
+ a publicly-accessible branch of the LMFDB.
14
+ 1. Introduction
15
+ Let C/Q be a smooth, projective, geometrically integral curve (referred to hereafter as a nice
16
+ curve) of genus 2, and let A be its Jacobian. We assume throughout that A admits no nontrivial
17
+ geometric endomorphisms; that is, we assume that End(AQ) = Z, and we refer to any abelian
18
+ variety satisfying this property as typical1. We also say that a nice curve is typical if its Jacobian is
19
+ typical. Let GQ ∶= Gal(Q/Q), let ℓ be a prime, and let A[ℓ] ∶= A(Q)[ℓ] denote the ℓ-torsion points
20
+ of A(Q). Let
21
+ ρA,ℓ ∶ GQ → Aut(A[ℓ])
22
+ denote the Galois representation on A[ℓ].
23
+ By fixing a basis for A[ℓ], and observing that A[ℓ]
24
+ admits a nondegenerate Galois-equivariant alternating bilinear form, namely the Weil pairing, we
25
+ may identify the codomain of ρA,ℓ with the general symplectic group GSp4(Fℓ).
26
+ In a letter to Vign´eras [Ser00, Corollaire au Th´eor`eme 3], Serre proved an open image theorem
27
+ for typical abelian varieties of dimensions 2 or 6, or of odd dimension, generalizing his celebrated
28
+ open image theorem for elliptic curves [Ser72]. More precisely, the set of nonsurjective primes ℓ for
29
+ which the representation ρA,ℓ is not surjective — i.e., the set of primes ℓ for which ρA,ℓ(GQ) is
30
+ contained in a proper subgroup of GSp4(Fℓ) — is finite.
31
+ In the elliptic curve case, Serre subsequently provided a conditional upper bound in terms of the
32
+ conductor of E on this finite set [Ser81, Th´eor`eme 22]; this bound has since been made unconditional
33
+ [Coj05, Kra95]. There are also algorithms to compute the finite set of nonsurjective primes [Zyw15],
34
+ and practical implementations in Sage [CL12].
35
+ Serre’s open image theorem for typical abelian surfaces was made explicit by Dieulefait [Die02]
36
+ who described an algorithm that returns a finite set of primes containing the set of nonsurjective
37
+ primes. In a different direction Lombardo [Lom16, Theorem 1.3] provided an upper bound on the
38
+ nonsurjective primes involving the stable Faltings height of A.
39
+ Date: January 6, 2023.
40
+ 2010 Mathematics Subject Classification. 11F80 (primary), 11G10, 11Y16 (secondary).
41
+ 1Abelian varieties with extra endomorphisms define a thin set (in the sense of Serre) in Ag and as such are not
42
+ the typically arising case.
43
+ 1
44
+ arXiv:2301.02222v1 [math.NT] 5 Jan 2023
45
+
46
+ 2
47
+ BANWAIT, BRUMER, KIM, KLAGSBRUN, MAYLE, SRINIVASAN, AND VOGT
48
+ In this paper we develop Algorithms 3.1 and 4.1, which together allow for the exact determination
49
+ of the nonsurjective primes for C, yielding our main result as follows.
50
+ Theorem 1.1. Let C/Q be a typical genus 2 curve whose Jacobian A has conductor N.
51
+ (1) Algorithm 3.1 produces a finite list PossiblyNonsurjectivePrimes(C) that provably contains all
52
+ nonsurjective primes.
53
+ (2) For a given bound B > 0, Algorithm 4.1 produces a sublist LikelyNonsurjectivePrimes(C;B)
54
+ of PossiblyNonsurjectivePrimes(C) that contains all the nonsurjective primes.
55
+ If B is suffi-
56
+ ciently large, then the elements of LikelyNonsurjectivePrimes(C;B) are precisely the nonsurjec-
57
+ tive primes of A.
58
+ The two common ingredients in Algorithms 3.1 and 4.1 are Mitchell’s 1914 classification of
59
+ maximal subgroups of PSp4(Fℓ) [Mit14] and sampling of characteristic polynomials of Frobenius
60
+ elements. Indeed, ρA,ℓ is nonsurjective precisely when its image is contained in one of the proper
61
+ maximal subgroups of GSp4(Fℓ). The (integral) characteristic polynomial of Frobenius at a good
62
+ prime p is computationally accessible since it is determined by counting points on C over Fpr for
63
+ small r. The reduction of this polynomial modulo ℓ gives the characteristic polynomial of the action
64
+ of the Frobenius element on A[ℓ]. By the Chebotarev density theorem, the images of the Frobenius
65
+ elements for varying primes p equidistribute over the conjugacy classes of ρA,ℓ(GQ) and hence let
66
+ us explore the image.
67
+ Algorithm 3.1 makes use of the fact that if the image of ρA,ℓ is nonsurjective, then the character-
68
+ istic polynomials of Frobenius at auxiliary primes p will be constrained modulo ℓ. Using this idea,
69
+ Dieulefait worked out the constraints imposed by each type of maximal subgroup for ρA,ℓ(GQ) to
70
+ be contained in that subgroup. Our Algorithm 3.1 combines Dieulefait’s conditions, with some
71
+ modest improvements, to produce a finite list PossiblyNonsurjectivePrimes(C).
72
+ Algorithm 4.1 then weeds out the extraneous surjective primes from PossiblyNonsurjectivePrimes(C).
73
+ Equipped with the prime ℓ, the task here is try to generate enough different elements in the image
74
+ to rule out containment in any proper maximal subgroup. The key input is a purely group-theoretic
75
+ condition (Proposition 4.2) that guarantees that a subgroup is all of GSp4(Fℓ) if it contains par-
76
+ ticular types of elements. This algorithm is probabilistic and depends on the choice of a parameter
77
+ B which, if sufficiently large, provably establishes nonsurjectivity. The parameter B is a cut-off for
78
+ the number of Frobenius elements that we use to sample the conjugacy classes of ρA,ℓ(GQ).
79
+ As an illustration of the interplay between theory and practice, analyzing the “worst case” run
80
+ time of each step in Algorithm 3.1 yields a new theoretical bound, conditional on the Generalized
81
+ Riemann Hypothesis (GRH), on the product of all nonsurjective primes in terms of the conductor.
82
+ Theorem 1.2. Let C/Q be a typical genus 2 curve with conductor N. Assuming the Generalized
83
+ Riemann Hypothesis (GRH), we have, for any ϵ > 0,
84
+
85
+ ℓ nonsurjective
86
+ ℓ ≪ exp(N1/2+ϵ),
87
+ where the implied constant is absolute and effectively computable.
88
+ While we believe this bound to be far from asymptotically optimal, it is the first bound in the
89
+ literature expressed in terms of the (effectively computable) conductor.
90
+ Naturally one wants to find the sufficiently large value of B in Theorem 1.1(2), which the next
91
+ result gives, conditional on GRH.
92
+ Theorem 1.3. Let C/Q be a typical genus 2 curve, B be a positive integer, and q be the largest
93
+ prime in LikelyNonsurjectivePrimes(C;B). Assuming GRH, the set LikelyNonsurjectivePrimes(C;B)
94
+ is precisely the set of nonsurjective primes of C, provided that
95
+ B ≥ (4[(2q11 − 1)log rad(2qNA) + 22q11 log(2q)] + 5q11 + 5)
96
+ 2 .
97
+
98
+ COMPUTING NONSURJECTIVE PRIMES IN GENUS 2
99
+ 3
100
+ The proof of Theorem 1.3 involves an explicit Chebotarev bound due to Bach and Sorenson
101
+ [BS96] that is dependent on GRH. An unconditional version of Theorem 1.3 can be given using an
102
+ unconditional Chebotarev result (for instance [KW22]), though the bound for B will be exponential
103
+ in q. In addition, if we assume both GRH and the Artin Holomorphy Conjecture (AHC), then a
104
+ version of Theorem 1.3 holds with the improved asymptotic bound B ≫ q11 log2(qNA), but without
105
+ an explicit constant.
106
+ Unfortunately, the bound from Theorem 1.3 is prohibitively large to use in practice. By way of
107
+ illustration, consider the smallest (with respect to conductor) typical genus 2 curve, which has a
108
+ model
109
+ y2 + (x3 + 1)y = x2 + x,
110
+ and label 249.a.249.1 in the L-functions and modular forms database (LMFDB) [LMF22]. The
111
+ output of Algorithm 3.1 is the set {2,3,5,7,83}. Applying Algorithm 4.1 with B = 100 rules out
112
+ the prime 83, suggesting that 7 is the largest nonsurjective prime. Subsequently applying Theorem
113
+ 1.3 with q = 7 yields the value B = 3.578 × 1023 for which LikelyNonsurjectivePrimes(C;B) coincides
114
+ with the set of nonsurjective primes associated with C. With this value of B, our implementation of
115
+ the algorithm was still running after 24 hours, after which we terminated it. Even if the version of
116
+ Theorem 1.3 that relies on AHC could be made explicit, the value of q11 log2(qNA) in this example
117
+ is on the order of 1011, which would still be a daunting prospect.
118
+ To execute the combined algorithm on all typical genus 2 curves in the LMFDB - which at the
119
+ time of writing constitutes 63,107 curves - we have decided to take a fixed value of B = 1000 in
120
+ Algorithm 4.1. The combined algorithm then takes about 4 hours on MIT’s Lovelace computer,
121
+ a machine with 2 AMD EPYC 7713 2GHz processors, each with 64 cores, and a total of 2TB of
122
+ memory. The result of this computation of nonsurjective primes for these curves is available to
123
+ view on the homepage of each curve in the LMFDB beta:
124
+ https://beta.lmfdb.org
125
+ In addition, the combined algorithm has been run on a much larger set of 1,823,592 curves
126
+ provided to us by Andrew Sutherland. See Section 6 for the results of this computation.
127
+ Algorithm 4.1 samples the characteristic polynomial of Frobenius Pp(t) for each prime p of
128
+ good reduction for the curve up to a particular bound and applies Tests 4.4 and 4.5 to Pp(t).
129
+ Assuming that ρA,ℓ is surjective, we expect that the outcome of these tests should be independent
130
+ for sufficiently large primes. More precisely,
131
+ Theorem 1.4. Let C/Q be a typical genus 2 curve with Jacobian A and suppose ℓ is an odd prime
132
+ such that ρA,ℓ is surjective. There is an effective bound B0 such that for any B > B0, if we sample
133
+ the characteristic polynomials of Frobenius Pp(t) for n primes p ∈ [B,2B] chosen uniformly and
134
+ independently at random, the probability that none of these pass Tests 4.4 or 4.5 is less than 3⋅( 9
135
+ 10)
136
+ n.
137
+ Remark 1. In fact, for each prime ℓ satisfying the conditions of Theorem 1.4, there is an explicit
138
+ constant cℓ ≤
139
+ 9
140
+ 10 tending to 3
141
+ 4 as ℓ → ∞ which may be computed using Corollary 5.3 such that
142
+ bound of 3 ⋅ ( 9
143
+ 10)
144
+ n in Theorem 1.4 can be replaced by 3 ⋅ cn
145
+ ℓ .
146
+ The combined algorithm to probabilistically determine the nonsurjective primes of a nice genus
147
+ 2 curve over Q has been implemented in Sage [The20], and it will appear in a future release of this
148
+ software2. Until then, the implementation is available at the following repository:
149
+ https://github.com/ivogt/abeliansurfaces
150
+ The README.md file contains detailed instructions on its use. This repository also contains other
151
+ scripts in both Sage and Magma [BCP97] useful for verifying some of the results of this work; any
152
+ filenames used in the sequel will refer to the above repository.
153
+ 2see https://trac.sagemath.org/ticket/30837 for the ticket tracking this integration.
154
+
155
+ 4
156
+ BANWAIT, BRUMER, KIM, KLAGSBRUN, MAYLE, SRINIVASAN, AND VOGT
157
+ Outline of this paper. In Section 2, we begin by reviewing the properties of the characteristic
158
+ polynomial of Frobenius with a view towards computational aspects. We also recall the classification
159
+ of maximal subgroups of GSp4(Fℓ). In Section 3, we explain Algorithm 3.1 and establish Theorem
160
+ 1.1(1); that is, for each of the maximal subgroups of GSp4(Fℓ) listed in Section 2.4, we generate a
161
+ list of primes that provably contains all primes ℓ for which the mod ℓ image of Galois is contained
162
+ in this maximal subgroup. Theorem 1.2 is also proved in this section (Subsection 3.3). In Section 4,
163
+ we first prove a group-theoretic criterion (Proposition 4.2) for a subgroup of GSp4(Fℓ) to equal
164
+ GSp4(Fℓ). Then, for each ℓ in the finite list from Section 3, we ascertain whether the characteristic
165
+ polynomials of the Frobenius elements sampled satisfy the group-theoretic criterion; Theorem 1.1(2)
166
+ and Theorem 1.3 also follow from this study. In Section 5 we prove Theorem 1.4 concerning the
167
+ probability of output error, assuming that Frobenius elements distribute in ρA,ℓ(GQ) as they would
168
+ in a randomly chosen element of GSp4(Fℓ). Finally, in Section 6, we close with remarks concerning
169
+ the execution of the algorithm on the large dataset of genus 2 curves mentioned above, and highlight
170
+ some interesting examples that arose therein.
171
+ Acknowledgements. This work was started at a workshop held remotely ‘at’ the Institute for
172
+ Computational and Experimental Research in Mathematics (ICERM) in Providence, RI, in May
173
+ 2020, and was supported by a grant from the Simons Foundation (546235) for the collaboration
174
+ ‘Arithmetic Geometry, Number Theory, and Computation’.
175
+ It has also been supported by the
176
+ National Science Foundation under Grant No. DMS-1929284 while the authors were in residence
177
+ at ICERM during a Collaborate@ICERM project held in May 2022. We are grateful to Noam Elkies
178
+ for providing interesting examples of genus 2 curves in the literature, Davide Lombardo for helpful
179
+ discussions related to computing geometric endomorphism rings, and to Andrew Sutherland for
180
+ providing a dataset of Hecke characteristic polynomials that were used for executing our algorithm
181
+ on all typical genus 2 curves in the LMFDB, as well as making available the larger dataset of
182
+ approximately 2 million curves that we ran our algorithm on.
183
+ 2. Preliminaries
184
+ 2.1. Notation. Let A be an abelian variety of dimension g defined over Q. By conductor we mean
185
+ the Artin conductor N = NA of A. We write Nsq for the largest integer such that N2
186
+ sq ∣ N.
187
+ Let ℓ be a prime. We write TℓA for the ℓ-adic Tate module of A:
188
+ TℓA ≃ lim
189
+ ←�
190
+ n
191
+ A[ℓn].
192
+ This is a free Zℓ-module of rank 2g.
193
+ For each prime p, we write Frobp ∈ Gal(Q/Q) for an absolute Frobenius element associated to p.
194
+ By a good prime p for an abelian variety A, we mean a prime p for which A has good reduction, or
195
+ equivalently p ∤ NA. If p is a good prime for A, then the trace ap of the action of Frobp on TℓA is
196
+ an integer. See Section 2.2 for a discussion of the characteristic polynomial of Frobenius.
197
+ By a typical abelian variety A, we mean an abelian variety with geometric endomorphism ring
198
+ Z. A typical genus 2 curve is a nice curve whose Jacobian is a typical abelian surface.
199
+ Let V be a 4-dimensional vector space over Fℓ endowed with a nondegenerate skew-symmetric
200
+ bilinear form ⟨⋅,⋅⟩. A subspace W ⊆ V is called isotropic (for ⟨⋅,⋅⟩) if ⟨w1,w2⟩ = 0 for all w1,w2 ∈ W.
201
+ A subspace W ⊆ V is called nondegenerate (for ⟨⋅,⋅⟩) if ⟨⋅,⋅⟩ restricts to a nondegenerate form on
202
+ W. The general symplectic group of (V,⟨⋅,⋅⟩) is defined as
203
+ GSp(V,⟨⋅,⋅⟩) ∶= {M ∈ GL(V ) ∶ ∃ mult(M) ∈ F×
204
+ ℓ ∶ ⟨Mv,Mw⟩ = mult(M)⟨v,w⟩ ∀ v,w ∈ V }.
205
+ The map M ↦ mult(M) is a surjective homomorphism from GSp(V,⟨⋅,⋅⟩) to F×
206
+ ℓ called the similitude
207
+ character; its kernel is the symplectic group, denoted Sp(V,⟨⋅,⋅⟩).
208
+ Usually the bilinear form is
209
+ understood from the context, in which case one drops ⟨⋅,⋅⟩ from the notation; moreover, for our
210
+
211
+ COMPUTING NONSURJECTIVE PRIMES IN GENUS 2
212
+ 5
213
+ purposes, we will have fixed a basis for V , one in which the bilinear form is represented by the
214
+ nonsingular skew-symmetric matrix
215
+ J ∶= ( 0
216
+ I2
217
+ −I2
218
+ 0 ),
219
+ where I2 is the 2 × 2 identity matrix.
220
+ By a subquotient W of a Galois module U, we mean a Galois module W that admits a surjection
221
+ U ′ ↠ W from a subrepresentation U ′ of U.
222
+ Since we are chiefly concerned with computing the sets LikelyNonsurjectivePrimes(C;B) and
223
+ PossiblyNonsurjectivePrimes(C) for a fixed curve C, we will henceforth, for ease of notation, drop
224
+ the C from the notation for these sets.
225
+ 2.2. Integral characteristic polynomial of Frobenius. The theoretical result underlying the
226
+ whole approach is the following.
227
+ Theorem 2.1 (Weil, see [ST68, Theorem 3]). Let A be an abelian variety of dimension g defined
228
+ over Q and let p be a prime of good reduction for A. Then there exists a monic integral polynomial
229
+ Pp(t) ∈ Z[t] of degree 2g with constant coefficient pg such that for any ℓ ≠ p, the polynomial Pp(t)
230
+ modulo ℓ is the characteristic polynomial of the action of Frobp on TℓA. Furthermore, every root
231
+ of Pp(t) has complex absolute value p1/2.
232
+ The polynomials Pp(t) are computationally accessible by counting points on C over Fpr r = 1,2.
233
+ See [Poo17, Chapter 7] for more details.
234
+ In fact, Pp(t) can be accessed via the frobenius_
235
+ polynomial command in Sage. In particular, we denote the trace of Frobenius by ap. By the
236
+ Grothendieck-Lefschetz trace formula, if A = JacX, p is a prime of good reduction for X, and
237
+ λ1,...,λ2g are the roots of Pp(t), then
238
+ #X(Fpr) = pr + 1 −
239
+ 2g
240
+
241
+ i=1
242
+ λr
243
+ i .
244
+ 2.3. The Weil pairing and consequences on the characteristic polynomial of Frobenius.
245
+ The nondegenerate Weil pairing gives an isomorphism (of Galois modules):
246
+ (1)
247
+ TℓA ≃ (TℓA)∨ ⊗Zℓ Zℓ(1).
248
+ The Galois character acting on Zℓ(1) is the ℓ-adic cyclotomic character, which we denote by cycℓ.
249
+ The integral characteristic polynomial for the action of Frobp on Zℓ(1) is simply t−p. The integral
250
+ characteristic polynomial for the action of Frobp on (TℓA)∨ is the reversed polynomial
251
+ P ∨
252
+ p (t) = Pp(1/t) ⋅ t2g/pg
253
+ whose roots are the inverses of the roots of Pp(t).
254
+ We now record a few easily verifiable consequences of the nondegeneracy of the Weil pairing
255
+ when dim(A) = 2.
256
+ Lemma 2.2.
257
+ (i) The roots of Pp(t) come in pairs that multiply out to p. In particular, Pp(t) has no root with
258
+ multiplicity 3.
259
+ (ii) Pp(t) = t4 − apt3 + bpt2 − papt + p2 for some ap,bp ∈ Z.
260
+ (iii) If the trace of an element of GSp4(Fℓ) is 0 mod ℓ, then its characteristic polynomial is re-
261
+ ducible modulo ℓ. In particular, this applies to Pp(t) when ap ≡ 0 (mod ℓ).
262
+ (iv) If A[ℓ] is a reducible GQ-module, then Pp(t) is reducible modulo ℓ.
263
+ Proof. Parts (i) and (ii) are immediate from the fact that the non-degenerate Weil pairing allows
264
+ us to pair up the four roots of Pp(t) into two pairs that each multiply out to p.
265
+
266
+ 6
267
+ BANWAIT, BRUMER, KIM, KLAGSBRUN, MAYLE, SRINIVASAN, AND VOGT
268
+ For part (iii), suppose that M ∈ GSp4(Fℓ) has tr(M) = 0. Then the characteristic polynomial
269
+ PM(t) of M is of the form t4 +bt2 +c2. When the discriminant of PM is 0 modulo ℓ, the polynomial
270
+ PM has repeated roots and is hence reducible. So assume that the discriminant of PM is nonzero
271
+ modulo ℓ. When ℓ ≠ 2, the result follows from [Car56, Theorem 1]. When ℓ = 2, a direct computation
272
+ shows that the characteristic polynomial of a trace 0 element of GSp4(F2) is either (t + 1)4 or
273
+ (t2 + t + 1)2, which are both reducible.
274
+ Part (iv) is immediate from Theorem 2.1 since Pp(t) mod ℓ by definition is the characteristic
275
+ polynomial for the action of Frobp on A[ℓ].
276
+
277
+ 2.4. Maximal subgroups of GSp4(Fℓ). Mitchell [Mit14] classified the maximal subgroups of
278
+ PSp4(Fℓ) in 1914. This can be used to deduce the following classification of maximal subgroups of
279
+ GSp4(Fℓ) with surjective similitude character.
280
+ Lemma 2.3 (Mitchell). Let V be a 4-dimensional Fℓ-vector space endowed with a nondegener-
281
+ ate skew-symmetric bilinear form ω. Then any proper subgroup G of GSp(V,ω) with surjective
282
+ similitude character is contained in one of the following types of maximal subgroups.
283
+ (1) Reducible maximal subgroups
284
+ (a) Stabilizer of a 1-dimensional isotropic subspace for ω.
285
+ (b) Stabilizer of a 2-dimensional isotropic subspace for ω.
286
+ (2) Irreducible subgroups governed by a quadratic character
287
+ Normalizer Gℓ of the group Mℓ that preserves each summand in a direct sum decomposition
288
+ V1 ⊕ V2 of V , where V1 and V2 are jointly defined over Fℓ and either:
289
+ (a) both nondegenerate for ω; or
290
+ (b) both isotropic for ω.
291
+ Moreover, Mℓ is an index 2 subgroup of Gℓ.
292
+ (3) Stabilizer of a twisted cubic
293
+ GL(W) acting on Sym3 W ≃ V , where W is a 2-dimensional Fℓ-vector space.
294
+ (4) Exceptional subgroups See Table A for explicit generators for the groups described below.
295
+ (a) When ℓ ≡ ±3 (mod 8): a group whose image G1920 in PGSp(V,ω) has order 1920.
296
+ (b) When ℓ ≡ ±5 (mod 12) and ℓ ≠ 7: a group whose image G720 in PGSp(V,ω) has order 720.
297
+ (c) When ℓ = 7: a group whose image G5040 in PGSp(V,ω) has order 5040.
298
+ Remark 2. We have chosen to label the maximal subgroups in the classification using invariant
299
+ subspaces for the symplectic pairing ω on V , following the more modern account due to Aschbacher
300
+ (see [Lom16, Section 3.1]; for a more comprehensive treatment see [KL90]). For the convenience of
301
+ the reader, we record the correspondence between Mitchell’s original labels and ours below.
302
+ Mitchell’s label
303
+ Label in Lemma 2.3
304
+ Group having an invariant point and plane
305
+ 1a
306
+ Group having an invariant parabolic congruence
307
+ 1b
308
+ Group having an invariant hyperbolic or elliptic congruence
309
+ 2a
310
+ Group having an invariant quadric
311
+ 2b
312
+ Table 1. Dictionary between maximal subgroup labels in [Die02]/[Mit14] and Lemma 2.3
313
+ Remark 3. The maximal subgroups in (1) are the analogues of the Borel subgroup of GL2(Fℓ).
314
+ The maximal subgroups in (2) when the two subspaces V,V ′ in the direct sum decomposition
315
+ are individually defined over Fℓ are the analogues of normalizers of the split Cartan subgroup of
316
+ GL2(Fℓ). When the two subspaces V,V ′ are not individually defined over Fℓ instead, the maximal
317
+ subgroups in (2) are analogues of the normalizers of the non-split Cartan subgroups of GL2(Fℓ).
318
+
319
+ COMPUTING NONSURJECTIVE PRIMES IN GENUS 2
320
+ 7
321
+ Remark 4. We briefly explain why the action of GL2(Fℓ) on Sym3(F2
322
+ ℓ) preserves a nondegenerate
323
+ symplectic form. It suffices to show that the restriction to SL2(Fℓ) fixes a vector in ⋀2 Sym3(F2
324
+ ℓ).
325
+ This follows by character theory. If W is the standard 2-dimensional representation of SL2, then
326
+ we have ⋀2(Sym3 W) ≃ Sym4 W ⊕ 1 as representations of SL2.
327
+ Remark 5. One can extract explicit generators of the exceptional maximal subgroups from Mitchell’s
328
+ original work3. Indeed [Mit14, the proof of Theorem 8, page 390] gives four explicit matrices that
329
+ generate a G1920 (which is unique up to conjugacy in PGSp4(Fℓ)). Mitchell’s description of the
330
+ other exceptional groups is in terms of certain projective linear transformations called skew perspec-
331
+ tivities attached to a direct sum decomposition V = V1 ⊕ V2 into 2-dimensional subspaces. A skew
332
+ perspectivity of order n with axes V1 and V2 is the projective linear transformation that scales V1 by
333
+ a primitive nth root of unity and fixes V2. This proof also gives the axes of the skew perspectivities
334
+ of order 2 and 3 that generate the remaining exceptional groups [Mit14, pages 390-391]. Table 5
335
+ lists generators of (one representative of the conjugacy class of) each of the exceptional maximal
336
+ subgroup extracted from Mitchell’s descriptions. In the file exceptional.m publicly available
337
+ with our code, we verify that Magma’s list of conjugacy classes of maximal subgroups of GSp4(Fℓ)
338
+ agree with those described in Lemma 2.3 for 3 ≤ ℓ ≤ 47.
339
+ Remark 6. The classification of exceptional maximal subgroups of PSp4(Fℓ) is more subtle than
340
+ that of PGSp4(Fℓ), because of the constraint on the similitude character of matrices in PSp4(Fℓ).
341
+ While the similitude character is not well-defined on PGSp4(Fℓ) (multiplication by a scalar c ∈ F×
342
+
343
+ scales the similitude character by c2) it is well-defined modulo squares. The group PSp4(Fℓ) is the
344
+ kernel of this natural map:
345
+ 1 → PSp4(Fℓ) → PGSp4(Fℓ)
346
+ mult
347
+ ��→ F×
348
+ ℓ /(F×
349
+ ℓ )2 ≃ {±1} → 1.
350
+ An exceptional subgroup of PGSp4(Fℓ) gives rise to an exceptional subgroup of PSp4(Fℓ) of either
351
+ the same size or half the size depending on the image of mult restricted to that subgroup, which
352
+ in turn depends on the congruence class of ℓ. For this reason, the maximal exceptional subgroups
353
+ of PSp4(Fℓ) in Mitchell’s original classification (also recalled in Dieulefait [Die02, Section 2.1]) can
354
+ have order 1920 or 960 and 720 or 360 depending on the congruence class of ℓ, and 2520 (for
355
+ ℓ = 7). Such an exceptional subgroup gives rise to a maximal exceptional subgroup of PGSp4(Fℓ)
356
+ only when mult is surjective (i.e., its intersection with PSp4(Fℓ) is index 2), which explains the
357
+ restricted congruence classes of ℓ for which they arise.
358
+ We now record a lemma that directly follows from the structure of maximal subgroups described
359
+ above. This lemma will be used in Section 4 to devise a criterion for a subgroup of GSp4(Fℓ) to be
360
+ the entire group. For an element T in GSp4(Fℓ), let tr(T), mid(T), mult(T) denote the trace of
361
+ T, the middle coefficient of the characteristic polynomial of T, and the similitude character applied
362
+ to T respectively4. For a scalar λ, we have
363
+ tr(λT) = λtr(T),
364
+ mid(λT) = λ2 mid(T),
365
+ mult(λT) = λ2 mult(T).
366
+ Hence the quantities tr(T)2/mult(T) and mid(T)/mult(T) are well-defined on PGSp4(Fℓ). For
367
+ ℓ > 2 and ∗ ∈ {720,1920,5040}, define
368
+ (2)
369
+ Cℓ,∗ ∶= {( tr(T)2
370
+ mult(T), mid(T)
371
+ mult(T)) ∣ T ∈ an exceptional subgroup of GSp4(Fℓ) of projective order ∗}
372
+ Lemma 2.4.
373
+ (1) In cases 2a and 2b of Lemma 2.3:
374
+ 3Mitchell’s notation for PGSp4(Fℓ) is Aν(ℓ) and for PSp4(Fℓ) is A1(ℓ).
375
+ 4Explicitly, the characteristic polynomial of T is therefore t4 − tr(T)t3 + mid(T)t2 − mult(T) tr(T)t + mult(T)2.
376
+
377
+ 8
378
+ BANWAIT, BRUMER, KIM, KLAGSBRUN, MAYLE, SRINIVASAN, AND VOGT
379
+ (a) every element in Gℓ ∖ Mℓ has trace 0, and,
380
+ (b) the group Mℓ stabilizes a non-trivial linear subspace of F
381
+ 4
382
+ ℓ.
383
+ (2) Every element that is contained in a maximal subgroup corresponding to the stabilizer of a
384
+ twisted cubic has a reducible characteristic polynomial.
385
+ (3) For ∗ ∈ {1920,720}, the set Cℓ,∗ defined in (2) equals the reduction modulo ℓ of the elements of
386
+ the set C∗ below.
387
+ C1920 = {(0,−2),(0,−1),(0,0),(0,1),(0,2),(1,1),(2,1),(2,2),(4,2),(4,3),(8,4),(16,6)}
388
+ C720 = {(0,1),(0,0),(4,3),(1,1),(16,6),(0,2),(1,0),(3,2),(0,−2)}
389
+ We also have
390
+ C7,5040 = {(0,0),(0,1),(0,2),(0,5),(0,6),(1,0),(1,1),(2,6),(3,2),(4,3),(5,3),(6,3)}.
391
+ Proof.
392
+ (1) In cases 2a and 2b of Lemma 2.3, since any element of the normalizer Gℓ that is not in Mℓ
393
+ switches elements in the two subspaces V1 and V2 (i.e. maps elements in the subspace V1
394
+ in the decomposition V1 ⊕ V2 to elements in V2 and vice-versa), it follows that any element
395
+ in Gℓ ∖ Mℓ has trace zero.
396
+ (2) The conjugacy class of maximal subgroups corresponding to the stabilizer of a twisted cubic
397
+ comes from the embedding GL2(Fℓ)
398
+ ι�→ GSp4(Fℓ) induced by the natural action of GL2(Fℓ)
399
+ on the space of monomials of degree 3 in 2 variables. If M is a matrix in GL2(Fℓ) with
400
+ eigenvalues λ,µ (possibly repeated), then the eigenvalues of ι(M) are λ3,µ3,λ2µ,λµ2 and
401
+ hence the characteristic polynomial of ι(M) factors as (T 2 −(λ3 +µ3)T +λ3µ3)(T 2 −(λ2µ+
402
+ λµ2)T + λ3µ3) over Fℓ which is reducible over Fℓ.
403
+ (3) This follows from the description of the maximal subgroups given in Table 5. Each case
404
+ (except G5040 that only occurs for ℓ = 7) depends on a choice of a root of a quadratic
405
+ polynomial. In the file exceptional statistics.sage, we generate the corresponding
406
+ finite subgroups over the appropriate quadratic number field to compute C∗. It follows that
407
+ the corresponding values for the subgroup G∗ in GSp4(Fℓ) can be obtained by reducing
408
+ these values modulo ℓ. Since the group G5040 only appears for ℓ = 7, we directly compute
409
+ the set C7,5040.
410
+
411
+ Remark 7. The condition in Lemma 2.4(3) is the analogue of the condition [Ser72, Proposition 19
412
+ (iii)] used to rule out exceptional maximal subgroups of GL2(Fℓ).
413
+ We end this subsection by including the following lemma, to further highlight the similarities
414
+ between the above classification of maximal subgroups of GSp4(Fℓ) and the more familiar classi-
415
+ fication of maximal subgroups of GL2(Fℓ). This lemma is not used elsewhere in the article and is
416
+ thus for expositional purposes only.
417
+ Lemma 2.5.
418
+ (1) The subgroup Mℓ in the case (2a) when the two nondegenerate subspaces V1 and V2 are indi-
419
+ vidually defined over Fℓ is isomorphic to
420
+ {(m1,m2) ∈ GL2(Fℓ)2 ∣ det(m1) = det(m2)}.
421
+ In particular, the order of Mℓ is ℓ2(ℓ − 1)(ℓ2 − 1)2.
422
+ (2) The subgroup Mℓ in the case (2b) when the two isotropic subspaces V1 and V2 are individually
423
+ defined over Fℓ is isomorphic to
424
+ {(m1,m2) ∈ GL2(Fℓ)2 ∣ mT
425
+ 1 m2 = λI, for some λ ∈ F∗
426
+ ℓ }.
427
+ In particular, the order of Mℓ is ℓ(ℓ − 1)2(ℓ2 − 1).
428
+
429
+ COMPUTING NONSURJECTIVE PRIMES IN GENUS 2
430
+ 9
431
+ (3) The subgroup Mℓ in the case (2a) when the two nondegenerate subspaces V1 and V2 are not
432
+ individually defined over Fℓ is isomorphic to
433
+ {m ∈ GL2(Fℓ2) ∣ det(m) ∈ F∗
434
+ ℓ }.
435
+ In particular, the order of Mℓ is ℓ2(ℓ − 1)(ℓ4 − 1).
436
+ (4) The subgroup Mℓ in the case (2b) when the two isotropic subspaces V1 and V2 are not indi-
437
+ vidually defined over Fℓ is isomorphic to GU2(Fℓ2), i.e.,
438
+ {m ∈ GL2(Fℓ2) ∣ mT ι(m) = λI, for some λ ∈ F∗
439
+ ℓ },
440
+ where ι denotes the natural extension of the Galois automorphism of Fℓ2/Fℓ to GL2(Fℓ2). In
441
+ particular, the order of Mℓ is ℓ(ℓ2 − 1)2.
442
+ Proof. Given a direct sum decomposition V1 ⊕ V2 of a vector space V over Fq, we get a natural
443
+ embedding of Aut(V1) × Aut(V2) (≅ GL2(Fq)2) into Aut(V ) (≅ GL4(Fq)), whose image consists of
444
+ automorphisms that preserve this direct sum decomposition. We will henceforth refer to elements
445
+ of Aut(V1) × Aut(V2) as elements of Aut(V ) using this embedding. To understand the subgroup
446
+ Mℓ of GSp4(Fq) in cases (1) and (2) where the two subspaces in the direct sum decomposition are
447
+ individually defined over Fq, we need to further impose the condition that the automorphisms in
448
+ the image of the map Aut(V1) × Aut(V2) → Aut(V ) preserve the symplectic form ω on V up to a
449
+ scalar.
450
+ In (1), without any loss of generality, the two nondegenerate subspaces V1 and V2 can be chosen
451
+ to be orthogonal complements under the nondegenerate pairing ω, and so by Witt’s theorem, in a
452
+ suitable basis for V1⊕V2 obtained by concatenating a basis of V1 and a basis of V2, the nondegenerate
453
+ symplectic pairing ω has the following block-diagonal shape:
454
+ B ∶=
455
+ ⎡⎢⎢⎢⎢⎢⎢⎢⎣
456
+ 0
457
+ 1
458
+ −1
459
+ 0
460
+ 0
461
+ 1
462
+ −1
463
+ 0
464
+ ⎤⎥⎥⎥⎥⎥⎥⎥⎦
465
+ .
466
+ The condition that an element (m1,m2) ∈ Aut(V1) ⊕ Aut(V2) preserves the symplectic pairing
467
+ up to a similitude factor of λ is the condition (m1,m2)T B(m1,m2) = λB, which boils down to
468
+ det(m1) = λ = det(m2).
469
+ Similarly, in (2), without any loss of generality, by Witt’s theorem, in a suitable basis for V1 ⊕V2
470
+ obtained by concatenating a basis of the isotropic subspace V1 and a basis of the isotropic subspace
471
+ V2, the nondegenerate symplectic pairing ω has the following block-diagonal shape.
472
+ B ∶=
473
+ ⎡⎢⎢⎢⎢⎢⎢⎢⎣
474
+ 0
475
+ 1
476
+ 1
477
+ 0
478
+ 0
479
+ −1
480
+ −1
481
+ 0
482
+ ⎤⎥⎥⎥⎥⎥⎥⎥⎦
483
+ .
484
+ The condition that an element (m1,m2) ∈ Aut(V1) ⊕ Aut(V2) preserves the symplectic pairing
485
+ up to a similitude factor of λ is the condition (m1,m2)T B(m1,m2) = λB, which again boils down
486
+ to mT
487
+ 1 m2 = λI.
488
+ If we have a subspace W defined over Fq2 but not defined over Fq, and we let W denote the
489
+ conjugate subspace and further assume that W ⊕W gives a direct sum decomposition of V , then we
490
+ get a natural embedding of Aut(W) (≅ GL2(Fq2)) into Aut(V ) (≅ GL4(Fq)) whose image consists
491
+ of automorphisms that commute with the natural involution of V ⊗ Fq2 induced by the Galois
492
+ automorphism of Fq2 over Fq. The proofs of cases (3) and (4) are analogous to the cases (1) and (2)
493
+ respectively, by using the direct sum decomposition W ⊕W and letting m2 = ι(m1). The condition
494
+ that det(m1) = det(m2) in (1) becomes the condition det(m1) = det(m2) = detm1 = det(m1), or
495
+
496
+ 10
497
+ BANWAIT, BRUMER, KIM, KLAGSBRUN, MAYLE, SRINIVASAN, AND VOGT
498
+ equivalently, that det(m1) ∈ Fq in (3). Similarly, the condition that mT
499
+ 1 m2 = λI in (2) becomes the
500
+ condition that mT
501
+ 1 ι(m1) = λI in (4).
502
+
503
+ 2.5. Image of inertia and (tame) fundamental characters. Dieulefait [Die02] used Mitchell’s
504
+ work described in the previous subsection to classify the maximal subgroups of GSp4(Fℓ) that could
505
+ occur as the image of ρA,ℓ . This was achieved via an application of a fundamental result of Serre
506
+ and Raynaud that strongly constrains the action of inertia at ℓ, and which we now recall.
507
+ Fix a prime ℓ > 3 that does not divide the conductor N of A. Let Iℓ be an inertia subgroup
508
+ at ℓ. Let ψn∶Iℓ → F×
509
+ ℓn denote a (tame) fundamental character of level n. The n Galois-conjugate
510
+ fundamental characters ψn,1,...,ψn,n of level n are given by ψn,i ∶= ψℓi
511
+ n . Recall that the fundamental
512
+ character of level 1 is simply the mod ℓ cyclotomic character cycℓ, and that the product of all
513
+ fundamental characters of a given level is the cyclotomic character.
514
+ Theorem 2.6 (Serre [Ser72], Raynaud [Ray74], cf. [Die02][Theorem 2.1). Let ℓ be a semistable
515
+ prime for A. Let V /Fℓ be an n-dimensional Jordan–H¨older factor of the Iℓ-module A[ℓ]. Then V
516
+ admits a 1-dimensional Fℓn-vector space structure such that ρA,ℓ∣Iℓ acts on V via the character
517
+ ψd1
518
+ n,1⋯ψdn
519
+ n,n
520
+ with each di equal to either 0 or 1.
521
+ On the other hand, the following fundamental result of Grothendieck constrains the action of
522
+ inertia at semistable primes p ≠ ℓ.
523
+ Theorem 2.7 (Grothendieck [GRR72, Expos´e IX, Prop 3.5]). Let A be an abelian variety over a
524
+ number field K. Then A has semistable reduction at p ≠ ℓ if and only if the action of Ip ⊂ GK on
525
+ TℓA is unipotent of length 2.
526
+ Combining these two results allows one fine control of the determinant of a subquotient of A[ℓ];
527
+ this will be used in Section 3.
528
+ Corollary 2.8. Let A/Q be an abelian surface, and let Xℓ be a Jordan–H¨older factor of the Fℓ[GQ]-
529
+ module A[ℓ] ⊗ Fℓ. If ℓ is a semistable prime, then
530
+ detXℓ ≃ ϵ ⋅ cycx
531
+
532
+ for some character ϵ∶GQ → Fℓ that is unramified at ℓ and some 0 ≤ x ≤ dimXℓ. Moreover, ϵ120 = 1.
533
+ Proof. The first part follows immediately from Theorem 2.6.
534
+ For the fact that ϵ120 = 1, every
535
+ abelian surface attains semistable reduction over an extension K/Q with [K ∶ Q] dividing 120 by
536
+ [LV14a, Theorem 7.2], and so this follows from Theorem 2.7 since there are no nontrivial unramified
537
+ characters of GQ.
538
+
539
+ We can now state Dieulefait’s classification of maximal subgroups of GSp4(Fℓ) that can occur
540
+ as the image ρA,ℓ(GQ) for a semistable prime ℓ > 7.
541
+ Proposition 2.9 ([Die02]). Let A be the Jacobian of a genus 2 curve defined over Q with Weil
542
+ pairing ω on A[ℓ]. If ℓ > 7 is a semistable prime, then ρA,ℓ(GQ) is either all of GSp(A[ℓ],ω) or it
543
+ is contained in one of the maximal subgroups of Types (1) or (2) in Lemma 2.3.
544
+ See also [Lom16, Proposition 3.15] for an expanded exposition of why the image of GQ cannot
545
+ be contained in maximal subgroup of Type (3) for a semistable prime ℓ > 7.
546
+ Remark 8. However, if ℓ is a prime of additive reduction, or if ℓ ≤ 7, then the image of GQ may also
547
+ be contained in any of the four types of maximal subgroups described in Lemma 2.3. Nevertheless,
548
+ by [LV22, Theorem 6.6], for any prime ℓ > 24, we have that the exponent of the projective image is
549
+ bounded exp(PρA,ℓ) ≥ (ℓ−1)/12. Since exp(G1920) = 2exp(S6) = 120 and exp(G720) = exp(S5) = 60,
550
+ the exceptional maximal subgroups cannot occur as ρA,ℓ(GQ) for ℓ > 1441.
551
+
552
+ COMPUTING NONSURJECTIVE PRIMES IN GENUS 2
553
+ 11
554
+ 2.6. A consequence of the Chebotarev density theorem. Let K/Q be a finite Galois exten-
555
+ sion with Galois group G = Gal(K/Q) and absolute discriminant dK. Let S ⊆ G be a nonempty
556
+ subset that is closed under conjugation. By the Chebotarev density theorem, we know that
557
+ (3)
558
+ lim
559
+ x→∞
560
+ ∣{p ≤ x ∶ p is unramified in K and Frobp ∈ S}∣
561
+ ∣{p ≤ x}∣
562
+ = ∣S∣
563
+ ∣G∣.
564
+ Let p be the least prime such that p is unramified in K and Frobp ∈ S. There are effective versions
565
+ of the Chebotarev density theorem that give bounds on p. The best known unconditional bounds
566
+ are polynomial in dK [LMO79, AK19, KW22]. Under GRH, the best known bounds are polynomial
567
+ in log dK. In particular Bach and Sorenson [BS96] showed that under GRH,
568
+ (4)
569
+ p ≤ (4log dK + 2.5[K ∶ Q] + 5)2.
570
+ The present goal is to give an effective version of the Chebotarev density theorem in the context
571
+ of abelian surfaces. We will use a corollary of (4) that is noted in [MW21] which allows for the
572
+ avoidance of a prescribed set of primes by taking a quadratic extension of K. We do this because
573
+ we will take K = Q(A[ℓ]), and p being unramified in K is not sufficient to imply that p is a prime
574
+ of good reduction for A. Lastly, we will use that by [Ser81, Proposition 6], if K/Q is finite Galois,
575
+ then
576
+ (5)
577
+ log dK ≤ ([K ∶ Q] − 1)log rad(dK) + [K ∶ Q]log([K ∶ Q]),
578
+ where radn = ∏p∣n p denotes the radical of an integer n.
579
+ Lemma 2.10. Let A/Q be a typical principally polarized abelian surface with conductor NA. Let q
580
+ be a prime. Let S ⊆ ρA,q(GQ) be a nonempty subset that is closed under conjugation. Let p be the
581
+ least prime of good reduction for A such that p ≠ q and ρA,q(Frobp) ∈ S. Assuming GRH, we have
582
+ p ≤ (4[(2q11 − 1)log rad(2qNA) + 22q11 log(2q)] + 5q11 + 5)
583
+ 2 .
584
+ Proof. Let K = Q(A[q]). Then K/Q is Galois and
585
+ [K ∶ Q] ≤ ∣GSp4(Fq)∣ = q4(q4 − 1)(q2 − 1)(q − 1) ≤ q11.
586
+ As raddK is the product of primes that ramify in Q(A[q]), the criterion of N´eron-Ogg-Shafarevich
587
+ for abelian varieties [ST68, Theorem 1] implies that rad(dK) divides rad(qNA). Let ˜K ∶= K(√m)
588
+ where m ∶= rad(2NA). Note that the primes that ramify in ˜K are precisely 2, q, and the primes of
589
+ bad reduction for A. Thus rad(d ˜
590
+ K) = rad(2qNA). Moreover [ ˜K ∶ Q] ≤ 2q11 and by (5),
591
+ log(d ˜
592
+ K) ≤ (2q11 − 1)log rad(2qNA) + 22q11 log(2q).
593
+ Applying [MW21, Corollary 6] to the field ˜K, we get that (under GRH) there exists a prime p
594
+ satisfying the claimed bound, that does not divide m, and for which ρA,q(Frobp) ∈ S.
595
+
596
+ 3. Finding a finite set containing all nonsurjective primes
597
+ In this section we describe Algorithm 3.1 referenced in Theorem 1.1(1). This algorithm produces
598
+ a finite list PossiblyNonsurjectivePrimes that provably includes all nonsurjective primes ℓ. We also
599
+ prove Theorem 1.2.
600
+ Since our goal is to produce a finite list (from which we will later remove extraneous primes) it
601
+ is harmless to include the finitely many bad primes as well as 2,3,5,7. Using Proposition 2.9, it
602
+ suffices to find conditions on ℓ > 7 for which ρA,ℓ(GQ) could be contained in one of the maximal
603
+ subgroups of type (1) and (2) in Lemma 2.3. We first find primes ℓ for which ρA,ℓ has (geometrically)
604
+ reducible image (and hence is contained in a maximal subgroup in case (1) of Lemma 2.3 or in a
605
+ subgroup Mℓ in case (2)). To treat the geometrically irreducible cases, we then make use of the
606
+ observation from Lemma 2.4 1a that every element outside of an index 2 subgroup has trace 0.
607
+
608
+ 12
609
+ BANWAIT, BRUMER, KIM, KLAGSBRUN, MAYLE, SRINIVASAN, AND VOGT
610
+ Algorithm 3.1. Given a typical genus 2 curve C/Q with conductor N and Jacobian A, compute
611
+ a finite list PossiblyNonsurjectivePrimes of primes as follows.
612
+ (1) Initialize PossiblyNonsurjectivePrimes = [2,3,5,7].
613
+ (2) Add to PossiblyNonsurjectivePrimes all primes dividing N.
614
+ (3) Add to PossiblyNonsurjectivePrimes the good primes ℓ for which ρA,ℓ ⊗ Fℓ could be reducible via
615
+ Algorithms 3.3, 3.6, and 3.10.
616
+ (4) Add to PossiblyNonsurjectivePrimes the good primes ℓ for which ρA,ℓ ⊗Fℓ could be irreducible but
617
+ nonsurjective via Algorithm 3.13.
618
+ (5) Return PossiblyNonsurjectivePrimes.
619
+ At a very high-level, each of the subalgorithms of Algorithm 3.1 makes use of a set of auxiliary
620
+ good primes p. We compute the integral characteristic polynomial of Frobenius Pp(t) and use it to
621
+ constrain those ℓ ≠ p for which the image could have a particular shape.
622
+ Remark 9. Even though robust methods to compute the conductor N of a genus 2 curve are not
623
+ implemented at the time of writing, the odd-part Nodd of N can be computed via genus2red
624
+ function of PARI and the genus2reduction module of SageMath, both based on an algorithm
625
+ of Liu [Liu94]. Moreover, [BK94, Theorem 6.2] bounds the 2-exponent of N above by 20 and hence
626
+ N can be bounded above by 220Nodd. While these algorithms can be run only with the bound
627
+ 220Nodd, it will substantially increase the run-time of the limiting Algorithm 3.10.
628
+ We now explain each of these steps in detail.
629
+ 3.1. Good primes that are not geometrically irreducible. In this section we describe the
630
+ conditions that ℓ must satisfy for the base-extension A[ℓ] ∶= A[ℓ] ⊗Fℓ Fℓ to be reducible. In this
631
+ case, the representation A[ℓ] is an extension
632
+ (6)
633
+ 0 → Xℓ → A[ℓ] → Yℓ → 0
634
+ of a (quotient) representation Yℓ by a (sub) representation Xℓ. Recall that Nsq denotes the largest
635
+ square divisor of N.
636
+ Lemma 3.2. Let ℓ be a prime of good reduction for A and suppose that A[ℓ] sits in sequence (6).
637
+ Let p ≠ ℓ be a good prime for A and let f denote the order of p in (Z/NsqZ)×. Then there exists
638
+ 0 ≤ x ≤ dimXℓ and 0 ≤ y ≤ dimYℓ such that Frobgcd(f,120)
639
+ p
640
+ acts on detXℓ by pgcd(f,120)x, respectively
641
+ on detYℓ by pgcd(f,120)y.
642
+ Proof. Since ℓ is a good prime and Xℓ is composed of Jordan–H¨older factors of A[ℓ], Corollary 2.8
643
+ constrains its determinant. We have detXℓ = ϵcycx
644
+ ℓ for some character ϵ∶GQ → Fℓ unramified at ℓ,
645
+ and 0 ≤ x ≤ dimXℓ, and ϵ120 = 1. Hence Frob120
646
+ p
647
+ acts on detXℓ by cycℓ(Frobp)120x = p120x.
648
+ In fact, we can do slightly better. Since detA[ℓ] ≃ cyc2
649
+ ℓ, we have detYℓ ≃ ϵ−1 cyc2−x
650
+
651
+ . Since the
652
+ conductor is multiplicative in extensions, we conclude that cond(ϵ)2 ∣ N. By class field theory,
653
+ the character ϵ factors through (Z/cond(ϵ)Z)×, and hence through (Z/NsqZ)×, sending Frobp
654
+ to p (mod Nsq). Since pf ≡ 1 (mod Nsq), we have that ϵ(Frobp)gcd(f,120) = 1, and we see that
655
+ Frobgcd(f,120)
656
+ p
657
+ acts on detXℓ by pgcd(f,120)x. Exchanging the roles of Xℓ and Yℓ, we deduce the
658
+ analogous statement for Yℓ.
659
+
660
+ This is often enough information to find all ℓ for which A[ℓ] has a nontrivial subquotient. Namely,
661
+ by Theorem 2.1, every root of Pp(t) has complex absolute value p1/2. Thus the gcd(f,120)-th power
662
+ of each root has complex absolute value pgcd(f,120)/2, and hence is never integrally equal to 1 or
663
+ pgcd(f,120). Since Lemma 3.2 guarantees that this equality must hold modulo ℓ for any good prime
664
+ ℓ for which A[ℓ] is reducible with a 1-dimensional subquotient, we always get a nontrivial condition
665
+ on ℓ. Some care must be taken to rule out ℓ for which A[ℓ] only has 2-dimensional subquotient(s).
666
+
667
+ COMPUTING NONSURJECTIVE PRIMES IN GENUS 2
668
+ 13
669
+ 3.1.1. Odd-dimensional subquotient. Let p be a good prime.
670
+ Given a polynomial P(t) and an
671
+ integer f, write P (f)(t) for the polynomial whose roots are the fth powers of roots of P(t).
672
+ Universal formulas for such polynomials in terms of the coefficients of P(t) are easy to compute,
673
+ and are implemented in our code in the case where P is a degree 4 polynomial whose roots multiply
674
+ in pairs to pα, and f ∣ 120.
675
+ Algorithm 3.3. Given a typical genus 2 Jacobian A/Q of conductor N, let f denote the order of
676
+ p in (Z/NsqZ)× and write f′ = gcd(f,120). Compute an integer Modd as follows.
677
+ (1) Choose a nonempty finite set T of auxiliary good primes p ∤ N.
678
+ (2) For each p, compute
679
+ Rp ∶= P (f′)
680
+ p
681
+ (1).
682
+ (3) Let Modd = gcdp∈T (pRp) over all auxiliary primes.
683
+ Return the list of prime divisors ℓ of Modd.
684
+ Proposition 3.4. Any good prime ℓ for which A[ℓ] has an odd-dimensional subrepresentation is
685
+ returned by Algorithm 3.3.
686
+ Proof. Since A[ℓ] is 4-dimensional and has an odd-dimensional subrepresentation, it has a 1-
687
+ dimensional subquotient. For any p ∈ T , Lemma 3.2 shows that Frobf′
688
+ p acts on detXℓ by either pf′
689
+ or by 1. Thus, the action of Frobf′
690
+ p on A[ℓ] has an eigenvalue that is congruent to pf′ or 1 modulo
691
+ ℓ, and so P (f′)
692
+ p
693
+ (t) has a root that is congruent to 1 or pf′ modulo ℓ. Since the roots of P (f′)(t)
694
+ multiply in pairs to pf′, we have P (f′)
695
+ p
696
+ (pf′) = p2f′P (f′)
697
+ p
698
+ (1). Hence ℓ divides p ⋅ P (f′)
699
+ p
700
+ (1) = pRp.
701
+
702
+ Using Theorem 2.1, we can give a theoretical bound on the “worst case” of this step of the
703
+ algorithm using only one auxiliary prime p. Of course, taking the greatest common divisor over
704
+ multiple auxiliary primes will likely remove extraneous factors, and in practice this step of the
705
+ algorithm runs substantially faster than other steps.
706
+ Proposition 3.5. Algorithm 3.3 terminates. More precisely, if p is any good prime for A, then
707
+ 0 ≠ ∣Modd∣ ≪ p240
708
+ where the implied constant is absolute.
709
+ Proof. This follows from the fact that the coefficient of ti in P (f′)
710
+ p
711
+ (t) has magnitude on the order
712
+ of p(2−i)f′ and f′ ≤ 120.
713
+
714
+ 3.1.2. Two-dimensional subquotients. We now assume that A[ℓ] is reducible, but does not have
715
+ any odd-dimensional subquotients.
716
+ In particular, it has an irreducible subrepresentation Xℓ of
717
+ dimension 2, with irreducible quotient Yℓ of dimension 2. If A[ℓ] is reducible but indecomposable,
718
+ then Xℓ is the unique subrepresentation of A[ℓ] and Y ∨
719
+ ℓ ⊗ cycℓ is the unique subrepresentation
720
+ of A[ℓ]
721
+ ∨ ⊗ cycℓ. The isomorphism TℓA ≃ (TℓA)∨ ⊗ cycℓ from (1) yields an isomorphism A[ℓ] ≃
722
+ (A[ℓ])∨ ⊗ cycℓ and hence Xℓ ≃ Y ∨
723
+ ℓ ⊗ cycℓ. Otherwise, A[ℓ] ≃ Xℓ ⊕ Yℓ and so the nondegeneracy of
724
+ the Weil pairing gives
725
+ Xℓ ⊕ Yℓ ≃ (X∨
726
+ ℓ ⊗ cycℓ) ⊕ (Y ∨
727
+ ℓ ⊗ cycℓ).
728
+ Therefore either:
729
+ (a) Xℓ ≃ Y ∨
730
+ ℓ ⊗ cycℓ and Yℓ ≃ X∨
731
+ ℓ ⊗ cycℓ, or
732
+ (b) Xℓ ≃ X∨
733
+ ℓ ⊗ cycℓ and Yℓ ≃ Y ∨
734
+ ℓ ⊗ cycℓ and A[ℓ] ≃ Xℓ ⊕ Yℓ.
735
+ We call the first case related 2-dimensional subquotients and the second case self-dual 2-dimensional
736
+ subrepresentations.
737
+ We will see that the ideas of Lemma 3.2 easily extend to treat the related
738
+ subquotient case; we will use the validity of Serre’s conjecture to treat the self-dual case. In the
739
+
740
+ 14
741
+ BANWAIT, BRUMER, KIM, KLAGSBRUN, MAYLE, SRINIVASAN, AND VOGT
742
+ case that A[ℓ] is decomposable, the above two cases correspond respectively to the index 2 subgroup
743
+ Mℓ in cases (2a) (the isotropic case) and (2b) (the nondegenerate case) of Lemma 2.3.
744
+ 3.1.3. Related two-dimensional subquotients. Let p be a good prime. Let Pp(t) ∶= t4−at3+bt2−pat+p2
745
+ be the characteristic polynomial of Frobp acting on A[ℓ]. Suppose that α and β are the eigenvalues
746
+ of Frobp acting on the subrepresentation Xℓ. Then, since Xℓ ≃ Y ∨
747
+ ℓ ⊗ cycℓ, the eigenvalues of the
748
+ action of Frobp on Yℓ are p/α and p/β. The action of Frobp on detXℓ is therefore by a product of
749
+ two of the roots of Pp(t) that do not multiply to p. Note that there are four such pairs of roots of
750
+ Pp(t) that do not multiply to p. Let Qp(t) be the quartic polynomial whose roots are the products
751
+ of pairs of roots of Pp(t) that do not multiply to p. By design, the roots of Qp(t) have complex
752
+ absolute value p, but are not equal to p. (It is elementary to work out that
753
+ Qp(t) = t4 − (b − 2p)t3 + p(a2 − 2b + 2p)t2 − p2(b − 2p)t + p4
754
+ and is a quartic whose roots multiply in pairs to p2.)
755
+ Algorithm 3.6. Given a typical genus 2 Jacobian A/Q of conductor N, let f denote the order of
756
+ p in (Z/NsqZ)× and write f′ = gcd(f,120). Compute an integer Mrelated as follows.
757
+ (1) Choose a finite set T of auxiliary good primes p ∤ N;
758
+ (2) For each p, compute the product
759
+ Rp ∶= Q(f′)
760
+ p
761
+ (1)Q(f′)
762
+ p
763
+ (pf′)
764
+ (3) Let Mrelated = gcdp∈T (pRp).
765
+ Return the list of prime divisors ℓ of Mrelated.
766
+ Proposition 3.7. Any good prime ℓ for which A[ℓ] has related two-dimensional subquotients is
767
+ returned by Algorithm 3.6.
768
+ Proof. Proceed similarly as in the proof of Proposition 3.4 — in particular, ℓ divides Q(f′)
769
+ p
770
+ (1),
771
+ Q(f′)
772
+ p
773
+ (pf′), or Q(f′)
774
+ p
775
+ (p2f′) and hence ℓ divides pRp since Q(f′)
776
+ p
777
+ (p2f′) = p4f′Q(f′)
778
+ p
779
+ (1).
780
+
781
+ A theoretical “worst case” analysis yields the following.
782
+ Proposition 3.8. Algorithm 3.6 terminates. More precisely, if q is the smallest surjective prime
783
+ for A, then a good prime p for which Rp is nonzero is bounded by a function of q. Assuming GRH,
784
+ p ≪ q22 log2(qN),
785
+ where the implied constants are absolute and effectively computable. Moreover, for such a prime p,
786
+ ∣Mrelated∣ ≪ p961 ≪ q21142 log1922(qN),
787
+ where the implied constants are absolute.
788
+ Proof. By Serre’s open image theorem for genus 2 curves, such a prime q exists, and by Lemma
789
+ 2.10, the prime p can be chosen such that Rp is nonzero modulo q. Finally,
790
+ Mrelated ≤ pRp = pQ(f′)(1)Q(f′)(pf′) ≪ p8f′+1 ≪ p961,
791
+ since the coefficient of ti in Q(f′)(t) has magnitude on the order of p(4−i)f′ and f′ ≤ 120.
792
+
793
+
794
+ COMPUTING NONSURJECTIVE PRIMES IN GENUS 2
795
+ 15
796
+ 3.1.4. Self-dual two-dimensional subrepresentations. In this case, both subrepresentations Xℓ and
797
+ Yℓ are absolutely irreducible 2-dimensional Galois representations with determinant the cyclotomic
798
+ character cycℓ. It follows that the representations are odd (i.e., the determinant of complex con-
799
+ jugation is −1.) Therefore, by the Khare–Wintenberger theorem (formerly Serre’s conjecture on
800
+ the modularity of mod-ℓ Galois representations) [Kha06, KW09a, KW09b], both Xℓ and Yℓ are
801
+ modular; that is, for i = 1,2, there exist newforms fi ∈ Snew
802
+ ki (Γ1(Ni),ϵi) such that
803
+ Xℓ ≅ ρf1,ℓ and Yℓ ≅ ρf2,ℓ.
804
+ Furthermore, by the multiplicativity of Artin conductors, we obtain the divisibility N1N2 ∣ N.
805
+ Lemma 3.9. Both f1 and f2 have weight two and trivial Nebentypus; that is, k1 = k2 = 2, and
806
+ ϵ1 = ϵ2 = 1.
807
+ Proof. From Theorem 2.6, we have that Xℓ∣Iℓ and Yℓ∣Iℓ must each be conjugate to either of the
808
+ following subgroups of GL2(Fℓ):
809
+ (1
810
+
811
+ 0
812
+ cycℓ
813
+ ) or (ψ2
814
+ 0
815
+ 0
816
+ ψℓ
817
+ 2
818
+ ).
819
+ The assertion of weight 2 now follows from [Ser87, Proposition 3]. (Alternatively, one may use
820
+ Proposition 4 of loc. cit., observing that X��� and Yℓ are finite and flat as group schemes over Zℓ
821
+ because ℓ is a prime of good reduction.)
822
+ From Section 1 of loc. cit., the Nebentypus ϵi of fi satisfies, for all p ∤ ℓN,
823
+ detXℓ(Frobp) = p ⋅ ϵi(p),
824
+ where this equality is viewed inside F
825
+ ×
826
+ ℓ . The triviality follows.
827
+
828
+ We therefore have newforms fi ∈ Snew
829
+ 2
830
+ (Γ0(Ni)) such that
831
+ (7)
832
+ A[ℓ] ≃ ρf1,ℓ ⊕ ρf2,ℓ.
833
+ We may assume without loss of generality that N1 ≤
834
+
835
+ N. Let p ∤ N be an auxiliary prime. We
836
+ obtain from equation (7) that the integral characteristic polynomial of Frobenius factors:
837
+ Pp(t) ≡ (t2 − ap(f1)t + p)(t2 − ap(f2)t + p)
838
+ mod ℓ;
839
+ here we use the standard property that, for f a normalised eigenform with trivial Nebentypus,
840
+ ρf,ℓ(Frobp) satisfies the polynomial equation t2 − ap(f)t + p for p ≠ ℓ. In particular, we have
841
+ Res(Pp(t),t2 − ap(f1)t + p) ≡ 0
842
+ mod ℓ.
843
+ This serves as the basis of the algorithm to find all primes ℓ in this case.
844
+ Algorithm 3.10. Given a typical genus 2 Jacobian A/Q of conductor N, compute an integer
845
+ Mself-dual as follows.
846
+ (1) Compute the set S of divisors d of N with d ≤
847
+
848
+ N.
849
+ (2) For each d ∈ S:
850
+ (a) compute the Hecke L-polynomial
851
+ Qd(t) ∶= ∏
852
+ f
853
+ (t2 − ap(f)t + p),
854
+ where the product is taken over the finitely many newforms in Snew
855
+ 2
856
+ (Γ0(d));
857
+ (b) choose a finite set T of auxiliary primes p ∤ N;
858
+ (c) for each auxiliary prime p, compute the resultant
859
+ Rp(d) ∶= Res(Pp(t),Qd(t));
860
+
861
+ 16
862
+ BANWAIT, BRUMER, KIM, KLAGSBRUN, MAYLE, SRINIVASAN, AND VOGT
863
+ (d) Take the greatest common divisor
864
+ M(d) ∶= gcd
865
+ p∈T
866
+ (pRp(d)).
867
+ (3) Let Mself-dual ∶= ∏d∈S M(d).
868
+ Return the list of prime divisors ℓ of Mself-dual.
869
+ Proposition 3.11. Any good prime ℓ for which A[ℓ] has self-dual two-dimensional subrepresenta-
870
+ tions is returned by Algorithm 3.10.
871
+ Proof. If ℓ is in T for any d ∈ S, then ℓ is in the output because Mself-dual is a multiple of M(d)
872
+ which in turn is a multiple of any element of T . Otherwise, as explained before Algorithm 3.10,
873
+ there is some N1 ∈ S and some newform f1 ∈ Snew
874
+ 2
875
+ (Γ0(N1)) such that Res(Pp(t),t2 − apf1t + p) ≡ 0
876
+ (mod ℓ) for every p ∈ T . In particular, Rp(N1) ≡ 0 (mod ℓ), so ℓ divides M(N1) and Mself-dual.
877
+
878
+ We can again do a “worst case” theoretical analysis of this algorithm to conclude the following.
879
+ As this indicates, this is by far the limiting step of the algorithm.
880
+ Proposition 3.12. Algorithm 3.10 terminates. More precisely, if q is the smallest surjective prime
881
+ for A, then a good prime p for which Rp(d) is nonzero is bounded by a function of q. Assuming GRH,
882
+ p ≪ q22 log2(qN), where the implied constant is absolute and effectively computable. Moreover, for
883
+ such a prime p, we have
884
+ ∣Rp(d)∣ ≪ (2p1/2)8 dim Snew
885
+ 2
886
+ (Γ0(d)) ≪ (4p)(d+1)/3,
887
+ and so all together
888
+ ∣Mself-dual∣ ≪ (4q)N1/2+ϵ,
889
+ where the implied constants are absolute.
890
+ Proof. As in Proposition 3.8, we use Serre’s open image theorem and the Effective Chebotarev
891
+ Theorem. If Rp(d) is zero integrally, then in particular Rp(d) ≡ 0 (mod q) and Pp(t) is reducible
892
+ modulo q. Since GSp4(Fq) contains elements that do not have reducible characteristic polynomial,
893
+ Lemma 2.10 implies that such elements are the image of Frobp for p bounded as claimed.
894
+ The resultant Rp(d) is the product of the pairwise differences of the roots of Pp(t) and Qd(t),
895
+ which all have complex absolute value p1/2. Hence the pairwise differences have absolute value
896
+ at most 2p1/2.
897
+ Moreover dimSnew
898
+ 2
899
+ (Γ0(d)) ≤ (d + 1)/12 by [Mar05, Theorem 2].
900
+ Since there
901
+ are 8dimSnew
902
+ 2
903
+ (Γ0(d)) such terms multiplied to give Rp(d), the bound for Rp(d) follows. Since
904
+ Mself-dual = ∏ d∣N
905
+ d≤
906
+
907
+ N
908
+ pRp(d), it suffices to bound
909
+
910
+ d∣N
911
+ d≤
912
+
913
+ N
914
+ d + 4
915
+ 3
916
+
917
+
918
+ d∣N
919
+ d≤
920
+
921
+ N
922
+
923
+ N + 4
924
+ 3
925
+ ≤ σ0(N)
926
+
927
+ N + 4
928
+ 3
929
+ .
930
+ Since σ0(N) ≪ Nϵ by [Apo76, (31) on page 296], we obtain the claimed bound.
931
+
932
+ Remark 10. The polynomial Qd(t) in step (2) of Algorithm 3.10 is closely related to the charac-
933
+ teristic polynomial Hd(t) of the Hecke operator Tp acting on the space S2(Γ0(d)), which may be
934
+ computed via modular symbols computations. One may recover Qd(t) from Hd(t) by first homoge-
935
+ nizing H with an auxiliary variable z (say) to obtain Hd(t,z), and setting t = 1+pz2 (an observation
936
+ we made in conjunction with Joseph Wetherell). In our computation of nonsurjective primes for
937
+ the database of genus 2 curves with conductor at most 220 (including those in the LMFDB), we
938
+ only needed to use polynomials Qd(t) for level up to 210 (since step (1) of the Algorithm has a
939
+
940
+ N term). We are grateful to Andrew Sutherland for providing us with a precomputed dataset
941
+ for these levels resulting from the creation of an extensive database of modular forms going well
942
+ beyond what was previously available [BBB+21].
943
+
944
+ COMPUTING NONSURJECTIVE PRIMES IN GENUS 2
945
+ 17
946
+ Remark 11. Our Sage implementation uses two auxiliary primes in Step 2(b) of the above algorithm.
947
+ Increasing the number of such primes yields smaller supersets at the expense of longer runtime.
948
+ 3.2. Good primes that are geometrically irreducible. Let φ be any quadratic Dirichlet char-
949
+ acter φ∶(Z/NZ)× → {±1}. Our goal in this subsection is to find all good primes ℓ governed by φ,
950
+ by which we mean that
951
+ tr(ρA,ℓ(Frobp)) ≡ ap ≡ 0
952
+ mod ℓ
953
+ whenever φ(p) = −1.
954
+ We will consider the set of all quadratic Dirichlet character φ∶(Z/NZ)× → {±1}. Using the struc-
955
+ ture theorem for finite abelian groups and the fact that φ factors through (Z/NZ)×/((Z/NZ)×)2,
956
+ this set has the structure of an F2-vector space of dimension
957
+ d(N) ∶= ω(N) +
958
+ ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
959
+ 0
960
+ ∶ v2(N) = 0
961
+ −1
962
+ ∶ v2(N) = 1
963
+ 0
964
+ ∶ v2(N) = 2
965
+ 1
966
+ ∶ v2(N) ≥ 3,
967
+ where ω(m) denotes the number of prime factors of m and v2(m) is the 2-adic valuation of m. In
968
+ particular, d(N) ≤ ω(N) + 1.
969
+ Algorithm 3.13. Given a typical genus 2 Jacobian A/Q of conductor N, compute an integer Mquad
970
+ as follows.
971
+ (1) Compute the set S of quadratic Dirichlet characters φ∶(Z/NZ)× → {±1}.
972
+ (2) For each φ ∈ S:
973
+ (a) Choose a nonempty finite set T of “auxiliary” primes p ∤ N for which ap ≠ 0 and φ(p) = −1.
974
+ (b) Take the greatest common divisor
975
+ Mφ ∶= gcd
976
+ p∈T
977
+ (pap),
978
+ over all auxiliary primes p.
979
+ (3) Let Mquad ∶= ∏φ∈S Mφ.
980
+ Return the list of prime divisors ℓ of Mquad.
981
+ Proposition 3.14. Any good prime ℓ for which A[ℓ] is governed by a quadratic character is
982
+ returned by Algorithm 3.13.
983
+ Proof. Suppose that A[ℓ] is governed by the quadratic character φ∶(Z/NZ)× → {±1}. Then for
984
+ every good prime p ≠ ℓ for which φ(p) = −1, the prime ℓ must divide the integral trace of Frobenius
985
+ ap. Hence ℓ divides Mφ and Mquad.
986
+
987
+ Proposition 3.15. Algorithm 3.13 terminates. More precisely, if q is the smallest surjective prime
988
+ for A, then a good prime p for which φ(p) = −1 and ap is nonzero is bounded by a function of q.
989
+ Assuming GRH, p ≪ 22d(N)q22 log2(qN), where the implied constant is absolute and effectively
990
+ computable. Moreover, we have
991
+
992
+ φ∈S
993
+
994
+ ℓ governed
995
+ by φ
996
+ ℓ ≪ (23d(N)q33 log3(qN))2−21−d(N) ≪ 26ω(N)q66 log6(qN),
997
+ where the implied constant is absolute and effectively computable.
998
+ Proof. We imitate the proof of [LV14b, Lemma 21] in our setting. Let V be the d-dimensional
999
+ F2-vector space of quadratic Dirichlet characters of modulus N (equivalently, quadratic Galois
1000
+ characters unramified outside of N). Let ρV ∶GK → V ∨ denote the representation sending Frobp to
1001
+ the linear functional φ ↦ φ(p). Since the character for PGSp4(Fq)/PSp4(Fq) is the abelianization
1002
+
1003
+ 18
1004
+ BANWAIT, BRUMER, KIM, KLAGSBRUN, MAYLE, SRINIVASAN, AND VOGT
1005
+ of PρA,q, we conclude in the same way as [LV14b, Proof of Lemma 21] that for any α ∈ V ∨, there
1006
+ exists an Xα ∈ GSp4(Fq) with tr(Xα) ≠ 0 such that (α,Xα) is in the image of ρV × ρA,ℓ.
1007
+ Apply the effective Chebotarev density theorem to the Galois extension corresponding to ρV ×
1008
+ ρA,q. This has degree at most 2d(N)∣GSp4(Fq)∣ and is unramified outside of qN. Therefore, assum-
1009
+ ing GRH and combining (4) and (5), there exists a prime
1010
+ pα ≪ 22d(N)q22 log2(qN)
1011
+ for which (α,Xα) = (ρV (Frobpα),ρA,q(Frobpα)). Let φ be a character not in the kernel of α. Any
1012
+ exceptional prime ℓ governed by φ must divide pαapα, which is nonzero because it is nonzero modulo
1013
+ q. This proves that the algorithm terminates, since every φ is not in the kernel of precisely half
1014
+ of all α ∈ V ∨. We now bound the size of the product of all ℓ governed by a character in S. If ℓ is
1015
+ governed by φ, then ℓ divides the quantity
1016
+ p∣ap∣ ≤ p3/2 ≪ 23d(N)q33 log3(qN).
1017
+ Taking the product over all nonzero α in V (of which there are 2d(N) − 1), each ℓ will show up half
1018
+ the time, so we obtain:
1019
+
1020
+ ⎜⎜⎜
1021
+
1022
+
1023
+ ℓ governed
1024
+ by φ ∈ S
1025
+
1026
+
1027
+ ⎟⎟⎟
1028
+
1029
+ 2d(N)−1
1030
+ ≪ (23d(N)q33 log3(qN))
1031
+ 2d(N)−1
1032
+ ,
1033
+ which implies the result by taking the (2d(N)−1)th root of both sides.
1034
+
1035
+ Putting all of these pieces together, we obtain the following.
1036
+ Proof of Theorem 1.1(1). If ρA,ℓ is nonsurjective, ℓ > 7, and ℓ ∤ N, then Proposition 2.9 implies
1037
+ that ρA,ℓ(GQ) must be in one of the maximal subgroups of Type (1) or (2) listed in Lemma
1038
+ 2.3. If it is contained in one of the reducible subgroups, i.e. the subgroups of Type (1), then
1039
+ ρA,ℓ(GQ) (and, hence, ρA,ℓ(GQ) ⊗ Fℓ) is reducible, and so ℓ is added to PossiblyNonsurjectivePrimes
1040
+ in Step (3) by Propositions 3.4, 3.7, and 3.11.
1041
+ If ρA,ℓ(GQ) is contained in one of the index 2
1042
+ subgroups Mℓ of an irreducible subgroup of Type (2) listed in Lemma 2.3, then again ℓ is added to
1043
+ PossiblyNonsurjectivePrimes in Step (3), since Mℓ ⊗ Fℓ is always reducible by Lemma 2.4(1b).
1044
+ Hence we may assume that ρA,ℓ(GQ) is contained in one of the irreducible maximal subgroups
1045
+ Gℓ of Type (2) listed in Lemma 2.3, but not in the index 2 subgroup Mℓ. The normalizer character
1046
+ GQ
1047
+ ρA,ℓ
1048
+ ��→ Gℓ → Gℓ/Mℓ = {±1}
1049
+ is nontrivial and unramified outside of N, and so it corresponds to a quadratic Dirichlet character
1050
+ φ∶(Z/NZ)× → {±1}. Lemma 2.4(1a) shows that tr(g) = 0 in Fℓ for any g ∈ Gℓ ∖ Mℓ. Consequently,
1051
+ ℓ is governed by φ (in the language of Section 3.2), so ℓ is added to PossiblyNonsurjectivePrimes in
1052
+ Step (4) by Proposition 3.14.
1053
+
1054
+ 3.3. Bounds on Serre’s open image theorem. In this section we combine the theoretical worst
1055
+ case bounds in the Algorithms 3.3, 3.6, 3.10, and 3.13 to give a bound on the smallest surjective
1056
+ good prime q, and the product of all nonsurjective primes, thereby establishing Theorem 1.2.
1057
+ Corollary 3.16. Let A/Q be a typical genus 2 Jacobian of conductor N. Assuming GRH, we have
1058
+
1059
+ ℓ nonsurjective
1060
+ ℓ ≪ exp(N1/2+ϵ),
1061
+ where the implied constant is absolute and effectively computable.
1062
+
1063
+ COMPUTING NONSURJECTIVE PRIMES IN GENUS 2
1064
+ 19
1065
+ Proof. Let q be the smallest surjective good prime for A, which is finite by Serre’s open image
1066
+ theorem. Multiplying the bounds in Propositions 3.5, 3.8, 3.12, and 3.15 by the conductor N, the
1067
+ product of all nonsurjective primes is bounded by a function of q and N of the following shape
1068
+ (8)
1069
+
1070
+ ℓ nonsurjective
1071
+ ℓ ≪ qN1/2+ϵ.
1072
+ On the other hand, since q is the smallest surjective prime by definition, the product of all primes
1073
+ less than q divides the product of all nonsurjective primes. Using [Ser81, Lemme 11], we have
1074
+ exp(q) ≪ ∏
1075
+ ℓ<q
1076
+ ℓ ≤
1077
+
1078
+ ℓ nonsurjective
1079
+ ℓ ≪ qN1/2+ϵ.
1080
+ Combining the first and last terms, we have q ≪ N1/2+ϵ log(q), whence q ≪ N1/2+ϵ. Plugging this
1081
+ back into (8) yields the claimed bound.
1082
+
1083
+ 4. Testing surjectivity of ρA,ℓ
1084
+ In this section we establish Theorem 1.1(2). The goal is to weed out any extraneous nonsur-
1085
+ jective primes in the output PossiblyNonsurjectivePrimes of Algorithm 3.1 to produce a smaller list
1086
+ LikelyNonsurjectivePrimes(B) containing all nonsurjective primes (depending on a chosen bound
1087
+ B) by testing the characteristic polynomials of Frobenius elements up to the bound B. If B is
1088
+ sufficiently large (quantified in Section 5), the list LikelyNonsurjectivePrimes(B) is provably the list
1089
+ of nonsurjective primes.
1090
+ Algorithm 4.1. Given an integer B and the output PossiblyNonsurjectivePrimes of Algorithm 3.1
1091
+ run on the typical hyperelliptic genus 2 curve with equation y2 + h(x)y = f(x), output a sublist
1092
+ LikelyNonsurjectivePrimes(B) of PossiblyNonsurjectivePrimes as follows.
1093
+ (1) Initialize LikelyNonsurjectivePrimes(B) as PossiblyNonsurjectivePrimes.
1094
+ (2) Remove 2 from LikelyNonsurjectivePrimes(B) if the size of the Galois group of the splitting field
1095
+ of 4f + h2 is 720.
1096
+ (3) For each good prime p < B, while LikelyNonsurjectivePrimes(B) is nonempty:
1097
+ (a) Compute the integral characteristic polynomial Pp(t) of Frobp.
1098
+ (b) For each prime ℓ in LikelyNonsurjectivePrimes(B), run Tests 4.4(i), (ii), and (iii) on Pp(t)
1099
+ to rule out ρA,ℓ(GQ) being contained in one of the exceptional maximal subgroups.
1100
+ (c) For each prime ℓ in LikelyNonsurjectivePrimes(B), run Tests 4.5(i) and (ii) on Pp(t) to rule
1101
+ out ρA,ℓ(GQ) being contained in one of the nonexceptional maximal subgroups.
1102
+ (d) For a given prime ℓ, if each of the 5 tests Tests 4.4(i)–(iii) and Tests 4.5(i)–(ii) have
1103
+ succeeded for some prime p, remove ℓ from LikelyNonsurjectivePrimes(B).
1104
+ (4) Return LikelyNonsurjectivePrimes(B).
1105
+ Remark 12. In our implementation of Step 3 of this algorithm, we have chosen to only use primes
1106
+ p of good reduction for the curve as auxiliary primes, which is a stronger condition than being a
1107
+ good prime for the Jacobian A. More precisely, the primes that are good for the Jacobian but bad
1108
+ for the curve are precisely the prime factors of the discriminant 4f + h2 of a minimal equation for
1109
+ the curve that do not divide the conductor NA of the Jacobian. At such a prime, the reduction
1110
+ of the curve consists of two elliptic curves E1 and E2 intersecting transversally at a single point.
1111
+ Since there are many auxiliary primes p < B to choose from, excluding bad primes for the curve is
1112
+ not a serious restriction, but allows us to access the characteristic polynomial of Frobenius directly
1113
+ by counting points on the reduction of the curve. This is not strictly necessary: one could use the
1114
+ characteristic polynomials of Frobenius for the elliptic curves E1 and E2, which can be computed
1115
+ using the genus2reduction module of SageMath.
1116
+ We briefly summarize the contents of this section. In Section 4.1, we first prove a purely group-
1117
+ theoretic criterion for a subgroup of GSp4(Fℓ) to equal the whole group. Then in Section 4.2,
1118
+
1119
+ 20
1120
+ BANWAIT, BRUMER, KIM, KLAGSBRUN, MAYLE, SRINIVASAN, AND VOGT
1121
+ we explain Test 4.4 and Test 4.5, whose validity follows immediately from Lemma 2.4(3) and
1122
+ Proposition 4.2 respectively. The main idea of these tests is to use auxiliary good primes p ≠ ℓ to
1123
+ generate characteristic polynomials in the image of ρA,ℓ. If we find enough types of characteristic
1124
+ polynomials to rule out each proper maximal subgroup of GSp4(Fℓ) (cf. Proposition 4.2), then we
1125
+ can conclude that ρA,ℓ is surjective. In Section 4.3, we prove Theorems 1.1(2) and 1.3 that justify
1126
+ this algorithm.
1127
+ 4.1. A group-theoretic criterion. We now use the classification of maximal subgroups of GSp4(Fℓ)
1128
+ described in Section 2.4 to deduce a group-theoretic criterion for a subgroup G of GSp4(Fℓ) to be
1129
+ the whole group. This is analogous to [Ser72, Proposition 19 (i)-(ii)].
1130
+ Proposition 4.2. Fix a prime ℓ ≠ 2 and a subgroup G ⊆ GSp4(Fℓ) with surjective similitude
1131
+ character. Assume that G is not contained in one of the exceptional maximal subgroups described
1132
+ in Lemma 2.3(4). Then G = GSp4(Fℓ) if and only if there exists matrices X,Y ∈ G such that
1133
+ (a) the characteristic polynomial of X is irreducible; and
1134
+ (b) traceY ≠ 0 and the characteristic polynomial of Y has a linear factor with multiplicity one.
1135
+ Proof. The ‘only if’ direction follows from Proposition 5.1 below, where we show that a nonzero
1136
+ proportion of elements of GSp4(Fℓ) satisfy the conditions in (a) and (b).
1137
+ Now assume that the group G has elements X and Y as in the statement of the proposition. We
1138
+ have to show that G = GSp4(Fℓ). By assumption, G is not a subgroup of a maximal subgroup of
1139
+ type (4). For each of the remaining types of maximal subgroups in Lemma 2.3, we will use one of
1140
+ the elements X or Y to rule out G being contained in a subgroup of that type.
1141
+ (a) By Lemma 2.2 (iv), every element of a subgroup of type (1) has a reducible characteristic
1142
+ polynomial. The same is true for elements of type (3) by Lemma 2.4 (2). This is violated by
1143
+ the element X, so G cannot be contained in a subgroup of type (1) or type (3).
1144
+ (b) Recall the notation used in the description of a type (2) maximal subgroups in Lemma 2.3.
1145
+ By Lemma 2.4 1a, every element in Gℓ ∖ Mℓ has trace 0. By Lemma 2.2 (iii), an element with
1146
+ irreducible characteristic polynomial automatically has nonzero trace. Hence both X and Y
1147
+ have nonzero trace, and so cannot be contained in Gℓ ∖ Mℓ. We now consider two cases
1148
+ (i) If the two lines are individually defined over Fℓ, then every element in Mℓ preserves a
1149
+ two-dimensional subspace and hence has a reducible characteristic polynomial. This is
1150
+ violated by the element X.
1151
+ (ii) If the two lines are permuted by GFℓ, then the action of Mℓ on the corresponding subspaces
1152
+ V and V ′ are conjugate. Therefore, every Fℓ-rational eigenvalue for the action of Frobp
1153
+ on V , also appears as an eigenvalue for the action on V ′, with the same multiplicity. This
1154
+ is violated by the element Y .
1155
+ Hence G cannot be contained in a maximal subgroup of type (2).
1156
+ Since any subgroup of GSp4(Fℓ) that is not contained in a proper maximal subgroup of GSp4(Fℓ)
1157
+ must equal GSp4(Fℓ), we are done.
1158
+
1159
+ Remark 13. [AdRK13, Corollary 2.2] gives a very similar criterion for a subgroup G of GSp4(Fℓ)
1160
+ to contain Sp4(Fℓ), namely that it contains a transvection, and also an element with irreducible
1161
+ characteristic polynomial (and hence automatically nonzero trace).
1162
+ 4.2. Surjectivity tests.
1163
+ 4.2.1. Surjectivity test for ℓ = 2.
1164
+ Proposition 4.3. Let A be the Jacobian of the hyperelliptic curve y2 + h(x)y = f(x) defined over
1165
+ Q. Then ρA,2 is surjective if and only if the size of the Galois group of the splitting field of 4f + h2
1166
+ is 720.
1167
+
1168
+ COMPUTING NONSURJECTIVE PRIMES IN GENUS 2
1169
+ 21
1170
+ Proof. This follows from the fact that GSp4(F2) ≅ S6 which is a group of size 720, and that the
1171
+ representation ρA,2 is the permutation action of the Galois group on the six roots of 4f + h2.
1172
+
1173
+ 4.2.2. Surjectivity tests for ℓ ≠ 2.
1174
+ The tests to rule out the exceptional maximal subgroups rely on the existence of the finite lists
1175
+ C1920 and C720 (independent of ℓ), and C7,5040 given in Lemma 2.4(3).
1176
+ Test 4.4 (Tests for ruling out exceptional maximal subgroups of GSp4(Fℓ) for ℓ ≠ 2).
1177
+ Given a polynomial Pp(t) = t4 − apt + bpt2 − papt + p2 and ℓ ≥ 2,
1178
+ (i) Pp(t) passes Test 4.4 (i) if ℓ ≡ ±1 (mod 8) or (a2
1179
+ p/p,bp/p) mod ℓ lies outside of C1920 mod ℓ.
1180
+ (ii) Pp(t) passes Test 4.4 (ii) if ℓ ≡ ±1 (mod 12) or (a2
1181
+ p/p,bp/p) mod ℓ lies outside of C720 mod ℓ.
1182
+ (iii) Pp(t) passes Test 4.4 (iii) if ℓ ≠ 7 or (a2
1183
+ p/p,bp/p) mod ℓ lies outside of C7,5040.
1184
+ Test 4.5 (Tests for ruling out non-exceptional maximal subgroups for ℓ ≠ 2).
1185
+ Given a polynomial Pp(t) = t4 − apt + bpt2 − papt + p2 and ℓ ≥ 2,
1186
+ (i) Pp(t) passes Test 4.5 (i) if Pp(t) modulo ℓ is irreducible.
1187
+ (ii) Pp(t) passes Test 4.5 (ii) if Pp(t) modulo ℓ has a linear factor of multiplicity 1 and has nonzero
1188
+ trace.
1189
+ For any one of the five tests above, say that the test succeeds if a given polynomial Pp(t) passes
1190
+ the corresponding test.
1191
+ Remark 14. We call an auxiliary prime p a witness for a given prime ℓ if the polynomial Pp(t)
1192
+ passes one of our tests for ℓ. The verbose output of our code prints witnesses for each of our tests
1193
+ for each prime ℓ in PossiblyNonsurjectivePrimes but not in LikelyNonsurjectivePrimes(B).
1194
+ 4.3. Justification for surjectivity tests. Considering Tests 4.4 and 4.5, we define
1195
+ Cα = {M ∈ GSp4(Fℓ) ∶ PM(t) is irreducible}
1196
+ Cβ = {M ∈ GSp4(Fℓ) ∶ tr(M) ≠ 0 and PM(t) has a linear factor of multiplicity 1}
1197
+ Cγ1 = {M ∈ GSp4(Fℓ) ∶ ( tr(M)2
1198
+ mult(M), mid(M)
1199
+ mult(M)) /∈ Cℓ,1920 or ℓ ≡ ±1
1200
+ (mod 8)}
1201
+ Cγ2 = {M ∈ GSp4(Fℓ) ∶ ( tr(M)2
1202
+ mult(M), mid(M)
1203
+ mult(M)) /∈ Cℓ,720 or ℓ ≡ ±1
1204
+ (mod 12)}
1205
+ Cγ3 = {M ∈ GSp4(Fℓ) ∶ ( tr(M)2
1206
+ mult(M), mid(M)
1207
+ mult(M)) /∈ Cℓ,5040 or ℓ ≠ 7}
1208
+ Cγ = Cγ1 ∩ Cγ2 ∩ Cγ3.
1209
+ Proof of Theorem 1.1(2) and Theorem 1.3. Let B > 0. Since LikelyNonsurjectivePrimes(B) is a sub-
1210
+ list of PossiblyNonsurjectivePrimes, which contains all nonsurjective primes by Theorem 1.1(1), any
1211
+ prime not in PossiblyNonsurjectivePrimes is surjective. Now consider ℓ ∈ PossiblyNonsurjectivePrimes
1212
+ and not in LikelyNonsurjectivePrimes(B). If ℓ = 2, then by Proposition 4.3, ρA,2 is surjective. If
1213
+ ℓ > 2, this means that we found primes p1,p2,p3,p4,p5 ≤ B each distinct from ℓ and of good reduc-
1214
+ tion for A for which ρA,ℓ(Frobp1) ∈ Cα, ρA,ℓ(Frobp2) ∈ Cβ, ρA,ℓ(Frobp3) ∈ Cγ1, ρA,ℓ(Frobp4) ∈ Cγ2,
1215
+ and ρA,ℓ(Frobp4) ∈ Cγ3. Note that by (1), the similitude factor mult(ρA,ℓ(Frobp)) is p. Therefore,
1216
+ by Lemma 2.4(3), it follows that ρA,ℓ(GQ) is not contained in an exceptional maximal subgroup.
1217
+ The surjectivity of ρA,ℓ now follows from Proposition 4.2.
1218
+ Finally, we will show that if B is sufficiently large (as quantified by Theorem 1.3), then any
1219
+ prime ℓ in PossiblyNonsurjectivePrimes is nonsurjective. Since the sets Cα, Cβ, Cγ1, Cγ2 and Cγ3
1220
+ are nonempty by Proposition 5.1 below and closed under conjugation, it follows by Lemma 2.10,
1221
+ there exist primes p1,p2,p3,p4,p5 ≤ B as above.
1222
+
1223
+
1224
+ 22
1225
+ BANWAIT, BRUMER, KIM, KLAGSBRUN, MAYLE, SRINIVASAN, AND VOGT
1226
+ Remark 15. If we assume both GRH and AHC, Ram Murty and Kumar Murty [MM97, p. 52] noted
1227
+ (see also [FJ20, Theorem 2.3]) that the bound (4) can be replaced with p ≪ (log dK)2
1228
+ ∣S∣
1229
+ . Proposition
1230
+ 5.1, which follows, shows that the sets Cα, Cβ, and Cγ have size at least ∣ GSp4(Fℓ)∣
1231
+ 10
1232
+ . This can be
1233
+ used to prove the ineffective version of Theorem 1.3 which relies on AHC noted in the introduction
1234
+ in a manner similar to the proof of Theorem 1.3.
1235
+ 5. The probability of success
1236
+ In this section we prove Theorem 1.4, by studying the probability that a matrix chosen uniformly
1237
+ at random from GSp4(Fℓ) is contained in each of Cα, Cβ, and Cγ defined in Section 4.3. Let αℓ, βℓ,
1238
+ and γℓ respectively be the probabilities that a matrix chosen uniformly at random from GSp4(Fℓ)
1239
+ is contained in Cα, Cβ, or Cγ.
1240
+ Proposition 5.1. Let M be a matrix chosen uniformly at random from GSp4(Fℓ) with ℓ odd. Then
1241
+ (i) The probability that M ∈ Cα is given by
1242
+ αℓ = 1
1243
+ 4 −
1244
+ 1
1245
+ 2(ℓ2 + 1).
1246
+ (ii) The probability that M ∈ Cβ is given by
1247
+ βℓ = 3
1248
+ 8 −
1249
+ 3
1250
+ 4(ℓ − 1) +
1251
+ 1
1252
+ 2(ℓ − 1)2 .
1253
+ (iii) The probability that M ∈ Cγ is
1254
+ γℓ ≥ 1 −
1255
+ 3ℓ
1256
+ ℓ2 + 1.
1257
+ Remark 16. Magma code that directly verifies the sizes of Cα,Cβ,Cγ (i.e. computes αℓ,βℓ,γℓ) for
1258
+ small ℓ may be found in helper_scripts/SanityCheckProbability.m in the repository.
1259
+ [Shi82] characterizes all conjugacy classes of elements of GSp4(Fℓ) for ℓ odd, grouping them into
1260
+ 26 different types. For each type γ, Shinoda further computes the number N(γ) of conjugacy
1261
+ classes of type γ and the size of the centralizer ∣CGSp4(Fℓ)(γ)∣, which is the size of the centralizer
1262
+ ∣CGSp4(Fℓ)(M)∣ of M in GSp4(Fℓ) for any M in a conjugacy class of type γ. The size ∣C(γ)∣ of any
1263
+ conjugacy class of type γ can then easily be computed as
1264
+ ∣C(γ)∣ =
1265
+ ∣GSp4(Fℓ)∣
1266
+ ∣CGSp4(Fℓ)(γ)∣
1267
+ and the probability that a uniformly chosen M ∈ GSp4(Fℓ) has conjugacy type γ is then given by
1268
+ (9)
1269
+ N(γ)∣C(γ)∣
1270
+ ∣GSp4(Fℓ)∣ =
1271
+ N(γ)
1272
+ ∣CGSp4(Fℓ)(γ)∣.
1273
+ To prove Proposition 5.1, we will need to examine a handful of types of conjugacy classes of
1274
+ GSp4(Fℓ).
1275
+ There is only a single conjugacy type γ whose characteristic polynomials are irreducible. This
1276
+ type is denoted K0 in [Shi82] where it is shown there that N(K0) = (ℓ−1)(ℓ2−1)
1277
+ 4
1278
+ and ∣CGSp4(Fℓ)(K0)∣ =
1279
+ (ℓ − 1)(ℓ2 + 1).
1280
+ While there is only one way for a polynomial to be irreducible, there are several ways for a
1281
+ quartic polynomial to have a root of odd order. However, only some of these can occur if f(t) is
1282
+ the characteristic polynomial of a matrix M ∈ GSp4(Fℓ) and we only need to concern ourselves
1283
+ with the following three possibilities:
1284
+ (a) f(t) splits completely over Fℓ;
1285
+ (b) f(t) has two roots over Fℓ, both of which occur with multiplicity one; and
1286
+ (c) f(t) has two simple roots and one double root over Fℓ.
1287
+
1288
+ COMPUTING NONSURJECTIVE PRIMES IN GENUS 2
1289
+ 23
1290
+ Cases (a) and (b) correspond to the conjugacy types H0 and J0 in [Shi82] respectively.
1291
+ In
1292
+ contrast, there are two types of conjugacy classes for which f(t) has two simple roots and one
1293
+ double root, which are denoted E0 and E1 in [Shi82].
1294
+ The number of conjugacy classes and centralizer size for each of these conjugacy types is given by
1295
+ Table 2, along with the associated probability that a uniform random M ∈ GSp4(Fℓ) has conjugacy
1296
+ type γ computed using (9).
1297
+ Type γ in [Shi82]
1298
+ N(γ)
1299
+ ∣CGSp4(Fℓ)(γ)∣
1300
+ Associated Probability
1301
+ K0 (Irreducible)
1302
+ (ℓ−1)(ℓ2−1)
1303
+ 4
1304
+ (ℓ2 + 1)(ℓ − 1)
1305
+ 1
1306
+ 4 −
1307
+ 1
1308
+ 2(ℓ2+1)
1309
+ H0 (Split)
1310
+ (ℓ−1)(ℓ−3)2
1311
+ 8
1312
+ (ℓ − 1)3
1313
+ 1
1314
+ 8 −
1315
+ 1
1316
+ 2(ℓ−1) +
1317
+ 1
1318
+ 2(ℓ−1)2
1319
+ J0 (Two Simple Roots)
1320
+ (ℓ−1)3
1321
+ 4
1322
+ (ℓ + 1)(ℓ − 1)2
1323
+ 1
1324
+ 4 −
1325
+ 1
1326
+ 2(ℓ+1)
1327
+ E0 (One Double Root)
1328
+ (ℓ−1)(ℓ−3)
1329
+ 2
1330
+ ℓ(ℓ − 1)2(ℓ2 − 1)
1331
+ 1
1332
+ 2ℓ(ℓ2−1) −
1333
+ 1
1334
+ ℓ(ℓ−1)(ℓ2−1)
1335
+ E1 (One Double Root)
1336
+ (ℓ−1)(ℓ−3)
1337
+ 2
1338
+ ℓ(ℓ − 1)2
1339
+ 1
1340
+ 2ℓ −
1341
+ 1
1342
+ ℓ(ℓ−1)
1343
+ Table 2. Number of conjugacy classes and centralizer sizes for each conjugacy class
1344
+ type in [Shi82].
1345
+ Proof of Proposition 5.1. Part (i) is simply the entry in Table 2 in the last column corresponding
1346
+ to the “K0 (Irreducible)” type.
1347
+ We now establish part (ii). As indicated in the discussion above Table 2, the only conjugacy
1348
+ classes of matrices in GSp4(Fℓ) whose characteristic polynomials have some linear factors of odd
1349
+ multiplicity are those of the types H0,J0,E0,E1. However, for part (ii) since we are only interested
1350
+ in matrices M also having non-zero trace, it is insufficient to simply sum over the rightmost entries
1351
+ in the bottom four rows of Table 2. From [Shi82, Table 2], we see that the elements of E0 and E1
1352
+ have trace c(a+1)2
1353
+ a
1354
+ for some c,a ∈ F×
1355
+ ℓ with a ≠ ±1. In particular, it follows that elements of types E0
1356
+ and E1 have nonzero traces. The elements of J0 have trace (c+a)(c+aℓ)
1357
+ c
1358
+ where c ∈ F×
1359
+ ℓ and a ∈ Fℓ2 ∖Fℓ.
1360
+ Therefore, the elements of J0 also have nonzero trace.
1361
+ It remains to analyze which conjugacy classes of Type H0 have nonzero trace. Following [Shi82],
1362
+ the
1363
+ (ℓ−1)(ℓ−3)2
1364
+ 8
1365
+ conjugacy classes of type H0 correspond to quadruples of distinct elements in
1366
+ a1,a2,b1,b2 ∈ F×
1367
+ ℓ satisfying a1b1 = a2b2 modulo the action of swapping any of a1 with b1, a2 with
1368
+ b2, or a1,b1 with a2,b2. The eigenvalues of any matrix in the conjugacy class are a1, a2, b1, and b2.
1369
+ Consequently the matrix has trace zero only if either a2 = −a1 and b2 = −b1 or b1 = −a2 and b2 = −a1.
1370
+ This accounts for (ℓ−1)(ℓ−3)
1371
+ 4
1372
+ of the (ℓ−1)(ℓ−3)2
1373
+ 8
1374
+ conjugacy classes of type H0, leaving (ℓ−1)(ℓ−3)(ℓ−5)
1375
+ 8
1376
+ conjugacy classes with non-zero trace. As a result, the probability that a matrix M ∈ GSp4(Fℓ)
1377
+ chosen uniformly at random has non-zero trace and totally split characteristic polynomial is
1378
+ (10)
1379
+ (ℓ − 1)(ℓ − 3)(ℓ − 5)
1380
+ 8(ℓ − 1)3
1381
+ = 1
1382
+ 8 −
1383
+ 3
1384
+ 4(ℓ − 1) +
1385
+ 1
1386
+ (ℓ − 1)2 .
1387
+ To obtain part (ii), we add (10) to the entries in the rightmost column of the final three rows of
1388
+ Table 2, getting
1389
+ (1
1390
+ 8 −
1391
+ 3
1392
+ 4(ℓ − 1) +
1393
+ 1
1394
+ (ℓ − 1)2 ) + (1
1395
+ 4 −
1396
+ 1
1397
+ 2(ℓ + 1)) + (
1398
+ 1
1399
+ 2ℓ(ℓ2 − 1) −
1400
+ 1
1401
+ ℓ(ℓ − 1)(ℓ2 − 1)) + ( 1
1402
+ 2ℓ −
1403
+ 1
1404
+ ℓ(ℓ − 1))
1405
+ = 3
1406
+ 8 −
1407
+ 3
1408
+ 4(ℓ − 1) +
1409
+ 1
1410
+ 2(ℓ − 1)2 .
1411
+
1412
+ 24
1413
+ BANWAIT, BRUMER, KIM, KLAGSBRUN, MAYLE, SRINIVASAN, AND VOGT
1414
+ To prove (iii), we start by noting that for any pair (u,v), the cardinality of the set
1415
+ {t4 − at3 + bt2 − amt + m2 ∶ a,b ∈ Fℓ,m ∈ F×
1416
+ ℓ and (a2
1417
+ m , b
1418
+ m) = (u,v)}
1419
+ is at most ℓ − 1.
1420
+ By [Cha97, Theorem 3.5], the number of matrices in GSp4(Fℓ) with a given
1421
+ characteristic polynomial is at most (ℓ+3)8. Assuming ℓ ≠ 7, by combining these observations, and
1422
+ noting that ∣Cℓ,720 ∪ Cℓ,1920∣ ≤ 14, we obtain the bound
1423
+ γℓ ≥ 1 − 14(ℓ − 1)(ℓ + 3)8
1424
+ ∣GSp4(Fℓ)∣
1425
+ .
1426
+ For ℓ > 17, this implies the claimed bound. For 3 ≤ ℓ ≤ 17, we directly check the claim using
1427
+ Magma.
1428
+
1429
+ Lemma 5.2. Let C/Q be a typical genus 2 curve with Jacobian A and suppose ℓ is an odd prime
1430
+ such that ρA,ℓ is surjective. For any ϵ > 0, there exists an effective constant B0 (with B0 > ℓNA)
1431
+ such that for any B > B0 and each δ ∈ {α,β,γ}, we have
1432
+ ∣∣{p prime ∶ B ≤ p ≤ 2B and ρA,ℓ(Frobp) ∈ Cδ}∣
1433
+ ∣{p prime ∶ B ≤ p ≤ 2B}∣
1434
+ − δℓ∣ < ϵ.
1435
+ Proof. Let G = Gal(Q(A[ℓ])/Q) and S ⊆ G be any subset that is closed under conjugation. By
1436
+ taking B to be sufficiently large, we have that B > ℓNA and can make
1437
+ ∣∣{p prime ∶ B ≤ p ≤ 2B and Frobp ∈ S}∣
1438
+ ∣{p prime ∶ B ≤ p ≤ 2B}∣
1439
+ − ∣S∣
1440
+ ∣G∣∣
1441
+ arbitrarily small by (3).
1442
+ Moreover, the previous statement can be made effective by using an
1443
+ effective version of the Chebotarev density theorem. The result then follows because each of the
1444
+ sets Cα, Cβ, and Cγ is closed under conjugation.
1445
+
1446
+ For positive integers n and B > ℓNA, let P(B,n) be the probability that n primes p1,...,pn
1447
+ (possibly non-distinct) chosen uniformly at random in the interval [B,2B] have the property that
1448
+ ρA,ℓ(Frobpi) /∈ Cα for each i
1449
+ or
1450
+ ρA,ℓ(Frobpi) /∈ Cβ for each i
1451
+ or
1452
+ ρA,ℓ(Frobpi) /∈ Cγ for each i.
1453
+ Corollary 5.3. Suppose C and ℓ are as in Lemma 5.2 and let n be a positive integer. For any
1454
+ ϵ > 0, there exists an effective constant B0 (with B0 > ℓNA) such that for all B > B0, we have
1455
+ P(B,n) < (1 − αℓ)n + (1 − βℓ)n + (1 − γℓ)n + ϵ.
1456
+ Proof. For δ ∈ {α,β,γ}, let Xδ be the event that none of the ρA,ℓ(Frobpi) are contained in Cδ. We
1457
+ then have
1458
+ P(Xα ∪ Xβ ∪ Xγ) ≤ P(Xα) + P(Xβ) + P(Xγ)
1459
+ The result then follows by Lemma 5.2, which shows that there exists a B0 such that the probabilities
1460
+ of Xα, Xβ, and Xγ can be made arbitrarily close to (1−αℓ)n, (1−βℓ)n, and (1−γℓ)n respectively.
1461
+
1462
+ Proof of Theorem 1.4. The claim made by Theorem 1.4 is that P(B,n) < 3⋅( 9
1463
+ 10)
1464
+ n for B sufficiently
1465
+ large. By Proposition 5.1, we have 1 − αℓ ≤ 4
1466
+ 5, 1 − βℓ ≤ 7
1467
+ 8, and 1 − γℓ ≤ 9
1468
+ 10 for all ℓ odd. The result
1469
+ then follows from Corollary 5.3 because (4
1470
+ 5)
1471
+ n + (7
1472
+ 8)
1473
+ n + ( 9
1474
+ 10)
1475
+ n < 3 ⋅ ( 9
1476
+ 10)
1477
+ n.
1478
+
1479
+ 6. Results of computation and interesting examples
1480
+ We report on the results of running our algorithm on a dataset of 1,823,592 typical genus 2
1481
+ curves with conductor bounded by 220 that are part of a new dataset of approximately 5 million
1482
+ curves currently being prepared for addition into the LMFDB. Running our algorithm on all of
1483
+ these curves in parallel took about 45 hours on MIT’s Lovelace computer (see the Introduction for
1484
+ the hardware specification of this machine).
1485
+
1486
+ COMPUTING NONSURJECTIVE PRIMES IN GENUS 2
1487
+ 25
1488
+ We first show in Table 3 how many of these curves were nonsurjective at particular primes,
1489
+ indicating also if this can be explained by the existence of a rational torsion point of that prime
1490
+ order. We found 31 as the largest nonsurjective prime, which occurred for the curve
1491
+ (11)
1492
+ y2 + (x + 1)y = x5 + 23x4 − 48x3 + 85x2 − 69x + 45
1493
+ of conductor 72 ⋅ 312 and discriminant 72 ⋅ 319 (the prime 2 was also nonsurjective here).
1494
+ The
1495
+ Jacobian of this curve does not admit a nontrivial rational 31-torsion point, so unlike many other
1496
+ instances of nonsurjective primes we observed, this one cannot be explained by the presence of
1497
+ rational torsion. One could ask if it might be explained by the existence of a Q-rational 31-isogeny
1498
+ (as suggested by Algorithm 3.1, since 31 is returned by Algorithm 3.6). This seems to be the case
1499
+ - see forthcoming work of van Bommel, Chidambaram, Costa, and Kieffer [vBCCK22] where the
1500
+ isogeny class of this curve (among others) is computed.
1501
+ nonsurj. prime
1502
+ No. of curves w/ torsion
1503
+ No. of curves w/o torsion
1504
+ Example curve
1505
+ 2
1506
+ 1,100,706
1507
+ 462,616
1508
+ 464.a.464.1
1509
+ 3
1510
+ 79,759
1511
+ 98,750
1512
+ 277.a.277.2
1513
+ 5
1514
+ 12,040
1515
+ 10,809
1516
+ 16108.b.64432.1
1517
+ 7
1518
+ 1,966
1519
+ 2,213
1520
+ 295.a.295.2
1521
+ 11
1522
+ 167
1523
+ 210
1524
+ 4288.b.548864.1
1525
+ 13
1526
+ 108
1527
+ 310
1528
+ 439587.d.439587.1
1529
+ 17
1530
+ 22
1531
+ 61
1532
+ 1996.b.510976.1
1533
+ 19
1534
+ 10
1535
+ 20
1536
+ 1468.6012928
1537
+ 23
1538
+ 2
1539
+ 8
1540
+ 1696.1736704
1541
+ 29
1542
+ 1
1543
+ 5
1544
+ 976.999424
1545
+ 31
1546
+ 0
1547
+ 1
1548
+ 47089.1295541485872879
1549
+ Table 3. Nonsurjective primes in the dataset, and whether they are explained by
1550
+ torsion, with examples from the LMFDB dataset if available, else a string of the
1551
+ form “conductor.discrimnant”.
1552
+ We also observed (see Table 4) that the vast majority of curves had less than 3 nonsurjective
1553
+ primes.
1554
+ No. of nonsurj. primes
1555
+ No. of curves
1556
+ Example curve
1557
+ Nonsurj. primes of example
1558
+ 0
1559
+ 211,620
1560
+ 743.a.743.1
1561
+
1562
+ 1
1563
+ 1,455,473
1564
+ 1923.a.1923.1
1565
+ 5 (torsion)
1566
+ 2
1567
+ 155,186
1568
+ 976.a.999424.1
1569
+ 2, 29(torsion)
1570
+ 3
1571
+ 1,313
1572
+ 15876.a.15876.1
1573
+ 2, 3, 5
1574
+ Table 4. Frequency count of nonsurjective primes in the dataset, with examples
1575
+ from the LMFDB dataset.
1576
+ Instructions for obtaining the entire results file may be found in the README.md file of the
1577
+ repository.
1578
+ Remark 17. It would be interesting to know if there is a uniform upper bound on the largest prime
1579
+ ℓ that could occur as a nonsurjective prime for the Jacobian of a genus 2 curve defined over Q,
1580
+
1581
+ 26
1582
+ BANWAIT, BRUMER, KIM, KLAGSBRUN, MAYLE, SRINIVASAN, AND VOGT
1583
+ analogous to the conjectural bound of 37 for the largest nonsurjective prime for elliptic curves
1584
+ defined over Q (see e.g. [BPR13, Introduction]). As the example of (11) shows, this bound - if it
1585
+ exists - would have to be at least 31.
1586
+ We conclude with a few examples that illustrate where Algorithm 3.1 fails when the abelian
1587
+ surface has extra (geometric) endomorphisms.
1588
+ Example 6.1. The Jacobian A of the genus 2 curve 3125.a.3125.1 on the LMFDB given by y2+y =
1589
+ x5 has End(AQ) = Z but End(AQ) = Z[ζ5]. Let φ be the Dirichlet character of modulus 5 defined
1590
+ by the Legendre symbol
1591
+ φ∶(Z/5Z)× → {±1},
1592
+ 2 ↦ −1.
1593
+ In this case, Algorithm 3.13 fails to find an auxilliary prime p < 1000 for which ap ≠ 0 and φ(p) = −1.
1594
+ This is consistent with the endomorphism calculation, since the trace of ρA,ℓ(Frobp) is 0 for all
1595
+ primes p that do not split completely in Q(ζp) and any inert prime in Q(
1596
+
1597
+ 5) automatically does
1598
+ not split completely in Q(ζ5).
1599
+ Example 6.2. The modular curve X1(13) (169.a.169.1) has genus 2 and its Jacobian J1(13) has
1600
+ CM by Z[ζ3] over Q. As in [MT74, Claim 2, page 45], for any prime ℓ that splits as ππ in Q(ζ3), the
1601
+ representation J1(13)[ℓ] splits as a direct sum Vπ ⊕Vπ of two 2-dimensional subrepresentations that
1602
+ are dual to each other. (A similar statement holds for J1(13)[ℓ]⊗Fℓ Fℓ, and so this representation is
1603
+ never absolutely irreducible.) As expected, Algorithm 3.6 fails to find an auxiliary prime p < 1000
1604
+ for which Rp is nonzero.
1605
+ Example 6.3. The first (ordered by conductor) curve whose Jacobian J admits real multiplication
1606
+ over Q is the curve 529.a.529.1; indeed, this Jacobian is isogenous to the Jacobian of the modular
1607
+ curve X0(23). Since there is a single Galois orbit of newforms - call it f - of level Γ0(23) and weight
1608
+ 2, we have that J is isogenous to the abelian variety Af associated to f, and thus we expect the
1609
+ integer Mself-dual output by Algorithm 3.10 to be zero for any auxiliary prime, which is indeed the
1610
+ case.
1611
+ References
1612
+ [AdRK13]
1613
+ Sara Arias-de Reyna and Christian Kappen. Abelian varieties over number fields, tame ramification and
1614
+ big Galois image. Math. Res. Lett., 20(1):1–17, 2013.
1615
+ [AK19]
1616
+ Jeoung-Hwan Ahn and Soun-Hi Kwon. An explicit upper bound for the least prime ideal in the Cheb-
1617
+ otarev density theorem. Ann. Inst. Fourier (Grenoble), 69(3):1411–1458, 2019.
1618
+ [Apo76]
1619
+ Tom M. Apostol. Introduction to analytic number theory. Undergraduate Texts in Mathematics. Springer-
1620
+ Verlag, New York-Heidelberg, 1976.
1621
+ [BBB+21]
1622
+ Alex J. Best, Jonathan Bober, Andrew R. Booker, Edgar Costa, John E. Cremona, Maarten Derickx,
1623
+ Min Lee, David Lowry-Duda, David Roe, Andrew V. Sutherland, and John Voight. Computing classical
1624
+ modular forms. In Jennifer S. Balakrishnan, Noam Elkies, Brendan Hassett, Bjorn Poonen, Andrew V.
1625
+ Sutherland, and John Voight, editors, Arithmetic Geometry, Number Theory, and Computation, pages
1626
+ 131–213, Cham, 2021. Springer International Publishing.
1627
+ [BCP97]
1628
+ Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user language.
1629
+ J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and number theory (London, 1993).
1630
+ [BK94]
1631
+ Armand Brumer and Kenneth Kramer. The conductor of an abelian variety. Compositio Mathematica,
1632
+ 92(2):227–248, 1994.
1633
+ [BPR13]
1634
+ Yuri Bilu, Pierre Parent, and Marusia Rebolledo. Rational points on X+
1635
+ 0 (pr). Ann. Inst. Fourier (Greno-
1636
+ ble), 63(3):957–984, 2013.
1637
+ [BS96]
1638
+ Eric Bach and Jonathan Sorenson. Explicit bounds for primes in residue classes. Math. Comp.,
1639
+ 65(216):1717–1735, 1996.
1640
+ [Car56]
1641
+ Leonard Carlitz. Note on a quartic congruence. Amer. Math. Monthly, 63:569–571, 1956.
1642
+ [Cha97]
1643
+ Nick Chavdarov. The generic irreducibility of the numerator of the zeta function in a family of curves
1644
+ with large monodromy. Duke Math. J., 87(1):151–180, 1997.
1645
+ [CL12]
1646
+ John Cremona and Eric Larson. Galois representations for elliptic curves over number fields, 2012.
1647
+ SageMath.
1648
+
1649
+ COMPUTING NONSURJECTIVE PRIMES IN GENUS 2
1650
+ 27
1651
+ [Coj05]
1652
+ Alina Carmen Cojocaru. On the surjectivity of the Galois representations associated to non-CM elliptic
1653
+ curves. Canad. Math. Bull., 48(1):16–31, 2005. With an appendix by Ernst Kani.
1654
+ [Die02]
1655
+ Luis V. Dieulefait. Explicit determination of the images of the Galois representations attached to abelian
1656
+ surfaces with End(A) = Z. Experiment. Math., 11(4):503–512 (2003), 2002.
1657
+ [FJ20]
1658
+ Daniel Fiorilli and Florent Jouve. Distribution of Frobenius elements in families of Galois extensions,
1659
+ 2020.
1660
+ [GRR72]
1661
+ Alexander Grothendieck, Michel Raynaud, and Dock Sang Rim. Groupes de monodromie en g´eom´etrie
1662
+ alg´ebrique. I. Lecture Notes in Mathematics, Vol. 288. Springer-Verlag, 1972. S´eminaire de G´eom´etrie
1663
+ Alg´ebrique du Bois-Marie 1967–1969 (SGA 7 I).
1664
+ [Kha06]
1665
+ Chandrashekhar Khare. Serre’s modularity conjecture: The level one case. Duke Math. J., 134(3):557–
1666
+ 589, 09 2006.
1667
+ [KL90]
1668
+ Peter Kleidman and Martin Liebeck. The subgroup structure of the finite classical groups, volume 129 of
1669
+ London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1990.
1670
+ [Kra95]
1671
+ Alain Kraus. Une remarque sur les points de torsion des courbes elliptiques. C. R. Acad. Sci. Paris S´er.
1672
+ I Math., 321(9):1143–1146, 1995.
1673
+ [KW09a]
1674
+ Chandrashekhar Khare and Jean-Pierre Wintenberger. Serre’s modularity conjecture (I). Invent. Math.,
1675
+ 178(3):485–504, 2009.
1676
+ [KW09b]
1677
+ Chandrashekhar Khare and Jean-Pierre Wintenberger. Serre’s modularity conjecture (II). Invent. Math.,
1678
+ 178(3):505–586, 2009.
1679
+ [KW22]
1680
+ Habiba Kadiri and Peng-Jie Wong. Primes in the Chebotarev density theorem for all number fields (with
1681
+ an Appendix by Andrew Fiori). J. Number Theory, 241:700–737, 2022.
1682
+ [Liu94]
1683
+ Qing Liu. Conducteur et discriminant minimal de courbes de genre 2. Compositio Mathematica, 94(1):51–
1684
+ 79, 1994.
1685
+ [LMF22]
1686
+ The LMFDB Collaboration. The L-functions and modular forms database. http://www.lmfdb.org,
1687
+ 2022. [Online; accessed 12 December 2022].
1688
+ [LMO79]
1689
+ Jeffrey C. Lagarias, Hugh L. Montgomery, and Andrew M. Odlyzko. A bound for the least prime ideal
1690
+ in the Chebotarev density theorem. Invent. Math., 54(3):271–296, 1979.
1691
+ [Lom16]
1692
+ Davide Lombardo. Explicit surjectivity of Galois representations for abelian surfaces and GL2-varieties.
1693
+ Journal of Algebra, 460:26–59, 2016.
1694
+ [LV14a]
1695
+ Eric Larson and Dmitry Vaintrob. Determinants of subquotients of Galois representations associated
1696
+ with abelian varieties. Journal of the Institute of Mathematics of Jussieu, 13(3):517–559, 2014.
1697
+ [LV14b]
1698
+ Eric Larson and Dmitry Vaintrob. On the surjectivity of Galois representations associated to elliptic
1699
+ curves over number fields. Bull. Lond. Math. Soc., 46(1):197–209, 2014.
1700
+ [LV22]
1701
+ Davide Lombardo and Matteo Verzobio. On the local-global principle for isogenies of abelian surfaces,
1702
+ 2022. arXiv:2206.15240.
1703
+ [Mar05]
1704
+ Greg Martin. Dimensions of the spaces of cusp forms and newforms on Γ0(N) and Γ1(N). Journal of
1705
+ Number Theory, 112(2):298–331, 2005.
1706
+ [Mit14]
1707
+ Howard H. Mitchell. The subgroups of the quaternary abelian linear group. Trans. Amer. Math. Soc.,
1708
+ 15(4):379–396, 1914.
1709
+ [MM97]
1710
+ M. Ram Murty and V. Kumar Murty. Non-vanishing of L-functions and applications. Modern Birkh¨auser
1711
+ Classics. Birkh¨auser/Springer Basel AG, Basel, 1997. [2011 reprint of the 1997 original] [MR1482805].
1712
+ [MT74]
1713
+ Barry Mazur and John Tate. Points of order 13 on elliptic curves. Invent. Math., 22:41–49, 1973/74.
1714
+ [MW21]
1715
+ Jacob Mayle and Tian Wang. On the effective version of Serre’s open image theorem,
1716
+ 2021.
1717
+ arXiv:2109.08656.
1718
+ [Poo17]
1719
+ Bjorn Poonen. Rational points on varieties, volume 186 of Graduate Studies in Mathematics. American
1720
+ Mathematical Society, Providence, RI, 2017.
1721
+ [Ray74]
1722
+ Michel Raynaud. Sch´emas en groupes de type (p, . . . , p). Bulletin de la Soci´et´e Math´ematique de France,
1723
+ 102:241–280, 1974.
1724
+ [Ser72]
1725
+ Jean-Pierre Serre. Propri´et´es Galoisienne des points d’ordre fini des courbes elliptiques. Inventiones
1726
+ Mathematicae, 15:259–331, 1972.
1727
+ [Ser81]
1728
+ Jean-Pierre
1729
+ Serre.
1730
+ Quelques
1731
+ applications
1732
+ du
1733
+ th´eor`eme
1734
+ de
1735
+ densit´e
1736
+ de
1737
+ Chebotarev.
1738
+ Publications
1739
+ Math´ematiques de l’IH´ES, 54:123–201, 1981.
1740
+ [Ser87]
1741
+ Jean-Pierre Serre. Sur les repr´esentations modulaires de degr´e 2 de Gal(Q/Q). Duke Math. J., 54(1):179–
1742
+ 230, 1987.
1743
+ [Ser00]
1744
+ Jean-Pierre Serre. Lettre `a Marie-France Vign´eras du 10/2/1986. In Oeuvres - Collected Papers IV.
1745
+ Springer-Verlag Berlin Heidelberg, 2000.
1746
+ [Shi82]
1747
+ Ken-ichi Shinoda. The characters of the finite conformal symplectic group, CSp(4, q). Comm. Algebra,
1748
+ 10(13):1369–1419, 1982.
1749
+
1750
+ 28
1751
+ BANWAIT, BRUMER, KIM, KLAGSBRUN, MAYLE, SRINIVASAN, AND VOGT
1752
+ [ST68]
1753
+ Jean-Pierre Serre and John Tate. Good reduction of abelian varieties. Ann. of Math. (2), 88:492–517,
1754
+ 1968.
1755
+ [The20]
1756
+ The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.2), 2020. https:
1757
+ //www.sagemath.org.
1758
+ [vBCCK22] Raymond van Bommel, Shiva Chidambaram, Edgar Costa, and Jean Kieffer. Computing isogeny classes
1759
+ of typical principally polarized abelian surfaces over the rationals. In preparation, 2022.
1760
+ [Zyw15]
1761
+ David Zywina. On the surjectivity of mod ℓ representations associated to elliptic curves, 2015.
1762
+ arXiv:1508.07661.
1763
+
1764
+ COMPUTING NONSURJECTIVE PRIMES IN GENUS 2
1765
+ 29
1766
+ Appendix A. Exceptional maximal subgroups of GSp4(Fℓ)
1767
+
1768
+ type
1769
+ choices
1770
+ generators
1771
+ ℓ ≡ 5 (mod 8)
1772
+ G1920
1773
+ b2 = −1 in Fℓ
1774
+
1775
+ ⎜⎜⎜
1776
+
1777
+ 1
1778
+ 0
1779
+ 0
1780
+ −1
1781
+ 0
1782
+ 1
1783
+ −1
1784
+ 0
1785
+ 0
1786
+ 1
1787
+ 1
1788
+ 0
1789
+ 1
1790
+ 0
1791
+ 0
1792
+ 1
1793
+
1794
+ ⎟⎟⎟
1795
+
1796
+ ,
1797
+
1798
+ ⎜⎜⎜
1799
+
1800
+ 1
1801
+ 0
1802
+ 0
1803
+ b
1804
+ 0
1805
+ 1
1806
+ b
1807
+ 0
1808
+ 0
1809
+ b
1810
+ 1
1811
+ 0
1812
+ b
1813
+ 0
1814
+ 0
1815
+ 1
1816
+
1817
+ ⎟⎟⎟
1818
+
1819
+ ,
1820
+
1821
+ ⎜⎜⎜
1822
+
1823
+ 1
1824
+ 0
1825
+ 0
1826
+ −1
1827
+ 0
1828
+ 1
1829
+ 1
1830
+ 0
1831
+ 0
1832
+ −1
1833
+ 1
1834
+ 0
1835
+ 1
1836
+ 0
1837
+ 0
1838
+ 1
1839
+
1840
+ ⎟⎟⎟
1841
+
1842
+ ,
1843
+
1844
+ ⎜⎜⎜
1845
+
1846
+ 1
1847
+ 0
1848
+ 1
1849
+ 0
1850
+ 0
1851
+ 1
1852
+ 0
1853
+ 1
1854
+ −1
1855
+ 0
1856
+ 1
1857
+ 0
1858
+ 0
1859
+ −1
1860
+ 0
1861
+ 1
1862
+
1863
+ ⎟⎟⎟
1864
+
1865
+ ℓ ≡ 3 (mod 8)
1866
+ G1920
1867
+ b2 = −2 in Fℓ
1868
+
1869
+ ⎜⎜⎜
1870
+
1871
+ 1
1872
+ 0
1873
+ 0
1874
+ −1
1875
+ 0
1876
+ 1
1877
+ −1
1878
+ 0
1879
+ 0
1880
+ 1
1881
+ 1
1882
+ 0
1883
+ 1
1884
+ 0
1885
+ 0
1886
+ 1
1887
+
1888
+ ⎟⎟⎟
1889
+
1890
+ ,
1891
+
1892
+ ⎜⎜⎜
1893
+
1894
+ 0
1895
+ 0
1896
+ 0
1897
+ b
1898
+ 0
1899
+ 0
1900
+ b
1901
+ 0
1902
+ 0
1903
+ b
1904
+ 2
1905
+ 0
1906
+ b
1907
+ 0
1908
+ 0
1909
+ 2
1910
+
1911
+ ⎟⎟⎟
1912
+
1913
+ ,
1914
+
1915
+ ⎜⎜⎜
1916
+
1917
+ 1
1918
+ 0
1919
+ 0
1920
+ −1
1921
+ 0
1922
+ 1
1923
+ 1
1924
+ 0
1925
+ 0
1926
+ −1
1927
+ 1
1928
+ 0
1929
+ 1
1930
+ 0
1931
+ 0
1932
+ 1
1933
+
1934
+ ⎟⎟⎟
1935
+
1936
+ ,
1937
+
1938
+ ⎜⎜⎜
1939
+
1940
+ 1
1941
+ 0
1942
+ 1
1943
+ 0
1944
+ 0
1945
+ 1
1946
+ 0
1947
+ 1
1948
+ −1
1949
+ 0
1950
+ 1
1951
+ 0
1952
+ 0
1953
+ −1
1954
+ 0
1955
+ 1
1956
+
1957
+ ⎟⎟⎟
1958
+
1959
+ ℓ ≡ 7 (mod 12)
1960
+ G720
1961
+ a2 + a + 1 = 0 in Fℓ
1962
+
1963
+ ⎜⎜⎜
1964
+
1965
+ a
1966
+ 0
1967
+ 0
1968
+ 0
1969
+ 0
1970
+ a
1971
+ 0
1972
+ 0
1973
+ 0
1974
+ 0
1975
+ 1
1976
+ 0
1977
+ 0
1978
+ 0
1979
+ 0
1980
+ 1
1981
+
1982
+ ⎟⎟⎟
1983
+
1984
+ ,
1985
+
1986
+ ⎜⎜⎜
1987
+
1988
+ a
1989
+ 0
1990
+ 0
1991
+ 0
1992
+ 0
1993
+ 1
1994
+ 0
1995
+ 0
1996
+ 0
1997
+ 0
1998
+ a
1999
+ 0
2000
+ 0
2001
+ 0
2002
+ 0
2003
+ 1
2004
+
2005
+ ⎟⎟⎟
2006
+
2007
+ ,
2008
+
2009
+ ⎜⎜⎜
2010
+
2011
+ a
2012
+ 0
2013
+ −a − 1
2014
+ a + 1
2015
+ 0
2016
+ a
2017
+ −a − 1
2018
+ −a − 1
2019
+ −a − 1
2020
+ −a − 1
2021
+ −1
2022
+ 0
2023
+ a + 1
2024
+ −a − 1
2025
+ 0
2026
+ −1
2027
+
2028
+ ⎟⎟⎟
2029
+
2030
+ ,
2031
+
2032
+ ⎜⎜⎜
2033
+
2034
+ 0
2035
+ −1
2036
+ 0
2037
+ 0
2038
+ 1
2039
+ 0
2040
+ 0
2041
+ 0
2042
+ 0
2043
+ 0
2044
+ 0
2045
+ −1
2046
+ 0
2047
+ 0
2048
+ 1
2049
+ 0
2050
+
2051
+ ⎟⎟⎟
2052
+
2053
+ ℓ ≡ 5 (mod 12)
2054
+ G720
2055
+ b2 = −1 in Fℓ
2056
+
2057
+ ⎜⎜⎜
2058
+
2059
+ −1
2060
+ 0
2061
+ 0
2062
+ −1
2063
+ 0
2064
+ −1
2065
+ −1
2066
+ 0
2067
+ 0
2068
+ 1
2069
+ 0
2070
+ 0
2071
+ 1
2072
+ 0
2073
+ 0
2074
+ 0
2075
+
2076
+ ⎟⎟⎟
2077
+
2078
+ ,
2079
+
2080
+ ⎜⎜⎜
2081
+
2082
+ 0
2083
+ 0
2084
+ 0
2085
+ 1
2086
+ 0
2087
+ −1
2088
+ −1
2089
+ 0
2090
+ 0
2091
+ 1
2092
+ 0
2093
+ 0
2094
+ −1
2095
+ 0
2096
+ 0
2097
+ −1
2098
+
2099
+ ⎟⎟⎟
2100
+
2101
+ ,
2102
+
2103
+ ⎜⎜⎜
2104
+
2105
+ −b − 1
2106
+ b
2107
+ 2b
2108
+ −2b + 1
2109
+ b
2110
+ b − 1
2111
+ 2b + 1
2112
+ 2b
2113
+ b
2114
+ b − 1
2115
+ −b − 2
2116
+ −b
2117
+ −b − 1
2118
+ b
2119
+ −b
2120
+ b − 2
2121
+
2122
+ ⎟⎟⎟
2123
+
2124
+ ,
2125
+
2126
+ ⎜⎜⎜
2127
+
2128
+ 0
2129
+ −b
2130
+ −2b
2131
+ 0
2132
+ b
2133
+ 0
2134
+ 0
2135
+ 2b
2136
+ −2b
2137
+ 0
2138
+ 0
2139
+ −b
2140
+ 0
2141
+ 2b
2142
+ b
2143
+ 0
2144
+
2145
+ ⎟⎟⎟
2146
+
2147
+ ℓ = 7
2148
+ G5040
2149
+ a = 2 satisfies
2150
+ a2 + a + 1 = 0
2151
+
2152
+ ⎜⎜⎜
2153
+
2154
+ 2
2155
+ 0
2156
+ 0
2157
+ 0
2158
+ 0
2159
+ 2
2160
+ 0
2161
+ 0
2162
+ 0
2163
+ 0
2164
+ 1
2165
+ 0
2166
+ 0
2167
+ 0
2168
+ 0
2169
+ 1
2170
+
2171
+ ⎟⎟⎟
2172
+
2173
+ ,
2174
+ ���
2175
+ ⎜⎜⎜
2176
+
2177
+ 2
2178
+ 0
2179
+ 0
2180
+ 0
2181
+ 0
2182
+ 1
2183
+ 0
2184
+ 0
2185
+ 0
2186
+ 0
2187
+ 2
2188
+ 0
2189
+ 0
2190
+ 0
2191
+ 0
2192
+ 1
2193
+
2194
+ ⎟⎟⎟
2195
+
2196
+ ,
2197
+
2198
+ ⎜⎜⎜
2199
+
2200
+ 6
2201
+ 0
2202
+ 5
2203
+ 2
2204
+ 0
2205
+ 6
2206
+ 5
2207
+ 5
2208
+ 5
2209
+ 5
2210
+ 4
2211
+ 0
2212
+ 2
2213
+ 5
2214
+ 0
2215
+ 4
2216
+
2217
+ ⎟⎟⎟
2218
+
2219
+ ,
2220
+
2221
+ ⎜⎜⎜
2222
+
2223
+ 0
2224
+ 6
2225
+ 0
2226
+ 0
2227
+ 1
2228
+ 0
2229
+ 0
2230
+ 0
2231
+ 0
2232
+ 0
2233
+ 0
2234
+ 6
2235
+ 0
2236
+ 0
2237
+ 1
2238
+ 0
2239
+
2240
+ ⎟⎟⎟
2241
+
2242
+ ,
2243
+
2244
+ ⎜⎜⎜
2245
+
2246
+ 4
2247
+ 6
2248
+ 0
2249
+ 0
2250
+ 6
2251
+ 6
2252
+ 0
2253
+ 0
2254
+ 0
2255
+ 0
2256
+ 4
2257
+ 1
2258
+ 0
2259
+ 0
2260
+ 1
2261
+ 6
2262
+
2263
+ ⎟⎟⎟
2264
+
2265
+ Table 5. Explicit generators for each exceptional maximal subgroup in GSp4(Fℓ)
2266
+ (up to conjugacy). The matrices described in Table 5 depend on an auxiliary choice
2267
+ of a parameter denoted either a and b in each case. In each row, any one choice of
2268
+ the corresponding a and b satisfying the equations described in the table suffices.
2269
+
2270
+ 30
2271
+ BANWAIT, BRUMER, KIM, KLAGSBRUN, MAYLE, SRINIVASAN, AND VOGT
2272
+ Barinder S. Banwait, Department of Mathematics & Statistics, Boston University, Boston, MA
2273
+ Email address: barinder@bu.edu
2274
+ URL: https://barinderbanwait.github.io/
2275
+ Armand Brumer, Department of Mathematics, Fordham University, New York, NY
2276
+ Email address: brumer@fordham.edu
2277
+ Hyun Jong Kim, Department of Mathematics, University of Wisconsin-Madison, Madison, WI
2278
+ Email address: hyunjong.kim@math.wisc.edu
2279
+ URL: https://sites.google.com/wisc.edu/hyunjongkim
2280
+ Zev Klagsbrun, Center for Communications Research, San Diego, CA
2281
+ Email address: zdklags@ccr-lajolla.org
2282
+ Jacob Mayle, Department of Mathematics, Wake Forest University, Winston-Salem, NC
2283
+ Email address: maylej@wfu.edu
2284
+ Padmavathi Srinivasan, ICERM, Providence, RI
2285
+ Email address: padmavathi srinivasan@brown.edu
2286
+ URL: https://padmask.github.io/
2287
+ Isabel Vogt, Department of Mathematics, Brown University, Providence, RI
2288
+ Email address: ivogt.math@gmail.com
2289
+ URL: https://www.math.brown.edu/ivogt/
2290
+
K9E0T4oBgHgl3EQfSgAu/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff