diff --git a/-dFLT4oBgHgl3EQfCy73/vector_store/index.pkl b/-dFLT4oBgHgl3EQfCy73/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..f985e807b71f993faa76e80727ee7f50fc0c8117 --- /dev/null +++ b/-dFLT4oBgHgl3EQfCy73/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:875cf18b600914fa16665f198b0d2ba4cb5eb66391e064f75a8fd9e417907000 +size 97722 diff --git a/-tE2T4oBgHgl3EQfmQed/content/tmp_files/2301.03997v1.pdf.txt b/-tE2T4oBgHgl3EQfmQed/content/tmp_files/2301.03997v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..84fb5f2ecdd4c764557176fcaac3ce0d3776319e --- /dev/null +++ b/-tE2T4oBgHgl3EQfmQed/content/tmp_files/2301.03997v1.pdf.txt @@ -0,0 +1,3271 @@ +arXiv:2301.03997v1 [math-ph] 10 Jan 2023 +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY +FACTORIZATION +ALEC COOPER1, BART VLAAR1,2, AND ROBERT WESTON1 +Abstract. In the algebraic approach to Baxter’s Q-operators for the closed Heisenberg XXZ spin +chain, certain infinite-dimensional ‘prefundamental’ representations of the q-deformed Borel subal- +gebras play a central role. To extend this formalism to open spin chains, one needs a factorization +identity for particular solutions of the reflection equation associated to these representations. In the +case of quantum affine sl2, we derive such an identity using the recent theory of universal K-matrices +for quantum affine algebras. +Contents +1. +Introduction +1 +2. +Quantum affine sl2 and its universal R-matrix +4 +3. +The augmented q-Onsager algebra, its twists and its universal K-matrices +10 +4. +Borel representations in terms of the q-oscillator algebra +14 +5. +L-operators and R-operators +19 +6. +K-matrices +20 +7. +Fusion intertwiners revisited +22 +8. +Boundary factorization identity +23 +9. +Discussion +26 +A. +Deformed Pochhammer symbols and exponentials +26 +B. +Explicit expressions for R-operators +29 +C. +An alternative proof of the main theorem +34 +References +37 +1. Introduction +1.1. Background and overview. Baxter first introduced his Q-operator in [Ba72, Ba73] as an +auxiliary tool in the derivation of Bethe Equations for the eigenvalues of the 8-vertex model transfer +matrix. The key characters in the story are the transfer matrix T pzq and the Q-operator Qpzq. A +detailed description of the essential properties of T pzq and Qpzq can be found in [BLZ97] (also see +[VW20] and references therein); the key relation that they satisfy that leads directly to the Bethe +equations is of the form +(1.1) +T pzqQpzq “ α`pzqQpqzq ` α´pzqQpq´1zq, +1Department of Mathematics, Heriot-Watt University, Edinburgh, EH14 4AS, UK +2Beijing Institute for Mathematical Sciences and Applications, 11th Building (Fengye Villa), Yanqi +Island, Huairou, Beijing, China +E-mail addresses: awc4@hw.ac.uk,b.vlaar@bimsa.cn,r.a.weston@hw.ac.uk. +2020 Mathematics Subject Classification. Primary 81R10, 81R12, 81R50; Secondary 16T05, 16T25, 39B42. +1 + +2 +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +where α˘pzq are meromorphic functions and q P Cˆ is not a root of unity. +In the original papers of Baxter, the operator Qpzq was constructed by a brilliant but ad hoc +argument; the representation-theoretic construction of Qpzq had to wait more than 20 years until +the work of Bazhanov, Lukyanov and Zamolodchikov [BLZ96, BLZ97, BLZ99]. The main idea of the +latter approach is to construct both T pzq and Qpzq as partial traces over different representations +of the universal R-matrix R of Uqppsl2q. The operator T pzq is a twisted trace over a two-dimensional +Uqppsl2q-representation Πz, and Qpzq is a similarly twisted trace over an infinite-dimensional Uqppb`q- +representation ρ` +z , where Uqppb`q is a Borel subalgebra of Uqppsl2q (the relevant representations are +defined in Section 4.4 of the current paper). The relation (1.1) for closed spin chains then follows +immediately by considering a short exact sequence (SES) of Uqppb`q-representations with Πz b ρ` +z +as its ‘middle’ object. The extension of this approach to Q-operators for the open XXZ chain was +carried out in [VW20] and details and references can be found therein. +As well as this direct SES route to the equation, there is an alternative strategy which we refer +to as the ‘factorization approach’; for closed chains see [BS90, De05, DKK06, De07, BJMST09, +BLMS10]. In fact, this approach was the one taken by Bazhanov, Lukyanov and Zamolodchikov. +The work that developed this formalism in language most similar to the current paper, in particular +the formulation of the intertwining property of the operator O` (defined in Section 4.5 of the current +paper), is [KT14]. +In this approach, a second operator Qpzq with similar properties to Qpzq is introduced as a +trace of R over another infinite-dimensional representation ¯ρ` +z of Uqppb`q. The affinized version υz +of the Uqpsl2q-Verma module is also considered as well as an another infinite-dimensional filtered +Uqppb`q-module φ` +z ; these two representations depend on a complex parameter µ. The key connec- +tion between all representations is given by Theorem 4.6, which expresses the fact that particular +pairwise tensor products are isomorphic as Uqppb`q-modules by means of an explicit intertwiner O`. +At the level of the L-operators this implies +(1.2) +O` +12L` +̺ pqµzq13L` +¯̺ pq´µzq23 “ L` +υ pzq13L` +φ pzq23O` +12, +(see Theorem 5.2 of the current paper), which is referred to as factorization of the Verma module +L-operator L` +υ pzq in terms of the L-operators L` +̺ pzq and L` +¯̺ pzq which can be used to define Qpzq, +Qpzq (the additional operator L` +φ pzq is triangular and hence the corresponding transfer matrix is +diagonal). +Defining Tµpzq to be the transfer matrix that is the trace over the µ-dependent representation +υz of R in the first space, Theorem 5.2 yields a relation of the following form: +(1.3) +Tµpzq 9 Qpzq´µ{2q ¯Qpzqµ{2q. +A consideration of the SES structure associated with υz when µ is an integer then leads to the key +relation (1.1). +1.2. Present work. The main result of the current paper is the following boundary analogue of +Theorem 5.2, which we call the boundary factorization identity: +(1.4) +Kυpzq1Rυφpz2qKφpzq2 O` “ O`K̺pqµzq1R̺¯̺pz2qK¯̺pq´µzq2 +where z is a formal parameter (which can be specialized to generic complex numbers). The precise +statement is given in Theorem 8.1. This formula involves the actions of the universal R-matrix +of Uqppsl2q in tensor products of the various infinite-dimensional representations introduced. +In +addition, the various K-operators are diagonal solutions of reflection equations (boundary Yang- +Baxter equations) [Ch84, Sk88]. They arise as actions of the universal K-matrix associated to a + +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +3 +particular coideal subalgebra of Uqppgq. This is the augmented q-Onsager algebra, which featured +also in e.g. [BB13, RSV15, BT18, VW20]. It plays the role of ‘boundary quantum group’: it is the +subalgebra of quantum symmetries compatible with a particular system of boundary conditions. +More precisely, diagonal solutions of the reflection equation with a free parameter, considered by +Sklyanin in his 2-boundary version of the algebraic Bethe ansatz, see [Sk88], are intertwiners for +this algebra. +Equation (1.4) has a natural diagrammatic formulation - see Section 8. In a subsequent paper +the authors will explain how (1.4) yields relations analogous to (1.3) and hence (1.1) for open chains. +The proof of (1.4) and of the well-definedness of the various K-operators is an application of +the universal K-matrix formalism developed in [AV22a, AV22b] which is built on the earlier works +[BW18, BK16]. More precisely, it relies on an extension of the theory of K-matrices for finite- +dimensional Uqppgq-representations in [AV22b] to level-0 representations of Uqppb`q, which we discuss +in Section 3. The key point is that, for the special case of the augmented q-Onsager algebra there +exists a universal element K, centralizing the augmented q-Onsager algebra up to a twist, with +three desirable properties. +(i) The element K lies in (a completion of) the Borel subalgebra Uqppb`q, so that the resulting +family of linear maps is itself compatible with Uqppb`q-intertwiners (which play an essential +role in the algebraic theory of Baxter Q-operators). +(ii) The coproduct of K is of a particularly simple form, which is relevant for the proof of the +boundary factorization identity. +(iii) The linear operators accomplishing the action of K in level-0 representations satisfy the +untwisted reflection equation. +Thus we obtain the factorization identity (1.4) as a natural consequence of the representation +theory of Uqppgq. +The main benefit of this universal approach is that laborious linear-algebraic +computations are avoided; in particular, explicit expressions for the various components are not +necessary at all. Nevertheless, we do provide these explicit expressions, as we expect them to be +useful in further work in this direction. We also give an alternative computational proof of (1.4), +to further illustrate the power of the universal approach. +The above approach is a boundary analogue of the level-0 theory of the universal R-matrix +of Uqppsl2q, which underpins e.g. the construction in [KT14]. As a prelude, in Section 2, we also +provide rigorous derivations of properties of the action of the universal R-matrix on tensor prod- +ucts of level-0 representations (this section is written for the pertinent quantum affine algebra +Uqppsl2q, but the proofs naturally generalize to any quantum untwisted affine algebra). +In par- +ticular, Theorem 2.2 states that the grading-shifted universal R-matrix has a well-defined action +as a linear-operator-valued formal power series on tensor products of any level-0 representations +of Uqppb`q and Uqppb´q-modules (this includes, but is not restricted to, finite-dimensional repre- +sentations; often this well-definedness is tacitly assumed, see e.g. [VW20, Sec. 2.3]). This result +also follows from the Khoroshkin-Tolstoy factorization [TK92] of the universal R-matrix, see e.g. +[BGKNR10, BGKNR13, BGKNR14]. Here we give a proof closer in style to the original work by +Drinfeld and Jimbo [Dr85, Dr86, Ji86a, Ji86b]. The only additional assumption is the use of the +principal grading. +1.3. Outline. In Section 2 we study the action of the universal R-matrix of quantum affine sl2 +on tensor products of level-0 representations of Borel subalgebras. Section 3 is a ‘boundary coun- +terpart’ to Section 2, where we consider the augmented q-Onsager algebra. +We show that its + +4 +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +standard universal K-matrix, see [AV22a, AV22b], has a well-defined action on level-0 representa- +tions of Uqppb`q, see Theorem 3.5, and, with a simple correction, satisfies the above three desirable +properties. +In Section 4 we discuss the relevant representations of Uqppb`q in terms of (an extension of) the +q-oscillator algebra, as well as the Khoroshkin-Tsuboi Uqppb`q-intertwiner O`. In Section 5 we +introduce various solutions of Yang-Baxter equations as actions of the universal R-matrix in tensor +products of Borel representations, making use of the results of Section 2. Similarly, in Section 6 +we introduce solutions of the reflection equation as a actions of the universal K-matrix in Borel +representations, which relies on Section 3. +Next, in Section 7 we revisit the SES approach to Baxter’s Q-operators for the open XXZ spin +chain in light of the universal K-matrix formalism. Finally, in Section 8 we give a diagrammatic +motivation of the boundary factorization identity (1.4) for the open XXZ spin chain, and provide +a short proof using the level-0 theory developed in Section 3. +Some supplementary material is given in appendices. Namely, Appendix A provides some back- +ground material on deformed Pochhammer symbols and exponentials. In particular, we derive some +commutation relations used in the proof of the key intertwining property of the operator O`. The +final two appendices provide a proof of the boundary factorization identity which is independent +of the universal K-matrix approach (but still requiring some of the level-0 theory of the universal +R-matrix). In particular, Appendix B contains derivations of the explicit expressions of the two +R-operators appearing in (1.4). In Appendix C we provide an alternative proof of the boundary +factorization identity (1.4), relying on the explicit expressions of all involved factors. The key tool +of this proof is provided by Lemma C.1, which consists of two product formulas involving deformed +Pochhammer symbols and exponentials (to our best knowledge equation (C.2) is a new result). +Acknowledgments. B.V. would like to thank A. Appel and N. Reshetikhin for useful discussions. +R.W. would like to thank the Galileo Galilei Institute in Florence and the Centre de recherches +math´ematiques in Montr´eal for their hospitality in the spring and autumn of 2022 during which +some of this work was completed. +2. Quantum affine sl2 and its universal R-matrix +In this section we study the action of the universal R-matrix of the quasitriangular Hopf algebra +quantum affine sl2 on tensor products of level-0 representations (including infinite-dimensional +representations) of the Borel subalgebras. We give a basic survey of the algebras involved, the +representations and the quasitriangular structure and show that the universal R-matrix has a well- +defined action on tensor products of all level-0 representations of the Borel subalgebras. +2.1. General overview of finite-dimensional R-matrix theory. To formulate a quantum +integrable system in terms of an R-matrix, one needs a representation of a suitable quasitriangular +Hopf algebra. To get trigonometric R-matrices, one can proceed as follows. +Let g be a finite-dimensional simple Lie algebra and note that the untwisted loop algebra Lg “ +g b Crz, z´1s has a central extension pg “ Lg ‘ Cc. In turn, this can be extended by an element d +such that rd, Xs “ z d +dzX to yield rg “ pg ‘ Cd. For a fixed Cartan subalgebra h Ă g we define +ph :“ h ‘ Cc, +rh :“ ph ‘ Cd. +The Lie algebra rg is a Kac-Moody algebra and hence has a non-degenerate bilinear form p¨, ¨q, which +restricts to a non-degenerate bilinear form on rh. See e.g. [Ka90] for more detail. + +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +5 +The universal enveloping algebras Uppgq and Uprgq can be q-deformed, yielding non-cocommutative +Hopf algebras (Drinfeld-Jimbo quantum groups) Uqppgq and Uqprgq, see e.g. [Dr85, Dr86, Ji86a, +TK92, Lu94]. +The nondegenerate bilinear form p¨, ¨q lifts to Uqprgq inducing a pairing between +the q-deformed Borel subalgebras and hence a quasitriangular structure. On the other hand, the +subalgebra Uqppgq has a rich finite-dimensional representation theory, see e.g. [CP94, CP95, KS95, +Ch02, HJ12]. The grading-shifted universal R-matrix has a well-defined action on tensor products +of finite-dimensional representations of Uqppgq as a formal power series, see e.g. [Dr86, FR92, He19]). +We now discuss the extension of this theory to level-0 representations of Borel subalgebras in the +case g “ sl2. +2.2. Quantum affine sl2 and its universal R-matrix. Denoting the canonical Cartan generator +of sl2 by h1, ph is spanned by h0 “ c ´ h1 and h1. The bilinear form on rh is defined by +ph0, h0q “ ph1, h1q “ ´ph0, h1q “ 2, +ph0, dq “ 1, +ph1, dq “ pd, dq “ 0. +Fix ǫ P C such that q “ exppǫq is not a root of unity. For all x P C we will denote exppǫxq by +qx. First, we define Uqpgq as the algebra generated over C by e, f and invertible k subject to the +relations +(2.1) +ke “ q2ek, +kf “ q´2fk, +re, fs “ k ´ k´1 +q ´ q´1 . +The following assignments determine a coproduct ∆ : Uqpgq Ñ Uqpgq b Uqpgq: +(2.2) +∆peq “ e b 1 ` k b e, +∆pfq “ f b k´1 ` 1 b f, +∆pk˘1q “ k˘1 b k˘1. +It uniquely extends to a Hopf algebra structure on Uqpgq. Now the main algebra of interest, Uqppgq, +arises as follows. +Definition 2.1 (Quantum affine sl2). We denote by Uqppgq the Hopf algebra generated by two +triples tei, fi, kiu (i P t0, 1u), such that: +(i) the following assignments for i P t0, 1u define Hopf algebra embeddings from Uqpgq to Uqppgq: +(2.3) +e ÞÑ ei, +f ÞÑ fi, +k ÞÑ ki; +(ii) the following cross relations are satisfied: +kikj “ kjki, +kiej “ q´2ejki, +kifj “ q2fjki, +rei, fjs “ 0, +(2.4) +rei, rei, rei, ejsq2s1sq´2 “ rfi, rfi, rfi, fjsq2s1sq´2 “ 0, +(2.5) +for i ‰ j, where we have introduced the notation rx, ysp :“ xy ´ pyx. +� +Consider the affine Cartan subalgebra ph “ Ch0 ‘ Ch1. Note that its q-deformation Uqpphq “ +xk˘1 +0 , k˘1 +1 y is isomorphic to the group algebra of the affine co-root lattice +(2.6) +pQ_ “ Zh0 ` Zh1 Ă ph. +To define the quantized Kac-Moody algebra Uqprgq, we need to choose an extension rQ_ of pQ_ +(a lattice of rank 3 contained in rh). +To explain our choice, note that the nontrivial diagram +automorphism Φ of the affine Dynkin diagram, i.e. the nontrivial permutation of the index set +t0, 1u, lifts to a linear automorphism Φ of ph which preserves the lattice pQ_. Accordingly, it also +lifts an involutive Hopf algebra automorphism of Uqppgq, also denoted Φ, via the assignments +(2.7) +Φpeiq “ eΦpiq, +Φpfiq “ fΦpiq, +Φpk˘1 +i +q “ k¯1 +Φpiq +for i P t0, 1u. + +6 +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +2.3. Quantized Kac-Moody algebra. The standard extension of the affine co-root lattice Zh0` +Zh1`Zd is not so convenient for us, since extensions of Φ to rh which are compatible with the pairing +between rh and its dual do not preserve this lattice, see also [Ko14, Sec. 2.6] and [AV22a, Sec. 3.14]. +Setting +(2.8) +dpr :“ ´1 +8h0 ` 3 +8h1 ` 2d, +we obtain +pdpr, h0q “ pdpr, h1q “ 1, +pdpr, dprq “ 0. +Now we define the extended affine co-root lattice as +rQ_ “ Zh0 ` Zh1 ` Zdpr. +Now we can set Φpdprq “ dpr and obtain a linear automorphism of rh preserving the lattice rQ_. The +corresponding dual map on rh˚, also denoted by Φ, preserves the extended affine weight lattice +(2.9) +rP “ tλ P rh˚ | λp rQ_q Ď Zu. +Accordingly, we define Uqprgq as the Hopf algebra obtained by extending Uqppgq by a group-like +element1 g satisfying +(2.10) +gei “ qeig, +gfi “ q´1fig, +gki “ kig. +Hence, the assignment Φpgq “ g together with (2.7) defines an involutive Hopf algebra automor- +phism of Uqprgq. +2.4. Co-opposite Hopf algebra structure. For any C-algebra A, denote by σ the algebra au- +tomorphism of A b A which sends a b a1 to a1 b a for all a, a1 P A. If X P A b A we will also write +X21 for σpXq. +If A is a bialgebra with coproduct ∆, the co-opposite bialgebra, denoted Acop, is the bialgebra +with the same underlying algebra structure and counit as A but with ∆ replaced by +(2.11) +∆op :“ σ ˝ ∆ +(if A is a Hopf algebra with invertible antipode S, then Acop is also a Hopf algebra with antipode +S´1). The assignments +(2.12) +ωpeiq “ fi, +ωpfiq “ ei, +ωpk˘1 +i +q “ k¯1 +i +for i P t0, 1u, +ωpgq “ g´1 +define a bialgebra isomorphism from Uqprgq to Uqprgqcop, commuting with Φ. In particular, we have +pω b ωq ˝ ∆ “ ∆op ˝ ω. +2.5. Some elementary representation theory. We review some basic definitions regarding +representations of Uqprgq and, especially, its subalgebra Uqppgq. Consider the commutative subalgebra +(2.13) +Uqprhq “ xk˘1 +0 , k˘1 +1 , g˘1y Ă Uqprgq. +Call a Uqprhq-module M a Uqprhq-weight module if +M “ +à +λP rP +Mλ, +Mλ “ tm P M | ki ¨ m “ qλphiqm for i P t0, 1u, g ¨ m “ qλpdprqmu +1It is equal to qdpr if we view Uqprgq as a topological Hopf algebra defined over Crrǫss. + +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +7 +and elements of Mλ are said to have weight λ. The adjoint action of Uqprhq (with each k˘1 +i +and g˘1 +acting by conjugation) endows Uqprgq itself with a Uqprhq-weight module structure, with elements of +Uqprhq of weight 0. More precisely, the weights of Uqprgq are given by the affine root lattice +pQ :“ Zα0 ` Zα1 Ă rP +(ei has weight αi, fi has weight ´αi). Furthermore, note that Uqprgq is generated by Uqprhq and the +quantum analogues of the standard nilpotent subalgebras +(2.14) +Uqppn`q “ xe0, e1y, +Uqppn´q “ xf0, f1y +and the weights of Uqppn˘q are given by the monoids ˘ pQ`, where +pQ` :“ Zě0α0 ` Zě0α1. +We denote by Uqppn˘qλ the subspace of elements of weight λ P pQ˘. +2.6. Quasitriangularity. The universal R-matrix for Uqprgq is an element of a completion of +Uqprgq b Uqprgq satisfying +R∆puq “ ∆oppuqR +for all u P Uqprgq, +(2.15) +p∆ b idqpRq “ R13R23, +pid b ∆qpRq “ R13R12 +(2.16) +and hence +(2.17) +R12R13R23 “ R23R13R12. +Consider the Hopf subalgebras +Uqprb˘q “ xUqprhq, Uqppn˘qy. +The element R arises as the canonical element of the bialgebra pairing between Uqprb`q and the +algebra Uqprb´qop (the bialgebra isomorphic as a coalgebra to Uqprb´q but with the opposite mul- +tiplication), see [Dr85, Lu94]. In particular, R lies in a completion of Uqprb`q b Uqprb´q. Further, +invariance properties of the bialgebra pairing imply +pω b ωqpRq “ R21, +(2.18) +pΦ b ΦqpRq “ R. +(2.19) +Moreover, this pairing has a non-degenerate restriction to Uqppn`qλ ˆ Uqppn´q´λ for all λ P pQ`; +denote the canonical element of this restricted pairing by Θλ. Then, with our conventions for the +coproduct, we have +(2.20) +R “ Θ´1 ¨ κ´1, +Θ “ +ÿ +λP pQ` +Θλ, +A priori, Θ acts naturally on Uqprgq-modules with a locally finite Uqppn`q or Uqppn´q-action. We +briefly explain one possible definition2 of the element κ. The non-degenerate bilinear form p¨, ¨q +on rh induces one on rh˚, which we denote by the same symbol. If V, V 1 are Uqprhq-weight modules +we define a linear map κV : V b V 1 Ñ V b V 1 by stipulating that it acts on Vλ b V 1 +λ1 (λ, λ1 P rP) +as multiplication by qpλ,λ1q. The family of these maps κV , where V runs through all Uqprhq-weight +modules, is compatible with Uqprhq-intertwiners. +Hence it gives rise to a well-defined weight-0 +element κ of the corresponding completion of Uqprgq b Uqprgq (see [AV22a, Sec. 4.6]) which we call +2Note that in the topological Hopf algebra setting one simply has κ “ qcbd`dbc`h1bh1{2. + +8 +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +here weight completion. Similarly, one can define weight-0 elements of the weight completion of +Uqprgq itself using functions from rP to C. See also [AV22a, Sec. 4.8] for more detail. +2.7. Level-0 representations. Consider the following subalgebras of Uqppgq: +(2.21) +Uqppb˘q “ xUqpphq, Uqppn˘qy. +We are mainly interested in level-0 representations π : Uqppb˘q Ñ EndpV q, possibly infinite- +dimensional. These are weight modules with respect to the rank-1 weight lattice associated to +the subalgebra sl2 Ă pg. More precisely, we say that a Uqppb˘q-module V is level-0 if it is finitely +generated and decomposes as +(2.22) +V “ +à +tPCˆ +V ptq, +V ptq “ tv P V | k0 ¨ v “ t´1v, +k1 ¨ v “ tvu +with each V ptq finite-dimensional, cf. [HJ12, Def. 3.8]. If V is a finite-dimensional Uqppgq-module +then it is level-0 with the eigenvalues of k1 contained in ˘qZ, see e.g. [CP95, Prop. 12.2.3]. As a +consequence of relation (2.10), level-0 Uqppgq-modules do not extend to Uqprgq-modules, unless they +are trivial (direct sums of 1-dimensional representations). +2.8. The action of R on tensor products of level-0 modules. To connect the quasitriangular +structure of Uqprgq with the level-0 representation theory of Uqppgq, one needs to make some provi- +sions, as first pointed out in [Dr86, Sec. 13] (also see [FR92, Sec. 4], [He19, Sec. 1]). If we write +the action of k1 on an arbitrary level-0 module V as exppǫHV q, then note that κ naturally acts on +tensor products V b V 1 of level-0 modules as exppǫHV b HV 1{2q. To let Θ act on tensor products +of level-0 modules, we replace the field of scalars C over which we defined Uqprgq by the Laurent +polynomial ring Crz, z´1s, where z is a formal parameter. Quite generally, for any C-linear space +M (e.g. a C-algebra) we will denote extension by scalars as follows: +Mrz, z´1s “ M bC Crz, z´1s, +Mrrzss “ M bC Crrzss, +etc. +The action of Θ is particularly well-behaved if we use the principal grading. That is, we define a +Hopf algebra automorphism Σz of Uqprgqrz, z´1s such that +(2.23) +Σzpeiq “ zei, +Σzpfiq “ z´1fi, +Σz|Uqprhq “ id. +Straightforwardly one sees that +ω ˝ Σz “ Σz´1 ˝ ω, +(2.24) +Φ ˝ Σz “ Σz ˝ Φ. +(2.25) +Let the height function ht : pQ Ñ Z be defined by htpm0α0 ` m1α1q “ m0 ` m1 for all m0, m1 P Z +and note that the number of elements of pQ` of given height is finite. The key observation is that +(2.26) +pΣz b idqpΘq “ pid b Σz´1qpΘq “ +ÿ +rě0 +zr +ÿ +λP pQ`, htpλq“r +Θλ, +is a formal power series in z whose coefficients are finite sums and hence lie in Uqppn`q b Uqppn´q. +Hence pΣz b idqpΘq “ pid b Σz´1qpΘq has a well-defined action as a linear-operator-valued formal +power series on a tensor product of any Uqppn`q-representation with any Uqppn´q-representation. +Consider now the grading-shifted universal R-matrix: +(2.27) +Rpzq :“ pΣz b idqpRq “ pid b Σz´1qpRq. +Note that by applying Σz b id to (2.15) we deduce that Rpzq commutes with ∆pk1q “ ∆oppk1q “ +k1 b k1. We collect the results obtained thus far. + +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +9 +Theorem 2.2. Let the grading-shifted universal R-matrix Rpzq be defined by (2.27). Consider a +pair of level-0 representations π˘ : Uqppb˘q Ñ EndpV ˘q, respectively. Then +(2.28) +Rπ`π´pzq :“ pπ` b π´qpRpzqq P EndpV ` b V ´qrrzss +is well-defined and commutes with π`pk1q b π´pk1q. +From now on we will use the standard convention that if π is any level-0 representation then the +corresponding grading-shifted representation is denoted by a subscript z: +(2.29) +πz :“ π ˝ Σz. +Hence we may write +Rπ`π´pzq “ pπ` +z b π´qpRq “ pπ` b π´ +1{zqpRq. +Consider two indeterminates z1, z2. Applying, say, Σz1bidbΣ1{z2, to (2.17), we obtain a Crrz1, z2ss- +version of the universal Yang-Baxter equation which can be evaluated on suitable triple tensor +products. +Proposition 2.3. Let the grading-shifted universal R-matrix Rpzq be defined by (2.27). If π` : +Uqppb`q Ñ EndpV `q, π : Uqppgq Ñ EndpV q and π´ : Uqppb´q Ñ EndpV ´q are level-0 represen- +tations, then we have the following identity of linear-operator-valued formal power series in two +indeterminates: +(2.30) +Rπ`πpz1q12 Rπ`π´pz1z2q13 Rππ´pz2q23 “ Rππ´pz2q23 Rπ`π´pz1z2q13 Rπ`πpz1q12. +Given a pair of level-0 representations π˘ : Uqppb˘q Ñ EndpV ˘q it is often convenient to have +an explicit expression of Rπ`π´pzq which does not rely on computing the expansion coefficients of +Rpzq. Essentially following Jimbo’s approach from [Ji86b], we may try to solve a linear equation +for Rπ`π´pzq. To derive such a linear equation, it is convenient to assume that, say, π´ extends to +a representation of Uqppgq so that +(2.31) +Rπ`π´pzq ¨ pπ` +z b π´qp∆puqq “ pπ` +z b π´qp∆oppuqq ¨ Rπ`π´pzq +holds for all u P Uqppb`q. In this case3, one directly obtains the following result. +Proposition 2.4. Let the grading-shifted universal R-matrix Rpzq be defined by (2.27). If π` +is a level-0 Uqppb`q-representation and π´ a level-0 Uqppgq-representation, then (2.31) holds for all +u P Uqppb`q. +Remark 2.5. If the solution space of the linear equation (2.31) is 1-dimensional, Proposition 2.4 +implies that any solution must be a scalar multiple of Rπ`π´pzq and hence satisfy the Yang-Baxter +equation. +This is well-known if both V ˘ extend to finite-dimensional Uqppgq-modules. +In this +case the existence of the universal R-matrix implies the existence of a solution of the intertwining +condition (2.31) depending rationally on z. If π` and π´ are both irreducible then it is known, see +e.g. [KS95, Sec. 4.2] and [Ch02, Thm. 3], that V `ppzqq b V ´ is irreducible as a representation of +Uqppgqppzqq (extension of scalars to formal Laurent series); hence an application of Schur’s lemma +yields the 1-dimensionality of the solution space of (2.31). In this case, the rational intertwiner +is called trigonometric R-matrix. For more background and detail, see e.g. [He19] and [AV22b, +Secs. 2.6 & 2.7]. +3More generally, one can apply π` +z bπ´ to (2.15) for any Uqppb˘q-representations π˘, yielding (2.31) for all u P Uqppgq +such that ∆puq and ∆oppuq both lie in Uqppb`q b Uqppb´q, but by applying counits this subalgebra is easily seen to be +equal to Uqppb`q X Uqppb´q “ Uqpphq. Hence, one would just recover the second statement of Theorem 2.2. + +10 +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +In the absence of a linear relation such as (2.31), one can use the Yang-Baxter equation (2.30) +to determine an explicit expression for Rπ`πpzq, Rπ`π´pzq, or Rππ´pzq, provided the other two are +known. +� +Note that in this approach the principal grading is essential to deduce Theorem 2.2 without +further constraints on the representations (e.g. local nilpotency conditions). For completeness we +briefly explain how to extend the results obtained here to arbitrary grading. +For nonnegative +integers s0, s1 such that s :“ s0 ` s1 is nonzero, define a more general Hopf algebra automorphism +Σs0,s1 +z +of Uqprgq b Crz, z´1s by +(2.32) +Σs0,s1 +z +peiq “ zsiei, +Σs0,s1 +z +pfiq “ z´sifi, +Σs0,s1 +z +|Uqprhq “ id +(note that the choice s0 “ 0, s1 “ 1 is used in in [KT14, Eq. (2.11)]). Rather than generalizing the +theory above to this case, we make the following observation for a cyclic Uqppb`q-module V , i.e., +V “ Uqppb`q ¨ v0 for some v0 P V , which is level-0 (all modules considered in this paper are cyclic +level-0 modules). Writing the corresponding representation as π : Uqppb`q Ñ EndpV q then the more +general grading-shifted representation defined by +(2.33) +πs0,s1 +z +:“ π ˝ Σs0,s1 +z +can be related to the representation shifted by the principal grading. Namely, for such modules, +there exists t0 P Cˆ such that the nonzero weight spaces V ptq appearing in (2.22) have t “ q2mt0 +for some m P Z. Now for any indeterminate y and any integer m, let ymD denote the map on V +which acts on V pq2mt0q as scalar multiplication by ym. Now adjoin to the ring Crz, z´1s a square +root Z of z. Then we have +(2.34) +πs0,s1 +z +“ Ad +` +Zps1´s0qD˘ +˝ πZs, +where on the right-hand side Ad stands for ‘conjugation by’. See [AV22b, Sec. 5.2] for essentially +the same point in the context of irreducible finite-dimensional Uqppgq-representations. +3. The augmented q-Onsager algebra, its twists and its universal K-matrices +In parallel with the previous section, we consider a particular subalgebra of Uqppgq and discuss +some recent results on universal K-matrices [AV22a, AV22b] in the context of (possibly infinite- +dimensional) level-0 representations of Borel subalgebras of quantum affine sl2. +For a related +universal approach involving essentially the same subalgebra, tailored to evaluation representations, +see [BT18]. +3.1. The twist map ψ. We consider the following algebra automorphism and coalgebra antiau- +tomorphism of Uqprgq +(3.1) +ψ :“ ω ˝ Φ. +From (2.18-2.19) and (2.24-2.25), respectively, we immediately deduce +pψ b ψqpRq “ R21, +(3.2) +ψ ˝ Σz “ Σz´1 ˝ ψ. +(3.3) +By the following result, P-symmetric R-matrices (Rpzq21 “ Rpzq) naturally arise in tensor +products of representations of the upper and lower Borel subalgebras on the same vector space, +provided they are related through ψ and the principal grading is used. + +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +11 +Lemma 3.1. Let the grading-shifted universal R-matrix Rpzq be defined by (2.27). Consider a pair +of level-0 representations π˘ : Uqppb˘q Ñ EndpV q, respectively, such that +(3.4) +π´ “ π` ˝ ψ. +Then Rπ`π´pzq21 “ Rπ`π´pzq. +Proof. Unpacking the definitions (2.28) and (2.27), we have +Rπ`π´pzq21 “ +´` +pπ` b π´q ˝ pΣz b idq +˘ +pRq +¯ +21 “ +` +pπ´ b π`q ˝ pid b Σzq +˘` +R21 +˘ +. +Now using (3.2-3.3) we deduce +Rπ`π´pzq21 “ +` +pπ´ b π`q ˝ pψ b ψq ˝ pid b Σz´1q +˘ +pRq. +Applying (3.4) and using (2.28) and (2.27) once again, we obtain Rπ`π´pzq as required. +□ +3.2. The augmented q-Onsager algebra. The map ψ plays an important role in the theory +of diagonal matrix solutions with a free parameter of the reflection equation in Uqppgq-modules. +Namely, fix an a parameter ξ P Cˆ consider the following subalgebra of Uqppgq, also called the +(embedded) augmented q-Onsager algebra: +(3.5) +Uqpkq :“ C +@ +e0 ´ q´1ξ´1k0f1, e1 ´ q´1ξk1f0, k0k´1 +1 , k´1 +0 k1 +D +. +This is a left coideal: +(3.6) +∆pUqpkqq Ď Uqppgq b Uqpkq. +The automorphism ψ is the trivial q-deformation of a Lie algebra automorphism of pg. If we also +call this ψ for convenience, then Uqpkq is the parameter-dependent q-deformation of the universal +enveloping algebra of the fixed-point subalgebra k “ pgψ, in the style of [Ko14] but with opposite +conventions. +Remark 3.2. See [VW20, Rmk. 2.3] for more background on this subalgebra. The definition of +Uqpkq in loc. cit. has a misprint: ξ should be replaced by ξ´1. +� +To connect with the universal K-matrix formalism of [AV22a, AV22b], let rS be the bialgebra +isomorphism4 from Uqprgq to Uqprgqop,cop (also known as the unitary antipode) defined by the assign- +ments +(3.7) +rSpeiq “ ´qk´1 +i +ei, +rSpfiq “ ´q´1fiki, +rSpk˘1 +i +q “ k¯1 +i +, +rSpg˘1q “ g¯1. +0 Note that rS2 “ id. Now consider5 the right coideal subalgebra +Uqpkq1 “ rSpUqpkqq “ Cxf0 ´ qξ´1e1k´1 +0 , f1 ´ qξe0k´1 +1 , k0k´1 +1 , k´1 +0 k1y +which is the subalgebra considered in [AV22a, Sec. 9.7], forming part of a more general family +of right coideal subalgebras (quantum symmetric pair subalgebras) of quantum affine algebras as +considered in [Ko14, AV22a, AV22b]. +4In particular, rS, like the antipode S itself, is an algebra antiautomorphism and a coalgebra antiautomorphism. +5In general, each element or map in the right coideal setting of [Ko14, AV22a, AV22b] is denoted by a prime on +the corresponding object in the current left coideal setting. + +12 +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +3.3. Universal K-matrix. By [AV22a, Thm. 8.5], Uqprgq is endowed with a so-called standard +universal K-matrix, which is an invertible element in a completion of Uqprb`q satisfying a twisted +Uqpkq-intertwining property and a twisted coproduct formula involving the universal R-matrix6 +R1 “ R´1 +21 . There is an action of invertible elements of a completion of Uqprgq, gauge-transforming +the universal K-matrix and the twisting operator simultaneously, see [AV22b, Sec. 3.6]. For the +case under consideration, there exists a gauge transformation (a ‘Cartan correction’, see [AV22a, +Sec. 8.8]) that brings both the intertwining property and the coproduct formula for the universal +K-matrix into a particularly nice form. Moreover, the gauge-transformed universal K-matrix still +resides in a completion of Uqprb`q and, when shifted by the principal grading, acts as a linear- +operator-valued formal power series for all level-0 Uqppb`q-modules. +To make this more precise, let Ω : rP Ñ Cˆ be any group homomorphism such that Ωpα0q “ ´ξ +and Ωpα1q “ ´ξ´1. Now define a function G1 : rP Ñ Cˆ by +(3.8) +G1pλq “ Ωpλqq´pΦpλq,λq{2. +Note that this is not a group homomorphism. Define the corresponding linear operator acting on +Uqprhq-weight modules as follows: +(3.9) +G1 ¨ v “ G1pλqv, +v P Vλ, +λ P rP. +Analogously to our definition of the factor κ of the universal R-matrix, we thus obtain an invertible +element G1 of the weight completion of Uqprgq. Finally, let δ “ α0 ` α1 be the basic imaginary root +of pg. Then the following result is a special case of [AV22a, Sec. 9.7], with the coproduct formula a +direct consequence of [AV22a, (8.21)]. +Proposition 3.3. There exists an invertible element +(3.10) +Υ1 “ +ÿ +λPZě0δ +Υ1 +λ, +Υ1 +λ P Uqppn`qλ, +such that +(3.11) +K1 :“ G1 ¨ Υ1 +satisfies +K1 ¨ u “ ψpuq ¨ K1 +for all u P Uqpkq1, +(3.12) +∆pK1q “ p1 b K1q ¨ pψ b idqpR1q ¨ pK1 b 1q. +(3.13) +Now we transform this formalism [AV22a] for the right coideal subalgebra Uqpkq1, expressed in +terms of the universal R-matrix R1, to a formalism for the left coideal subalgebra Uqpkq “ rSpUqpkq1q, +expressed in terms of the universal R-matrix R as used in this paper. To do this, note that, when +going from a Uqprgq-weight module to its dual, weights transform as λ ÞÑ ´λ. This defines the +extension of S and rS to a map on the weight completion of Uqprgq. Therefore rSpΩq “ Ω´1 but the +non-group-like factor of G1 is fixed by rS. We define G : rP Ñ Cˆ by +(3.14) +Gpλq :“ ΩpλqqpΦpλq,λq{2 +6Note that our choice of coproduct is the same as in [AV22a], but our ordering of the tensor product of the two +Borel subalgebras is opposite. Hence the R-matrix in [AV22a], which we denote here by R1, is expressed in terms of +R as R´1 +21 . + +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +13 +so that G “ rSpG1q´1. Also, we set +(3.15) +Υ :“ rSpΥ1q´1 “ +ÿ +λPZě0δ +Υλ, +Υλ P rSpUqppn`qλq +and note that rSpUqppn`qλq P Uqpphq ¨ Uqppn`qλ. +Proposition 3.4. The element +(3.16) +K :“ rSpK1q´1 “ G ¨ Υ +satisfies +K ¨ u “ ψpuq ¨ K +for all u P Uqpkq, +(3.17) +∆pKq “ pK b 1q ¨ pid b ψqpRq ¨ p1 b Kq. +(3.18) +Proof. This follows from Proposition 3.3. Namely, we apply rS to (3.12) and prS b rSq ˝ σ to (3.13), +and use the fact that rS ˝ ψ “ ψ ˝ rS and prS b rSqpRq “ R. +□ +Note that Uqppb`q is a bialgebra and, as expected, the right-hand side of (3.18) lies in a completion +of Uqppb`qbUqppb`q, since ψ interchanges the two Borel subalgebras Uqppb˘q. The reflection equation +satisfied by the universal element K is as follows: +(3.19) +R ¨ pK b 1q ¨ pid b ψqpRq ¨ p1 b Kq “ p1 b Kq ¨ pid b ψqpRq ¨ pK b idq ¨ R. +This is a consequence of the linear relation (2.15) for R and the coproduct formula (3.18) for K, +alongside (3.2) and ψ2 “ id. +3.4. The action of the universal K-matrix on level-0 representations. To deduce that K +has a well-defined action on level-0 representations of, say, Uqppb`q, we can proceed in a similar way +to the case of the R-matrix. This builds on the finite-dimensional theory for more general quantum +symmetric pair subalgebras in [AV22b, Sec. 4]. +First note that if π is a level-0 representation, π and the twisted representation π ˝ψ coincide on +Uqpphq. Now let z once again be a formal variable. Note that by (3.14) the function G sends the basic +imaginary root δ to 1. Hence the proof of [AV22b, Prop. 4.3.1 (3)] implies that the corresponding +factor G of the universal K-matrix descends to level-0 modules. Furthermore, the argument that +shows ΣzpΘq is a Uqppn`q b Uqppn´q-valued formal power series can be easily adapted to Υ; it yields +a formal power series with coefficients in rSpUqppn`qq: +ΣzpΥq “ +ÿ +rě0 +zr +ÿ +λPZě0δ, htpλq“r +Υλ. +Now consider +(3.20) +Kpzq “ ΣzpKq. +Noting that the form of Υ implies that K commutes with k1, we arrive at the following main +result, which is the boundary analogue of Theorem 2.2. +Theorem 3.5. Let the grading-shifted universal K-matrix be defined by (3.20). Consider a level-0 +representation π : Uqppb`q Ñ EndpV q. Then +(3.21) +Kπpzq :“ πpKpzqq P EndpV q b Crrzss +is well-defined and commutes with πpk1q. + +14 +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +We also provide boundary counterparts of Propositions 2.3 and 2.4. Consider two indeterminates +z1, z2. Applying Σz1 b Σz2 to (3.19) and using (3.3), we obtain the following reflection equation for +the grading-shifted universal operators: +(3.22) +Rpz1{z2q ¨ pKpz1q b 1q ¨ pid b ψqpRpz1z2qq ¨ p1 b Kpz2qq “ +“ p1 b Kpz2qq ¨ pid b ψqpRpz1z2qq ¨ pKpz1q b idq ¨ Rpz1{z2q. +Recalling that the universal R-matrix R lies in a completion of Uqppb`q b Uqppb´q and applying a +tensor product of suitable representations to (3.22), one obtains the right reflection equation with +multiplicative spectral parameters for P-symmetric R-matrices, as we now state precisely. +Proposition 3.6. Let the grading-shifted universal K-matrix be defined by (3.20). Consider level-0 +representations π` : Uqppb`q Ñ EndpV `q and π : Uqppgq Ñ EndpV q such that π ˝ ψ “ π. Then +(3.23) +Rπ`πpz1{z2qpKπ`pz1q b IdV qRπ`πpz1z2qpIdV ` b Kπpz2qq “ +“ pIdV ` b Kπpz2qqRπ`πpz1z2qpKπ`pz1q b IdV qRπ`πpz1{z2q. +The use of Uqpkq-intertwining relations to find explicit solutions of reflection equations was pro- +posed in [DG02, DM03]. First note that the intersection of Uqpkq and Uqppb`q is contained in Uqpphq, +so that, in the absence of further assumptions, applying a level-0 representation π to (3.17) one just +recovers the second part of Theorem 3.5. To obtain a more powerful statement, as for the R-matrix +it is convenient to assume that π extends to a Uqppgq-representation, in which case it restricts to a +Uqpkq-representation and we obtain the following result as a consequence of (3.3). +Proposition 3.7. Let the grading-shifted universal K-matrix be defined by (3.20). If π : Uqppgq Ñ +EndpV q is a level-0 representation such that π ˝ ψ “ π, then +(3.24) +Kπpzq ¨ πzpuq “ π1{zpuq ¨ Kπpzq +for all u P Uqpkq. +We close this section with some comments parallel to Remark 2.5. +Remark 3.8. If the solution space of the linear equation (3.24) is 1-dimensional, Proposition 3.7 +implies that any solution must be a scalar multiple of Kpzq and hence automatically satisfy the +reflection equation (3.23). In the case that π : Uqppb`q Ñ EndpV q extends to a Uqppgq-representation +and V is finite-dimensional, statements analogous to those in Remark 2.5 (i) can be made (existence +of a solution of the intertwining condition (3.24) depending rationally on z and 1-dimensionality +of the solution space of (3.24) for irreducible representations), see [AV22b, Secs. 5 and 6] for more +detail. +In many cases π` : Uqppb`q Ñ EndpV q does not extend to a Uqppgq-representation. To explicitly +determine Kπ`pzq in those cases, we will use the reflection equation (3.23), with the other K-matrix +Kπpzq determined using Proposition 3.7. +� +4. Borel representations in terms of the q-oscillator algebra +4.1. The infinite-dimensional vector space W. The countably-infinite-dimensional vector space +plays a central role in the theory of Baxter’s Q-operators. We may define it as the free C-module +over a given set twjujPZě0: +(4.1) +W “ +à +jě0 +Cwj. +Given this distinguished basis, elements of EndpWq naturally identify with infinite-by-infinite ma- +trices with the property that all but finitely many entries of each column are zero. It is convenient + +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +15 +to work with a particular subalgebra of EndpWq depending on the deformation parameter q. More +precisely, consider the C-linear maps a, a: on W defined by +(4.2) +a ¨ wj`1 “ wj, +a ¨ w0 “ 0, +a: ¨ wj “ +` +1 ´ q2pj`1q˘ +wj`1 +for all j P Zě0. These operators satisfy the relation ra, a:sq2 “ 1 ´ q2. Naturally, we obtain an +embedding of an abstract algebra with these generators and this defining relation into EndpWq. +Up to rescaling of the generators, this was considered for instance in [AC76, Mf89, Ku91, Bi92] and +can be viewed as a q-deformation of the Weyl or oscillator algebra. +Note that each basis vector wj is an eigenvector of the compositions aa: and a:a with eigenvalues +1 ´ q2pj`1q and 1 ´ q2j, respectively. For the description of L-operators associated to Uqppgq acting +on W b C2 (particular solutions of the Yang-Baxter equation), it is convenient to consider a linear +operator qD which is a square root of 1 ´ a:a: +(4.3) +qD ¨ wj “ qjwj +for j P Zě0. +The definitions of the linear maps imply the following relations: +(4.4) +aa: “ 1 ´ q2pD`1q, +a:a “ 1 ´ q2D, +qD`1a “ aqD, +qDa: “ a:qD`1, +where we have used natural shorthand notations q2D “ pqDq2, qD`1 “ qqD and q2pD`1q “ q2pqDq2. +Note that qD is invertible and we let q´D denote its inverse. +Remark 4.1. In many applications, the q-oscillator algebra is defined as the abstract algebra gen- +erated by a, a: and q˘D subject to the relations (4.4). This version of the q-oscillator algebra +appeared in the guise of a topological algebra for instance in [BGKNR10, Sec. +2.3] and with +slightly different conventions in [KT14]7. +� +4.2. Diagonal operators from functions and an extended q-oscillator algebra. To accom- +modate the action of the universal R and K-matrices on certain level-0 modules, we will need an +extension of the above algebra xa, a:, q˘Dy and work over the commutative ring Crrzss. +Denote by F the commutative algebra of functions from Zě0 to Crrzss. Let D be the linear +operator on W defined by D ¨ wj “ jwj. For any f P F we define fpDq P EndpWq via +(4.5) +fpDq ¨ wj “ fpjqwj, +thereby recovering (4.3) as a special case. Thus, we obtain an algebra embedding F Ñ EndpWqrrzss, +whose image FpDq is the subalgebra of diagonal operators on W (with respect to the given basis). +Now we combine this with the maps a, a: to obtain a subalgebra of EndpWqrrzss properly containing +(the Crrzss-extension of) the algebra generated by a, a: and q˘D. +Definition 4.2. The (extended) q-oscillator algebra is the subalgebra A Ă EndpWqrrzss generated +by a:, a and FpDq. +� +As can be verified on basis vectors, in A one has the relations +(4.6) +aa: “ 1 ´ q2pD`1q, +a:a “ 1 ´ q2D, +afpDq “ fpD ` 1qa, +fpDqa: “ a:fpD ` 1q. +One straightforwardly verifies that the subalgebras FpDq, Cra:s and Cras are self-centralizing. Note +that the operator +(4.7) +¯a: :“ ´q´2Da: P EndpWq +7Note that the two vector spaces W1 and W2 introduced in [KT14, Sec. 2.3] are naturally isomorphic, so that +the two algebras Osc1 and Osc2 defined via generators and relations can be identified with the same subalgebra of +EndpW1q – EndpW2q. + +16 +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +sends wj to p1 ´ q´2pj`1qqwj`1. Clearly, A is also generated by ¯a:, a and FpDq. The transforma- +tion q ÞÑ q´1 defines an algebra automorphism of A, preserving the subalgebra FpDq, fixing the +generator a and interchanging the generators a: and ¯a:. +4.3. Endomorphisms of W bW. Elements of the tensor product AbA naturally act on W bW. +Note that the elements +a1 :“ a b IdW, +a: +1 :“ a: b IdW , +a2 :“ IdW b a, +a: +2 :“ IdW b a: +together with FpD1q Y FpD2q generate A b A over Crrzss. We will need a larger subalgebra of +EndpW b Wq: we will allow all functions of two nonnegative integers as well as formal power series +in certain locally nilpotent endomorphisms. +Denote by Fp2q the commutative algebra of functions from Zě0 ˆ Zě0 to Crrzss. Similarly, we +denote by D1 and D2 the linear operators on the tensor product W b W defined by +(4.8) +D1 ¨ pwj b wkq “ jwj b wk, +D2 ¨ pwj b wkq “ kwj b wk. +For any f P Fp2q we define fpD1, D2q P EndpW b Wqrrzss via +(4.9) +fpD1, D2q ¨ pwj b wkq “ fpj, kqwj b wk, +yielding an algebra embedding Fp2q Ñ EndpW b Wqrrzss, whose image Fp2qpD1, D2q is the sub- +algebra of diagonal operators on W b W. +Now note that a1a: +2 and a: +1a2 are locally nilpotent +endomorphisms of W b W. Since elements of Fp2qpD1, D2q preserve each tensor product of basis +vectors, series of the form +(4.10) +ÿ +k,ℓě0 +pa: +2qℓgk,ℓpD1, D2qak +1, +ÿ +k,ℓě0 +pa: +1qkhk,ℓpD1, D2qaℓ +2 +are well-defined elements of EndpW b Wqrrzss for any gk,ℓ, hk,ℓ P Fp2q. +Definition 4.3. The subalgebra of EndpW b Wqrrzss generated by the operators (4.10) is called +Ap2q. +� +In fact, it is not hard to see that Ap2q is spanned over Crrzss by the operators (4.10). We will +later rely on the following result. +Lemma 4.4. The centralizer of the subset ta: +1, ¯a: +2u in Ap2q is equal to Crrzss. +Proof. This centralizer is the intersection of the centralizer Ca: +1pAp2qq of a: +1 and the centralizer +C¯a: +2pAp2qq of ¯a: +2. One straightforwardly checks that linear operators of the form (4.10) in fact span +Ap2q. Now the computation of the centralizers is straightforward: we obtain +Ca: +1pAp2qq “ +" ÿ +k,ℓě0 +pa:qk +1fk,ℓpD2qaℓ +2 +ˇˇˇˇ fk,ℓ P F +* +, +C¯a: +2pAp2qq “ +" ÿ +k,ℓě0 +p¯a:qk +2gk,ℓpD1qaℓ +1 +ˇˇˇˇ gk,ℓ P F +* +. +Clearly their intersection is trivial. +□ + +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +17 +4.4. The Borel representations. +We introduce four cyclic level-0 representations of Uqppb`q. +One of these corresponds to the Uqpsl2q-Verma module and extends to a representation of Uqppgq. +Namely, let µ P C be a free parameter. It is straightforward to check that the following assignments +define a representation υ of Uqppgq on W: +(4.11) +υpe0q “ υpf1q “ +1 +1 ´ q2 a:, +υpk0q “ q´µ`1`2D, +υpe1q “ υpf0q “ +q2 +1 ´ q2 apq´µ ´ qµ´2Dq, +υpk1q “ qµ´1´2D, +The module structure on W defined by υ is the evaluation Verma module: affinizations of finite- +dimensional irreducible Uqpsl2q-modules arise as quotients for positive integer values of µ (also see +[KT14, Sec. 2.2]). +We will in addition consider three Uqppb`q-representations which do not extend to representations +of Uqppgq. A reducible representation φ` : Uqppb`q Ñ EndpWq is given by +(4.12) +φ`pe0q “ 0, +φ`pe1q “ +q +1 ´ q2 a, +φ`pk0q “ qµ`1`2D, +φ`pk1q “ q´µ´1´2D +which is closely related to the special evaluation homomorphism defined in [KT14, Eq. (4.6)]. The +following representations ̺`, ¯̺` : Uqppb`q Ñ EndpWq play an essential role in the definition of +Baxter Q-operators: +(4.13) +̺`pe0q “ +1 +1 ´ q2 a:, +̺`pe1q “ +q2 +1 ´ q2 a, +̺`pk0q “ q2D, +̺`pk1q “ q´2D, +¯̺`pe0q “ +q2 +1 ´ q2 ¯a:, +¯̺`pe1q “ +1 +1 ´ q2 a, +¯̺`pk0q “ q2pD`1q, +¯̺`pk1q “ q´2pD`1q. +They correspond to the representations L˘ +1,a introduced in [HJ12, Def. 3.7] for suitable a P Cˆ +(called prefundamental representations in the subsequent paper [FH15] which considers their role +in construction of Q-operators for closed chains). +We will henceforth repeatedly denote grading-shifted representations by the notation (2.29). +Note that the grading-shifted representations ̺` +z , ¯̺` +z correspond to the representations defined by +[KT14, Eq. (3.5)]. +Remark 4.5. Note that the grading-shifted representation in [VW20, Eq. (2.9)] is related to the ̺` +z +by a factor of ´1 in the actions of e0 and e1: in other words it is equal to ̺` +´z. Since the Baxter +Q-operators only depend on z2, see [VW20, Lem. 4.5], this does not cause issues. The benefit of +the current sign convention is its consistency across the level-0 representations under consideration, +noting that υ is fixed by its relation to finite-dimensional evaluation representations. +� +4.5. The Uqppb`q-intertwiner O`. The pairs p̺` +q´µ{2z, ¯̺` +qµ{2zq and pυz, φ` +z q of shifted representa- +tions are closely related in the following sense: the two induced Uqppb`q-actions on W b W are +conjugate by an element in Ap2q which is independent of z. +More precisely, consider the q-exponential +(4.14) +eq2pxq “ +8 +ÿ +k“0 +xk +pq2; q2qk +. +In Appendix A we recall further properties of this deformation of the power series of the exponential +function. Being a formal power series in x with nonzero constant term, eq2pxq is invertible. Hence, + +18 +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +setting x equal to a scalar multiple of a1¯a: +2 or a: +1a2 we obtain an invertible element of Ap2q. We +define +(4.15) +O` “ eq2pq2a1¯a: +2q´1qµpD1´D2q{2 P Ap2q. +The following statement is [KT14, Eq. (4.4)] and connects to [FH15, Thm. 3.8]; for completeness +we provide a proof in the present conventions. +Theorem 4.6. The Uqppb`q-representations ̺` +q´µ{2z b ¯̺` +qµ{2z and υz b φ` +z are intertwined by O`: +(4.16) +O` ` +̺` +q´µ{2z b ¯̺` +qµ{2z +˘ +p∆puqq “ +` +υz b φ` +z +˘ +p∆puqq O` +for all u P Uqppb`q. +Proof. From (A.16-A.18) we obtain +qµpD2´D1q{2eq2pq2a1¯a: +2q¯a: +2 “ +` +q´µ{2a: +1 ` q2pD1`1q`µ{2¯a: +2 +˘ +qµpD2´D1q{2eq2pq2a1¯a: +2q, +qµpD2´D1q{2eq2pq2a1¯a: +2q +` +a1pq´2µ ´ q´2D1q ` q´2pD1`1qa2 +˘ +“ +“ +` +a1q´3µ{2 ` q´µ{2´2pD1`1qa2 +˘ +qµpD2´D1q{2eq2pq2a1¯a: +2q, +qµpD2´D1q{2eq2pq2a1¯a: +2qq2pD1`D2`1q “ q2pD1`D2`1qqµpD2´D1q{2eq2pq2a1¯a: +2q, +qµpD2´D1q{2eq2pq2a1¯a: +2qq´2pD1`D2`1q “ q´2pD1`D2`1qqµpD2´D1q{2eq2pq2a1¯a: +2q. +These directly imply (4.16) for u P te0, e1, k0, k1u. +□ +4.6. Formalism for Uqppb´q. Recall the automorphism ψ defined by (3.1), interchanging the two +Borel subalgebras. Note that υ : Uqppgq Ñ EndpWq satisfies +(4.17) +υ “ υ ˝ ψ. +Hence, it is natural to define representations of Uqppb´q corresponding to ̺`, ¯̺´ and φ`, as follows: +(4.18) +̺´ :“ ̺` ˝ ψ, +¯̺´ :“ ¯̺` ˝ ψ, +φ´ :“ φ` ˝ ψ. +By (3.3), whereas the grading-shifted representations ̺` +z , ¯̺` +z , φ` +z take values in EndpWq b Crzs, +their negative counterparts ̺´ +z , ¯̺´ +z , φ´ +z take values in EndpWq b Crz´1s. Explicitly, we have +(4.19) +̺´pf0q “ +q2 +1 ´ q2 a, +̺´pf1q “ +1 +1 ´ q2 a:, +̺´pk0q “ q2D, +̺´pk1q “ q´2D, +¯̺´pf0q “ +1 +1 ´ q2 a, +¯̺´pf1q “ +q2 +1 ´ q2 ¯a:, +¯̺´pk0q “ q2pD`1q, +¯̺´pk1q “ q´2pD`1q, +φ´pf0q “ +q +1 ´ q2 a, +φ´pf1q “ 0, +φ´pk0q “ qµ`1`2D, +φ´pk1q “ q´µ´1´2D. +Since ψ is a coalgebra antiautomorphism, using (3.3) we immediately deduce the following char- +acterization of the tensorial opposite of O`. +Corollary 4.7. The linear map +(4.20) +O´ :“ O` +21 “ eq2pq2¯a: +1a2q´1qµpD2´D1q{2 P EndpW b Wq. +intertwines the Uqppb´q-representations ¯̺´ +q´µ{2z b ̺´ +qµ{2z and φ´ +z b υz, viz. +(4.21) +O´ ` +¯̺´ +q´µ{2z b ̺´ +qµ{2z +˘ +p∆puqq “ +` +φ´ +z b υz +˘ +p∆puqq O´ +for all u P Uqppb´q. + +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +19 +5. L-operators and R-operators +In order to define L-operators, we define the standard 2-dimensional representation Π : Uqppgq Ñ +EndpC2q by +(5.1) +Πpe0q “ Πpf1q “ +ˆ +0 +0 +1 +0 +˙ +, +Πpk0q “ +ˆ +q´1 +0 +0 +q +˙ +, +Πpe1q “ Πpf0q “ +ˆ +0 +1 +0 +0 +˙ +, +Πpk1q “ +ˆ +q +0 +0 +q´1 +˙ +. +In analogy with (4.17), we have +(5.2) +Π “ Π ˝ ψ. +5.1. L-operators for Uqppb`q-modules. We will now obtain explicit formulas for certain scalar +multiples of R̺`Πpzq, R¯̺`Πpzq, RυΠpzq and Rφ`Πpzq. In this case both Theorem 2.2 and Proposi- +tion 2.4 apply. It turns out that the relevant linear equations all have 1-dimensional solution spaces +over Crrzss. The following linear operators are convenient scalar multiples. +L` +̺ pzq “ +ˆ +qD +a:q´D´1z +aqD`1z +q´D ´ qD`2z2 +˙ +, +(5.3) +L` +¯̺ pzq “ +ˆ +qD`1 ´ q´D`1z2 +¯a:q´Dz +aqDz +q´D´1 +˙ +, +(5.4) +L` +υ pzq “ +ˆ +qD ´ q´D`µz2 +a:q´D´2`µz +aq +` +qD´µ ´ q´D`µ˘ +z +q´D´1`µ ´ qD`1z2 +˙ +, +(5.5) +L` +φ pzq “ +ˆ +qD`1 +0 +aqD`1z +q´D´µ +˙ +. +(5.6) +Remark 5.1. We have abused notation by representing the linear operators on EndpW b C2qrrzss +as 2 ˆ 2 matrices with coefficients in EndpWq (as opposed to the conventional useage that realizes +operators on EndpC2 b Wqrrzss in this way). +� +The following result is [KT14, Cor. 4.2]. +Theorem 5.2. The above L-operators satisfy the following relation in EndpW b W b C2qrrzss: +(5.7) +O` +12L` +̺ pq´µ{2zq13L` +¯̺ pqµ{2zq23 “ L` +υ pzq13L` +φ pzq23O` +12. +Proof. From (2.16) one deduces +L` +̺ pq´µ{2zq13L` +¯̺ pqµ{2zq23 9 p̺` +q´µ{2z b ¯̺` +qµ{2z b Πq +` +p∆ b idqpRq +˘ +, +L` +υ pzq13L` +φ pzq23 9 pυz b φ` +z b Πq +` +p∆ b idqpRq +˘ +. +Now Theorem 4.6 implies (5.7) up to a scalar. By applying both sides to w0 bw0 bp1 +0q one observes +that the scalar is 1. +□ +5.2. L-operators for Uqppb´q-representations. We can repeat the construction of L-operators in +Section 5.1 for the various Uqppb´q-representations. If we combine the relations (4.17), (4.18) and +(5.2) between the representations in terms of ψ with the properties (2.18-2.19) and (2.24-2.25) of + +20 +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +the constituent factors of ψ, we straightforwardly obtain the following scalar multiples of RΠ̺´pzq, +RΠ̺`pzq, RΠυpzq and RΠφ´pzq, respectively: +(5.8) +L´ +̺ pzq “ L` +̺ pzq21, +L´ +¯̺ pzq “ L` +¯̺ pzq21, +L´ +υ pzq “ L` +υ pzq21, +L´ +φ pzq “ L` +φ pzq21. +Theorem 5.2 immediately yields the following result: +Corollary 5.3. The following relation in EndpC2 b W b Wqrrzss is satisfied: +(5.9) +O´ +23L´ +̺ pq´µ{2zq13L´ +¯̺ pqµ{2zq12 “ L´ +υ pzq13L´ +φ pzq12O´ +23. +5.3. Actions of Rpzq on tensor products of infinite-dimensional Borel representations. +By Theorem 2.2, the grading-shifted universal R-matrix also acts on the tensor product of the +level-0 modules pW, υq and pW, φ´q and on the tensor product of the level-0 modules pW, ̺`q and +pW, ¯̺´q as EndpW b Wq-valued formal power series. It is convenient for us to use rescaled linear- +operator-valued formal power series +(5.10) +R̺¯̺pzq, Rυφpzq P EndpW b Wq b Crrzss, +uniquely defined by the condition that they fix w0 b w0: +(5.11) +R̺¯̺pzq 9 p̺` b ¯̺´qpRpzqq, +R̺¯̺pzq ¨ pw0 b w0q “ w0 b w0, +Rυφpzq 9 pυ b φ´qpRpzqq, +Rυφpzq ¨ pw0 b w0q “ w0 b w0. +These power series will appear in the boundary factorization identity. In appendix B we obtain +explicit expressions for R̺¯̺pzq and Rυφpzq, although we will not need these for the proof of the +boundary factorization identity using the universal K-matrix formalism of Section 3. +6. K-matrices +In this section we consider solutions of reflection equations associated to the subalgebra Uqpkq, +whose existence is guaranteed by the universal K-matrix formalism. +6.1. Right K-matrices. By Theorem 3.5, applying any of the level-0 Uqppb`q-representations ̺`, +¯̺`, υ, φ` to the grading-shifted universal K-matrix associated to Uqpkq we obtain EndpWq-valued +formal power series, satisfying the reflection equation (3.6). Moreover, since these commute with +the action of k1 they act diagonally with respect to the basis twjujě0. We will consider the scalar +multiples of these linear operators which fix w0: +(6.1) +K̺pzq 9 ̺`pKpzqq, +K̺pzq ¨ w0 “ w0, +K¯̺pzq 9 ¯̺`pKpzqq, +K¯̺pzq ¨ w0 “ w0, +Kυpzq 9 υpKpzqq, +Kυpzq ¨ w0 “ w0, +Kφpzq 9 φ`pKpzqq, +Kφpzq ¨ w0 “ w0. +It is convenient to obtain explicit expressions by applying Propositions 3.6 and 3.7. The linear +operator +(6.2) +KΠpzq “ +ˆ +ξz2 ´ 1 +0 +0 +ξ ´ z2 +˙ +P EndpC2qrrzss +is, up to a scalar, the unique solution of the Uqpkq-intertwining condition +(6.3) +KΠpzq ˝ Πzpuq “ Π1{zpuq ˝ KΠpzq +for all u P Uqpkq. +By Theorem 3.5, it is proportional to the action of the grading-shifted universal K-matrix in the +representation pΠ, C2q. + +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +21 +For all π P t̺, ¯̺, υ, φu, consider the right reflection equations +(6.4) +L´ +π,21py +z qKπpyqL` +π pyzqKΠpzq “ KΠpzqL´ +π,21pyzqKπpyqL` +π py +z q P EndpW b C2qrry{z, zss. +It is convenient to consider the linear space +(6.5) +REπ :“ tKπpyq P FpDq | (6.4) is satisfiedu. +Lemma 6.1. Let π P t̺, ¯̺, υ, φu. Then REπ is one-dimensional over Crrzss and the unique element +of REπ that fixes w0 P W is given by +(6.6) +K̺pzq “ p´q´DξqDpq2ξ´1z2; q2qD, +K¯̺pzq “ pqz2q´Dpq2ξ´1z´2; q2q´1 +D , +Kυpzq “ z´2D pq2´µξ´1z2; q2qD +pq2´µξ´1z´2; q2qD +, +Kφpzq “ p´q´µ´D´1 ξqD. +We emphasize that the expressions given in (6.6) are well-defined elements of FpDq. For instance, +we have, for all γ P C, +z´2Dpγz´2; q2q´1 +D “ p´qD´1γq´D +D´1 +ź +m“0 +p1 ´ γ´1q´2mz2q´1, +with each factor of the product interpreted as a geometric series. +Proof of Lemma 6.1. By a straightforward check, the intertwining condition +(6.7) +Kυpzq ˝ υzpuq “ υ1{zpuq ˝ Kυpzq +for all u P Uqpkq +can be solved to find Kυpzq. Since Kpzq commutes with the action of k1 it follows that Kυpzq “ fpDq +for some f P F. Now imposing (6.7) for the generators e0 ´ q´1ξ´1k0f1, e1 ´ q´1ξk1f0 yields the +recurrence relation +fpD ` 1q +fpDq +“ 1 ´ q2pD`1q´µξ´1z2 +z2 ´ q2pD`1q´µξ´1 . +Together with the constraint fp0q “ 1 it yields the formula given in (6.6). From Theorem 3.5 +and the universal reflection equation (3.19) it follows that (6.6) satisfies (6.4) (of course, it can be +directly checked). +Note that the representation φ is reducible. Indeed, one straightforwardly checks that the general +solution Kφpzq of (6.4) is of the form p´q´µ´D´1 ξqDp with p in the centralizer of a in A (i.e. a +polynomial in a with coefficients in Crrzss). The solution given in (6.6) is now observed to be the +unique solution in FpDq which fixes w0, as required. +The operator K̺pzq was obtained in [VW20, Sec. 2.4] as the unique element of the 1-dimensional +linear space RE̺ which fixes w0. In an analogous way we obtain the explicit expression for K¯̺pzq. +□ +6.2. Left K-matrices. We now obtain solutions of a reflection equation for the left boundary by +using a well-established bijection, see [Sk88, Eq. (14)], between its solution set and the solution set +of the right reflection equation. For fixed rξ P Cˆ we define +(6.8) +rKΠpzq :“ p1 ´ q2rξ´1z2q´1p1 ´ q2rξz2q´1` +KΠpqzq´1|ξÞÑrξ´1 +˘ +“ +˜ +q2rξz2 ´ 1 +0 +0 +rξ ´ q2z2 +¸ +P EndpC2qrrzss. +Also, for π P t̺, ¯̺, υ, φu we define +(6.9) +rKπpzq :“ Kπpqzq´1|ξÞÑrξ´1 +P EndpWqrrzss. + +22 +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +Similarly, note that L` +π pγzq is invertible in EndpW b C2qrrzss for all γ P C. We define +(6.10) +rL˘ +π pzq “ L˘ +π pq2zq´1. +Lemma 6.2. For all π P t̺, ¯̺, υ, φu the left reflection equation holds: +(6.11) +rKπpyq rL´ +π pyzq rKΠpzqL´ +π py +z q “ L` +π py +z q rKΠpzq rL` +π pyzq rKπpyq +P EndpW b C2qrry{z, zss. +Proof. The desired equation (6.11) can be rewritten as +rKΠpzq´1 rL´ +π pyzq´1 rKπpyq´1L` +π py +zq “ L´ +π py +zq rKπpyq´1 rL`pyzq´1 rKΠpzq´1. +By (6.10), this is equivalent to the right-reflection equation (6.4) with y ÞÑ qy, z ÞÑ qz and +ξ ÞÑ rξ´1. +□ +Using the explicit formulas (6.2-6.4) we obtain that the solutions of the left reflection equations +(6.9) are the following EndpWq-valued formal power series in z: +(6.12) +rK̺pzq “ p´qDrξqDpq4rξz2; q2q´1 +D , +rK¯̺pzq “ pq3z2qDprξz´2; q2qD, +rKυpzq “ pqzq2D pq´µrξz´2; q2qD +pq4´µrξz2; q2qD +, +rKφpzq “ p´qµ`D`1rξqD. +7. Fusion intertwiners revisited +In this short intermezzo we explain how the universal K-matrix formalism naturally leads to +relations involving K-matrices and Uqpb`q-intertwiners called fusion intertwiners which play a key +role in the approach to Baxter’s Q-operator using short exact sequences. These intertwiners were +discussed in [VW20] and the relevant relations with K-matrices, see [VW20, Lem. 3.2], were shown +by a linear-algebraic computation relying on the explicit expressions of the various constituent +factors. In other words, the representation-theoretic origin of these relations was unclear, which we +now remedy. +Level-0 representations of Uqppb`q are amenable to scalar modifications of the action of Uqphq “ +xk˘1 +1 y, see also [HJ12, Rmk. 2.5]. In particular, for r P Cˆ, define a modified Borel representation +̺` as follows: +(7.1) +̺` +r peiq “ ̺`peiq, +̺` +r pk0q “ r̺`pk0q, +̺` +r pk1q “ r´1̺`pk1q +and consider the grading-shifted representation ̺` +r,z :“ p̺` +r qz. There exist Uqppb`q-intertwiners +ιprq : pW, ̺` +qr,qzq Ñ pW b C2, ̺` +r,z b Πzq, +τprq : pW b C2, ̺` +r,z b Πzq Ñ pW, ̺` +q´1r,q´1zq, +called fusion intertwiners, which take part in the following short exact sequence: +(7.2) +0 +pW, ̺` +qr,qzq +pW b C2, ̺` +r,z b πzq +pW, ̺` +q´1r,q´1zq +0 +ιprq +τprq +Explicitly8, we have +(7.3) +ιprq “ +ˆ +q´Da: +´qD`1r +˙ +, +τprq “ +` +qD, +q´Dr´1a:˘ +. +8The sign mismatch with [VW20, Eq. (3.1)] is explained in Remark 4.5. + +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +23 +Analogously to Theorem 5.2, fusion relations for the L-operators L`pr, zq, defined as suitable scalar +multiples of p̺` +r,zbΠqpRq, now follow from these intertwining properties and the coproduct formulas +for R (2.16), see [VW20, Eqns. (3.8) and (3.9)]. +Recalling the universal K-matrix K and Theorem 3.5, we define the corresponding K-operator +K̺pr, zq as the unique scalar multiple of ̺` +r,zpKq which fixes w0 (cf. +[VW20, Prop. 2.5]). +One +directly checks from (3.18) that +(7.4) +p̺` +r,z b Πzqp∆pKqq +9 +K̺pr, zq1L`pr, z2qKΠpzq2. +Since K lies in a completion of Uqppb`q, the intertwining properties of ιprq and τprq now directly +yield the following fusion relation for the K-operator: +K̺pr, zq1Lpr, z2qKΠpzq2ιprq +9 +ιprqK̺pqr, qzq +τprqK̺pr, zq1Lpr, z2qKΠpzq2 +9 +K̺pq´1r, q´1zqτprq, +with the scalar factors determined by evaluating on w0, say. We will see that a boundary counterpart +of the factorization identity (5.7) for L-operators can be proved using similar ideas. +We recover, with a much smaller computational burden, the essential result of [VW20, Lemma +3.2] (a similar relation for left K-operators can easily be deduced from this as explained in the last +sentence of [VW20, Proof of Lemma 3.2]). In the approach to Baxter’s Q-operator using short +exact sequences, the fusion relations for L and K-operators induce fusion relations for 2-boundary +monodromy operators, see [VW20, Lem. 4.2] from which Baxter’s relation (1.1) follows by taking +traces, see [VW20, Sec. 5.2]. +8. Boundary factorization identity +In motivating and presenting the key boundary relations, it is very useful to introduce a graphical +representation of spaces and operators. Let us introduce the following pictures for the different +representations introduced in Section 4: +̺` +z “ +z +¯̺` +z “ +z +, +φ` +z “ +z +, +̺´ +z “ +z +¯̺´ +z “ +z +, +φ´ +z “ +z +, +υz “ +z +Πz “ +z +, +For any vector spaces V , V 1, denote by P the linear map from V b V 1 to V 1 b V such that +Ppv b v1q “ v1 b v for all v P V , v1 P V 1. We then have the following pictures for L-operators and +R-operators: +PL` +̺ pzq “ +z2 +z1 +PL¯ρpzq` “ +z2 +z1 +PL` +υ pzq “ +z2 +z1 +PL` +φ pzq “ +z2 +z1 +PL´ +̺ pzq “ +z1 +z2 PL´ +¯ρ pzq “ +z1 +z2 PL´ +υ pzq “ +z1 +z2 +PL´ +φ pzq “ +z1 +z2 + +24 +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +PR̺¯̺pzq “ +z2 +z1 +PRυφpzq “ +z2 +z1 +where z “ z1 +z2 . +We now make the following definitions9: +(8.1) +rRυφpzq :“ Rυφpq2zq´1, +rR̺¯̺pzq :“ R̺¯̺pq2zq´1. +and represent these modified R-matrices by the following pictures: +rR̺¯̺pzqP “ +z2 +z1 +rRυφpzqP “ +z2 +z1 +where z “ z1 +z2 as before. +The various right-boundary K-matrices are represented as follows: +Kρpzq “ +z +z´1 +K¯ρpzq “ +z +z´1 +Kυpzq “ +z +z´1 +Kφpzq “ +z +z´1 +The left-boundary K-matrices defined in Section 6.2 are represented by the natural analogues of +these pictures. For example: +rKρpzq “ +z +z´1 +Making use of these pictures, we see that Theorem 5.2 is represented by +qµ{2z1 +q´µ{2z1 +z1 +z1 +O` +z2 +“ +qµ{2z1 +q´µ{2z1 +z1 +z1 +O` +z2 +and Corollary 5.3 by +z1 +z1 +q´µ{2z1 +qµ{2z1 +O´ +z2 +“ +z1 +z1 +q´µ{2z1 +qµ{2z1 +O´ +z2 +. +For the compatibility with the right boundary we claim that +9These are the modified forms of the R-matrices that appear in the corresponding left reflection equations, see +[Sk88, Eq. (13)]. + +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +25 +qµ{2z +q´µ{2z +z +z´1 +z +z´1 +O` += +z´1 +z´1 +q´µ{2z´1 +qµ{2z +q´µ{2z +qµ{2z´1 +O´ +which corresponds to the following identity in Ap2q: +(8.2) +Kυpzq1Rυφpz2qKφpzq2 O` “ O´ +21K̺pq´µ{2zq1R̺¯̺pz2qK¯̺pqµ{2zq2, +which we call the right boundary factorization identity. The diagrams above serve as a motivation +for the identity, which we now prove using results from Section 3. +Theorem 8.1. For all µ P C, all q P Cˆ not a root of unity and all ξ P Cˆ, relation (8.2) is +satisfied. +Proof. It directly follows from (4.20) that (8.2) is equivalent to +(8.3) +Kυpzq1Rυφpz2qKφpzq2 O` “ O`K̺pq´µ{2zq1R̺¯̺pz2qK¯̺pqµ{2zq2, +The proof is analogous to the proof of Theorem 5.2. We first note that +` +̺` +q´µ{2z b ¯̺` +qµ{2z +˘` +pid b ψqpRq +˘ +“ +` +̺` +q´µ{2z b ¯̺´ +q´µ{2z´1 +˘ +pRq +9 R̺¯̺pz2q, +` +υz b φ` +z +˘` +pid b ψqpRq +˘ +“ +` +υz b φ´0z´1 +˘ +pRq +9 Rυφpz2q. +Noting the coproduct formula (3.18), we obtain +K̺pq´µ{2zq1R̺¯̺pz2qK¯̺pqµ{2zq2 +9 +` +̺` +q´µ{2z b ¯̺` +qµ{2z +˘ +p∆pKqq, +Kυpzq1Rυφpz2qKφpzq2 +9 +` +υz b φ` +z +˘ +p∆pKqq. +Now Theorem 4.6 implies (8.3) up to a scalar. The fact that all factors fix w0 b w0 shows that the +scalar is 1. +□ +An alternative computational proof of Theorem 8.1 is given in Appendix C. +Compatibility with the left boundary requires that + +26 +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +z´1 +z´1 +pO´q´1 +qµ{2z +q´µ{2z +qµ{2z´1 +q´µ{2z´1 +“ +z´1 +z´1 +z +z +qµ{2z +q´µ{2z +pO`q´1 +The identity in Ap2q corresponding to this is +(8.4) +rK¯̺pqµ{2z, rξq2 rR̺¯̺pz2q rK̺pq´µ{2z, rξq1pO`q´1 “ pO`q´1 rKφpz, rξq2 rRυφpz2q rKυpz, rξq1. +Theorem 8.2. Relation (8.4) is satisfied. +Proof. Given the definitions (6.12) and (8.1), this follows straightforwardly by inverting (8.3) and +replacing pz, ξq ÞÑ pqz, rξ´1q. +□ +9. Discussion +The main result of this paper is Theorem 8.1 which can be viewed as a boundary analogue of +Theorem 5.2. To establish this result, we needed to first show that all R and K-operators involved in +Equation (8.3) are well-defined actions of the universal elements R and K on the infinite-dimensional +Uqppb`q-modules involved. The key fact that allows for this is that R and K live in completions of +Uqppb`q b Uqppb´q and of Uqppb`q, respectively. This is very familiar for R but for K relies on the +recent work [AV22a]. Introducing the Uqppb`q-intertwiner O` and the formula for ∆pKq given by +(3.18), relation (8.2) follows immediately from the intertwining property of O`. +The open Q-operator Qpzq of [VW20] is the trace of a product of R and K-operators over the +Uqppb`q-module pW, ρ` +z q and there is a similar construction of an open Q-operator Qpzq. +In a +future paper, the authors will present this construction and the use of Theorem 8.2 in deriving a +boundary analogue of the factorization relation Tµpzq 9 Qpzq´µ{2qQpzqµ{2q. They will also develop +the analogous theory for different coideal subalgebras, in particular those for which non-diagonal +solutions of the reflection equation are intertwiners. +A. Deformed Pochhammer symbols and exponentials +This appendix is independent from the main text, but provides identities which are used there. +We review some basic theory of deformed Pochhammer symbols and exponentials (as formal power +series) with a deformation parameter p P Cˆ, which corresponds to q2 in the main text. +A.1. Deformed Pochhammer symbols. Let x be a formal variable. For n P Z, the (finite) +deformed Pochhammer symbol px; pqn P Crrxss is defined by +(A.1) +px; pqn :“ +$ +’ +’ +’ +’ +& +’ +’ +’ +’ +% +n´1 +ź +m“0 +p1 ´ xpmq +if n ě 0, +´1 +ź +m“n +p1 ´ xpmq´1 +if n ă 0. + +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +27 +For all p P Cˆ and n P Zě0 we have the following basic identity, see [GR90, (I.2), (I.3)]: +(A.2) +px; pq´n “ pp´nx; pq´1 +n +“ px{p; p´1q´1 +n +“ p´xq´npnpn`1q{2pp{x; pq´1 +n . +The infinite deformed Pochhammer symbol +(A.3) +px; pq8 :“ +8 +ź +m“0 +p1 ´ xpmq +is an invertible formal power series with well-defined coefficients in C if |p| ă 1. The following +identity holds in Crrxss, see [GR90, (I.5)]: +(A.4) +px; pqn “ +px; pq8 +ppnx; pq8 +. +A.2. Deformed exponentials. From now on we assume that p is not a root of unity. In particular, +pp; pqk ‰ 0 for all k P Zě0. The deformed exponential is the invertible formal power series +(A.5) +eppxq :“ 1φ0p0; ´; p, xq “ +8 +ÿ +k“0 +xk +pp; pqk +. +The ordinary exponential formal power series arises as the termwise limit +lim +pÑ1 eppp1 ´ pqxq “ ex. +This series satisfies the functional relation +(A.6) +epppxq “ p1 ´ xqeppxq, +see [GR90, Sec. 1.3], and by inspecting the constant coefficients we obtain +(A.7) +eppxq “ +1 +px; pq8 +if |p| ă 1. +Similarly we consider the invertible formal power series +(A.8) +Eppxq :“ 0φ0p´; ´; p, ´xq “ +8 +ÿ +k“0 +pkpk´1q{2xk +pp; pqk +. +Then Epp´xq´1 also satisfies (A.6). As before we deduce +(A.9) +eppxq´1 “ Epp´xq. +By (A.2), the right-hand side of (A.8) can be re-written as ep´1p´p´1xq and (A.9) implies +(A.10) +eppxq´1 “ ep´1pp´1xq. +The above identities are all in Crrxss. +A.3. General product formulas. The deformed exponentials satisfy various identities in partic- +ular quotients of the free algebra on two symbols, and completions thereof. In any algebra generated +by the symbols x and y such that yx “ γxy for γ P C, from the definition one immediately sees +(A.11) +yeppxq “ eppγxqy +as an identity of formal power series; we will repeatedly use this. For a survey of product formulas +analogous to exppxq exppyq “ exppx ` yq, see [Ko97]. We will need the following. + +28 +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +Lemma A.1. Let x, y be elements of an algebra such that yx “ pxy. The following identities hold +as formal power series in x, y: +eppxqeppyq “ eppx ` yq, +(A.12) +eppyqeppxq “ ep +` +xp1 ´ yq +˘ +eppyq “ eppxqepp´xyqeppyq “ eppxqep +` +p1 ´ xqy +˘ +. +(A.13) +Proof. (A.12) is a direct consequence of the well-known q-binomial formula, see e.g. [Sc53] or [GR90, +Ex. 1.35]. For (A.13) see [Ko97, Prop. 3.2]. +□ +A.4. Deformed exponentials as linear maps. Deformed exponentials give rise to two different +types of (formal power series whose coefficients are) linear maps on W “ ‘jě0Cwj. +(i) If f P F, then we define eppfpDqq P EndpWqrrzss by the condition that, for all j ě 0, +eppfpDqqpwjq “ eppfpjqqwj. +(ii) Suppose x is a locally nilpotent linear map on W, i.e. for all j ě 0 there exists oj P Zą0 such +that xoj ¨ wj “ 0. Then eppxq is a well-defined linear map on V : for all j ě 0, +eppxqpwjq “ +oj´1 +ÿ +k“0 +1 +pp; pqk +xkpwjq. +Recall the subalgebra Ap2q Ă EndpWqrrzss with q2 abbreviated by p. We will be particularly +interested in the centralizer +(A.14) +Ap2q +0 +:“ +! +X P Ap2q ˇˇˇ +“ +X, qD1`D2‰ +“ 0 +) +. +Straightforwardly one verifies that Ap2q +0 +is generated by elements of the form +(A.15) +ÿ +kě0 +p¯a: +2qkfkpD1, D2qak +1, +ÿ +kě0 +pa: +1qkfkpD1, D2qak +2, +fk P Fp2q. +Note that elements of Ap2q +0 +commute with all elements of the form fpD1 ` D2q (f P F). +In +particular, Ap2q +0 +contains epp¯a: +2fpD1, D2qa1q and eppa: +1fpD1, D2qa2q for all f P Fp2q. We have the +following commutation relations. +Lemma A.2. Let γ P Crzs be arbitrary. In EndpW b Wqrrzss the following identities hold: +(A.16) +“ +eppγa1¯a: +2q, fpD1 ` D2q +‰ +“ +“ +eppγa1¯a: +2q, a1 +‰ +“ +“ +eppγa1¯a: +2q, ¯a: +2 +‰ +“ 0 +for all f P F and +“ +eppγa1¯a: +2q, a: +1 +‰ +“ γpD1¯a: +2eppγa1¯a: +2q, +(A.17) +“ +eppγa1¯a: +2q, p´D1a2 +‰ +“ γeppγa1¯a: +2qa1p´D1. +(A.18) +Proof. Note that (A.16) follows directly from the definition of the deformed exponential. A straight- +forward inductive argument using (4.4) yields +rak`1, a:s “ p1 ´ pk`1qpDak, +(A.19) +rp¯a:qk`1, aspk`1 “ p1 ´ pk`1qp¯a:qk, +(A.20) +for all k P Zě0, which imply (A.17) and (A.18), respectively. +□ + +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +29 +B. Explicit expressions for R-operators +In this appendix we derive explicit formulas for R̺¯̺pzq and Rυφpzq, defined by (5.11) as images +of the universal R-matrix R fixing w0 b w0. +We expect that these formulas will be useful in +further studies of Baxter’s Q-operators for the open XXZ spin chain; for now they will allow us to +give a proof of the boundary factorization identity which does not rely on the universal K-matrix +formalism. First we note that, by the second part of Theorem 2.2, R̺¯̺pzq and Rυφpzq lie in Ap2q +0 . +We keep using the shorthand notation p “ q2. +B.1. The automorphism χ and the q-oscillator subalgebra +r +A. A useful automorphism χ +can be defined, but not naturally on all of A. We need to define a subalgebra r +A and a completion +of its tensorial square. Consider the subalgebra rFpDq Ă FpDq generated by +p˘DpD`1q{2, +γD, +ppδ; pq˘1 +D , +ppγz2; pqD, +p´γz2q´Dppγ´1z´2; pq´1 +D +for all γ P Cˆ and δ P CˆzpZ. Note that elements of GpDq, unlike general elements of FpDq, have the +pleasant property that they naturally identify with formal Laurent series (for the functions defined +in terms of q-Pochhammer symbols, by means of (A.2)). +Accordingly, we define an involutive +automorphism χ of rFpDq accomplishing the formal replacement D ÞÑ ´D ´ 1. To be more precise, +we set +(B.1) +χ +` +p˘DpD`1q{2˘ +“ p˘DpD`1q{2, +χ +` +γD˘ +“ γ´D´1, +χ +` +ppδ; pq˘1 +D +˘ +“ p1 ´ δq¯1p˘DpD`1q{2p´δq¯Dppδ´1; pq¯1 +D , +χ +` +ppγz2; pqD +˘ +“ p1 ´ γz2q´1pDpD`1q{2p´γz2q´Dppγ´1z´2; pq´1 +D , +χ +` +p´γz2q´Dppγ´1z´2; pq´1 +D +˘ +“ p1 ´ γz2qp´DpD`1q{2ppγz2; pqD. +Definition B.1. The subalgebra of EndpWq generated by a:, a and GpDq is denoted r +A. +� +It is straightforward to check that χ extends to a (non-involutive) algebra automorphism of r +A +by means of the assignments +(B.2) +χpaq “ ¯a:, +χpa:q “ a. +Remark B.2. Set +J :“ +ˆ +0 +1 +1 +0 +˙ +and let Ad denote ‘conjugation by’. Note that +(B.3) +` +AdpJq b χ +˘` +L` +̺ pzq +˘ +“ L` +¯̺ pzq, +AdpJq +` +KΠpzq +˘ +“ ´ξ +` +KΠpzq|ξÞÑξ´1 +˘ +. +Subsequently applying χ b AdpJq to the reflection equation (6.4) with π “ ̺` and inverting ξ we +see that +K̺pzq ÞÑ χpK̺pzq|ξÞÑξ´1q +defines a bijection: RE̺ Ñ RE¯̺. Indeed, we have +K¯̺pzq “ qpz2 ´ ξ´1q χpK̺pzq|ξÞÑξ´1q. +� +Now we can complete the tensor product r +A b r +A as we did for A b A and obtain an algebra r +Ap2q. +More precisely, we consider the subalgebra rFp2q of Fp2q generated by the subsets rFpD1q, rFpD2q +and the special elements p˘D1pD2`1q. + +30 +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +Definition B.3. The completed tensorial square of r +A is defined to be the subalgebra r +Ap2q is of +EndpW b Wq generated by the elements (4.10) with gk,ℓ, hk,ℓ P rFp2q. +Note that the automorphism +(B.4) +χp2q :“ σ ˝ pχ b χ´1q +of r +A b r +A naturally extends to an automorphism of r +Ap2q, fixing pointwise p˘D1pD2`1q and acting +termwise on series. +Remark B.4. Note that the boundary factorization identity (8.3) is an identity in the subalgebra +r +Ap2q Ă EndpW b Wqrrzss. +� +There are two more identities similar to those in Lemma A.2 which we will need later. +Lemma B.5. Let γ P Crzs be arbitrary. In EndpW b Wq the following identities hold: +r¯a: +2, eppγa: +1a2qs “ γeppγa: +1a2qa: +1p´D2´1, +(B.5) +r¯a: +1a2, eppγa1¯a: +2qs “ γ +` +eppγa1¯a: +2qp´D1´1 ´ p´D2´1eppγa1¯a: +2q +˘ +. +(B.6) +Proof. To prove (B.5), first we apply χp2q to (A.17), obtaining +(B.7) +reppγa1¯a: +2q, a2s “ γa1p´D2´1eppγa1¯a: +2q. +Now consider the unique involutive algebra anti-automorphism η : A Ñ A which exchanges a and a: +and fixes fpDq for all f P F and the unique involutive algebra anti-automorphism η : A Ñ A which +exchanges a and ¯a: and fixes fpDq for all f P F. Then ηp2q :“ ηbη is an algebra antiautomorphism +of A b A. It extends in a natural way to an algebra antiautomorphism of Ap2q. By applying ηp2q +to (B.7) we obtain (B.5). +Finally, to prove (B.6), upon right-multiplying (A.18) by pD1`D2`1 we obtain +(B.8) +reppγa1¯a: +2q, a1pD2s “ γeppγa1¯a: +2qa1pD2. +From (A.17) and (B.8) it follows that +(B.9) +reppγa1¯a: +2q, a: +1a2pD2s “ γ¯a: +2pD1eppγa1¯a: +2qa2pD2 ` γa: +1eppγa1¯a: +2qa1pD2 +“ γ +´ +pD1eppγa1¯a: +2q +` +pD2 ´ 1 +˘ +` +` +1 ´ pD1˘ +eppγa1¯a: +2qpD2 +¯ +“ γ +` +eppγa1¯a: +2qpD2 ´ pD1eppγa1¯a: +2q +˘ +. +Now (B.6) follows as the χp2q-image of (B.9). +□ +B.2. Explicit expression for Rυφpzq. We are now ready to give the explicit expression for Rυφpzq. +Theorem B.6. For all z P C we have +(B.10) +Rυφpzq “ eppza: +1a2qqpµ´1qpD2´D1q´2D1pD2`1q. +Proof. From Proposition 2.4 we deduce that Rυφpzq is a solution of the linear relation +(B.11) +Xpυz b φ´qp∆puqq “ pυz b φ´qp∆oppuqqX +for all u P Uqppb´q. +First of all, note that the element in the right-hand side of (B.10) satisfies (B.11) with u P tk0, k1u +and so it suffices to prove that the vector space +(B.12) +X “ +! +X P Ap2q +0 +ˇˇˇ X satisfies (B.11) for u P tf0, f1u +) + +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +31 +is spanned by eppz2a: +1a2qqpµ´1qpD2´D1q´2D1pD2`1q. +Using the explicit formulas (2.2), (4.11) and +(4.19), we obtain that (B.11) is equivalent to the system +X +´ +z´1a1pq´µ ´ qµ´2D1qq´µ´2D2´1 ` q´1a2 +¯ +“ +´ +z´1a1pq´µ ´ qµ´2D1q ` qµ´2pD1`1qa2 +¯ +X, +Xa: +1qµ`1`2D2 “ a: +1X. +Without loss of generality we may write X “ r +Xqpµ´1qpD2´D1q´2D1pD2`1q with r +X P Ap2q +0 . Hence +(B.11) is equivalent to +(B.13) +z´1r r +X, a1p1 ´ pµ´D1qs “ pµ´D1´1a2 r +X ´ r +XpD1a2, +r r +X, a: +1s “ 0. +It is straightforward to check that the centralizer in Ap2q +0 +of a: +1 is the subalgebra generated by +elements of the form ř +kě0pa: +1qkfkpD2qak +2 with fk P F. It follows that +r +X “ +ÿ +kě0 +pa: +1qkfkpD2qak +2 +for some fk P F. Therefore (B.11) is equivalent to the single equation +ÿ +kě0 +“ +pa: +1qk, a1p1 ´ pµ´D1q +‰ +fkpD2qak +2 “ z +ÿ +kě0 +pa: +1qk` +pµ´D1´k´1fkpD2 ` 1q ´ pD1fkpD2q +˘ +ak`1 +2 +. +Note that the commutator vanishes if k “ 0, and for k ą 0 we have +“ +pa:qk, ap1 ´ pµ´Dq +‰ +“ pa:qk´1` +p1 ´ pDqp1 ´ pµ´Dq ´ p1 ´ pD`kqp1 ´ pµ´D´kq +˘ +“ pa:qk´1p1 ´ pkqppµ´D´k ´ pDq. +Hence (B.11) is equivalent to +(B.14) +ÿ +kě0 +pa: +1qkp1 ´ pk`1qppµ´D1´k´1 ´ pD1qfk`1pD2qak`1 +2 +“ +“ z +ÿ +kě0 +pa: +1qk` +pµ´D1´k´1fkpD2 ` 1q ´ pD1fkpD2q +˘ +ak`1 +2 +. +which is equivalent to the recurrence relation +p1 ´ pk`1q +` +pµ´D1´k´1 ´ pD1˘ +fk`1pD2q “ z +` +pµ´D1´k´1fkpD2 ` 1q ´ pD1fkpD2q +˘ +which, since fkpD2q does not depend on D1, is equivalent to the system +p1 ´ pk`1qfk`1pDq “ zfkpD ` 1q, +fkpD ` 1q “ fkpDq. +This is in turn equivalent to fkpDq P pp; pq´1 +k zkC for k P Zą0, as required. +□ +B.3. Explicit expression for R̺¯̺pzq. Note that the representations ̺` and ¯̺` satisfy ¯̺` +z “ +χ ˝ ̺` +z ˝ Φ. Furthermore, we observe that the linear maps L˘ +π pzq actually lie in the subalgebra +EndpC2q b r +A for all π P t̺, ¯̺, υ, φu. Recall the centralizer Ap2q +0 +defined in (A.14) and consider the +subalgebra r +Ap2q +0 +“ r +Ap2q X Ap2q +0 . Note that the automorphism χp2q of r +Ap2q defined in (B.4) preserves +r +Ap2q +0 . +Lemma B.7. The element R̺¯̺pzq is a r +Ap2q +0 -valued formal power series whose coefficients are fixed +by χp2q. + +32 +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +Proof. It is clear from the formulas (4.13) and (4.19) that ̺` b ¯̺´ takes values in r +A b r +A Ă r +Ap2q. +Now recall (2.20) and note that the factor κ acts as pD1pD2`1q. Furthermore, noting the form of +pΣz b idqpΘq given by (2.26) with the components Θλ lying in Uqppn`qλ b Uqppn`q´λ (λ P pQ`), we +obtain that the action of Rpzq on pW b W, ̺` b ¯̺´q is by an element of r +Ap2q +0 . For the second part, +note that +χp2q ˝ p̺` b ¯̺´q “ pχ´1 b χq ˝ p¯̺´ b ̺`q ˝ σ “ p̺` b ¯̺´q ˝ pω b ωq ˝ σ. +Applying this to Rpzq, making use of (2.27), (2.24) and (2.18), we obtain χp2qpR̺¯̺pzqq “ R̺¯̺pzq. +□ +Now we are ready to state and prove a formula for R̺¯̺pzq in terms of q-exponentials. +Theorem B.8. For all z we have +(B.15) +R̺¯̺pzq “ eq2pq3za1¯a: +2qeq2pq´1za: +1a2qq´2D1pD2`1q. +Proof. Clearly, w0 b w0 is fixed by the expression on the right-hand side of (B.15). In the following +we initially work over the ring Crrz, z2ss for some new indeterminate z2 and write z1 “ zz2. By +applying ̺` +z1 b Π1 b ¯̺´ +z2 to (2.17) and left and right-multiplying by L´ +¯̺,23pz´1 +2 q´1 we obtain +(B.16) +R̺¯̺pzq12L` +̺ pz1q13L´ +¯̺ pz´1 +2 q´1 +32 “ L´ +¯̺ pz´1 +2 q´1 +32 L` +̺ pz1q13R̺¯̺pzq12 +an equation in p r +Ap2q b EndpC2qqrrz2ss. By a direct computation we obtain +(B.17) +L´ +¯̺ pz´1 +2 q´1 “ +1 +z2 +2 ´ 1 +ˆ +q´D´1z2 +2 +¯a:q´D´1z2 +aqD´1z2 +qD`1z2 +2 ´ q´D´1 +˙ +P EndpC2q b r +A. +Now we consider the equation +(B.18) +pz2 +2 ´ 1qX12L` +̺ pz1q13L´ +¯̺ pz´1 +2 q´1 +32 “ pz2 +2 ´ 1qL´ +¯̺ pz´1 +2 q´1 +32 L` +̺ pz1q13X12 +in p r +Ap2q b EndpC2qqrrz2ss, for some X P r +Ap2q +0 +such that χp2qpXq “ X. It suffices to prove that the +vector space +(B.19) +X “ +! +X P r +Ap2q +0 +ˇˇˇ X satisfies (B.18) and is fixed by χp2q) +, +which by Lemma B.7 contains p̺` +z b ¯̺´qpRq, is spanned by the element given in the right-hand +side of (B.15). +By considering explicit expressions for pz2 +2´1qL` +̺ pz1q13L´ +¯̺ pz´1 +2 q´1 +32 and pz2 +2´1qL´ +¯̺ pz´1 +2 q´1 +32 L` +̺ pz1q13, +we obtain that (B.18) amounts to the system +X +` +qD1´D2´1 ´ a: +1a2q´D1`D2´2z +˘ +“ +` +qD1´D2´1 ´ a1¯a: +2qD1´D2z +˘ +X, +X +´` +¯a: +2qD1´D2´1 ` a: +1q´D1´D2´2z +˘ +´ a: +1q´D1`D2zz2 +2 +¯ +“ +“ +´ +¯a: +2q´D1´D2´1 ´ +` +a: +1q´D1´D2´2 ` ¯a: +2qD1´D2`1z +˘ +zz2 +2 +¯ +X, +X +´ +a2q´D1`D2´1 ´ +` +a1qD1´D2 ` a2qD1`D2`1z +˘ +zz2 +2 +¯ +“ +“ +´` +a2qD1`D2´1 ` a1qD1´D2z +˘ +´ a1qD1`D2`2zz2 +2 +¯ +X, +X +´ +q´D1`D2`1 ` qD1´D2`1z2 ´ a1¯a: +2qD1´D2z +¯ +“ +´ +q´D1`D2`1 ` qD1´D2`1z2 ´ a: +1a2q´D1`D2´2z +¯ +X + +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +33 +for X P r +Ap2q +0 +fixed by χp2q. Since Crrz, z2ss – Crrzssrrz2ss, considering expansion coefficients with +respect to z2, we see that the above system is equivalent to +Xa2q´D1`D2 “ +` +a2qD1`D2 ` a1qD1´D2`1z +˘ +X, +a1qD1`D2`2X “ X +` +a1qD1´D2 ` a2qD1`D2`1z +˘ +, +Xa: +1q´D1`D2 “ +` +a: +1q´D1´D2´2 ` ¯a: +2qD1´D2`1z +˘ +X, +¯a: +2q´D1´D2X “ X +` +¯a: +2qD1´D2 ` a: +1q´D1´D2´1z +˘ +, +“ +X, qD1´D2´1‰ +“ +` +Xa: +1a2q´D1`D2´2 ´ a1¯a: +2qD1´D2X +˘ +z, +“ +X, q´D1`D2`1 ` qD1´D2`1z2‰ +“ +` +Xa1¯a: +2qD1´D2 ´ a: +1a2q´D1`D2´2X +˘ +z +for X P +r +Ap2q +0 +fixed by χp2q. +Using the fact that X commutes with qD1`D2, we obtain this is +equivalent to the system +Xa2q´2D1 “ +` +a2 ` a1q´2D2`1z +˘ +X, +(B.20) +a1X “ X +` +a1q´2pD2`1q ` q´1a2z +˘ +, +(B.21) +Xa: +1q2pD2`1q “ +` +a: +1 ` ¯a: +2q2D1`3z +˘ +X, +(B.22) +¯a: +2X “ X +` +¯a: +2q2D1 ` q´1a: +1z +˘ +, +(B.23) +“ +X, q2D1‰ +“ +` +Xa: +1a2q2D2´1 ´ a1¯a: +2q2D1`1X +˘ +z, +(B.24) +“ +X, q2D2 ` q2D1z2‰ +“ +` +Xa1¯a: +2q2D1´1 ´ a: +1a2q2D2´3X +˘ +z. +(B.25) +Note that q´2D1pD2`1q P r +Ap2q +0 +is fixed by χp2q. Hence without loss of generality we may write +(B.26) +X “ r +Xq´2D1pD2`1q, +for some r +X P r +Ap2q +0 +fixed by χp2q. The system (B.20-B.25) is equivalent to +r r +X, a2s “ q´2D2`1a1 r +Xz, +ra1, r +Xs “ r +Xq2D1´1a2z, +(B.27) +r r +X, a: +1s “ ¯a: +2q2D1`3 r +Xz, +r¯a: +2, r +Xs “ r +Xa: +1q´2D2´3z, +(B.28) +“ r +X, q2D1‰ +“ +` r +Xa: +1a2q2D1´1 ´ a1¯a: +2q2D1`1 r +X +˘ +z, +(B.29) +“ r +X, q2D2 ` q2D1z2‰ +“ +` r +Xa1¯a: +2q2D2`3 ´ a: +1a2q2D2´3 r +X +˘ +z. +(B.30) +We now show that the system (B.27-B.28) implies the system (B.29-B.30). Indeed, assuming the +former, since r r +X, q2D1s “ ra: +1a1, r +Xs we have +r r +X, q2D1s ` a1¯a: +2q2D1`1 r +Xz ´ r +Xa: +1a2q2D1´1z “ +“ a1¯a: +2q2D1`1 r +Xz ´ r r +X, a: +2sa1 ` a: +1ra1, r +Xs ´ r +Xa: +1a2q2D1´1z +“ +` +¯a: +2q2D1`3ra1, r +Xs ´ r r +X, a: +1sa2q2D1´1˘ +z, +which vanishes, thereby recovering (B.29). Applying χp2q to (B.29) we obtain +r r +X, q´2D2s “ +` r +Xa: +1a2q´2D2´1 ´ a1¯a: +2q´2D2`1 r +X +˘ +z. +Left-and-right multiplying this by q2D2 we arrive at +r r +X, q2D2s “ +` +a1¯a: +2 r +Xq2D2`3 ´ q2D2´1 r +Xa: +1a2 +˘ +z + +34 +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +which using (B.27-B.28) we can re-write as +(B.31) +r r +X, q2D2s “ +` +¯a: +2 r +Xa1q2D2`3 ´ q2D2´1a: +1 r +Xa2 +˘ +z. +Finally, using (B.31) and again (B.27-B.28), we derive that +r r +X, q2D2 ` q2D1z2s ´ r +Xa1¯a: +2q2D2`3z ` a: +1a2q2D2´3 r +Xz “ +“ ¯a: +2 r +Xa1q2D2`3z ´ q2D2´1a: +1 r +Xa2z ` r r +X, q2D1sz2` +´ p¯a: +2 r +X ´ r +Xa: +1q´2D2´3zqa1q2D2`3z ` a: +1q2D2´1p r +Xa2 ´ a1q´2D2`1 r +Xzqz +“ +` r +Xa: +1a1 ` a: +1a1 r +X ` r r +X, 1 ´ a: +1a1s +˘ +z2 +which vanishes, thereby proving (B.30) as well. +Furthermore, since χp2q fixes r +X, the equations in (B.27) and the equations in (B.28) are pairwise +equivalent. We deduce that the system (B.27-B.30) is equivalent to the system (B.28). +Now without loss of generality set +r +X “ Y eq2pq3za1¯a: +2qeq2pq´1za: +1a2q +for some Y P r +Ap2q +0 +fixed by χp2q, noting that eq2pq3za1¯a: +2q and eq2pq´1za: +1a2q lie in r +Ap2q +0 +and are +fixed by χp2q. The theorem now follows from the following claim. +Claim: (B.28) is satisfied if and only if Y P Crrzss. +In the special case Y “ 1, indeed (B.28) is indeed satisfied: +r r +X, a: +1s ´ ¯a: +2q2D1`3z r +X “ +´ +req2pq3za1¯a: +2q, a: +1s ´ ¯a: +2q2D1`3zeq2pq3za1¯a: +2q +¯ +eq2pq´1za: +1a2q, +r¯a: +2, r +Xs ´ r +Xa: +1q´2D2´3z “ eq2pq3za1¯a: +2q +´ +r¯a: +2, eq2pq´1za: +1a2qs ´ eq2pq´1za: +1a2qa: +1q´2D2´3z +¯ +, +with the expressions in parentheses vanishing by virtue of (A.17) and (B.5). For general Y we +therefore have +r r +X, a: +1s ´ ¯a: +2q2D1`3z r +X “ rY, a: +1seq2pq3za1¯a: +2qeq2pq´1za: +1a2q, +r¯a: +2, r +Xs ´ r +Xa: +1q´2D2´3z “ r¯a: +2, Y seq2pq3za1¯a: +2qeq2pq´1za: +1a2q. +Both right-hand sides vanish if and only if Y lies in the centralizer in r +Ap2q of ta: +1, ¯a: +2u, which is +trivial by Lemma 4.4. This proves the claim. +□ +C. An alternative proof of the main theorem +In this part of the appendix we give a proof of the boundary factorization identity (8.3) indepen- +dent of the universal K-matrix formalism. Throughout, p is a nonzero complex number unequal to +a root of unity (corresponding to q2 in the main text). +Lemma C.1. Let γ, δ P C. In Ap2q +0 +we have the identities +epppa1¯a: +2qpγz2; pqD1 “ pγz2; pqD1epp´a1¯a: +2pD1γz2qepppa1¯a: +2q +(C.1) +epppa1¯a: +2qpp1´D1δz2; pq´1 +D1epppδz2¯a: +1a2q “ epppδz2¯a: +1a2qpp1´D2δz2; pq´1 +D2epppa1¯a: +2q. +(C.2) + +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +35 +Proof. Note that +W b W “ +à +mPZě0 +pW b Wqm, +pW b Wqm :“ +à +j,kě0 +j`k“m +Cwj b wk. +Because each factor in (C.1-C.2) preserves each finite-dimensional subspace pW bWqm, it suffices to +prove the restrictions of (C.1-C.2) to pW bWqm, where m P Zě0 is fixed but arbitrary. Note that on +pW b Wqm the operators appearing as arguments of the deformed exponentials are nilpotent of or- +der m`1 and therefore, taking into account the appearance of the parameters, rational functions of +p. Hence it suffices to prove these restricted equations for countably many values of each parameter. +As for (C.1), we will in fact prove its restriction to pW b Wqm for all p P C such that |p| ă 1. +As for (C.1), using (A.4) and (A.7) with x replaced by pDγz2 we obtain +pγz2; pqD “ epppDγz2q +eppγz2q . +As a consequence, (C.1) is equivalent to +(C.3) +epppa1¯a: +2qepppD1γz2q “ epppD1γz2qepp´a1¯a: +2pD1γz2qepppa1¯a: +2q. +But this equation follows directly from (A.13) and the observation pa1¯a: +2qppD1γz2q “ pppD1γz2qpa1¯a: +2q. +Similarly, we will prove the restricted version of (C.2) for all p P Cˆ such that |p| ą 1. In this +case, for all j P Zě0 we have +pp1´jδz2; pq´1 +j +“ pδz2; p´1q´1 +j +“ pp´jδz2; p´1q8 +pδz2; p´1q8 +. +Note that pp´jδz2; p´1q8 is a well-defined element of Crrzss for all j P Zě0. By (A.7) and (A.10) +we obtain +pp´jδz2; p´1q8 “ ep´1pp´jδz2q´1 “ eppp1´jδz2q +as an identity of formal power series in z. Putting it all together, we obtain the following identity +in EndpWqrrzss: +pp1´Dδz2; pq´1 +D “ pδz2; p´1q´1 +8 eppp1´Dδz2q +We obtain that (C.2) is equivalent to +(C.4) +epppa1¯a: +2qeppp1´D1δz2qepppδz2¯a: +1a2q “ epppδz2¯a: +1a2qeppp1´D2δz2qepppa1¯a: +2q. +To prove this, note that (B.6) with γ “ p can be rewritten as +epppa1¯a: +2q +` +p´D1 ` ¯a: +1a2 +˘ +“ +` +p´D2 ` ¯a: +1a2 +˘ +epppa1¯a: +2q. +It follows that +(C.5) +epppa1¯a: +2qep +` +p1´D1δz2 ` pδz2¯a: +1a2 +˘ +“ ep +` +p1´D2δz2 ` pδz2¯a: +1a2 +˘ +epppa1¯a: +2q. +Note that p¯a: +1a2qp1´D1 “ p p1´D1p¯a: +1a2q and p1´D2p¯a: +1a2q “ p p¯a: +1a2qp1´D2. Applying (A.12), we +obtain (C.4), as required. +□ +Remark C.2. We will need (C.2) with |p| ă 1, but in this case it is not clear how to prove (C.2) +directly. We reiterate that the rational dependence of the matrix entries of the two sides of the +restriction of (C.2) to pW b Wqm means that our proof for all values of p outside the unit circle is +sufficient to deduce the result for all values of p where the two sides of the restricted equation are +well-defined. +� + +36 +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +Recall that the statement of Theorem 8.1 is as follows. For all µ P C and q, ξ P Cˆ such that q +is not a root of unity, the following identity holds in EndpW b Wqrrzss: +(C.6) +Kυpzq1Rυφpz2qKφpzq2 O` “ O`K̺pq´µ{2zq1R̺¯̺pz2qK¯̺pqµ{2zq2, +Alternative proof of Theorem 8.1. We set +γ “ q2´µξ´1 P Cˆ, +δ “ qµ´2ξ P Cˆ. +Owing to (4.15), the desired identity (C.6) is equivalent to +(C.7) +eq2pq2a1¯a: +2qKυpzq1Rυφpz2qKφpzq2eq2pq2a1¯a: +2q´1 “ +“ qµpD1´D2q{2K̺pq´µ{2zq1R̺¯̺pz2qK¯̺pqµ{2zq2qµpD2´D1q{2. +From (A.2) we deduce that +(C.8) +pδ´1z´2; pq´1 +j +“ pjp1´jq{2p´δz2qjpp1´jδz2; pq´1 +j +for all j P Zě0 and hence +(C.9) +Kυpzq “ +` +´ q1´Dδ +˘Dpγz2; q2qDpq2p1´Dqδz2; q2q´1 +D , +K¯̺pq´µzq “ +` +´ q´µ´Dδ +˘Dpq2p1´Dqδz2; q2q´1 +D . +The strategy of the proof is to show that by straightforward identities involving q-exponentials, +various simple factors in Fp2qpD1, D2q can be moved to the right in both sides of (C.7), thus +bringing them to a similar form. Then an application of more advanced product formulas involving +q-exponentials and finite q-Pochhammer symbols yields the desired equality. More precisely, making +use of the identities +q´D2a: “ a:q´2D´1q´D2 “ ´q¯a:q´D2, +q´D2a “ aq2D´1q´D2 +in A, we obtain, for the left-hand side of (C.7), +(C.10) +eq2pq2a1¯a: +2qKυpzq1Rυφpz2qKφpzq2eq2pq2a1¯a: +2q´1 “ +“ eq2pq2a1¯a: +2q +` +´ δq1´D1˘D1pγz2; q2qD1pq2p1´D1qδz2; q2q´1 +D1eq2pz2a: +1a2q¨ +¨ qp2µ´1qD1´2D2´2D1D2´D2 +2p´ξqD2eq2pq2a1¯a: +2q´1 +“ eq2pq2a1¯a: +2qpγz2; q2qD1pq2p1´D1qδz2; q2q´1 +D1eq2pq2δz2¯a: +1a2qp´q´D1´D2´2ξqD1`D2eq2pq2a1¯a: +2q´1 +“ eq2pq2a1¯a: +2qpγz2; q2qD1pq2p1´D1qδz2; q2q´1 +D1eq2pq2δz2¯a: +1a2qeq2pq2a1¯a: +2q´1p´q´D1´D2´2ξqD1`D2 +and similarly, for the right-hand side of (C.7), +(C.11) +qµpD1´D2q{2K̺pq´µ{2zq1R̺¯̺pz2qK¯̺pqµ{2zq2qµpD2´D1q{2 “ +“ pγz2; q2qD1qµpD1´D2q{2´D2 +1p´ξqD1eq2pq3z2a1¯a: +2qeq2pq´1z2a: +1a2q¨ +¨ pq2p1´D2qδz2; q2q´1 +D2qµpD2´D1q{2´2pD1`D2q´2D1D2´D2 +2p´ξqD2 “ +“ pγz2; q2qD1eq2p´a1¯a: +2q2D1γz2qeq2pq2δz2¯a: +1a2qpq2p1´D2qδz2; q2q´1 +D2p´q´D1´D2´2ξqD1`D2. +We obtain that (C.7) is equivalent to +(C.12) +epppa1¯a: +2qpγz2; pqD1pp1´D1δz2; pq´1 +D1epppδz2¯a: +1a2qepppa1¯a: +2q´1 “ +“ pγz2; pqD1epp´a1¯a: +2pD1γz2qepppδz2¯a: +1a2qpp1´D2δz2; pq´1 +D2. + +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +37 +Applying the identities (C.1-C.2) for deformed exponentials we deduce (C.12) as required. +□ +References +[AC76] +M. Arik, D. Coon, Hilbert spaces of analytic functions and generalized coherent states. J. Math. Phys. +17 (1976) 524. +[AV22a] +A. Appel, B. Vlaar, Universal K-matrices for quantum Kac-Moody algebras. Represent. Theory 26 +(2022), 764–824. +[AV22b] +A. Appel, B. Vlaar, Trigonometric K-matrices for finite-dimensional representations of quantum affine +algebras (2022). Preprint at arXiv:2203.16503. +[Ba72] +R. Baxter. Partition function of the eight-vertex lattice model. Ann. of Physics, 70, no. 1 (1972), 193–228. +[Ba73] +R. Baxter. Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. I. +Some fundamental eigenvectors. Ann. of Physics, 76, no. 1 (1973), 1–24. +[BB13] +P. Baseilhac, S. Belliard, The half-infinite XXZ chain in Onsager’s approach. Nucl. Phys. B 873, no. 3 +(2013), 550–584. arXiv:0906.1215. +[BGKNR10] H. Boos, F. G¨ohmann, A. Kl¨umper, K. Nirov, A. Razumov, Exercises with the universal R-matrix. J. +Phys. A: Math. Theor. 43, no. 41 (2010): 415208. arXiv:1004.5342. +[BGKNR13] H. Boos, F. G¨ohmann, A. Kl¨umper, K. Nirov, A. Razumov, Universal integrability objects. Theor. Math. +Phys. 174, no. 1 (2013): 21–39. arXiv:1205.4399. +[BGKNR14] H. Boos, F. G¨ohmann, A. Kl¨umper, K. Nirov, A. Razumov, Universal R-matrix and functional relations. +Rev. in Math. Phys. 26, no. 6 (2014), 1430005. arXiv:1205.1631. +[Bi92] +L. Biedenharn, The quantum group SUq(2) and a q-analogue of the boson operators. J. Phys. A: Math. +Gen. 22 (1992) L873. +[BJMST09] +H. Boos, M. Jimbo, T. Miwa, F. Smirnov, Y. Takeyama, Hidden Grassmann structure in the XXZ model +II: creation operators. Commun. Math. Phys. 286, no. 3 (2009), 875–932. arXiv:0801.1176. +[BK16] +M. Balagovi´c, S. Kolb, Universal K-matrix for quantum symmetric pairs. Journal f¨ur die reine und +angewandte Mathematik (Crelles Journal). arXiv:1507.06276. +[BLMS10] +V. Bazhanov, T. �Lukowski, C. Meneghelli and M. Staudacher. A Shortcut to the Q-operator. J. Stat. +Mech.: Theory Exp. 11 (2010), P11002. +[BLZ96] +V. Bazhanov, S. Lukyanov, and A. Zamolodchikov. Integrable structure of conformal field theory, quan- +tum KdV theory and thermodynamic Bethe ansatz. Comm. Math. Phys. 177, no. 2 (1996), 381–398. +[BLZ97] +V. Bazhanov, S. Lukyanov, A. Zamolodchikov, Integrable Structure of Conformal Field Theory II. Q- +operator and DDV equation. Commun. Math. Phys. 190 (1997), 247–278. +[BLZ99] +V. Bazhanov, S. Lukyanov, A. Zamolodchikov, Integrable Structure of Conformal Field Theory III. The +Yang-Baxter relation. Commun. Math. Phys. 200, no. 2 (1999), 297–324. +[BS90] +V. Bazhanov, Yu. Stroganov. Chiral Potts model as a descendant of the six-vertex model. J. Stat. Phys. +59, no. 3 (1990), 799-817. +[BT18] +P. Baseilhac, Z. Tsuboi, Asymptotic representations of augmented q-Onsager algebra and boundary K- +operators related to Baxter Q-operators. Nucl. Phys. B 929 (2018), 397–437. +[BW18] +H. Bao, W. Wang, A new approach to Kazhdan-Lusztig theory of type B via quantum symmetric pairs. +Paris: Soci´et´e math´ematique de France (2018). +[Ch02] +V. Chari, Braid group actions and tensor products, Int. Math. Res. Not. (2002), no. 7, 357–382. +[Ch84] +I. Cherednik, Factorizing particles on a half-line and root systems. Theor. and Math. Phys. 61, no. 1 +(1984), 977–983. +[CP94] +V. Chari, A. Pressley, Quantum affine algebras and their representations. Representation theory of +groups (Banff, AB, 1994), CMS Conference Proceedings, Vol. 16, Amer. Math. Soc. (1994), 59–78. +[CP95] +V. Chari, A. Pressley, A guide to quantum groups, Cambridge University Press, Cambridge, 1995, +Corrected reprint of the 1994 original. +[De05] +S. +Derkachov. +Factorization +of +R-matrix +and +Baxter’s +Q-operator +(2005). +Preprint +at +arXiv:math/0507252. +[De07] +S. Derkachov. Factorization of the R-matrix. I. J. of Mathematical Sciences, 143, no. 1 (2007), 2773– +2790. +[DG02] +G. Delius, A. George, Quantum affine reflection algebras of type dp1q +n +and reflection matrices. Lett. Math. +Phys. 62 (2002), 211–217. arXiv:math/0208043. +[DKK06] +S. Derkachov, D. Karakhanyan, and R. Kirschner. Baxter Q-operators of the XXZ chain and R-matrix +factorization. Nucl. Phys. B, 738, no. 3 (2006), 368–390. +[DM03] +G. Delius, N. Mackay, Quantum group symmetry in sine-Gordon and affine Toda field theories on the +half-line. Comm. Math. Phys. 233 (2003), 173–190. arXiv:hep-th/0112023. + +38 +A Q-OPERATOR FOR OPEN SPIN CHAINS II: BOUNDARY FACTORIZATION +[Dr85] +V. Drinfeld, Hopf algebras and the quantum Yang-Baxter equation. Soviet Math. Dokl. 32 (1985), 254– +258. +[Dr86] +V. Drinfeld, Quantum groups. Proc. Int. Cong. Math., Berkeley (1986), A.M. Gleason (ed.), 798–820. +Amer. Math. Soc., Providence, RI. +[FH15] +E. Frenkel, D. Hernandez, Baxter’s Relations and Spectra of Quantum Integrable Models. Duke Math. +J. 164, no. 12 (2015), 2407–2460. +[FR92] +I. Frenkel, N. Reshetikhin, Quantum affine algebras and holonomic difference equations. Comm. Math. +Phys. 146, no. 1 (1992), 1–60. +[GR90] +G. Gasper and M. Rahman, Basic hypergeometric series, Encyclopedia of mathematics and its applica- +tions 35 (1990), Cambridge Univ. Press. +[He19] +D. Hernandez, Avanc´ees concernant les R-matrices et leurs applications [d’apr`es Maulik-Okounkov, +Kang-Kashiwara-Kim-Oh, ...] (2019), no. 407, S´eminaire Bourbaki, 69`eme ann´ee, Vol. 2016-2017, no. +1129, 297–331. +[HJ12] +D. Hernandez, M. Jimbo, Asymptotic representations and Drinfeld rational fractions, Compositio Math- +ematica 148, no. 5 (2012), 1593–1623. arXiv:1104.1891. +[Ji86a] +M. Jimbo, A q-analogue of UpglpN ` 1qq, Hecke algebra, and the Yang-Baxter equation. Lett. Math. +Phys. 11, no. 3 (1986), 247–252. +[Ji86b] +M. Jimbo, Quantum R Matrix for the Generalized Toda System. Comm. Math. Phys. 102 (1986), 537– +547. +[Ka90] +V. Kac, Infinite-dimensional Lie algebras, third ed., Cambridge University Press, Cambridge (1990) +[Ko14] +S. Kolb, Quantum symmetric Kac-Moody pairs. Adv. Math. 267 (2014), 395–469. arXiv:1207.6036. +[Ko97] +T. Koornwinder, Special functions and q-commuting variables. In Special Functions, q-Series and Related +Topics, Fields Institute Communications 14, American Mathematical Society (1997), 131–166. +[KS95] +D. Kazhdan, Y. Soibelman, Representations of quantum affine algebras. Sel. Math. (N.S.) 1 (1995), no. +3, 537–595. +[KT14] +S. Khoroshkin, Z. Tsuboi, The universal R-matrix and factorization of the L-operators related to the +Baxter Q-operators. J. Phys. A: Math. Theor. 47 (no. 19) (2014), 192003. +[Ku91] +P. Kulish, Contraction of quantum algebras and q-oscillators. Theor. and Math. Physics 86 (1991) +108–110. +[Lu94] +G. Lusztig, Introduction to quantum groups. Birkh¨auser, Boston, 1994. +[Mf89] +A. Macfarlane, On q-analogues of the quantum harmonic oscillator and the quantum group SU(2)q. J. +Phys. A: Math. Gen. 22 (1989) 4581-4588. +[RSV15] +N. Reshetikhin, J. Stokman, B. Vlaar, Boundary quantum Knizhnik-Zamolodchikov equations and fusion. +Annales Henri Poincar´e (2015), 1–41. arXiv:1404.5492. +[Sc53] +M. Sch¨utzenberger, Une interpr´etation de certaines solutions de l’´equation fonctionelle: Fpx ` yq “ +FpxqFpyq. C.R. Acad. Sci. Paris 236 (1953), 352–353. +[Sk88] +E. Sklyanin, Boundary conditions for integrable quantum systems. J. Phys. A: Math. Gen. 21 (1988), +2375–2389. +[TK92] +V. Tolstoy, S. Khoroshkin, The universal R-matrix for quantum untwisted affine Lie algebras. Funct. +Anal. Appl. 26 (1992), 69–71. +[VW20] +B. Vlaar, R. Weston, A Q-operator for open spin chains I: Baxter’s TQ relation. J. Phys. A: Math. +Theor. 53 no. 24 (2020): 245202. arXiv:2001.10760. + diff --git a/.gitattributes b/.gitattributes index 4dc1cfce5eded1828a64f27999eeaacc9aa5d271..86b5c4c9aaff4e42d49ff79207a1efc5ab571b2c 100644 --- a/.gitattributes +++ b/.gitattributes @@ -7951,3 +7951,67 @@ F9E0T4oBgHgl3EQfhQEq/content/2301.02428v1.pdf filter=lfs diff=lfs merge=lfs -tex MdE2T4oBgHgl3EQfqQjZ/content/2301.04038v1.pdf filter=lfs diff=lfs merge=lfs -text HtAyT4oBgHgl3EQfS_fv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text PNFAT4oBgHgl3EQfzR5c/content/2301.08697v1.pdf filter=lfs diff=lfs merge=lfs -text +19AyT4oBgHgl3EQf1fl-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +p9E4T4oBgHgl3EQfvg1C/content/2301.05242v1.pdf filter=lfs diff=lfs merge=lfs -text +bdE2T4oBgHgl3EQfwAj2/content/2301.04098v1.pdf filter=lfs diff=lfs merge=lfs -text +29E4T4oBgHgl3EQf0A2b/content/2301.05279v1.pdf filter=lfs diff=lfs merge=lfs -text +FNAzT4oBgHgl3EQfUPz_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +G9E5T4oBgHgl3EQfWA_j/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +zNE2T4oBgHgl3EQf4QgL/content/2301.04178v1.pdf filter=lfs diff=lfs merge=lfs -text +iNAzT4oBgHgl3EQfo_3Q/content/2301.01607v1.pdf filter=lfs diff=lfs merge=lfs -text +2dE2T4oBgHgl3EQfjAeF/content/2301.03964v1.pdf filter=lfs diff=lfs merge=lfs -text +J9AyT4oBgHgl3EQfsPnV/content/2301.00575v1.pdf filter=lfs diff=lfs merge=lfs -text +XtE4T4oBgHgl3EQfNgyO/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +5NFKT4oBgHgl3EQfSS3g/content/2301.11775v1.pdf filter=lfs diff=lfs merge=lfs -text +odFKT4oBgHgl3EQfFy38/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +mNE3T4oBgHgl3EQfKQmi/content/2301.04352v1.pdf filter=lfs diff=lfs merge=lfs -text +sdE0T4oBgHgl3EQfrgGT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +iNAzT4oBgHgl3EQfo_3Q/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +bdE2T4oBgHgl3EQfwAj2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +ktE1T4oBgHgl3EQfggRt/content/2301.03230v1.pdf filter=lfs diff=lfs merge=lfs -text +P9FPT4oBgHgl3EQfoTUR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +LdE3T4oBgHgl3EQfYQps/content/2301.04486v1.pdf filter=lfs diff=lfs merge=lfs -text +VtE0T4oBgHgl3EQfVgCD/content/2301.02265v1.pdf filter=lfs diff=lfs merge=lfs -text +zNE2T4oBgHgl3EQf4QgL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +z9E3T4oBgHgl3EQfmwoZ/content/2301.04618v1.pdf filter=lfs diff=lfs merge=lfs -text +a9FIT4oBgHgl3EQfmCsU/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +bNE4T4oBgHgl3EQfoQ2m/content/2301.05183v1.pdf filter=lfs diff=lfs merge=lfs -text +4NE2T4oBgHgl3EQfOQYe/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +VtE0T4oBgHgl3EQfVgCD/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +rtE0T4oBgHgl3EQfrQGn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +r9E3T4oBgHgl3EQf9AtL/content/2301.04812v1.pdf filter=lfs diff=lfs merge=lfs -text +z9E3T4oBgHgl3EQfmwoZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +J9AyT4oBgHgl3EQfsPnV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +TdAyT4oBgHgl3EQfuflV/content/2301.00613v1.pdf filter=lfs diff=lfs merge=lfs -text +LdFRT4oBgHgl3EQfEzcl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +aNFLT4oBgHgl3EQfWy86/content/2301.12058v1.pdf filter=lfs diff=lfs merge=lfs -text +6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf filter=lfs diff=lfs merge=lfs -text +29FIT4oBgHgl3EQf5SvC/content/2301.11389v1.pdf filter=lfs diff=lfs merge=lfs -text +bNE4T4oBgHgl3EQfoQ2m/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +m9FPT4oBgHgl3EQf5DW2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +59AzT4oBgHgl3EQff_xu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +LdE3T4oBgHgl3EQfYQps/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +kNAzT4oBgHgl3EQfpf3m/content/2301.01615v1.pdf filter=lfs diff=lfs merge=lfs -text +g9FKT4oBgHgl3EQfty7v/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +ktE1T4oBgHgl3EQfggRt/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +mNE3T4oBgHgl3EQfKQmi/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +kNAzT4oBgHgl3EQfpf3m/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +UdAzT4oBgHgl3EQf0_6m/content/2301.01793v1.pdf filter=lfs diff=lfs merge=lfs -text +AdE4T4oBgHgl3EQf4w7g/content/2301.05317v1.pdf filter=lfs diff=lfs merge=lfs -text +itAyT4oBgHgl3EQfxvny/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +OdAyT4oBgHgl3EQfg_gX/content/2301.00367v1.pdf filter=lfs diff=lfs merge=lfs -text +X9E3T4oBgHgl3EQfcApa/content/2301.04521v1.pdf filter=lfs diff=lfs merge=lfs -text +FNE2T4oBgHgl3EQfSwf4/content/2301.03797v1.pdf filter=lfs diff=lfs merge=lfs -text +59AzT4oBgHgl3EQff_xu/content/2301.01461v1.pdf filter=lfs diff=lfs merge=lfs -text +xNAyT4oBgHgl3EQfOvYK/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +MdE2T4oBgHgl3EQfqQjZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +H9AyT4oBgHgl3EQf5vo1/content/2301.00809v1.pdf filter=lfs diff=lfs merge=lfs -text +8dAyT4oBgHgl3EQfp_jS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +q9AyT4oBgHgl3EQfzvm4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +X9E3T4oBgHgl3EQfcApa/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +KdAzT4oBgHgl3EQfVfys/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +59E2T4oBgHgl3EQfOwac/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +UdAzT4oBgHgl3EQf0_6m/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +KdAzT4oBgHgl3EQfVfys/content/2301.01286v1.pdf filter=lfs diff=lfs merge=lfs -text +OdAyT4oBgHgl3EQfg_gX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +E9FLT4oBgHgl3EQfFi_K/content/2301.11988v1.pdf filter=lfs diff=lfs merge=lfs -text diff --git a/0NE4T4oBgHgl3EQfZgwr/content/tmp_files/2301.05056v1.pdf.txt b/0NE4T4oBgHgl3EQfZgwr/content/tmp_files/2301.05056v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..410c7cd30ace6b288883af384b7a004ddf1ddd63 --- /dev/null +++ b/0NE4T4oBgHgl3EQfZgwr/content/tmp_files/2301.05056v1.pdf.txt @@ -0,0 +1,994 @@ +arXiv:2301.05056v1 [gr-qc] 12 Jan 2023 +Tunneling probability for the birth of universes +with radiation, cosmological constant and an +ad hoc potential +G. Oliveira-Neto and D. L. Canedo +Departamento de F´ısica, +Instituto de Ciˆencias Exatas, +Universidade Federal de Juiz de Fora, +CEP 36036-330 - Juiz de Fora, MG, Brazil. +gilneto@fisica.ufjf.br, danielcanedo.tr@hotmail.com +G. A. Monerat +Departamento de Modelagem Computacional, +Instituto Polit´ecnico, +Universidade do Estado do Rio de Janeiro, +CEP 28.625-570, Nova Friburgo - RJ - Brazil. +monerat@uerj.br +January 13, 2023 +Abstract +In this work we study the birth of Friedmann-Lemaˆıtre-Robertson- +Walker (FLRW) models with zero (k = 0) and negative (k = −1) cur- +vatures of the spatial sections. The material content of the models is +composed of a radiation perfect fluid and a positive cosmological con- +stant. The models also have the presence of an ad hoc potential which +origin is believed to be of geometrical nature. In order to describe the +birth of these universes, we quantize them using quantum cosmology. +Initially, we obtain the Wheeler-DeWitt equations and solve them us- +ing the WKB approximation. We notice that the presence of the ad +1 + +hoc potential produces a barrier for any value of k. It means that +we may describe the birth of the universe through a tunneling mecha- +nism, for any curvature of the spatial sections, not only for the usual +case k = 1. We, explicitly, compute the tunneling probabilities for +the birth of the different models of the universe and compare these +tunneling probabilities. +Keywords: Quantum cosmology, Wheeler-DeWitt equation, Cosmolog- +ical constant, Radiation perfect fluid, Ad hoc potential +PACS: 04.60.Ds, 98.80.Bp, 98.80.Qc +1 +Introduction +Quantum cosmology (QC) was the first attempt to describe the Universe as +a quantum mechanical system. It uses general relativity (GR) in order to +describe the gravitational interaction between the material constituents of +the Universe. The canonical quantization was the first method used by the +physicists working in QC. Several physicists contributed to the development +of that research area, culminating in the introduction of the Wheeler-DeWitt +equation [1], [2]. Another way to quantize a theory is using the path integral +method [3, 4]. That method was first discussed in connection to the quanti- +zation of GR by C. Misner [5]. After that, many physicists contributed to the +development of that method of quantization in QC. Another fundamental line +of research in QC is the problem of interpretation. Since one cannot use the +Copenhagen interpretation of quantum mechanics to the system composed of +the entire Universe, several new interpretations of quantum mechanics have +been introduced. The first one was De Broglie-Bohm or Causal Interpreta- +tion, first suggested by L. de Broglie [6, 7, 8, 9, 10] and later developed by +D. Bohm [11, 12]. Another important interpretation was formulated by H. +Everett, III and is known as the Many Worlds Interpretation [13]. A more +recent interpretation of quantum mechanics that may be used in QC is the +Consistent Histories or Decoherent Histories [14, 15, 16, 17, 18, 19, 20]. For +a more complete introduction of the basic concepts of QC see [21, 22, 23, 24]. +One of the most interesting explanations for the regular birth of the Uni- +verse, coming from QC, is the spontaneous creation from nothing [25, 26, 27, +28, 29, 30, 31, 32]. In that explanation, one has to consider the Universe as +a quantum mechanical system, initially with zero size. It is subjected to a +potential barrier which confines it. In a FLRW quantum cosmological model, +2 + +that potential barrier is formed, most generally, due to the positive curvature +of the spatial sections of the model and also due to the presence of a posi- +tive cosmological constant or a matter content that produces an accelerated +expansion of the universe. Since, in that explanation, the Universe should +satisfy the quantum mechanical laws, it may tunnel through the barrier and +emerges to the right of it with a finite size. That moment is considered the +beginning of the Universe. Therefore, the Universe starts in a regular way +due to its finite size. Several works, in the literature, have already considered +cosmological models where one can compute, quantitatively, the tunneling +probability for the birth of different universes [33, 34, 35, 36, 37, 38]. +Since there are some theoretical [39, 40] as well as observational [41, 42] +evidences that our Universe has a flat spatial geometry, it would be inter- +esting if we could produce a spatially flat cosmological model which birth is +described by a spontaneous creation from nothing. As mentioned, above, the +usual way to construct the potential barrier uses as one of the fundamen- +tal ingredients the positive curvature of the spatial sections of the universe. +Therefore, one has to find a different way to produce the barrier that the Uni- +verse has to tunnel through in order to be born. In a recent paper some of us +have introduced an ad hoc potential (Vah), that has all necessary properties +in order to describe the regular birth of the Universe by the spontaneous cre- +ation from nothing [37]. In addition to those properties, the universe could +have positive, negative or nil curvature of the spatial sections. It is believed +that such ad hoc potential may appear as a purely geometrical contribution +coming from a more fundamental, geometrical, gravitational theory than +general relativity [37]. As mentioned in Ref. [37], Vah has another interest- +ing property at the classical level. It produces a large class of non-singular, +bounce-type solutions. +In this work we study the birth of FLRW models with zero (k = 0) and +negative (k = −1) curvatures of the spatial sections. The model with k = 1 +was studied in Ref. [37]. Here, we are going to consider few results obtained +in Ref. [37] in order to compare them with the new results obtained for +the models with k = 0 and k = −1. The material content of the models is +composed of a radiation perfect fluid and a positive cosmological constant. +The models also have the presence of an ad hoc potential which origin is +believed to be of geometrical nature. In order to describe the birth of these +universes, we quantize them using quantum cosmology. Initially, we obtain +the Wheeler-DeWitt equations and solve them using the WKB approxima- +tion. We notice that the presence of Vah produces a barrier for any value +3 + +of k. It means that we may describe the birth of the universe through a +tunneling mechanism, for any curvature of the spatial sections, not only for +the usual case k = 1. We, explicitly, compute the tunneling probabilities for +the birth of the different models of the universe and compare these tunneling +probabilities. +In Section 2, we obtain the Hamiltonians of the models and investigate the +possible classical solutions using phase portraits. In Section 3, we canonically +quantize the models and write the appropriate Wheeler-DeWitt equations. +Then, we find the approximated WKB solutions to those equation. In Section +4, we compute the quantum WKB tunneling probabilities as functions of the +parameters: (i) the ad hoc potential parameter (σ), (ii) the cosmological +constant (Λ), (iii) the radiation energy (E) and (iv) the curvature parameter +(k). As the final result of that section, we compare the TPW KB’s for models +with different values of k. The conclusions are presented in Section 5. In +Appendix A, we give a detailed calculation of the fluid total hamiltonian +used in this work. +2 +The Classical Model +In the present work, we want to study homogeneous and isotropic universes +with constant negative and nil curvatures of the spatial sections. Therefore, +we start introducing the FLRW metric, which is the appropriate one to treat +those universes, +ds2 = −N2(t)dt2 + a2(t) +� +dr2 +1 − kr2 + r2dΩ2 +� +, +(1) +where a(t) is the scale factor, k gives the type of constant curvature of the +spatial section, dΩ is the angular line element of a 2D sphere and N(t) is +the lapse function introduced in the ADM formalism [2]. The action of the +geometrical sector of the model is given by, +S = 1 +2 +� +M d4x√−g(R − 2Λ) + +� +∂M d3x +√ +hhabKab +(2) +where R is the Ricci scalar, Λ is the cosmological constant, hab is the 3-metric +induced on the boundary ∂M of the four-dimensional space-time M and Kab +is the extrinsic curvature tensor of the boundary. We use the natural unit +system where ¯h = 8πG = c = kB = 1. After some calculations we obtain +4 + +from the action Eq. (2), with the aid of the metric coming from Eq. (1), the +following hamiltonian for the gravitational sector, +NH = −p2 +a +12 − 3ka2 + Λa4, +(3) +where pa is the canonically conjugated momentum to a. Here, we are working +in the conformal gauge N = a. +The matter content of the models is a +radiation perfect fluid, which is believed to have been very important in the +beginning of our universe. That perfect fluid has the following equation of +state, +prad = 1 +3ρrad, +(4) +where prad is the radiation fluid pressure and ρrad is its energy density. In +order to obtain the hamiltonian associated to that fluid, we use the Schutz +variational formalism [43, 44]. The starting point for that task is the following +perfect fluid action [45], +� +M d4x√−gprad +(5) +The necessary calculations in order to obtain the hamiltonian from that ac- +tion Eq. (5), using the Schutz variational formalism, are presented in Ap- +pendix A. +Using Eq. (3) and Eq. (39) from Appendix A, we may write the total +hamiltonian of the model, in the conformal gauge N = a, as, +NH = −p2 +a +12 + pT − 3ka2 + Λa4 + Vah, +(6) +where pa and pT are the canonically conjugated momenta to a and T, re- +spectively. The variable T is associated to the radiation fluid, as discussed +in Appendix A. Vah is the ad hoc potential, which is defined as, +Vah = − +σ2a4 +(a3 + 1)2, +(7) +where σ is a dimensionless parameter associated to the magnitude of that +potential. As discussed in Ref. [37], if one observes the limits of the ad hoc +potential Eq.(7), when a assumes small as well as large values, one notices +that it produces a barrier. In FLRW cosmological models constructed using +the Hoˇrava-Lifshitz gravitational theory [46, 47, 48, 49, 50], one may have, +5 + +in the hamiltonian, terms similar to the asymptotic limits of Vah, which +have purely geometrical origin. Then, it is not difficult to imagine that Vah +should come from a purely geometrical contribution of a more fundamental +gravitational theory. +From the total hamiltonian Eq. (6) it is possible to identify an effective +potential (Veff(a)) that comprises the terms related to the curvature of the +spatial sections, cosmological constant and ad hoc potential. With the aid +of Eq. (7), Veff(a) is given by, +Veff(a) = 3ka2 − Λa4 + +σ2a4 +(a3 + 1)2. +(8) +Observing Veff(a) Eq. +(8), it is possible to see that for all values of the +parameters Λ, σ and k = −1 or k = 0, that potential is well defined at a = 0. +In fact, it goes to zero when a → 0. It is, also, possible to see that when +a → ∞ the potential Veff → −∞. Another important property of Veff(a) +Eq. (8), is that for all values of the parameters Λ, σ and k = −1 or k = 0, +it has only one barrier. That situation is different from the case where the +curvature of the spatial section is positive (k = 1), which was studied in Ref. +[37]. There, depending on the values of Λ and σ, Veff(a) could have one or +two barriers. Examples of all those properties can be seen in Figures (1-4). +Figure 1: Veff(a) for k = −1 with +Λ = 0.01 and different values of σ. +Figure 2: Veff(a) for k = −1 with +Λ = 1.5 and different values of σ. +6 + +Figure 3: Veff(a) for k = 0 with +Λ = 0.01 and different values of σ. +Figure 4: Veff(a) for k = 0 with +Λ = 1.5 and different values of σ. +Now, we can study the classical dynamical behavior of the model with +the aid of the hamilton’s equation. We may compute them from the total +hamiltonian Eq. (6), to obtain, + + + + + + + + + + + + + + + + + + + + + + + + + +˙a = +∂NH +∂pa = −1 +6pa, +˙pa = +−∂NH +∂a += ∂Veff +∂a , +˙T = +∂NH +∂pT = 1, +˙pT = +−∂NH +∂T += 0, + + + + + + + + + + + + + + + + + + + + + + + + + +(9) +where the dot means derivative with respect to the conformal time η. +One may have the general idea on how the scale factor behaves by study- +ing the phase portraits of the models in the plane (a, pa). Due to the fact +that, as mentioned above, Veff(a) Eq. (8) for the present models have only +one barrier, the phase portraits are simpler than the ones for the models with +k = +1 [37]. +7 + +Figure 5: Phase portraits in the +plane (a, pa) for the model with +k = −1, Λ = 0.01, σ = −50 and +different values of pT. +Figure 6: Phase portraits in the +plane (a, pa) for the model with +k = 0, Λ = 0.01, σ = −50 and +different values of pT. +The dashed curves in Figures 5 and 6 are called separatrixes. They sepa- +rate different classes of solutions for a given energy pT. Those phase portraits +Figures 5 and 6 have, also, two fixed points, which represent stationary so- +lutions of the model. Let us call those points A1 e A2. In particular, A2 is +called Einstein’s Universe, there the gravitational attraction and the cosmo- +logical expansion balance each other. A1 is located, on the plane (a, pa), by +(a = 0, pa = 0) and energy pT = 0. It is the same point for Figures 5 and +6. For A2, the points on the plane (a, pa) and the values of pT are given in +Table 1. +Table 1: Location of A2 for Figures 5 and 6 +A2 +pT +Figure 5 +(a = 1.255633946, pa = 0) +695.1851495 +Figure 6 +(a = 1.259875701, pa = 0) +699.9309422 +Observing Figures 5 and 6, we may identify a first class of solutions +present in the model. For a and pT smaller than the ones for the fixed point +A2 and for pa greater than the ones for the fixed point A2, we have a class +of solutions where the universe starts expanding from an initial Big Bang +8 + +singularity, reaches a maximum size and then contracts to a final Big Crunch +singularity. These solutions are located in Region I of Figures 5 and 6. +Now, for pa and pT greater than the ones for the fixed point A2, we have a +second class of solutions where the universe starts expanding from an initial +Big Bang singularity (a = 0) and continues expanding to infinity values of +a. It tends asymptotically to a De Sitter type solution. These solutions are +located in Region II of Figures 5 and 6. +Now, for pa < 0 (initially), pT smaller than the ones for the fixed point +A2 and a greater than the ones for the fixed point A2, we have a third class +of solutions where the universe starts contracting from an initial scale factor +value, reaches a minimum size for pa = 0 and then expands to infinity values +of a, for pa > 0. It tends asymptotically to a De Sitter type solution. These +are the bouncing solutions for the present models. These solutions are located +in Region III of Figures 5 and 6. +Finally, a fourth class of solutions appears if we choose pa < 0 and pT +greater than the ones for the fixed point A2. In that class of solutions the +universe starts contracting from a large finite value of a and continues con- +tracting until it reaches a final Big Crunch singularity. These solutions are +located in Region IV of Figures 5 and 6. +The classical scale factor behavior may be computed by solving a system +of ordinary differential equations. The first equation is obtained by imposing +the hamiltonian constraint H = 0 Eq. (6) and substituting, in the resulting +equation, the value of pa in terms of ˙a, with the aid of Eqs. +(9). +That +equation is the Friedmann equation for the present model and is given by, +˙a(0) = ±1 +6 +� +12(pT − Veff(a0)), +(10) +where a0 = a(η = 0) is the scale factor initial condition. The second equa- +tion is obtained by combining the hamilton’s equations (9), resulting in the +following second order, ordinary, differential equation for a(η), +∂2a(η) +∂η2 ++ ka(η) − 2Λ +3 a(η)3 + 2σ2 +3 +a(η)3 +(a(η)3 + 1)2 − +σ2a(η)6 +(a(η)3 + 1)3 = 0. +(11) +We solve that system of equations (10), (11), in the following way. Initially, +we choose a value for a0 and substitute it in the Friedmann equation (10), in +order to find the initial value for ˙a (˙a0). Then, we use these initial conditions +9 + +in order to solve equation (11). Due to the complexity of both equations +(10), (11), we solve the system numerically. As we mentioned above, the +Veff(a) (8) for both values of k (-1 or 0) have just one barrier. Therefore, +the results for a(η) for both cases are very similar. Next, we solve the system +of equations (10), (11), for Λ = 0.01, σ = −50 and k = 0 or k = −1, which +correspond to the phase portraits shown in Figures 5 and 6. For those models +we find the four classes of solutions described, qualitatively, above. +In Figure 7, we see examples of the first class of solutions described above, +for k = −1 and k = 0. In order to obtain them, we set a(0) = 0, pT = 164, +˙a0 = −7.393691003, which gives pa > 0 from Eq. (9). +In Figure 8, we see examples of the second class of solutions described +above, for k = −1 and k = 0. In order to obtain them, we set a(0) = 0, +pT = 800, ˙a(0) = −16.32993162, which gives pa > 0 from Eq. (9). +In Figure 9, we see examples of the third class of solutions described +above, for k = −1 and k = 0. In order to obtain the solution for k = −1, we +set a(0) = 1000, pT = 500 and ˙a(0) = −57743.68797. In order to obtain the +solution for k = 0, we set a(0) = 1000, pT = 500 and ˙a(0) = −57735.02837. +We can, clearly, see from Figure 9 two examples of bouncing solutions for +the present models. +Finally, in Figure 10, we see examples of the fourth class of solutions +described above, for k = −1 and k = 0. In order to obtain the solution for +k = −1, we set a(0) = 10, pT = 800, ˙a(0) = 19.79099058, which gives pa < 0 +from Eq. (9). In order to obtain the solution for k = 0, we set a(0) = 10, +pT = 800, ˙a(0) = 17.07873849, which gives pa < 0 from Eq. (9). +3 +Canonical Quantization, WKB Solution and +WKB Tunneling Probability +3.1 +Canonical Quantization +In order to study the birth of the universes described by the cosmological +models introduced in the present paper, we must quantize these models. +We do that by using the Dirac’s formalism for quantization of constrained +systems [51, 52, 53, 54]. The first step consists in introducing a wave-function +(Ψ) which is a function of the canonical variables. In the present model these +10 + +Figure 7: Classical scale factor be- +havior for universes with k = −1 +and k = 0, Λ = 0.01 and σ = −50. +Figure 8: Classical scale factor be- +havior for universes with k = −1 +and k = 0, Λ = 0.01 and σ = −50. +Figure 9: Classical scale factor be- +havior for universes with k = −1 +and k = 0, Λ = 0.01 and σ = −50. +Figure 10: +Classical scale factor +behavior for universes with k = −1 +and k = 0, Λ = 0.01 and σ = −50. +variables are ˆa and ˆT, then, +Ψ = Ψ(ˆa, ˆT) . +(12) +11 + +In the second step, we demand that the operators ˆa and ˆT and their con- +jugated momenta ˆPa and ˆPT, satisfy suitable commutation relations. In the +Schr¨odinger picture ˆa and ˆT become multiplication operators, while their +conjugated momenta become the following differential operators, +pa → −i ∂ +∂a , +pT → −i ∂ +∂T . +(13) +In the third and final step, we impose that the operator associated to NH (6) +annihilates the wave-function Ψ (12). The resulting equation is the Wheeler- +DeWitt equation for the present models. +It resembles a time dependent, +one-dimensional, Schr¨odinger equation, +� 1 +12 +∂2 +∂a2 − 3ka2 + Λa4 − +σ2a4 +(a3 + 1)2 +� +Ψ(a, τ) = −i ∂ +∂τ Ψ(a, τ) +(14) +where the new variable τ = −T has been introduced. +3.2 +WKB Solution +Now, we want to determine the WKB approximated solution to the Wheeler- +DeWitt equation (14). We start imposing that the solution to equation (14) +may be written as [55, 56], +Ψ(a, τ) = ψ(a)e−Eτ +(15) +where E is the energy associated to the radiation fluid. Introducing Ψ(a, τ) +Eq. (15) in the Wheeler-DeWitt equation (14), we obtain, +∂2ψ(a) +∂a2 ++ 12(E − Veff(a))ψ(a) = 0, +(16) +where Veff(a) is given in Eq. (8). Next, in Eq. (15), we consider that ψ(a) +is given by, +ψ(a) = A(a)eiφ(a), +(17) +where A(a) is the amplitude and φ(a) is the phase. Introducing ψ(a) Eq. +(17) in Eq. (16) and supposing that the amplitude A(a) varies slowly as a +function of a, we find the following general solutions for Eq. (16): +(i) For regions where E > Veff(a), +ψ(a) = +C +� +K(a) +e± i +¯h +� +K(a)da, +(18) +12 + +where C is a constant and +K(a) = +� +12(E − Veff(a)). +(19) +(ii) For regions where E < Veff(a), +ψ(a) = +C1 +� +k(a) +e± 1 +¯h +� +k(a)da, +(20) +where C1 is a constant and +k(a) = +� +12(Veff(a) − E). +(21) +3.3 +WKB Tunneling Probability +Finally, using those WKB solutions, we want to determine the quantum me- +chanical tunneling probabilities for the birth of the present universes. More +precisely, the probabilities that the present universes will tunnel through +Veff. An important condition for the tunneling process is that the energy E, +of the wavefunction, be smaller than the maximum value of Veff(a). If we +impose that condition, we may divide the a axis in three distinct regions with +respect to the points where E intercepts Veff(a) (8), which are: (1) Region +I - It extends from the origin until the point where E intercepts Veff(a) at +the left (al), 0 < a < al; (2) Region II - It extends from the point where E +intercepts Veff(a) at the left until the point where E intercepts Veff(a) at +the right (ar), al < a < ar. That region is entirely inside Veff(a); (3) Region +III - It extends from the point where E intercepts Veff(a) at the right until +the infinity, ar < a < ∞. Now, we may write the WKB solutions Eqs. (18) +and (20) for each one of these three regions, +ψ(a) += +A +� +K(a) +ei� al +a +K(a)da + +B +� +K(a) +e−i� al +a +K(a)da +I +(0 < a < al) +ψ(a) += +C +� +k(a) +e +−� ar +al k(a)da + +D +� +k(a) +e +� ar +al k(a)da +II +(al < a < ar) +ψ(a) += +F +� +K(a) +ei� a +ar K(a)da + +G +� +K(a) +e−i� a +ar K(a)da +III +(ar < a < ∞) +(22) +13 + +where A, B, C, D, E, F, G are constant coefficients to be determined. One +may establish a relationship between all these coefficients A, B, C, D, E, F, G +with the aid of the connections formulas, which are important formulas of +the WKB approximation [55, 56]. The relationship is given by the following +equation, +� +A +B +� += 1 +2 +� +2θ + 1 +2θ +i(2θ − 1 +2θ) +−i(2θ − 1 +2θ) +2θ + 1 +2θ +� � +F +G +� +, +(23) +where θ is given by, +θ = e +� ar +al k(a)da = e +� ad +ae da +� +12(3ka2−Λa4+ +σ2a4 +(a3+1)2 −E). +(24) +Let us consider, now, that the incident wavefunction (ψinc) with energy +E propagates from the origin to the left of Veff(a) in Region I. When the +wavefunction reaches Veff(a) at al, part of the incident wavefunction is re- +flected back to Region I and part tunnels through Veff(a) in Region II. When +the wavefunction emerges from Veff(a) at ar, it produces a transmitted com- +ponent (ψtrans) which propagates to infinity in Region III. By definition the +tunneling probability (TPW KB) is given by, +TPW KB = |ψtrans +√ktrans|2 +|ψinc +√kinc|2 += |F|2 +|A|2 , +(25) +where we are assuming that there is no incident wavefunction from the right, +it means that G = 0 in Eq. (23). With the aid of Eq. (23), TPW KB becomes, +TPW KB = +4 +(2θ + 1 +2θ)2. +(26) +4 +Results +Now, we want to quantitatively compute the tunneling probabilities for the +birth of the universes described by the present models. +These tunneling +probabilities are measured by TPW KB (26). They depend on: (i) the radia- +tion energy E, (ii) the cosmological constant Λ and (iii) the ad hoc potential +parameter σ. +14 + +4.0.1 +TPW KB as a function of E +If we fix the values of Λ, σ and k, TPW KB Eq. (26) becomes a function of the +energy E. In order to determine how that tunneling probability depends on +E, we compute TPW KB Eq. (26) for 70 different values of E with σ = −50 +and Λ = 1.5. As a matter of completeness and in order to facilitate the +comparison, we shall compute the values for the models with k = 1 besides +the ones for models with k = −1, 0. Therefore, we repeat those calculations +three times, one for each value of k. +We choose values of E, such that, +they are smaller than the maximum barrier value (Veffmax). For k = −1 +Veffmax = 691.5188154, for k = 0 Veffmax = 696.2063154 and for k = 1 +Veffmax = 700.8938154. The energies are given by: E = {E1 = 5, E2 = +10, E3 = 20, ..., E68 = 670, E69 = 680, E70 = 690}. The curves ln(TPW KB) +versus E, for each k, are given in Figure 11. We use the natural logarithm +of TPW KB because some values of that tunneling probability are very small. +Observing Figure 11, we notice that TPW KB increases for greater values of +E. Thus, it is more likely that the universe is born with the greatest value +of the radiation energy E. From Figure 11, we also notice that TPW KB is +greatest for k = −1, decreases for k = 0 and decreases even further for k = 1. +So, it is more likely that the universe is born with negatively curved spatial +sections. +4.0.2 +TPW KB as a function of Λ +If we fix the values of E, σ and k, TPW KB Eq. (26) becomes a function +of the cosmological constant Λ. In order to determine how that tunneling +probability depends on Λ, we compute TPW KB Eq. +(26) for 21 different +values of Λ with σ = −50 and E = 690. We repeat those calculations three +times, one for each value of k. We choose values of Λ, such that, E = 690 +is always smaller than Veffmax. The cosmological constant values are given +by: Λ = {Λ1 = 0.6, Λ2 = 0.65, Λ3 = 0.7, ..., Λ19 = 1.5, Λ20 = 1.55, Λ21 = 1.6}. +The curves ln(TPW KB) versus Λ, for each k, are given in Figure 12. We +use the natural logarithm of TPW KB because some values of that tunneling +probability are very small. +Observing Figure 12, we notice that TPW KB +increases for greater values of Λ. Therefore, it is more likely that the universe +is born with the greatest value of Λ. From Figure 12, we also notice that +TPW KB is greatest for k = −1, decreases for k = 0 and decreases even further +for k = 1. Thus, it is more likely that the universe is born with negatively +15 + +Figure 11: WKB Tunneling Probabilities as functions of the energy E, for +σ = −50 and Λ = 1.5. Each curve corresponds to a different value of the +spatial curvature k. +curved spatial sections. +4.0.3 +TPW KB as a function of σ +If we fix the values of E, Λ and k, TPW KB Eq. (26) becomes a function of +the ad hoc potential parameter σ. In order to determine how that tunneling +probability depends on σ, we compute TPW KB Eq. +(26) for 29 different +values of σ with Λ = 1.5 and E = 680. We repeat those calculations three +times, one for each value of k. We choose values of σ, such that, E = 680 +is always smaller than Veffmax. The ad hoc potential parameter values are +given by: σ = {σ1 = −50, σ2 = −50.5, σ3 = −51, ..., σ27 = −63, σ28 = +−63.5, σ29 = −64}. The curves ln(TPW KB) versus σ, for each k, are given +in Figure 13. We use the natural logarithm of TPW KB because some values +of that tunneling probability are very small. Observing Figure 13, we notice +that TPW KB decreases for greater absolute values of σ. Therefore, it is more +likely that the universe is born with the smallest possible absolute value of σ. +16 + +Figure 12: WKB Tunneling Probabilities as functions of the cosmological +constant Λ, for σ = −50 and E = 690. Each curve corresponds to a different +value of the spatial curvature k. +From Figure 13, we also notice that TPW KB is greatest for k = −1, decreases +for k = 0 and decreases even further for k = 1. So, it is more likely that the +universe is born with negatively curved spatial sections. +5 +Conclusions +In this work we studied the birth of FLRW models with zero (k = 0) and +negative (k = −1) curvatures of the spatial sections. The model with k = 1 +was studied in Ref. [37]. Here, we considered few results obtained in Ref. +[37] in order to compare them with the new results obtained for the models +with k = 0 and k = −1. The material content of the models is composed of +a radiation perfect fluid and a positive cosmological constant. The models +also have the presence of an ad hoc potential which origin is believed to +be of geometrical nature. At the classical level, we studied the models by +drawing phase portraits in the plane (a, pa). We identified all possible types +17 + +Figure 13: WKB Tunneling Probabilities as functions of the ad hoc potential +parameter σ, for Λ = 1.5 and E = 680. Each curve corresponds to a different +value of the spatial curvature k. +of solutions, including some new bouncing solutions. We explicitly, solved +the Einstein’s equations and gave examples of all possible types of classical +solutions. +In order to describe the birth of these universes, we quantized them using +quantum cosmology. Initially, we obtained the Wheeler-DeWitt equations +and solved them using the WKB approximation. We notice that the presence +of Vah produces a barrier for any value of k. It means that we may describe +the birth of the universe through a tunneling mechanism, for any curvature +of the spatial sections, not only for the usual case k = 1. We, explicitly, +computed the tunneling probabilities for the birth of the different models +of the universe, as functions of the radiation energy E, the cosmological +constant Λ and the ad hoc potential parameter σ. We compared the WKB +tunneling probability behavior for different values of k. +From our results, we noticed that TPW KB increases for greater values of +E. Therefore, it is more likely that the universe is born with the greatest +18 + +value of the radiation energy E. We, also, noticed that TPW KB increases for +greater values of Λ. Thus, it is more likely that the universe is born with +the greatest value of Λ. We, also, noticed that TPW KB decreases for greater +absolute values of σ. Hence, it is more likely that the universe is born with +the smallest possible absolute value of σ. In all models we have studied, we +noticed that TPW KB is greatest for k = −1, decreases for k = 0 and decreases +even further for k = 1. So, it is more likely that the universe is born with +negatively curved spatial sections. +Acknowledgments. D. L. Canedo thanks Coordena¸c˜ao de +Aperfei¸coamento de Pessoal de N´ıvel Superior (CAPES) and Universidade +Federal de Juiz de Fora (UFJF) for his scholarships. G. A. Monerat thanks +FAPERJ for financial support and Universidade do Estado do Rio de Janeiro +(UERJ) for the Prociˆencia grant. +A +Radiation fluid hamiltonian +In the present model, the starting point of the Schutz formalism is the de- +scription of the fluid four-velocity Uν in terms of the potentials µ, φ, θ and +S, +Uν = 1 +µ(φ,ν + θS,ν) , +(27) +where µ is the specific enthalpy, S is the specific entropy and the potentials +φ and θ have no clear physical meaning. The four-velocity is subjected to +the normalization condition, +UνUν = −1 +(28) +In what follows, we will use the following thermodynamic equations, +ρ = ρ0(1 + Π), +µ = (1 + Π) + p +ρ0 +, +TdS = dΠ + pd +� 1 +ρ0 +� +, +(29) +where Π is the specific internal energy, T is the absolute temperature and ρ0 +is the rest mass density. Combining those equations, we may write, +T = 1 + Π, +S = ln(1 + Π) 1 +ρ +1 +3 +0 +(30) +19 + +Now, we can write the specific enthalpy µ in terms of the other thermo- +dynamic potentials presents in Eq.(27), with the aid of the normalization +condition Eq.(28), +µ = 1 +N ( ˙φ + θ ˙S). +(31) +If we combine the Eqs. (29), (30) and (31), we may write the radiation energy +density as, +ρ = +� 1 +N ( ˙φ + θ ˙S) +4 +3 +�4 +e−3S +(32) +Introducing the above expression of ρ Eq.(32) in the radiation fluid action +Eq.(5), we find with the aid of Eq.(4), +� +M d4x√−g1 +3ρrad = +� +M d4x√−g1 +3 +� 1 +N ( ˙φ + θ ˙S) +4 +3 +�4 +e−3S, +(33) +Next, we identify from the radiation fluid action Eq.(33) its lagrangian Lf, +Lf = 27 +256 +a3 +N3( ˙φ + θ ˙S) +4e−3S +(34) +From that lagrangian, we compute the canonically conjugated momenta to +the canonical variables φ (pφ) and S (pS), in the usual way, +pφ = ∂Lf +∂ ˙φ = 27 +64 +a3 +N3( ˙φ + θ ˙S) +3e−3S, +pS = ∂Lf +∂ ˙S = θpφ +(35) +The general expression for the fluid total hamiltonian NHf, in the present +model, is given by, +NHf = ˙φpφ + ˙SpS − NLf, +(36) +Introducing the fluid lagrangian Eq.(34) and the canonically conjugated mo- +menta Eq.(35) in the fluid total hamiltonian expression Eq.(36), we find, +NHf = pφ +4 +3 +a eS. +(37) +We may greatly simplify the fluid total hamiltonian expression Eq.(37) by +performing the following canonical transformations [31], +T = pse−Spφ +− 4 +3, +pT = pφ +4 +3eS, +¯φ = φ − 4 +3 +pS +pφ +, +¯pφ = pφ. +(38) +20 + +If we rewrite the fluid total hamiltonian Eq.(37) in terms of the new canonical +variables and their conjugated momenta Eqs.(38), we obtain, +NHf = PT +a . +(39) +Observing that last equation, we notice that the canonical variable T, asso- +ciated to the radiation fluid, will play the role of time in the quantum version +of those models. +References +[1] B. S. DeWitt, Phys. Rev. D 160, 1113 (1967). +[2] J. A. Wheeler, in Batelles Rencontres, eds. C. DeWitt and J. A. Wheeler +(Benjamin, New York, 1968), 242. +[3] R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948). +[4] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, +(McGraw-Hill, New York, 1965). +[5] C. W. Misner, Rev. Mod. Phys. 29, 497-509 (1957). +[6] L. de Broglie, C. R. Acad. Sci. Paris 183, 447-448 (1926). +[7] L. de Broglie, Nature 118, 441-442 (1926). +[8] L. de Broglie, C. R. Acad. Sci. Paris 184, 273-274 (1927). +[9] L. de Broglie, C. R. Acad. Sci. Paris 185, 380-382 (1927). +[10] L. de Broglie, J. de Phys. 8, 225-241 (1927). +[11] D. Bohm, Phys. Rev. 85, 166-179 (1952). +[12] D. Bohm, Phys. Rev. 85, 180-193 (1952). +[13] H. Everett, Rev. Mod. Phys. 29, 454-462 (1957). +[14] R. B. Griffiths, J. Stat. Phys. 36, 219 (1984). +[15] R. Omnes, J. Stat. Phys. 53, 893 (1988). +21 + +[16] R. Omnes, J. Stat. Phys. 53, 933 (1988). +[17] R. Omnes, J. Stat. Phys. 53, 957 (1988). +[18] M. Gell-Mann and J. B. Hartle, Quantum Mechanics in the Light of +Quantum Cosmology, in Complexity, Entropy, and the Physics of Infor- +mation, Ed. W. Zurek, (Addison-Wesley, Reading, 1990), p. 425. +[19] M. Gell-Mann and J. B. Hartle, Proceedings of the 3rd International +Symposium on Quantum Mechanics in the Light of New Technology, +Eds. S. Kobayashi, H. Ezawa, Y. Murayama, and S. Nomura, (Physical +Society of Japan, Japan, 1990). +[20] M. Gell-Mann and J. B. Hartle, Phys. Rev. D 47, 3345 (1993). +[21] J. J. Halliwell, Quantum Cosmology and Baby Universes, Jerusalem +Winter School for Theoretical Physics vol. 7, eds. by S. Coleman, J. B. +Hartle, T. Piran and S. Weinberg (World Scientific, Singapore, 1991). +[22] P. Vargas Moniz, Quantum Cosmology - The Supersymmetric Perspec- +tive - vol. 1: Fundamentals, Lect. Notes Phys. 803 (Springer, Berlin +Heidelberg, 2010). +[23] C. Kiefer, Quantum Gravity (3rd edition), (Oxford University Press, +Oxford, 2012). +[24] N. Pinto-Neto and J. C. Fabris, Class. Quantum Grav. 30, 143001 +(2013). +[25] L. P. Grishchuk and Ya. B. Zeldovich, in Quantum Structure of Space +and Time, eds. M. Duff and C. Isham (Cambridge University Press, +Cambridge, 1982). +[26] A. Vilenkin, Phys. Lett. B 117, 25 (1982). +[27] A. Vilenkin, Phys. Rev. D 30, 509 (1984). +[28] A. Vilenkin, Phys. Rev. D 33, 3560 (1986). +[29] J. B. Hartle and S. W. Hawking, Phys. Rev. D 28, 2960 (1983). +[30] A. D. Linde, Lett. Nuovo Cim. 39, 401 (1984). +22 + +[31] V. A. Rubakov, Phys. Lett. B 148, 280 (1984). +[32] For critical review see: A. Vilenkin, in Cambridge 2002, The future of +theoretical physics and cosmology, eds. G. W. Gibbons, E. P. S. Shellard +and S. J. Rankin (Cambridge University Press, Cambridge, 2003), 649- +666. +[33] Mariam Bouhmadi-Lopez and Paulo Vargas Moniz, Phys. Rev. D 71, +063521 (2005) +[34] J. Acacio de Barros, E. V. Corrˆea Silva, G. A. Monerat, G. Oliveira- +Neto, L. G. Ferreira Filho and P. Romildo Jr, Phys. Rev. D 75, 104004 +(2007), [arXiv:0612031 [gr-qc]]. +[35] G. A. Monerat, G. Oliveira-Neto, E. V. Corrˆea Silva, L. G. Ferreira +Filho, P. Romildo Jr., J. C. Fabris, R. Fracalossi, S. V. B. Gon¸calves +and F. G. Alvarenga, Phys. Rev. D 76, 024017 (2007), [arXiv:0704.2585 +[gr-qc]]. +[36] G.A. Monerat, C.G.M. Santos, G. Oliveira-Neto, E.V. Corrˆea Silva and +L. G. Ferreira Filho. Eur. Phys. J. Plus 136, 34 (2021). +[37] G.A. Monerat, F.G. Alvarenga, S.V.B. Gon¸calves, G. Oliveira-Neto, +C.G.M. Santos, E.V. Corrˆea Silva, Eur. Phys. J. Plus 137, 117 (2022). +[38] N. M. N da Rocha, G. A. Monerat, F. G. Alvarenga, S. V. B. Gon¸calves, +G. Oliveira-Neto, E. V. Corrˆea Silva, C. G. M. Santos, Eur. Phys. J. Plus +137, 1103 (2022). +[39] A. H. Guth, Phys. Rev. D 23, 347 (1981). +[40] A. D. Linde, Contemporary Concepts in Physics, Vol. 5, (Harwood Aca- +demic Publishers, Switzerland, 1990). +[41] G. Efstathiou and S. Gratton, MNRAS 496, L91-L95 (2020). +[42] A. Chudaykin, K. Dolgikh and M. M. Ivanov, Phys. Rev. D 103, 023507 +(2021). +[43] B. F. Schutz, Phys. Rev. D 2, 2762 (1970). +[44] B. F. Schutz, Phys. Rev. D 4, 3559 (1971). +23 + +[45] F. G. Alvarenga, J. C. Fabris, N. A. Lemos and G. A. Monerat, Gen. +Rel. Grav. 34, 651-663 (2002), [arXiv:0106051 [gr-qc]]. +[46] P. Hoˇrava, Phys. Rev. D 79, 084008 (2009). +[47] O. Bertolami and C. A. D. Zarro, Hoˇrava-Lifshitz quantum cosmology, +Phys. Rev. D 84, 044042 (2011). +[48] B. Vakili and V. Kord, Classical and quantum Hoˇrava-Lifshitz cosmology +in a minisuperspace perspective, Gen. Relativ. Gravit. 45, 1313 (2013). +[49] G. Oliveira-Neto, L. G. Martins, G. A. Monerat and E. V. Corrˆea Silva, +De Broglie-Bohm interpretation of a Hoˇrava-Lifshitz quantum cosmology +model, Mod. Phys. Lett. A 33, 1850014 (2018). +[50] G. Oliveira-Neto, L. G. Martins, G. A. Monerat and E. V. Corrˆea Silva, +Quantum cosmology of a Hoˇrava-Lifshitz model coupled to radiation, Int. +J. Mod. Phys. D 28, 1950130 (2019). +[51] P. A. M. Dirac, Can. J. Math. 2, 129 (1950). +[52] P. A. M. Dirac, Proc. Roy. Soc. London A 249, 326 (1958). +[53] P. A. M. Dirac, Proc. Roy. Soc. London A 249, 333 (1958). +[54] P. A. M. Dirac, Phys. Rev. 114, 924 (1959). +[55] E. Merzbacher, Quantum Mechanics. 3rd ed. (John Wiley & Sons, Inc., +New York, 1998), Chap. 7. +[56] D. J. Griffiths, Introduction to Quantum Mechanics. 2nd ed. (Prentice +Hall, New Jersey, 2005), Chap. 8. +24 + diff --git a/0NE4T4oBgHgl3EQfZgwr/content/tmp_files/load_file.txt b/0NE4T4oBgHgl3EQfZgwr/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..7fa385a748494a87cbeda005dd1d4d3b49b2b83a --- /dev/null +++ b/0NE4T4oBgHgl3EQfZgwr/content/tmp_files/load_file.txt @@ -0,0 +1,762 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf,len=761 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='05056v1 [gr-qc] 12 Jan 2023 Tunneling probability for the birth of universes with radiation, cosmological constant and an ad hoc potential G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Oliveira-Neto and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Canedo Departamento de F´ısica, Instituto de Ciˆencias Exatas, Universidade Federal de Juiz de Fora, CEP 36036-330 - Juiz de Fora, MG, Brazil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' gilneto@fisica.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='ufjf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='br, danielcanedo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='tr@hotmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='com G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Monerat Departamento de Modelagem Computacional, Instituto Polit´ecnico, Universidade do Estado do Rio de Janeiro, CEP 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='625-570, Nova Friburgo - RJ - Brazil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' monerat@uerj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='br January 13, 2023 Abstract In this work we study the birth of Friedmann-Lemaˆıtre-Robertson- Walker (FLRW) models with zero (k = 0) and negative (k = −1) cur- vatures of the spatial sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' The material content of the models is composed of a radiation perfect fluid and a positive cosmological con- stant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' The models also have the presence of an ad hoc potential which origin is believed to be of geometrical nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In order to describe the birth of these universes, we quantize them using quantum cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Initially, we obtain the Wheeler-DeWitt equations and solve them us- ing the WKB approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' We notice that the presence of the ad 1 hoc potential produces a barrier for any value of k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' It means that we may describe the birth of the universe through a tunneling mecha- nism, for any curvature of the spatial sections, not only for the usual case k = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' We, explicitly, compute the tunneling probabilities for the birth of the different models of the universe and compare these tunneling probabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Keywords: Quantum cosmology, Wheeler-DeWitt equation, Cosmolog- ical constant, Radiation perfect fluid, Ad hoc potential PACS: 04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='Ds, 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='Bp, 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='Qc 1 Introduction Quantum cosmology (QC) was the first attempt to describe the Universe as a quantum mechanical system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' It uses general relativity (GR) in order to describe the gravitational interaction between the material constituents of the Universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' The canonical quantization was the first method used by the physicists working in QC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Several physicists contributed to the development of that research area, culminating in the introduction of the Wheeler-DeWitt equation [1], [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Another way to quantize a theory is using the path integral method [3, 4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' That method was first discussed in connection to the quanti- zation of GR by C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Misner [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' After that, many physicists contributed to the development of that method of quantization in QC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Another fundamental line of research in QC is the problem of interpretation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Since one cannot use the Copenhagen interpretation of quantum mechanics to the system composed of the entire Universe, several new interpretations of quantum mechanics have been introduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' The first one was De Broglie-Bohm or Causal Interpreta- tion, first suggested by L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' de Broglie [6, 7, 8, 9, 10] and later developed by D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Bohm [11, 12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Another important interpretation was formulated by H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Everett, III and is known as the Many Worlds Interpretation [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' A more recent interpretation of quantum mechanics that may be used in QC is the Consistent Histories or Decoherent Histories [14, 15, 16, 17, 18, 19, 20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' For a more complete introduction of the basic concepts of QC see [21, 22, 23, 24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' One of the most interesting explanations for the regular birth of the Uni- verse, coming from QC, is the spontaneous creation from nothing [25, 26, 27, 28, 29, 30, 31, 32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In that explanation, one has to consider the Universe as a quantum mechanical system, initially with zero size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' It is subjected to a potential barrier which confines it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In a FLRW quantum cosmological model, 2 that potential barrier is formed, most generally, due to the positive curvature of the spatial sections of the model and also due to the presence of a posi- tive cosmological constant or a matter content that produces an accelerated expansion of the universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Since, in that explanation, the Universe should satisfy the quantum mechanical laws, it may tunnel through the barrier and emerges to the right of it with a finite size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' That moment is considered the beginning of the Universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Therefore, the Universe starts in a regular way due to its finite size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Several works, in the literature, have already considered cosmological models where one can compute, quantitatively, the tunneling probability for the birth of different universes [33, 34, 35, 36, 37, 38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Since there are some theoretical [39, 40] as well as observational [41, 42] evidences that our Universe has a flat spatial geometry, it would be inter- esting if we could produce a spatially flat cosmological model which birth is described by a spontaneous creation from nothing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' As mentioned, above, the usual way to construct the potential barrier uses as one of the fundamen- tal ingredients the positive curvature of the spatial sections of the universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Therefore, one has to find a different way to produce the barrier that the Uni- verse has to tunnel through in order to be born.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In a recent paper some of us have introduced an ad hoc potential (Vah), that has all necessary properties in order to describe the regular birth of the Universe by the spontaneous cre- ation from nothing [37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In addition to those properties, the universe could have positive, negative or nil curvature of the spatial sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' It is believed that such ad hoc potential may appear as a purely geometrical contribution coming from a more fundamental, geometrical, gravitational theory than general relativity [37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' As mentioned in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [37], Vah has another interest- ing property at the classical level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' It produces a large class of non-singular, bounce-type solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In this work we study the birth of FLRW models with zero (k = 0) and negative (k = −1) curvatures of the spatial sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' The model with k = 1 was studied in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Here, we are going to consider few results obtained in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [37] in order to compare them with the new results obtained for the models with k = 0 and k = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' The material content of the models is composed of a radiation perfect fluid and a positive cosmological constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' The models also have the presence of an ad hoc potential which origin is believed to be of geometrical nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In order to describe the birth of these universes, we quantize them using quantum cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Initially, we obtain the Wheeler-DeWitt equations and solve them using the WKB approxima- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' We notice that the presence of Vah produces a barrier for any value 3 of k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' It means that we may describe the birth of the universe through a tunneling mechanism, for any curvature of the spatial sections, not only for the usual case k = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' We, explicitly, compute the tunneling probabilities for the birth of the different models of the universe and compare these tunneling probabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In Section 2, we obtain the Hamiltonians of the models and investigate the possible classical solutions using phase portraits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In Section 3, we canonically quantize the models and write the appropriate Wheeler-DeWitt equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Then, we find the approximated WKB solutions to those equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In Section 4, we compute the quantum WKB tunneling probabilities as functions of the parameters: (i) the ad hoc potential parameter (σ), (ii) the cosmological constant (Λ), (iii) the radiation energy (E) and (iv) the curvature parameter (k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' As the final result of that section, we compare the TPW KB’s for models with different values of k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' The conclusions are presented in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In Appendix A, we give a detailed calculation of the fluid total hamiltonian used in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 2 The Classical Model In the present work, we want to study homogeneous and isotropic universes with constant negative and nil curvatures of the spatial sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Therefore, we start introducing the FLRW metric, which is the appropriate one to treat those universes, ds2 = −N2(t)dt2 + a2(t) � dr2 1 − kr2 + r2dΩ2 � , (1) where a(t) is the scale factor, k gives the type of constant curvature of the spatial section, dΩ is the angular line element of a 2D sphere and N(t) is the lapse function introduced in the ADM formalism [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' The action of the geometrical sector of the model is given by, S = 1 2 � M d4x√−g(R − 2Λ) + � ∂M d3x √ hhabKab (2) where R is the Ricci scalar, Λ is the cosmological constant, hab is the 3-metric induced on the boundary ∂M of the four-dimensional space-time M and Kab is the extrinsic curvature tensor of the boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' We use the natural unit system where ¯h = 8πG = c = kB = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' After some calculations we obtain 4 from the action Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (2), with the aid of the metric coming from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (1), the following hamiltonian for the gravitational sector, NH = −p2 a 12 − 3ka2 + Λa4, (3) where pa is the canonically conjugated momentum to a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Here, we are working in the conformal gauge N = a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' The matter content of the models is a radiation perfect fluid, which is believed to have been very important in the beginning of our universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' That perfect fluid has the following equation of state, prad = 1 3ρrad, (4) where prad is the radiation fluid pressure and ρrad is its energy density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In order to obtain the hamiltonian associated to that fluid, we use the Schutz variational formalism [43, 44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' The starting point for that task is the following perfect fluid action [45], � M d4x√−gprad (5) The necessary calculations in order to obtain the hamiltonian from that ac- tion Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (5), using the Schutz variational formalism, are presented in Ap- pendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (3) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (39) from Appendix A, we may write the total hamiltonian of the model, in the conformal gauge N = a, as, NH = −p2 a 12 + pT − 3ka2 + Λa4 + Vah, (6) where pa and pT are the canonically conjugated momenta to a and T, re- spectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' The variable T is associated to the radiation fluid, as discussed in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Vah is the ad hoc potential, which is defined as, Vah = − σ2a4 (a3 + 1)2, (7) where σ is a dimensionless parameter associated to the magnitude of that potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' As discussed in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [37], if one observes the limits of the ad hoc potential Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (7), when a assumes small as well as large values, one notices that it produces a barrier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In FLRW cosmological models constructed using the Hoˇrava-Lifshitz gravitational theory [46, 47, 48, 49, 50], one may have, 5 in the hamiltonian, terms similar to the asymptotic limits of Vah, which have purely geometrical origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Then, it is not difficult to imagine that Vah should come from a purely geometrical contribution of a more fundamental gravitational theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' From the total hamiltonian Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (6) it is possible to identify an effective potential (Veff(a)) that comprises the terms related to the curvature of the spatial sections, cosmological constant and ad hoc potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' With the aid of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (7), Veff(a) is given by, Veff(a) = 3ka2 − Λa4 + σ2a4 (a3 + 1)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (8) Observing Veff(a) Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (8), it is possible to see that for all values of the parameters Λ, σ and k = −1 or k = 0, that potential is well defined at a = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In fact, it goes to zero when a → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' It is, also, possible to see that when a → ∞ the potential Veff → −∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Another important property of Veff(a) Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (8), is that for all values of the parameters Λ, σ and k = −1 or k = 0, it has only one barrier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' That situation is different from the case where the curvature of the spatial section is positive (k = 1), which was studied in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' There, depending on the values of Λ and σ, Veff(a) could have one or two barriers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Examples of all those properties can be seen in Figures (1-4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Figure 1: Veff(a) for k = −1 with Λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='01 and different values of σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Figure 2: Veff(a) for k = −1 with Λ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='5 and different values of σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 6 Figure 3: Veff(a) for k = 0 with Λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='01 and different values of σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Figure 4: Veff(a) for k = 0 with Λ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='5 and different values of σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Now, we can study the classical dynamical behavior of the model with the aid of the hamilton’s equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' We may compute them from the total hamiltonian Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (6), to obtain, \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 ˙a = ∂NH ∂pa = −1 6pa, ˙pa = −∂NH ∂a = ∂Veff ∂a , ˙T = ∂NH ∂pT = 1, ˙pT = −∂NH ∂T = 0, \uf8fc \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8fd \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8fe (9) where the dot means derivative with respect to the conformal time η.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' One may have the general idea on how the scale factor behaves by study- ing the phase portraits of the models in the plane (a, pa).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Due to the fact that, as mentioned above, Veff(a) Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (8) for the present models have only one barrier, the phase portraits are simpler than the ones for the models with k = +1 [37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 7 Figure 5: Phase portraits in the plane (a, pa) for the model with k = −1, Λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='01, σ = −50 and different values of pT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Figure 6: Phase portraits in the plane (a, pa) for the model with k = 0, Λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='01, σ = −50 and different values of pT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' The dashed curves in Figures 5 and 6 are called separatrixes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' They sepa- rate different classes of solutions for a given energy pT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Those phase portraits Figures 5 and 6 have, also, two fixed points, which represent stationary so- lutions of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Let us call those points A1 e A2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In particular, A2 is called Einstein’s Universe, there the gravitational attraction and the cosmo- logical expansion balance each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' A1 is located, on the plane (a, pa), by (a = 0, pa = 0) and energy pT = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' It is the same point for Figures 5 and 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' For A2, the points on the plane (a, pa) and the values of pT are given in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Table 1: Location of A2 for Figures 5 and 6 A2 pT Figure 5 (a = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='255633946, pa = 0) 695.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='1851495 Figure 6 (a = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='259875701, pa = 0) 699.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='9309422 Observing Figures 5 and 6, we may identify a first class of solutions present in the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' For a and pT smaller than the ones for the fixed point A2 and for pa greater than the ones for the fixed point A2, we have a class of solutions where the universe starts expanding from an initial Big Bang 8 singularity, reaches a maximum size and then contracts to a final Big Crunch singularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' These solutions are located in Region I of Figures 5 and 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Now, for pa and pT greater than the ones for the fixed point A2, we have a second class of solutions where the universe starts expanding from an initial Big Bang singularity (a = 0) and continues expanding to infinity values of a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' It tends asymptotically to a De Sitter type solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' These solutions are located in Region II of Figures 5 and 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Now, for pa < 0 (initially), pT smaller than the ones for the fixed point A2 and a greater than the ones for the fixed point A2, we have a third class of solutions where the universe starts contracting from an initial scale factor value, reaches a minimum size for pa = 0 and then expands to infinity values of a, for pa > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' It tends asymptotically to a De Sitter type solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' These are the bouncing solutions for the present models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' These solutions are located in Region III of Figures 5 and 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Finally, a fourth class of solutions appears if we choose pa < 0 and pT greater than the ones for the fixed point A2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In that class of solutions the universe starts contracting from a large finite value of a and continues con- tracting until it reaches a final Big Crunch singularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' These solutions are located in Region IV of Figures 5 and 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' The classical scale factor behavior may be computed by solving a system of ordinary differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' The first equation is obtained by imposing the hamiltonian constraint H = 0 Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (6) and substituting, in the resulting equation, the value of pa in terms of ˙a, with the aid of Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' That equation is the Friedmann equation for the present model and is given by, ˙a(0) = ±1 6 � 12(pT − Veff(a0)), (10) where a0 = a(η = 0) is the scale factor initial condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' The second equa- tion is obtained by combining the hamilton’s equations (9), resulting in the following second order, ordinary, differential equation for a(η), ∂2a(η) ∂η2 + ka(η) − 2Λ 3 a(η)3 + 2σ2 3 a(η)3 (a(η)3 + 1)2 − σ2a(η)6 (a(η)3 + 1)3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (11) We solve that system of equations (10), (11), in the following way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Initially, we choose a value for a0 and substitute it in the Friedmann equation (10), in order to find the initial value for ˙a (˙a0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Then, we use these initial conditions 9 in order to solve equation (11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Due to the complexity of both equations (10), (11), we solve the system numerically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' As we mentioned above, the Veff(a) (8) for both values of k (-1 or 0) have just one barrier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Therefore, the results for a(η) for both cases are very similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Next, we solve the system of equations (10), (11), for Λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='01, σ = −50 and k = 0 or k = −1, which correspond to the phase portraits shown in Figures 5 and 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' For those models we find the four classes of solutions described, qualitatively, above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In Figure 7, we see examples of the first class of solutions described above, for k = −1 and k = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In order to obtain them, we set a(0) = 0, pT = 164, ˙a0 = −7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='393691003, which gives pa > 0 from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In Figure 8, we see examples of the second class of solutions described above, for k = −1 and k = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In order to obtain them, we set a(0) = 0, pT = 800, ˙a(0) = −16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='32993162, which gives pa > 0 from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In Figure 9, we see examples of the third class of solutions described above, for k = −1 and k = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In order to obtain the solution for k = −1, we set a(0) = 1000, pT = 500 and ˙a(0) = −57743.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='68797.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In order to obtain the solution for k = 0, we set a(0) = 1000, pT = 500 and ˙a(0) = −57735.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='02837.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' We can, clearly, see from Figure 9 two examples of bouncing solutions for the present models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Finally, in Figure 10, we see examples of the fourth class of solutions described above, for k = −1 and k = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In order to obtain the solution for k = −1, we set a(0) = 10, pT = 800, ˙a(0) = 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='79099058, which gives pa < 0 from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In order to obtain the solution for k = 0, we set a(0) = 10, pT = 800, ˙a(0) = 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='07873849, which gives pa < 0 from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 3 Canonical Quantization, WKB Solution and WKB Tunneling Probability 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='1 Canonical Quantization In order to study the birth of the universes described by the cosmological models introduced in the present paper, we must quantize these models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' We do that by using the Dirac’s formalism for quantization of constrained systems [51, 52, 53, 54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' The first step consists in introducing a wave-function (Ψ) which is a function of the canonical variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In the present model these 10 Figure 7: Classical scale factor be- havior for universes with k = −1 and k = 0, Λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='01 and σ = −50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Figure 8: Classical scale factor be- havior for universes with k = −1 and k = 0, Λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='01 and σ = −50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Figure 9: Classical scale factor be- havior for universes with k = −1 and k = 0, Λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='01 and σ = −50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Figure 10: Classical scale factor behavior for universes with k = −1 and k = 0, Λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='01 and σ = −50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' variables are ˆa and ˆT, then, Ψ = Ψ(ˆa, ˆT) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (12) 11 In the second step, we demand that the operators ˆa and ˆT and their con- jugated momenta ˆPa and ˆPT, satisfy suitable commutation relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In the Schr¨odinger picture ˆa and ˆT become multiplication operators, while their conjugated momenta become the following differential operators, pa → −i ∂ ∂a , pT → −i ∂ ∂T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (13) In the third and final step, we impose that the operator associated to NH (6) annihilates the wave-function Ψ (12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' The resulting equation is the Wheeler- DeWitt equation for the present models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' It resembles a time dependent, one-dimensional, Schr¨odinger equation, � 1 12 ∂2 ∂a2 − 3ka2 + Λa4 − σ2a4 (a3 + 1)2 � Ψ(a, τ) = −i ∂ ∂τ Ψ(a, τ) (14) where the new variable τ = −T has been introduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='2 WKB Solution Now, we want to determine the WKB approximated solution to the Wheeler- DeWitt equation (14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' We start imposing that the solution to equation (14) may be written as [55, 56], Ψ(a, τ) = ψ(a)e−Eτ (15) where E is the energy associated to the radiation fluid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Introducing Ψ(a, τ) Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (15) in the Wheeler-DeWitt equation (14), we obtain, ∂2ψ(a) ∂a2 + 12(E − Veff(a))ψ(a) = 0, (16) where Veff(a) is given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Next, in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (15), we consider that ψ(a) is given by, ψ(a) = A(a)eiφ(a), (17) where A(a) is the amplitude and φ(a) is the phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Introducing ψ(a) Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (17) in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (16) and supposing that the amplitude A(a) varies slowly as a function of a, we find the following general solutions for Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (16): (i) For regions where E > Veff(a), ψ(a) = C � K(a) e± i ¯h � K(a)da, (18) 12 where C is a constant and K(a) = � 12(E − Veff(a)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (19) (ii) For regions where E < Veff(a), ψ(a) = C1 � k(a) e± 1 ¯h � k(a)da, (20) where C1 is a constant and k(a) = � 12(Veff(a) − E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (21) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='3 WKB Tunneling Probability Finally, using those WKB solutions, we want to determine the quantum me- chanical tunneling probabilities for the birth of the present universes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' More precisely, the probabilities that the present universes will tunnel through Veff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' An important condition for the tunneling process is that the energy E, of the wavefunction, be smaller than the maximum value of Veff(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' If we impose that condition, we may divide the a axis in three distinct regions with respect to the points where E intercepts Veff(a) (8), which are: (1) Region I - It extends from the origin until the point where E intercepts Veff(a) at the left (al), 0 < a < al;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (2) Region II - It extends from the point where E intercepts Veff(a) at the left until the point where E intercepts Veff(a) at the right (ar), al < a < ar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' That region is entirely inside Veff(a);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (3) Region III - It extends from the point where E intercepts Veff(a) at the right until the infinity, ar < a < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Now, we may write the WKB solutions Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (18) and (20) for each one of these three regions, ψ(a) = A � K(a) ei� al a K(a)da + B � K(a) e−i� al a K(a)da I (0 < a < al) ψ(a) = C � k(a) e −� ar al k(a)da + D � k(a) e � ar al k(a)da II (al < a < ar) ψ(a) = F � K(a) ei� a ar K(a)da + G � K(a) e−i� a ar K(a)da III (ar < a < ∞) (22) 13 where A, B, C, D, E, F, G are constant coefficients to be determined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' One may establish a relationship between all these coefficients A, B, C, D, E, F, G with the aid of the connections formulas, which are important formulas of the WKB approximation [55, 56].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' The relationship is given by the following equation, � A B � = 1 2 � 2θ + 1 2θ i(2θ − 1 2θ) −i(2θ − 1 2θ) 2θ + 1 2θ � � F G � , (23) where θ is given by, θ = e � ar al k(a)da = e � ad ae da � 12(3ka2−Λa4+ σ2a4 (a3+1)2 −E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (24) Let us consider, now, that the incident wavefunction (ψinc) with energy E propagates from the origin to the left of Veff(a) in Region I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' When the wavefunction reaches Veff(a) at al, part of the incident wavefunction is re- flected back to Region I and part tunnels through Veff(a) in Region II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' When the wavefunction emerges from Veff(a) at ar, it produces a transmitted com- ponent (ψtrans) which propagates to infinity in Region III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' By definition the tunneling probability (TPW KB) is given by, TPW KB = |ψtrans √ktrans|2 |ψinc √kinc|2 = |F|2 |A|2 , (25) where we are assuming that there is no incident wavefunction from the right, it means that G = 0 in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (23).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' With the aid of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (23), TPW KB becomes, TPW KB = 4 (2θ + 1 2θ)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (26) 4 Results Now, we want to quantitatively compute the tunneling probabilities for the birth of the universes described by the present models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' These tunneling probabilities are measured by TPW KB (26).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' They depend on: (i) the radia- tion energy E, (ii) the cosmological constant Λ and (iii) the ad hoc potential parameter σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 14 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='1 TPW KB as a function of E If we fix the values of Λ, σ and k, TPW KB Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (26) becomes a function of the energy E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In order to determine how that tunneling probability depends on E, we compute TPW KB Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (26) for 70 different values of E with σ = −50 and Λ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' As a matter of completeness and in order to facilitate the comparison, we shall compute the values for the models with k = 1 besides the ones for models with k = −1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Therefore, we repeat those calculations three times, one for each value of k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' We choose values of E, such that, they are smaller than the maximum barrier value (Veffmax).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' For k = −1 Veffmax = 691.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='5188154, for k = 0 Veffmax = 696.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='2063154 and for k = 1 Veffmax = 700.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='8938154.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' The energies are given by: E = {E1 = 5, E2 = 10, E3 = 20, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=', E68 = 670, E69 = 680, E70 = 690}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' The curves ln(TPW KB) versus E, for each k, are given in Figure 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' We use the natural logarithm of TPW KB because some values of that tunneling probability are very small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Observing Figure 11, we notice that TPW KB increases for greater values of E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Thus, it is more likely that the universe is born with the greatest value of the radiation energy E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' From Figure 11, we also notice that TPW KB is greatest for k = −1, decreases for k = 0 and decreases even further for k = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' So, it is more likely that the universe is born with negatively curved spatial sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='2 TPW KB as a function of Λ If we fix the values of E, σ and k, TPW KB Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (26) becomes a function of the cosmological constant Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In order to determine how that tunneling probability depends on Λ, we compute TPW KB Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (26) for 21 different values of Λ with σ = −50 and E = 690.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' We repeat those calculations three times, one for each value of k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' We choose values of Λ, such that, E = 690 is always smaller than Veffmax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' The cosmological constant values are given by: Λ = {Λ1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='6, Λ2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='65, Λ3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='7, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=', Λ19 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='5, Λ20 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='55, Λ21 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='6}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' The curves ln(TPW KB) versus Λ, for each k, are given in Figure 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' We use the natural logarithm of TPW KB because some values of that tunneling probability are very small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Observing Figure 12, we notice that TPW KB increases for greater values of Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Therefore, it is more likely that the universe is born with the greatest value of Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' From Figure 12, we also notice that TPW KB is greatest for k = −1, decreases for k = 0 and decreases even further for k = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Thus, it is more likely that the universe is born with negatively 15 Figure 11: WKB Tunneling Probabilities as functions of the energy E, for σ = −50 and Λ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Each curve corresponds to a different value of the spatial curvature k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' curved spatial sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='3 TPW KB as a function of σ If we fix the values of E, Λ and k, TPW KB Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (26) becomes a function of the ad hoc potential parameter σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In order to determine how that tunneling probability depends on σ, we compute TPW KB Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (26) for 29 different values of σ with Λ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='5 and E = 680.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' We repeat those calculations three times, one for each value of k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' We choose values of σ, such that, E = 680 is always smaller than Veffmax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' The ad hoc potential parameter values are given by: σ = {σ1 = −50, σ2 = −50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='5, σ3 = −51, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=', σ27 = −63, σ28 = −63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='5, σ29 = −64}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' The curves ln(TPW KB) versus σ, for each k, are given in Figure 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' We use the natural logarithm of TPW KB because some values of that tunneling probability are very small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Observing Figure 13, we notice that TPW KB decreases for greater absolute values of σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Therefore, it is more likely that the universe is born with the smallest possible absolute value of σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 16 Figure 12: WKB Tunneling Probabilities as functions of the cosmological constant Λ, for σ = −50 and E = 690.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Each curve corresponds to a different value of the spatial curvature k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' From Figure 13, we also notice that TPW KB is greatest for k = −1, decreases for k = 0 and decreases even further for k = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' So, it is more likely that the universe is born with negatively curved spatial sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 5 Conclusions In this work we studied the birth of FLRW models with zero (k = 0) and negative (k = −1) curvatures of the spatial sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' The model with k = 1 was studied in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Here, we considered few results obtained in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [37] in order to compare them with the new results obtained for the models with k = 0 and k = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' The material content of the models is composed of a radiation perfect fluid and a positive cosmological constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' The models also have the presence of an ad hoc potential which origin is believed to be of geometrical nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' At the classical level, we studied the models by drawing phase portraits in the plane (a, pa).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' We identified all possible types 17 Figure 13: WKB Tunneling Probabilities as functions of the ad hoc potential parameter σ, for Λ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='5 and E = 680.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Each curve corresponds to a different value of the spatial curvature k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' of solutions, including some new bouncing solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' We explicitly, solved the Einstein’s equations and gave examples of all possible types of classical solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In order to describe the birth of these universes, we quantized them using quantum cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Initially, we obtained the Wheeler-DeWitt equations and solved them using the WKB approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' We notice that the presence of Vah produces a barrier for any value of k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' It means that we may describe the birth of the universe through a tunneling mechanism, for any curvature of the spatial sections, not only for the usual case k = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' We, explicitly, computed the tunneling probabilities for the birth of the different models of the universe, as functions of the radiation energy E, the cosmological constant Λ and the ad hoc potential parameter σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' We compared the WKB tunneling probability behavior for different values of k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' From our results, we noticed that TPW KB increases for greater values of E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Therefore, it is more likely that the universe is born with the greatest 18 value of the radiation energy E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' We, also, noticed that TPW KB increases for greater values of Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Thus, it is more likely that the universe is born with the greatest value of Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' We, also, noticed that TPW KB decreases for greater absolute values of σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Hence, it is more likely that the universe is born with the smallest possible absolute value of σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' In all models we have studied, we noticed that TPW KB is greatest for k = −1, decreases for k = 0 and decreases even further for k = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' So, it is more likely that the universe is born with negatively curved spatial sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Acknowledgments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Canedo thanks Coordena¸c˜ao de Aperfei¸coamento de Pessoal de N´ıvel Superior (CAPES) and Universidade Federal de Juiz de Fora (UFJF) for his scholarships.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Monerat thanks FAPERJ for financial support and Universidade do Estado do Rio de Janeiro (UERJ) for the Prociˆencia grant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' A Radiation fluid hamiltonian In the present model, the starting point of the Schutz formalism is the de- scription of the fluid four-velocity Uν in terms of the potentials µ, φ, θ and S, Uν = 1 µ(φ,ν + θS,ν) , (27) where µ is the specific enthalpy, S is the specific entropy and the potentials φ and θ have no clear physical meaning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' The four-velocity is subjected to the normalization condition, UνUν = −1 (28) In what follows, we will use the following thermodynamic equations, ρ = ρ0(1 + Π), µ = (1 + Π) + p ρ0 , TdS = dΠ + pd � 1 ρ0 � , (29) where Π is the specific internal energy, T is the absolute temperature and ρ0 is the rest mass density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Combining those equations, we may write, T = 1 + Π, S = ln(1 + Π) 1 ρ 1 3 0 (30) 19 Now, we can write the specific enthalpy µ in terms of the other thermo- dynamic potentials presents in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (27), with the aid of the normalization condition Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (28), µ = 1 N ( ˙φ + θ ˙S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (31) If we combine the Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (29), (30) and (31), we may write the radiation energy density as, ρ = � 1 N ( ˙φ + θ ˙S) 4 3 �4 e−3S (32) Introducing the above expression of ρ Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (32) in the radiation fluid action Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (5), we find with the aid of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (4), � M d4x√−g1 3ρrad = � M d4x√−g1 3 � 1 N ( ˙φ + θ ˙S) 4 3 �4 e−3S, (33) Next, we identify from the radiation fluid action Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (33) its lagrangian Lf, Lf = 27 256 a3 N3( ˙φ + θ ˙S) 4e−3S (34) From that lagrangian, we compute the canonically conjugated momenta to the canonical variables φ (pφ) and S (pS), in the usual way, pφ = ∂Lf ∂ ˙φ = 27 64 a3 N3( ˙φ + θ ˙S) 3e−3S, pS = ∂Lf ∂ ˙S = θpφ (35) The general expression for the fluid total hamiltonian NHf, in the present model, is given by, NHf = ˙φpφ + ˙SpS − NLf, (36) Introducing the fluid lagrangian Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (34) and the canonically conjugated mo- menta Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (35) in the fluid total hamiltonian expression Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (36), we find, NHf = pφ 4 3 a eS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (37) We may greatly simplify the fluid total hamiltonian expression Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (37) by performing the following canonical transformations [31], T = pse−Spφ − 4 3, pT = pφ 4 3eS, ¯φ = φ − 4 3 pS pφ , ¯pφ = pφ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (38) 20 If we rewrite the fluid total hamiltonian Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (37) in terms of the new canonical variables and their conjugated momenta Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (38), we obtain, NHf = PT a .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (39) Observing that last equation, we notice that the canonical variable T, asso- ciated to the radiation fluid, will play the role of time in the quantum version of those models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' References [1] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' DeWitt, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' D 160, 1113 (1967).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [2] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Wheeler, in Batelles Rencontres, eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' DeWitt and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Wheeler (Benjamin, New York, 1968), 242.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [3] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Feynman, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 20, 367 (1948).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [4] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Feynman and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Hibbs, Quantum Mechanics and Path Integrals, (McGraw-Hill, New York, 1965).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [5] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Misner, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 29, 497-509 (1957).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [6] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' de Broglie, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Paris 183, 447-448 (1926).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [7] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' de Broglie, Nature 118, 441-442 (1926).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [8] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' de Broglie, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Paris 184, 273-274 (1927).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [9] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' de Broglie, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Paris 185, 380-382 (1927).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [10] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' de Broglie, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' de Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 8, 225-241 (1927).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [11] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Bohm, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 85, 166-179 (1952).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [12] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Bohm, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 85, 180-193 (1952).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [13] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Everett, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 29, 454-462 (1957).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [14] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Griffiths, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 36, 219 (1984).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [15] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Omnes, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 53, 893 (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 21 [16] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Omnes, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 53, 933 (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [17] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Omnes, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 53, 957 (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [18] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Gell-Mann and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Hartle, Quantum Mechanics in the Light of Quantum Cosmology, in Complexity, Entropy, and the Physics of Infor- mation, Ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Zurek, (Addison-Wesley, Reading, 1990), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 425.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [19] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Gell-Mann and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Hartle, Proceedings of the 3rd International Symposium on Quantum Mechanics in the Light of New Technology, Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Kobayashi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Ezawa, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Murayama, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Nomura, (Physical Society of Japan, Japan, 1990).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [20] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Gell-Mann and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Hartle, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' D 47, 3345 (1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [21] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Halliwell, Quantum Cosmology and Baby Universes, Jerusalem Winter School for Theoretical Physics vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 7, eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' by S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Coleman, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Hartle, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Piran and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Weinberg (World Scientific, Singapore, 1991).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [22] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Vargas Moniz, Quantum Cosmology - The Supersymmetric Perspec- tive - vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 1: Fundamentals, Lect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Notes Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 803 (Springer, Berlin Heidelberg, 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [23] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Kiefer, Quantum Gravity (3rd edition), (Oxford University Press, Oxford, 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [24] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Pinto-Neto and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Fabris, Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Quantum Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 30, 143001 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [25] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Grishchuk and Ya.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Zeldovich, in Quantum Structure of Space and Time, eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Duff and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Isham (Cambridge University Press, Cambridge, 1982).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [26] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Vilenkin, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' B 117, 25 (1982).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [27] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Vilenkin, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' D 30, 509 (1984).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [28] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Vilenkin, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' D 33, 3560 (1986).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [29] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Hartle and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Hawking, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' D 28, 2960 (1983).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [30] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Linde, Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Nuovo Cim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 39, 401 (1984).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 22 [31] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Rubakov, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' B 148, 280 (1984).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [32] For critical review see: A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Vilenkin, in Cambridge 2002, The future of theoretical physics and cosmology, eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Gibbons, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Shellard and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Rankin (Cambridge University Press, Cambridge, 2003), 649- 666.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [33] Mariam Bouhmadi-Lopez and Paulo Vargas Moniz, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' D 71, 063521 (2005) [34] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Acacio de Barros, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Corrˆea Silva, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Monerat, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Oliveira- Neto, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Ferreira Filho and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Romildo Jr, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' D 75, 104004 (2007), [arXiv:0612031 [gr-qc]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [35] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Monerat, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Oliveira-Neto, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Corrˆea Silva, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Ferreira Filho, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Romildo Jr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Fabris, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Fracalossi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Gon¸calves and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Alvarenga, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' D 76, 024017 (2007), [arXiv:0704.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='2585 [gr-qc]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [36] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Monerat, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Santos, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Oliveira-Neto, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Corrˆea Silva and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Ferreira Filho.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Plus 136, 34 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [37] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Monerat, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Alvarenga, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Gon¸calves, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Oliveira-Neto, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Santos, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Corrˆea Silva, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Plus 137, 117 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [38] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' N da Rocha, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Monerat, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Alvarenga, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Gon¸calves, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Oliveira-Neto, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Corrˆea Silva, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Santos, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Plus 137, 1103 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [39] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Guth, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' D 23, 347 (1981).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [40] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Linde, Contemporary Concepts in Physics, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 5, (Harwood Aca- demic Publishers, Switzerland, 1990).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [41] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Efstathiou and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Gratton, MNRAS 496, L91-L95 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [42] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Chudaykin, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Dolgikh and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Ivanov, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' D 103, 023507 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [43] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Schutz, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' D 2, 2762 (1970).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [44] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Schutz, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' D 4, 3559 (1971).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 23 [45] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Alvarenga, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Fabris, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Lemos and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Monerat, Gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Rel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 34, 651-663 (2002), [arXiv:0106051 [gr-qc]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [46] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Hoˇrava, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' D 79, 084008 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [47] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Bertolami and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Zarro, Hoˇrava-Lifshitz quantum cosmology, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' D 84, 044042 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [48] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Vakili and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Kord, Classical and quantum Hoˇrava-Lifshitz cosmology in a minisuperspace perspective, Gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Relativ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Gravit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 45, 1313 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [49] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Oliveira-Neto, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Martins, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Monerat and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Corrˆea Silva, De Broglie-Bohm interpretation of a Hoˇrava-Lifshitz quantum cosmology model, Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' A 33, 1850014 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [50] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Oliveira-Neto, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Martins, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Monerat and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Corrˆea Silva, Quantum cosmology of a Hoˇrava-Lifshitz model coupled to radiation, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' D 28, 1950130 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [51] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Dirac, Can.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 2, 129 (1950).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [52] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Dirac, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' London A 249, 326 (1958).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [53] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Dirac, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' London A 249, 333 (1958).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [54] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Dirac, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 114, 924 (1959).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [55] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Merzbacher, Quantum Mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 3rd ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (John Wiley & Sons, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=', New York, 1998), Chap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' [56] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' Griffiths, Introduction to Quantum Mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 2nd ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' (Prentice Hall, New Jersey, 2005), Chap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} +page_content=' 24' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE4T4oBgHgl3EQfZgwr/content/2301.05056v1.pdf'} diff --git a/0dAyT4oBgHgl3EQfPPa3/content/tmp_files/2301.00022v1.pdf.txt b/0dAyT4oBgHgl3EQfPPa3/content/tmp_files/2301.00022v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..3f102135133f8b53c159bd5d48b081483911859a --- /dev/null +++ b/0dAyT4oBgHgl3EQfPPa3/content/tmp_files/2301.00022v1.pdf.txt @@ -0,0 +1,1777 @@ +Draft version January 3, 2023 +Typeset using LATEX twocolumn style in AASTeX631 +Bubble in the Whale: Identifying the Optical Counterparts and Extended Nebula for the +Ultraluminous X-ray Sources in NGC 4631 +Jing Guo (郭静) +,1 Jianfeng Wu +,1 Hua Feng +,2, 3 Zheng Cai +,2 Ping Zhou +,4, 5 Changxing Zhou +,3 +Shiwu Zhang +,2 Junfeng Wang +,1 Mouyuan Sun +,1 Wei-Min Gu +,1 Shan-Shan Weng +,6 and +Jifeng Liu +7, 8, 9 +1Department of Astronomy, Xiamen University, Xiamen, Fujian 361005, China +2Department of Astronomy, Tsinghua University, Beijing 100084, China +3Department of Engineering Physics, Tsinghua University, Beijing 100084, China +4School of Astronomy & Space Science, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China +5Key Laboratory of Modern Astronomy and Astrophysics, Nanjing University, Ministry of Education, Nanjing 210023, China +6Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023, China +7Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China +8School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Beijing 100049, China +9WHU-NAOC Joint Center for Astronomy, Wuhan University, Wuhan, Hubei 430072, China +ABSTRACT +We +present +a +deep +optical +imaging +campaign +on +the +starburst +galaxy +NGC +4631 +with +CFHT/MegaCam. +By supplementing the HST/ACS and Chandra/ACIS archival data, we search +for the optical counterpart candidates of the five brightest X-ray sources in this galaxy, four of which +are identified as ultraluminous X-ray sources (ULXs). The stellar environments of the X-ray sources +are analyzed using the extinction-corrected color-magnitude diagrams and the isochrone models. We +discover a highly asymmetric bubble nebula around X4 which exhibits different morphology in the +Hα and [O iii] images. The [O iii]/Hα ratio map shows that the Hα-bright bubble may be formed +mainly via the shock ionization by the one-sided jet/outflow, while the more compact [O iii] structure +is photoionized by the ULX. We constrain the bubble expansion velocity and interstellar medium den- +sity with the MAPPINGS V code, and hence estimate the mechanical power injected to the bubble as +Pw ∼ 5 × 1040 erg s−1 and the corresponding bubble age of ∼ 7 × 105 yr. Relativistic jets are needed +to provide such level of mechanical power with a mass-loss rate of ∼ 10−7 M⊙ yr−1. Besides the +accretion, the black hole spin is likely an additional energy source for the super-Eddington jet power. +1. INTRODUCTION +Ultraluminous X-ray sources (ULXs) are non-nuclear +point-like X-ray sources with isotropic luminosity LX ≳ +1039 erg s−1, which corresponds to the Eddington limit +for a ∼ 10 M⊙ black hole (Feng & Soria 2011; Kaaret +et al. 2017). +Two mechanisms are likely to explain +the high luminosity: the sub-Eddington accretion onto +intermediate-mass black holes (IMBHs) and stellar-mass +compact objects undergoing super-Eddington accretion. +The minority of ULXs at the higher end of the luminos- +ity range can be explained by the first mechanism, such +as ESO 243−49 HLX-1 with LX ∼ 1042 erg s−1 (Farrell +et al. 2009; Webb et al. 2012). Meanwhile, the X-ray +Corresponding author: Jianfeng Wu +wujianfeng@xmu.edu.cn +spectral properties of most ULXs are consistent with +the super-Eddington accretion scenario (e.g., Gladstone +et al. 2009; Walton et al. 2014; Salvaggio et al. 2022). +Recent studies further identified several ULXs powered +by neutron stars from the detections of pulsating radia- +tions (Bachetti et al. 2014; F¨urst et al. 2016; Israel et al. +2017a,b; Weng et al. 2017; Carpano et al. 2018; Wilson- +Hodge et al. 2018; Sathyaprakash et al. 2019; Rodr´ıguez +Castillo et al. 2020; Quintin et al. 2021). +The definitive approach to decipher the nature of non- +pulsating ULXs is the dynamical mass measurement of +the accretors, which relies on the optical spectroscopy of +the donor stars. However, the archived optical data on +ULXs are far less abundant than X-ray data because +most of the ULX optical counterparts are very faint +(mV > 21 mag) and located in fairly crowded regions. +Previous studies found that most of the ULXs are asso- +arXiv:2301.00022v1 [astro-ph.HE] 30 Dec 2022 + +ID2 +ciated with young star clusters, showing the donor stars +might be the OB type (Roberts et al. 2008; Poutanen +et al. 2013). For a limited number of ULXs, the nature +of the donor stars are unambiguously identified (e.g., +M101 ULX-1 and NGC 7793 P13), while the dynami- +cal studies on these systems supported the stellar-mass +accretor scenario (Liu et al. 2013; Motch et al. 2014). +A number of ULXs have surrounding bubble nebulae +detected from deep optical imaging observations (e.g., +Pakull & Mirioni 2002; Ramsey et al. 2006; Soria et al. +2010, 2021), the majority of which are considered to +be formed via shock ionizations driven by the interac- +tions of strong jets/outflows and the ambient interstellar +medium (ISM). Strong outflows may be ubiquitous for +ULXs under supercritical accretion (e.g., Narayan et al. +2017; Weng & Feng 2018; Zhou et al. 2019; Qiu & Feng +2021; Kosec et al. 2021). The kinetic power and age of +the bubble can be inferred from its size and expanding +velocity (Weaver et al. 1977), and hence may reveal the +kinematics of jets/outflows and the accretion physics of +ULXs (Pakull et al. 2010; Cseh et al. 2012; Soria et al. +2021). For the other few cases, the high-ionization fea- +tures (e.g., He ii λ4686) in the spectra of the optical +nebulae imply that the photoionization could be the ma- +jor origin of the extended structure (Pakull & Mirioni +2002). Both shock ionization and photoionization may +certainly be working at the same time while dominating +different parts of the same optical nebula (G´urpide et al. +2022; Zhou et al. 2022). +In this work, we report on an optical broad-band and +narrow-band imaging campaign for the Whale Galaxy +NGC 4631 to identify the optical counterparts and sur- +rounding extended nebulae of the ULXs, for which Soria +& Ghosh (2009) presented a detailed study of their X- +ray properties. As a late-type starburst galaxy 7.35 Mpc +away, NGC 4631 (Figure 1) has been extensively studied +in multiwavelengths. +The existence of molecular out- +flows, abundant gas and the X-ray halo reveals the di- +versity of objects and astrophysical processes (e.g., Ya- +masaki et al. 2009; Irwin et al. 2011; Mel´endez et al. +2015). From the archival XMM-Newton data, Soria & +Ghosh (2009) identified five brightest X-ray sources scat- +tered in NGC 4631 and found that four of them (X1, +X2, X4, X5) can be classified as ULXs.1 For the pur- +pose of studying their physical nature and stellar envi- +ronments, we analyze the optical images of all five X- +ray sources in this paper combining the Canada-France- +1 While Mineo et al. (2012) classified X4 as a high mass X- +ray binaries in the sub-Eddington state based on the Chandra- +measured luminosity, we adopt Soria & Ghosh (2009)’s classifi- +cation throughout this work. +Hawaii Telescope (CFHT) and Hubble Space Telescope +(HST) observations, supplemented with Chandra data +to determine the precise astrometry. The details of the +five X-ray sources can be found in Table 1. +This paper is organized as follows. In Section 2 we +present the optical and X-ray observations and data re- +duction. In Section 3, we improve the relative astrom- +etry and identify optical counterpart candidates for the +X-ray sources, which are investigated in Section 4 based +on their locations on the isochrone diagrams. In Sec- +tion 5, we present a newly discovered bubble nebula +around X4 and the analyses on its morphology and ki- +netic power. Section 6 summarizes our conclusions. +2. OBSERVATIONS AND DATA REDUCTION +2.1. CFHT +We obtained optical broad-band and narrow-band +imaging of NGC 4631 with the 3.6-m CFHT located +on Mauna Kea, Hawaii. +The MegaCam instrument +mounted on CFHT has a wide field of view (1 deg2) +which can fully cover all the 5 luminous X-ray sources +in NGC 4631. The detector consists of 40 CCDs, each +of which has 2048 × 4612 pixels with 0.′′187 × 0.′′187 per +pixel. We are awarded a total of 4.5-hour exposure time +(PI: Jing Guo, ObsId: 20AS01) executed in 2020 March +and June. The images are taken with three broad bands +(u, g, and r) and two narrow bands (Hα and [O iii]). +The Hα and [O iii] filters have a width of ∼ 100 ˚A, cen- +tered at 6590 ˚A and 5006 ˚A, respectively. A dithering +pattern was applied during the observations to cover the +CCD gaps, which requires at least five exposures for each +band. The detailed observation log is listed in Table 2. +The data products we received have been prepro- +cessed with the Elixir pipeline, which includes bias- +subtraction, flat-fielding, etc., for each individual frame +(Magnier & Cuillandre 2004). The first step is to per- +form precise astrometric calibration and to stack im- +ages from individual exposures in the same band for +the purposes of eliminating CCD gaps and reaching +the desired sensitivity level. In the stacking procedure, +SExtractor (Bertin & Arnouts 1996) was applied on +each image of single exposures to generate the catalog of +all point sources with coordinates. The astrometric solu- +tions were then computed with the SCAMP (Bertin 2006) +software by referencing the catalog from Gaia Data Re- +lease 1 (DR1). We utilized the SWarp (Bertin 2010) task + +3 +Table 1. List of the Five Brightest X-ray Sources in NGC 4631 +Source ID +R.A. +Dec. +Chandra Net Counts +Off-axis +Opt-X Error Circle +NH +E(F606W-F814W) +(J2000) +(J2000) +(0.5–8.0 keV) +(arcmin) +(arcsecond) +(1021 cm−2) +X1 +12 42 15.99 ++32 32 49.47 +6.7±2.8 +4.10 +0.673 +2.4+0.3 +−0.3 +0.35+0.15 +−0.15 +X2 +12 42 11.12 ++32 32 35.63 +981.2±32.9 +3.05 +0.275 +28.3+3.6 +−3.2 +3.80+1.74 +−1.55 +X3 +12 42 06.13 ++32 32 46.43 +357.6±19.6 +2.11 +0.269 +2.0+1.0 +−0.9 +0.29+0.48 +−0.43 +X4 +12 41 57.42 ++32 32 02.79 +77.7±9.2 +0.19 +0.280 +0.32+1.02 +−0.32 +0.05+0.49 +−0.16 +X5 +12 41 55.57 ++32 32 16.77 +2977.8±55.8 +0.51 +0.268 +2.0+0.2 +−0.2 +0.29+0.10 +−0.10 +Note—The NH values are retrieved from Soria & Ghosh (2009) which were obtained from the Chandra spectral analyses. +Table 2. Observation Log of NGC 4631 +Instrument +Source ID +ObsID +Filter +Observation Date (UT) +Exposure Time +CFHT/MegaCam +X1-X5 +20AS01 +Hα +2020-03-23 +12×900 sec +(PI: Jing Guo) +[O iii] +2020-05-19 +5×750 sec +u +2020-03-23 +5×126 sec +g +2020-03-23 +5×126 sec +r +2020-03-23 +5×126 sec +HST/ACS +X1,X2,X3 +j8r331010 +F606W +2003-08-03 +676 sec +X1,X2,X3 +j8r331020 +F814W +2003-08-03 +700 sec +X4, X5 +j8r332010 +F606W +2004-06-09 +676 sec +X4, X5 +j8r332020 +F814W +2004-06-09 +700 sec +Chandra/ACIS +X1-X5 +797 +2000-04-16 +60 ksec +Table 3. List of the reference stars +Reference ID +X-ray Coordinates +Optical Coordinates +Off-axis +Net Counts +X-ray positional error +Chandra +HST +(arcmin) +Chandra +(arcsecond) +Ref.1 +12 42 25.78 +32 33 21.40 +12 42 25.79 +32 33 21.23 +6.2 +120 ± 11 +0.32 +Ref.2 +12 42 04.03 +32 34 08.60 +12 42 04.03 +32 34 08.41 +2.7 +107 ± 10 +0.19 +Note—The HST coordinates are given by the Dolphot package. +to perform the image stacking. The astrometric error +during these processes are < 0.′′03. A multi-color im- +age of NGC 4631 is shown in Figure 1. This RGB-like +image combines the three broad bands and two narrow +bands. +The five red circles label the positions of the +five luminous X-ray sources analyzed in Soria & Ghosh +(2009). X3 is more likely a black hole X-ray binary in its +high/soft state, while the remaining four X-ray sources +are classified as ULXs, among which X1 is a supersoft +ULX. +We select 40 point sources from the Pan-STARRS1 +DR2 catalog (Flewelling 2018; Flewelling et al. 2020) +that are isolated and have an appropriate magnitude +(17–19 mag) to serve as photometry references. +The +Pan-STARRS1 DR2 catalog does not flag the source +whether it is a star. Thus we select such a relatively +large set of referencing sources aiming to obtain a more + +4 +12H42'30" +15" +00" +41'45" +30" +32°36'00" +34'00" +32'00" +30'00" +R.A. +Dec. +X1 +X2 +X2 +X3 +X4 +X5 +Figure 1. The RGB-like image combines five CFHT/MegaCam filters, including the three broad bands (u, g, r) and two narrow +bands (Hα, [O iii]). The u, g, and r bands are shown in blue, green, and red colors, respectively, while the Hα and [O iii] filters +are represented by crimson and teal colors, respectively. The red circles label the positions of the five X-ray sources. +12h42m17.0s +16.5s +16.0s +15.5s +15.0s +32°33'00" +32'55" +50" +45" +40" +R.A. +Dec. +X 1 +12h42m12.0s +11.5s +11.0s +10.5s +10.0s +32°32'45" +40" +35" +30" +25" +R.A. +Dec. +X 2 +12h42m07.0s +06.5s +06.0s +05.5s +05.0s +32°32'55" +50" +45" +40" +35" +R.A. +Dec. +X 3 +12h41m58.5s +58.0s +57.5s +57.0s +56.5s +32°32'15" +10" +05" +00" +31'55" +R.A. +Dec. +X 4 +12h41m56.5s +56.0s +55.5s +55.0s +54.5s +32°32'25" +20" +15" +10" +05" +R.A. +Dec. +X 5 +Figure 2. The CFHT/MegaCam g-band images of X1-X5 and their vicinity, respectively. The green circles are centered at the +X-ray location of each source with a radius of 3′′. Optical counterparts are difficult to identify in these broad-band images due +to the seeing limit (0.′′45–0.′′75) for the ground-based CFHT. + +5 +statistically reliable photometry calibration. We adopt +the conversion equations from Pan-STARRS filters to +MegaCam filters provided by the Canadian Astronomy +Data Centre (CADC),2 except for Hα we use the for- +mula provided by Boselli et al. (2018). Finally, for each +given source, we can derive an array of magnitude val- +ues calibrated from the 40 reference stars. +The peak +value of the best-fit Gaussian profile to the histogram +of the magnitude values was adopted as the measured +magnitude for this source. +The zoom-in CFHT/MegaCam g-band images of the +five luminous X-ray sources are shown in Figure 2. For +the stacked image in each band, we estimate the expo- +sure depth reaching 25–26 mag arcsec−2 at 3σ level. Due +to the seeing limit of ground-based imaging, it is difficult +to identify the exact optical counterparts to the X-ray +sources at their crowded locations in the edge-on galaxy +NGC 4631. However, in the Hα narrow-band images we +discover a bubble-like extended nebula surrounding X4, +which may be inflated by the jet or wind launched from +the ULX accretion disk (Figure 3). The projected size +of this bubble structure is ∼ 130 pc × 100 pc. +To obtain a more precise profile of the extended bub- +ble structure, we need to subtract the continuum con- +tribution from the Hα image. Boselli et al. (2018) uti- +lized a large set of unsaturated stars and derived an +empirical equation (see their Eqn. 4) to relate the g − r +color and the Hα magnitude. Following Boselli et al. +(2018), we use the data products which were processed +by CADC with MegaPipe upon our request. MegaPipe +will subtract the sky background, normalize the flux in +the whole stacked image, and provide a catalog of de- +tected point sources (Gwyn 2008). We filtered out the +pixels with low signal-to-noise ratio (S/N ⩽ 5), and +then applied the equation in Boselli et al. (2018) pixel by +pixel. The generated image is shown in the upper right +panel of Figure 3. Most of the point sources around X4 +have been removed from the Hα image. The morphology +of the extended structure are clearly revealed. +For the [O iii] narrow-band image, we derived a sim- +ilar equation connecting the g-r color and the [O iii] +magnitude by roughly assuming the continuum magni- +tude is linearly related to wavelength in the given range +(i.e., the continuum follows a power-law spectral profile; +see details in Appendix A): +mg/[O III] ≈ mg − 0.155 × (mg − mr), +(1) +where mg/[O III] is the magnitude of the continuum that +falls within the [O iii] narrow-band filter. After applying +2 https://www.cadc-ccda.hia-iha.nrc- +cnrc.gc.ca/en/megapipe/docs/filt.html +the equation pixel by pixel, we obtain an [O iii] narrow- +band image for which most of the continuum contribu- +tion has been eliminated (see the lower right panel of +Figure 3). As for the continuum-subtracted Hα image, +the point sources have been mostly removed from the +[O iii] image, proving the efficacy of our continuum sub- +traction method. We will discuss this bubble structure +in details in Section 5. +2.2. HST +NGC 4631 has been observed with the Advanced +Camera for Surveys (ACS; Ford et al. 1998) onboard +HST (see Table 2). +The five luminous X-ray sources +were completely covered by the observations in Proposal +9765. The field containing X1, X2, and X3 was observed +in 2003 August (ObsID j8r331010 for the F606W filter +and j8r331020 for F814W), while X4 and X5 were cov- +ered by the observations in 2004 June (ObsID j8r332010 +for F606W and j8r332020 for F814W). Each observa- +tion has a total exposure time of 1376 sec. The images +of the five X-ray sources in the F606W band are shown +in Figure 4. +We aim to identify the optical counterparts of X-ray +sources with the HST imaging and derive their mag- +nitudes. Astrometric calibration is also needed for the +HST images. As the lack of coverage upon the galaxy +disk of NGC 4631 in Gaia, we are not able to directly +align HST images with the Gaia references. CFHT im- +ages with a large field of view are reused as the reference +images to align the HST data. We selected seven refer- +ence sources in each HST observation to perform astro- +metric calibration, for which we obtained the RMS resid- +ual of 0.′′03. Then we employed the Dolphot package +to perform Point Spread Function (PSF) photometry. +Dolphot can identify point sources in heavily crowded +areas and return their Vega magnitudes (Dolphin 2000). +The acsmask task was used to flag bad pixels, and the +calcsky task can calculate the sky background. +After +these preprocessing, the PSF photometry was accom- +plished by the dolphot task. The parameters in dolphot +are configured referring to Williams et al. (2014) where +they made a series of artificial stars to test a mesh grid +parameters and found out the most suitable parameter +set for crowded fields. +2.3. Chandra +In the X-ray band, NGC 4631 has been observed by +Einstein, ROSAT, Chandra, and XMM-Newton. To ob- +tain precise locations of the X-ray sources, we repro- +cessed the Chandra/ACIS data which have a sub-arcsec +angular resolution. +The Chandra observation (ObsID +797) was carried out on 2000 April 16 for a total of 60 + +6 +12h41m57.8s +57.6s +57.4s +57.2s +57.0s +32°32'08" +06" +04" +02" +00" +R.A. +Dec. +12h41m57.8s +57.6s +57.4s +57.2s +57.0s +32°32'08" +06" +04" +02" +00" +R.A. +Dec. +B +C +A +12h41m57.8s +57.6s +57.4s +57.2s +57.0s +32°32'08" +06" +04" +02" +00" +R.A. +Dec. +12h41m57.8s +57.6s +57.4s +57.2s +57.0s +32°32'08" +06" +04" +02" +00" +R.A. +Dec. +12h41m57.8s +57.6s +57.4s +57.2s +57.0s +32°32'08" +06" +04" +02" +00" +R.A. +Dec. +B +C +A +12h41m57.8s +57.6s +57.4s +57.2s +57.0s +32°32'08" +06" +04" +02" +00" +R.A. +Dec. +Figure 3. From left to right in the first row, the first panel is the CFHT/MegaCam r-band image, where the cyan circle is +centered at the X-ray location (the red cross symbol) of X4 with a 3′′ radius. The half length of the red cross represents the +X-ray positional error of X4. The second is the Hα image, residing with a bubble-like structure around X4. The brightest region +is marked as A region in the white circle. When performing the photometry for the whole bubble, the shape is adopted as the +region between the two red ellipses, marked as B (which includes the A region). The cavity in the center is marked as C. The +third panel is the result of subtracting the underlying continuum component from the Hα image. Most of the stellar sources +have been removed here. The blank regions represent the dropped pixels that do not have adequate S/N. In the second row, +the images of g, [O iii] and [O iii] with continuum removed are shown in turn. +ksec exposure time. We perform X-ray astrometry and +photometry in this work. The spectral and timing prop- +erties of these X-ray sources were presented in details in +Soria & Ghosh (2009). +The data were reprocessed with the CIAO (v4.13) +package. The chandra_repro task was applied to cre- +ate a new level = 2 event file calling the latest calibra- +tion products (CALDB v4.9.4) and more advanced al- +gorithms. +For astrometric calibration, we aligned the +Chandra/ACIS images to the HST/ACS images (see +Section 3 for details). +The CIAO script deflare was used to remove the +background flares (> 3σ) which only accounts for ≈ 4% +of the total exposure time. The full-band (0.5–8.0 keV) +X-ray image was then generated using the ASCA grade +0,2,3,4,6 events. The PSF and exposure maps were pro- +duced accordingly. The final X-ray point source detec- +tion was carried out using wavdetect. The detection +threshold is set to be 10−6, while the wavelet scales are +1, +√ +2, 2, 2 +√ +2, and 4 pixels. The coordinates return by +wavdetect are adopted as the X-ray positions for the +five luminous X-ray sources. +3. IDENTIFYING THE OPTICAL +COUNTERPARTS +To identify the optical counterparts of the X-ray +sources, we improve the astrometry of Chandra/ACIS +images relative to the HST/ACS images following the +methodology laid out in Yang et al. (2011). +Because +of the small field of view of HST/ACS, only one com- +mon source can be registered from the Chandra to the +HST images. Therefore, we supplement the HST/ACS +observation on an adjacent and partly overlapping field +(ObsID jc9l04010) to taking a mosaic image using the +AstroDrizzle package. The second common source is +therefore added. +These two objects are identified as +point X-ray sources (Wang et al. 2016; Evans et al. +2010), and their coordinates and other information are +listed in Table 3. +We use the CIAO task wcs_match +to register the Chandra image to the HST image. The + +7 +Figure 4. The HST/ACS F606W images of each X-ray source, with the overlaid white contours representing the X-ray flux +level from the Chandra/ACIS data (contours not in uniform scales among the five panels). In each panel, the green circle is +centered at the X-ray location with the radius represents the respective error circle. The numbered red circles are the optical +counterpart candidates of the X-ray source. The white dashed circle has a radius of 1′′. The cyan circle in the middle right +panel marks the young star associations northeast to X4, while that in the bottom left panel labels the compact young star +group associated with X5. + +32°32'52" +32°32'38" +×2 +X1 +37" +50" +36" +Dec. +Dec. +5 +12h42m16.1s +16.0s +15.9s +15.8s +12h42m11.2s +11.1s +11.0s +10.9s +R.A. +R.A. +32°32'05" +×3 +X 4 +04" +47" ++ +O +4 +01" +06.2s +57.3s +12h42m06.3s +06.15 +06.0s +12h41m57.5s +57.45 +57.2s +R.A. +R.A. +32°32'19" +X 5 +18" +5. +12h41m55.7s +55.6s +55.5s +55.4s +R.A.8 +RMS residual is 0.′′02. +The updated positions of five +X-ray sources are listed in Table 1. +We calculated the 95% Chandra positional error ra- +dius for each source using Equation 5 in Hong et al. +(2005) which has considered the PSF variations across +the field of view. We then converted it to the 1σ error +radius by applying the relation rX = rX(95%)/1.95996 +in Zhao et al. (2005). The size of the error circle is pri- +marily related to the number of counts and the off-axis +angle of the source. +Finally, we adopt the positional +uncertainty of each source as the quadratical combina- +tion of all kinds of errors: the average X-ray positional +error of the two reference objects (0.′′19), the X-ray po- +sitional error of each X-ray source (0.′′15-0.′′63), the error +caused by the alignment between the HST and Chandra +images, and the error of optical coordinates which were +generated during the astrometric calibration of HST and +CFHT images. The latter two kinds of errors are both +ignorable compared to the X-ray positional errors. The +final positional uncertainties of the five X-ray sources +are listed in Table 1. +In Figure 4, we overlay the X-ray flux contours (solid +white lines) onto the HST/ACS/F606W images for each +X-ray source. +The green circles represent the uncer- +tainties of X-ray positions. +X1 has the largest error +circle (0.′′66) because of the small number of Chandra +net counts (≈ 7). There are multiple candidate opti- +cal counterparts for X1 detected by Dolphot, which are +labeled by small red circles in the upper left panel of +Figure 4. The error radii of X2–X5 are similar (∼ 0.′′3). +X2 has one candidate optical counterpart in its X-ray +positional error circle, while both X3 and X4 have a few +candidates in their respective error circles. X5 is located +within a crowded region while two individual sources are +detected in the error circle. We will analyze these can- +didate optical counterparts and the surrounding stellar +environments in the next section. +4. COLOR-MAGNITUDE DIAGRAM +For most ULXs, the optical emission is dominated by +the X-ray reprocessing on the accretion disk (Tao et al. +2011). Nevertheless, the optical Color-Magnitude Dia- +grams (CMD) can be used to infer the age of the stel- +lar environments around ULXs, which could potentially +suggest the nature of the ULX donor stars. The Padova +Stellar Evolution Code (PARSEC; Bressan et al. 2012) +provides the isochrone databases for almost all the main- +stream telescope filters.3 Here we utilize the isochrones +based on the HST/ACS filters system. +3 http://stev.oapd.inaf.it/cgi-bin/cmd +We derive the extinction AV from the hydrogen col- +umn density obtained by Soria & Ghosh (2009) via X- +ray spectral analyses of the Chandra observations based +on the relation of NH (cm−2) = (2.21 ± 0.09) × 1021 +AV (mag) presented in G¨uver & ¨Ozel (2009). To con- +vert AV to the extinction in the HST/ACS filter sys- +tem E(F606W − F814W), we then interpolate the cen- +tral wavelengths of these filters to the extinction law +derived in Cardelli et al. (1989). The extinction value +for each X-ray source is listed in Table 1. +Closely aligned with a young stellar cluster, X2 has +large extinction E(F606W − F814W) = 3.8 mag, which +may introduce significant uncertainties when applying +the CMD to derive the ages of its surrounding stars. +Therefore, we only plot the isochrones for the other four +X-ray sources (Figure 5). For each panel, the solid blue +dots stand for the optical counterpart candidates of the +X-ray source. The light blue dots represent the stars +within 1′′ (36 pc; see the white dashed circles in Fig- +ure 4) from the X-ray position but outside the optical- +to-X-ray error circle. +The immediate surrounding stars of X1 do not appear +to be closely associated like in a star group or cluster. +Its optical counterpart candidates, as well as the nearby +stars within 1′′, span a wide range of age from 5 Myr +to 80 Myr, which indicates that they are unlikely born +at the same time or in the same environment. As dis- +cussed in Section 3, the positional error circle of X1 is +also much larger (0.′′673), corresponding to ≈ 25 pc. For +X2, the sole optical counterpart shown in Fig 4 is likely +to be not reliable because of the large extinction. For +X3, the three optical counterpart candidates have ages +of ∼50–80 Myr which are consistent with the ages of +the environmental sources. For X4, the ages of the sur- +rounding stars range mostly in ∼ 20–80 Myr. The six +candidate optical counterparts also show similar ages. +There appears to be a star association northeast of X4 +with the size of ≈ 2′′ across (71 pc). The CMD shows +that most of its member stars are very young with ages +of 5–20 Myr (the green tri up symbols in the lower left +panel of Figure 5). It is worth noting that the NH value +of X4 derived from the XMM-Newton spectral model- +ing is one order of magnitude higher than that with the +Chandra data (Soria & Ghosh 2009). The optical coun- +terpart candidates of X4 would be younger, < 20 Myr +(see fig 5), if the XMM-Newton extinction value were +adopted. X5 appears to locate within a compact star +group (≈ 0.′′8 across; corresponding to 28 pc). Two point +sources are identified within the error circle with ages of +∼ 5 Myr, while three more individual sources in this star +group are resolved by Dolphot, which have ages ∼ 5– +10 Myr (the green tri up symbols in Figure 5 lower right + +9 +2 +1 +0 +1 +2 +F606W-F814W +10 +9 +8 +7 +6 +5 +4 +3 +2 +F814W +X 1 +5 Myr +10 Myr +20 Myr +50 Myr +80 Myr +2 +1 +0 +1 +2 +F606W-F814W +10 +9 +8 +7 +6 +5 +4 +3 +2 +F814W +X 3 +5 Myr +10 Myr +20 Myr +50 Myr +80 Myr +2 +1 +0 +1 +2 +F606W-F814W +10 +9 +8 +7 +6 +5 +4 +3 +2 +F814W +X 4 +5 Myr +10 Myr +20 Myr +50 Myr +80 Myr +2 +1 +0 +1 +2 +F606W-F814W +10 +9 +8 +7 +6 +5 +4 +3 +2 +F814W +X 5 +5 Myr +10 Myr +20 Myr +50 Myr +80 Myr +Figure 5. The color-magnitude diagrams (CMDs) for optical point sources around X1, X3, X4, and X5, respectively. The solid +blue dots are the optical counterpart candidates within the error circle. The light blue dots are the point sources within 1′′ but +outside the error circle which could be born in the same environment. The green tri up symbols in left-lower panel represent +the sources in the star group northeast of X4. Extinction correction has been applied based on the X-ray hydrogen column +density. The open blue circles labels the loci of the optical counterpart candidates of X4 when the extinction value is adopted +from the XMM-Newton spectral modeling. + +10 +12h41m57.8s 57.6s +57.4s +57.2s +57.0s +32°32'06" +04" +02" +00" +R.A. +Dec. +0.2 +0.4 +0.6 +0.8 +1.0 +1.2 +Figure 6. The [O iii]/Hα flux ratio map for the extended +structure around X4, where the vertical color bar shows the +line ratio values. The red ellipse represents the profile of the +Hα bubble, while the red cross marks the position of X4. +The white horizontal and vertical bars illustrate the major +and minor axes of the extended structure. +panel). Therefore, X5 is likely associated with a young +star cluster. +It is worth noting that the extinction derived from +the hydrogen column density obtained with X-ray spec- +tra represent an upper limit for the candidate optical +counterparts and their surrounding stars. +If signifi- +cant intrinsic absorption exists for the X-ray source, +the extinction would be much smaller. A conservative +lower limit would be the Galactic extinction along the +light of sight of NGC 4631, which is AV = 0.015 mag +(Schlafly & Finkbeiner 2011), corresponding to NH = +3.3 × 1019 cm−2. +This is ignorable compared to that +from the X-ray spectroscopy. +The true values of ex- +tinction should be in between the above lower and up- +per limits. Overestimation of the extinction would place +the stars at younger age regions on the CMD. However, +it is probably reasonable to assume that the candidate +optical counterparts and surrounding stars would suf- +fer from high extinction (i.e., close to the upper limits), +since NGC 4631 appears as an edge-on disk galaxy. +5. A NEWLY DISCOVERED BUBBLE +STRUCTURE AROUND X4 +5.1. Morphology Analysis +Both of the continuum-subtracted Hα and [O iii] im- +ages display a clear extended structure around X4 (see +the right two panels in Figure 3), while exhibiting differ- +ent morphology in the two bands. In the Hα image, the +structure appears more like an inflated bubble with the +size of ∼ 130 pc × 100 pc. The X-ray source X4 is not +located in the center. Instead, this Hα bubble structure +appears to be sourced from the location of the ULX +(see the red cross in Figure 3) and is oriented toward +the southwest direction, reaching maximum luminosity +in the outermost region, ∼ 100 pc away from X4. The +extended nebula in the [O iii] image has a smaller size. +In contrast to the Hα bubble, the brightest region of the +[O iii] structure is to the east of X4, and is substantially +closer to the X-ray source ( < +∼ 25 pc). +The extended structures around ULXs may originate +from photoionization or shock ionization, both of which +could coexist while playing major roles in different parts +of the structure (Moon et al. 2011; G´urpide et al. 2022; +Zhou et al. 2022). Generally, in the photoionization pro- +cess, the line flux ratio [O iii]/Hβ tends to peak at or +near the ionizing source and declines outwards. For the +shock-ionized bubble, the edge region has higher excita- +tion level and exhibits the higher [O iii]/Hβ ratio than +in the central area. Here we use the [O iii]/Hα ratio +as a proxy, since it is reasonable to assume that the +line ratio Hα/Hβ ≡ τ remains constant in the bub- +ble area. +The typical τ value is ∼ 3 for ULX bub- +bles (Allen et al. 2008). +We will calculate the exact +value for our case in the next subsection. Derived from +the continuum-subtracted [O iii] and Hα images, the +[O iii]/Hα ratio map is shown in Figure 6, in which +the red ellipse marks the bubble shape in the Hα band +(same as that in the upper middle panel of Figure 3). +We extract the [O iii]/Hα line ratio roughly along the +major and minor axes of the bubble (the white horizon- +tal and vertical bars in Figure 6 respectively) and obtain +a clearer spatial profile, which is illustrated in Figure 7. +The [O iii]/Hα ratio reaches its minimum in the bubble +center and increases outwards along both axes, which +suggests that the Hα bubble is mostly dominated by +the shock ionization. There is a bump of the [O iii]/Hα +ratio in the east edge of major axis, coinciding with the +brightest [O iii] region. This area is likely formed pre- +dominantly by photoionization. It is indeed close to the +ULX which is presumably the source of ionizing photons. +The peak [O iii]/Hα value in this area is > +∼ 1. Combined +with the calculated Hα/Hβ line ratio of τ ∼ 3.75 (see +Section 5.2), the peak [O iii]/Hβ would be ∼ 4, which +is similar to that of photoionization-dominated nebulae +found in previous ULX bubble studies (e.g., Soria et al. +2021). +The shock-ionized bubbles around ULXs can be +formed via two mechanisms: through explosive events +like supernovae (i.e., supernova remnants) or being in- +flated by continuous jet/outflow from ULXs (Pakull +et al. 2006). +However, ULX bubbles often have sizes +of a few hundred pc (e.g., Ramsey et al. 2006; Gris´e + +11 +2 +1 +0 +1 +2 +arcsecond distance from the bubble center +0.2 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +1.2 +1.4 +[OIII]/H +Major axis +Minor axis +Figure 7. The spatial profile of the [O iii]/Hα flux ratio +along the major and minor axes of the extended nebula (see +the white bars in Figure 6). +et al. 2011), which are one order of magnitude larger +than normal supernova remnants. Although there exists +the possibility of very energetic hypernova explosions, it +is unlikely considering the stellar environments and the +survival of ULXs as binary systems during the events +(Feng & Soria 2011). Therefore, we suggest the Hα bub- +ble structure around X4 is more likely to be inflated by +the ULX jet/outflow. +It is worth noting that, unlike many other ULX bub- +bles, this extended structure around X4 only has a one- +sided lobe to the southwest direction, while X4 itself is +close to the east edge of the bubble. The missing of the +lobe in the other direction is not caused by the relativis- +tic beaming because the bubble expansion velocity vs +is only at the order of hundred km s−1, far below the +speed of light. For example, the bubble around the ULX +in NGC 5585 has an expansion velocity of 125 km s−1 +(Soria et al. 2021). For this bubble around X4, the ex- +pansion velocity is estimated to be vs ∼ 110 km s−1 (see +Section 5.2). +The asymmetric profile of an extended nebula could +imply the density gradient of ISM or outflows, as sug- +gested for IC 342 X-1 (Cseh et al. 2012). Here in our +case, one viable scenario is that the ISM is much denser +to the east of X4, resulting in an outflow blocked by +the dense medium. Hence, the east area is mainly pho- +toionized by the ULX itself (as shown by the [O iii]/Hβ +ratio profile), while most other regions are dominated by +shock ionization through the outflow. Similar situations +can be found in the simulations of supernova feedback +(Creasey et al. 2011; Pardi 2017). In their simulations, if +the ISM density reaches 102–104 cm−3 and the ejection +temperature is lower than 106 K, the injected energy of +the outflow will be immediately lost due to the strong +radiative cooling in the high density regions, dubbed the +overcooling problem. +An alternative interpretation of this unusual morphol- +ogy is that the accretion disk of X4 has launched an +asymmetric outflow, i.e., the outflow to the east direc- +tion is much weaker or nonexistent. There have been +numerical simulations showing that an asymmetric or +even one-sided outflow can be formed from the accretion +disk if the accretor is rotating and is accompanied with +a complex magnetic field (Lovelace et al. 2010; Dyda +et al. 2015). +It is also possible that both of the two mechanisms +are responsible for this asymmetric morphology. +The +side with the weaker/absent outflow has more dense am- +bient ISM, leading to photoionization dominating the +compact east area close to the ULX, while the shock- +ionized bubble is only formed to the opposite direction. +5.2. Mechanical Power Estimation +To estimate the mechanical power needed to inflate +the bubble, we first calculate the Hα luminosity from +the surface brightness of the structure measured with +Python/Photutils. +The brightest region in the Hα +band (marked with “A” in Figure 3) has a surface bright- +ness of 19.34 ± 0.01 mag arcsec−2. The whole bubble +structure, which is confined in a donut shape (region B +in Figure 3, subtracting region C while including region +A), has an average surface brightness of 19.64 ± 0.01 +mag arcsec−2. Using the surface brightness and bubble +size R, We can estimate the injected mechanical power +Pw. +Based on the standard bubble theory (Weaver et al. +1977; Pakull et al. 2006), Pw can be calculated as +P39 ≈ 3.8R2 +2v2 +3n erg s−1, +(2) +where P39 ≡ Pw/(1039 erg s−1); R2 ≡ R/(100 pc); +v2 ≡ vs/(100 km s−1); n is the ISM number density +in unit of cm−3. As the ULX is located at the edge of +the Hα bubble, we conceive that the one-sided jet/wind +formed this one-lobe bubble. Therefore, we adopt the +scale of the whole bubble to substitute the radius, i.e., +R = 130 pc and R2 = 1.3. The number density n can be +derived from the Hβ luminosity LHβ, the expanding ve- +locity vs, and the area of the spherical bubble A (Dopita +& Sutherland 1996), +n = 1.3 × 105LHβA−1v−2.41 +2 +cm−3. +(3) +The surface area A of the spherical bubble with a di- +ameter of 130 pc is calculated as 5 × 1041 cm2. Without +available Hβ imaging, the Hβ luminosity can be derived + +12 +60 +70 +80 +90 +100 +110 +120 +velocity km s +1 +0.00 +0.05 +0.10 +0.15 +0.20 +0.25 +0.30 +0.35 +0.40 +[O III]/H +(108, 0.3) +(145, 0.3) +Z = 0.5 Z , n = 6 cm +3, B = 3.0 G, T = 20000 K +Figure 8. The adopted solution from MAPPING V code. +The ISM number density is 6 cm−3. When the shock velocity +vs ≈ 108 km s−1, the [O iii]/Hα flux ratio is consistent with +the observed value of ≈ 0.3. +from Hα luminosity using the Balmer line ratio τ. The +intrinsic Hα luminosity is LHα = 1.2×1038 erg s−1, cal- +culated from the bubble surface brightness. With the +lack of optical spectroscopy on the bubble, the precise +expanding velocity vs is not available. +We employed +the widely used shock-ionization model MAPPINGS V +(Allen et al. 2008) to estimate τ and vs. +We carried +out a series of calculations with MAPPINGS V which +returned values for a variety of line ratios to compare +with the observation. +We fixed the metallicity to 0.5 +solar abundance (Pilyugin et al. 2014), magnetic field +to a typical value of 0.3 µG, and arranged a large input +grid of the shock velocity vs and hydrogen number den- +sity n, finding a set of solution matching the observed +[O iii]/Hα line ratio, which is ≈ 0.3 along the most parts +of the Hα bubble (see Figure 7). The result is shown in +Figure 8. We obtained the following parameter values +in this solution: n ∼ 6 cm−3, vs ∼ 110 km s−1, and the +Balmer line ratio τ ∼ 3.75. +Combining Eqns. (2) and (3), we can derive a relation +where the mechanical power Pw is determined by the Hα +luminosity LHα, the line ratio τ and expanding velocity +vs: +P39 ≈ 5.0 × 105R2 +2(LHα/τ)A−1v0.59 +2 +. +(4) +By substituting the MAPPING V solution, we calcu- +lated the value of P39 ≈ 51, i.e., the injected mechanical +power Pw ∼ 5 × 1040 erg s−1. +The lifetime t of the +bubble is estimated to be t = 3 +5R/vs ∼ 7 × 105 yr. +We can now calculate the mass-loss rate +˙M of the +ULX jet/wind. In the non- and mildly-relativistic sce- +nario, the injected power can also be expressed as Pw = +1 +2 ˙Mv2 +w (Weaver et al. 1977), where vw is the velocity of +0.0 +0.1 +0.2 +0.3 +0.4 +c +5.0 +4.5 +4.0 +3.5 +3.0 +2.5 +2.0 +1.5 +log(M) +0 +2 +4 +6 +8 +10 +12 +14 +7.5 +7.0 +6.5 +6.0 +5.5 +5.0 +log(M) +=2 +=10 +Figure 9. +The estimated mass-loss rate +˙M of non- and +mildly-relativistic wind (left panel) and the relativistic jet +(right panel). The x-axis is the wind velocity normalized by +the speed of light vc in the left panel and the bulk Lorentz +factor Γ in the right panel. +jet/wind. This equation can be transformed to +˙M ≈ 3.3 × 10−8P39/v2 +c M⊙ yr−1, +(5) +where vc(≡ vw/c) is the wind velocity in unit of the +speed of light c. The left panel of Figure 9 shows the +range of the mass-loss rate +˙M and its dependence on +wind velocity vc. With a typical value of vc ∼ 0.2 (Pinto +et al. 2016, 2021; Kosec et al. 2018), the mass-loss rate is +calculated as ∼ 10−5M⊙ yr−1 (the green vertical line in +the left panel of Figure 9), which means that ∼ 10 M⊙ +will be lost through ULX wind in the bubble lifetime. +Such a high mass loss rate will make it difficult to sustain +the long-term stable accretion activity. +Instead, we consider the jet-powered bubble scenario +with highly relativistic ejection velocity. +The mass- +loss rate +˙M can be inferred with the following equation +(Kaiser & Alexander 1997; Cseh et al. 2012), +˙M = +Pw +(Γ − 1)c2 . +(6) +Adopting a minimum bulk Lorentz factor Γ = 2, we +can derive the +˙M ranges as ∼ 10−6 M⊙ yr−1, while for +a higher bulk Lorentz factor, like Γ = 10, the mass- +loss rate would decrease to ∼ 10−7 M⊙ yr−1 (Figure 9 +right panel), which is clearly more realistic for sustain- +ing the accretion of ULXs. This would suggest that rel- +ativistic jets are necessary to generate the shock-ionized +ULX bubbles like the one we found around X4. Mildly- +relativistic winds with typical velocity of ∼ 0.2c alone +would not provide adequate mechanical power. Steady +jets at the distance of NGC 4631 would have a radio flux +level of ∼ 1 µJy, which is difficult to detect with current +facilities, while flaring jets that are 1–2 orders of magni- +tude brighter could be detected with, e.g., the Karl G. +Jansky Very Large Array (VLA), like the case of Holm- +berg II X-1 (Cseh et al. 2015). We have searched the + +13 +VLA database; sensitive radio imaging data with sub- +arcsec resolution on NGC 4631 will be publicly available +in the near future. +The estimated jet mechanical power of NGC 4631 X4 +is greater than its radiative luminosity. It would also be +above the Eddington limit if the accretor mass is less +than ∼ 100 M⊙, as for most ULXs. This is similar to +the cases of several microquasars found in nearby galax- +ies, e.g., NGC 7793 S26 (Pakull et al. 2010) and M83 +MQ1 (Soria et al. 2014), both of which have the same +level of jet power at ∼ 1040 erg s−1. The Galactic micro- +quasar SS 433 also has the jet power far exceeding its +X-ray luminosity (Fabrika 2004). These microquasars +also have surrounding shock-ionized bubble structures +detected with optical/infrared emission lines. Their X- +ray luminosity are admittedly orders of magnitude be- +low the canonical definition of ULXs. +However, they +could have had episodes of super-Eddington radiative +luminosity in the past, while NGC 4631 X4 itself also +had sub-Eddington X-ray luminosity (∼ 1037 erg s−1) +during its Chandra observation. Furthermore, the low +X-ray luminosity of SS 433 is also due to the heavy ob- +scuration along the line of sight; only reflected X-ray +flux is detectable (e.g., Begelman et al. 2006; Middle- +ton et al. 2021). On a much larger scale, some powerful +Fanaroff-Riley II radio galaxies and blazars have been +found to have jet power much greater than the radiative +luminosity (Ito et al. 2008; Ghisellini et al. 2014). NGC +4631 X4 and the aforementioned microquasars appears +to be analogs of these active galaxies at stellar scales. +From another perspective, we consider the energy +sources of the injected mechanical power. In case of all +the jet mechanical power originates from the accretion, +i.e., the release of gravitational potential energy of the +accreted material, the needed accretion rate ˙m can be +calculated from Pw = ϵ ˙mc2., where ϵ is the fraction of +accretion power converted into mechanical energy. Un- +der the assumption of ϵ = 0.1, which is already consid- +ered as exceptionally high, the needed accretion rate is +˙m ∼ 10−5 M⊙ yr−1. For more realistic ϵ values, the +needed accretion rate would be even higher. This would +suggest that there should be additional source(s) of the +jet mechanical power. For the cases of black hole ac- +cretion, a promising energy source would be the black +hole spin, i.e., the Blandford-Znejak (BZ) mechanism +(Blandford & Znajek 1977). There have been evidences +supporting this jet power origin for Galactic black hole +binaries (e.g., Narayan & McClintock 2012; but also +see, e.g., Russell et al. 2013). +From our analyses for +NGC 4631 X4, the presumable jet requires additional +energy source besides the accretion to provide sufficient +mechanical power to inflate the bubble structure. Nu- +merical simulations on super-Eddington accretions by +Narayan et al. (2017) demonstrate that the total energy +conversion efficiency (including both radiative and me- +chanical power) of ULXs can be as high as ∼ 0.7 when +introducing the high black hole spin (a∗ = 0.9) and the +“magnetic arrested disk” (MAD; e.g., Bisnovatyi-Kogan +& Ruzmaikin 1976; Narayan et al. 2003) models, where +the majority of energy is carried out in the form of me- +chanical power. The black hole spin energy is extracted +into the jets via the BZ mechanism. +6. CONCLUSIONS +We present an optical imaging study of the five bright- +est X-ray sources in NGC 4631, among which Soria & +Ghosh (2009) identified four ULXs (X1, X2, X4, X5). +Chandra/ACIS data are utilized to obtain precise as- +trometry and to identify possible optical counterparts +from the HST/ACS images. A broad-band and narrow- +band imaging campaign with CFHT/MegaCam is car- +ried out to search for the bubble structures around the +X-ray sources and to investigate their accretion states. +The supersoft X1 has a large optical-to-X-ray posi- +tional error (≈ 0.′′5) due to its low counts during the +Chandra observation. +The candidate optical counter- +parts and the surrounding stars of X1 span a wide range +of ages from 5 Myr to 80 Myr in the CMD, suggesting +that they are likely not physically associated. X3 resides +in a stellar environment with the age range of ∼ 50–80 +Myr, while its three candidate counterparts show sim- +ilar ages. +X4 has six optical counterpart candidates, +all of which show the age range consistent with that of +the surrounding stars at ∼ 20–80 Myr. X5 appears to +be associated with a star group with the age of ∼ 5– +10 Myr, which is typical for the star clusters related to +ULXs (Poutanen et al. 2013). This young star group +is a manifestation of the strong star forming activity in +the starburst galaxy NGC 4631. We do not provide the +CMD for X2 due to its high extinction. +A bubble nebula with a size of ∼ 130 pc × 100 pc +around X4 is firstly detected in our CFHT/MegaCam +Hα narrow-band image. Unlike many other ULXs re- +siding in the interior of their respective bubbles, this +ULX is located at the east edge. It appears the Hα bub- +ble originates from X4 and expands one-sided towards +the west direction, reaching maximum luminosity in the +outermost region. In contrast, the extended structure +appears smaller in the [O iii] image, while its bright- +est section is much closer to the ULX and located to +the east. The [O iii]/Hα line ratio map suggests that +the Hα bubble is generated mainly by shock ionization, +while the [O iii] structure is illuminated by the ULX via +photoionization. + +14 +3000 +4000 +5000 +6000 +7000 +8000 +Wavelength +Magnitude +g +r +OIII +mg +mr +Figure 10. The supposed linear relation between continuum +magnitude and wavelength. The two pairs of black dots mark +the boarders of the g and r bands of CFHT/MegaCam. The +continuum in the [O iii] band is illustrated by the red shaded +area. +The X4 bubble has an average surface brightness of +19.64 ± 0.01 mag arcsec−2 in the Hα band. By match- +ing the observed [O iii]/Hα line ratio, we estimate the +bubble expansion velocity vs ∼ 110 km s−1 and the am- +bient ISM density n ∼ 6 cm−3 using the MAPPINGS +V code. With these parameters, we constrain the me- +chanical power to inflate the bubble being ∼ 5×1040 erg +s−1 and the bubble age of ∼ 7 × 105 yr. Furthermore, +we demonstrate that for non- or mildly- relativistic wind +alone to generate the observed bubble, the needed mass- +loss rate would be too high to sustain the long-term ac- +cretion. Instead, in the case of a relativistic jet (with a +bulk Lorentz factor Γ ∼ 10) to inflate the bubble, the +mass-loss rate would decrease to a more realistic level +of ∼ 10−7 M⊙ yr−1. Similar to the cases of a few mi- +croquasars found in the Milky Way and nearby galaxies +(e.g., SS 433, NGC 7793 S26, and M83 MQ1), the esti- +mated mechanical jet power of NGC 4631 X4 is above +the Eddington limit for a stellar-mass black hole. The +black hole spin is likely to contribute to the jet power +via the BZ mechanism. +For future perspectives, optical spectroscopy, espe- +cially those with the integral-field instruments, will pro- +vide the bubble expansion velocity field and flux ratio +map for a variety of emission lines, from which a more +precise estimate of the mechanical power can be ob- +tained. High-resolution X-ray spectroscopy will enable +the measurement of outflow velocity, while deeper ra- +dio imaging with high angular resolution could reveal +the ULX jet. With all these combined, we can derive a +more reliable mass-loss rate of the outflow and further +constrain the accretion models of ULXs. +We thank S. Gwyn for processing the CFHT/MegaCam +data with MegaPipe and S. Prunet for the help on +imaging stacking. +We thank A. Boselli and M. Fos- +sati for helpful discussions on the continuum subtrac- +tion of Hα images. We also thank S. Feng and Z. Li +for archival VLA data enquiry. J.G. thank the CFHT +staff for their hospitality during her visit to CFHT. +This work is supported by the National Natural Science +Foundation of China (grant No. U1938105, 12033004, +U2038103) and the science research grants from the +China Manned Space Project with NO. CMS-CSST- +2021-A05 and CMS-CSST-2021-A06. +This research uses data obtained through the Tele- +scope Access Program (TAP), which has been funded +by the TAP member institutes. Based on observations +obtained with MegaPrime/MegaCam, a joint project +of CFHT and CEA/DAPNIA, at the Canada-France- +Hawaii Telescope (CFHT) which is operated by the Na- +tional Research Council (NRC) of Canada, the Institut +National des Sciences de l’Univers of the Centre Na- +tional de la Recherche Scientifique of France, and the +University of Hawaii. The observations at the Canada- +France-Hawaii Telescope were performed with care and +respect from the summit of Maunakea which is a signifi- +cant cultural and historic site. Based on observations +made with the NASA/ESA Hubble Space Telescope, +and obtained from the Hubble Legacy Archive, which is +a collaboration between the Space Telescope Science In- +stitute (STScI/NASA), the Space Telescope European +Coordinating Facility (ST-ECF/ESAC/ESA) and the +Canadian Astronomy Data Centre (CADC/NRC/CSA). +The data described here may be obtained from the +MAST archive at doi:10.17909/T9RP4V. This research +has made use of data obtained from the Chandra Data +Archive and the Chandra Source Catalog, and software +provided by the Chandra X-ray Center (CXC) in the +application packages CIAO and Sherpa. +Facilities: +CFHT/MegaCam, +HST/ACS, Chan- +dra/ACIS +Software: +Astropy (Astropy Collaboration et al. +2013, 2018), CIAO (Fruscione et al. 2006), Dolphot (Dol- +phin 2000), Matplotlib (Hunter 2007), NumPy (Harris +et al. 2020), Pandas (Wes McKinney 2010), PyRAF (Sci- +ence Software Branch at STScI 2012), SCAMP (Bertin +2006), SciPy (Virtanen et al. 2020), SExtractor (Bertin +& Arnouts 1996), SWarp (Bertin 2010). + +15 +APPENDIX +A. SUBTRACTING THE CONTINUUM FROM THE [O iii] BAND IMAGES +To remove the g-band contribution from the [O iii] images, we assume the magnitude of continuum at a given +wavelength is linearly correlated to this wavelength λ in the range of the g and r bands (Figure 10), i.e., the continuum +follows a power-law spectral model (f ∝ λ−α). Then the g-band part in [O iii] can be described in the equation, +mr − mg +λr − λg += mg/OIII − mg +λOIII − λg +. +(A1) +With replacing the corresponding central wavelength in the filters of Megacam (λg = 4750 ˚A, λOIII = 5006 ˚A, λr = +6400 ˚A), the equation can be transformed to, +mg/OIII ≈ mg − 0.155 × (mg − mr). +(A2) +It is worth noting that this relation is only valid to the images generated by MegaPipe for which the counts have been +normalized for each band. The continuum component for each pixel can be derived after the equation is applied pixel +by pixel. +REFERENCES +Allen, M. G., Groves, B. A., Dopita, M. A., Sutherland, +R. S., & Kewley, L. J. 2008, The Astrophysical Journal +Supplement Series, 178, 20 +Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., +et al. 2013, A&A, 558, A33, +doi: 10.1051/0004-6361/201322068 +Astropy Collaboration, Price-Whelan, A. M., Sip˝ocz, B. M., +et al. 2018, AJ, 156, 123, doi: 10.3847/1538-3881/aabc4f +Bachetti, M., Harrison, F. A., Walton, D. J., et al. 2014, +Nature, 514, 202, doi: 10.1038/nature13791 +Begelman, M. C., King, A. R., & Pringle, J. E. 2006, +MNRAS, 370, 399. doi:10.1111/j.1365-2966.2006.10469.x +Bertin, E. 2006, in Astronomical Society of the Pacific +Conference Series, Vol. 351, Astronomical Data Analysis +Software and Systems XV, ed. C. Gabriel, C. Arviset, +D. Ponz, & S. Enrique, 112 +Bertin, E. 2010, SWarp: Resampling and Co-adding FITS +Images Together. http://ascl.net/1010.068 +Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393, +doi: 10.1051/aas:1996164 +Bisnovatyi-Kogan, G. S., & Ruzmaikin, A. A. 1976, +Ap&SS, 42, 401, doi: 10.1007/BF01225967 +Blandford, R. D., & Znajek, R. L. 1977, MNRAS, 179, 433, +doi: 10.1093/mnras/179.3.433 +Boselli, A., Fossati, M., Ferrarese, L., et al. 2018, A&A, +614, A56, doi: 10.1051/0004-6361/201732407 +Bressan, A., Marigo, P., Girardi, L., et al. 2012, Monthly +Notices of the Royal Astronomical Society, 427, 127 +Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, +345, 245, doi: 10.1086/167900 +Carpano, S., Haberl, F., Maitra, C., & Vasilopoulos, G. +2018, MNRAS, 476, L45, doi: 10.1093/mnrasl/sly030 +Creasey, P., Theuns, T., Bower, R. G., & Lacey, C. G. +2011, MNRAS, 415, 3706, +doi: 10.1111/j.1365-2966.2011.19001.x +Cseh, D., Corbel, S., Kaaret, P., et al. 2012, ApJ, 749, 17, +doi: 10.1088/0004-637X/749/1/17 +Cseh, D., Miller-Jones, J. C. A., Jonker, P. G., et al. 2015, +MNRAS, 452, 24, doi: 10.1093/mnras/stv1308 +Cutri, R. M., Wright, E. L., Conrow, T., et al. 2021, VizieR +Online Data Catalog, II/328 +Dolphin, A. E. 2000, Publications of the Astronomical +Society of the Pacific, 112, 1383 +Dopita, M. A., & Sutherland, R. S. 1996, ApJS, 102, 161, +doi: 10.1086/192255 +Dyda, S., Lovelace, R. V. E., Ustyugova, G. V., et al. 2015, +MNRAS, 450, 481, doi: 10.1093/mnras/stv623 +Eckart, M. E., Laird, E. S., Stern, D., et al. 2005, ApJS, +156, 35, doi: 10.1086/425869 +Evans, I. N., Primini, F. A., Glotfelty, K. J., et al. 2010, +ApJS, 189, 37. doi: 10.1088/0067-0049/189/1/37 +Fabrika, S. 2004, Astrophys. Space Phys. Res., 12, 1. +https://arxiv.org/abs/astro-ph/0603390 +Farrell, S. A., Webb, N. A., Barret, D., Godet, O., & +Rodrigues, J. M. 2009, Nature, 460, 73, +doi: 10.1038/nature08083 + +16 +Feng, H., & Soria, R. 2011, NewAR, 55, 166, +doi: 10.1016/j.newar.2011.08.002 +Flewelling, H. 2018, in American Astronomical Society +Meeting Abstracts, Vol. 231, American Astronomical +Society Meeting Abstracts #231, 436.01 +Flewelling, H. A., Magnier, E. A., Chambers, K. C., et al. +2020, ApJS, 251, 7, doi: 10.3847/1538-4365/abb82d +Ford, H. C., Bartko, F., Bely, P. Y., et al. 1998, in Society +of Photo-Optical Instrumentation Engineers (SPIE) +Conference Series, Vol. 3356, Space Telescopes and +Instruments V, ed. P. Y. Bely & J. B. Breckinridge, +234–248, doi: 10.1117/12.324464 +Fruscione, A., McDowell, J. C., Allen, G. E., et al. 2006, in +Society of Photo-Optical Instrumentation Engineers +(SPIE) Conference Series, Vol. 6270, Society of +Photo-Optical Instrumentation Engineers (SPIE) +Conference Series, ed. D. R. Silva & R. E. Doxsey, +62701V, doi: 10.1117/12.671760 +F¨urst, F., Walton, D. J., Harrison, F. A., et al. 2016, ApJL, +831, L14, doi: 10.3847/2041-8205/831/2/L14 +Ghisellini, G., Tavecchio, F., Maraschi, L., Celotti, A., & +Sbarrato, T. 2014, Nature, 515, 376, +doi: 10.1038/nature13856 +Gladstone, J. C., Roberts, T. P., & Done, C. 2009, MNRAS, +397, 1836, doi: 10.1111/j.1365-2966.2009.15123.x +Gris´e, F., Kaaret, P., Pakull, M. W., & Motch, C. 2011, +ApJ, 734, 23, doi: 10.1088/0004-637X/734/1/23 +G´urpide, A., Parra, M., Godet, O., Contini, T., & Olive, +J.-F. 2022, arXiv e-prints, arXiv:2201.09333. +https://arxiv.org/abs/2201.09333 +G¨uver, T., & ¨Ozel, F. 2009, MNRAS, 400, 2050, +doi: 10.1111/j.1365-2966.2009.15598.x +Gwyn, S. D. J. 2008, PASP, 120, 212, doi: 10.1086/526794 +Harris, C. R., Millman, K. J., van der Walt, S. J., et al. +2020, Nature, 585, 357, doi: 10.1038/s41586-020-2649-2 +Hong, J., van den Berg, M., Schlegel, E. M., et al. 2005, +ApJ, 635, 907. doi: 10.1086/496966 +Hunter, J. D. 2007, Computing in Science and Engineering, +9, 90, doi: 10.1109/MCSE.2007.55 +Irwin, J. A., Wilson, C. D., Wiegert, T., et al. 2011, +MNRAS, 410, 1423, +doi: 10.1111/j.1365-2966.2010.17510.x +Israel, G. L., Belfiore, A., Stella, L., et al. 2017a, Science, +355, 817, doi: 10.1126/science.aai8635 +Israel, G. L., Papitto, A., Esposito, P., et al. 2017b, +MNRAS, 466, L48, doi: 10.1093/mnrasl/slw218 +Ito, H., Kino, M., Kawakatu, N., Isobe, N., & Yamada, S. +2008, ApJ, 685, 828, doi: 10.1086/591036 +Kaaret, P., Feng, H., & Roberts, T. P. 2017, ARA&A, 55, +303, doi: 10.1146/annurev-astro-091916-055259 +Kaiser, C. R., & Alexander, P. 1997, MNRAS, 286, 215, +doi: 10.1093/mnras/286.1.215 +Kosec, P., Pinto, C., Walton, D. J., et al. 2018, MNRAS, +479, 3978, doi: 10.1093/mnras/sty1626 +Kosec, P., Pinto, C., Reynolds, C. S., et al. 2021, MNRAS, +508, 3569, doi: 10.1093/mnras/stab2856 +Liu, J.-F., Bregman, J. N., Bai, Y., Justham, S., & +Crowther, P. 2013, Nature, 503, 500, +doi: 10.1038/nature12762 +Lovelace, R. V. E., Romanova, M. M., Ustyugova, G. V., & +Koldoba, A. V. 2010, MNRAS, 408, 2083, +doi: 10.1111/j.1365-2966.2010.17284.x +Magnier, E. A., & Cuillandre, J. C. 2004, PASP, 116, 449, +doi: 10.1086/420756 +Mel´endez, M., Veilleux, S., Martin, C., et al. 2015, ApJ, +804, 46, doi: 10.1088/0004-637X/804/1/46 +Middleton, M. J., Walton, D. J., Alston, W., et al. 2021, +MNRAS, 506, 1045. doi:10.1093/mnras/stab1280 +Mineo, S., Gilfanov, M., & Sunyaev, R. 2012, MNRAS, 419, +2095, doi: 10.1111/j.1365-2966.2011.19862.x +Moon, D.-S., Harrison, F. A., Cenko, S. B., et al. 2011, +ApJL, 731, L32. doi: 10.1088/2041-8205/731/2/L32 +Motch, C., Pakull, M. W., Soria, R., Gris´e, F., & +Pietrzy´nski, G. 2014, Nature, 514, 198, +doi: 10.1038/nature13730 +Narayan, R., Igumenshchev, I. V., & Abramowicz, M. A. +2003, PASJ, 55, L69, doi: 10.1093/pasj/55.6.L69 +Narayan, R., & McClintock, J. E. 2012, MNRAS, 419, L69, +doi: 10.1111/j.1745-3933.2011.01181.x +Narayan, R., Sa`I§dowski, A., & Soria, R. 2017, MNRAS, +469, 2997, doi: 10.1093/mnras/stx1027 +Pakull, M. W., Grise, F., & Motch, C. 2006, Proceedings of +the International Astronomical Union, 1, 293 +Pakull, M. W., & Mirioni, L. 2002, arXiv e-prints, astro. +https://arxiv.org/abs/astro-ph/0202488 +Pakull, M. W., Soria, R., & Motch, C. 2010, Nature, 466, +209, doi: 10.1038/nature09168 +Pardi, A.-L. 2017, PhD thesis, LMU Munich, Germany +Pilyugin, L. S., Grebel, E. K., & Kniazev, A. Y. 2014, AJ, +147, 131, doi: 10.1088/0004-6256/147/6/131 +Pinto, C., Middleton, M. J., & Fabian, A. C. 2016, Nature, +533, 64, doi: 10.1038/nature17417 +Pinto, C., Soria, R., Walton, D. J., et al. 2021, MNRAS, +505, 5058, doi: 10.1093/mnras/stab1648 +Poutanen, J., Fabrika, S., Valeev, A. F., Sholukhova, O., & +Greiner, J. 2013, MNRAS, 432, 506, +doi: 10.1093/mnras/stt487 +Qiu, Y., & Feng, H. 2021, ApJ, 906, 36, +doi: 10.3847/1538-4357/abc959 + +17 +Quintin, E., Webb, N. A., G´urpide, A., Bachetti, M., & +F¨urst, F. 2021, MNRAS, 503, 5485, +doi: 10.1093/mnras/stab814 +Ramsey, C. J., Williams, R. M., Gruendl, R. A., et al. +2006, ApJ, 641, 241, doi: 10.1086/499070 +Roberts, T. P., Levan, A. J., & Goad, M. R. 2008, MNRAS, +387, 73, doi: 10.1111/j.1365-2966.2008.13293.x +Rodr´ıguez Castillo, G. A., Israel, G. L., Belfiore, A., et al. +2020, ApJ, 895, 60, doi: 10.3847/1538-4357/ab8a44 +Russell, D. M., Gallo, E., & Fender, R. P. 2013, MNRAS, +431, 405, doi: 10.1093/mnras/stt176 +Salvaggio, C., Wolter, A., Pintore, F., et al. 2022, MNRAS, +512, 1814, doi: 10.1093/mnras/stac559 +Sathyaprakash, R., Roberts, T. P., Walton, D. J., et al. +2019, MNRAS, 488, L35, doi: 10.1093/mnrasl/slz086 +Schlafly, E. F., & Finkbeiner, D. P. 2011, ApJ, 737, 103, +doi: 10.1088/0004-637X/737/2/103 +Science Software Branch at STScI. 2012, PyRAF: Python +alternative for IRAF, Astrophysics Source Code Library, +record ascl:1207.011. http://ascl.net/1207.011 +Soria, R., & Ghosh, K. K. 2009, ApJ, 696, 287, +doi: 10.1088/0004-637X/696/1/287 +Soria, R., Long, K. S., Blair, W. P., et al. 2014, Science, +343, 1330, doi: 10.1126/science.1248759 +Soria, R., Pakull, M. W., Broderick, J. W., Corbel, S., & +Motch, C. 2010, MNRAS, 409, 541, +doi: 10.1111/j.1365-2966.2010.17360.x +Soria, R., Pakull, M. W., Motch, C., et al. 2021, MNRAS, +501, 1644, doi: 10.1093/mnras/staa3784 +Tao, L., Feng, H., Gris´e, F., & Kaaret, P. 2011, ApJ, 737, +81, doi: 10.1088/0004-637X/737/2/81 +Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, +Nature Methods, 17, 261, doi: 10.1038/s41592-019-0686-2 +Walton, D. J., Harrison, F. A., Grefenstette, B. W., et al. +2014, ApJ, 793, 21, doi: 10.1088/0004-637X/793/1/21 +Wang, S., Liu, J., Qiu, Y., et al. 2016, ApJS, 224, 40, +doi: 10.3847/0067-0049/224/2/40 +Weaver, R., McCray, R., Castor, J., Shapiro, P., & Moore, +R. 1977, ApJ, 218, 377, doi: 10.1086/155692 +Webb, N., Cseh, D., Lenc, E., et al. 2012, Science, 337, 554, +doi: 10.1126/science.1222779 +Weng, S.-S., & Feng, H. 2018, ApJ, 853, 115, +doi: 10.3847/1538-4357/aaa45c +Weng, S.-S., Ge, M.-Y., Zhao, H.-H., et al. 2017, ApJ, 843, +69, doi: 10.3847/1538-4357/aa76ec +Wes McKinney. 2010, in Proceedings of the 9th Python in +Science Conference, ed. St´efan van der Walt & Jarrod +Millman, 56 – 61, doi: 10.25080/Majora-92bf1922-00a +Williams, B. F., Lang, D., Dalcanton, J. J., et al. 2014, The +Astrophysical Journal Supplement Series, 215, 9 +Wilson-Hodge, C. A., Malacaria, C., Jenke, P. A., et al. +2018, ApJ, 863, 9, doi: 10.3847/1538-4357/aace60 +Yamasaki, N. Y., Sato, K., Mitsuishi, I., & Ohashi, T. 2009, +PASJ, 61, S291, doi: 10.1093/pasj/61.sp1.S291 +Yang, L., Feng, H., & Kaaret, P. 2011, ApJ, 733, 118, +doi: 10.1088/0004-637X/733/2/118 +Zhao, P., Grindlay, J. E., Hong, J. S., et al. 2005, ApJS, +161, 429. doi: 10.1086/497095 +Zhou, C., Bian, F., Feng, H., & Huang, J. 2022, ApJ, 935, +38, doi: 10.3847/1538-4357/ac815f +Zhou, Y., Feng, H., Ho, L. C., & Yao, Y. 2019, ApJ, 871, +115, doi: 10.3847/1538-4357/aaf724 + diff --git a/0dAyT4oBgHgl3EQfPPa3/content/tmp_files/load_file.txt b/0dAyT4oBgHgl3EQfPPa3/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..b5220f95676a14a74d34cecd48c89a3520fd4ebb --- /dev/null +++ b/0dAyT4oBgHgl3EQfPPa3/content/tmp_files/load_file.txt @@ -0,0 +1,1686 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf,len=1685 +page_content='Draft version January 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2023 Typeset using LATEX twocolumn style in AASTeX631 Bubble in the Whale: Identifying the Optical Counterparts and Extended Nebula for the Ultraluminous X-ray Sources in NGC 4631 Jing Guo (郭静) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1 Jianfeng Wu ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1 Hua Feng ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 3 Zheng Cai ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2 Ping Zhou ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 5 Changxing Zhou ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3 Shiwu Zhang ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2 Junfeng Wang ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1 Mouyuan Sun ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1 Wei-Min Gu ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1 Shan-Shan Weng ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='6 and Jifeng Liu 7,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 8,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 9 1Department of Astronomy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Xiamen University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Xiamen,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Fujian 361005,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' China 2Department of Astronomy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Tsinghua University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Beijing 100084,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' China 3Department of Engineering Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Tsinghua University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Beijing 100084,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' China 4School of Astronomy & Space Science,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Nanjing University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 163 Xianlin Avenue,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Nanjing 210023,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' China 5Key Laboratory of Modern Astronomy and Astrophysics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Nanjing University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Ministry of Education,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Nanjing 210023,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' China 6Department of Physics and Institute of Theoretical Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Nanjing Normal University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Nanjing 210023,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' China 7Key Laboratory of Optical Astronomy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' National Astronomical Observatories,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Chinese Academy of Sciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Beijing 100101,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' China 8School of Astronomy and Space Sciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' University of Chinese Academy of Sciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Beijing 100049,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' China 9WHU-NAOC Joint Center for Astronomy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Wuhan University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Wuhan,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Hubei 430072,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' China ABSTRACT We present a deep optical imaging campaign on the starburst galaxy NGC 4631 with CFHT/MegaCam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' By supplementing the HST/ACS and Chandra/ACIS archival data, we search for the optical counterpart candidates of the five brightest X-ray sources in this galaxy, four of which are identified as ultraluminous X-ray sources (ULXs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The stellar environments of the X-ray sources are analyzed using the extinction-corrected color-magnitude diagrams and the isochrone models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' We discover a highly asymmetric bubble nebula around X4 which exhibits different morphology in the Hα and [O iii] images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The [O iii]/Hα ratio map shows that the Hα-bright bubble may be formed mainly via the shock ionization by the one-sided jet/outflow, while the more compact [O iii] structure is photoionized by the ULX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' We constrain the bubble expansion velocity and interstellar medium den- sity with the MAPPINGS V code, and hence estimate the mechanical power injected to the bubble as Pw ∼ 5 × 1040 erg s−1 and the corresponding bubble age of ∼ 7 × 105 yr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Relativistic jets are needed to provide such level of mechanical power with a mass-loss rate of ∼ 10−7 M⊙ yr−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Besides the accretion, the black hole spin is likely an additional energy source for the super-Eddington jet power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' INTRODUCTION Ultraluminous X-ray sources (ULXs) are non-nuclear point-like X-ray sources with isotropic luminosity LX ≳ 1039 erg s−1, which corresponds to the Eddington limit for a ∼ 10 M⊙ black hole (Feng & Soria 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Kaaret et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Two mechanisms are likely to explain the high luminosity: the sub-Eddington accretion onto intermediate-mass black holes (IMBHs) and stellar-mass compact objects undergoing super-Eddington accretion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The minority of ULXs at the higher end of the luminos- ity range can be explained by the first mechanism, such as ESO 243−49 HLX-1 with LX ∼ 1042 erg s−1 (Farrell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Webb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Meanwhile, the X-ray Corresponding author: Jianfeng Wu wujianfeng@xmu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='cn spectral properties of most ULXs are consistent with the super-Eddington accretion scenario (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Gladstone et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Walton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Salvaggio et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Recent studies further identified several ULXs powered by neutron stars from the detections of pulsating radia- tions (Bachetti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' F¨urst et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Israel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2017a,b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Weng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Carpano et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Wilson- Hodge et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Sathyaprakash et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Rodr´ıguez Castillo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Quintin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The definitive approach to decipher the nature of non- pulsating ULXs is the dynamical mass measurement of the accretors, which relies on the optical spectroscopy of the donor stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' However, the archived optical data on ULXs are far less abundant than X-ray data because most of the ULX optical counterparts are very faint (mV > 21 mag) and located in fairly crowded regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Previous studies found that most of the ULXs are asso- arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='00022v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='HE] 30 Dec 2022 ID2 ciated with young star clusters, showing the donor stars might be the OB type (Roberts et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Poutanen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' For a limited number of ULXs, the nature of the donor stars are unambiguously identified (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', M101 ULX-1 and NGC 7793 P13), while the dynami- cal studies on these systems supported the stellar-mass accretor scenario (Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Motch et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A number of ULXs have surrounding bubble nebulae detected from deep optical imaging observations (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Pakull & Mirioni 2002;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Ramsey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Soria et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2010, 2021), the majority of which are considered to be formed via shock ionizations driven by the interac- tions of strong jets/outflows and the ambient interstellar medium (ISM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Strong outflows may be ubiquitous for ULXs under supercritical accretion (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Narayan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Weng & Feng 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Zhou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Qiu & Feng 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Kosec et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The kinetic power and age of the bubble can be inferred from its size and expanding velocity (Weaver et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 1977), and hence may reveal the kinematics of jets/outflows and the accretion physics of ULXs (Pakull et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Cseh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Soria et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' For the other few cases, the high-ionization fea- tures (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', He ii λ4686) in the spectra of the optical nebulae imply that the photoionization could be the ma- jor origin of the extended structure (Pakull & Mirioni 2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Both shock ionization and photoionization may certainly be working at the same time while dominating different parts of the same optical nebula (G´urpide et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Zhou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' In this work, we report on an optical broad-band and narrow-band imaging campaign for the Whale Galaxy NGC 4631 to identify the optical counterparts and sur- rounding extended nebulae of the ULXs, for which Soria & Ghosh (2009) presented a detailed study of their X- ray properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' As a late-type starburst galaxy 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='35 Mpc away, NGC 4631 (Figure 1) has been extensively studied in multiwavelengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The existence of molecular out- flows, abundant gas and the X-ray halo reveals the di- versity of objects and astrophysical processes (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Ya- masaki et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Irwin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Mel´endez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' From the archival XMM-Newton data, Soria & Ghosh (2009) identified five brightest X-ray sources scat- tered in NGC 4631 and found that four of them (X1, X2, X4, X5) can be classified as ULXs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1 For the pur- pose of studying their physical nature and stellar envi- ronments, we analyze the optical images of all five X- ray sources in this paper combining the Canada-France- 1 While Mineo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' (2012) classified X4 as a high mass X- ray binaries in the sub-Eddington state based on the Chandra- measured luminosity, we adopt Soria & Ghosh (2009)’s classifi- cation throughout this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Hawaii Telescope (CFHT) and Hubble Space Telescope (HST) observations, supplemented with Chandra data to determine the precise astrometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The details of the five X-ray sources can be found in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' This paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' In Section 2 we present the optical and X-ray observations and data re- duction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' In Section 3, we improve the relative astrom- etry and identify optical counterpart candidates for the X-ray sources, which are investigated in Section 4 based on their locations on the isochrone diagrams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' In Sec- tion 5, we present a newly discovered bubble nebula around X4 and the analyses on its morphology and ki- netic power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Section 6 summarizes our conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' OBSERVATIONS AND DATA REDUCTION 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' CFHT We obtained optical broad-band and narrow-band imaging of NGC 4631 with the 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='6-m CFHT located on Mauna Kea, Hawaii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The MegaCam instrument mounted on CFHT has a wide field of view (1 deg2) which can fully cover all the 5 luminous X-ray sources in NGC 4631.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The detector consists of 40 CCDs, each of which has 2048 × 4612 pixels with 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='′′187 × 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='′′187 per pixel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' We are awarded a total of 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5-hour exposure time (PI: Jing Guo, ObsId: 20AS01) executed in 2020 March and June.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The images are taken with three broad bands (u, g, and r) and two narrow bands (Hα and [O iii]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The Hα and [O iii] filters have a width of ∼ 100 ˚A, cen- tered at 6590 ˚A and 5006 ˚A, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A dithering pattern was applied during the observations to cover the CCD gaps, which requires at least five exposures for each band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The detailed observation log is listed in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The data products we received have been prepro- cessed with the Elixir pipeline, which includes bias- subtraction, flat-fielding, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', for each individual frame (Magnier & Cuillandre 2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The first step is to per- form precise astrometric calibration and to stack im- ages from individual exposures in the same band for the purposes of eliminating CCD gaps and reaching the desired sensitivity level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' In the stacking procedure, SExtractor (Bertin & Arnouts 1996) was applied on each image of single exposures to generate the catalog of all point sources with coordinates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The astrometric solu- tions were then computed with the SCAMP (Bertin 2006) software by referencing the catalog from Gaia Data Re- lease 1 (DR1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' We utilized the SWarp (Bertin 2010) task 3 Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' List of the Five Brightest X-ray Sources in NGC 4631 Source ID R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Chandra Net Counts Off-axis Opt-X Error Circle NH E(F606W-F814W) (J2000) (J2000) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0 keV) (arcmin) (arcsecond) (1021 cm−2) X1 12 42 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='99 +32 32 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='47 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='7±2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='8 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='673 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='4+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='35+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='15 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='15 X2 12 42 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='12 +32 32 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='63 981.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2±32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='9 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='275 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3+3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='6 −3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='80+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='74 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='55 X3 12 42 06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='13 +32 32 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='43 357.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='6±19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='269 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='29+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='48 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='43 X4 12 41 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='42 +32 32 02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='79 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='7±9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='280 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='32+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='05+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='49 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='16 X5 12 41 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='57 +32 32 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='77 2977.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='8±55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='51 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='268 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='29+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='10 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='10 Note—The NH values are retrieved from Soria & Ghosh (2009) which were obtained from the Chandra spectral analyses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Observation Log of NGC 4631 Instrument Source ID ObsID Filter Observation Date (UT) Exposure Time CFHT/MegaCam X1-X5 20AS01 Hα 2020-03-23 12×900 sec (PI: Jing Guo) [O iii] 2020-05-19 5×750 sec u 2020-03-23 5×126 sec g 2020-03-23 5×126 sec r 2020-03-23 5×126 sec HST/ACS X1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='X2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='X3 j8r331010 F606W 2003-08-03 676 sec X1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='X2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='X3 j8r331020 F814W 2003-08-03 700 sec X4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' X5 j8r332010 F606W 2004-06-09 676 sec X4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' X5 j8r332020 F814W 2004-06-09 700 sec Chandra/ACIS X1-X5 797 2000-04-16 60 ksec Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' List of the reference stars Reference ID X-ray Coordinates Optical Coordinates Off-axis Net Counts X-ray positional error Chandra HST (arcmin) Chandra (arcsecond) Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1 12 42 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='78 +32 33 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='40 12 42 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='79 +32 33 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='23 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2 120 ± 11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='32 Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2 12 42 04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='03 +32 34 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='60 12 42 04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='03 +32 34 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='41 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='7 107 ± 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='19 Note—The HST coordinates are given by the Dolphot package.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' to perform the image stacking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The astrometric error during these processes are < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='′′03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A multi-color im- age of NGC 4631 is shown in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' This RGB-like image combines the three broad bands and two narrow bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The five red circles label the positions of the five luminous X-ray sources analyzed in Soria & Ghosh (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' X3 is more likely a black hole X-ray binary in its high/soft state, while the remaining four X-ray sources are classified as ULXs, among which X1 is a supersoft ULX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' We select 40 point sources from the Pan-STARRS1 DR2 catalog (Flewelling 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Flewelling et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2020) that are isolated and have an appropriate magnitude (17–19 mag) to serve as photometry references.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The Pan-STARRS1 DR2 catalog does not flag the source whether it is a star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Thus we select such a relatively large set of referencing sources aiming to obtain a more 4 12H42\'30" 15" 00" 41\'45" 30" 32°36\'00" 34\'00" 32\'00" 30\'00" R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' X1 X2 X2 X3 X4 X5 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The RGB-like image combines five CFHT/MegaCam filters, including the three broad bands (u, g, r) and two narrow bands (Hα, [O iii]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The u, g, and r bands are shown in blue, green, and red colors, respectively, while the Hα and [O iii] filters are represented by crimson and teal colors, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The red circles label the positions of the five X-ray sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 12h42m17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0s 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5s 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0s 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5s 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0s 32°33\'00" 32\'55" 50" 45" 40" R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' X 1 12h42m12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0s 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5s 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0s 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5s 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0s 32°32\'45" 40" 35" 30" 25" R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' X 2 12h42m07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0s 06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5s 06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0s 05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5s 05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0s 32°32\'55" 50" 45" 40" 35" R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' X 3 12h41m58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5s 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0s 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5s 32°32\'15" 10" 05" 00" 31\'55" R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' X 4 12h41m56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5s 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0s 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5s 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0s 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5s 32°32\'25" 20" 15" 10" 05" R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' X 5 Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The CFHT/MegaCam g-band images of X1-X5 and their vicinity, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The green circles are centered at the X-ray location of each source with a radius of 3′′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Optical counterparts are difficult to identify in these broad-band images due to the seeing limit (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='′′45–0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='′′75) for the ground-based CFHT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 5 statistically reliable photometry calibration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' We adopt the conversion equations from Pan-STARRS filters to MegaCam filters provided by the Canadian Astronomy Data Centre (CADC),2 except for Hα we use the for- mula provided by Boselli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Finally, for each given source, we can derive an array of magnitude val- ues calibrated from the 40 reference stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The peak value of the best-fit Gaussian profile to the histogram of the magnitude values was adopted as the measured magnitude for this source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The zoom-in CFHT/MegaCam g-band images of the five luminous X-ray sources are shown in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' For the stacked image in each band, we estimate the expo- sure depth reaching 25–26 mag arcsec−2 at 3σ level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Due to the seeing limit of ground-based imaging, it is difficult to identify the exact optical counterparts to the X-ray sources at their crowded locations in the edge-on galaxy NGC 4631.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' However, in the Hα narrow-band images we discover a bubble-like extended nebula surrounding X4, which may be inflated by the jet or wind launched from the ULX accretion disk (Figure 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The projected size of this bubble structure is ∼ 130 pc × 100 pc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' To obtain a more precise profile of the extended bub- ble structure, we need to subtract the continuum con- tribution from the Hα image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Boselli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' (2018) uti- lized a large set of unsaturated stars and derived an empirical equation (see their Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 4) to relate the g − r color and the Hα magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Following Boselli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' (2018), we use the data products which were processed by CADC with MegaPipe upon our request.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' MegaPipe will subtract the sky background, normalize the flux in the whole stacked image, and provide a catalog of de- tected point sources (Gwyn 2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' We filtered out the pixels with low signal-to-noise ratio (S/N ⩽ 5), and then applied the equation in Boselli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' (2018) pixel by pixel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The generated image is shown in the upper right panel of Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Most of the point sources around X4 have been removed from the Hα image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The morphology of the extended structure are clearly revealed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' For the [O iii] narrow-band image, we derived a sim- ilar equation connecting the g-r color and the [O iii] magnitude by roughly assuming the continuum magni- tude is linearly related to wavelength in the given range (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', the continuum follows a power-law spectral profile;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' see details in Appendix A): mg/[O III] ≈ mg − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='155 × (mg − mr), (1) where mg/[O III] is the magnitude of the continuum that falls within the [O iii] narrow-band filter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' After applying 2 https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='cadc-ccda.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='hia-iha.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='nrc- cnrc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='gc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='ca/en/megapipe/docs/filt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='html the equation pixel by pixel, we obtain an [O iii] narrow- band image for which most of the continuum contribu- tion has been eliminated (see the lower right panel of Figure 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' As for the continuum-subtracted Hα image, the point sources have been mostly removed from the [O iii] image, proving the efficacy of our continuum sub- traction method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' We will discuss this bubble structure in details in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' HST NGC 4631 has been observed with the Advanced Camera for Surveys (ACS;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Ford et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 1998) onboard HST (see Table 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The five luminous X-ray sources were completely covered by the observations in Proposal 9765.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The field containing X1, X2, and X3 was observed in 2003 August (ObsID j8r331010 for the F606W filter and j8r331020 for F814W), while X4 and X5 were cov- ered by the observations in 2004 June (ObsID j8r332010 for F606W and j8r332020 for F814W).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Each observa- tion has a total exposure time of 1376 sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The images of the five X-ray sources in the F606W band are shown in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' We aim to identify the optical counterparts of X-ray sources with the HST imaging and derive their mag- nitudes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Astrometric calibration is also needed for the HST images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' As the lack of coverage upon the galaxy disk of NGC 4631 in Gaia, we are not able to directly align HST images with the Gaia references.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' CFHT im- ages with a large field of view are reused as the reference images to align the HST data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' We selected seven refer- ence sources in each HST observation to perform astro- metric calibration, for which we obtained the RMS resid- ual of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='′′03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Then we employed the Dolphot package to perform Point Spread Function (PSF) photometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Dolphot can identify point sources in heavily crowded areas and return their Vega magnitudes (Dolphin 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The acsmask task was used to flag bad pixels, and the calcsky task can calculate the sky background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' After these preprocessing, the PSF photometry was accom- plished by the dolphot task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The parameters in dolphot are configured referring to Williams et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' (2014) where they made a series of artificial stars to test a mesh grid parameters and found out the most suitable parameter set for crowded fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Chandra In the X-ray band, NGC 4631 has been observed by Einstein, ROSAT, Chandra, and XMM-Newton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' To ob- tain precise locations of the X-ray sources, we repro- cessed the Chandra/ACIS data which have a sub-arcsec angular resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The Chandra observation (ObsID 797) was carried out on 2000 April 16 for a total of 60 6 12h41m57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='8s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='6s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='4s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0s 32°32\'08" 06" 04" 02" 00" R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 12h41m57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='8s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='6s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='4s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0s 32°32\'08" 06" 04" 02" 00" R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' B C A 12h41m57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='8s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='6s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='4s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0s 32°32\'08" 06" 04" 02" 00" R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 12h41m57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='8s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='6s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='4s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0s 32°32\'08" 06" 04" 02" 00" R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 12h41m57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='8s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='6s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='4s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0s 32°32\'08" 06" 04" 02" 00" R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' B C A 12h41m57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='8s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='6s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='4s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0s 32°32\'08" 06" 04" 02" 00" R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' From left to right in the first row, the first panel is the CFHT/MegaCam r-band image, where the cyan circle is centered at the X-ray location (the red cross symbol) of X4 with a 3′′ radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The half length of the red cross represents the X-ray positional error of X4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The second is the Hα image, residing with a bubble-like structure around X4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The brightest region is marked as A region in the white circle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' When performing the photometry for the whole bubble, the shape is adopted as the region between the two red ellipses, marked as B (which includes the A region).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The cavity in the center is marked as C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The third panel is the result of subtracting the underlying continuum component from the Hα image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Most of the stellar sources have been removed here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The blank regions represent the dropped pixels that do not have adequate S/N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' In the second row, the images of g, [O iii] and [O iii] with continuum removed are shown in turn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' ksec exposure time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' We perform X-ray astrometry and photometry in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The spectral and timing prop- erties of these X-ray sources were presented in details in Soria & Ghosh (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The data were reprocessed with the CIAO (v4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='13) package.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The chandra_repro task was applied to cre- ate a new level = 2 event file calling the latest calibra- tion products (CALDB v4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='4) and more advanced al- gorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' For astrometric calibration, we aligned the Chandra/ACIS images to the HST/ACS images (see Section 3 for details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The CIAO script deflare was used to remove the background flares (> 3σ) which only accounts for ≈ 4% of the total exposure time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The full-band (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0 keV) X-ray image was then generated using the ASCA grade 0,2,3,4,6 events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The PSF and exposure maps were pro- duced accordingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The final X-ray point source detec- tion was carried out using wavdetect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The detection threshold is set to be 10−6, while the wavelet scales are 1, √ 2, 2, 2 √ 2, and 4 pixels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The coordinates return by wavdetect are adopted as the X-ray positions for the five luminous X-ray sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' IDENTIFYING THE OPTICAL COUNTERPARTS To identify the optical counterparts of the X-ray sources, we improve the astrometry of Chandra/ACIS images relative to the HST/ACS images following the methodology laid out in Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Because of the small field of view of HST/ACS, only one com- mon source can be registered from the Chandra to the HST images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Therefore, we supplement the HST/ACS observation on an adjacent and partly overlapping field (ObsID jc9l04010) to taking a mosaic image using the AstroDrizzle package.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The second common source is therefore added.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' These two objects are identified as point X-ray sources (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Evans et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2010), and their coordinates and other information are listed in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' We use the CIAO task wcs_match to register the Chandra image to the HST image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The 7 Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The HST/ACS F606W images of each X-ray source, with the overlaid white contours representing the X-ray flux level from the Chandra/ACIS data (contours not in uniform scales among the five panels).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' In each panel, the green circle is centered at the X-ray location with the radius represents the respective error circle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The numbered red circles are the optical counterpart candidates of the X-ray source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The white dashed circle has a radius of 1′′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The cyan circle in the middle right panel marks the young star associations northeast to X4, while that in the bottom left panel labels the compact young star group associated with X5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 32°32\'52" 32°32\'38" ×2 X1 37" 50" 36" Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 5 12h42m16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1s 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0s 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='9s 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='8s 12h42m11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2s 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1s 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0s 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='9s R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 32°32\'05" ×3 X 4 04" 47" + O 4 01" 06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3s 12h42m06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3s 06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='15 06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0s 12h41m57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='45 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2s R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 32°32\'19" X 5 18" 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 12h41m55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='7s 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='6s 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5s 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='4s R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='8 RMS residual is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='′′02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The updated positions of five X-ray sources are listed in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' We calculated the 95% Chandra positional error ra- dius for each source using Equation 5 in Hong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' (2005) which has considered the PSF variations across the field of view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' We then converted it to the 1σ error radius by applying the relation rX = rX(95%)/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='95996 in Zhao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The size of the error circle is pri- marily related to the number of counts and the off-axis angle of the source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Finally, we adopt the positional uncertainty of each source as the quadratical combina- tion of all kinds of errors: the average X-ray positional error of the two reference objects (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='′′19), the X-ray po- sitional error of each X-ray source (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='′′15-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='′′63), the error caused by the alignment between the HST and Chandra images, and the error of optical coordinates which were generated during the astrometric calibration of HST and CFHT images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The latter two kinds of errors are both ignorable compared to the X-ray positional errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The final positional uncertainties of the five X-ray sources are listed in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' In Figure 4, we overlay the X-ray flux contours (solid white lines) onto the HST/ACS/F606W images for each X-ray source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The green circles represent the uncer- tainties of X-ray positions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' X1 has the largest error circle (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='′′66) because of the small number of Chandra net counts (≈ 7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' There are multiple candidate opti- cal counterparts for X1 detected by Dolphot, which are labeled by small red circles in the upper left panel of Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The error radii of X2–X5 are similar (∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='′′3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' X2 has one candidate optical counterpart in its X-ray positional error circle, while both X3 and X4 have a few candidates in their respective error circles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' X5 is located within a crowded region while two individual sources are detected in the error circle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' We will analyze these can- didate optical counterparts and the surrounding stellar environments in the next section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' COLOR-MAGNITUDE DIAGRAM For most ULXs, the optical emission is dominated by the X-ray reprocessing on the accretion disk (Tao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Nevertheless, the optical Color-Magnitude Dia- grams (CMD) can be used to infer the age of the stel- lar environments around ULXs, which could potentially suggest the nature of the ULX donor stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The Padova Stellar Evolution Code (PARSEC;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Bressan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2012) provides the isochrone databases for almost all the main- stream telescope filters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3 Here we utilize the isochrones based on the HST/ACS filters system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 3 http://stev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='oapd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='inaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='it/cgi-bin/cmd We derive the extinction AV from the hydrogen col- umn density obtained by Soria & Ghosh (2009) via X- ray spectral analyses of the Chandra observations based on the relation of NH (cm−2) = (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='21 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='09) × 1021 AV (mag) presented in G¨uver & ¨Ozel (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' To con- vert AV to the extinction in the HST/ACS filter sys- tem E(F606W − F814W), we then interpolate the cen- tral wavelengths of these filters to the extinction law derived in Cardelli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' (1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The extinction value for each X-ray source is listed in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Closely aligned with a young stellar cluster, X2 has large extinction E(F606W − F814W) = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='8 mag, which may introduce significant uncertainties when applying the CMD to derive the ages of its surrounding stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Therefore, we only plot the isochrones for the other four X-ray sources (Figure 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' For each panel, the solid blue dots stand for the optical counterpart candidates of the X-ray source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The light blue dots represent the stars within 1′′ (36 pc;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' see the white dashed circles in Fig- ure 4) from the X-ray position but outside the optical- to-X-ray error circle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The immediate surrounding stars of X1 do not appear to be closely associated like in a star group or cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Its optical counterpart candidates, as well as the nearby stars within 1′′, span a wide range of age from 5 Myr to 80 Myr, which indicates that they are unlikely born at the same time or in the same environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' As dis- cussed in Section 3, the positional error circle of X1 is also much larger (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='′′673), corresponding to ≈ 25 pc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' For X2, the sole optical counterpart shown in Fig 4 is likely to be not reliable because of the large extinction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' For X3, the three optical counterpart candidates have ages of ∼50–80 Myr which are consistent with the ages of the environmental sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' For X4, the ages of the sur- rounding stars range mostly in ∼ 20–80 Myr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The six candidate optical counterparts also show similar ages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' There appears to be a star association northeast of X4 with the size of ≈ 2′′ across (71 pc).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The CMD shows that most of its member stars are very young with ages of 5–20 Myr (the green tri up symbols in the lower left panel of Figure 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' It is worth noting that the NH value of X4 derived from the XMM-Newton spectral model- ing is one order of magnitude higher than that with the Chandra data (Soria & Ghosh 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The optical coun- terpart candidates of X4 would be younger, < 20 Myr (see fig 5), if the XMM-Newton extinction value were adopted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' X5 appears to locate within a compact star group (≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='′′8 across;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' corresponding to 28 pc).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Two point sources are identified within the error circle with ages of ∼ 5 Myr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' while three more individual sources in this star group are resolved by Dolphot,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' which have ages ∼ 5– ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='10 Myr (the green tri up symbols in Figure 5 lower right ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='F606W-F814W ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='F814W ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='X 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5 Myr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='10 Myr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='20 Myr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='50 Myr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='80 Myr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='F606W-F814W ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='F814W ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='X 3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5 Myr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='10 Myr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='20 Myr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='50 Myr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='80 Myr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='F606W-F814W ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='F814W ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='X 4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5 Myr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='10 Myr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='20 Myr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='50 Myr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='80 Myr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='F606W-F814W ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='F814W ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='X 5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5 Myr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='10 Myr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='20 Myr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='50 Myr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='80 Myr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The color-magnitude diagrams (CMDs) for optical point sources around X1, X3, X4, and X5, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The solid blue dots are the optical counterpart candidates within the error circle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The light blue dots are the point sources within 1′′ but outside the error circle which could be born in the same environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The green tri up symbols in left-lower panel represent the sources in the star group northeast of X4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Extinction correction has been applied based on the X-ray hydrogen column density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The open blue circles labels the loci of the optical counterpart candidates of X4 when the extinction value is adopted from the XMM-Newton spectral modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 10 12h41m57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='8s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='6s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='4s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2s 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0s 32°32\'06" 04" 02" 00" R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2 Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The [O iii]/Hα flux ratio map for the extended structure around X4, where the vertical color bar shows the line ratio values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The red ellipse represents the profile of the Hα bubble, while the red cross marks the position of X4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The white horizontal and vertical bars illustrate the major and minor axes of the extended structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Therefore, X5 is likely associated with a young star cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' It is worth noting that the extinction derived from the hydrogen column density obtained with X-ray spec- tra represent an upper limit for the candidate optical counterparts and their surrounding stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' If signifi- cant intrinsic absorption exists for the X-ray source, the extinction would be much smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A conservative lower limit would be the Galactic extinction along the light of sight of NGC 4631, which is AV = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='015 mag (Schlafly & Finkbeiner 2011), corresponding to NH = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3 × 1019 cm−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' This is ignorable compared to that from the X-ray spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The true values of ex- tinction should be in between the above lower and up- per limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Overestimation of the extinction would place the stars at younger age regions on the CMD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' However, it is probably reasonable to assume that the candidate optical counterparts and surrounding stars would suf- fer from high extinction (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', close to the upper limits), since NGC 4631 appears as an edge-on disk galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A NEWLY DISCOVERED BUBBLE STRUCTURE AROUND X4 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Morphology Analysis Both of the continuum-subtracted Hα and [O iii] im- ages display a clear extended structure around X4 (see the right two panels in Figure 3), while exhibiting differ- ent morphology in the two bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' In the Hα image, the structure appears more like an inflated bubble with the size of ∼ 130 pc × 100 pc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The X-ray source X4 is not located in the center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Instead, this Hα bubble structure appears to be sourced from the location of the ULX (see the red cross in Figure 3) and is oriented toward the southwest direction, reaching maximum luminosity in the outermost region, ∼ 100 pc away from X4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The extended nebula in the [O iii] image has a smaller size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' In contrast to the Hα bubble, the brightest region of the [O iii] structure is to the east of X4, and is substantially closer to the X-ray source ( < ∼ 25 pc).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The extended structures around ULXs may originate from photoionization or shock ionization, both of which could coexist while playing major roles in different parts of the structure (Moon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' G´urpide et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Zhou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Generally, in the photoionization pro- cess, the line flux ratio [O iii]/Hβ tends to peak at or near the ionizing source and declines outwards.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' For the shock-ionized bubble, the edge region has higher excita- tion level and exhibits the higher [O iii]/Hβ ratio than in the central area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Here we use the [O iii]/Hα ratio as a proxy, since it is reasonable to assume that the line ratio Hα/Hβ ≡ τ remains constant in the bub- ble area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The typical τ value is ∼ 3 for ULX bub- bles (Allen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' We will calculate the exact value for our case in the next subsection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Derived from the continuum-subtracted [O iii] and Hα images, the [O iii]/Hα ratio map is shown in Figure 6, in which the red ellipse marks the bubble shape in the Hα band (same as that in the upper middle panel of Figure 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' We extract the [O iii]/Hα line ratio roughly along the major and minor axes of the bubble (the white horizon- tal and vertical bars in Figure 6 respectively) and obtain a clearer spatial profile, which is illustrated in Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The [O iii]/Hα ratio reaches its minimum in the bubble center and increases outwards along both axes, which suggests that the Hα bubble is mostly dominated by the shock ionization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' There is a bump of the [O iii]/Hα ratio in the east edge of major axis, coinciding with the brightest [O iii] region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' This area is likely formed pre- dominantly by photoionization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' It is indeed close to the ULX which is presumably the source of ionizing photons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The peak [O iii]/Hα value in this area is > ∼ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Combined with the calculated Hα/Hβ line ratio of τ ∼ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='75 (see Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2), the peak [O iii]/Hβ would be ∼ 4, which is similar to that of photoionization-dominated nebulae found in previous ULX bubble studies (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Soria et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The shock-ionized bubbles around ULXs can be formed via two mechanisms: through explosive events like supernovae (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', supernova remnants) or being in- flated by continuous jet/outflow from ULXs (Pakull et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' However, ULX bubbles often have sizes of a few hundred pc (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Ramsey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Gris´e 11 2 1 0 1 2 arcsecond distance from the bubble center 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='4 [OIII]/H Major axis Minor axis Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The spatial profile of the [O iii]/Hα flux ratio along the major and minor axes of the extended nebula (see the white bars in Figure 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2011), which are one order of magnitude larger than normal supernova remnants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Although there exists the possibility of very energetic hypernova explosions, it is unlikely considering the stellar environments and the survival of ULXs as binary systems during the events (Feng & Soria 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Therefore, we suggest the Hα bub- ble structure around X4 is more likely to be inflated by the ULX jet/outflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' It is worth noting that, unlike many other ULX bub- bles, this extended structure around X4 only has a one- sided lobe to the southwest direction, while X4 itself is close to the east edge of the bubble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The missing of the lobe in the other direction is not caused by the relativis- tic beaming because the bubble expansion velocity vs is only at the order of hundred km s−1, far below the speed of light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' For example, the bubble around the ULX in NGC 5585 has an expansion velocity of 125 km s−1 (Soria et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' For this bubble around X4, the ex- pansion velocity is estimated to be vs ∼ 110 km s−1 (see Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The asymmetric profile of an extended nebula could imply the density gradient of ISM or outflows, as sug- gested for IC 342 X-1 (Cseh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Here in our case, one viable scenario is that the ISM is much denser to the east of X4, resulting in an outflow blocked by the dense medium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Hence, the east area is mainly pho- toionized by the ULX itself (as shown by the [O iii]/Hβ ratio profile), while most other regions are dominated by shock ionization through the outflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Similar situations can be found in the simulations of supernova feedback (Creasey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Pardi 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' In their simulations, if the ISM density reaches 102–104 cm−3 and the ejection temperature is lower than 106 K, the injected energy of the outflow will be immediately lost due to the strong radiative cooling in the high density regions, dubbed the overcooling problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' An alternative interpretation of this unusual morphol- ogy is that the accretion disk of X4 has launched an asymmetric outflow, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', the outflow to the east direc- tion is much weaker or nonexistent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' There have been numerical simulations showing that an asymmetric or even one-sided outflow can be formed from the accretion disk if the accretor is rotating and is accompanied with a complex magnetic field (Lovelace et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Dyda et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' It is also possible that both of the two mechanisms are responsible for this asymmetric morphology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The side with the weaker/absent outflow has more dense am- bient ISM, leading to photoionization dominating the compact east area close to the ULX, while the shock- ionized bubble is only formed to the opposite direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Mechanical Power Estimation To estimate the mechanical power needed to inflate the bubble, we first calculate the Hα luminosity from the surface brightness of the structure measured with Python/Photutils.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The brightest region in the Hα band (marked with “A” in Figure 3) has a surface bright- ness of 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='34 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='01 mag arcsec−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The whole bubble structure, which is confined in a donut shape (region B in Figure 3, subtracting region C while including region A), has an average surface brightness of 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='64 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='01 mag arcsec−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Using the surface brightness and bubble size R, We can estimate the injected mechanical power Pw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Based on the standard bubble theory (Weaver et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 1977;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Pakull et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2006), Pw can be calculated as P39 ≈ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='8R2 2v2 3n erg s−1, (2) where P39 ≡ Pw/(1039 erg s−1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' R2 ≡ R/(100 pc);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' v2 ≡ vs/(100 km s−1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' n is the ISM number density in unit of cm−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' As the ULX is located at the edge of the Hα bubble, we conceive that the one-sided jet/wind formed this one-lobe bubble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Therefore, we adopt the scale of the whole bubble to substitute the radius, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', R = 130 pc and R2 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The number density n can be derived from the Hβ luminosity LHβ, the expanding ve- locity vs, and the area of the spherical bubble A (Dopita & Sutherland 1996), n = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3 × 105LHβA−1v−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='41 2 cm−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' (3) The surface area A of the spherical bubble with a di- ameter of 130 pc is calculated as 5 × 1041 cm2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Without available Hβ imaging, the Hβ luminosity can be derived 12 60 70 80 90 100 110 120 velocity km s 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='40 [O III]/H (108, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3) (145, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3) Z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5 Z , n = 6 cm 3, B = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0 G, T = 20000 K Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The adopted solution from MAPPING V code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The ISM number density is 6 cm−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' When the shock velocity vs ≈ 108 km s−1, the [O iii]/Hα flux ratio is consistent with the observed value of ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' from Hα luminosity using the Balmer line ratio τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The intrinsic Hα luminosity is LHα = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2×1038 erg s−1, cal- culated from the bubble surface brightness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' With the lack of optical spectroscopy on the bubble, the precise expanding velocity vs is not available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' We employed the widely used shock-ionization model MAPPINGS V (Allen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2008) to estimate τ and vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' We carried out a series of calculations with MAPPINGS V which returned values for a variety of line ratios to compare with the observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' We fixed the metallicity to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5 solar abundance (Pilyugin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2014), magnetic field to a typical value of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3 µG, and arranged a large input grid of the shock velocity vs and hydrogen number den- sity n, finding a set of solution matching the observed [O iii]/Hα line ratio, which is ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3 along the most parts of the Hα bubble (see Figure 7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The result is shown in Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' We obtained the following parameter values in this solution: n ∼ 6 cm−3, vs ∼ 110 km s−1, and the Balmer line ratio τ ∼ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Combining Eqns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' (2) and (3), we can derive a relation where the mechanical power Pw is determined by the Hα luminosity LHα, the line ratio τ and expanding velocity vs: P39 ≈ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0 × 105R2 2(LHα/τ)A−1v0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='59 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' (4) By substituting the MAPPING V solution, we calcu- lated the value of P39 ≈ 51, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', the injected mechanical power Pw ∼ 5 × 1040 erg s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The lifetime t of the bubble is estimated to be t = 3 5R/vs ∼ 7 × 105 yr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' We can now calculate the mass-loss rate ˙M of the ULX jet/wind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' In the non- and mildly-relativistic sce- nario, the injected power can also be expressed as Pw = 1 2 ˙Mv2 w (Weaver et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 1977), where vw is the velocity of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='4 c 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5 log(M) 0 2 4 6 8 10 12 14 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='0 log(M) =2 =10 Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The estimated mass-loss rate ˙M of non- and mildly-relativistic wind (left panel) and the relativistic jet (right panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The x-axis is the wind velocity normalized by the speed of light vc in the left panel and the bulk Lorentz factor Γ in the right panel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' jet/wind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' This equation can be transformed to ˙M ≈ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3 × 10−8P39/v2 c M⊙ yr−1, (5) where vc(≡ vw/c) is the wind velocity in unit of the speed of light c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The left panel of Figure 9 shows the range of the mass-loss rate ˙M and its dependence on wind velocity vc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' With a typical value of vc ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2 (Pinto et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2016, 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Kosec et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2018), the mass-loss rate is calculated as ∼ 10−5M⊙ yr−1 (the green vertical line in the left panel of Figure 9), which means that ∼ 10 M⊙ will be lost through ULX wind in the bubble lifetime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Such a high mass loss rate will make it difficult to sustain the long-term stable accretion activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Instead, we consider the jet-powered bubble scenario with highly relativistic ejection velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The mass- loss rate ˙M can be inferred with the following equation (Kaiser & Alexander 1997;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Cseh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2012), ˙M = Pw (Γ − 1)c2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' (6) Adopting a minimum bulk Lorentz factor Γ = 2, we can derive the ˙M ranges as ∼ 10−6 M⊙ yr−1, while for a higher bulk Lorentz factor, like Γ = 10, the mass- loss rate would decrease to ∼ 10−7 M⊙ yr−1 (Figure 9 right panel), which is clearly more realistic for sustain- ing the accretion of ULXs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' This would suggest that rel- ativistic jets are necessary to generate the shock-ionized ULX bubbles like the one we found around X4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Mildly- relativistic winds with typical velocity of ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2c alone would not provide adequate mechanical power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Steady jets at the distance of NGC 4631 would have a radio flux level of ∼ 1 µJy, which is difficult to detect with current facilities, while flaring jets that are 1–2 orders of magni- tude brighter could be detected with, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', the Karl G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Jansky Very Large Array (VLA), like the case of Holm- berg II X-1 (Cseh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' We have searched the 13 VLA database;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' sensitive radio imaging data with sub- arcsec resolution on NGC 4631 will be publicly available in the near future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The estimated jet mechanical power of NGC 4631 X4 is greater than its radiative luminosity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' It would also be above the Eddington limit if the accretor mass is less than ∼ 100 M⊙, as for most ULXs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' This is similar to the cases of several microquasars found in nearby galax- ies, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', NGC 7793 S26 (Pakull et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2010) and M83 MQ1 (Soria et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2014), both of which have the same level of jet power at ∼ 1040 erg s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The Galactic micro- quasar SS 433 also has the jet power far exceeding its X-ray luminosity (Fabrika 2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' These microquasars also have surrounding shock-ionized bubble structures detected with optical/infrared emission lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Their X- ray luminosity are admittedly orders of magnitude be- low the canonical definition of ULXs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' However, they could have had episodes of super-Eddington radiative luminosity in the past, while NGC 4631 X4 itself also had sub-Eddington X-ray luminosity (∼ 1037 erg s−1) during its Chandra observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Furthermore, the low X-ray luminosity of SS 433 is also due to the heavy ob- scuration along the line of sight;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' only reflected X-ray flux is detectable (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Begelman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Middle- ton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' On a much larger scale, some powerful Fanaroff-Riley II radio galaxies and blazars have been found to have jet power much greater than the radiative luminosity (Ito et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Ghisellini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' NGC 4631 X4 and the aforementioned microquasars appears to be analogs of these active galaxies at stellar scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' From another perspective, we consider the energy sources of the injected mechanical power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' In case of all the jet mechanical power originates from the accretion, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', the release of gravitational potential energy of the accreted material, the needed accretion rate ˙m can be calculated from Pw = ϵ ˙mc2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', where ϵ is the fraction of accretion power converted into mechanical energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Un- der the assumption of ϵ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1, which is already consid- ered as exceptionally high, the needed accretion rate is ˙m ∼ 10−5 M⊙ yr−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' For more realistic ϵ values, the needed accretion rate would be even higher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' This would suggest that there should be additional source(s) of the jet mechanical power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' For the cases of black hole ac- cretion, a promising energy source would be the black hole spin, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', the Blandford-Znejak (BZ) mechanism (Blandford & Znajek 1977).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' There have been evidences supporting this jet power origin for Galactic black hole binaries (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Narayan & McClintock 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' but also see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Russell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' From our analyses for NGC 4631 X4, the presumable jet requires additional energy source besides the accretion to provide sufficient mechanical power to inflate the bubble structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Nu- merical simulations on super-Eddington accretions by Narayan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' (2017) demonstrate that the total energy conversion efficiency (including both radiative and me- chanical power) of ULXs can be as high as ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='7 when introducing the high black hole spin (a∗ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='9) and the “magnetic arrested disk” (MAD;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Bisnovatyi-Kogan & Ruzmaikin 1976;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Narayan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2003) models, where the majority of energy is carried out in the form of me- chanical power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The black hole spin energy is extracted into the jets via the BZ mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' CONCLUSIONS We present an optical imaging study of the five bright- est X-ray sources in NGC 4631, among which Soria & Ghosh (2009) identified four ULXs (X1, X2, X4, X5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Chandra/ACIS data are utilized to obtain precise as- trometry and to identify possible optical counterparts from the HST/ACS images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A broad-band and narrow- band imaging campaign with CFHT/MegaCam is car- ried out to search for the bubble structures around the X-ray sources and to investigate their accretion states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The supersoft X1 has a large optical-to-X-ray posi- tional error (≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='′′5) due to its low counts during the Chandra observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The candidate optical counter- parts and the surrounding stars of X1 span a wide range of ages from 5 Myr to 80 Myr in the CMD, suggesting that they are likely not physically associated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' X3 resides in a stellar environment with the age range of ∼ 50–80 Myr, while its three candidate counterparts show sim- ilar ages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' X4 has six optical counterpart candidates, all of which show the age range consistent with that of the surrounding stars at ∼ 20–80 Myr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' X5 appears to be associated with a star group with the age of ∼ 5– 10 Myr, which is typical for the star clusters related to ULXs (Poutanen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' This young star group is a manifestation of the strong star forming activity in the starburst galaxy NGC 4631.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' We do not provide the CMD for X2 due to its high extinction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A bubble nebula with a size of ∼ 130 pc × 100 pc around X4 is firstly detected in our CFHT/MegaCam Hα narrow-band image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Unlike many other ULXs re- siding in the interior of their respective bubbles, this ULX is located at the east edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' It appears the Hα bub- ble originates from X4 and expands one-sided towards the west direction, reaching maximum luminosity in the outermost region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' In contrast, the extended structure appears smaller in the [O iii] image, while its bright- est section is much closer to the ULX and located to the east.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The [O iii]/Hα line ratio map suggests that the Hα bubble is generated mainly by shock ionization, while the [O iii] structure is illuminated by the ULX via photoionization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 14 3000 4000 5000 6000 7000 8000 Wavelength Magnitude g r OIII mg mr Figure 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The supposed linear relation between continuum magnitude and wavelength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The two pairs of black dots mark the boarders of the g and r bands of CFHT/MegaCam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The continuum in the [O iii] band is illustrated by the red shaded area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The X4 bubble has an average surface brightness of 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='64 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='01 mag arcsec−2 in the Hα band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' By match- ing the observed [O iii]/Hα line ratio, we estimate the bubble expansion velocity vs ∼ 110 km s−1 and the am- bient ISM density n ∼ 6 cm−3 using the MAPPINGS V code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' With these parameters, we constrain the me- chanical power to inflate the bubble being ∼ 5×1040 erg s−1 and the bubble age of ∼ 7 × 105 yr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Furthermore, we demonstrate that for non- or mildly- relativistic wind alone to generate the observed bubble, the needed mass- loss rate would be too high to sustain the long-term ac- cretion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Instead, in the case of a relativistic jet (with a bulk Lorentz factor Γ ∼ 10) to inflate the bubble, the mass-loss rate would decrease to a more realistic level of ∼ 10−7 M⊙ yr−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Similar to the cases of a few mi- croquasars found in the Milky Way and nearby galaxies (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', SS 433, NGC 7793 S26, and M83 MQ1), the esti- mated mechanical jet power of NGC 4631 X4 is above the Eddington limit for a stellar-mass black hole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The black hole spin is likely to contribute to the jet power via the BZ mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' For future perspectives, optical spectroscopy, espe- cially those with the integral-field instruments, will pro- vide the bubble expansion velocity field and flux ratio map for a variety of emission lines, from which a more precise estimate of the mechanical power can be ob- tained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' High-resolution X-ray spectroscopy will enable the measurement of outflow velocity, while deeper ra- dio imaging with high angular resolution could reveal the ULX jet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' With all these combined, we can derive a more reliable mass-loss rate of the outflow and further constrain the accretion models of ULXs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' We thank S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Gwyn for processing the CFHT/MegaCam data with MegaPipe and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Prunet for the help on imaging stacking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' We thank A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Boselli and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Fos- sati for helpful discussions on the continuum subtrac- tion of Hα images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' We also thank S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Feng and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Li for archival VLA data enquiry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' thank the CFHT staff for their hospitality during her visit to CFHT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' This work is supported by the National Natural Science Foundation of China (grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' U1938105, 12033004, U2038103) and the science research grants from the China Manned Space Project with NO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' CMS-CSST- 2021-A05 and CMS-CSST-2021-A06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' This research uses data obtained through the Tele- scope Access Program (TAP), which has been funded by the TAP member institutes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France- Hawaii Telescope (CFHT) which is operated by the Na- tional Research Council (NRC) of Canada, the Institut National des Sciences de l’Univers of the Centre Na- tional de la Recherche Scientifique of France, and the University of Hawaii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The observations at the Canada- France-Hawaii Telescope were performed with care and respect from the summit of Maunakea which is a signifi- cant cultural and historic site.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science In- stitute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESAC/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The data described here may be obtained from the MAST archive at doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='17909/T9RP4V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' This research has made use of data obtained from the Chandra Data Archive and the Chandra Source Catalog, and software provided by the Chandra X-ray Center (CXC) in the application packages CIAO and Sherpa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Facilities: CFHT/MegaCam, HST/ACS, Chan- dra/ACIS Software: Astropy (Astropy Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2013, 2018), CIAO (Fruscione et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2006), Dolphot (Dol- phin 2000), Matplotlib (Hunter 2007), NumPy (Harris et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2020), Pandas (Wes McKinney 2010), PyRAF (Sci- ence Software Branch at STScI 2012), SCAMP (Bertin 2006), SciPy (Virtanen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2020), SExtractor (Bertin & Arnouts 1996), SWarp (Bertin 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 15 APPENDIX A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' SUBTRACTING THE CONTINUUM FROM THE [O iii] BAND IMAGES To remove the g-band contribution from the [O iii] images, we assume the magnitude of continuum at a given wavelength is linearly correlated to this wavelength λ in the range of the g and r bands (Figure 10), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', the continuum follows a power-law spectral model (f ∝ λ−α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Then the g-band part in [O iii] can be described in the equation, mr − mg λr − λg = mg/OIII − mg λOIII − λg .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' (A1) With replacing the corresponding central wavelength in the filters of Megacam (λg = 4750 ˚A, λOIII = 5006 ˚A, λr = 6400 ˚A), the equation can be transformed to, mg/OIII ≈ mg − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='155 × (mg − mr).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' (A2) It is worth noting that this relation is only valid to the images generated by MegaPipe for which the counts have been normalized for each band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' The continuum component for each pixel can be derived after the equation is applied pixel by pixel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' REFERENCES Allen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Groves, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Dopita, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Sutherland, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Kewley, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2008, The Astrophysical Journal Supplement Series, 178, 20 Astropy Collaboration, Robitaille, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Tollerud, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2013, A&A, 558, A33, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1051/0004-6361/201322068 Astropy Collaboration, Price-Whelan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Sip˝ocz, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2018, AJ, 156, 123, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3847/1538-3881/aabc4f Bachetti, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Harrison, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Walton, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2014, Nature, 514, 202, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1038/nature13791 Begelman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', King, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Pringle, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2006, MNRAS, 370, 399.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1365-2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='10469.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='x Bertin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2006, in Astronomical Society of the Pacific Conference Series, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 351, Astronomical Data Analysis Software and Systems XV, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Gabriel, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Arviset, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Ponz, & S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Enrique, 112 Bertin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2010, SWarp: Resampling and Co-adding FITS Images Together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' http://ascl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='net/1010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='068 Bertin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Arnouts, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 1996, A&AS, 117, 393, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1051/aas:1996164 Bisnovatyi-Kogan, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Ruzmaikin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 1976, Ap&SS, 42, 401, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1007/BF01225967 Blandford, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Znajek, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 1977, MNRAS, 179, 433, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1093/mnras/179.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='433 Boselli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Fossati, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Ferrarese, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2018, A&A, 614, A56, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1051/0004-6361/201732407 Bressan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Marigo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Girardi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2012, Monthly Notices of the Royal Astronomical Society, 427, 127 Cardelli, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Clayton, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Mathis, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 1989, ApJ, 345, 245, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1086/167900 Carpano, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Haberl, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Maitra, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Vasilopoulos, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2018, MNRAS, 476, L45, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1093/mnrasl/sly030 Creasey, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Theuns, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Bower, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Lacey, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2011, MNRAS, 415, 3706, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1365-2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='19001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='x Cseh, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Corbel, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Kaaret, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2012, ApJ, 749, 17, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1088/0004-637X/749/1/17 Cseh, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Miller-Jones, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Jonker, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2015, MNRAS, 452, 24, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1093/mnras/stv1308 Cutri, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Wright, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Conrow, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2021, VizieR Online Data Catalog, II/328 Dolphin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2000, Publications of the Astronomical Society of the Pacific, 112, 1383 Dopita, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Sutherland, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 1996, ApJS, 102, 161, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1086/192255 Dyda, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Lovelace, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Ustyugova, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2015, MNRAS, 450, 481, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1093/mnras/stv623 Eckart, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Laird, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Stern, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2005, ApJS, 156, 35, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1086/425869 Evans, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Primini, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Glotfelty, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2010, ApJS, 189, 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1088/0067-0049/189/1/37 Fabrika, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2004, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Space Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', 12, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='org/abs/astro-ph/0603390 Farrell, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Webb, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Barret, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Godet, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Rodrigues, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2009, Nature, 460, 73, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1038/nature08083 16 Feng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Soria, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2011, NewAR, 55, 166, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='newar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='002 Flewelling, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2018, in American Astronomical Society Meeting Abstracts, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 231, American Astronomical Society Meeting Abstracts #231, 436.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='01 Flewelling, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Magnier, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Chambers, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2020, ApJS, 251, 7, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3847/1538-4365/abb82d Ford, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Bartko, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Bely, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 1998, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 3356, Space Telescopes and Instruments V, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Bely & J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Breckinridge, 234–248, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1117/12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='324464 Fruscione, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', McDowell, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Allen, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2006, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 6270, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Silva & R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Doxsey, 62701V, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1117/12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='671760 F¨urst, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Walton, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Harrison, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2016, ApJL, 831, L14, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3847/2041-8205/831/2/L14 Ghisellini, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Tavecchio, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Maraschi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Celotti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Sbarrato, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2014, Nature, 515, 376, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1038/nature13856 Gladstone, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Roberts, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Done, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2009, MNRAS, 397, 1836, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1365-2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='15123.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='x Gris´e, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Kaaret, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Pakull, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Motch, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2011, ApJ, 734, 23, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1088/0004-637X/734/1/23 G´urpide, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Parra, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Godet, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Contini, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Olive, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2022, arXiv e-prints, arXiv:2201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='09333.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='org/abs/2201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='09333 G¨uver, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & ¨Ozel, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2009, MNRAS, 400, 2050, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1365-2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='15598.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='x Gwyn, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2008, PASP, 120, 212, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1086/526794 Harris, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Millman, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', van der Walt, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2020, Nature, 585, 357, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1038/s41586-020-2649-2 Hong, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', van den Berg, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Schlegel, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2005, ApJ, 635, 907.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1086/496966 Hunter, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2007, Computing in Science and Engineering, 9, 90, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1109/MCSE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='55 Irwin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Wilson, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Wiegert, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2011, MNRAS, 410, 1423, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1365-2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='17510.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='x Israel, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Belfiore, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Stella, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2017a, Science, 355, 817, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='aai8635 Israel, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Papitto, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Esposito, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2017b, MNRAS, 466, L48, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1093/mnrasl/slw218 Ito, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Kino, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Kawakatu, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Isobe, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Yamada, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2008, ApJ, 685, 828, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1086/591036 Kaaret, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Feng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Roberts, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2017, ARA&A, 55, 303, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1146/annurev-astro-091916-055259 Kaiser, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Alexander, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 1997, MNRAS, 286, 215, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1093/mnras/286.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='215 Kosec, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Pinto, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Walton, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2018, MNRAS, 479, 3978, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1093/mnras/sty1626 Kosec, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Pinto, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Reynolds, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2021, MNRAS, 508, 3569, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1093/mnras/stab2856 Liu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Bregman, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Bai, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Justham, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Crowther, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2013, Nature, 503, 500, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1038/nature12762 Lovelace, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Romanova, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Ustyugova, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Koldoba, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2010, MNRAS, 408, 2083, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1365-2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='17284.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='x Magnier, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Cuillandre, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2004, PASP, 116, 449, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1086/420756 Mel´endez, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Veilleux, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Martin, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2015, ApJ, 804, 46, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1088/0004-637X/804/1/46 Middleton, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Walton, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Alston, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2021, MNRAS, 506, 1045.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1093/mnras/stab1280 Mineo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Gilfanov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Sunyaev, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2012, MNRAS, 419, 2095, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1365-2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='19862.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='x Moon, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Harrison, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Cenko, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2011, ApJL, 731, L32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1088/2041-8205/731/2/L32 Motch, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Pakull, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Soria, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Gris´e, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Pietrzy´nski, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2014, Nature, 514, 198, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1038/nature13730 Narayan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Igumenshchev, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Abramowicz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2003, PASJ, 55, L69, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1093/pasj/55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='L69 Narayan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & McClintock, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2012, MNRAS, 419, L69, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1745-3933.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='01181.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='x Narayan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Sa`I§dowski, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Soria, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2017, MNRAS, 469, 2997, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1093/mnras/stx1027 Pakull, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Grise, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Motch, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2006, Proceedings of the International Astronomical Union, 1, 293 Pakull, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Mirioni, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2002, arXiv e-prints, astro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='org/abs/astro-ph/0202488 Pakull, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Soria, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Motch, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2010, Nature, 466, 209, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1038/nature09168 Pardi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2017, PhD thesis, LMU Munich, Germany Pilyugin, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Grebel, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Kniazev, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2014, AJ, 147, 131, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1088/0004-6256/147/6/131 Pinto, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Middleton, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Fabian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2016, Nature, 533, 64, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1038/nature17417 Pinto, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Soria, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Walton, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2021, MNRAS, 505, 5058, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1093/mnras/stab1648 Poutanen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Fabrika, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Valeev, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Sholukhova, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Greiner, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2013, MNRAS, 432, 506, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1093/mnras/stt487 Qiu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Feng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2021, ApJ, 906, 36, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3847/1538-4357/abc959 17 Quintin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Webb, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', G´urpide, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Bachetti, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & F¨urst, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2021, MNRAS, 503, 5485, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1093/mnras/stab814 Ramsey, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Williams, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Gruendl, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2006, ApJ, 641, 241, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1086/499070 Roberts, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Levan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Goad, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2008, MNRAS, 387, 73, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1365-2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='13293.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='x Rodr´ıguez Castillo, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Israel, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Belfiore, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2020, ApJ, 895, 60, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3847/1538-4357/ab8a44 Russell, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Gallo, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Fender, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2013, MNRAS, 431, 405, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1093/mnras/stt176 Salvaggio, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Wolter, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Pintore, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2022, MNRAS, 512, 1814, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1093/mnras/stac559 Sathyaprakash, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Roberts, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Walton, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2019, MNRAS, 488, L35, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1093/mnrasl/slz086 Schlafly, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Finkbeiner, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2011, ApJ, 737, 103, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1088/0004-637X/737/2/103 Science Software Branch at STScI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2012, PyRAF: Python alternative for IRAF, Astrophysics Source Code Library, record ascl:1207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' http://ascl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='net/1207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='011 Soria, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Ghosh, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2009, ApJ, 696, 287, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1088/0004-637X/696/1/287 Soria, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Long, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Blair, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2014, Science, 343, 1330, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1248759 Soria, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Pakull, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Broderick, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Corbel, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Motch, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2010, MNRAS, 409, 541, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1365-2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='17360.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='x Soria, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Pakull, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Motch, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2021, MNRAS, 501, 1644, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1093/mnras/staa3784 Tao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Feng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Gris´e, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Kaaret, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2011, ApJ, 737, 81, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1088/0004-637X/737/2/81 Virtanen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Gommers, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Oliphant, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2020, Nature Methods, 17, 261, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1038/s41592-019-0686-2 Walton, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Harrison, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Grefenstette, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2014, ApJ, 793, 21, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1088/0004-637X/793/1/21 Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Liu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Qiu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2016, ApJS, 224, 40, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3847/0067-0049/224/2/40 Weaver, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', McCray, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Castor, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Shapiro, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Moore, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 1977, ApJ, 218, 377, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1086/155692 Webb, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Cseh, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Lenc, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2012, Science, 337, 554, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1222779 Weng, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Feng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2018, ApJ, 853, 115, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3847/1538-4357/aaa45c Weng, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Ge, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Zhao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2017, ApJ, 843, 69, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3847/1538-4357/aa76ec Wes McKinney.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2010, in Proceedings of the 9th Python in Science Conference, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' St´efan van der Walt & Jarrod Millman, 56 – 61, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='25080/Majora-92bf1922-00a Williams, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Lang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Dalcanton, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2014, The Astrophysical Journal Supplement Series, 215, 9 Wilson-Hodge, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Malacaria, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Jenke, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2018, ApJ, 863, 9, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3847/1538-4357/aace60 Yamasaki, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Sato, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Mitsuishi, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Ohashi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2009, PASJ, 61, S291, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1093/pasj/61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='sp1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='S291 Yang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Feng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Kaaret, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2011, ApJ, 733, 118, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1088/0004-637X/733/2/118 Zhao, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Grindlay, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Hong, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2005, ApJS, 161, 429.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='1086/497095 Zhou, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Bian, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Feng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Huang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2022, ApJ, 935, 38, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3847/1538-4357/ac815f Zhou, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Feng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', Ho, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=', & Yao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content=' 2019, ApJ, 871, 115, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} +page_content='3847/1538-4357/aaf724' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dAyT4oBgHgl3EQfPPa3/content/2301.00022v1.pdf'} diff --git a/19AyT4oBgHgl3EQf1fl-/vector_store/index.faiss b/19AyT4oBgHgl3EQf1fl-/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..8e142cddc67d2b665fc03617dd17bcb64c34b2c5 --- /dev/null +++ b/19AyT4oBgHgl3EQf1fl-/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b3e218bbc07fdf38d467cec75ee04697ea860ccaf6a4eb24ac287450007ef953 +size 9568301 diff --git a/19AzT4oBgHgl3EQf8_5O/vector_store/index.pkl b/19AzT4oBgHgl3EQf8_5O/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..5d10505d88e3c470e5d75a344e7650057941e0f8 --- /dev/null +++ b/19AzT4oBgHgl3EQf8_5O/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:67a328116b1278ec0200fe1eb5ffa4649169afeae7ee055e68cf7be8d326a133 +size 179219 diff --git a/1tFKT4oBgHgl3EQfPC1q/content/tmp_files/2301.11761v1.pdf.txt b/1tFKT4oBgHgl3EQfPC1q/content/tmp_files/2301.11761v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..8a4d72887601b034e9fc2b39839a9e19598a2e54 --- /dev/null +++ b/1tFKT4oBgHgl3EQfPC1q/content/tmp_files/2301.11761v1.pdf.txt @@ -0,0 +1,1919 @@ +A Strongly Polynomial-Time Algorithm for +Weighted General Factors with Three Feasible Degrees∗ +Shuai Shao +University of Science and Technology of China +shao10@ustc.edu.cn +Stanislav ˇZivn´y +University of Oxford +standa.zivny@cs.ox.ac.uk +January 30, 2023 +Abstract +General factors are a generalization of matchings. Given a graph G with a set π(v) of +feasible degrees, called a degree constraint, for each vertex v of G, the general factor problem +is to find a (spanning) subgraph F of G such that degF (x) ∈ π(v) for every v of G. When +all degree constraints are symmetric ∆-matroids, the problem is solvable in polynomial +time. The weighted general factor problem is to find a general factor of the maximum total +weight in an edge-weighted graph. Strongly polynomial-time algorithms are only known for +weighted general factor problems that are reducible to the weighted matching problem by +gadget constructions. +In this paper, we present the first strongly polynomial-time algorithm for a type of +weighted general factor problems with real-valued edge weights that is provably not reducible +to the weighted matching problem by gadget constructions. +1 +Introduction +A matching in an undirected graph is a subset of the edges that have no vertices in common, and +it is perfect if its edges cover all vertices of the graph. Graph matching is one of the most studied +problems both in graph theory and combinatorial optimization, with beautiful structural results +and efficient algorithms described, e.g., in the monograph of Lov´asz and Plummer [LP09] and +in relevant chapters of standard textbooks [Sch03, KV18]. In particular, the weighted (perfect) +matching problem is to find a (perfect) matching of the maximum total weight for a given +graph of which each edge is assigned a weight. This problem can be solved in polynomial time +by the celebrated Edmonds’ blossom algorithm [Edm65a, Edm65b]. Since then, a number of +more efficient algorithms have been developed [Gab74, Law76, Kar76, CM78, Gab85, GMG86, +GGS89, Gab90, GT91, HK12]. Table III of [DP14] gives a detailed review of these algorithms. +The f-factor problem is a generalization of the perfect matching problem in which one is +given a non-negative integer f(v) for each vertex v ∈ V of G = (V, E). The task is to find +a (spanning) subgraph F = (VF , EF ) of G such that degF (v) = f(v) for every v ∈ V .1 The +∗The research leading to these results has received funding from the European Research Council (ERC) under +the European Union’s Horizon 2020 research and innovation programme (grant agreement No 714532). This +work was also supported by UKRI EP/X024431/1. For the purpose of Open Access, the authors have applied a +CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. All +data is provided in full in the results section of this paper. Part of the work was done while the first author was +a postdoctoral research associate at the University of Oxford. +1In graph theory, a graph factor is usually a spanning subgraph. Here, without causing ambiguity, we allow +F to be an arbitrary subgraph including the empty graph and we adapt the convention that degF (v) = 0 if +v ∈ V \ VF . +1 +arXiv:2301.11761v1 [cs.DM] 27 Jan 2023 + +case f(v) = 1 for every v ∈ V is the perfect matching problem. +This problem, as well as +the weighted version, can be solved efficiently by a gadget reduction to the perfect matching +problem [EJ70]. In addition, Tutte gave a characterization of graphs having an f-factor [Tut52], +which generalizes his characterization theorem for perfect matchings [Tut50]. Subsequently, the +study of graph factors has attracted much attention with many variants of graph factors, e.g., +b-matchings, [a, b]-factors, (g, f)-factors, parity (g, f)-factors, and anti-factors introduced, and +various types of characterization theorems proved for the existence of such factors. We refer +the reader to the book [AK11] and the survey [Plu07] for a comprehensive treatment of the +developments on the topic of graph factors. +In the early 1970s, Lov´asz introduced a generalization of the above factor problems [Lov70, +Lov72], for which we will need a few definitions. For any nonnegative integer n, let [n] denote +{0, 1, . . . , n}. A degree constraint D of arity n is a subset of [n].2 We say that a degree constraint +D has a gap of length k if there exists p ∈ D such that p + 1, . . . , p + k /∈ D and p + k + 1 ∈ D. +An instance of the general factor problem (GFP) [Lov70, Lov72] is given by a graph G = (V, E) +and a mapping π that maps every vertex v ∈ V to a degree constraint π(v) ⊆ [degG(v)] of arity +degG(v). The task is to find a subgraph, if one exists, F of G such that degF (v) ∈ π(v) for +every v ∈ V . The case π(v) = {0, 1} for every v ∈ V is the matching problem, and the case +π(v) = {1} for every v ∈ V is the perfect matching problem. Lov´asz showed that the GFP is +NP-complete when the degree constraint {0, 3} of arity 3 (and gap 2) occurs [Lov72]. Later, +answering a question of Lov´asz, Cornu´ejols showed that the GFP is solvable in polynomial time +if each degree constraint has gaps of length at most 1 [Cor88]. +In this paper, we consider the weighted general factor problem (WGFP) where each edge +is assigned a real-valued weight and the task is to find a general factor of the maximum total +weight. Since the unweighted version is already hard when a degree constraint with a gap of +length more than 1 occurs [Lov72], we only need to consider the WGFP where each degree +constraint has gaps of length at most 1. Some cases of the WGFP are reducible to the weighted +matching or perfect matching problem by gadget constructions, and hence are polynomial-time +solvable. +Definition 1.1 (Matching Gadget). A gadget using a set D of degree constraints consists of a +graph G = (U ∪V, E) where degG(u) = 1 for every u ∈ U and there are no edges between vertices +in U, and a mapping π : V → D. A matching gadget is a gadget where D = {{0, 1}, {1}}. +A degree constraint D of arity n is matching realizable if there exists a matching gadget +(G = (U ∪ V, E), π : V → {{0, 1}, {1}}) such that |U| = n and for every k ∈ [n], k ∈ D if and +only if for every W ⊆ U with |W| = k, there exists a matching F = (VF , EF ) of G such that +VF ∩ U = W and for every v ∈ V where π(v) = {1}, v ∈ VF . +The degree constraint D = [b] (of arbitrary arity), where b > 0, for b-matchings is realizable +by a gadget using only the degree constraint {0, 1} [Tut54]. Thus, the weighted b-matching +problem is reducible to the weighted matching problem. The weighted b-matching problem is +interesting in its own right in combinatorial optimization and has been well studied with many +elaborate algorithms developed [Pul73, Mar79, Gab83, Ans87, GS13]. +Besides b-matchings, +Cornu´ejols showed that the parity interval constraint D = {g, g + 2, . . . , f} (of arbitrary arity), +where f ≥ g ≥ 0 and f ≡ g mod 2, for parity (g, f)-factors is realizable by a gadget using +only the degree constraint {1} [Cor88]. Later, Szab´o showed that the interval constraint D = +{g, g +1, . . . , f} (of arbitrary arity), where f ≥ g ≥ 0, for (g, f)-factors is realizable by a gadget +involving edges and factor-critical subgraphs [Sza09], which is indeed realizable by a gadget +using both {0, 1} and {1}. Thus, the WGFP where each degree constraint is an interval or a +2We always associate a degree constraint with an arity. Two degree constraints are different if they have +different arities although they may be the same set of integers. +2 + +parity interval is reducible to the weighted matching problem (with some vertices required to +have degree exactly 1) and hence solvable in polynomial-time by Edmonds’ algorithm, although +Szab´o gave a different algorithm for this problem [Sza09]. By reducing the WGFP with interval +and parity interval constraints to the weighted (g, f)-factor problem, a faster algorithm was +obtained in [DP18] based on Gabow’s algorithm [Gab83]. +In [Sza09], Szab´o further conjectured that the WGFP is solvable in polynomial time without +requiring each degree constraint being an interval or a parity interval, as long as each degree +constraint has gaps of length at most 1. To prove the conjecture, a natural question is then +the following: Are there other WGFPs that are polynomial-time solvable by a gadget reduction +to weighted matchings? +In other words, are there other degree constraints that are matching +realizable? In this paper, we show that the answer is no. +Theorem 1.2. A degree constraint with gaps of length at most 1 is matching realizable if and +only if it is an interval or a parity interval. +This condition is also a sufficient and necessary condition for a degree constraint to be +realized by a gadget involving edges and factor-critical subgraphs [Sza09]. +With the answer for the above question being negative, new algorithms need to be devised +for the WGFP with degree constraints that are not intervals or parity intervals. Unlike the +weighted matching problem and the weighted b-matching problem for which various types of +algorithms have been developed, only one algorithm has been presented for the more general and +challenging WGFP: For the cardinality version of WGFP, i.e., the WGFP where each edge is +assigned weight 1, Dudycz and Paluch introduced a polynomial-time algorithm for this problem +with degree constrains having gaps of length at most 1, which leads to a pseudo-polynomial-time +algorithm for the WGFP with non-negative integral edge weights [DP18]. Later, in an updated +version [DP21], the algorithm was improved to be weakly polynomial-time with a running time +O(log Wmn6), where W is the largest edge weight, m is the number of edges and n is the +number of vertices. Independently of [DP21], in this paper, we make the first step towards a +strongly polynomial-time algorithm for the WGPF. Let p ≥ 0 be an arbitrary integer. Consider +the following two types of degree constraints {p, p + 1, p + 3} and {p, p + 2, p + 3} (of arbitrary +arity). +We will call them type-1 and type-2 respectively. +These are the “smallest” degree +constraints that are not matching realizable. +Theorem 1.3 (Main). There is a strongly polynomial-time algorithm for the WGFP with real- +valued edge weights where each degree constraint is an interval, a parity interval, a type-1, or a +type-2 (of arbitrary arities). The algorithm runs in time O(n6) for a given graph with n vertices. +In particular, this gives a tractability result for the WGFP with degree constraints that are +provably not matching realizable, thus going beyond existing algorithms. The algorithm is a +recursive algorithm that uses as a black-box the GFP with constraints having gaps of length +at most 1 and the WGFP with interval and parity interval constraints. For the WGFP with +interval, parity interval, type-1 and type-2 degree constraints, we present a delicate structural +result, which is more refined than the structural result in [DP18], though the result in [DP18] +holds for the more general WGFP with all degree constraints having gaps of length at most 1. +Equipped with this result, we are able to bound the number of recursive calls of our algorithm +by the number of vertices of the graph, instead of the edge weight. In addition, as a by-product, +we give a simple proof of the result of [DP18] for the special case of WGFP with interval, parity +interval, type-1 and type-2 degree constraints by reducing the problem to WGFP on subcubic +graphs and utilizing the equivalence between 2-vertex connectivity and 2-edge connectivity of +subcubic graphs. +3 + +Let D be a degree constraint of arity at most 3. If D ̸= {0, 3} then D is an interval, a +parity interval, a type-1, or a type-2. Combining with the above-mentioned NP-hardness of the +decision case [Lov72], we obtain a complexity dichotomy for the WGFP on subcubic graphs. +Theorem 1.4. The WGFP on subcubic graphs is strongly polynomial-time solvable if the degree +constraint {0, 3} of arity three does not occur. Otherwise, it is NP-hard. +Related work +The edge constraint satisfaction problem (CSP) is a type of CSPs in which +every variable appears in exactly two constraints [Ist97, Fed01]. The counting version of the +edge-CSP is known as the Holant problem [CLX11]. For the edge-CSP on the Boolean domain, +Feder showed that the problem is NP-complete if a constraint that is not a ∆-matroid occurs, +except for those that are tractable by Schaefer’s dichotomy theorem [Sch78]. In a subsequent line +of work [DF03, GIM03, FF06, DK15], tractability of the Boolean edge-CSP has been established +for special classes of ∆-matroids, most recently for even ∆-matroids [KKR18]. +A complete +complexity classification for the Boolean edge-CSP is still open with the conjecture that all +∆-matroids are tractable. +The graph factor problem is a special case of the Boolean edge- +CSP where every constraint is symmetric (i.e, the value of the constraint only depends on the +Hamming weight of its input). For a degree constraint (or a symmetric constraint), it is a +∆-matroid if and only if it has gaps of length at most 1. Thus, the above conjecture holds for +the symmetric Boolean edge-CSP by Cornu´ejols’ result on the general factor problem [Cor88]. +A complexity classification for the weighted Boolean edge-CSP is certainly a more challenging +goal. Our result in Theorem 1.3 gives a tractability result for the weighted Boolean edge-CSP +with certain symmetric ∆-matroids as constraints, and our result in Theorem 1.4 establishes +a complexity dichotomy for the weighted Boolean edge-CSP with symmetric constraints of +arity no more than 3. We note that the weighted Boolean edge-CSP with even ∆-matroids as +constraints is still open (although [KKR18] solved not only the decision case but also a certain +optimization variant of the problem, which is different though from the natural weighted version +considered in this paper). +Organization +In Section 2, we present basic definitions and notation. +In Section 3, we +describe our algorithm and give a structural result for the WGFP which ensures the correctness +and the polynomial-time running time of our algorithm. +In Section 4, we introduce basic +augmenting subgraphs as an analogy of augmenting paths for weighed matchings and give a +proof of the structural result. The proof is based on a result regarding the existence of certain +basic factors for subcubic graphs, which is proved in Section 5. Finally, we discuss matching +realizability and its relation with ∆-matroids in Appendix A. +2 +Preliminaries +Let D be a (possibly infinite) set of degree constraints. +Definition 2.1. The weighted general factor problem parameterized by D, denoted by WGFP(D), +is the following computational problem. An instance is a triple Ω = (G, π, ω), where G = (V, E) +is a graph, π : V → D assigns to every v ∈ V a degree constraint Dv ∈ D of arity degG(V ), +and ω : E → R assigns to every e ∈ E a real-valued weight w(e) ∈ R. The task is to find, if one +exists, a general factor F of G such that the total weight of edges in F is maximized. +The general factor problem GFP(D) is the decision version of WGFP(D); i.e., deciding +whether a general factor exists or not. +4 + +Suppose that Ω = (G, π, ω) is a WGFP instance. If F is a general factor of G under π, then +we say that F is a factor of Ω, denoted by F ∈ Ω. In terms of this inclusion relation, Ω can be +viewed as a set of subgraphs of G. We extend the edge weight function ω to subgraphs of G. +For a subgraph H of G, its weight ω(H) is � +e∈E(H) ω(e) (ω(H) = 0 if H is the empty graph). +If H contains an isolated vertex v, then ω(H) = ω(H′), where H′ is the graph obtained from +H by removing v. Moreover, H ∈ Ω if and only if H′ ∈ Ω. In the following, without other +specification, we always assume that a factor does not contain any isolated vertices. The optimal +value of Ω, denoted by Opt(Ω), is maxF∈Ω ω(F). We define Opt(Ω) = −∞ if Ω has no factor. +A factor F of Ω is optimal in Ω if ω(F) = Opt(Ω). For a WGFP instance Ω′ = (G′, π′, ω′), +where G′ ⊆ G3 and ω′ is the restriction of ω on the edges of G′, we say Ω′ is a sub-instance of +Ω, denoted by Ω′ ⊆ Ω, if F ∈ Ω for every F ∈ Ω′. In particular, Ω′ is a subset of Ω by viewing +them as two sets of subgraphs of G. If Ω′ ⊆ Ω, then Opt(Ω′) ≤ Opt(Ω). +For two WGFP instances Ω1 = (G, π1, ω) and Ω2 = (G, π2, ω), we use Ω1 ∪ Ω2 to denote +the union of factors of these two instances, i.e., Ω1 ∪ Ω2 = {F ⊆ G | F ∈ Ω1 or F ∈ Ω2}, and +Ω1 ∩ Ω2 to denote the intersection, i.e., Ω1 ∩ Ω2 = {F ⊆ G | F ∈ Ω1 and F ∈ Ω2}. Note that +Ω1 ∪ Ω2 and Ω1 ∩ Ω2 are just sets of subgraphs of G and may not define WGFP instances on G. +We use G1 and G2 to denote the set of degree constraints that are intervals and parity +intervals, respectively, and T1 and T2 to denote the set of degree constraints that are type-1 +and type-2, respectively. Let G = G1 ∪ G2 and T = T1 ∪ T2. In this paper, we study the +problem WGFP(G ∪ T ). +Let H1 = (V1, E1) and H2 = (V2, E2) be two subgraphs of G. The symmetric difference +graph H1∆H2 is the induced subgraph of G induced by the edge set E1∆E2. Note that there +are no isolated vertices in a symmetric difference graph. When E1 ∩ E2 = ∅, we may write +H1∆H2 as H1 ∪ H2. When E2 ⊆ E1, we may write H1∆H2 as H1\H2. +A subcubic graph is defined to be a graph where every vertex has degree 1, 2 or 3. Unless +stated otherwise, we use VG and EG to denote the vertex set and the edge set of a graph G, +respectively. +Definition 2.2 (2-vertex-connectivity). A connected graph G is 2-vertex-connected (or 2- +connected) if it has more than 2 vertices and remains connected by removing any vertex. +Menger’s Theorem gives an equivalent definition of 2-connectivity, cf. [Die10] for a proof. +Theorem 2.3 (Menger’s Theorem). A connected graph G is 2-connected if and only if for any +two vertices of G, there exists two vertex disjoint paths connecting them (i.e., there is a cycle +containing these two vertices). +Definition 2.4 (Bridge and 2-edge-connectivity). A bridge of a connected graph is an edge +whose deletion makes the graph disconnected. A connected graph is 2-edge-connected if it has +no bridge. +The following theorem is the edge version of Menger’s Theorem. +Theorem 2.5. A connected graph G is 2-edge-connected if and only if for any two vertices of +G, there exists two edge disjoint paths connecting them. +If two paths connecting a pair of vertices are vertex-disjoint, then they are also edge-disjoint. +Thus, 2-vertex-connectivity implies 2-edge-connectivity. For subcubic graphs, one can check +that two edge-disjoint paths are also vertex-disjoint. +Thus, for subcubic graphs, 2-vertex- +connectivity is equivalent to 2-edge-connectivity. In particular, we have the following result. +3Unless specified otherwise, we use the term “subgraph” and notation G′ ⊆ G throughout for the standard +meaning of a “normal” subgraph i.e., if G = (V ′, E′) and G = (V, E) then G′ ⊆ G means V ′ ⊆ V and E′ ⊆ E. +5 + +Lemma 2.6. If a connected subcubic graph is not 2-connected, then it contains a bridge. +The following fact regarding 2-connected graphs will also be used. +Lemma 2.7. Let G = (VG, EG) be a 2-connected graph, H = (VH, EH) ⊆ G, and u ∈ VH. If +degH(u) = 2 < degG(u) = 3, then there exists a path puw = (Vpuw, Epuw) ⊆ G with endpoints u +and w for some w ∈ VH such that Epuw ∩ EH = ∅. +Proof. Since degH(u) = 2 < degG(u) = 3, there is an edge evu = (v, u) ∈ EG incident to u +such that evu /∈ EH. If v ∈ VH, then the edge evu is the desired path. Thus, we may assume +that v /∈ VH. Since G is 2-connected, there is a path pvu with endpoints v and u such that +evu /∈ Epvu. Since u ∈ VH, Vpvu ∩ VH ̸= ∅. Let w be the first vertex in the path pvu (within +the order of traversing the path from v to u) belonging to VH. Then, w ̸= u since evu /∈ Epvu +and degG(u) = 3. Also, w ̸= v since v /∈ VH. Let pvw ⊊ pvu be the segment with endpoints v +and w. Then, Epvw ∩ EH = ∅. Let puw be the path consisting of evu and pvw. It has endpoints +u, w ∈ VH, and Epuw ∩ EH = ∅. +3 +Algorithm +We give a recursive algorithm for the problem WGFP(G ∪T ), using the problems WGFP(G ) and +the decision problem GFP(G ∪T ) as oracles. Given an instance Ω = (G, π, ω) of WGFP(G ∪T ), +we define the following sub-instances of Ω = (G, π, ω) that will be used in the recursion. Recall +that VG denotes the vertex set of the underlying graph G. Let TΩ denote the set {v ∈ VG | +π(v) ∈ T }. (We may omit the subscript Ω of TΩ when it is clear from the context.) +For every vertex v ∈ TΩ, we split the instance Ω in two by splitting the degree constraint +π(v) in two parity intervals. More precisely, we define +D0 +v = {pv + 1, pv + 3} and D1 +v = {pv} +if +π(v) = {pv, pv + 1, pv + 3} ∈ T1; +D0 +v = {pv, pv + 2} and D1 +v = {pv + 3} +if +π(v) = {pv, pv + 2, pv + 3} ∈ T2. +We have D0 +v, D1 +v ∈ G2. For i ∈ {0, 1} and v ∈ TΩ, we define Ωi +v = (G, πi +v, ω) to be the sub- +instance of Ω where πi +v(x) = π(x) for every x ∈ VG\{v} and πi +v(v) = Di +v. Then, for every +v ∈ TΩ, we have Ω0 +v ∩ Ω1 +v = ∅ and Ω0 +v ∪ Ω1 +v = Ω. Moreover, TΩ0v = TΩ1v = TΩ\{v}. +Let F be a factor of Ω. Similarly to above, one can partition Ω into 2|T| many sub-instances +according to F such that each one is an instance of WGFP(G ) – for each v ∈ T, we choose one of +the two splits of π(v) as above. (We note that the algorithm will not consider all exponentially +many sub-instances.) In detail, for every vertex v ∈ T, we define DF +v = Di +v where degF (v) ∈ Di +v +as follows: +DF +v = {pv} +if +π(v) = {pv, pv + 1, pv + 3} ∈ T1 and +degF (v) = pv, +DF +v = {pv + 1, pv + 3} +if +π(v) = {pv, pv + 1, pv + 3} ∈ T1 and +degF (v) ̸= pv; +DF +v = {pv + 3} +if +π(v) = {pv, pv + 2, pv + 3} ∈ T2 and +degF (v) = pv + 3, +DF +v = {pv, pv + 2} +if +π(v) = {pv, pv + 2, pv + 3} ∈ T2 and +degF (v) ̸= pv + 3. +By definition, degF (v) ∈ DF +v ⊆ π(v) and DF +v ∈ G2. In fact, DF +v is the maximal set such that +degF (v) ∈ DF +v ⊆ π(v) and DF +v ∈ G2. One can also check that for every v ∈ T, π(v)\DF +v ∈ G2, +and moreover for every p ∈ DF +v and q ∈ π(v)\DF +v , p ̸≡ q mod 2. +For every W ⊆ TΩ, we define ΩF +W = (G, πF +W , ω) to be the sub-instance of Ω where +πF +W (v) = π(v)\DF +v +for +v ∈ W, +πF +W (v) = DF +v +for +v ∈ TΩ\W, +πF +W (v) = π(v) +for +v ∈ V \TΩ. +(1) +6 + +By definition, for every W, ΩF +W is an instance of WGFP(G ). Moreover, we have ∪W⊆T ΩF +W = Ω +and ΩF +W1 ∩ ΩF +W2 = ∅ for every W1 ̸= W2. Thus, {ΩF +W }W⊆T is a partition of Ω (viewed as a set +of subgraphs of G). When W = ∅, we write ΩF +W as ΩF , and when W = {s} or W = {s, t}, we +write ΩF +W as ΩF +s or ΩF +s,t respectively for simplicity. +Our algorithm is given in Algorithm 1. +Algorithm 1: Finding an optimal factor for an instance of WGFP(G ∪ T ) +1 Function Decision: +Input +: An instance Ω = (G, π, ω) of WGFP(G ∪ T ). +Output: A factor of Ω, or “No” if Ω has no factor. +2 Function Optimisation: +Input +: An instance Ω = (G, π, ω) of WGFP(G ). +Output: An optimal factor of Ω, or “No” if Ω has no factor. +3 Function Main: +Input +: An instance Ω = (G, π, ω) of WGFP(G ∪ T ). +Output: An optimal factor F ∈ Ω, or “No” if Ω has no factor. +4 +T ← {v ∈ V | π(v) ∈ T }; +5 +if T is the empty set then +6 +return Optimisation (Ω); +7 +else +8 +Arbitrarily pick u ∈ T; +9 +if Decision (Ω0 +u) returns “No” then +10 +return Main (Ω1 +u); +11 +else +12 +F opt ← Main (Ω0 +u); +13 +foreach v ∈ T do +14 +// Elements of T can be traversed in anarbitrary order. +15 +W ← {u} ∪ {v}; +16 +if Optimisation(ΩF opt +W +) ̸= “No” then F ′ ← Optimisation(ΩF opt +W +); +17 +if ω(F ′) > ω(F opt) then F opt ← F ′; +18 +end +19 +return F opt; +20 +end +21 +end +The following structural result for the WGFP can be used to find an optimal factor recur- +sively. It says that given an optimal factor F of Ω0 +u for some u ∈ TΩ, either F is already optimal +in Ω, or we can find an optimal factor of Ω by searching at most n sub-instances of Ω which are +in WGFP(G ). +Theorem 3.1. Suppose that Ω = (G, π, ω) is an instance of WGFP(G ∪ T ), F is a factor of +Ω and F is optimal in Ω0 +u for some u ∈ TΩ. Then a factor F ′ is optimal in Ω if and only if +ω(F ′) ≥ ω(F) and ω(F ′) ≥ Opt(ΩF +W ) for every W where u ∈ W ⊆ TΩ and |W| = 1 or |W| = 2. +In other words, if F is not optimal in Ω, then there is an optimal factor of Ω which belongs +to ΩF +W for some W where u ∈ W ⊆ TΩ and |W| = 1 or |W| = 2. +Remark 3.2. Theorem 3.1 does not hold if the condition “F is optimal in Ω0 +u” is changed to +“F is optimal in Ω1 +u” for some u ∈ TΩ. Consider the following example as shown in Figure 1. +7 + +In this instance, π(u) = π(v) = π(t) = {0, 1, 3} (denoted by hollow nodes) and π(s) = {0, 2, 3} +(denoted by the solid node), and ω(C1) = ω(pvs) = ω(psu) = ω(p′ +su) = ω(put) = ω(C2) = 1. +Inside the cycles C1 and C2, and the paths pvs, psu, put, and p′ +su, there are other vertices of +degree 2 with the degree constraint {0, 2} so that the graph G is simple. We omit these vertices +of degree 2 in Figure 1. +In this case, TΩ = {u, v, s, t}. Consider the sub-instance Ω1 +u = (G, π1 +u, ω). We have π1 +u(u) = +D1 +u = {0} since π(u) = {0, 1, 3}. One can check that the only factor F of Ω1 +u is the empty graph +(assuming there are no isolated vertices in factors), and F is not optimal in Ω. In fact, the only +optimal factor of Ω is the graph G and G ∈ ΩF +TΩ where |TΩ| = 4. Thus, Theorem 3.1 does not +hold in the case that F is optimal in Ω1 +u. +Figure 1: An example that violates Theorem 3.1 when F is optimal in Ω1 +u instead of Ω0 +u +Using Theorem 3.1, we now prove that Algorithm 1 is correct. +Lemma 3.3. Given an instance Ω = (G, π, ω) of WGFP(G , T ), Algorithm 1 returns either an +optimal factor of Ω, or “No” if Ω has no factor. +Proof. Recall that for an instance Ω = (G, π, ω), we define TΩ = {v ∈ VG | π(v) ∈ T } where +VG is the vertex set of G . We prove the correctness by induction on the |TΩ|. +If |TΩ| = 0, Ω is an instance of WGFP(G ). Algorithm 1 simply returns Optimisation (Ω). +By the definition of the function Optimisation, the output is correct. +Suppose that Algorithm 1 returns correct results for all instances Ω′ of WGFP(G , T ) where +|TΩ′| = k. We consider an instance Ω of WGFP(G , T ) where |TΩ| = k + 1. Algorithm 1 first +calls the function Decision (Ω0 +u) for some arbitrary u ∈ T. +We first consider the case that Decision (Ω0 +u) returns “No”. By the definition, Ω0 +u has no +factor. Moreover, since Ω = Ω0 +u ∪ Ω1 +u, we have F ∈ Ω if and only if F ∈ Ω1 +u. Then, a factor +F ∈ Ω1 +u is optimal in Ω if and only if it is optimal in Ω1 +u. Note that Ω1 +u is an instance of +WGFP(G , T ) where |TΩ1u| = k. By the induction hypothesis, Algorithm 1 returns a correct +result Main (Ω1 +u) for the instance Ω1 +u, which is also a correct result for the instance Ω. +Now, we consider the case that Decision (Ω0 +u) returns a factor of Ω0 +u. Then, Main (Ω0 +u) +returns an optimal factor F of Ω0 +u. After the loop (lines 13 to 17) in Algorithm 1, we get a +factor F opt of Ω such that ω(F opt) ≥ Opt(ΩF +W ) for every u ∈ W ⊆ TΩ where |W| = 1 (when +u = v) or |W| = 2 (when u ̸= v) and ω(F opt) ≥ ω(F). By Theorem 3.1, F opt is an optimal +factor of Ω. Thus, Algorithm 1 returns a correct result. +Now, we consider the time complexity of Algorithm 1. The size of an instance is defined to +be the number of vertices of the underlying graph of the instance. +Lemma 3.4. Run Algorithm 1 on an instance Ω = (G, π, ω) of size n. Then, +• the algorithm will stop the recursion after at most n recursive steps; +• the algorithm will call Decision at most n many times, call Optimisation at most +n(n+1) +2 ++ 1 many times, and perform at most n(n+1) +2 +many comparisons; +• the algorithm runs in time O(n6). +8 + +Proof. Let Ωk = {G, πk, ω} be the instance after k many recursive steps. Here Ω0 = Ω. Recall +that TΩk = {v ∈ V | πk(v) ∈ T }. For an instance Ωk with |TΩk| > 0, the recursive step will +then go to the instance (Ωk)0 +u or (Ωk)1 +u for some u ∈ TΩk. Thus, Ωk+1 = (Ωk)0 +u or (Ωk)1 +u. In +both cases, TΩk+1 = TΩk\{u} and hence |TΩk+1| = |TΩk| − 1. By design, the algorithm will stop +the recursion and return Optimisation (Ωm) when it reaches an instance Ωm with |TΩm| = 0. +Thus, #recursive steps = m = |TΩ| − 0 ≤ |V | = n. +To prove the second item, we consider the number of operations inside the recursive step +for the instance Ωk = {G, πk, ω}. Note that k ≤ n and |TΩk| = |TΩ| − k ≤ n − k. If |TΩk| = 0, +then the algorithm will simply call Optimisation once. If |TΩk| > 0, then inside the recursive +step, the algorithm will call Decision once, and call Optimisation once or |TΩk| many times +depending on the answer of Decision. Moreover, in the later case, the algorithm will also +perform |TΩk| many comparisons. Thus, +#calls of Decision = +� +|TΩk|>0 +1 = +|TΩ| +� +i=1 +1 = |TΩ| ≤ n. +#calls of Optimisation ≤ 1 + +� +|TΩk|>0 +|TΩk| = 1 + +|TΩ| +� +i=1 +i ≤ n(n + 1) +2 ++ 1. +#comparisons ≤ +� +|TΩk|>0 +|TΩk| ≤ n(n + 1) +2 +Let tMain(n) denote the running time of Algorithm 1 on an instance of size n, and tDec(n) and +tOpt(n) denote the running time of algorithms for the functions Decision and Optimisation, +respectively. Then, tDec(n) = O(n5) by the algorithm in [Cor88] and tOpt(n) = O(n5) by the +algorithm in [DP18]. Thus, tMain(n) ≤ ntDec(n) + n(n+1)+2 +2 +tOpt(n) + n(n+1) +2 += O(n6). +4 +Proof of Theorem 3.1 +As an analogy of augmenting paths in the weighted matching problem, we introduce basic +augmenting subgraphs (Definition 4.3) for the weighted graph factor problem. We will show +that given a non-optimal factor F, a basic augmenting subgraph always exists, and it satisfies +certain stronger properties under some mild assumptions (Lemma 4.4). This result will imply +Theorem 3.1. +Definition 4.1 (F-augmenting subgraphs). Suppose that F is a factor of an instance Ω = +(G, π, ω). A subgraph H of G is F-augmenting if F∆H ∈ Ω and ω(F∆H) − ω(F) > 0. +Lemma 4.2. Suppose that F is a factor of an instance Ω. If F is not optimal in Ω, then there +exists an F-augmenting subgraph. +Proof. Since F is not optimal, there is some F ′ ∈ Ω such that ω(F ′) > ω(F). Let H = F∆F ′. +We have F∆H = F ′ ∈ Ω and ωF (H) > 0. Thus, H is F-augmenting. +Given a non-optimal factor F, the existence of an F-augmenting subgraph is trivial. How- +ever, the challenge is how to find such a subgraph efficiently. We define the following basic +augmenting subgraphs which can be found efficiently. Recall that for an instance Ω = (G, π, ω) +of WGFP(G ∪ T ), TΩ is the set {v ∈ VG | π(v) ∈ T }. For two factors F, F ∗ ∈ Ω, we define +T F∆F ∗ +Ω += {v ∈ TΩ | degF∆F ∗(v) ≡ 1 mod 2} = {v ∈ TΩ | degF (v) ̸≡ degF ∗(v) mod 2}. +9 + +Definition 4.3 (Basic augmenting subgraphs). Suppose that Ω = (G, π, ω) is an instance of +WGFP(G , T ), and F and F ∗ are factors of Ω with ω(F) < ω(F ∗). An F-augmenting subgraph +H = (VH, EH) is (F, F ∗)-basic if H ⊆ F∆F ∗, |V odd +H +| ≤ 2, and V odd +H +∩ TΩ ⊆ T F∆F ∗ +Ω +where +V odd +H += {v ∈ VH | degH(v) ≡ 1 mod 2}. +Lemma 4.4. Suppose that Ω = (G, π, ω) is an instance of WGFP(G ∪ T ), and F and F ∗ are +two factors of Ω. +1. If ω(F ∗) > ω(F), then there exists an (F, F ∗)-basic subgraph. +2. If ω(F ∗) > Opt(ΩF +W ) for every W ⊆ T F∆F ∗ +Ω +with |W| ≤ 2, and T F∆F ∗ +Ω +contains a vertex +u such that F ∈ Ω0 +u (i.e., degF (u) ∈ D0 +u), then there exists an (F, F ∗)-basic subgraph H +where degH(u) ≡ 0 mod 2. +Remark 4.5. The first property of Lemma 4.4 implies the following: a factor F ∈ Ω is optimal +if and only if ω(F) ≥ Opt(ΩF +W ) for every W ⊆ TΩ with |W| ≤ 2. This is a special case of the +main result (Theorem 2) of [DP18] where the authors consider the WGFP for all constraints +with gaps of length at most 1. The second property of Lemma 4.4 is more refined than the +first property and it implies our main result (Theorem 3.1). In this paper, as a by-product of +the proof of property 2, we give a simple proof of Theorem 2 of [DP18] for the special case +WGFP(G ∪ T ) based on certain properties of cubic graphs. +Using the second property of Lemma 4.4, we can prove Theorem 3.1. +Theorem (Theorem 3.1 restated). Suppose that Ω = (G, π, ω) is an instance of WGFP(G ∪T ), +F is a factor of Ω and F is optimal in Ω0 +u for some u ∈ TΩ. Then a factor F ′ is optimal in Ω if +and only if ω(F ′) ≥ ω(F) and ω(F ′) ≥ Opt(ΩF +W ) for every W where u ∈ W ⊆ TΩ and |W| = 1 +or |W| = 2. +Proof. If F ′ is optimal in Ω, then clearly ω(F ′) ≥ ω(F) and ω(F ′) ≥ Opt(ΩF +W ) for every W +where u ∈ W ⊆ TΩ and |W| = 1 or |W| = 2. Thus, to prove the theorem, it suffices to prove +the other direction. Since ω(F ′) ≥ ω(F) and F is optimal in Ω0 +u, we have ω(F ′) ≥ Opt(ΩF +W ) for +every W ⊆ TΩ where u /∈ W and |W| ≤ 2. Also, since ω(F ′) ≥ Opt(ΩF +W ) for every W where +u ∈ W ⊆ TΩ and |W| = 1 or |W| = 2, we have ω(F ′) ≥ Opt(ΩF +W ) for every W ⊆ TΩ where +|W| ≤ 2. +For a contradiction, suppose that F ′ is not optimal in Ω. Let F ∗ be an optimal factor of +Ω. Then, ω(F ∗) > ω(F ′). Thus, ω(F ∗) > ω(F ′) ≥ Opt(ΩF +W ) for every W ⊆ TΩ where |W| ≤ 2. +Also, ω(F ∗) /∈ Ω0 +u since ω(F ∗) > ω(F) and F is optimal in Ω0 +u. Thus, degF ∗(u) ̸≡ degF (u) +mod 2. Then, T F∆F ∗ +Ω +contains the vertex u such that F ∈ Ω0 +u. By Lemma 4.4, there exists +an (F, F ∗)-basic subgraph H where degH(u) ≡ 0 mod 2. Let F ′′ = F∆H. Then F ′′ ∈ Ω and +ω(F ′′) > ω(F). Also, F ′′ ∈ Ω0 +u since degF ′′(u) ≡ degF (u) mod 2. This is a contradiction with +F being optimal in Ω0 +u. +Now it suffices to prove Lemma 4.4, and the crux of its proof is to establish the existence of +certain basic factors of the following key instance (Definition 4.6) defined on subcubic graphs +(Theorem 4.8). Recall that a subcubic graph is a graph where every vertex has degree 1, 2 or +3. +Definition 4.6 (Key instance). A key instance Ω = (G, π, ω) is an instance of WGFP(G , T ) +where G is a subcubic graph, and for every v ∈ VG, π(v) = {0, 1} if degG(v) = 1, π(v) = {0, 2} +if degG(v) = 2, and π(v) = {0, 1, 3} (i.e., type-1) or {0, 2, 3} (i.e., type-2) if degG(v) = 3. We +say a vertex v ∈ VG of degree 3 is of type-1 or type-2 if π(x) is type-1 or type-2 respectively. We +say a vertex v ∈ VG of any degree is 1-feasible or 2-feasible if 1 ∈ π(v) or 2 ∈ π(v) respectively. +10 + +Definition 4.7 (Basic factor). Let Ω be a key instance. A factor of Ω is a basic factor if it is +in one of the following five forms. +1. A path, i.e., a tree with two vertices of degree 1 (called endpoints) and all other vertices, +if there exists any, of degree 2. +2. A cycle, i.e., a graph consisting of two vertex disjoint paths with the same two endpoints. +3. A tadpole graph, i.e., a graph consisting of a cycle and a path such that they intersect at +one endpoint of the path. +4. A dumbbell graph, i.e., a graph consisting of two vertex disjoint cycles and a path such +that the path intersects with each cycle at one of its endpoints. +5. A theta graph (i.e., a graph consisting of three vertex disjoint paths with the same two +endpoints) where one vertex of degree 3 is of type-1, and the other vertex of degree 3 is of +type-2. +We will need the following theorem regarding the existences of certain basic factor in key +instances with positive total edge weights. We defer its proof to Section 5. +Theorem 4.8. Suppose that Ω = (G, π, ω) is a key instance. +1. If ω(G) > 0, then there is a basic factor F of Ω such that ω(F) > 0. +2. If ω(G) > 0, ω(G) > ω(F) for every basic factor F of Ω, and G contains a vertex u with +degG(u) = 1 or degG(u) = 3 and π(u) = {0, 2, 3}, then there is a basic factor F ∗ of Ω +such that ω(F ∗) > 0 and degF ∗(u) ≡ 0 mod 2. (Recall that degF ∗(u) = 0 if u /∈ VF ∗). +Remark 4.9. For the second property of Theorem 4.8, the requirement of π(u) = {0, 2, 3} when +degG(u) = 3 is crucial. Consider the instance Ω = (G, π, ω) as shown in Figure 1. It is easy to +that Ω is a key instance. In this case, it can be checked that ω(G) = 6 > 0 and ω(G) > ω(F) for +every basic factor F of Ω. However, there is no basic factor F ∗ of Ω such that ω(F ∗) > 0 and +degF ∗(u) ≡ 0 mod 2. Thus, the second property does not hold for a vertex u where degG(u) = 3 +and π(u) = {0, 1, 3}. +We will now use Theorem 4.8 to prove Lemma 4.4. The rest of this section is devoted to +the proof. +Proof of Lemma 4.4. Let G∆ = F∆F ∗. Note that G∆ is not necessarily a subcubic graph. In +order to invoke Theorem 4.8, we modify G∆ to a subcubic graph, and construct a key instance +on it. +For every v ∈ VG∆, we consider the set of edges incident to v in G∆, denoted by Ev. Since +G∆ = F∆F ∗, we have Ev ⊆ EG∆ = EF ∆EF ∗, where EF and EF ∗ are the edge sets of the factors +F and F ∗ respectively. If there is a pair of edges e, e∗ ∈ Ev such that e ∈ EF and e∗ ∈ EF ∗, then +we perform the following separation operation for this pair of edges. Suppose that e = (v, u) +and e∗ = (v, u∗); we add a new vertex v1 to the graph, and replace the edges e and e∗ by (v1, u) +and (v1, u∗) respectively. We label the vertex v1 (of degree 2) by πs(v1) = {0, 2}. With a slight +abuse of notation, we may still use e and e∗ to denote these two new edges, and also use EG∆ +to denote the set of all edges of the new graph. +For each Ev, keep doing the separation operations for pairs of edges of which one is in EF +and the other is in EF ∗ until all the remaining edges in Ev are in EF or in EF ∗ We use Er +v to +denote the set of remaining edges. It is possible that Er +v is empty. Let P 1 +v , . . . , P k +v be the pairs +of edges that have been separated, and v1, . . . , vk be the added vertices (k can be zero). Note +11 + +that all these new vertices are of degree 2, and are labeled by {0, 2}. Now, we have the partition +Ev = P 1 +v ∪ · · · ∪ P k +v ∪ Er +v. Let r = |Er +v|. Then r = | degF (v) − degF ∗(v)|. Note that r is even if +π(v) ∈ G2, and r ≤ 3 if π(v) ∈ T . We deal with edges in Er +v according to r and π(v). +• If r = 0, then v is an isolated vertex in the current graph, and we simply remove it. +Consider an arbitrary subgraph H of the original G∆ induced by a union of some pairs of +edges in P 1 +v , . . . , P k +v . Then, for the subgraph F∆H of G∆, we have +degF∆H(v) = degF (v) ∈ π(v). +• If r ̸= 0 and π(v) ∈ G1, then we replace the vertex v with r many new vertices, and +replace the r many edges incident to v by r many edges incident to these new vertices +such that each vertex has degree 1. We label every new vertex by {0, 1}. Suppose that +L = min{degF (v), degF ∗(v)} and U = max{degF (v), degF ∗(v)}. Since π(v) ∈ G1, {L, L + +1, . . . , U} ⊆ π(v). Consider an arbitrary subgraph H ⊆ G∆ induced by a union of some +pairs of edges in P 1 +v , . . . , P k +v and a subset of Er +v. Then, for the subgraph F∆H of G∆, we +have +degF∆H(v) ∈ {L, L + 1, . . . , U} ∈ π(v). +• If r ̸= 0 and π(v) ∈ G2\G1, then we replace the vertex v with r/2 many vertices, and +replace the r many edges incident to v by r many edges incident to these new vertices +such that each vertex has degree 2. (We can partition these r many edges into arbitrary +pairs.) We label every new vertex by {0, 2}. Suppose that L = min{degF (v), degF ∗(v)} +and U = max{degF (v), degF ∗(v)}. Since π(v) ∈ G2, {L, L + 2, . . . , U} ⊆ π(v). Consider +an arbitrary subgraph H ⊆ G∆ induced by a union of some pairs of edges in P 1 +v , . . . , P k +v +and an even-size subset of Er +v. Then, for the subgraph F∆H of G∆, we have +degF∆H(v) ∈ {L, L + 2, . . . , U} ∈ π(v). +• If r ̸= 0 and π(v) ∈ T , then there are three subcases. If r = 1, then v has degree 1 in the +current graph. We label it by πs(v) = {0, 1}. If r = 2, then v has degree 2 in the current +graph. We label it by πs(v) = {0, 2}. If r = 3, then v has degree 3 in the current graph. +We label it by πs(v) = {0, 1, 3} if degF (v) ∈ D1 +v, and πs(v) = {0, 2, 3} if degF (v) ∈ D0 +v. +Consider an arbitrary subgraph H ⊆ G∆ induced by a union of some pairs of edges in +P 1 +v , . . . , P k +v and a subset I of Er +v where |I| ⊆ πs(v). Then, for the subgraph F∆H of G∆, +we have +degF∆H(v) ∈ π(v). +Now, we get a subcubic graph Gs from G∆. Each vertex v in G∆ is replaced by a set of new +vertices in Gs, denoted by S(v). +• If π(v) ∈ G1, then S(v) consists of vertices of degree 2 or 1. +• If π(v) ∈ G2, then S(v) consists of vertices of degree 2. +• If π(v) ∈ T , then S(v) consists of vertices of degree 2 and possibly a vertex of degree r +where r = | degF (v) − degF ∗(v)| ≤ 3 (there is no such a vertex if r = 0). In particular, if +degF (v) − degF ∗(v) ≡ 0 mod 2, then S(v) consists of vertices of degree 2. +In all cases, we have degG∆(v) = � +x∈S(v) degGs(x). Each edge (u, v) in G∆ is replaced by an +edge (us, vs) ∈ G∆ where us ∈ S(u) and vs ∈ S(v). Once we get Gs from G∆, it is clear that +there is a natural one-to-one correspondence between edges in Gs and edges in G∆. Without +12 + +causing ambiguity, when we say an edge or an edge set in Gs, we may also refer it to the +corresponding edge or edge set in G∆. +As we constructed Gs, we have already defined the mapping πs which labels each vertex in Gs +with a degree constraint. For x ∈ VGs, we have πs(x) = {0, 1} if degGs(x) = 1, πs(x) = {0, 2} if +degGs(x) = 2, and πs(x) = {0, 1, 3} or {0, 2, 3} if degGs(x) = 3. Moreover, as we have discussed +above, for a vertex v ∈ VG∆ and a subgraph H ⊆ G∆ induced be a set E of edges incident to +v in G∆, we have degF∆H(v) ∈ π(v) if degHs(x) ∈ πs(x) for every x ∈ S(v) where Hs is the +subgraph of Gs induced by the edge set E (viewed as edges in Gs). +Now, we define the function ωs for edges in Gs as follow. Recall that for every edge in Gs, +its corresponding edge in G∆ is either in the factor F or the factor F ∗ but not in both since +G∆ = F∆F ∗. For e ∈ EGs, we define ωs(e) = ω(e) if e ∈ EF ∗ and ωs(e) = −ω(e) if e ∈ EF . +We can extend ωs to any subgraph of Gs by defining its weight to be the total weight of all its +edges. Then, for any subgraph Hs ⊆ Gs, ωs(Hs) = ω(F∆H) − ω(F) where H is the subgraph +of G∆ corresponding to Hs. In particular, ωs(Gs) = ω(F ∗) − ω(F) > 0. Thus, we get a key +instance Ωs = (Gs, πs, ωs) where ωs(Gs) > 0. +Suppose that F s is a factor of Gs with ωs(F s) > 0. We consider the subgraph H of G∆ +induced by the edge set EF s (viewed as edges in G∆). We show that H is an (F, F ∗)-basic +subgraph of G. We have H ⊆ G∆ = F∆F ∗. As we have discussed above, for every vertex +v ∈ VF∆H, degF∆H(v) ∈ π(v). +Thus, F∆H ∈ Ω. +Also, ωs(F s) = ω(F∆H) − ω(F) > 0. +Then, H is an F-augmenting subgraph. For every v ∈ VH, degH(v) = � +x∈S(v) degF s(x). Then, +degH(v) is odd only if there is a vertex x ∈ S(v) such that degF s(x) is odd. Thus, the number +of odd vertices in H is no more than the number of odd vertices in F s. Since F s is a basic +factor, it has at most 2 vertices of odd degree. Thus, H has at most 2 vertices of odd degree. +Moreover, for a vertex v ∈ VH ∩TΩ, if degF (v) ≡ degF ∗(v) mod 2, then S(v) consists of vertices +of degree 2. Thus, degF s(x) ∈ {0, 2} for every x ∈ S(v). Then, degH(v) = � +x∈S(v) degF s(x) is +even. Thus, for a vertex v ∈ VH ∩TΩ, degH(v) is odd only if degF (v) ̸≡ degF ∗(v) mod 2. Then, +V odd +H +∩TΩ ⊆ T F∆F ∗ +Ω +where V odd +H += {v ∈ VH | degH(v) ≡ 1 mod 2}. Thus, H is an (F, F ∗)-basic +subgraph of G. +By the first part of Theorem 4.8, there exists a basic factor F s ∈ Ωs with ωs(F s) > 0. Thus, +there exists an (F, F ∗)-basic subgraph H ⊆ G induced by the edge set EF s. The first part is +done. +Now, we prove the second part. Suppose that ω(F ∗) > Opt(ΩF +W ) for every W ⊆ T F∆F ∗ +Ω +where |W| ≤ 2, and T F∆F ∗ +Ω +contains a vertex u where degF (u) ∈ D0 +u. Consider the instance +Ωs. First, we prove that ωs(Gs) > ω(F s) for every basic factor F s of Ωs. For a contradiction, +suppose that there is some F s ∈ Ωs such that ωs(Gs) ≤ ω(F s). Still consider the subgraph +H of G∆ inducted by EF s. We know that H is an (F, F ∗)-basic subgraph of G and ωs(F s) = +ω(F∆H) − ω(F). Let W = V odd +H +∩ TΩ. Then, W ⊆ T F∆F ∗ +Ω +and |W| ≤ 2. For every x ∈ W, +since degH(x) is odd, we have degF∆H(x) ̸≡ degF (x) mod 2, and then degF∆H(x) ∈ π(x)\DF +v . +For every x ∈ TΩ\W, since degH(x) is even, we have degF∆H(x) ≡ degF (x) mod 2 and then +degF∆H(x) ∈ DF +v . Consider the sub-instance ΩF +W = (G, πF +W , ω) of Ω (see Equation (1) for the +definition of ΩF +W ). Then, F∆H ∈ ΩF +W . Thus, ω(F∆H) ≤ Opt(ΩF +W ). Since +ωs(Gs) = ω(F ∗) − ω(F) ≤ ωs(F s) = ω(F∆H) − ω(F), +we have ω(F ∗) ≤ ω(F∆H). Then, ω(F ∗) ≤ Opt(ΩF +W ). A contradiction with the assumption +that ω(F ∗) > Opt(ΩF +W ) for every W ⊆ T F∆F ∗ +Ω +where |W| ≤ 2. Thus, ωs(Gs) > ωs(F s) for +every basic factor F s of Ωs. +Since T F∆F ∗ +Ω +contains a vertex u where degF (u) ∈ D0 +u. Consider the vertex set S(u) in Gs +that corresponds to u. Since u ∈ T F∆F ∗ +Ω +, degF (u) ̸≡ degF ∗(u) mod 2. Thus, S(u) consists of +vertices of degree 2 and a vertex us of degree degGs(us) = | degF (u) − degF ∗(u)| which is 1 or +13 + +3. If | degF (u) − degF ∗(u)| = 3, then πs(us) = {0, 2, 3} since degF (u) ∈ D0 +u. Thus, Gs contains +a vertex us where degGs(us) = 1 or degGs(us) = 3 and πs(us) = {0, 2, 3}. Then, by the second +part of Theorem 4.8, there is a basic factor F s ∈ Ωs such that ωs(F s) > 0 and degF s(us) ≡ 0 +mod 2. Again, consider the subgraph H of G∆ inducted by EF s. We have proved that H is an +(F, F ∗)-basic subgraph of G. Also, +degH(u) = +� +x∈S(u)\{us} +degF s(x) + degF s(us) ≡ 0 +mod 2 +since degF s(x) ∈ πs(x) = {0, 2} for every x ∈ S(u)\{us}, and degF s(us) ≡ 0 mod 2. Thus, +there is an (F, F ∗)-basic subgraph H of G such that degH(u) ≡ 0 mod 2. +5 +Proof of Theorem 4.8 +We first prove the first property (restated in Lemma 5.6), and then prove the second property +(restated in Lemma 5.7) using the first property. In this section, for two points x and y, we use +pxy, p′ +xy or p′′ +xy to denote a path with endpoints x and y. Recall that Vpxy and Epxy denotes the +vertex set and the edge set of pxy respectively. +5.1 +Proof of the first property +Lemma 5.1. Suppose that Ω = (G, π, ω) is a key instance with ω(G) > 0. If G is not connected, +then there is a factor F ∈ Ω such that ω(F) > 0 and |EF | < |EG|. +Proof. Suppose that G1 is a connected component of G, and G2 = G∆G1 is the rest of the +graph. Note that G1 and G2 are both factors of G. By the definition of subcubic graphs, there +are no isolated vertices in G. Thus, neither G1 nor G2 is a single vertex. Then, |EG1|, |EG2| ≥ 1. +Since EG is the disjoint union of EG1 and EG2, |EG1|, |EG2| < |EG|, and ω(G) = ω(G1)+ω(G2). +Since ω(G) > 0, among ω(G1) and ω(G2), one is positive. Thus, we are done. +Lemma 5.2. Suppose that Ω = (G, π, ω) is a key instance with ω(G) > 0. Then, there is a +factor F ∈ Ω such that ω(F) > 0 and |EF | < |EG| if one of the following conditions holds: +1. There is a path puv ⊆ G with endpoints u and v where u and v are the only two vertices in +puv of type-2 (i.e., degG(u) = degG(v) = 3 and π(u) = π(v) = {0, 2, 3}) and ω(puv) ≤ 0. +2. There is a cycle C ⊆ G where no vertex is of type-2 and ω(C) ≤ 0. +Proof. Suppose that the first condition holds. Consider the subgraph F = G\puv of F. Then, +|EF | = |EG| − |Epuv| < |EG|, and ω(F) = ω(G) − ω(puv) ≥ ω(G) > 0. Now we only need to +show that F is a factor of Ω. The vertex set VF consists of three parts: +V1 = VG\Vpuv, +V2 = {x ∈ Vpuv\{u, v} | degG(x) = 3}, +and +V3 = {u, v}. +Since u and v are the only two vertices of type-2 in puv, for every x ∈ V2, x is of type-1 (i.e., +π(x) = {0, 1, 3}). Then, for every x ∈ VF , we have degF (x) = degG(x) ∈ π(x) if x ∈ V1, +degF (x) = 1 ∈ π(x) if x ∈ V2, and degF (x) = 2 ∈ π(x) if x ∈ V3. Thus, F is a factor of G. We +are done. +Suppose that the second condition holds. Consider the subgraph F = G\C. Then |EF | < +|EG| and ω(F) > 0. Similar to the above proof, one can check that F is a factor Ω. We are +done. +14 + +Lemma 5.3. Suppose that Ω = (G, π, ω) is a key instance with ω(G) > 0, G is not a basic +factor of itself and C ⊆ G is a cycle. Let k be the number of type-1 vertices and ℓ be the number +of type-2 vertices in C. If k ̸= 1 and ℓ ̸= 1, then there is a factor F ∈ Ω such that ω(F) > 0 +and |EF | < |EG|. +Proof. We prove this lemma in two cases depending on whether ω(C) > 0 or ω(C) ≤ 0. +We first consider the case that ω(C) > 0. If k = 0, then all vertices in C are 2-feasible (see +Definition 4.6). Thus, C is a factor of Ω. Since G is not a basic factor of itself, we have G ̸= C. +Also, since G has no isolated vertices, C ⊊ G implies that |EC| < |EG|. We are done. Thus, +we may assume that k ≥ 2. Suppose that {u1, u2, . . . , uk} are the type-1 vertices in C. We list +them in the order of traversing the cycle starting from u1 in an arbitrary direction. Then, these +k many vertices split the cycle into k many paths pu1u2, . . . , pukuk+1 (uk+1 = u1). For each path, +all its vertices are 2-feasible except for its two endpoints which are 1-feasible. Thus, each path +is a basic factor of G. We have |Epuiui+1| < |EG| for every i ∈ [k]. Since +ω(C) = +k +� +i=1 +ω(puiui+1) > 0, +there is a path puiui+1 such that ω(puiui+1) > 0. Thus, we are done. +Then we consider the case that ω(C) ≤ 0. If ℓ = 0, then C ⊆ G is cycle with no type- +2 vertices. By Lemma 5.2, we are done. Thus, we may assume that ℓ ≥ 2. Suppose that +{v1, v2, . . . , vℓ} are the type-2 vertices in C. We list them in the order of traversing the cycle +starting from v1 in an arbitrary direction. Then, these ℓ many vertices split the cycle into ℓ +many paths pv1v2, . . . , . . . , pvℓvℓ+1 (vℓ+1 = v1). For each path, it has no vertex of type-2 except +for its two endpoints which are of type-2. Since +ω(C) = +k +� +i=1 +ω(pvivi+1) ≤ 0, +there is a path pvivi+1 such that ω(pvivi+1) ≤ 0. Thus, there is a path pvivi+1 ⊆ G where vi and +vi+1 are the only two vertices of type-2 in pvivi+1 and ω(pvivi+1) ≤ 0. Then, by Lemma 5.2, we +are done. +Lemma 5.4. Suppose that Ω = (G, π, ω) is a key instance with ω(G) > 0, and G is not a +basic factor of itself. If G is 2-connected, then there is a factor F ∈ Ω such that Ω(F) > 0 and +|EF | < |EG|. +Proof. Since G is 2-connected, it contains at least three vertices and it contains no vertex of +degree 1. Consider the number of type-1 vertices in G. There are three cases. +• G has no type-1 vertex. +Since G is 2-connected, there is a cycle C ⊆ G. Clearly, C has no type-1 vertex. If C +has exactly one type-2 vertex, denoted by v, then v is the only vertex in C such that +degG(v) = 3. Then, there is an edge e ∈ EG incident to v such that e /∈ EC. It is easy +to see that e is a bridge of G, a contradiction with G being 2-connected. Thus, C has no +type-2 vertex, or it has at least two type-2 vertices. Then, by Lemma 5.3, we are done. +• G has exactly one type-1 vertex. +Let u be the type-1 vertex of G. Since G is 2-connected, there is a cycle C ⊆ G containing +the vertex u. Since degC(u) = 2 < degG(u) = 3, by Lemma 2.7, there is a path puw ⊆ G +with endpoints u, w ∈ VC such that Epuw ∩ EC = ∅. +15 + +Consider the subgraph H = puw∪C of G. H is a theta graph where degH(u) = degH(w) = +3. All vertices of H are 2-feasible except for u which is 1-feasible. Note that H is a basic +factor of Ω. Since G is not a basic factor of itself, H ̸= G. Also since G is connected, +there exists an edge ets = (t, s) incident to a vertex s ∈ VH such that ets /∈ EH. Clearly, +s is a vertex of type-2, degG(s) = 3 and degH(s) = 2. Then, by Lemma 2.7, there is a +path psr with endpoints s, r ∈ VH such that Epsr ∩ EH = ∅. Clearly, degG(r) = 3 and r +is a vertex of type-2. Since s, r ∈ VH and H is a theta graph which is 2-connected, we +can find a path p′ +sr ⊆ H with endpoints s and r such that the only type-1 vertex u in H +is not in p′ +sr. Consider the cycle C′ = psr ∪ p′ +sr. It has no vertex of type-1, and it has at +least two vertices s and r of type-2. By Lemma 5.3, we are done. +• G has at least two type-1 vertices. +Since G is 2-connected and it contains at least two type-1 vertices, we can find a cycle +C ⊆ G that contains at least two type-1 vertices. Consider the number of type-2 vertices +in C. If the number is not 1, then by Lemma 5.3, we are done. Thus, we may assume +that C contains exactly one vertex of type-2, denoted by v. +Since G is 2-connected +and degG(v) = 3 > degC(v) = 2, we can find a path pvu for some u ∈ VC such that +Epvu ∩ EC = ∅. We have degG(u) = 3. Since v is the only vertex of type-2 in C, u is a +vertex of type-1. Vertices v and u split C into two paths p′ +vu and p′′ +vu. Since C contains at +least two type-1 vertices, there exists some w ∈ VC where w ̸= u such that w is of type-1. +Also, w ̸= v since v is of type-2. Since w ∈ VC = Vp′vu ∪ Vp′′vu and Vp′vu ∩ Vp′′vu = {u, v}, +without loss of generality, we may assume that w ∈ Vp′vu. +Consider the path pvu. +If pvu contains at least two vertices of type-2, then the cycle +C′ = pvu ∪ p′ +vu contains at least two vertices of type-2 and at least two vertices u and w +of type-1. Then, by Lemma 5.3, we are done. Thus, we may assume that v is the only +vertex of type-2 in pvu. Consider the theta graph H = pvu ∪ C. Then v is the only vertex +of type-2 in H. Note that w ∈ VH, degH(w) = 2 < degG(w) = 3. Since G is 2-connected, +by Lemma 2.7, we can find a path pws for some s ∈ VH such that Epws ∩ EH = ∅. Clearly +s ̸= v. Then, s is of type-1 since v is the only vertex of type-2 in H. +Consider the number of type-2 vertices in pws. Suppose that there is no vertex of type-2 in +pws. Since H is 2-connected and H contains only one vertex v of type 2, we can find a path +p′ +ws ⊆ H such that p′ +ws does not contain the vertex v of type-2. Then, the cycle pws ∪ p′ +ws +has no vertex of type-2 and at least two vertices w and s of type-1. By Lemma 5.3, we are +done. Otherwise, there is at least one vertex of type-2 in pws. Since H is 2-connected, we +can find a path p′′ +ws ⊆ H such that p′′ +ws contains the vertex v of type-2. Then, the cycle +pws ∪ p′′ +ws has at least two vertices of type-2 and at least two vertices w and s of type-1. +By Lemma 5.3, we are done. +Definition 5.5 (Induced sub-instance). For a key instance Ω = (G, π, ω), and a factor F ∈ Ω, +the sub-instance of Ω induced by F, denoted by ΩF , is a key instance (F, πF , ωF ) defined on +the subgraph F of G where πF (x) = π(x) ∩ [degF (x)] ⊆ π(x) for every x ∈ VF and ωF is the +restriction of ω on EF (we may write ωF as ω for simplicity). +We are now ready to prove the first property of Theorem 4.8 as restated in the next lemma. +Lemma 5.6. Suppose that Ω = (G, π, ω) is a key instance. If ω(G) > 0, then there is a basic +factor F of Ω such that ω(F) > 0. +Proof. We prove this lemma by induction on the number of edges in G. +If |EG| = 1, then G is a single edge. Thus, G is a basic factor of itself, and ω(G) > 0. We +are done. +16 + +We assume that the lemma holds for all key instances where the underlying graph has no +more than n many edges. We consider a key instance Ω = (G, π, ω) where |EG| = n + 1. +If G is a basic factor of itself, then clearly we are done. Thus, we may assume that G is +not a basic factor of itself. Suppose that we can find a factor F ∈ Ω such that ω(F) > 0 and +|EF | < |EG| = n+1. Then, consider the sub-instance ΩF of Ω induced by F. Since |EF | < n+1 +and ω(F) > 0, by the induction hypothesis, there is basic factor F ′ ∈ ΩF such that ω(F ′) > 0. +Since ΩF ⊆ Ω, F ′ ∈ Ω. Then, we are done. Thus, in order to establish the inductive step, it +suffices to prove that there is a factor F ∈ Ω such that |EF | < |EG| and ω(F) > 0. +By Lemmas 5.1 and 5.4, if G is not connected or G is 2-connected, then we are done. Thus, +we may assume that G is a connected graph but not 2-connected. By Lemma 2.6, G contains at +least a bridge. Fix such a bridge of G. Let puv be the path containing the bridge such that for +every vertex x ∈ Vpuv\{u, v}, degG(x) = 2 and degG(u), degG(v) ̸= 2; observe that such a path +exists and it is unique. In fact, the whole path can be viewed as a “long bridge” of the graph +G. Then, G\puv is not connected and it has two connected components. Let Gu ⊆ G\puv be +the part that contains u and Gv ⊆ G\puv be the part that contains v. +If both Gu and Gv are single vertices, then the graph G is a path. If both Gu and Gv are +cycles, then G is a dumbbell graph. If one of Gu and Gv is a single vertex and the other one is a +cycle, then G is a tadpole graph. In all these cases, G is a basic factor of itself. A contradiction +with our assumption. Thus, among Gu and Gv, at least one is neither a cycle nor a single +vertex. Without loss of generality, we may assume that Gu is neither a cycle nor a single vertex. +Since Gu is not a single vertex, degG(u) ̸= 1. By the assumption, degG(u) ̸= 2. Then +degG(u) = 3, and hence degGu(u) = 2. Let e1 = (u, w1) and e2 = (u, w2) be the two edges +incident to u in Gu. +We slightly modify Gu to get a new graph. +We replace the vertex u +in Gu by two vertices u1 and u2, and replace the edges (u, w1) and (u, w1) in Gu by two +new edges (u1, w1) and (u2, w2) respectively. We denote the new graph by G′. With a slight +abuse of notations, we still use e1 and e2 to denote the edges (u1, w1) and (u2, w2) in G′ +respectively, and we say EGu = EG′. Then, the edge weight function ω can be adapted to +EG′. We define the following instance Ω′ = (G′, π′, ω′) where π′(u1) = π′(u2) = {0, 1} and +π′(x) = π(x) for every x ∈ VG′\{u1, u2}, and ω′(e1) = ω(e1) + ω(G\Gu), and ω′(e) = ω(e) for +every e ∈ EG′\{e1}. In other words, we add the total weight of the subgraph G\Gu to the edge +e1. Then, ω′(G′) = ω(G) > 0 and |EG′| = |EGu| < |EG|. By the induction hypothesis, there is +a basic factor F ∈ Ω′ such that ω′(F) > 0. We will recover a factor of Ω from F such that it +has positive weight and fewer edges than G. This will finish the proof of the inductive step. +There are four cases depending on the presence of e1 and e2 in F. +• e1, e2 /∈ EF . Then, u1, u2 /∈ VF . For every x ∈ VF , degF (x) ∈ π′(x) = π(x). Thus, F is a +basic factor of Ω. Clearly, ω(F) = ω′(F) > 0 and |EF | = |EF ′| < |EG|. We are done. +• e1 ∈ EF and e2 /∈ EF . We can view F as a subgraph of Gu by changing the edge (u1, w1) +in G′ back to the edge (u, w1) in Gu. Then, the edge (u, w2) /∈ EF . Consider the subgraph +H = F ∪ (G\Gu) of G. Since (u, w2) /∈ EF , we have (u, w2) /∈ EH. Then, |EH| < |EG|. +Also, we have +ω(H) = ω(F) + ω(G\Gu) = ω′(F) > 0. +The vertex set VH consists of three parts V1 = VF \{u}, V2 = {u}, and V3 = VG\Gu\{u}. +For every x ∈ V1, degH(x) = degF (x) ∈ π(x). For every x ∈ V3, degH(x) = degG\Gu(x) = +degG(x) ∈ π(x). Now, we consider the vertex u. +– If u is 2-feasible, then degH(u) = 2 ∈ π(x). Thus, H is a factor of Ω where ω(H) > 0 +and |EH| < |EG|. +17 + +– If u is 1-feasible, then F and G\Gu both are factors of Ω since degF (u) = degG\Gu(u) = +1 ∈ π(u). Since ω(H) = ω(F) + ω(G\Gu) > 0, among ω(F) and ω(G\Gu), at least +one is positive. Also, |EF |, |EG\Gu| < |EH| < |EG|. We are done. +• e2 ∈ EF and e1 /∈ EF . Again, we can view F as a subgraph of Gu where (u, w2) ∈ EF +and (u, w1) /∈ EF . Then, we have |EF | < |EGu| < |EG|, and ω(F) = ω′(F) > 0. +– If u is 1-feasible, then F is a factor of G where |EF | < |EG| and ω(F) > 0. We are +done. +– If u is 2-feasible, then Gu is a factor of Ω since degGu(u) = 2. +If ω(Gu) > 0, +then we are done. +Thus, we may assume that ω(Gu) ≤ 0. +Then, ω(G\Gu) = +ω(G) − ω(G\Gu) ≥ ω(G) > 0. Still consider the subgraph H = F ∪ (G\Gu). Then, +H is a factor of Ω since degH(u) = 2 ∈ π(u). Also, ω(H) = ω(F) + ω(G\Gu) > 0 +and |EH| < |EG|. We are done. +• e1, e2 ∈ EF . Then, F (as a subgraph of G′) contains two vertices u1 and u2 of degree 1. +Since F is a basic factor, it is a path. Still we can view F as a subgraph of Gu by changing +edges (u1, w1) and (u2, w2) in G′ to edges (u, w1) and (u, w2) in G. Then, F is a cycle in Gu. +Since Gu is not a cycle and it has no isolated vertices, |EF | < |EGu|. Consider the subgraph +H = F ∪ (G\Gu) of G. We have |EH| < |EG| and ω(H) = ω(F) + ω(G\Gu) = ω′(F) > 0. +Also, one can check that H is a factor of G no matter whether u is 1-feasible or 2-feasible +since degH(u) = 3 ∈ π(u). We are done. +5.2 +Proof of the second property +Now we prove the second property of Theorem 4.8 using the first property (Lemma 5.6). +Lemma 5.7. Suppose that Ω = (G, π, ω) is a key instance, and u is a vertex of G where +degG(u) = 1 or degG(u) = 3 and π(u) = {0, 2, 3}. If ω(G) > 0 and ω(G) > ω(F) for every +basic factor F of Ω, then there is a basic factor F ∗ of Ω such that ω(F ∗) > 0 and degF ∗(u) ≡ 0 +mod 2. (Recall that we agree degF ∗(u) = 0 if u /∈ VF ∗.) +Proof. By Lemma 5.6, there exists at least one basic factor of Ω such that its weight is positive. +Among all such basic factors, we pick an F such that ω(F) is the largest. We have 0 < ω(F) < +ω(G). If degF (u) is even, then we are done. Thus, we may assume that degF (u) is odd. Since +F is a basic factor and it contains a vertex u of odd degree, F is not a cycle. By the definition +of basic factors, F contains exactly one more vertex v of odd degree. Since F is a factor of Ω, +degF (u) ⊆ π(u). Recall that degG(u) = 1 or 3. If degG(u) = 1, then π(u) = {0, 1}, and hence +degF (u) = 1. If degG(u) = 3, then π(u) = {0, 2, 3}, and hence degF (u) = 3. Thus, degF (u) +always equals degG(u). +Consider the graph G′ = G\F, i.e., the subgraph of G induced by the edge set EG\EF . +Consider the instance Ω′ = (G′, π′, ω′) where for every x ∈ VG′, π′(x) = {0, 1} if degG′(x) = 1, +π′(x) = {0, 2} if degG′(x) = 2 and π′(x) = π(x) if degG′(x) = 3, and ω′ is the weight function ω +restricted to G′. Note that Ω′ is also a key instance, but it is not necessarily a sub-instance of Ω. +Since ω(G) > ω(F), we have ω′(G′) = ω(G′) = ω(G) − ω(F) > 0. Without causing ambiguity, +we may simply write ω′ as ω in the instance Ω′. By Lemma 5.6, there exists a basic factor F ′ +of Ω′ such that ω(F ′) > 0. Since EF ′ ⊆ EG\EF , F and F ′ are edge-disjoint. Let H = F ∪ F ′, +which is the subgraph of G induced by the edge set EF ∪ EF ′. We show that H is a factor of Ω. +Let V∩ = VF ∩VF ′. First we show that for every x ∈ VH\V∩, degH(x) ∈ π(x). If x ∈ VF \V∩, +then degH(x) = degF (x). Since F ∈ Ω, degF (x) ∈ π(x). Then, degH(x) ∈ π(x). If x ∈ VF ′\V∩, +then degH(x) = degF ′(x). Since x /∈ VF and G′ = G\F, degG′(x) = degG(x). Then, by the +18 + +definition of Ω′, we have π′(x) = π(x). Since F ′ is a factor of Ω′, degF ′(x) ∈ π′(x). Thus, +degH(x) ∈ π(x). Now, we consider vertices in V∩. Since F and F ′ are edge disjoint, for every +x ∈ V∩ we have degH(x) = degF (x) + degF ′(x) ≤ degG(x) ≤ 3. Also, degF (x), degF ′(x) ≥ 1 +since F and F ′ are subcubic graphs which have no isolated vertices. +• If degF (x) = 1, then 1 ∈ π(x). The vertex x is 1-feasible. Thus, degG(x) ̸= 2. Since +degG(x) > degF (x) = 1, degG(x) = 3. +Then, degG′(x) = degG(x) − degF (x) = 2, +π′(x) = {0, 2} and degF ′(x) = 2. +• If degF (x) = 2, then degG(x) = 3 since degG(x) > degF (x). Then, degG′(x) = degG(x) − +degF (x) = 1, π′(x) = {0, 1} and degF ′(x) = 1. +Thus, for every x ∈ V∩, degH(x) = degF (x) + degF ′(x) = 3 ∈ π(x). Thus, H is a factor of Ω. +Consider the sub-instance ΩH = (H, πH, ωH) of Ω induced by H (we will write ωH as ω for +simplicity). We will show that we can find a a basic factor F ∗ of ΩH such that ω(F ∗) > 0 and +degF ∗(u) ≡ 0 mod 2. Clearly, F ∗ is also a factor of Ω. +Consider the set V∩ of intersection points. If V∩ = ∅, then for every x ∈ V ′ +F , degF ′(x) = +degH(x) ∈ π(x). Thus, F ′ is a basic factor of Ω where ω(F ′) > 0 and degF ′(u) = 0. That is, F ′ +is the desired F ∗. We are done. Thus, we may assume that V∩ is non-empty. For every x ∈ V∩, +degF (x) = 1 and degF ′(x) = 2, or degF (x) = 2 and degF ′(x) = 1. Recall that F is a basic +factor containing two vertices u, v of odd degree, and degF (u) = degG(u). Clearly, u /∈ V∩. +We consider the possible forms of F and F ′. Recall that F is not a cycle. We show that F ′ +is also not a cycle. For a contradiction, suppose that F ′ is a cycle. Then, all vertices of F ′ have +degree 2. Thus, the only possible vertex in V∩ is v. Since V∩ is non-empty, V∩ = {v}. Then, +degF (v) = 1 and degF ′(v) = 2. If degF (u) = 1, then F is a path. The graph H is a tadpole +graph where v is the only vertex of degree 3. If degF (u) = 3, then F is a tadpole graph. The +graph H is a dumbbell graph where v and u are the two vertices of degree 3. In both cases, H +is a basic factor of Ω. Since ω(F ′) > 0, we have ω(H) = ω(F) + ω(F ′) > ω(F) which leads to a +contraction with F being a basic factor with the largest weight. Thus, F ′ is a basic factor which +is not a cycle. Then, it contains exactly two vertices s, t of odd degree. Then, V∩ ⊆ {v, s, t}. +We consider the graph H depending on the forms of F and F ′, and the vertices in V∩. There +are 5 main cases. +I. F is a path. +II. F is a tadpole graph and degF (u) = 3. +III. F is a tadpole graph and degF (u) = 1. +IV. F is a dumbbell graph. +V. F is a theta graph. +Recall that for two points x and y, we use pxy, p′ +xy or p′′ +xy to denote a path with endpoints x +and y. We also use qxy3 or q′ +xy3 to denote a tadpole graph where x is the vertex of degree 1 and +y is the vertex of degree 3, and θxy to denote a theta graph where x and y are the two points +of degree 3. In the following Figures 2 to 12, we use hollow nodes to denote 1-feasible vertices, +solid nodes to denote 2-feasible vertices, semisolid nodes to denote vertices that are possibly +1-feasible or 2-feasible, red-colored lines to denote paths in F, and blue-colored lines to denote +paths in F ′. +Case I: F is a path. There are 4 subcases depending on the form of F ′. +19 + +I.1 F and F ′ are both paths. Then, V∩ ⊆ {v, s, t}. There are 5 subcases: V∩ = {v}, V∩ = {s} +or {t}, V∩ = {v, s} or {v, s}, V∩ = {s, t}, and V∩ = {v, s, t}. +(a) V∩ = {v}. +Figure 2: The graph H in Case I.1.(a) +In this case, degH(u) = degH(s) = degH(t) = 1, degH(v) = 3, and π(v) = {0, 1, 3} +since degF (v) = 1 ∈ π(v). The graph H consists of three edge-disjoint paths puv, pvs +and pvt. Then, F = puv and F ′ = pvs ∪ pvt. (See Figure 2.) +Since ω(F ′) = ω(pvs) + ω(pvt) > 0, among ω(pvs) and ω(pvt), at least one is positive. +Without loss of generality, we may assume that ω(pvs) > 0. Since u does not appear +in pvs, we have degpvs(u) = 0. For every vertex x in pvs where x ̸= v, degpvs(x) = +degH(x) ∈ π(x). Also, degpvs(v) = 1 ∈ π(v). Thus, the path pvs is a basic factor of +Ω where ω(pvs) > 0 and degpvs(u) = 0. +(b) V∩ = {s} or {t}. +These two cases are symmetric. We only consider the case that V∩ = {s}. +Figure 3: The graph H in Case I.1.(b) +In this case, degH(s) = 3, degH(u) = degH(v) = degH(t) = 1, and π(s) = {0, 2, 3} +since degF ′(s) = 1 and degF (s) = 2 ∈ π(s). The graph H consists of three edge- +disjoint paths pus, psv and pst. Then, F ′ = pst and F = pus ∪ psv. (See Figure 3.) +Note that ω(pst) = ω(F ′) > 0. Let put = pus ∪ pst be the path with endpoints u and +t. For every vertex x in put where x ̸= s, we have degput(x) = degH(x) ∈ π(x). Also, +degput(s) = 2 ∈ π(s). Thus, put is a basic factor of Ω. Then, ω(F) ≥ ω(put) since F +is a basic factor of Ω with the largest weight ω(F). Then, +ω(F) = ω(pus) + ω(psv) ≥ ω(pus) + ω(pst) = ω(put). +20 + +Thus, ω(psv) ≥ ω(pst) > 0. Let pvt = psv ∪ pst be the path with endpoints v and t. +Then, +ω(pvt) = ω(psv) + ω(pst) > 0. +Since u is not in pvt, degpvt(u) = 0. Similar to the proof of put ∈ Ω, we have pvt ∈ Ω. +Thus, the path pvt is a basic factor of Ω where ω(pvt) > 0 and degpvt(u) = 0. +(c) V∩ = {v, s} or {v, t}. +These two cases are symmetric. We only consider the case that V∩ = {v, s}. +Figure 4: The graph H in Case I.1.(c) +In this case, degH(v) = degH(s) = 3, degH(u) = degH(t) = 1, π(v) = {0, 1, 3} since +degF (v) = 1 ∈ π(v), and π(s) = {0, 2, 3} since degF (s) = 2 ∈ π(s). The point s +splits F into two paths pus and psv. Then, F = pus ∪ psv. The point v splits F ′ into +two paths p′ +sv and pvt. Then, F ′ = p′ +sv ∪ pvt. (See Figure 4.) +Consider the path p′ +uv = pus ∪ p′ +sv. Note that degp′uv(s) = 2 ∈ π(s). Then, p′ +uv is a +basic factor of Ω. Since, F is a basic factor of Ω with the largest weight, we have +ω(F) = ω(pus) + ω(psv) ≥ ω(pus) + ω(p′ +sv) = ω(p′ +uv). +Thus, ω(psv) ≥ ω(p′ +sv). Let F ∗ be the tadpole graph qtv3 = psv ∪ p′ +sv ∪ pvt. Note that +degF ∗(s) = 2 ∈ π(s) and degF ∗(v) = 3 ∈ π(v). Then, F ∗ is a basic factor of Ω and +degF ∗(u) = 0. Also, the path pvt is a basic factor of Ω since degpvt(v) = 1 ∈ π(v), +and degpvt(u) = 0. Then, +ω(F ∗)+ω(pvt) = ω(psv)+ω(p′ +sv)+ω(pvt)+ω(pvt) ≥ 2(ω(p′ +sv)+ω(pvt)) = 2ω(F ′) > 0. +Thus, among ω(F ∗) and ω(pvt), at least one is positive. Thus, F ∗ or pvt is a desired +basic factor of Ω that satisfies the requirements. +(d) V∩ = {s, t}. +Figure 5: The graph H in Case I.1.(d) +In this case, degH(u) = degH(v) = 1, degH(s) = degH(t) = 3, and π(s) = π(t) = +{0, 2, 3}. The points s and t split F into three paths. Without loss of generality, we +may assume that s is closer to u and t is closer to v. Then, the three paths are pus, +21 + +pst, and ptv, and F = pus ∪pst ∪pts. Also, F ′ is a path with endpoints s and t, which +is disjoint with pst. (See Figure 5.) +Consider the path p′ +uv = pus ∪ F ′ ∪ ptv. One can check that p′ +uv is a basic factor of Ω. +Then, ω(F) ≥ ω(p′ +uv). Thus, ω(pst) ≥ ω(F ′) > 0. Consider the cycle F ∗ = F ′ ∪ pst. +Also, one can check that F ∗ is a basic factor of Ω. Moreover, ω(F ∗) = ω(F ′)+ω(pst) > +0 and degF ∗(u) = 0. We are done. +(e) V∩ = {v, s, t}. +Figure 6: The graph H in Case I.1.(e) +In this case, degH(u) = 1, degH(v) = degH(s) = degH(t) = 3, π(v) = {0, 1, 3}, and +π(s) = π(t) = {0, 2, 3}. The points s and t split F into three paths. Without loss of +generality, we assume that they are pus, pst, and ptv. Then, F = pus ∪ pst ∪ ptv. The +point v splits F ′ into two paths, p′ +sv and p′ +tv. Then, F ′ = p′ +sv ∪ p′ +tv. (See Figure 6.) +Consider the path p′ +uv = pus ∪p′ +sv. One can check that it is a basic factor of Ω. Since +ω(F) ≥ ω(p′ +uv), we have +ω(pst) + ω(ptv) ≥ ω(p′ +sv). +Consider the path p′′ +uv = pus ∪ pst ∪ p′ +tv. One can check that it is also a basic factor +of Ω. Since ω(F) ≥ ω(p′′ +uv), we have +ω(ptv) ≥ ω(p′ +tv). +Consider the tadpole graph quv3 = pus ∪ p′ +sv ∪ p′ +tv ∪ ptv. One can check that it is also +a basic factor of Ω. Since ω(F) ≥ ω(quv3), we have +ω(pst) ≥ ω(p′ +sv) + ω(p′ +tv). +Sum up the above three inequalities, and we have +2(ω(pst) + ω(ptv)) ≥ 2(ω(p′ +sv) + ω(p′ +tv)) = 2ω(F ′) > 0. +Consider the theta graph F ∗ = pst ∪ ptv ∪ p′ +sv ∪ p′ +tv. Still one can check that it is a +basic factor of Ω. Moreover, +ω(F ∗) = ω(pst) + ω(ptv) + ω(p′ +sv) + ω(p′ +tv) > 0 +and degF ∗(u) = 0. We are done. +We are done with Case I.1 where F and F ′ are both paths. +I.2. F is a path and F ′ is a tadpole graph. Without loss of generality, we may assume that +degF ′(s) = 1 and degF ′(t) = 3. In other words, F ′ consists of a path with endpoints s and +t, and a cycle C containing the vertex t. Then, V∩ ⊆ {v, s}. There are three subcases: +V∩ = {v}, V∩ = {s}, and V∩ = {v, s}. +22 + +(a) V∩ = {v}. +In this case, degH(u) = degH(s) = 1, degH(v) = degH(t) = 3, π(v) = {0, 1, 3}, +and π(t) = {0, 1, 3} or {0, 2, 3}. There are two subcases depending on whether the +intersection point v appears in the path part or the cycle part of F ′. +i. v appears in the path part. +Note that for every x ∈ VC\{t}, degH(x) = 2, and degH(t) = 3. We say such +a cycle with exactly one vertex of degree 3 in H is a dangling cycle in H. Let +et be the edge incident to t where et /∈ EC. We call the vertex t the connecting +point of C, and the edge et the connecting bridge of C. +Consider the graph H′ = H\C. +Notice that degH′(x) = degH(x) for every +x ∈ VH′\{t} and degH′(t) = 1. Consider the instance ΩH′ = (H′, πH′, ωH′) where +πH′(x) = πH(x) for every x ∈ VH′\{t} and πH′(t) = {0, 1}, and ωH′(e) = ω(e) +for every e ∈ EH′\{et} and ωH′(et) = ω(et)+ω(C). In other words, the instance +ΩH′ is obtained from ΩH by contracting the dangling cycle C to its connecting +point t and adding the total weight of C to its connecting bridge et. Clearly, +ΩH′ is a key instance and ωH′(H′) = ω(H′) + ω(C) = ω(H) > 0. +For every factor K′ ∈ ΩH′, we can recover a factor K ∈ ΩH from K′ as follows: +K = K′ if et /∈ EK′ and K = K′ ∪ C if et ∈ EK. One can check that K is a +factor of ΩH, and ω(K) = ωH′(K′). If et /∈ K, then K′ = K. Clearly, K′ is a +basic factor of ΩH′ if and only if K is a basic factor of Ω. Now, suppose that +et ∈ K. Remember that degH′(t) = 1. Then, K′ is a path with t as an endpoint +if and only if K = K′ ∪ C is a tadpole graph with t as the vertex of degree 3, +and K′ is a tadpole with t as the vertex of degree 1 if and only if K = K′ ∪ C is +a dumbbell graph. Thus, K′ is a basic factor of ΩH′ if and only if K is a basic +factor of ΩH. +Notice that the instance Ω′ +H has a similar structure to the instance ΩH in Case +I.1.(a). By replacing the vertex v in Case I.1.(a) by the cycle C (and re-arranging +the weights between the cycle C and its connecting bridge), one can check that +the proof of Case I.1.(a) works here. Note that after this replacement, the path +pvt in Case I.1.(a) becomes a tadpole graph qvt3 which is still a basic factor. +ii. v appears in the cycle part. +Figure 7: The graph H in Case I.2.(a) +Together with the point t, the point v splits the cycle in F ′ into two paths +pvt and p′ +vt. +Let pts denote the path in F ′ with endpoints t and s. +Then, +F ′ = pvt ∪ p′ +vt ∪ pts. (See Figures 7.) +• If π(t) = {0, 1, 3}, then the paths pvt, p′ +vt and pts are all basic factors of Ω. +Moreover, the vertex u does not appear in any of these paths. Also, since +ω(F ′) = ω(pvt) + ω(p′ +vt) + ω(pts) > 0, there is at least one path with positive +weight. We are done. +23 + +• If π(t) = {0, 2, 3}, then the tadpole graph quv3 = F ∪pvt∪p′ +vt is a basic factor +or Ω. Since ω(F) ≥ ω(quv3), we have ω(pvt) + ω(p′ +vt) ≤ 0. Without loss of +generality, we assume that ω(p′ +vt) ≤ 0. Consider the path F ∗ = pvt ∪pts. We +have degF ∗(u) = 0, and F ∗ is a basic factor of Ω. Since +ω(F ′) = ω(pvt) + ω(p′ +vt) + ω(pts) = ω(F ∗) + ω(p′ +vt) > 0 +and ω(p′ +vt) ≤ 0, we have ω(F ∗) > 0. We are done. +(b) V∩ = {s}. +Still, the cycle C in F ′ is a dangling cycle with the connecting point t. We can +contract C to t and add the weight ω(C) to its connecting bridge. Then, this case +is similar to Case I.1.(b). By replacing the vertex t in Case I.1.(b) by the C, one +can check that the proof of Case I.1.(b) works here. Note that the path pst in Case +I.1.(b) is replaced by a tadpole graph qst3 which is still a basic factor. +(c) V∩ = {v, s}. +In this case, degH(u) = 1, degH(v) = degH(s) = degH(t) = 3, π(v) = {0, 1, 3}, +π(s) = {0, 2, 3}, and π(t) = {0, 1, 3} or {0, 2, 3}. There are two subcases depending +on whether the intersection point v appears in the path part or the cycle part of the +tadpole graph F ′. Note that there is only one way for the intersection point s to +appear in the path F, and s always splits F into two paths pus and pst. +i. v appears in the path part. +Still, the cycle C is a dangling cycle with the connecting point t. This case is +similar to Case I.1.(c). By replacing the vertex t in Case I.1.(c) by the cycle C, +one can check that the proof of Case I.1.(c) works here. Note that the path pvt +and the tadpole graph F ∗ = qtv3 in Case I.1.(c) are replaced by a tadpole graph +and a dumbbell graph respectively. Both are still basic factors. +ii. v appears in the cycle part. +Figure 8: The graph H in Case I.2.(c) +Together with the point t, the point v splits the cycle in F ′ into two parts +pvt and p′ +vt. +Let pst denote the path in F ′ with endpoints s and t. +Then, +F ′ = pst ∪ pvt ∪ p′ +vt. (See Figure 8.) +• If π(t) = {0, 1, 3}, then the paths pvt and p′ +vt are both basic factors of Ω. +If ω(pvt) > 0 or ω(p′ +vt) > 0, then we have a basic factor satisfying the +requirements. +Thus, we may assume ω(pvt), ω(p′ +vt) ≤ 0. +Since ω(F ′) = +ω(pst) + ω(pvt) + ω(p′ +vt) > 0, we have ω(pst) > 0. Consider the path put = +pus ∪ pst. It is a basic factor of Ω. Since F is the basic factor of Ω with the +largest weight, +ω(F) = ω(pus) + ω(psv) ≥ ω(pus) + ω(pst) = ω(put). +Then, ω(psv) ≥ ω(pst) > 0. +24 + +Consider the path p′′ +vt = psv ∪ pst. It is a basic factor of Ω and degp′′ +vt(u) = 0. +Also, ω(p′′ +vt) = ω(psv) + ω(pst) > 0. We are done. +• If π(t) = {0, 2, 3}, then the tadpole graph quv3 = F ∪pvt∪p′ +vt is a basic factor +of Ω. Since ω(F) ≥ ω(quv3), we have ω(pvt) + ω(p′ +vt) ≤ 0. Since ω(F ′) > 0, +we have ω(pst) > 0. Consider the path p′ +uv = pus ∪ pst ∪ pvt. It is a basic +factor of Ω. Since ω(F) ≥ ω(p′ +uv), we have +ω(psv) ≥ ω(pst) + ω(pvt). +Similarly, consider the path p′′ +uv = pus ∪ pst ∪ p′ +vt. We have +ω(psv) ≥ ω(pst) + ω(p′ +vt). +Sum up the above two inequalities, we have +2ω(psv) ≥ 2ω(pst) + ω(pvt) + ω(p′ +vt) ≥ 2ω(pst) > 0. +Consider the theta graph F ∗ = psv ∪ F ′. Note that F ∗ is a basic factor of Ω +and degF ∗(u) = 0. Also, ω(F ∗) = ω(psv) + ω(F ′) > 0. We are done. +We are done with Case I.2 where F is a path and F ′ is a tadpole graph. +I.3. F is a path and F ′ is a dumbbell graph. Then, V∩ = {v}. +Let Cs and Ct be the two cycles in F ′ that contain vertices s and t respectively. Clearly, +among VCs and VCt, there exists at least one such that it does not contain the intersection +point v. Notice that vertices s and t are symmetric in this case. Without loss of generality, +we may assume that v /∈ VCs. Then, VCs ∩ VF = ∅. Thus, Cs is a dangling cycle with the +connecting point s. Then, this case is similar to Case I.2.(a). By replacing the vertex s +in Case I.2.(a) by the cycle Cs, one can check that the proof of Case I.2.(a) works here. +I.4. F is a path and F ′ is a theta graph. Then, V∩ = {v}. +Figure 9: The graph H in Case I.4 +In this case, degH(u) = 1, degH(v) = degH(s) = degH(t) = 3, and π(v) = {0, 1, 3}. +Since F ′ is a theta graph and degF ′(s) = degF ′(t) = 3, without loss of generality, we may +assume that π(s) = {0, 1, 3} and π(t) = {0, 2, 3}. F ′ consists of three paths pst, p′ +st and +p′′ +st. Without loss of generality, we may assume that v appears in the path pst and it splits +the path into two paths psv and pvt. (see Figure 9.) +Consider the paths p′ +sv = p′ +st ∪ pvt and p′′ +sv = p′′ +st ∪ pvt, and the tadpole graph qvs3 = +psv ∪ p′ +st ∪ p′′ +st. It can be checked that p′ +sv, p′′ +sv and qvs3 are all basic factors of H. The +vertex u does not appear in any of them. Also, +ω(psv) + ω(p′ +sv) + ω(p′′ +sv) + ω(qvs3) = 2ω(F ′) > 0. +Then, among them at least one is positive. Thus, we can find a basic factor of Ω satisfying +the requirements. +25 + +We are done with Case I where F is a path. +Case II: F is a tadpole graph and degF (u) = 3. By the assumption, π(u) = {0, 2, 3}. Also, +since degF (v) = 1 ∈ π(v), v is 1-feasible. Let C be the cycle part of F. Consider {s, t} ∩ VC. +Here, we discuss possible cases depending on intersection vertices belonging to VC instead of +the entire set V∩ of vertices points as in Case I. There are three subcases. +II.1 {s, t} ∩ VC = ∅. +In this case, degH(x) = 2 for every x ∈ VC\{u}. Thus, C is a dangling cycle with in +connecting point u in H. Then, the case is similar to Case I. By replacing the vertex u in +Case I by the cycle C, one can check that the proof of Case I works here. Note that after +the above replacement, a path containing u as an endpoint in Case I becomes a tadpole +graph containing the cycle C, and a tadpole graph containing u as the vertex of degree 1 +in Case I becomes a dumbbell graph. +II.2 {s, t} ∩ VC = {s} or {t}. +Without loss of generality, we may assume that s ∈ VC. Then, degH(u) = degH(s) = 3 +and π(u) = π(s) = {0, 2, 3}. If ω(C) > 0, then we are done since C is a basic factor of +Ω and degC(u) = 2. Thus, we may assume that ω(C) ≤ 0. Vertices s and u split C into +two paths pus and p′ +us. Since ω(C) = ω(pus) + ω(p′ +us) ≤ 0, among them at least one is +non-positive. Without loss of generality, we assume that ω(pus) ≤ 0. +Consider the graph H′ = H\pus. Note that VH′ = (VH\Vpus) ∪ {u, s}. For every x ∈ +VH′\{u, s}, we have degH′(x) = degH(x) ∈ π(x) since H is a factor of Ω. Also, degH′(u) = +2 ∈ π(u) and degH′(s) = 2 ∈ π(s). Thus, H′ is a factor of Ω. Also, ω(H′) = ω(H) − +ω(pus) > 0. However, it is not clear whether H′ is a basic factor of Ω. Consider the sub- +instance Ω′ +H = (H′, πH′, ω) of Ω induced by the factor H′. Since ω(H′) > 0, by Lemma 5.6, +there is a basic factor F ∗ ∈ ΩH′ such that ω(F ∗) > 0. Then, degF ∗(u) ∈ πH′(u) = {0, 2}. +Clearly, F ∗ is also a basic factor of Ω. We are done. +Note that this proof works no matter whether F ′ is a path or a tadpole graph, and whether +v ∈ V∩ or t ∈ V∩. In fact, this proof also works when F is a dumbbell graph as long as s +(or symmetrically t) is the only vertex in VF ′ appearing in the cycle C of F that contains +the vertex u. +II.3 {s, t} ⊆ VC. +Figure 10: The two possible forms of graph H in Case II.3. +In this case, degH(u) = degH(s) = degH(t) = 3 and π(u) = π(s) = π(t) = {0, 2, 3}. Also, +degF ′(s) = degF ′(t) = 1. Thus, F ′ is a path with endpoints s and t. Note that in this case, +it is possible that v ∈ VF ′. If v ∈ VF ′, then degH(v) = 3 and π(v) = {0, 1, 3}; otherwise, +degH(v) = 1 and π(v) = {0, 1}. The points u, s, and t split C into three paths, pus, pst, +ptu. Then, C = pus ∪ pst ∪ ptu. (See Figure 10.) If ω(C) > 0, then we are done. Thus, we +may assume that ω(C) ≤ 0. +26 + +Consider the graph H1 = H\pst = (F\pst) ∪ F ′. Similar to the above Case II.2, one can +check that H1 is a factor of Ω. Also, H1 is a tadpole graph if degH(v) = 1 or a theta +graph if degH(v) = 3. Thus, in both cases, H1 is a basic factor of Ω. Since F is the basic +factor of Ω with the largest weight, we have +ω(F) ≥ ω(H1) = ω(F) − ω(pst) + ω(F ′). +Thus, ω(pst) ≥ ω(F ′) > 0. Since ω(C) = ω(pst) + ω(pus) + ω(ptu) ≤ 0, we have ω(pus) + +ω(ptu) < 0. Without loss of generality, we may assume that ω(pus) < 0. Then, consider +the graph H2 = H\pus. Still, one can check that H2 is a factor of Ω, and degH2(u) = 2. +Also, H2 is a tadpole graph if degH(v) = 1, or a theta graph if degH(v) = 3. Thus, H2 is +a basic factor of Ω. Moreover, ω(H2) = ω(H) − ω(pus) > 0. We are done. +Case III: F is a tadpole graph and degF (v) = 3. In this case, degF (u) = 1, π(u) = {0, 1}, +degF (v) = 3, and π(v) = {0, 1, 3} or {0, 2, 3}. Recall that degH(u) = degF (u) = 1, and u /∈ V∩. +Let C be the cycle part of F. Still consider {s, t} ∩ VC. There are three subcases. +III.1 {s, t} ∩ VC = ∅. +In this case, degH(x) = 2 for every x ∈ VC\{v}. Thus, in the graph H, the cycle C is +a dangling cycle with the connecting point v. Then, the case is similar to Case I. For a +graph H in Case I where degH(v) = 1 (i.e., v /∈ V∩), by replacing the vertex v by the cycle +C, one can check that the proof of Case I works here. +III.2 {s, t} ∩ VC = {s} or {t}. +Without loss of generality, we may assume that s ∈ VC. Then degH(s) = 3 and π(s) = +{0, 2, 3}. Vertices s and v split C into two paths pvs and p′ +vs. Let puv be the path part in +the tadpole graph F. There are two subcases depending on whether t ∈ VF . Since t /∈ VC, +t ∈ VF implies t ∈ Vpuv. +(a) t /∈ Vpuv. +Figure 11: The two possible forms of graph H in Case III.2 where t /∈ Vpuv. +In this case, degH(t) = 1 or 3 depending on whether F ′ is a path or a tadpole graph +respectively (See Figure 11). If F ′ is a tadpole graph, then the cycle in F ′ containing +t is a dangling cycle in H with the connecting point t. +• If π(v) = {0, 1, 3}, then puv is a basic factor of Ω (this is true no matter whether +t ∈ Vpuv). Since F is the basic factor of Ω with the largest weight, ω(F) ≥ ω(puv). +Thus, ω(pvs) + ω(p′ +vs) = ω(C) = ω(F) − ω(puv) ≥ 0. Without loss of generality, +we may assume that ω(pvs) ≥ 0. Consider the graph H′ = F ′ ∪ pvs. It is a +path if F ′ is a path, or a tadpole graph of F ′ is a tadpole graph. Note that +degH′(u) = 0 ∈ π(u), degH′(v) = 1 ∈ π(v), degH′(s) = 2 ∈ π(s), and degH′(t) = +degH(t) ∈ π(t). Also, for every x ∈ VH′\{u, v, s, t}, degH′(x) = degH(x) ∈ π(x). +Thus, H′ is a basic factor of Ω. Also, ω(H′) = ω(F ′) + ω(pvs) > 0. We are done. +27 + +• If π(v) = {0, 2, 3}, then the cycle C is a basic factor of Ω. Consider H1 = H\pvs. +Note that degH1(u) = 1 ∈ π(u), degH1(v) = 2 ∈ π(v), degH1(s) = 2 ∈ π(s), and +degH1(t) = degH(t) ∈ π(t). One can check that H1 is a factor of Ω. Also, H1 is +either a path with endpoints u and s if F ′ is a path, or a tadpole graph with u +being the vertex of degree 1 and t being the vertex of degree 3 if F ′ is a tadpole +graph. Thus, H1 is a basic factor of Ω. Since F is the basic factor with the +largest weight, +ω(F) ≥ ω(H1) = ω(F) − ω(pvs) + ω(F ′). +Thus, ω(pvs) ≥ ω(F ′) > 0. +Similarly, by considering H2 = H\p′ +vs, we have +ω(p′ +vs) > 0. Then, ω(C) = ω(pvs) + ω(p′ +vs) > 0. Thus, C is a basic factor of Ω +with positive weight and degC(u) = 0. +(b) t ∈ Vpuv. +Figure 12: The graph H in Case III.2 where t ∈ Vpuv. +In this case, degH(t) = 3 and π(t) = {0, 2, 3}. F ′ is a path with endpoints s and t. +The vertex t splits puv into two parts put and ptv (see Figure 12). +• If π(v) = {0, 1, 3}, then puv is a basic factor of Ω. Since ω(F) ≥ ω(puv), we have +ω(C) ≥ 0. Consider the path p′ +uv = put ∪ F ′ ∪ pvs. It is also a basic factor of Ω. +Still, since ω(F) ≥ ω(p′ +uv), we have +ω(ptv) ≥ ω(F ′) + ω(pvs). +Similarly, by considering the path p′′ +uv = put ∪ F ′ ∪ p′ +vs, we have +ω(ptv) ≥ ω(F ′) + ω(p′ +vs). +Thus, 2ω(ptv) ≥ 2ω(F ′) + ω(pvs) + ω(p′ +vs) = 2ω(F ′) + ω(C) > 0. Consider the +theta graph F ∗ = ptv ∪ C ∪ F ′. Clearly, ω(F ∗) > 0. Then, F ∗ is a basic factor +of Ω with degF ∗(u) = 0. We are done. +• If π(v) = {0, 2, 3}, then C is a basic factor of Ω. Consider H1 = H\pvs. It is a +tadpole graph with the vertex u of degree 1 and the vertex t of degree 3. Note +that degH1(u) = 1 ∈ π(u), degH1(v) = 2 ∈ π(v), degH1(s) = 2 ∈ π(s), and +degH1(t) = 3 ∈ π(t). One can check that H1 is a basic factor of Ω. Thus, H1 is +a basic factor of Ω. Since F is the basic factor with the largest weight, +ω(F) ≥ ω(H1) = ω(F) − ω(pvs) + ω(F ′). +Thus, ω(pvs) ≥ ω(F ′) > 0. +Similarly, by considering H2 = H\p′ +vs, we have +ω(p′ +vs) > 0. Then, ω(C) = ω(pvs) + ω(p′ +vs) > 0. Thus, C is a basic factor of Ω +with positive weight and degC(u) = 0. +28 + +III.3 {s, t} ∈ VC. +In this case, degH(u) = 1, π(u) = {0, 1}, degH(v) = degH(s) = degH(t) = 3, and +π(s) = π(t) = {0, 2, 3}. Also, degF ′(s) = degF ′(t) = 1. Thus, F ′ is a path with endpoints +s and t. Let pst ⊆ C be the path with endpoints t and s such that v /∈ Vpst. +Consider the tadpole graph quv3 = (F\pst) ∪ F ′. In other words, quv3 is the tadpole graph +obtained from F by replacing the path pst by F ′. One can check that quv3 is also a basic +factor of Ω. Since F is the basic factor of Ω with the largest weight, +ω(F) ≥ ω(quv3) = ω(F) − ω(pst) + ω(F ′). +Thus, ω(pst) ≥ ω(F ′) > 0. Consider the cycle C′ = pst ∪ F ′. Note that it is a basic factor +of Ω. Also, degC′(u) = 0 and ω(C′) = ω(pst) + ω(F ′) > 0. We are done. +Case IV: F is a dumbbell graph. Let Cu and Cv be the two cycles of F containing vertices u +and v respectively. +If {s, t} ∩ Cv = ∅, then Cv is a dangling cycle in H with the connecting point v. This case +is similar to Case II. For a graph H in Case II where degH(v) = 1 (i.e., v /∈ V∩), by replacing +the vertex v by the cycle Cv, one can check that the proof of Case II works here. +If {s, t} ∩ Cu = ∅, then Cu is a dangling cycle in H with the connecting point u. This case +is similar to Case III. By replacing the vertex u in Case III by the cycle Cu, one can check that +the proof of Case III works here. +If {s, t} ∩ Cu and {s, t} ∩ Cv are both non-empty, then without loss of generality, we may +assume that s ∈ Cu and t ∈ Cv. Thus, F ′ is a path with endpoints s and t. As we have +mentioned in Case II.2, one can check that the proof of Case II.2 works here. +Case V: F is a theta graph. +In this case, degH(u) = degH(v) = 3. +By the assumption, +π(u) = {0, 2, 3}. Also, by the definition of theta graphs, π(v) = {0, 1, 3}. Then, V∩ ⊆ {s, t}. +There two subcases. +V.1 V∩ = {s} or {t}. +Without loss of generality, we assume that V∩ = {s}. Then, degH(s) = 3 and π(s) = +{0, 2, 3}. The theta graph F consists of three paths puv, p′ +uv and p′′ +uv. Without loss of +generality, we may assume that s appears in the path puv and it splits puv into two paths +pus and psv. +Consider the paths psv, p′ +sv = p′ +uv ∪ psu and p′′ +sv = p′′ +uv ∪ psu, and the tadpole graph +qsv3 = psv ∪ p′ +uv ∪ p′′ +uv. They are not factors of H since the degree of s is 1 in all these +four graphs. However, by taking the union of F ′ with any one of them, we can get a basic +factor of H and the degree of u in it is even. Since +ω(psv) + ω(p′ +sv) + ω(p′′ +sv) + ω(qsv3) = 2ω(F ′) > 0, +among them at least one is positive. Also, ω(F ′) > 0. Then, by taking the union of it +with F ′, we can find a basic factor of Ω satisfying the requirements. +V.2 V∩ = {s, t}. +In this case, F ′ is a path with endpoints s and t. Since F is a theta graph which is +2-connected, we can find a path pst ⊆ F such that v /∈ Vpst. +If u /∈ Vpst, then one +can check that the theta graph H′ = (F\pst) ∪ F ′ is also a basic factor of Ω. +Since +ω(F) ≥ ω(H′), we have ω(pst) ≥ ω(F ′) > 0. Then, the cycle C = pst ∪ F ′ is a basic +29 + +factor of Ω where ω(C) = ω(pst) + ω(F ′) > 0 and degC(u) = 0. We are done. Otherwise, +u ∈ Vpst. The vertex u splits pst into two paths pus and put. Consider the theta graph +H′ = (F\pus) ∪ F ′, where degH′(v) = degH′(t) = 3, π(v) = {0, 1, 3}, and π(t) = {0, 2, 3}. +One can check that H′ is a basic factor of Ω. Since ω(F) ≥ ω(H′) = ω(F)−ω(pus)+ω(F ′), +we have ω(pus) ≥ ω(F ′) > 0. Similarly, by considering the theta graph H′′ = (F\put)∪F ′, +we have ω(put) ≥ ω(F ′) > 0. Then the cycle C = pst ∪ F ′ = pus ∪ put ∪ F ′ is a basic factor +of Ω where ω(C) = ω(pus) + ω(put) + ω(F ′) > 0 and degC(u) = 2. We are done. +We have taken care of all possible cases and finished the proof. +Combining Lemmas 5.6 and 5.7, we finished the proof of Theorem 4.8. +A +∆-Matroids and Matching Realizability +A ∆-matroid is a family of sets obeying an axiom generalizing the matroid exchange axiom. +Formally, a pair M = (U, F) is a ∆-matroid if U is a finite set and F is a collection of subsets +of U satisfying the following: for any X, Y ∈ F and any u ∈ X∆Y in the symmetric difference +of X and Y , there exits a v ∈ X∆Y such that X∆{u, v} belongs to F [Bou87]. A ∆-matroid is +symmetric if, for every pair of X, Y ⊆ U with |X| = |Y |, we have X ∈ F if and only if Y ∈ F. +A ∆-matroid is even if for every pair of X, Y ⊆ U, |X| ≡ |Y | mod 2. +Suppose that U = {u1, u2, . . . , un}. A subset V ⊆ U can be encoded by a binary string αV +of n-bits where the i-th bit of αV is 1 if ui ∈ V and 0 if ui /∈ V . Then, a ∆-matroid M = (U, F) +can be represented by a relation RM of arity |U| which consists of binary strings that encode all +subsets in F. Such a representation is unique up to a permutation of variables of the relation. +A degree constraint D of arity n can be viewed as an n-ary symmetric relation which consists +of binary strings with the Hamming weight d for every d ∈ D. By the definition of ∆-matroids, +it is easy to check that a degree constraint D (as a symmetric relation) represents a ∆-matroid +if and only if D has all gaps of length at most 1. +The definition of matching realizability (Definition 1.1) can be extended to a relation R of +arity n by requiring the set U of n vertices in a matching gadget to represent the n variables of +R. If R is realizable by a matching gadget G = (U ∪ V, E), then for every α ∈ {0, 1}n, α ∈ R +if and only if there is a matching F = (VF , EF ) of G such that VF ∩ U is exactly the subset +of U encoded by α (i.e., for every ui ∈ U, ui ∈ VF if and only if αi = 1), and for every v ∈ V +where π(v) = {1}, v ∈ VF . Note that the matching realizability of a relation is invariant under +a permutation of its variables. We say that a ∆-matroid is matching realizable if the relation +representing it is matching realizable.4 +Lemma A.1. If a ∆-matroid M = (U, F) is matching realizable, then there is a graph G = +(U ∪ W ∪ X, E) where deg(v) = 1 for every v ∈ U ∪ X and there are no edges between vertices +in U ∪ X, such that for every V ⊆ U, V ∈ F if and only if there exists X1 ⊆ X such that the +induced subgraph of G induced by the vertex set V ∪ W ∪ X1 (denoted by G(V ∪ W ∪ X1)) has +a perfect matching. +With a slight abuse of notation, we also say the graph G = (U ∪ W ∪ X, E) realizes M. +Proof. Let G = (U ∪ W, E) be the matching gadget realizing M = (U, F). We construct the +following graph G′ from G. For every x ∈ W with π(x) = {0, 1}, we add a new edge incident +to it. As the edge is added, a new vertex of degree of 1 is also added to the graph. We denote +4This definition of matching realizability for ∆-matroids is different with the one that is usually used for even +∆-matroids [Bou89, DK15, KKR18], in which the gadget is only allowed to use the constraint {1} for perfect +matchings, and hence the resulting ∆-matroid must be even. +30 + +these new vertices by X and these new edges by EX. Then, one can check that the graph +G′ = (U ∪ W ∪ X, E ∪ EX) satisfies the requirements. +The following result generalizes Lemma A.1 of [KKR18]. +Lemma A.2. Suppose that M = (U, F) is a matching realizable ∆-matroid, and V1, V2 ∈ F. +Then, V1∆V2 can be partitioned into single variables S1, . . . , Sk and pairs of variables P1, . . . , Pℓ +such that for every P = Si1 ∪ · · · ∪ Sir ∪ Pj1 ∪ · · · ∪ Pjt ({i1, . . . , ir} ⊆ [k], {j1, . . . , jt} ⊆ [ℓ]), +V1∆P ∈ F and V2∆P ∈ F. +Proof. By Lemma A.1, there is a graph G = (U ∪ W ∪ X, E) realizing M. Since V1, V2 ∈ F, +there exists X1 ⊆ X and X2 ⊆ X such that the induced subgraph G(V1 ∪W ∪X1) has a perfect +matching M1, and G(V2 ∪ W ∪ X2) has a perfect matching M2. Let E1 and E2 be the edge sets +of M1 and M2 respectively. Consider the graph G′ = (U ∪W ∪X, E1∆E2). Since E1 covers each +vertex in V1 ∪ W ∪ X1 exactly once, and E2 covers each vertex in V2 ∪ W ∪ X2 exactly once, for +every v ∈ (V1∩V2)∪W ∪(X1∩X2) in G′, deg(v) = 0 or 2, and for every v ∈ (V1∆V2)∪(X1∆X2) +in G′, deg(v) = 1. Thus, G′ is a union of induced cycles and paths, where each path connects +two vertices in (V1∆V2) ∪ (X1∆X2). For every vertex u ∈ V1∆V2, if it is connected to another +vertex v ∈ V1∆V2 by a path in G′, then we make {u, v} a pair. Otherwise (i.e., u is connected +to a vertex in X1∆X2 by a path in G′), we make u a single variable. Then, V1∆V2 can be +partitioned into single variables S1, . . . , Sk and pairs P1, . . . , Pℓ according to the paths in G′. +Moreover, each path in G′ is an alternating path with respect to both matchings M1 and M2. +Pick a union of such paths (note that they are edge-disjoint). Suppose that there are r many +paths that connect single variables in Si1, . . . , Sir with variables in X, and t many paths that +connect pairs Pj1, . . . , Pjt. Let P = Si1 ∪ · · · ∪ Sir ∪ Pj1 ∪ · · · ∪ Pjt. After altering the matchings +M1 and M2 according to these t many alternating paths, we obtain two new matchings that +cover exactly (V1∆P) ∪ W ∪ X′ +1 for some X′ +1 ⊆ X and (V2∆P) ∪ W ∪ X′ +2 for some X′ +2 ⊆ X +respectively. Thus, V1∆P ∈ F and V2∆P ∈ F. +Theorem A.3. A degree constraint D of gaps of length at most 1 is matching realizable if and +only if all its gaps are of the same length 0 or 1. +Proof. By the gadget constructed in the proof of [Cor88, Theorem 2], if a degree constraint has +all gaps of length 1 then it is matching realizable.5 We give the following gadget (Figure A) to +realize a degree constraint D with all gaps of length 0, which generalizes the gadget in [Tut54]. +Suppose that D = {p, p + 1, . . . , p + r} of arity n where n ≥ p + r ≥ p ≥ 0. Consider the +following graph G = (U ∪ V, E): U consists of n vertices of degree 1, and V consists of two +parts V1 with |V1| = n and V2 with |V2| = n − p; the induced subgraph G(V ) of G induced by +V is a complete bipartite graph between V1 and V2, and the induced subgraph G(U ∪ V1) of +G induced by U ∪ V1 is a bipartite perfect matching between U and V1 (see Figure 13). Every +vertex in V1 is labeled by the constraint {1}. There are r vertices in V2 labeled by {0, 1} and +the other n − p − r vertices in V2 labeled by {1}. One can check that this gadget realizes D. +For the other direction, without loss of generality, we may assume that {p, p + 1, p + 3} ⊆ D +and p + 2 /∈ D. Since D has gaps of length at most 1, it can be associated with a symmetric +∆-matroid M = (U, F). Then, there is V1 ∈ F with |V1| = p and V2 ∈ F with |V2| = p + 3. +Since M is symmetric, we may pick V2 = V1 ∪ {v1, v2, v3} for some {v1, v2, v3} ∩ V1 = ∅. Let +S = V1∆V2 = {v1, v2, v3}. By Lemma A.2, S can be partitioned into single variables and/or +pairs of variables such that for any union P of them, V2\P ∈ F. Since |S| = 3, there exists at +5We remark that [Cor88] includes gadgets for other types of degree constraints, including type-1 and type-2, +but only under a more general notion of gadget constructions that involve edges and triangles. The gadget that +only involves edges is a matching gadget defined in this paper. +31 + +Figure 13: A matching gadget realizing D = {p, p + 1, . . . , p + r} of arity n +least a single variable xi in the partition of S such that V2\{vi} ∈ F. Note that |V2\{vi}| = p+2. +Thus, p + 2 ∈ D. A contradiction. +References +[AK11] +Jin Akiyama and Mikio Kano. Factors and factorizations of graphs: Proof techniques +in factor theory, volume 2031. Springer, 2011. +[Ans87] +Richard P. Anstee. A polynomial algorithm for b-matchings: an alternative approach. +Information Processing Letters, 24(3):153–157, 1987. +[Bou87] +Andr´e Bouchet. Greedy algorithm and symmetric matroids. Mathematical Program- +ming, 38(2):147–159, 1987. +[Bou89] +Andr´e Bouchet. Matchings and ∆-matroids. Discrete Applied Mathematics, 24(1- +3):55–62, 1989. +[CLX11] +Jin-Yi Cai, Pinyan Lu, and Mingji Xia. Computational complexity of Holant prob- +lems. SIAM Journal on Computing, 40(4):1101–1132, 2011. +[CM78] +William H. Cunningham and Alfred B. Marsh. A primal algorithm for optimum +matching. In Polyhedral Combinatorics, pages 50–72. Springer, 1978. +[Cor88] +G´erard Cornu´ejols. General factors of graphs. Journal of Combinatorial Theory, +Series B, 45(2):185–198, 1988. +[DF03] +V´ıctor Dalmau and Daniel K. Ford. Generalized satisfability with limited occurrences +per variable: A study through delta-matroid parity. In Proceedings of the 28th Inter- +national Symposium on Mathematical Foundations of Computer Science (MFCS’03), +volume 2747 of Lecture Notes in Computer Science, pages 358–367. Springer, 2003. +[Die10] +Reinhard Diestel. Graph Theory. Springer, fourth edition, 2010. +[DK15] +Zdenˇek Dvoˇr´ak and Martin Kupec. +On Planar Boolean CSP. +In Proceedings +of the 42nd International Colloquium on Automata, Languages and Programming +(ICALP’15), volume 9134 of Lecture Notes in Computer Science, pages 432–443. +Springer, 2015. +32 + +[DP14] +Ran Duan and Seth Pettie. Linear-time approximation for maximum weight match- +ing. Journal of the ACM, 61(1):1–23, 2014. +[DP18] +Szymon Dudycz and Katarzyna Paluch. Optimal general matchings. Lecture Notes +in Computer Science (including subseries Lecture Notes in Artificial Intelligence and +Lecture Notes in Bioinformatics), 11159 LNCS:176–189, 2018. +[DP21] +Szymon +Dudycz +and +Katarzyna +Paluch. +Optimal +general +matchings. +arXiv:1706.07418v3, version 3, 2021. +[Edm65a] Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of +research of the National Bureau of Standards B, 69(125-130):55–56, 1965. +[Edm65b] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17:449– +467, 1965. +[EJ70] +Jack Edmonds and Ellis L Johnson. Matching: A well-solved class of integer linear +programs. In Combinatorial Structures and Their Applications, pages 89–92. Gordon +& Breach, New York, 1970. +[Fed01] +Tom´as Feder. Fanout limitations on constraint systems. Theoretical Computer Sci- +ence, 255(1-2):281–293, 2001. +[FF06] +Tom´as Feder and Daniel K. Ford. +Classification of bipartite Boolean constraint +satisfaction through Delta-matroid intersection. SIAM J. Discrete Math., 20(2):372– +394, 2006. +[Gab74] +Harold N. Gabow. Implementation of algorithms for maximum matching on nonbi- +partite graphs. PhD thesis, Stanford University, 1974. +[Gab83] +Harold N. Gabow. An efficient reduction technique for degree-constrained subgraph +and bidirected network flow problems. In Proceedings of the fifteenth annual ACM +symposium on Theory of computing, pages 448–456, 1983. +[Gab85] +Harold N. Gabow. A scaling algorithm for weighted matching on general graphs. +In Proceedings of the 26th Annual IEEE Symposium on Foundations of Computer +Science (FOCS’85), pages 90–100, 1985. +[Gab90] +Harold N. Gabow. +Data structures for weighted matching and nearest common +ancestors with linking. In Proceedings of the first annual ACM-SIAM symposium on +Discrete algorithms, pages 434–443, 1990. +[GGS89] +Harold N. Gabow, Zvi Galil, and Thomas H. Spencer. Efficient implementation of +graph algorithms using contraction. Journal of the ACM (JACM), 36(3):540–572, +1989. +[GIM03] +James F. Geelen, Satoru Iwata, and Kazuo Murota. The linear delta-matroid parity +problem. Journal of Combinatorial Theory, Series B, 88(2):377–398, 2003. +[GMG86] Zvi Galil, Silvio Micali, and Harold N. Gabow. An O(EV \ log V ) algorithm for find- +ing a maximal weighted matching in general graphs. SIAM Journal on Computing, +15(1):120–130, 1986. +33 + +[GS13] +Harold N. Gabow and Piotr Sankowski. Algebraic algorithms for b-matching, shortest +undirected paths, and f-factors. In Proceedings of the 54th IEEE Annual Symposium +on Foundations of Computer Science (FOCS’13), pages 137–146, 2013. +[GT91] +Harold N. Gabow and Robert E. Tarjan. Faster scaling algorithms for general graph +matching problems. Journal of the ACM (JACM), 38(4):815–853, 1991. +[HK12] +Chien-Chung Huang and Telikepalli Kavitha. +Efficient algorithms for maximum +weight matchings in general graphs with small edge weights. In Proceedings of the +Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1400– +1412. SIAM, 2012. +[Ist97] +Gabriel Istrate. Looking for a version of Schaefer’s dichotomy theorem when each +variable occurs at most twice. Technical report, 1997. +[Kar76] +Aleksandr V. Karzanov. Efficient implementations of Edmonds’ algorithms for finding +matchings with maximum cardinality and maximum weight. +Studies in Discrete +Optimization, pages 306–327, 1976. +[KKR18] +Alexandr Kazda, Vladimir Kolmogorov, and Michal Rol´ınek. Even delta-matroids +and the complexity of planar Boolean CSPs. +ACM Transactions on Algorithms +(TALG), 15(2):1–33, 2018. +[KV18] +Bernhard Korte and Jens Vygen. Combinatorial optimization: Theory and Algo- +rithms, volume 21. Springer, 2018. +[Law76] +Eugene L. Lawler. Combinatorial optimization: networks and matroids. Holt, Rein- +hart and Winston, New York., 1976. +[Lov70] +L´aszl´o Lov´asz. The factorization of graphs. In Combinatorial Structures and Their +Applications, pages 243–246. Gordon & Breach, New York, 1970. +[Lov72] +L´aszl´o Lov´asz. The factorization of graphs. II. Acta Mathematica Academiae Scien- +tiarum Hungarica, 23(1-2):223–246, 1972. +[LP09] +L´aszl´o Lov´asz and Michael D. Plummer. Matching theory, volume 367. American +Mathematical Soc., 2009. +[Mar79] +Alfred B. Marsh. Matching algorithms. PhD thesis, The Johns Hopkins University, +1979. +[Plu07] +Michael D. Plummer. Graph factors and factorization: 1985–2003: a survey. Discrete +Mathematics, 307(7-8):791–821, 2007. +[Pul73] +William R. Pulleyblank. Faces of Matching Polyhedra. PhD thesis, University of +Waterloo, 1973. +[Sch78] +Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the +tenth annual ACM symposium on Theory of computing, pages 216–226, 1978. +[Sch03] +Alexander Schrijver. +Combinatorial optimization: +polyhedra and efficiency, vol- +ume 24. Springer, 2003. +[Sza09] +J´acint Szab´o. Good characterizations for some degree constrained subgraphs. Journal +of Combinatorial Theory, Series B, 99(2):436–446, 2009. +34 + +[Tut50] +William Thomas Tutte. The factorization of locally finite graphs. Canadian Journal +of Mathematics, 2:44–49, 1950. +[Tut52] +William Thomas Tutte. The factors of graphs. Canadian Journal of Mathematics, +4:314–328, 1952. +[Tut54] +William Thomas Tutte. A short proof of the factor theorem for finite graphs. Cana- +dian Journal of mathematics, 6:347–352, 1954. +35 + diff --git a/1tFKT4oBgHgl3EQfPC1q/content/tmp_files/load_file.txt b/1tFKT4oBgHgl3EQfPC1q/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..98d822188757df510ab0fff3cbf6b14382ad0edc --- /dev/null +++ b/1tFKT4oBgHgl3EQfPC1q/content/tmp_files/load_file.txt @@ -0,0 +1,1760 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf,len=1759 +page_content='A Strongly Polynomial-Time Algorithm for Weighted General Factors with Three Feasible Degrees∗ Shuai Shao University of Science and Technology of China shao10@ustc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='cn Stanislav ˇZivn´y University of Oxford standa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='zivny@cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='ox.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='uk January 30, 2023 Abstract General factors are a generalization of matchings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Given a graph G with a set π(v) of feasible degrees, called a degree constraint, for each vertex v of G, the general factor problem is to find a (spanning) subgraph F of G such that degF (x) ∈ π(v) for every v of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' When all degree constraints are symmetric ∆-matroids, the problem is solvable in polynomial time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The weighted general factor problem is to find a general factor of the maximum total weight in an edge-weighted graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Strongly polynomial-time algorithms are only known for weighted general factor problems that are reducible to the weighted matching problem by gadget constructions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In this paper, we present the first strongly polynomial-time algorithm for a type of weighted general factor problems with real-valued edge weights that is provably not reducible to the weighted matching problem by gadget constructions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 1 Introduction A matching in an undirected graph is a subset of the edges that have no vertices in common, and it is perfect if its edges cover all vertices of the graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Graph matching is one of the most studied problems both in graph theory and combinatorial optimization, with beautiful structural results and efficient algorithms described, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=', in the monograph of Lov´asz and Plummer [LP09] and in relevant chapters of standard textbooks [Sch03, KV18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In particular, the weighted (perfect) matching problem is to find a (perfect) matching of the maximum total weight for a given graph of which each edge is assigned a weight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' This problem can be solved in polynomial time by the celebrated Edmonds’ blossom algorithm [Edm65a, Edm65b].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since then, a number of more efficient algorithms have been developed [Gab74, Law76, Kar76, CM78, Gab85, GMG86, GGS89, Gab90, GT91, HK12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Table III of [DP14] gives a detailed review of these algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The f-factor problem is a generalization of the perfect matching problem in which one is given a non-negative integer f(v) for each vertex v ∈ V of G = (V, E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The task is to find a (spanning) subgraph F = (VF , EF ) of G such that degF (v) = f(v) for every v ∈ V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1 The ∗The research leading to these results has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 714532).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' This work was also supported by UKRI EP/X024431/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For the purpose of Open Access, the authors have applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' All data is provided in full in the results section of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Part of the work was done while the first author was a postdoctoral research associate at the University of Oxford.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 1In graph theory, a graph factor is usually a spanning subgraph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Here, without causing ambiguity, we allow F to be an arbitrary subgraph including the empty graph and we adapt the convention that degF (v) = 0 if v ∈ V \\ VF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='11761v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='DM] 27 Jan 2023 case f(v) = 1 for every v ∈ V is the perfect matching problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' This problem, as well as the weighted version, can be solved efficiently by a gadget reduction to the perfect matching problem [EJ70].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In addition, Tutte gave a characterization of graphs having an f-factor [Tut52], which generalizes his characterization theorem for perfect matchings [Tut50].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Subsequently, the study of graph factors has attracted much attention with many variants of graph factors, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=', b-matchings, [a, b]-factors, (g, f)-factors, parity (g, f)-factors, and anti-factors introduced, and various types of characterization theorems proved for the existence of such factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We refer the reader to the book [AK11] and the survey [Plu07] for a comprehensive treatment of the developments on the topic of graph factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In the early 1970s, Lov´asz introduced a generalization of the above factor problems [Lov70, Lov72], for which we will need a few definitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For any nonnegative integer n, let [n] denote {0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A degree constraint D of arity n is a subset of [n].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='2 We say that a degree constraint D has a gap of length k if there exists p ∈ D such that p + 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , p + k /∈ D and p + k + 1 ∈ D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' An instance of the general factor problem (GFP) [Lov70, Lov72] is given by a graph G = (V, E) and a mapping π that maps every vertex v ∈ V to a degree constraint π(v) ⊆ [degG(v)] of arity degG(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The task is to find a subgraph, if one exists, F of G such that degF (v) ∈ π(v) for every v ∈ V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The case π(v) = {0, 1} for every v ∈ V is the matching problem, and the case π(v) = {1} for every v ∈ V is the perfect matching problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Lov´asz showed that the GFP is NP-complete when the degree constraint {0, 3} of arity 3 (and gap 2) occurs [Lov72].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Later, answering a question of Lov´asz, Cornu´ejols showed that the GFP is solvable in polynomial time if each degree constraint has gaps of length at most 1 [Cor88].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In this paper, we consider the weighted general factor problem (WGFP) where each edge is assigned a real-valued weight and the task is to find a general factor of the maximum total weight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since the unweighted version is already hard when a degree constraint with a gap of length more than 1 occurs [Lov72], we only need to consider the WGFP where each degree constraint has gaps of length at most 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Some cases of the WGFP are reducible to the weighted matching or perfect matching problem by gadget constructions, and hence are polynomial-time solvable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1 (Matching Gadget).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A gadget using a set D of degree constraints consists of a graph G = (U ∪V, E) where degG(u) = 1 for every u ∈ U and there are no edges between vertices in U, and a mapping π : V → D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A matching gadget is a gadget where D = {{0, 1}, {1}}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A degree constraint D of arity n is matching realizable if there exists a matching gadget (G = (U ∪ V, E), π : V → {{0, 1}, {1}}) such that |U| = n and for every k ∈ [n], k ∈ D if and only if for every W ⊆ U with |W| = k, there exists a matching F = (VF , EF ) of G such that VF ∩ U = W and for every v ∈ V where π(v) = {1}, v ∈ VF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The degree constraint D = [b] (of arbitrary arity), where b > 0, for b-matchings is realizable by a gadget using only the degree constraint {0, 1} [Tut54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, the weighted b-matching problem is reducible to the weighted matching problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The weighted b-matching problem is interesting in its own right in combinatorial optimization and has been well studied with many elaborate algorithms developed [Pul73, Mar79, Gab83, Ans87, GS13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Besides b-matchings, Cornu´ejols showed that the parity interval constraint D = {g, g + 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , f} (of arbitrary arity), where f ≥ g ≥ 0 and f ≡ g mod 2, for parity (g, f)-factors is realizable by a gadget using only the degree constraint {1} [Cor88].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Later, Szab´o showed that the interval constraint D = {g, g +1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , f} (of arbitrary arity), where f ≥ g ≥ 0, for (g, f)-factors is realizable by a gadget involving edges and factor-critical subgraphs [Sza09], which is indeed realizable by a gadget using both {0, 1} and {1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, the WGFP where each degree constraint is an interval or a 2We always associate a degree constraint with an arity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Two degree constraints are different if they have different arities although they may be the same set of integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 2 parity interval is reducible to the weighted matching problem (with some vertices required to have degree exactly 1) and hence solvable in polynomial-time by Edmonds’ algorithm, although Szab´o gave a different algorithm for this problem [Sza09].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By reducing the WGFP with interval and parity interval constraints to the weighted (g, f)-factor problem, a faster algorithm was obtained in [DP18] based on Gabow’s algorithm [Gab83].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In [Sza09], Szab´o further conjectured that the WGFP is solvable in polynomial time without requiring each degree constraint being an interval or a parity interval, as long as each degree constraint has gaps of length at most 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' To prove the conjecture, a natural question is then the following: Are there other WGFPs that are polynomial-time solvable by a gadget reduction to weighted matchings?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In other words, are there other degree constraints that are matching realizable?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In this paper, we show that the answer is no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A degree constraint with gaps of length at most 1 is matching realizable if and only if it is an interval or a parity interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' This condition is also a sufficient and necessary condition for a degree constraint to be realized by a gadget involving edges and factor-critical subgraphs [Sza09].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' With the answer for the above question being negative, new algorithms need to be devised for the WGFP with degree constraints that are not intervals or parity intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Unlike the weighted matching problem and the weighted b-matching problem for which various types of algorithms have been developed, only one algorithm has been presented for the more general and challenging WGFP: For the cardinality version of WGFP, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=', the WGFP where each edge is assigned weight 1, Dudycz and Paluch introduced a polynomial-time algorithm for this problem with degree constrains having gaps of length at most 1, which leads to a pseudo-polynomial-time algorithm for the WGFP with non-negative integral edge weights [DP18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Later, in an updated version [DP21], the algorithm was improved to be weakly polynomial-time with a running time O(log Wmn6), where W is the largest edge weight, m is the number of edges and n is the number of vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Independently of [DP21], in this paper, we make the first step towards a strongly polynomial-time algorithm for the WGPF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let p ≥ 0 be an arbitrary integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the following two types of degree constraints {p, p + 1, p + 3} and {p, p + 2, p + 3} (of arbitrary arity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We will call them type-1 and type-2 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' These are the “smallest” degree constraints that are not matching realizable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='3 (Main).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' There is a strongly polynomial-time algorithm for the WGFP with real- valued edge weights where each degree constraint is an interval, a parity interval, a type-1, or a type-2 (of arbitrary arities).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The algorithm runs in time O(n6) for a given graph with n vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In particular, this gives a tractability result for the WGFP with degree constraints that are provably not matching realizable, thus going beyond existing algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The algorithm is a recursive algorithm that uses as a black-box the GFP with constraints having gaps of length at most 1 and the WGFP with interval and parity interval constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For the WGFP with interval, parity interval, type-1 and type-2 degree constraints, we present a delicate structural result, which is more refined than the structural result in [DP18], though the result in [DP18] holds for the more general WGFP with all degree constraints having gaps of length at most 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Equipped with this result, we are able to bound the number of recursive calls of our algorithm by the number of vertices of the graph, instead of the edge weight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In addition, as a by-product, we give a simple proof of the result of [DP18] for the special case of WGFP with interval, parity interval, type-1 and type-2 degree constraints by reducing the problem to WGFP on subcubic graphs and utilizing the equivalence between 2-vertex connectivity and 2-edge connectivity of subcubic graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 3 Let D be a degree constraint of arity at most 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If D ̸= {0, 3} then D is an interval, a parity interval, a type-1, or a type-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Combining with the above-mentioned NP-hardness of the decision case [Lov72], we obtain a complexity dichotomy for the WGFP on subcubic graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The WGFP on subcubic graphs is strongly polynomial-time solvable if the degree constraint {0, 3} of arity three does not occur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Otherwise, it is NP-hard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Related work The edge constraint satisfaction problem (CSP) is a type of CSPs in which every variable appears in exactly two constraints [Ist97, Fed01].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The counting version of the edge-CSP is known as the Holant problem [CLX11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For the edge-CSP on the Boolean domain, Feder showed that the problem is NP-complete if a constraint that is not a ∆-matroid occurs, except for those that are tractable by Schaefer’s dichotomy theorem [Sch78].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In a subsequent line of work [DF03, GIM03, FF06, DK15], tractability of the Boolean edge-CSP has been established for special classes of ∆-matroids, most recently for even ∆-matroids [KKR18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A complete complexity classification for the Boolean edge-CSP is still open with the conjecture that all ∆-matroids are tractable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The graph factor problem is a special case of the Boolean edge- CSP where every constraint is symmetric (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='e, the value of the constraint only depends on the Hamming weight of its input).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For a degree constraint (or a symmetric constraint), it is a ∆-matroid if and only if it has gaps of length at most 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, the above conjecture holds for the symmetric Boolean edge-CSP by Cornu´ejols’ result on the general factor problem [Cor88].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A complexity classification for the weighted Boolean edge-CSP is certainly a more challenging goal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Our result in Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='3 gives a tractability result for the weighted Boolean edge-CSP with certain symmetric ∆-matroids as constraints, and our result in Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='4 establishes a complexity dichotomy for the weighted Boolean edge-CSP with symmetric constraints of arity no more than 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We note that the weighted Boolean edge-CSP with even ∆-matroids as constraints is still open (although [KKR18] solved not only the decision case but also a certain optimization variant of the problem, which is different though from the natural weighted version considered in this paper).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Organization In Section 2, we present basic definitions and notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In Section 3, we describe our algorithm and give a structural result for the WGFP which ensures the correctness and the polynomial-time running time of our algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In Section 4, we introduce basic augmenting subgraphs as an analogy of augmenting paths for weighed matchings and give a proof of the structural result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The proof is based on a result regarding the existence of certain basic factors for subcubic graphs, which is proved in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Finally, we discuss matching realizability and its relation with ∆-matroids in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 2 Preliminaries Let D be a (possibly infinite) set of degree constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The weighted general factor problem parameterized by D, denoted by WGFP(D), is the following computational problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' An instance is a triple Ω = (G, π, ω), where G = (V, E) is a graph, π : V → D assigns to every v ∈ V a degree constraint Dv ∈ D of arity degG(V ), and ω : E → R assigns to every e ∈ E a real-valued weight w(e) ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The task is to find, if one exists, a general factor F of G such that the total weight of edges in F is maximized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The general factor problem GFP(D) is the decision version of WGFP(D);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=', deciding whether a general factor exists or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 4 Suppose that Ω = (G, π, ω) is a WGFP instance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If F is a general factor of G under π, then we say that F is a factor of Ω, denoted by F ∈ Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In terms of this inclusion relation, Ω can be viewed as a set of subgraphs of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We extend the edge weight function ω to subgraphs of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For a subgraph H of G, its weight ω(H) is � e∈E(H) ω(e) (ω(H) = 0 if H is the empty graph).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If H contains an isolated vertex v, then ω(H) = ω(H′), where H′ is the graph obtained from H by removing v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Moreover, H ∈ Ω if and only if H′ ∈ Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In the following, without other specification, we always assume that a factor does not contain any isolated vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The optimal value of Ω, denoted by Opt(Ω), is maxF∈Ω ω(F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We define Opt(Ω) = −∞ if Ω has no factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A factor F of Ω is optimal in Ω if ω(F) = Opt(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For a WGFP instance Ω′ = (G′, π′, ω′), where G′ ⊆ G3 and ω′ is the restriction of ω on the edges of G′, we say Ω′ is a sub-instance of Ω, denoted by Ω′ ⊆ Ω, if F ∈ Ω for every F ∈ Ω′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In particular, Ω′ is a subset of Ω by viewing them as two sets of subgraphs of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If Ω′ ⊆ Ω, then Opt(Ω′) ≤ Opt(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For two WGFP instances Ω1 = (G, π1, ω) and Ω2 = (G, π2, ω), we use Ω1 ∪ Ω2 to denote the union of factors of these two instances, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=', Ω1 ∪ Ω2 = {F ⊆ G | F ∈ Ω1 or F ∈ Ω2}, and Ω1 ∩ Ω2 to denote the intersection, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=', Ω1 ∩ Ω2 = {F ⊆ G | F ∈ Ω1 and F ∈ Ω2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Note that Ω1 ∪ Ω2 and Ω1 ∩ Ω2 are just sets of subgraphs of G and may not define WGFP instances on G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We use G1 and G2 to denote the set of degree constraints that are intervals and parity intervals, respectively, and T1 and T2 to denote the set of degree constraints that are type-1 and type-2, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let G = G1 ∪ G2 and T = T1 ∪ T2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In this paper, we study the problem WGFP(G ∪ T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let H1 = (V1, E1) and H2 = (V2, E2) be two subgraphs of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The symmetric difference graph H1∆H2 is the induced subgraph of G induced by the edge set E1∆E2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Note that there are no isolated vertices in a symmetric difference graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' When E1 ∩ E2 = ∅, we may write H1∆H2 as H1 ∪ H2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' When E2 ⊆ E1, we may write H1∆H2 as H1\\H2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A subcubic graph is defined to be a graph where every vertex has degree 1, 2 or 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Unless stated otherwise, we use VG and EG to denote the vertex set and the edge set of a graph G, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='2 (2-vertex-connectivity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A connected graph G is 2-vertex-connected (or 2- connected) if it has more than 2 vertices and remains connected by removing any vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Menger’s Theorem gives an equivalent definition of 2-connectivity, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [Die10] for a proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='3 (Menger’s Theorem).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A connected graph G is 2-connected if and only if for any two vertices of G, there exists two vertex disjoint paths connecting them (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=', there is a cycle containing these two vertices).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='4 (Bridge and 2-edge-connectivity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A bridge of a connected graph is an edge whose deletion makes the graph disconnected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A connected graph is 2-edge-connected if it has no bridge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The following theorem is the edge version of Menger’s Theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A connected graph G is 2-edge-connected if and only if for any two vertices of G, there exists two edge disjoint paths connecting them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If two paths connecting a pair of vertices are vertex-disjoint, then they are also edge-disjoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, 2-vertex-connectivity implies 2-edge-connectivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For subcubic graphs, one can check that two edge-disjoint paths are also vertex-disjoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, for subcubic graphs, 2-vertex- connectivity is equivalent to 2-edge-connectivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In particular, we have the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 3Unless specified otherwise, we use the term “subgraph” and notation G′ ⊆ G throughout for the standard meaning of a “normal” subgraph i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=', if G = (V ′, E′) and G = (V, E) then G′ ⊆ G means V ′ ⊆ V and E′ ⊆ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 5 Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If a connected subcubic graph is not 2-connected, then it contains a bridge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The following fact regarding 2-connected graphs will also be used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let G = (VG, EG) be a 2-connected graph, H = (VH, EH) ⊆ G, and u ∈ VH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If degH(u) = 2 < degG(u) = 3, then there exists a path puw = (Vpuw, Epuw) ⊆ G with endpoints u and w for some w ∈ VH such that Epuw ∩ EH = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since degH(u) = 2 < degG(u) = 3, there is an edge evu = (v, u) ∈ EG incident to u such that evu /∈ EH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If v ∈ VH, then the edge evu is the desired path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, we may assume that v /∈ VH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since G is 2-connected, there is a path pvu with endpoints v and u such that evu /∈ Epvu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since u ∈ VH, Vpvu ∩ VH ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let w be the first vertex in the path pvu (within the order of traversing the path from v to u) belonging to VH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, w ̸= u since evu /∈ Epvu and degG(u) = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, w ̸= v since v /∈ VH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let pvw ⊊ pvu be the segment with endpoints v and w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, Epvw ∩ EH = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let puw be the path consisting of evu and pvw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' It has endpoints u, w ∈ VH, and Epuw ∩ EH = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 3 Algorithm We give a recursive algorithm for the problem WGFP(G ∪T ), using the problems WGFP(G ) and the decision problem GFP(G ∪T ) as oracles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Given an instance Ω = (G, π, ω) of WGFP(G ∪T ), we define the following sub-instances of Ω = (G, π, ω) that will be used in the recursion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Recall that VG denotes the vertex set of the underlying graph G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let TΩ denote the set {v ∈ VG | π(v) ∈ T }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (We may omit the subscript Ω of TΩ when it is clear from the context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=') For every vertex v ∈ TΩ, we split the instance Ω in two by splitting the degree constraint π(v) in two parity intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' More precisely, we define D0 v = {pv + 1, pv + 3} and D1 v = {pv} if π(v) = {pv, pv + 1, pv + 3} ∈ T1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' D0 v = {pv, pv + 2} and D1 v = {pv + 3} if π(v) = {pv, pv + 2, pv + 3} ∈ T2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We have D0 v, D1 v ∈ G2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For i ∈ {0, 1} and v ∈ TΩ, we define Ωi v = (G, πi v, ω) to be the sub- instance of Ω where πi v(x) = π(x) for every x ∈ VG\\{v} and πi v(v) = Di v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, for every v ∈ TΩ, we have Ω0 v ∩ Ω1 v = ∅ and Ω0 v ∪ Ω1 v = Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Moreover, TΩ0v = TΩ1v = TΩ\\{v}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let F be a factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Similarly to above, one can partition Ω into 2|T| many sub-instances according to F such that each one is an instance of WGFP(G ) – for each v ∈ T, we choose one of the two splits of π(v) as above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (We note that the algorithm will not consider all exponentially many sub-instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=') In detail, for every vertex v ∈ T, we define DF v = Di v where degF (v) ∈ Di v as follows: DF v = {pv} if π(v) = {pv, pv + 1, pv + 3} ∈ T1 and degF (v) = pv, DF v = {pv + 1, pv + 3} if π(v) = {pv, pv + 1, pv + 3} ∈ T1 and degF (v) ̸= pv;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' DF v = {pv + 3} if π(v) = {pv, pv + 2, pv + 3} ∈ T2 and degF (v) = pv + 3, DF v = {pv, pv + 2} if π(v) = {pv, pv + 2, pv + 3} ∈ T2 and degF (v) ̸= pv + 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By definition, degF (v) ∈ DF v ⊆ π(v) and DF v ∈ G2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In fact, DF v is the maximal set such that degF (v) ∈ DF v ⊆ π(v) and DF v ∈ G2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' One can also check that for every v ∈ T, π(v)\\DF v ∈ G2, and moreover for every p ∈ DF v and q ∈ π(v)\\DF v , p ̸≡ q mod 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For every W ⊆ TΩ, we define ΩF W = (G, πF W , ω) to be the sub-instance of Ω where πF W (v) = π(v)\\DF v for v ∈ W, πF W (v) = DF v for v ∈ TΩ\\W, πF W (v) = π(v) for v ∈ V \\TΩ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (1) 6 By definition, for every W, ΩF W is an instance of WGFP(G ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Moreover, we have ∪W⊆T ΩF W = Ω and ΩF W1 ∩ ΩF W2 = ∅ for every W1 ̸= W2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, {ΩF W }W⊆T is a partition of Ω (viewed as a set of subgraphs of G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' When W = ∅, we write ΩF W as ΩF , and when W = {s} or W = {s, t}, we write ΩF W as ΩF s or ΩF s,t respectively for simplicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Our algorithm is given in Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Algorithm 1: Finding an optimal factor for an instance of WGFP(G ∪ T ) 1 Function Decision: Input : An instance Ω = (G, π, ω) of WGFP(G ∪ T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Output: A factor of Ω, or “No” if Ω has no factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 2 Function Optimisation: Input : An instance Ω = (G, π, ω) of WGFP(G ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Output: An optimal factor of Ω, or “No” if Ω has no factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 3 Function Main: Input : An instance Ω = (G, π, ω) of WGFP(G ∪ T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Output: An optimal factor F ∈ Ω, or “No” if Ω has no factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 4 T ← {v ∈ V | π(v) ∈ T };' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 5 if T is the empty set then 6 return Optimisation (Ω);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 7 else 8 Arbitrarily pick u ∈ T;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 9 if Decision (Ω0 u) returns “No” then 10 return Main (Ω1 u);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 11 else 12 F opt ← Main (Ω0 u);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 13 foreach v ∈ T do 14 // Elements of T can be traversed in anarbitrary order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 15 W ← {u} ∪ {v};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 16 if Optimisation(ΩF opt W ) ̸= “No” then F ′ ← Optimisation(ΩF opt W );' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 17 if ω(F ′) > ω(F opt) then F opt ← F ′;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 18 end 19 return F opt;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 20 end 21 end The following structural result for the WGFP can be used to find an optimal factor recur- sively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' It says that given an optimal factor F of Ω0 u for some u ∈ TΩ, either F is already optimal in Ω, or we can find an optimal factor of Ω by searching at most n sub-instances of Ω which are in WGFP(G ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that Ω = (G, π, ω) is an instance of WGFP(G ∪ T ), F is a factor of Ω and F is optimal in Ω0 u for some u ∈ TΩ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then a factor F ′ is optimal in Ω if and only if ω(F ′) ≥ ω(F) and ω(F ′) ≥ Opt(ΩF W ) for every W where u ∈ W ⊆ TΩ and |W| = 1 or |W| = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In other words, if F is not optimal in Ω, then there is an optimal factor of Ω which belongs to ΩF W for some W where u ∈ W ⊆ TΩ and |W| = 1 or |W| = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1 does not hold if the condition “F is optimal in Ω0 u” is changed to “F is optimal in Ω1 u” for some u ∈ TΩ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the following example as shown in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 7 In this instance, π(u) = π(v) = π(t) = {0, 1, 3} (denoted by hollow nodes) and π(s) = {0, 2, 3} (denoted by the solid node), and ω(C1) = ω(pvs) = ω(psu) = ω(p′ su) = ω(put) = ω(C2) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Inside the cycles C1 and C2, and the paths pvs, psu, put, and p′ su, there are other vertices of degree 2 with the degree constraint {0, 2} so that the graph G is simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We omit these vertices of degree 2 in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In this case, TΩ = {u, v, s, t}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the sub-instance Ω1 u = (G, π1 u, ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We have π1 u(u) = D1 u = {0} since π(u) = {0, 1, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' One can check that the only factor F of Ω1 u is the empty graph (assuming there are no isolated vertices in factors), and F is not optimal in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In fact, the only optimal factor of Ω is the graph G and G ∈ ΩF TΩ where |TΩ| = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1 does not hold in the case that F is optimal in Ω1 u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Figure 1: An example that violates Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1 when F is optimal in Ω1 u instead of Ω0 u Using Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1, we now prove that Algorithm 1 is correct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Given an instance Ω = (G, π, ω) of WGFP(G , T ), Algorithm 1 returns either an optimal factor of Ω, or “No” if Ω has no factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Recall that for an instance Ω = (G, π, ω), we define TΩ = {v ∈ VG | π(v) ∈ T } where VG is the vertex set of G .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We prove the correctness by induction on the |TΩ|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If |TΩ| = 0, Ω is an instance of WGFP(G ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Algorithm 1 simply returns Optimisation (Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By the definition of the function Optimisation, the output is correct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that Algorithm 1 returns correct results for all instances Ω′ of WGFP(G , T ) where |TΩ′| = k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We consider an instance Ω of WGFP(G , T ) where |TΩ| = k + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Algorithm 1 first calls the function Decision (Ω0 u) for some arbitrary u ∈ T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We first consider the case that Decision (Ω0 u) returns “No”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By the definition, Ω0 u has no factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Moreover, since Ω = Ω0 u ∪ Ω1 u, we have F ∈ Ω if and only if F ∈ Ω1 u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, a factor F ∈ Ω1 u is optimal in Ω if and only if it is optimal in Ω1 u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Note that Ω1 u is an instance of WGFP(G , T ) where |TΩ1u| = k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By the induction hypothesis, Algorithm 1 returns a correct result Main (Ω1 u) for the instance Ω1 u, which is also a correct result for the instance Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Now, we consider the case that Decision (Ω0 u) returns a factor of Ω0 u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, Main (Ω0 u) returns an optimal factor F of Ω0 u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' After the loop (lines 13 to 17) in Algorithm 1, we get a factor F opt of Ω such that ω(F opt) ≥ Opt(ΩF W ) for every u ∈ W ⊆ TΩ where |W| = 1 (when u = v) or |W| = 2 (when u ̸= v) and ω(F opt) ≥ ω(F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1, F opt is an optimal factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, Algorithm 1 returns a correct result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Now, we consider the time complexity of Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The size of an instance is defined to be the number of vertices of the underlying graph of the instance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Run Algorithm 1 on an instance Ω = (G, π, ω) of size n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, the algorithm will stop the recursion after at most n recursive steps;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' the algorithm will call Decision at most n many times, call Optimisation at most n(n+1) 2 + 1 many times, and perform at most n(n+1) 2 many comparisons;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' the algorithm runs in time O(n6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 8 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let Ωk = {G, πk, ω} be the instance after k many recursive steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Here Ω0 = Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Recall that TΩk = {v ∈ V | πk(v) ∈ T }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For an instance Ωk with |TΩk| > 0, the recursive step will then go to the instance (Ωk)0 u or (Ωk)1 u for some u ∈ TΩk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, Ωk+1 = (Ωk)0 u or (Ωk)1 u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In both cases, TΩk+1 = TΩk\\{u} and hence |TΩk+1| = |TΩk| − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By design, the algorithm will stop the recursion and return Optimisation (Ωm) when it reaches an instance Ωm with |TΩm| = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, #recursive steps = m = |TΩ| − 0 ≤ |V | = n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' To prove the second item, we consider the number of operations inside the recursive step for the instance Ωk = {G, πk, ω}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Note that k ≤ n and |TΩk| = |TΩ| − k ≤ n − k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If |TΩk| = 0, then the algorithm will simply call Optimisation once.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If |TΩk| > 0, then inside the recursive step, the algorithm will call Decision once, and call Optimisation once or |TΩk| many times depending on the answer of Decision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Moreover, in the later case, the algorithm will also perform |TΩk| many comparisons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, #calls of Decision = � |TΩk|>0 1 = |TΩ| � i=1 1 = |TΩ| ≤ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' #calls of Optimisation ≤ 1 + � |TΩk|>0 |TΩk| = 1 + |TΩ| � i=1 i ≤ n(n + 1) 2 + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' #comparisons ≤ � |TΩk|>0 |TΩk| ≤ n(n + 1) 2 Let tMain(n) denote the running time of Algorithm 1 on an instance of size n, and tDec(n) and tOpt(n) denote the running time of algorithms for the functions Decision and Optimisation, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, tDec(n) = O(n5) by the algorithm in [Cor88] and tOpt(n) = O(n5) by the algorithm in [DP18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, tMain(n) ≤ ntDec(n) + n(n+1)+2 2 tOpt(n) + n(n+1) 2 = O(n6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 4 Proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1 As an analogy of augmenting paths in the weighted matching problem, we introduce basic augmenting subgraphs (Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='3) for the weighted graph factor problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We will show that given a non-optimal factor F, a basic augmenting subgraph always exists, and it satisfies certain stronger properties under some mild assumptions (Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' This result will imply Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1 (F-augmenting subgraphs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that F is a factor of an instance Ω = (G, π, ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A subgraph H of G is F-augmenting if F∆H ∈ Ω and ω(F∆H) − ω(F) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that F is a factor of an instance Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If F is not optimal in Ω, then there exists an F-augmenting subgraph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since F is not optimal, there is some F ′ ∈ Ω such that ω(F ′) > ω(F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let H = F∆F ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We have F∆H = F ′ ∈ Ω and ωF (H) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, H is F-augmenting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Given a non-optimal factor F, the existence of an F-augmenting subgraph is trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' How- ever, the challenge is how to find such a subgraph efficiently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We define the following basic augmenting subgraphs which can be found efficiently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Recall that for an instance Ω = (G, π, ω) of WGFP(G ∪ T ), TΩ is the set {v ∈ VG | π(v) ∈ T }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For two factors F, F ∗ ∈ Ω, we define T F∆F ∗ Ω = {v ∈ TΩ | degF∆F ∗(v) ≡ 1 mod 2} = {v ∈ TΩ | degF (v) ̸≡ degF ∗(v) mod 2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 9 Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='3 (Basic augmenting subgraphs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that Ω = (G, π, ω) is an instance of WGFP(G , T ), and F and F ∗ are factors of Ω with ω(F) < ω(F ∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' An F-augmenting subgraph H = (VH, EH) is (F, F ∗)-basic if H ⊆ F∆F ∗, |V odd H | ≤ 2, and V odd H ∩ TΩ ⊆ T F∆F ∗ Ω where V odd H = {v ∈ VH | degH(v) ≡ 1 mod 2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that Ω = (G, π, ω) is an instance of WGFP(G ∪ T ), and F and F ∗ are two factors of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If ω(F ∗) > ω(F), then there exists an (F, F ∗)-basic subgraph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If ω(F ∗) > Opt(ΩF W ) for every W ⊆ T F∆F ∗ Ω with |W| ≤ 2, and T F∆F ∗ Ω contains a vertex u such that F ∈ Ω0 u (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=', degF (u) ∈ D0 u), then there exists an (F, F ∗)-basic subgraph H where degH(u) ≡ 0 mod 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The first property of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='4 implies the following: a factor F ∈ Ω is optimal if and only if ω(F) ≥ Opt(ΩF W ) for every W ⊆ TΩ with |W| ≤ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' This is a special case of the main result (Theorem 2) of [DP18] where the authors consider the WGFP for all constraints with gaps of length at most 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The second property of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='4 is more refined than the first property and it implies our main result (Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In this paper, as a by-product of the proof of property 2, we give a simple proof of Theorem 2 of [DP18] for the special case WGFP(G ∪ T ) based on certain properties of cubic graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Using the second property of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='4, we can prove Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Theorem (Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1 restated).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that Ω = (G, π, ω) is an instance of WGFP(G ∪T ), F is a factor of Ω and F is optimal in Ω0 u for some u ∈ TΩ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then a factor F ′ is optimal in Ω if and only if ω(F ′) ≥ ω(F) and ω(F ′) ≥ Opt(ΩF W ) for every W where u ∈ W ⊆ TΩ and |W| = 1 or |W| = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If F ′ is optimal in Ω, then clearly ω(F ′) ≥ ω(F) and ω(F ′) ≥ Opt(ΩF W ) for every W where u ∈ W ⊆ TΩ and |W| = 1 or |W| = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, to prove the theorem, it suffices to prove the other direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since ω(F ′) ≥ ω(F) and F is optimal in Ω0 u, we have ω(F ′) ≥ Opt(ΩF W ) for every W ⊆ TΩ where u /∈ W and |W| ≤ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, since ω(F ′) ≥ Opt(ΩF W ) for every W where u ∈ W ⊆ TΩ and |W| = 1 or |W| = 2, we have ω(F ′) ≥ Opt(ΩF W ) for every W ⊆ TΩ where |W| ≤ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For a contradiction, suppose that F ′ is not optimal in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let F ∗ be an optimal factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, ω(F ∗) > ω(F ′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, ω(F ∗) > ω(F ′) ≥ Opt(ΩF W ) for every W ⊆ TΩ where |W| ≤ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, ω(F ∗) /∈ Ω0 u since ω(F ∗) > ω(F) and F is optimal in Ω0 u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, degF ∗(u) ̸≡ degF (u) mod 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, T F∆F ∗ Ω contains the vertex u such that F ∈ Ω0 u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='4, there exists an (F, F ∗)-basic subgraph H where degH(u) ≡ 0 mod 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let F ′′ = F∆H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then F ′′ ∈ Ω and ω(F ′′) > ω(F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, F ′′ ∈ Ω0 u since degF ′′(u) ≡ degF (u) mod 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' This is a contradiction with F being optimal in Ω0 u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Now it suffices to prove Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='4, and the crux of its proof is to establish the existence of certain basic factors of the following key instance (Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='6) defined on subcubic graphs (Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Recall that a subcubic graph is a graph where every vertex has degree 1, 2 or 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='6 (Key instance).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A key instance Ω = (G, π, ω) is an instance of WGFP(G , T ) where G is a subcubic graph, and for every v ∈ VG, π(v) = {0, 1} if degG(v) = 1, π(v) = {0, 2} if degG(v) = 2, and π(v) = {0, 1, 3} (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=', type-1) or {0, 2, 3} (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=', type-2) if degG(v) = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We say a vertex v ∈ VG of degree 3 is of type-1 or type-2 if π(x) is type-1 or type-2 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We say a vertex v ∈ VG of any degree is 1-feasible or 2-feasible if 1 ∈ π(v) or 2 ∈ π(v) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 10 Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='7 (Basic factor).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let Ω be a key instance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A factor of Ω is a basic factor if it is in one of the following five forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A path, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=', a tree with two vertices of degree 1 (called endpoints) and all other vertices, if there exists any, of degree 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A cycle, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=', a graph consisting of two vertex disjoint paths with the same two endpoints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A tadpole graph, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=', a graph consisting of a cycle and a path such that they intersect at one endpoint of the path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A dumbbell graph, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=', a graph consisting of two vertex disjoint cycles and a path such that the path intersects with each cycle at one of its endpoints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A theta graph (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=', a graph consisting of three vertex disjoint paths with the same two endpoints) where one vertex of degree 3 is of type-1, and the other vertex of degree 3 is of type-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We will need the following theorem regarding the existences of certain basic factor in key instances with positive total edge weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We defer its proof to Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that Ω = (G, π, ω) is a key instance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If ω(G) > 0, then there is a basic factor F of Ω such that ω(F) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If ω(G) > 0, ω(G) > ω(F) for every basic factor F of Ω, and G contains a vertex u with degG(u) = 1 or degG(u) = 3 and π(u) = {0, 2, 3}, then there is a basic factor F ∗ of Ω such that ω(F ∗) > 0 and degF ∗(u) ≡ 0 mod 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (Recall that degF ∗(u) = 0 if u /∈ VF ∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For the second property of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='8, the requirement of π(u) = {0, 2, 3} when degG(u) = 3 is crucial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the instance Ω = (G, π, ω) as shown in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' It is easy to that Ω is a key instance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In this case, it can be checked that ω(G) = 6 > 0 and ω(G) > ω(F) for every basic factor F of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' However, there is no basic factor F ∗ of Ω such that ω(F ∗) > 0 and degF ∗(u) ≡ 0 mod 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, the second property does not hold for a vertex u where degG(u) = 3 and π(u) = {0, 1, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We will now use Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='8 to prove Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The rest of this section is devoted to the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Proof of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let G∆ = F∆F ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Note that G∆ is not necessarily a subcubic graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In order to invoke Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='8, we modify G∆ to a subcubic graph, and construct a key instance on it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For every v ∈ VG∆, we consider the set of edges incident to v in G∆, denoted by Ev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since G∆ = F∆F ∗, we have Ev ⊆ EG∆ = EF ∆EF ∗, where EF and EF ∗ are the edge sets of the factors F and F ∗ respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If there is a pair of edges e, e∗ ∈ Ev such that e ∈ EF and e∗ ∈ EF ∗, then we perform the following separation operation for this pair of edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that e = (v, u) and e∗ = (v, u∗);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' we add a new vertex v1 to the graph, and replace the edges e and e∗ by (v1, u) and (v1, u∗) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We label the vertex v1 (of degree 2) by πs(v1) = {0, 2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' With a slight abuse of notation, we may still use e and e∗ to denote these two new edges, and also use EG∆ to denote the set of all edges of the new graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For each Ev, keep doing the separation operations for pairs of edges of which one is in EF and the other is in EF ∗ until all the remaining edges in Ev are in EF or in EF ∗ We use Er v to denote the set of remaining edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' It is possible that Er v is empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let P 1 v , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , P k v be the pairs of edges that have been separated, and v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , vk be the added vertices (k can be zero).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Note 11 that all these new vertices are of degree 2, and are labeled by {0, 2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Now, we have the partition Ev = P 1 v ∪ · · · ∪ P k v ∪ Er v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let r = |Er v|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then r = | degF (v) − degF ∗(v)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Note that r is even if π(v) ∈ G2, and r ≤ 3 if π(v) ∈ T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We deal with edges in Er v according to r and π(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If r = 0, then v is an isolated vertex in the current graph, and we simply remove it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider an arbitrary subgraph H of the original G∆ induced by a union of some pairs of edges in P 1 v , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , P k v .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, for the subgraph F∆H of G∆, we have degF∆H(v) = degF (v) ∈ π(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If r ̸= 0 and π(v) ∈ G1, then we replace the vertex v with r many new vertices, and replace the r many edges incident to v by r many edges incident to these new vertices such that each vertex has degree 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We label every new vertex by {0, 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that L = min{degF (v), degF ∗(v)} and U = max{degF (v), degF ∗(v)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since π(v) ∈ G1, {L, L + 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , U} ⊆ π(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider an arbitrary subgraph H ⊆ G∆ induced by a union of some pairs of edges in P 1 v , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , P k v and a subset of Er v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, for the subgraph F∆H of G∆, we have degF∆H(v) ∈ {L, L + 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , U} ∈ π(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If r ̸= 0 and π(v) ∈ G2\\G1, then we replace the vertex v with r/2 many vertices, and replace the r many edges incident to v by r many edges incident to these new vertices such that each vertex has degree 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (We can partition these r many edges into arbitrary pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=') We label every new vertex by {0, 2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that L = min{degF (v), degF ∗(v)} and U = max{degF (v), degF ∗(v)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since π(v) ∈ G2, {L, L + 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , U} ⊆ π(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider an arbitrary subgraph H ⊆ G∆ induced by a union of some pairs of edges in P 1 v , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , P k v and an even-size subset of Er v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, for the subgraph F∆H of G∆, we have degF∆H(v) ∈ {L, L + 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , U} ∈ π(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If r ̸= 0 and π(v) ∈ T , then there are three subcases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If r = 1, then v has degree 1 in the current graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We label it by πs(v) = {0, 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If r = 2, then v has degree 2 in the current graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We label it by πs(v) = {0, 2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If r = 3, then v has degree 3 in the current graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We label it by πs(v) = {0, 1, 3} if degF (v) ∈ D1 v, and πs(v) = {0, 2, 3} if degF (v) ∈ D0 v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider an arbitrary subgraph H ⊆ G∆ induced by a union of some pairs of edges in P 1 v , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , P k v and a subset I of Er v where |I| ⊆ πs(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, for the subgraph F∆H of G∆, we have degF∆H(v) ∈ π(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Now, we get a subcubic graph Gs from G∆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Each vertex v in G∆ is replaced by a set of new vertices in Gs, denoted by S(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If π(v) ∈ G1, then S(v) consists of vertices of degree 2 or 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If π(v) ∈ G2, then S(v) consists of vertices of degree 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If π(v) ∈ T , then S(v) consists of vertices of degree 2 and possibly a vertex of degree r where r = | degF (v) − degF ∗(v)| ≤ 3 (there is no such a vertex if r = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In particular, if degF (v) − degF ∗(v) ≡ 0 mod 2, then S(v) consists of vertices of degree 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In all cases, we have degG∆(v) = � x∈S(v) degGs(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Each edge (u, v) in G∆ is replaced by an edge (us, vs) ∈ G∆ where us ∈ S(u) and vs ∈ S(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Once we get Gs from G∆, it is clear that there is a natural one-to-one correspondence between edges in Gs and edges in G∆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Without 12 causing ambiguity, when we say an edge or an edge set in Gs, we may also refer it to the corresponding edge or edge set in G∆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' As we constructed Gs, we have already defined the mapping πs which labels each vertex in Gs with a degree constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For x ∈ VGs, we have πs(x) = {0, 1} if degGs(x) = 1, πs(x) = {0, 2} if degGs(x) = 2, and πs(x) = {0, 1, 3} or {0, 2, 3} if degGs(x) = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Moreover, as we have discussed above, for a vertex v ∈ VG∆ and a subgraph H ⊆ G∆ induced be a set E of edges incident to v in G∆, we have degF∆H(v) ∈ π(v) if degHs(x) ∈ πs(x) for every x ∈ S(v) where Hs is the subgraph of Gs induced by the edge set E (viewed as edges in Gs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Now, we define the function ωs for edges in Gs as follow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Recall that for every edge in Gs, its corresponding edge in G∆ is either in the factor F or the factor F ∗ but not in both since G∆ = F∆F ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For e ∈ EGs, we define ωs(e) = ω(e) if e ∈ EF ∗ and ωs(e) = −ω(e) if e ∈ EF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We can extend ωs to any subgraph of Gs by defining its weight to be the total weight of all its edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, for any subgraph Hs ⊆ Gs, ωs(Hs) = ω(F∆H) − ω(F) where H is the subgraph of G∆ corresponding to Hs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In particular, ωs(Gs) = ω(F ∗) − ω(F) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, we get a key instance Ωs = (Gs, πs, ωs) where ωs(Gs) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that F s is a factor of Gs with ωs(F s) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We consider the subgraph H of G∆ induced by the edge set EF s (viewed as edges in G∆).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We show that H is an (F, F ∗)-basic subgraph of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We have H ⊆ G∆ = F∆F ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' As we have discussed above, for every vertex v ∈ VF∆H, degF∆H(v) ∈ π(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, F∆H ∈ Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, ωs(F s) = ω(F∆H) − ω(F) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, H is an F-augmenting subgraph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For every v ∈ VH, degH(v) = � x∈S(v) degF s(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, degH(v) is odd only if there is a vertex x ∈ S(v) such that degF s(x) is odd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, the number of odd vertices in H is no more than the number of odd vertices in F s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since F s is a basic factor, it has at most 2 vertices of odd degree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, H has at most 2 vertices of odd degree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Moreover, for a vertex v ∈ VH ∩TΩ, if degF (v) ≡ degF ∗(v) mod 2, then S(v) consists of vertices of degree 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, degF s(x) ∈ {0, 2} for every x ∈ S(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, degH(v) = � x∈S(v) degF s(x) is even.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, for a vertex v ∈ VH ∩TΩ, degH(v) is odd only if degF (v) ̸≡ degF ∗(v) mod 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, V odd H ∩TΩ ⊆ T F∆F ∗ Ω where V odd H = {v ∈ VH | degH(v) ≡ 1 mod 2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, H is an (F, F ∗)-basic subgraph of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By the first part of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='8, there exists a basic factor F s ∈ Ωs with ωs(F s) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, there exists an (F, F ∗)-basic subgraph H ⊆ G induced by the edge set EF s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The first part is done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Now, we prove the second part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that ω(F ∗) > Opt(ΩF W ) for every W ⊆ T F∆F ∗ Ω where |W| ≤ 2, and T F∆F ∗ Ω contains a vertex u where degF (u) ∈ D0 u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the instance Ωs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' First, we prove that ωs(Gs) > ω(F s) for every basic factor F s of Ωs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For a contradiction, suppose that there is some F s ∈ Ωs such that ωs(Gs) ≤ ω(F s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Still consider the subgraph H of G∆ inducted by EF s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We know that H is an (F, F ∗)-basic subgraph of G and ωs(F s) = ω(F∆H) − ω(F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let W = V odd H ∩ TΩ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, W ⊆ T F∆F ∗ Ω and |W| ≤ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For every x ∈ W, since degH(x) is odd, we have degF∆H(x) ̸≡ degF (x) mod 2, and then degF∆H(x) ∈ π(x)\\DF v .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For every x ∈ TΩ\\W, since degH(x) is even, we have degF∆H(x) ≡ degF (x) mod 2 and then degF∆H(x) ∈ DF v .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the sub-instance ΩF W = (G, πF W , ω) of Ω (see Equation (1) for the definition of ΩF W ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, F∆H ∈ ΩF W .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, ω(F∆H) ≤ Opt(ΩF W ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since ωs(Gs) = ω(F ∗) − ω(F) ≤ ωs(F s) = ω(F∆H) − ω(F), we have ω(F ∗) ≤ ω(F∆H).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, ω(F ∗) ≤ Opt(ΩF W ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A contradiction with the assumption that ω(F ∗) > Opt(ΩF W ) for every W ⊆ T F∆F ∗ Ω where |W| ≤ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, ωs(Gs) > ωs(F s) for every basic factor F s of Ωs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since T F∆F ∗ Ω contains a vertex u where degF (u) ∈ D0 u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the vertex set S(u) in Gs that corresponds to u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since u ∈ T F∆F ∗ Ω , degF (u) ̸≡ degF ∗(u) mod 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, S(u) consists of vertices of degree 2 and a vertex us of degree degGs(us) = | degF (u) − degF ∗(u)| which is 1 or 13 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If | degF (u) − degF ∗(u)| = 3, then πs(us) = {0, 2, 3} since degF (u) ∈ D0 u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, Gs contains a vertex us where degGs(us) = 1 or degGs(us) = 3 and πs(us) = {0, 2, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, by the second part of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='8, there is a basic factor F s ∈ Ωs such that ωs(F s) > 0 and degF s(us) ≡ 0 mod 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Again, consider the subgraph H of G∆ inducted by EF s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We have proved that H is an (F, F ∗)-basic subgraph of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, degH(u) = � x∈S(u)\\{us} degF s(x) + degF s(us) ≡ 0 mod 2 since degF s(x) ∈ πs(x) = {0, 2} for every x ∈ S(u)\\{us}, and degF s(us) ≡ 0 mod 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, there is an (F, F ∗)-basic subgraph H of G such that degH(u) ≡ 0 mod 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 5 Proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='8 We first prove the first property (restated in Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='6), and then prove the second property (restated in Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='7) using the first property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In this section, for two points x and y, we use pxy, p′ xy or p′′ xy to denote a path with endpoints x and y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Recall that Vpxy and Epxy denotes the vertex set and the edge set of pxy respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1 Proof of the first property Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that Ω = (G, π, ω) is a key instance with ω(G) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If G is not connected, then there is a factor F ∈ Ω such that ω(F) > 0 and |EF | < |EG|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that G1 is a connected component of G, and G2 = G∆G1 is the rest of the graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Note that G1 and G2 are both factors of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By the definition of subcubic graphs, there are no isolated vertices in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, neither G1 nor G2 is a single vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, |EG1|, |EG2| ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since EG is the disjoint union of EG1 and EG2, |EG1|, |EG2| < |EG|, and ω(G) = ω(G1)+ω(G2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since ω(G) > 0, among ω(G1) and ω(G2), one is positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that Ω = (G, π, ω) is a key instance with ω(G) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, there is a factor F ∈ Ω such that ω(F) > 0 and |EF | < |EG| if one of the following conditions holds: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' There is a path puv ⊆ G with endpoints u and v where u and v are the only two vertices in puv of type-2 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=', degG(u) = degG(v) = 3 and π(u) = π(v) = {0, 2, 3}) and ω(puv) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' There is a cycle C ⊆ G where no vertex is of type-2 and ω(C) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that the first condition holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the subgraph F = G\\puv of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, |EF | = |EG| − |Epuv| < |EG|, and ω(F) = ω(G) − ω(puv) ≥ ω(G) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Now we only need to show that F is a factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The vertex set VF consists of three parts: V1 = VG\\Vpuv, V2 = {x ∈ Vpuv\\{u, v} | degG(x) = 3}, and V3 = {u, v}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since u and v are the only two vertices of type-2 in puv, for every x ∈ V2, x is of type-1 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=', π(x) = {0, 1, 3}).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, for every x ∈ VF , we have degF (x) = degG(x) ∈ π(x) if x ∈ V1, degF (x) = 1 ∈ π(x) if x ∈ V2, and degF (x) = 2 ∈ π(x) if x ∈ V3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, F is a factor of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that the second condition holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the subgraph F = G\\C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then |EF | < |EG| and ω(F) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Similar to the above proof, one can check that F is a factor Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 14 Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that Ω = (G, π, ω) is a key instance with ω(G) > 0, G is not a basic factor of itself and C ⊆ G is a cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let k be the number of type-1 vertices and ℓ be the number of type-2 vertices in C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If k ̸= 1 and ℓ ̸= 1, then there is a factor F ∈ Ω such that ω(F) > 0 and |EF | < |EG|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We prove this lemma in two cases depending on whether ω(C) > 0 or ω(C) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We first consider the case that ω(C) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If k = 0, then all vertices in C are 2-feasible (see Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, C is a factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since G is not a basic factor of itself, we have G ̸= C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, since G has no isolated vertices, C ⊊ G implies that |EC| < |EG|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, we may assume that k ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that {u1, u2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , uk} are the type-1 vertices in C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We list them in the order of traversing the cycle starting from u1 in an arbitrary direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, these k many vertices split the cycle into k many paths pu1u2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , pukuk+1 (uk+1 = u1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For each path, all its vertices are 2-feasible except for its two endpoints which are 1-feasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, each path is a basic factor of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We have |Epuiui+1| < |EG| for every i ∈ [k].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since ω(C) = k � i=1 ω(puiui+1) > 0, there is a path puiui+1 such that ω(puiui+1) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then we consider the case that ω(C) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If ℓ = 0, then C ⊆ G is cycle with no type- 2 vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='2, we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, we may assume that ℓ ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that {v1, v2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , vℓ} are the type-2 vertices in C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We list them in the order of traversing the cycle starting from v1 in an arbitrary direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, these ℓ many vertices split the cycle into ℓ many paths pv1v2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , pvℓvℓ+1 (vℓ+1 = v1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For each path, it has no vertex of type-2 except for its two endpoints which are of type-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since ω(C) = k � i=1 ω(pvivi+1) ≤ 0, there is a path pvivi+1 such that ω(pvivi+1) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, there is a path pvivi+1 ⊆ G where vi and vi+1 are the only two vertices of type-2 in pvivi+1 and ω(pvivi+1) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, by Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='2, we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that Ω = (G, π, ω) is a key instance with ω(G) > 0, and G is not a basic factor of itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If G is 2-connected, then there is a factor F ∈ Ω such that Ω(F) > 0 and |EF | < |EG|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since G is 2-connected, it contains at least three vertices and it contains no vertex of degree 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the number of type-1 vertices in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' There are three cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' G has no type-1 vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since G is 2-connected, there is a cycle C ⊆ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Clearly, C has no type-1 vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If C has exactly one type-2 vertex, denoted by v, then v is the only vertex in C such that degG(v) = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, there is an edge e ∈ EG incident to v such that e /∈ EC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' It is easy to see that e is a bridge of G, a contradiction with G being 2-connected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, C has no type-2 vertex, or it has at least two type-2 vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, by Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='3, we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' G has exactly one type-1 vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let u be the type-1 vertex of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since G is 2-connected, there is a cycle C ⊆ G containing the vertex u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since degC(u) = 2 < degG(u) = 3, by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='7, there is a path puw ⊆ G with endpoints u, w ∈ VC such that Epuw ∩ EC = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 15 Consider the subgraph H = puw∪C of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' H is a theta graph where degH(u) = degH(w) = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' All vertices of H are 2-feasible except for u which is 1-feasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Note that H is a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since G is not a basic factor of itself, H ̸= G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also since G is connected, there exists an edge ets = (t, s) incident to a vertex s ∈ VH such that ets /∈ EH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Clearly, s is a vertex of type-2, degG(s) = 3 and degH(s) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='7, there is a path psr with endpoints s, r ∈ VH such that Epsr ∩ EH = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Clearly, degG(r) = 3 and r is a vertex of type-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since s, r ∈ VH and H is a theta graph which is 2-connected, we can find a path p′ sr ⊆ H with endpoints s and r such that the only type-1 vertex u in H is not in p′ sr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the cycle C′ = psr ∪ p′ sr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' It has no vertex of type-1, and it has at least two vertices s and r of type-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='3, we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' G has at least two type-1 vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since G is 2-connected and it contains at least two type-1 vertices, we can find a cycle C ⊆ G that contains at least two type-1 vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the number of type-2 vertices in C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If the number is not 1, then by Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='3, we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, we may assume that C contains exactly one vertex of type-2, denoted by v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since G is 2-connected and degG(v) = 3 > degC(v) = 2, we can find a path pvu for some u ∈ VC such that Epvu ∩ EC = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We have degG(u) = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since v is the only vertex of type-2 in C, u is a vertex of type-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Vertices v and u split C into two paths p′ vu and p′′ vu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since C contains at least two type-1 vertices, there exists some w ∈ VC where w ̸= u such that w is of type-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, w ̸= v since v is of type-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since w ∈ VC = Vp′vu ∪ Vp′′vu and Vp′vu ∩ Vp′′vu = {u, v}, without loss of generality, we may assume that w ∈ Vp′vu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the path pvu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If pvu contains at least two vertices of type-2, then the cycle C′ = pvu ∪ p′ vu contains at least two vertices of type-2 and at least two vertices u and w of type-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, by Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='3, we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, we may assume that v is the only vertex of type-2 in pvu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the theta graph H = pvu ∪ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then v is the only vertex of type-2 in H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Note that w ∈ VH, degH(w) = 2 < degG(w) = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since G is 2-connected, by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='7, we can find a path pws for some s ∈ VH such that Epws ∩ EH = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Clearly s ̸= v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, s is of type-1 since v is the only vertex of type-2 in H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the number of type-2 vertices in pws.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that there is no vertex of type-2 in pws.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since H is 2-connected and H contains only one vertex v of type 2, we can find a path p′ ws ⊆ H such that p′ ws does not contain the vertex v of type-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, the cycle pws ∪ p′ ws has no vertex of type-2 and at least two vertices w and s of type-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='3, we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Otherwise, there is at least one vertex of type-2 in pws.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since H is 2-connected, we can find a path p′′ ws ⊆ H such that p′′ ws contains the vertex v of type-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, the cycle pws ∪ p′′ ws has at least two vertices of type-2 and at least two vertices w and s of type-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='3, we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='5 (Induced sub-instance).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For a key instance Ω = (G, π, ω), and a factor F ∈ Ω, the sub-instance of Ω induced by F, denoted by ΩF , is a key instance (F, πF , ωF ) defined on the subgraph F of G where πF (x) = π(x) ∩ [degF (x)] ⊆ π(x) for every x ∈ VF and ωF is the restriction of ω on EF (we may write ωF as ω for simplicity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We are now ready to prove the first property of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='8 as restated in the next lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that Ω = (G, π, ω) is a key instance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If ω(G) > 0, then there is a basic factor F of Ω such that ω(F) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We prove this lemma by induction on the number of edges in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If |EG| = 1, then G is a single edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, G is a basic factor of itself, and ω(G) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 16 We assume that the lemma holds for all key instances where the underlying graph has no more than n many edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We consider a key instance Ω = (G, π, ω) where |EG| = n + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If G is a basic factor of itself, then clearly we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, we may assume that G is not a basic factor of itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that we can find a factor F ∈ Ω such that ω(F) > 0 and |EF | < |EG| = n+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, consider the sub-instance ΩF of Ω induced by F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since |EF | < n+1 and ω(F) > 0, by the induction hypothesis, there is basic factor F ′ ∈ ΩF such that ω(F ′) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since ΩF ⊆ Ω, F ′ ∈ Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, in order to establish the inductive step, it suffices to prove that there is a factor F ∈ Ω such that |EF | < |EG| and ω(F) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By Lemmas 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1 and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='4, if G is not connected or G is 2-connected, then we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, we may assume that G is a connected graph but not 2-connected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='6, G contains at least a bridge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Fix such a bridge of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let puv be the path containing the bridge such that for every vertex x ∈ Vpuv\\{u, v}, degG(x) = 2 and degG(u), degG(v) ̸= 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' observe that such a path exists and it is unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In fact, the whole path can be viewed as a “long bridge” of the graph G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, G\\puv is not connected and it has two connected components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let Gu ⊆ G\\puv be the part that contains u and Gv ⊆ G\\puv be the part that contains v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If both Gu and Gv are single vertices, then the graph G is a path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If both Gu and Gv are cycles, then G is a dumbbell graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If one of Gu and Gv is a single vertex and the other one is a cycle, then G is a tadpole graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In all these cases, G is a basic factor of itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A contradiction with our assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, among Gu and Gv, at least one is neither a cycle nor a single vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Without loss of generality, we may assume that Gu is neither a cycle nor a single vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since Gu is not a single vertex, degG(u) ̸= 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By the assumption, degG(u) ̸= 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then degG(u) = 3, and hence degGu(u) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let e1 = (u, w1) and e2 = (u, w2) be the two edges incident to u in Gu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We slightly modify Gu to get a new graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We replace the vertex u in Gu by two vertices u1 and u2, and replace the edges (u, w1) and (u, w1) in Gu by two new edges (u1, w1) and (u2, w2) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We denote the new graph by G′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' With a slight abuse of notations, we still use e1 and e2 to denote the edges (u1, w1) and (u2, w2) in G′ respectively, and we say EGu = EG′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, the edge weight function ω can be adapted to EG′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We define the following instance Ω′ = (G′, π′, ω′) where π′(u1) = π′(u2) = {0, 1} and π′(x) = π(x) for every x ∈ VG′\\{u1, u2}, and ω′(e1) = ω(e1) + ω(G\\Gu), and ω′(e) = ω(e) for every e ∈ EG′\\{e1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In other words, we add the total weight of the subgraph G\\Gu to the edge e1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, ω′(G′) = ω(G) > 0 and |EG′| = |EGu| < |EG|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By the induction hypothesis, there is a basic factor F ∈ Ω′ such that ω′(F) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We will recover a factor of Ω from F such that it has positive weight and fewer edges than G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' This will finish the proof of the inductive step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' There are four cases depending on the presence of e1 and e2 in F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' e1, e2 /∈ EF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, u1, u2 /∈ VF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For every x ∈ VF , degF (x) ∈ π′(x) = π(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, F is a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Clearly, ω(F) = ω′(F) > 0 and |EF | = |EF ′| < |EG|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' e1 ∈ EF and e2 /∈ EF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We can view F as a subgraph of Gu by changing the edge (u1, w1) in G′ back to the edge (u, w1) in Gu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, the edge (u, w2) /∈ EF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the subgraph H = F ∪ (G\\Gu) of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since (u, w2) /∈ EF , we have (u, w2) /∈ EH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, |EH| < |EG|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, we have ω(H) = ω(F) + ω(G\\Gu) = ω′(F) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The vertex set VH consists of three parts V1 = VF \\{u}, V2 = {u}, and V3 = VG\\Gu\\{u}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For every x ∈ V1, degH(x) = degF (x) ∈ π(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For every x ∈ V3, degH(x) = degG\\Gu(x) = degG(x) ∈ π(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Now, we consider the vertex u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' – If u is 2-feasible, then degH(u) = 2 ∈ π(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, H is a factor of Ω where ω(H) > 0 and |EH| < |EG|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 17 – If u is 1-feasible, then F and G\\Gu both are factors of Ω since degF (u) = degG\\Gu(u) = 1 ∈ π(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since ω(H) = ω(F) + ω(G\\Gu) > 0, among ω(F) and ω(G\\Gu), at least one is positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, |EF |, |EG\\Gu| < |EH| < |EG|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' e2 ∈ EF and e1 /∈ EF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Again, we can view F as a subgraph of Gu where (u, w2) ∈ EF and (u, w1) /∈ EF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, we have |EF | < |EGu| < |EG|, and ω(F) = ω′(F) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' – If u is 1-feasible, then F is a factor of G where |EF | < |EG| and ω(F) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' – If u is 2-feasible, then Gu is a factor of Ω since degGu(u) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If ω(Gu) > 0, then we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, we may assume that ω(Gu) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, ω(G\\Gu) = ω(G) − ω(G\\Gu) ≥ ω(G) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Still consider the subgraph H = F ∪ (G\\Gu).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, H is a factor of Ω since degH(u) = 2 ∈ π(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, ω(H) = ω(F) + ω(G\\Gu) > 0 and |EH| < |EG|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' e1, e2 ∈ EF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, F (as a subgraph of G′) contains two vertices u1 and u2 of degree 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since F is a basic factor, it is a path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Still we can view F as a subgraph of Gu by changing edges (u1, w1) and (u2, w2) in G′ to edges (u, w1) and (u, w2) in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, F is a cycle in Gu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since Gu is not a cycle and it has no isolated vertices, |EF | < |EGu|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the subgraph H = F ∪ (G\\Gu) of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We have |EH| < |EG| and ω(H) = ω(F) + ω(G\\Gu) = ω′(F) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, one can check that H is a factor of G no matter whether u is 1-feasible or 2-feasible since degH(u) = 3 ∈ π(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='2 Proof of the second property Now we prove the second property of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='8 using the first property (Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that Ω = (G, π, ω) is a key instance, and u is a vertex of G where degG(u) = 1 or degG(u) = 3 and π(u) = {0, 2, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If ω(G) > 0 and ω(G) > ω(F) for every basic factor F of Ω, then there is a basic factor F ∗ of Ω such that ω(F ∗) > 0 and degF ∗(u) ≡ 0 mod 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (Recall that we agree degF ∗(u) = 0 if u /∈ VF ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=') Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='6, there exists at least one basic factor of Ω such that its weight is positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Among all such basic factors, we pick an F such that ω(F) is the largest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We have 0 < ω(F) < ω(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If degF (u) is even, then we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, we may assume that degF (u) is odd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since F is a basic factor and it contains a vertex u of odd degree, F is not a cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By the definition of basic factors, F contains exactly one more vertex v of odd degree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since F is a factor of Ω, degF (u) ⊆ π(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Recall that degG(u) = 1 or 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If degG(u) = 1, then π(u) = {0, 1}, and hence degF (u) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If degG(u) = 3, then π(u) = {0, 2, 3}, and hence degF (u) = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, degF (u) always equals degG(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the graph G′ = G\\F, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=', the subgraph of G induced by the edge set EG\\EF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the instance Ω′ = (G′, π′, ω′) where for every x ∈ VG′, π′(x) = {0, 1} if degG′(x) = 1, π′(x) = {0, 2} if degG′(x) = 2 and π′(x) = π(x) if degG′(x) = 3, and ω′ is the weight function ω restricted to G′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Note that Ω′ is also a key instance, but it is not necessarily a sub-instance of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since ω(G) > ω(F), we have ω′(G′) = ω(G′) = ω(G) − ω(F) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Without causing ambiguity, we may simply write ω′ as ω in the instance Ω′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='6, there exists a basic factor F ′ of Ω′ such that ω(F ′) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since EF ′ ⊆ EG\\EF , F and F ′ are edge-disjoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let H = F ∪ F ′, which is the subgraph of G induced by the edge set EF ∪ EF ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We show that H is a factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let V∩ = VF ∩VF ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' First we show that for every x ∈ VH\\V∩, degH(x) ∈ π(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If x ∈ VF \\V∩, then degH(x) = degF (x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since F ∈ Ω, degF (x) ∈ π(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, degH(x) ∈ π(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If x ∈ VF ′\\V∩, then degH(x) = degF ′(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since x /∈ VF and G′ = G\\F, degG′(x) = degG(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, by the 18 definition of Ω′, we have π′(x) = π(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since F ′ is a factor of Ω′, degF ′(x) ∈ π′(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, degH(x) ∈ π(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Now, we consider vertices in V∩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since F and F ′ are edge disjoint, for every x ∈ V∩ we have degH(x) = degF (x) + degF ′(x) ≤ degG(x) ≤ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, degF (x), degF ′(x) ≥ 1 since F and F ′ are subcubic graphs which have no isolated vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If degF (x) = 1, then 1 ∈ π(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The vertex x is 1-feasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, degG(x) ̸= 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since degG(x) > degF (x) = 1, degG(x) = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, degG′(x) = degG(x) − degF (x) = 2, π′(x) = {0, 2} and degF ′(x) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If degF (x) = 2, then degG(x) = 3 since degG(x) > degF (x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, degG′(x) = degG(x) − degF (x) = 1, π′(x) = {0, 1} and degF ′(x) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, for every x ∈ V∩, degH(x) = degF (x) + degF ′(x) = 3 ∈ π(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, H is a factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the sub-instance ΩH = (H, πH, ωH) of Ω induced by H (we will write ωH as ω for simplicity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We will show that we can find a a basic factor F ∗ of ΩH such that ω(F ∗) > 0 and degF ∗(u) ≡ 0 mod 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Clearly, F ∗ is also a factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the set V∩ of intersection points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If V∩ = ∅, then for every x ∈ V ′ F , degF ′(x) = degH(x) ∈ π(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, F ′ is a basic factor of Ω where ω(F ′) > 0 and degF ′(u) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' That is, F ′ is the desired F ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, we may assume that V∩ is non-empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For every x ∈ V∩, degF (x) = 1 and degF ′(x) = 2, or degF (x) = 2 and degF ′(x) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Recall that F is a basic factor containing two vertices u, v of odd degree, and degF (u) = degG(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Clearly, u /∈ V∩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We consider the possible forms of F and F ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Recall that F is not a cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We show that F ′ is also not a cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For a contradiction, suppose that F ′ is a cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, all vertices of F ′ have degree 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, the only possible vertex in V∩ is v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since V∩ is non-empty, V∩ = {v}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, degF (v) = 1 and degF ′(v) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If degF (u) = 1, then F is a path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The graph H is a tadpole graph where v is the only vertex of degree 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If degF (u) = 3, then F is a tadpole graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The graph H is a dumbbell graph where v and u are the two vertices of degree 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In both cases, H is a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since ω(F ′) > 0, we have ω(H) = ω(F) + ω(F ′) > ω(F) which leads to a contraction with F being a basic factor with the largest weight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, F ′ is a basic factor which is not a cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, it contains exactly two vertices s, t of odd degree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, V∩ ⊆ {v, s, t}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We consider the graph H depending on the forms of F and F ′, and the vertices in V∩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' There are 5 main cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' F is a path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' F is a tadpole graph and degF (u) = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' F is a tadpole graph and degF (u) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' F is a dumbbell graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' F is a theta graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Recall that for two points x and y, we use pxy, p′ xy or p′′ xy to denote a path with endpoints x and y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We also use qxy3 or q′ xy3 to denote a tadpole graph where x is the vertex of degree 1 and y is the vertex of degree 3, and θxy to denote a theta graph where x and y are the two points of degree 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In the following Figures 2 to 12, we use hollow nodes to denote 1-feasible vertices, solid nodes to denote 2-feasible vertices, semisolid nodes to denote vertices that are possibly 1-feasible or 2-feasible, red-colored lines to denote paths in F, and blue-colored lines to denote paths in F ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Case I: F is a path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' There are 4 subcases depending on the form of F ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 19 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1 F and F ′ are both paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, V∩ ⊆ {v, s, t}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' There are 5 subcases: V∩ = {v}, V∩ = {s} or {t}, V∩ = {v, s} or {v, s}, V∩ = {s, t}, and V∩ = {v, s, t}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (a) V∩ = {v}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Figure 2: The graph H in Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (a) In this case, degH(u) = degH(s) = degH(t) = 1, degH(v) = 3, and π(v) = {0, 1, 3} since degF (v) = 1 ∈ π(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The graph H consists of three edge-disjoint paths puv, pvs and pvt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, F = puv and F ′ = pvs ∪ pvt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (See Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=') Since ω(F ′) = ω(pvs) + ω(pvt) > 0, among ω(pvs) and ω(pvt), at least one is positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Without loss of generality, we may assume that ω(pvs) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since u does not appear in pvs, we have degpvs(u) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For every vertex x in pvs where x ̸= v, degpvs(x) = degH(x) ∈ π(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, degpvs(v) = 1 ∈ π(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, the path pvs is a basic factor of Ω where ω(pvs) > 0 and degpvs(u) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (b) V∩ = {s} or {t}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' These two cases are symmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We only consider the case that V∩ = {s}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Figure 3: The graph H in Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (b) In this case, degH(s) = 3, degH(u) = degH(v) = degH(t) = 1, and π(s) = {0, 2, 3} since degF ′(s) = 1 and degF (s) = 2 ∈ π(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The graph H consists of three edge- disjoint paths pus, psv and pst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, F ′ = pst and F = pus ∪ psv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (See Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=') Note that ω(pst) = ω(F ′) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let put = pus ∪ pst be the path with endpoints u and t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For every vertex x in put where x ̸= s, we have degput(x) = degH(x) ∈ π(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, degput(s) = 2 ∈ π(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, put is a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, ω(F) ≥ ω(put) since F is a basic factor of Ω with the largest weight ω(F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, ω(F) = ω(pus) + ω(psv) ≥ ω(pus) + ω(pst) = ω(put).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 20 Thus, ω(psv) ≥ ω(pst) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let pvt = psv ∪ pst be the path with endpoints v and t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, ω(pvt) = ω(psv) + ω(pst) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since u is not in pvt, degpvt(u) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Similar to the proof of put ∈ Ω, we have pvt ∈ Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, the path pvt is a basic factor of Ω where ω(pvt) > 0 and degpvt(u) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (c) V∩ = {v, s} or {v, t}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' These two cases are symmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We only consider the case that V∩ = {v, s}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Figure 4: The graph H in Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (c) In this case, degH(v) = degH(s) = 3, degH(u) = degH(t) = 1, π(v) = {0, 1, 3} since degF (v) = 1 ∈ π(v), and π(s) = {0, 2, 3} since degF (s) = 2 ∈ π(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The point s splits F into two paths pus and psv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, F = pus ∪ psv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The point v splits F ′ into two paths p′ sv and pvt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, F ′ = p′ sv ∪ pvt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (See Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=') Consider the path p′ uv = pus ∪ p′ sv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Note that degp′uv(s) = 2 ∈ π(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, p′ uv is a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since, F is a basic factor of Ω with the largest weight, we have ω(F) = ω(pus) + ω(psv) ≥ ω(pus) + ω(p′ sv) = ω(p′ uv).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, ω(psv) ≥ ω(p′ sv).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let F ∗ be the tadpole graph qtv3 = psv ∪ p′ sv ∪ pvt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Note that degF ∗(s) = 2 ∈ π(s) and degF ∗(v) = 3 ∈ π(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, F ∗ is a basic factor of Ω and degF ∗(u) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, the path pvt is a basic factor of Ω since degpvt(v) = 1 ∈ π(v), and degpvt(u) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, ω(F ∗)+ω(pvt) = ω(psv)+ω(p′ sv)+ω(pvt)+ω(pvt) ≥ 2(ω(p′ sv)+ω(pvt)) = 2ω(F ′) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, among ω(F ∗) and ω(pvt), at least one is positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, F ∗ or pvt is a desired basic factor of Ω that satisfies the requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (d) V∩ = {s, t}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Figure 5: The graph H in Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (d) In this case, degH(u) = degH(v) = 1, degH(s) = degH(t) = 3, and π(s) = π(t) = {0, 2, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The points s and t split F into three paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Without loss of generality, we may assume that s is closer to u and t is closer to v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, the three paths are pus, 21 pst, and ptv, and F = pus ∪pst ∪pts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, F ′ is a path with endpoints s and t, which is disjoint with pst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (See Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=') Consider the path p′ uv = pus ∪ F ′ ∪ ptv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' One can check that p′ uv is a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, ω(F) ≥ ω(p′ uv).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, ω(pst) ≥ ω(F ′) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the cycle F ∗ = F ′ ∪ pst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, one can check that F ∗ is a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Moreover, ω(F ∗) = ω(F ′)+ω(pst) > 0 and degF ∗(u) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (e) V∩ = {v, s, t}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Figure 6: The graph H in Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (e) In this case, degH(u) = 1, degH(v) = degH(s) = degH(t) = 3, π(v) = {0, 1, 3}, and π(s) = π(t) = {0, 2, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The points s and t split F into three paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Without loss of generality, we assume that they are pus, pst, and ptv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, F = pus ∪ pst ∪ ptv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The point v splits F ′ into two paths, p′ sv and p′ tv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, F ′ = p′ sv ∪ p′ tv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (See Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=') Consider the path p′ uv = pus ∪p′ sv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' One can check that it is a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since ω(F) ≥ ω(p′ uv), we have ω(pst) + ω(ptv) ≥ ω(p′ sv).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the path p′′ uv = pus ∪ pst ∪ p′ tv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' One can check that it is also a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since ω(F) ≥ ω(p′′ uv), we have ω(ptv) ≥ ω(p′ tv).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the tadpole graph quv3 = pus ∪ p′ sv ∪ p′ tv ∪ ptv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' One can check that it is also a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since ω(F) ≥ ω(quv3), we have ω(pst) ≥ ω(p′ sv) + ω(p′ tv).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Sum up the above three inequalities, and we have 2(ω(pst) + ω(ptv)) ≥ 2(ω(p′ sv) + ω(p′ tv)) = 2ω(F ′) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the theta graph F ∗ = pst ∪ ptv ∪ p′ sv ∪ p′ tv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Still one can check that it is a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Moreover, ω(F ∗) = ω(pst) + ω(ptv) + ω(p′ sv) + ω(p′ tv) > 0 and degF ∗(u) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We are done with Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1 where F and F ′ are both paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' F is a path and F ′ is a tadpole graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Without loss of generality, we may assume that degF ′(s) = 1 and degF ′(t) = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In other words, F ′ consists of a path with endpoints s and t, and a cycle C containing the vertex t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, V∩ ⊆ {v, s}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' There are three subcases: V∩ = {v}, V∩ = {s}, and V∩ = {v, s}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 22 (a) V∩ = {v}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In this case, degH(u) = degH(s) = 1, degH(v) = degH(t) = 3, π(v) = {0, 1, 3}, and π(t) = {0, 1, 3} or {0, 2, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' There are two subcases depending on whether the intersection point v appears in the path part or the cycle part of F ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' v appears in the path part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Note that for every x ∈ VC\\{t}, degH(x) = 2, and degH(t) = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We say such a cycle with exactly one vertex of degree 3 in H is a dangling cycle in H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let et be the edge incident to t where et /∈ EC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We call the vertex t the connecting point of C, and the edge et the connecting bridge of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the graph H′ = H\\C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Notice that degH′(x) = degH(x) for every x ∈ VH′\\{t} and degH′(t) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the instance ΩH′ = (H′, πH′, ωH′) where πH′(x) = πH(x) for every x ∈ VH′\\{t} and πH′(t) = {0, 1}, and ωH′(e) = ω(e) for every e ∈ EH′\\{et} and ωH′(et) = ω(et)+ω(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In other words, the instance ΩH′ is obtained from ΩH by contracting the dangling cycle C to its connecting point t and adding the total weight of C to its connecting bridge et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Clearly, ΩH′ is a key instance and ωH′(H′) = ω(H′) + ω(C) = ω(H) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For every factor K′ ∈ ΩH′, we can recover a factor K ∈ ΩH from K′ as follows: K = K′ if et /∈ EK′ and K = K′ ∪ C if et ∈ EK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' One can check that K is a factor of ΩH, and ω(K) = ωH′(K′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If et /∈ K, then K′ = K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Clearly, K′ is a basic factor of ΩH′ if and only if K is a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Now, suppose that et ∈ K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Remember that degH′(t) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, K′ is a path with t as an endpoint if and only if K = K′ ∪ C is a tadpole graph with t as the vertex of degree 3, and K′ is a tadpole with t as the vertex of degree 1 if and only if K = K′ ∪ C is a dumbbell graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, K′ is a basic factor of ΩH′ if and only if K is a basic factor of ΩH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Notice that the instance Ω′ H has a similar structure to the instance ΩH in Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By replacing the vertex v in Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (a) by the cycle C (and re-arranging the weights between the cycle C and its connecting bridge), one can check that the proof of Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (a) works here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Note that after this replacement, the path pvt in Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (a) becomes a tadpole graph qvt3 which is still a basic factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' ii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' v appears in the cycle part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Figure 7: The graph H in Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (a) Together with the point t, the point v splits the cycle in F ′ into two paths pvt and p′ vt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let pts denote the path in F ′ with endpoints t and s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, F ′ = pvt ∪ p′ vt ∪ pts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (See Figures 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=') If π(t) = {0, 1, 3}, then the paths pvt, p′ vt and pts are all basic factors of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Moreover, the vertex u does not appear in any of these paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, since ω(F ′) = ω(pvt) + ω(p′ vt) + ω(pts) > 0, there is at least one path with positive weight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 23 If π(t) = {0, 2, 3}, then the tadpole graph quv3 = F ∪pvt∪p′ vt is a basic factor or Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since ω(F) ≥ ω(quv3), we have ω(pvt) + ω(p′ vt) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Without loss of generality, we assume that ω(p′ vt) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the path F ∗ = pvt ∪pts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We have degF ∗(u) = 0, and F ∗ is a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since ω(F ′) = ω(pvt) + ω(p′ vt) + ω(pts) = ω(F ∗) + ω(p′ vt) > 0 and ω(p′ vt) ≤ 0, we have ω(F ∗) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (b) V∩ = {s}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Still, the cycle C in F ′ is a dangling cycle with the connecting point t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We can contract C to t and add the weight ω(C) to its connecting bridge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, this case is similar to Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By replacing the vertex t in Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (b) by the C, one can check that the proof of Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (b) works here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Note that the path pst in Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (b) is replaced by a tadpole graph qst3 which is still a basic factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (c) V∩ = {v, s}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In this case, degH(u) = 1, degH(v) = degH(s) = degH(t) = 3, π(v) = {0, 1, 3}, π(s) = {0, 2, 3}, and π(t) = {0, 1, 3} or {0, 2, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' There are two subcases depending on whether the intersection point v appears in the path part or the cycle part of the tadpole graph F ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Note that there is only one way for the intersection point s to appear in the path F, and s always splits F into two paths pus and pst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' v appears in the path part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Still, the cycle C is a dangling cycle with the connecting point t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' This case is similar to Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By replacing the vertex t in Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (c) by the cycle C, one can check that the proof of Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (c) works here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Note that the path pvt and the tadpole graph F ∗ = qtv3 in Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (c) are replaced by a tadpole graph and a dumbbell graph respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Both are still basic factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' ii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' v appears in the cycle part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Figure 8: The graph H in Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (c) Together with the point t, the point v splits the cycle in F ′ into two parts pvt and p′ vt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let pst denote the path in F ′ with endpoints s and t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, F ′ = pst ∪ pvt ∪ p′ vt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (See Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=') If π(t) = {0, 1, 3}, then the paths pvt and p′ vt are both basic factors of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If ω(pvt) > 0 or ω(p′ vt) > 0, then we have a basic factor satisfying the requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, we may assume ω(pvt), ω(p′ vt) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since ω(F ′) = ω(pst) + ω(pvt) + ω(p′ vt) > 0, we have ω(pst) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the path put = pus ∪ pst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' It is a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since F is the basic factor of Ω with the largest weight, ω(F) = ω(pus) + ω(psv) ≥ ω(pus) + ω(pst) = ω(put).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, ω(psv) ≥ ω(pst) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 24 Consider the path p′′ vt = psv ∪ pst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' It is a basic factor of Ω and degp′′ vt(u) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, ω(p′′ vt) = ω(psv) + ω(pst) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If π(t) = {0, 2, 3}, then the tadpole graph quv3 = F ∪pvt∪p′ vt is a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since ω(F) ≥ ω(quv3), we have ω(pvt) + ω(p′ vt) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since ω(F ′) > 0, we have ω(pst) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the path p′ uv = pus ∪ pst ∪ pvt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' It is a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since ω(F) ≥ ω(p′ uv), we have ω(psv) ≥ ω(pst) + ω(pvt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Similarly, consider the path p′′ uv = pus ∪ pst ∪ p′ vt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We have ω(psv) ≥ ω(pst) + ω(p′ vt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Sum up the above two inequalities, we have 2ω(psv) ≥ 2ω(pst) + ω(pvt) + ω(p′ vt) ≥ 2ω(pst) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the theta graph F ∗ = psv ∪ F ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Note that F ∗ is a basic factor of Ω and degF ∗(u) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, ω(F ∗) = ω(psv) + ω(F ′) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We are done with Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='2 where F is a path and F ′ is a tadpole graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' F is a path and F ′ is a dumbbell graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, V∩ = {v}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let Cs and Ct be the two cycles in F ′ that contain vertices s and t respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Clearly, among VCs and VCt, there exists at least one such that it does not contain the intersection point v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Notice that vertices s and t are symmetric in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Without loss of generality, we may assume that v /∈ VCs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, VCs ∩ VF = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, Cs is a dangling cycle with the connecting point s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, this case is similar to Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By replacing the vertex s in Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (a) by the cycle Cs, one can check that the proof of Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (a) works here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' F is a path and F ′ is a theta graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, V∩ = {v}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Figure 9: The graph H in Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='4 In this case, degH(u) = 1, degH(v) = degH(s) = degH(t) = 3, and π(v) = {0, 1, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since F ′ is a theta graph and degF ′(s) = degF ′(t) = 3, without loss of generality, we may assume that π(s) = {0, 1, 3} and π(t) = {0, 2, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' F ′ consists of three paths pst, p′ st and p′′ st.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Without loss of generality, we may assume that v appears in the path pst and it splits the path into two paths psv and pvt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (see Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=') Consider the paths p′ sv = p′ st ∪ pvt and p′′ sv = p′′ st ∪ pvt, and the tadpole graph qvs3 = psv ∪ p′ st ∪ p′′ st.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' It can be checked that p′ sv, p′′ sv and qvs3 are all basic factors of H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The vertex u does not appear in any of them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, ω(psv) + ω(p′ sv) + ω(p′′ sv) + ω(qvs3) = 2ω(F ′) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, among them at least one is positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, we can find a basic factor of Ω satisfying the requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 25 We are done with Case I where F is a path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Case II: F is a tadpole graph and degF (u) = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By the assumption, π(u) = {0, 2, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, since degF (v) = 1 ∈ π(v), v is 1-feasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let C be the cycle part of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider {s, t} ∩ VC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Here, we discuss possible cases depending on intersection vertices belonging to VC instead of the entire set V∩ of vertices points as in Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' There are three subcases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1 {s, t} ∩ VC = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In this case, degH(x) = 2 for every x ∈ VC\\{u}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, C is a dangling cycle with in connecting point u in H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, the case is similar to Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By replacing the vertex u in Case I by the cycle C, one can check that the proof of Case I works here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Note that after the above replacement, a path containing u as an endpoint in Case I becomes a tadpole graph containing the cycle C, and a tadpole graph containing u as the vertex of degree 1 in Case I becomes a dumbbell graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='2 {s, t} ∩ VC = {s} or {t}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Without loss of generality, we may assume that s ∈ VC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, degH(u) = degH(s) = 3 and π(u) = π(s) = {0, 2, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If ω(C) > 0, then we are done since C is a basic factor of Ω and degC(u) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, we may assume that ω(C) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Vertices s and u split C into two paths pus and p′ us.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since ω(C) = ω(pus) + ω(p′ us) ≤ 0, among them at least one is non-positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Without loss of generality, we assume that ω(pus) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the graph H′ = H\\pus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Note that VH′ = (VH\\Vpus) ∪ {u, s}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For every x ∈ VH′\\{u, s}, we have degH′(x) = degH(x) ∈ π(x) since H is a factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, degH′(u) = 2 ∈ π(u) and degH′(s) = 2 ∈ π(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, H′ is a factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, ω(H′) = ω(H) − ω(pus) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' However, it is not clear whether H′ is a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the sub- instance Ω′ H = (H′, πH′, ω) of Ω induced by the factor H′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since ω(H′) > 0, by Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='6, there is a basic factor F ∗ ∈ ΩH′ such that ω(F ∗) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, degF ∗(u) ∈ πH′(u) = {0, 2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Clearly, F ∗ is also a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Note that this proof works no matter whether F ′ is a path or a tadpole graph, and whether v ∈ V∩ or t ∈ V∩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In fact, this proof also works when F is a dumbbell graph as long as s (or symmetrically t) is the only vertex in VF ′ appearing in the cycle C of F that contains the vertex u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='3 {s, t} ⊆ VC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Figure 10: The two possible forms of graph H in Case II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In this case, degH(u) = degH(s) = degH(t) = 3 and π(u) = π(s) = π(t) = {0, 2, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, degF ′(s) = degF ′(t) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, F ′ is a path with endpoints s and t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Note that in this case, it is possible that v ∈ VF ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If v ∈ VF ′, then degH(v) = 3 and π(v) = {0, 1, 3};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' otherwise, degH(v) = 1 and π(v) = {0, 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The points u, s, and t split C into three paths, pus, pst, ptu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, C = pus ∪ pst ∪ ptu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (See Figure 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=') If ω(C) > 0, then we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, we may assume that ω(C) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 26 Consider the graph H1 = H\\pst = (F\\pst) ∪ F ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Similar to the above Case II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='2, one can check that H1 is a factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, H1 is a tadpole graph if degH(v) = 1 or a theta graph if degH(v) = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, in both cases, H1 is a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since F is the basic factor of Ω with the largest weight, we have ω(F) ≥ ω(H1) = ω(F) − ω(pst) + ω(F ′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, ω(pst) ≥ ω(F ′) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since ω(C) = ω(pst) + ω(pus) + ω(ptu) ≤ 0, we have ω(pus) + ω(ptu) < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Without loss of generality, we may assume that ω(pus) < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, consider the graph H2 = H\\pus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Still, one can check that H2 is a factor of Ω, and degH2(u) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, H2 is a tadpole graph if degH(v) = 1, or a theta graph if degH(v) = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, H2 is a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Moreover, ω(H2) = ω(H) − ω(pus) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Case III: F is a tadpole graph and degF (v) = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In this case, degF (u) = 1, π(u) = {0, 1}, degF (v) = 3, and π(v) = {0, 1, 3} or {0, 2, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Recall that degH(u) = degF (u) = 1, and u /∈ V∩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let C be the cycle part of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Still consider {s, t} ∩ VC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' There are three subcases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1 {s, t} ∩ VC = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In this case, degH(x) = 2 for every x ∈ VC\\{v}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, in the graph H, the cycle C is a dangling cycle with the connecting point v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, the case is similar to Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For a graph H in Case I where degH(v) = 1 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=', v /∈ V∩), by replacing the vertex v by the cycle C, one can check that the proof of Case I works here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='2 {s, t} ∩ VC = {s} or {t}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Without loss of generality, we may assume that s ∈ VC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then degH(s) = 3 and π(s) = {0, 2, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Vertices s and v split C into two paths pvs and p′ vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let puv be the path part in the tadpole graph F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' There are two subcases depending on whether t ∈ VF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since t /∈ VC, t ∈ VF implies t ∈ Vpuv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (a) t /∈ Vpuv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Figure 11: The two possible forms of graph H in Case III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='2 where t /∈ Vpuv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In this case, degH(t) = 1 or 3 depending on whether F ′ is a path or a tadpole graph respectively (See Figure 11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If F ′ is a tadpole graph, then the cycle in F ′ containing t is a dangling cycle in H with the connecting point t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If π(v) = {0, 1, 3}, then puv is a basic factor of Ω (this is true no matter whether t ∈ Vpuv).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since F is the basic factor of Ω with the largest weight, ω(F) ≥ ω(puv).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, ω(pvs) + ω(p′ vs) = ω(C) = ω(F) − ω(puv) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Without loss of generality, we may assume that ω(pvs) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the graph H′ = F ′ ∪ pvs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' It is a path if F ′ is a path, or a tadpole graph of F ′ is a tadpole graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Note that degH′(u) = 0 ∈ π(u), degH′(v) = 1 ∈ π(v), degH′(s) = 2 ∈ π(s), and degH′(t) = degH(t) ∈ π(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, for every x ∈ VH′\\{u, v, s, t}, degH′(x) = degH(x) ∈ π(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, H′ is a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, ω(H′) = ω(F ′) + ω(pvs) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 27 If π(v) = {0, 2, 3}, then the cycle C is a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider H1 = H\\pvs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Note that degH1(u) = 1 ∈ π(u), degH1(v) = 2 ∈ π(v), degH1(s) = 2 ∈ π(s), and degH1(t) = degH(t) ∈ π(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' One can check that H1 is a factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, H1 is either a path with endpoints u and s if F ′ is a path, or a tadpole graph with u being the vertex of degree 1 and t being the vertex of degree 3 if F ′ is a tadpole graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, H1 is a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since F is the basic factor with the largest weight, ω(F) ≥ ω(H1) = ω(F) − ω(pvs) + ω(F ′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, ω(pvs) ≥ ω(F ′) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Similarly, by considering H2 = H\\p′ vs, we have ω(p′ vs) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, ω(C) = ω(pvs) + ω(p′ vs) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, C is a basic factor of Ω with positive weight and degC(u) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' (b) t ∈ Vpuv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Figure 12: The graph H in Case III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='2 where t ∈ Vpuv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In this case, degH(t) = 3 and π(t) = {0, 2, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' F ′ is a path with endpoints s and t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The vertex t splits puv into two parts put and ptv (see Figure 12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If π(v) = {0, 1, 3}, then puv is a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since ω(F) ≥ ω(puv), we have ω(C) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the path p′ uv = put ∪ F ′ ∪ pvs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' It is also a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Still, since ω(F) ≥ ω(p′ uv), we have ω(ptv) ≥ ω(F ′) + ω(pvs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Similarly, by considering the path p′′ uv = put ∪ F ′ ∪ p′ vs, we have ω(ptv) ≥ ω(F ′) + ω(p′ vs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, 2ω(ptv) ≥ 2ω(F ′) + ω(pvs) + ω(p′ vs) = 2ω(F ′) + ω(C) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the theta graph F ∗ = ptv ∪ C ∪ F ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Clearly, ω(F ∗) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, F ∗ is a basic factor of Ω with degF ∗(u) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If π(v) = {0, 2, 3}, then C is a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider H1 = H\\pvs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' It is a tadpole graph with the vertex u of degree 1 and the vertex t of degree 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Note that degH1(u) = 1 ∈ π(u), degH1(v) = 2 ∈ π(v), degH1(s) = 2 ∈ π(s), and degH1(t) = 3 ∈ π(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' One can check that H1 is a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, H1 is a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since F is the basic factor with the largest weight, ω(F) ≥ ω(H1) = ω(F) − ω(pvs) + ω(F ′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, ω(pvs) ≥ ω(F ′) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Similarly, by considering H2 = H\\p′ vs, we have ω(p′ vs) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, ω(C) = ω(pvs) + ω(p′ vs) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, C is a basic factor of Ω with positive weight and degC(u) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 28 III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='3 {s, t} ∈ VC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In this case, degH(u) = 1, π(u) = {0, 1}, degH(v) = degH(s) = degH(t) = 3, and π(s) = π(t) = {0, 2, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, degF ′(s) = degF ′(t) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, F ′ is a path with endpoints s and t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let pst ⊆ C be the path with endpoints t and s such that v /∈ Vpst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the tadpole graph quv3 = (F\\pst) ∪ F ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In other words, quv3 is the tadpole graph obtained from F by replacing the path pst by F ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' One can check that quv3 is also a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since F is the basic factor of Ω with the largest weight, ω(F) ≥ ω(quv3) = ω(F) − ω(pst) + ω(F ′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, ω(pst) ≥ ω(F ′) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the cycle C′ = pst ∪ F ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Note that it is a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, degC′(u) = 0 and ω(C′) = ω(pst) + ω(F ′) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Case IV: F is a dumbbell graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let Cu and Cv be the two cycles of F containing vertices u and v respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If {s, t} ∩ Cv = ∅, then Cv is a dangling cycle in H with the connecting point v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' This case is similar to Case II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For a graph H in Case II where degH(v) = 1 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=', v /∈ V∩), by replacing the vertex v by the cycle Cv, one can check that the proof of Case II works here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If {s, t} ∩ Cu = ∅, then Cu is a dangling cycle in H with the connecting point u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' This case is similar to Case III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By replacing the vertex u in Case III by the cycle Cu, one can check that the proof of Case III works here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If {s, t} ∩ Cu and {s, t} ∩ Cv are both non-empty, then without loss of generality, we may assume that s ∈ Cu and t ∈ Cv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, F ′ is a path with endpoints s and t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' As we have mentioned in Case II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='2, one can check that the proof of Case II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='2 works here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Case V: F is a theta graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In this case, degH(u) = degH(v) = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By the assumption, π(u) = {0, 2, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, by the definition of theta graphs, π(v) = {0, 1, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, V∩ ⊆ {s, t}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' There two subcases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1 V∩ = {s} or {t}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Without loss of generality, we assume that V∩ = {s}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, degH(s) = 3 and π(s) = {0, 2, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The theta graph F consists of three paths puv, p′ uv and p′′ uv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Without loss of generality, we may assume that s appears in the path puv and it splits puv into two paths pus and psv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the paths psv, p′ sv = p′ uv ∪ psu and p′′ sv = p′′ uv ∪ psu, and the tadpole graph qsv3 = psv ∪ p′ uv ∪ p′′ uv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' They are not factors of H since the degree of s is 1 in all these four graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' However, by taking the union of F ′ with any one of them, we can get a basic factor of H and the degree of u in it is even.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since ω(psv) + ω(p′ sv) + ω(p′′ sv) + ω(qsv3) = 2ω(F ′) > 0, among them at least one is positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Also, ω(F ′) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, by taking the union of it with F ′, we can find a basic factor of Ω satisfying the requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='2 V∩ = {s, t}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In this case, F ′ is a path with endpoints s and t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since F is a theta graph which is 2-connected, we can find a path pst ⊆ F such that v /∈ Vpst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If u /∈ Vpst, then one can check that the theta graph H′ = (F\\pst) ∪ F ′ is also a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since ω(F) ≥ ω(H′), we have ω(pst) ≥ ω(F ′) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, the cycle C = pst ∪ F ′ is a basic 29 factor of Ω where ω(C) = ω(pst) + ω(F ′) > 0 and degC(u) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Otherwise, u ∈ Vpst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The vertex u splits pst into two paths pus and put.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the theta graph H′ = (F\\pus) ∪ F ′, where degH′(v) = degH′(t) = 3, π(v) = {0, 1, 3}, and π(t) = {0, 2, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' One can check that H′ is a basic factor of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since ω(F) ≥ ω(H′) = ω(F)−ω(pus)+ω(F ′), we have ω(pus) ≥ ω(F ′) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Similarly, by considering the theta graph H′′ = (F\\put)∪F ′, we have ω(put) ≥ ω(F ′) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then the cycle C = pst ∪ F ′ = pus ∪ put ∪ F ′ is a basic factor of Ω where ω(C) = ω(pus) + ω(put) + ω(F ′) > 0 and degC(u) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We have taken care of all possible cases and finished the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Combining Lemmas 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='6 and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='7, we finished the proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A ∆-Matroids and Matching Realizability A ∆-matroid is a family of sets obeying an axiom generalizing the matroid exchange axiom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Formally, a pair M = (U, F) is a ∆-matroid if U is a finite set and F is a collection of subsets of U satisfying the following: for any X, Y ∈ F and any u ∈ X∆Y in the symmetric difference of X and Y , there exits a v ∈ X∆Y such that X∆{u, v} belongs to F [Bou87].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A ∆-matroid is symmetric if, for every pair of X, Y ⊆ U with |X| = |Y |, we have X ∈ F if and only if Y ∈ F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A ∆-matroid is even if for every pair of X, Y ⊆ U, |X| ≡ |Y | mod 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that U = {u1, u2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , un}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A subset V ⊆ U can be encoded by a binary string αV of n-bits where the i-th bit of αV is 1 if ui ∈ V and 0 if ui /∈ V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, a ∆-matroid M = (U, F) can be represented by a relation RM of arity |U| which consists of binary strings that encode all subsets in F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Such a representation is unique up to a permutation of variables of the relation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A degree constraint D of arity n can be viewed as an n-ary symmetric relation which consists of binary strings with the Hamming weight d for every d ∈ D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By the definition of ∆-matroids, it is easy to check that a degree constraint D (as a symmetric relation) represents a ∆-matroid if and only if D has all gaps of length at most 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The definition of matching realizability (Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1) can be extended to a relation R of arity n by requiring the set U of n vertices in a matching gadget to represent the n variables of R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If R is realizable by a matching gadget G = (U ∪ V, E), then for every α ∈ {0, 1}n, α ∈ R if and only if there is a matching F = (VF , EF ) of G such that VF ∩ U is exactly the subset of U encoded by α (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=', for every ui ∈ U, ui ∈ VF if and only if αi = 1), and for every v ∈ V where π(v) = {1}, v ∈ VF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Note that the matching realizability of a relation is invariant under a permutation of its variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We say that a ∆-matroid is matching realizable if the relation representing it is matching realizable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='4 Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' If a ∆-matroid M = (U, F) is matching realizable, then there is a graph G = (U ∪ W ∪ X, E) where deg(v) = 1 for every v ∈ U ∪ X and there are no edges between vertices in U ∪ X, such that for every V ⊆ U, V ∈ F if and only if there exists X1 ⊆ X such that the induced subgraph of G induced by the vertex set V ∪ W ∪ X1 (denoted by G(V ∪ W ∪ X1)) has a perfect matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' With a slight abuse of notation, we also say the graph G = (U ∪ W ∪ X, E) realizes M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let G = (U ∪ W, E) be the matching gadget realizing M = (U, F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We construct the following graph G′ from G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For every x ∈ W with π(x) = {0, 1}, we add a new edge incident to it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' As the edge is added, a new vertex of degree of 1 is also added to the graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' We denote 4This definition of matching realizability for ∆-matroids is different with the one that is usually used for even ∆-matroids [Bou89, DK15, KKR18], in which the gadget is only allowed to use the constraint {1} for perfect matchings, and hence the resulting ∆-matroid must be even.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 30 these new vertices by X and these new edges by EX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, one can check that the graph G′ = (U ∪ W ∪ X, E ∪ EX) satisfies the requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The following result generalizes Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1 of [KKR18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that M = (U, F) is a matching realizable ∆-matroid, and V1, V2 ∈ F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, V1∆V2 can be partitioned into single variables S1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , Sk and pairs of variables P1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , Pℓ such that for every P = Si1 ∪ · · · ∪ Sir ∪ Pj1 ∪ · · · ∪ Pjt ({i1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , ir} ⊆ [k], {j1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , jt} ⊆ [ℓ]), V1∆P ∈ F and V2∆P ∈ F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='1, there is a graph G = (U ∪ W ∪ X, E) realizing M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since V1, V2 ∈ F, there exists X1 ⊆ X and X2 ⊆ X such that the induced subgraph G(V1 ∪W ∪X1) has a perfect matching M1, and G(V2 ∪ W ∪ X2) has a perfect matching M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let E1 and E2 be the edge sets of M1 and M2 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the graph G′ = (U ∪W ∪X, E1∆E2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since E1 covers each vertex in V1 ∪ W ∪ X1 exactly once, and E2 covers each vertex in V2 ∪ W ∪ X2 exactly once, for every v ∈ (V1∩V2)∪W ∪(X1∩X2) in G′, deg(v) = 0 or 2, and for every v ∈ (V1∆V2)∪(X1∆X2) in G′, deg(v) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, G′ is a union of induced cycles and paths, where each path connects two vertices in (V1∆V2) ∪ (X1∆X2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For every vertex u ∈ V1∆V2, if it is connected to another vertex v ∈ V1∆V2 by a path in G′, then we make {u, v} a pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Otherwise (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=', u is connected to a vertex in X1∆X2 by a path in G′), we make u a single variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, V1∆V2 can be partitioned into single variables S1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , Sk and pairs P1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , Pℓ according to the paths in G′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Moreover, each path in G′ is an alternating path with respect to both matchings M1 and M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Pick a union of such paths (note that they are edge-disjoint).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that there are r many paths that connect single variables in Si1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , Sir with variables in X, and t many paths that connect pairs Pj1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , Pjt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let P = Si1 ∪ · · · ∪ Sir ∪ Pj1 ∪ · · · ∪ Pjt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' After altering the matchings M1 and M2 according to these t many alternating paths, we obtain two new matchings that cover exactly (V1∆P) ∪ W ∪ X′ 1 for some X′ 1 ⊆ X and (V2∆P) ∪ W ∪ X′ 2 for some X′ 2 ⊆ X respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, V1∆P ∈ F and V2∆P ∈ F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A degree constraint D of gaps of length at most 1 is matching realizable if and only if all its gaps are of the same length 0 or 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By the gadget constructed in the proof of [Cor88, Theorem 2], if a degree constraint has all gaps of length 1 then it is matching realizable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='5 We give the following gadget (Figure A) to realize a degree constraint D with all gaps of length 0, which generalizes the gadget in [Tut54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Suppose that D = {p, p + 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , p + r} of arity n where n ≥ p + r ≥ p ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Consider the following graph G = (U ∪ V, E): U consists of n vertices of degree 1, and V consists of two parts V1 with |V1| = n and V2 with |V2| = n − p;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' the induced subgraph G(V ) of G induced by V is a complete bipartite graph between V1 and V2, and the induced subgraph G(U ∪ V1) of G induced by U ∪ V1 is a bipartite perfect matching between U and V1 (see Figure 13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Every vertex in V1 is labeled by the constraint {1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' There are r vertices in V2 labeled by {0, 1} and the other n − p − r vertices in V2 labeled by {1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' One can check that this gadget realizes D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' For the other direction, without loss of generality, we may assume that {p, p + 1, p + 3} ⊆ D and p + 2 /∈ D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since D has gaps of length at most 1, it can be associated with a symmetric ∆-matroid M = (U, F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Then, there is V1 ∈ F with |V1| = p and V2 ∈ F with |V2| = p + 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since M is symmetric, we may pick V2 = V1 ∪ {v1, v2, v3} for some {v1, v2, v3} ∩ V1 = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Let S = V1∆V2 = {v1, v2, v3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' By Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='2, S can be partitioned into single variables and/or pairs of variables such that for any union P of them, V2\\P ∈ F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Since |S| = 3, there exists at 5We remark that [Cor88] includes gadgets for other types of degree constraints, including type-1 and type-2, but only under a more general notion of gadget constructions that involve edges and triangles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The gadget that only involves edges is a matching gadget defined in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 31 Figure 13: A matching gadget realizing D = {p, p + 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' , p + r} of arity n least a single variable xi in the partition of S such that V2\\{vi} ∈ F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Note that |V2\\{vi}| = p+2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Thus, p + 2 ∈ D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' References [AK11] Jin Akiyama and Mikio Kano.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Factors and factorizations of graphs: Proof techniques in factor theory, volume 2031.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Springer, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [Ans87] Richard P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Anstee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A polynomial algorithm for b-matchings: an alternative approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Information Processing Letters, 24(3):153–157, 1987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [Bou87] Andr´e Bouchet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Greedy algorithm and symmetric matroids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Mathematical Program- ming, 38(2):147–159, 1987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [Bou89] Andr´e Bouchet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Matchings and ∆-matroids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Discrete Applied Mathematics, 24(1- 3):55–62, 1989.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [CLX11] Jin-Yi Cai, Pinyan Lu, and Mingji Xia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Computational complexity of Holant prob- lems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' SIAM Journal on Computing, 40(4):1101–1132, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [CM78] William H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Cunningham and Alfred B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Marsh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A primal algorithm for optimum matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In Polyhedral Combinatorics, pages 50–72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Springer, 1978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [Cor88] G´erard Cornu´ejols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' General factors of graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Journal of Combinatorial Theory, Series B, 45(2):185–198, 1988.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [DF03] V´ıctor Dalmau and Daniel K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Ford.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Generalized satisfability with limited occurrences per variable: A study through delta-matroid parity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In Proceedings of the 28th Inter- national Symposium on Mathematical Foundations of Computer Science (MFCS’03), volume 2747 of Lecture Notes in Computer Science, pages 358–367.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Springer, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [Die10] Reinhard Diestel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Graph Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Springer, fourth edition, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [DK15] Zdenˇek Dvoˇr´ak and Martin Kupec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' On Planar Boolean CSP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In Proceedings of the 42nd International Colloquium on Automata, Languages and Programming (ICALP’15), volume 9134 of Lecture Notes in Computer Science, pages 432–443.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Springer, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 32 [DP14] Ran Duan and Seth Pettie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Linear-time approximation for maximum weight match- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Journal of the ACM, 61(1):1–23, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [DP18] Szymon Dudycz and Katarzyna Paluch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Optimal general matchings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11159 LNCS:176–189, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [DP21] Szymon Dudycz and Katarzyna Paluch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Optimal general matchings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' arXiv:1706.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content='07418v3, version 3, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [Edm65a] Jack Edmonds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Maximum matching and a polyhedron with 0, 1-vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Journal of research of the National Bureau of Standards B, 69(125-130):55–56, 1965.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [Edm65b] Jack Edmonds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Paths, trees, and flowers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Canadian Journal of mathematics, 17:449– 467, 1965.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [EJ70] Jack Edmonds and Ellis L Johnson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Matching: A well-solved class of integer linear programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In Combinatorial Structures and Their Applications, pages 89–92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Gordon & Breach, New York, 1970.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [Fed01] Tom´as Feder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Fanout limitations on constraint systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Theoretical Computer Sci- ence, 255(1-2):281–293, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [FF06] Tom´as Feder and Daniel K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Ford.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Classification of bipartite Boolean constraint satisfaction through Delta-matroid intersection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Discrete Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=', 20(2):372– 394, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [Gab74] Harold N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Gabow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Implementation of algorithms for maximum matching on nonbi- partite graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' PhD thesis, Stanford University, 1974.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [Gab83] Harold N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Gabow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In Proceedings of the fifteenth annual ACM symposium on Theory of computing, pages 448–456, 1983.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [Gab85] Harold N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Gabow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A scaling algorithm for weighted matching on general graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In Proceedings of the 26th Annual IEEE Symposium on Foundations of Computer Science (FOCS’85), pages 90–100, 1985.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [Gab90] Harold N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Gabow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Data structures for weighted matching and nearest common ancestors with linking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In Proceedings of the first annual ACM-SIAM symposium on Discrete algorithms, pages 434–443, 1990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [GGS89] Harold N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Gabow, Zvi Galil, and Thomas H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Spencer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Efficient implementation of graph algorithms using contraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Journal of the ACM (JACM), 36(3):540–572, 1989.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [GIM03] James F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Geelen, Satoru Iwata, and Kazuo Murota.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The linear delta-matroid parity problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Journal of Combinatorial Theory, Series B, 88(2):377–398, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [GMG86] Zvi Galil, Silvio Micali, and Harold N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Gabow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' An O(EV \\ log V ) algorithm for find- ing a maximal weighted matching in general graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' SIAM Journal on Computing, 15(1):120–130, 1986.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 33 [GS13] Harold N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Gabow and Piotr Sankowski.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Algebraic algorithms for b-matching, shortest undirected paths, and f-factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In Proceedings of the 54th IEEE Annual Symposium on Foundations of Computer Science (FOCS’13), pages 137–146, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [GT91] Harold N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Gabow and Robert E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Tarjan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Faster scaling algorithms for general graph matching problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Journal of the ACM (JACM), 38(4):815–853, 1991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [HK12] Chien-Chung Huang and Telikepalli Kavitha.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Efficient algorithms for maximum weight matchings in general graphs with small edge weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1400– 1412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' SIAM, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [Ist97] Gabriel Istrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Looking for a version of Schaefer’s dichotomy theorem when each variable occurs at most twice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Technical report, 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [Kar76] Aleksandr V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Karzanov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Efficient implementations of Edmonds’ algorithms for finding matchings with maximum cardinality and maximum weight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Studies in Discrete Optimization, pages 306–327, 1976.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [KKR18] Alexandr Kazda, Vladimir Kolmogorov, and Michal Rol´ınek.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Even delta-matroids and the complexity of planar Boolean CSPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' ACM Transactions on Algorithms (TALG), 15(2):1–33, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [KV18] Bernhard Korte and Jens Vygen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Combinatorial optimization: Theory and Algo- rithms, volume 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Springer, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [Law76] Eugene L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Lawler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Combinatorial optimization: networks and matroids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Holt, Rein- hart and Winston, New York.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=', 1976.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [Lov70] L´aszl´o Lov´asz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The factorization of graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In Combinatorial Structures and Their Applications, pages 243–246.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Gordon & Breach, New York, 1970.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [Lov72] L´aszl´o Lov´asz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The factorization of graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Acta Mathematica Academiae Scien- tiarum Hungarica, 23(1-2):223–246, 1972.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [LP09] L´aszl´o Lov´asz and Michael D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Plummer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Matching theory, volume 367.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' American Mathematical Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=', 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [Mar79] Alfred B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Marsh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Matching algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' PhD thesis, The Johns Hopkins University, 1979.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [Plu07] Michael D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Plummer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Graph factors and factorization: 1985–2003: a survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Discrete Mathematics, 307(7-8):791–821, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [Pul73] William R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Pulleyblank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Faces of Matching Polyhedra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' PhD thesis, University of Waterloo, 1973.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [Sch78] Thomas J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Schaefer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The complexity of satisfiability problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' In Proceedings of the tenth annual ACM symposium on Theory of computing, pages 216–226, 1978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [Sch03] Alexander Schrijver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Combinatorial optimization: polyhedra and efficiency, vol- ume 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Springer, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [Sza09] J´acint Szab´o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Good characterizations for some degree constrained subgraphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Journal of Combinatorial Theory, Series B, 99(2):436–446, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 34 [Tut50] William Thomas Tutte.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The factorization of locally finite graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Canadian Journal of Mathematics, 2:44–49, 1950.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [Tut52] William Thomas Tutte.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' The factors of graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Canadian Journal of Mathematics, 4:314–328, 1952.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' [Tut54] William Thomas Tutte.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' A short proof of the factor theorem for finite graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' Cana- dian Journal of mathematics, 6:347–352, 1954.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} +page_content=' 35' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFKT4oBgHgl3EQfPC1q/content/2301.11761v1.pdf'} diff --git a/1tFRT4oBgHgl3EQfmjcL/content/tmp_files/2301.13601v1.pdf.txt b/1tFRT4oBgHgl3EQfmjcL/content/tmp_files/2301.13601v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..7c277433792d35bc4368e893ce0e2313cbf8b92e --- /dev/null +++ b/1tFRT4oBgHgl3EQfmjcL/content/tmp_files/2301.13601v1.pdf.txt @@ -0,0 +1,1069 @@ +Qubit Lattice Algorithm Simulations of Maxwell’s +Equations for Scattering from Anisotropic Dielectric +Objects +George Vahala 1, Min Soe 2, Linda Vahala 3, Abhay K. Ram 4, Efstratios Koukoutsis 5, +Kyriakos Hizanidis 5 +1 Department of Physics, William & Mary, Williamsburg, VA23185 +2 Department of Mathematics and Physical Sciences, Rogers State University, +Claremore,OK 74017 +3 Department of Electrical & Computer Engineering, Old Dominion University, Norfolk, +VA 23529 +4 Plasma Science and Fusion Center, MIT, Cambridge, MA 02139 +5 School of Electrical and Computer Engineering, National Technical University of +Athens,Zographou 15780, Greece +Abstract +A Dyson map explicitly determines the appropriate basis of electromagnetic fields which +yields a unitary representation of the Maxwell equations in an inhomogeneous medium. +A +qubit lattice algorithm (QLA) is then developed perturbatively to solve this representation +of Maxwell equations. QLA consists of an interleaved unitary sequence of collision operators +(that entangle on lattice-site qubits) and streaming operators (that move this entanglement +throughout the lattice). +External potential operators are introduced to handle gradients in +the refractive indices, and these operators are typically non-unitary, but sparse matrices. By +also interleaving the external potential operators with the unitary collide-stream operators one +achieves a QLA which conserves energy to high accuracy. Some two dimensional simulations +results are presented for the scattering of a one-dimensional (1D) pulse off a localized anisotropic +dielectric object. +1 +Introduction +There is much interest in developing algorithms to solve specific classical problems that can be +encoded onto a quantum computer. One class of such algorithms is the qubit lattice algorithm +(QLA) [1-21]. After identifying an appropriate set of qubits, QLA proceeds to define a unitary set +of interleaved non-commuting collision-streaming operators which acts on this basis set of qubits +so as to perturbatively recover the classical physics of interest. +The entanglement of qubits is at the essence of an efficient quantum algorithm. A maximally +entangled 2-qubit state is known as a Bell state [22]. Now the Hilbert space of a 2-qubit basis +consists of the states {|00⟩, |01⟩, |10⟩, |11⟩}. Consider the collision operator +C = +� +cos θ +sin θ +− sin θ +cos θ +� +(1) +1 +arXiv:2301.13601v1 [physics.plasm-ph] 31 Jan 2023 + +acting on the subspace {|00⟩, |11⟩}. The most general tensor product state that can be generated +from the qubit states {a0|0⟩ + a1|1⟩} , and {b0|0⟩ + b1|1⟩} is +a0b0|00⟩ + a0b1|01⟩ + a1b0|10⟩ + a1b1|11⟩ +(2) +Now consider the so-called Bell state +B+ = |00⟩ + |11⟩ +√ +2 +. +(3) +This state cannot be recovered from the tensor-product state of the 2 qubits, Eq. (2). Indeed, to +eliminate the |01⟩ state from Eq. (2) one requires either a0 = 0 or b1 = 0 - and this would eliminate +either the state |00⟩ or the state |11⟩. States that can not be recovered from tensor product states +are called entangled states. The entangled Bell state Eq, (3) is obtained usingthe collision operator +C, Eq. (1), with angle θ = π/4. +It is simplest to develop a QLA for the two curl-Maxwell equations, treating the divergence +equations as initial constraints on the electromagnetic fields E, H. We shall do this in a Hermitian +tensor dielectric medium, and comment on the discreteness effects on the time evolution of ∇ · B. +In Sec. 2 we shall see that in an inhomogeneous medium, the electromagnetic basis set (E, B) +cannot lead to a unitary evolution of the two curl Maxwell equations. However, a Dyson map is +introduced that will map the basis (E, B) into the basis (nxEx, nyEy.nzEz, B) resulting in a fully +unitary evolution for this basis set [23]. Here we have transformed to principal axes making the +dielectric tensor diagonal with ϵi = n2 +i , i = x, y, z. The more familiar complex Riemann-Silberstein- +Weber basis F ± +i += (niEi ±iBi) is immediately generated from the real basis (niEi, Bi) by a unitary +transformation so that this will also lead to a unitary time evolution representation. +In Sec. 2 we will develop a QLA for the solution of 2D Maxwell equations in a tensor Hermitian +dielectric medium. All our previous Maxwell QLA [16-18, 21] were restricted to scalar dielectrics. +We will present a simplified discussion of the Dyson map [23] that will permit us to transform +from a non-unitary to unitary basis for the representation of the two curl equations of Maxwell. +For these continuum qubit partial differential equations we will generate in Sec. +3 a discrete +QLA for tensor dielectric media that recovers the desired equations to second order perturbation. +While the collide-stream operator sequence of QLA is fully unitary, the external potential operators +required to recover the derivatives of the refractive indices in Maxwell equations are not. However +these non-unitary matrices are very sparse and should be amenable to some unitary approximate +representation. +The role of the perturbation parameter δ introduced in the QLA for Maxwell +equations is quite subtle. One important test of the QLA is the conservation of electromagnetic +energy density. This will be seen to be very well satisfied, as δ → 0. In Sec. 4 we present some 2D +QLA simulations for a 1D Gaussian electromagnetic pulse scattering from an anisotropic dielectric +localized object - showing results for both polarizations. Finally, in Sec. 5 we summaries the results +of this paper. +2 +A Unitary Representation of the two curl Maxwell Equations +2.1 +Scalar dielectric medium +First, consider a simple dielectric non-magnetic medium with the constitutive equations +D = ϵE, +B = µ0H. +(4) +2 + +It is convenient to define u = (E, H)T as the fundamental fields, and d = (D, B)T the derived +fields. Eq. (4), in matrix form, is +d = Wu. +(5) +W is a Hermitian 6 × 6 matrix +W = +� ϵI3×3 +03×3 +03×3 +µ0I3×3 +� +. +(6) +I3×3 is the 3 × 3 identity matrix. and the superscript T is the transpose operator. The curl-curl +Maxwell equations ∇ × E = −∂B/∂t, and ∇ × H = ∂D/∂t can then be written +i∂d +∂t = Mu +(7) +where, under standard boundary conditions, the curl-matrix operator M is Hermitian : +M = +� +03×3 +i∇× +−i∇× +03×3 +� +. +(8) +Now W is invertible, so that Eq. (7) can finally be written in terms of the basic electromagnetic +fields u = (E, H) +i∂u +∂t = W−1Mu +(9) +2.1.1 +inhomogeneous scalar dielectric media +We immediately note that for inhomogeneous dielectric media, W−1 will not commute with M. +Thus Eq. (9) will not yield unitary evolution for the fields u = (E, H)T . However Koukoutsis et. +al. [23] have shown how to determine a Dyson map from the fields u to a new field representation U +such that the resultant representation in terms of the new field U will result in a unitary evolution. +In particular, the Dyson map [23] +U = W1/2u +(10) +yields a unitary evolution equation for U : +i∂U +∂t = W−1/2MW−1/2U +(11) +since now the matrix operator W−1/2MW−1/2 is indeed Hermitian. +Explicitly, the U vector for non-magnetic materials,is just +U = +� +ϵ1/2E, µ1/2 +0 +H +�T +(12) +This can be rotated into the RWS unitary representation by the unitary matrix +L = +1 +√ +2 +� I3×3 +iI3×3 +I3×3 +−iI3×3 +� +(13) +yielding URSW = LU with +URSW = +1 +√ +2 +� +ϵ1/2E + iµ1/2 +0 +H +ϵ1/2E − iµ1/2 +0 +H +� +. +(14) +3 + +2.2 +Inhomogeneous tensor dielectric media +The theory can be immediately extended to diagonal tensor dielectric media, with (assuming non- +magnetic materials) the 6-qubit representation Q of the field +U = +� +nxEx, nyEy, nzEz, µ1/2 +0 +H +�T +≡ Q. +(15) +(nx, ny, nz) is the vector (diagonal) refractive index, with ϵx = n2 +x ... . +The explicit unitary representation of the Maxwell equations for 2D x-y spatially dependent +fields written in terms of the 6-Q qubit components are +∂q0 +∂t = 1 +nx +∂q5 +∂y , +∂q1 +∂t = − 1 +ny +∂q5 +∂x , +∂q2 +∂t = 1 +nz +�∂q4 +∂x − ∂q3 +∂y +� +∂q3 +∂t = −∂(q2/nz) +∂y +, +∂q4 +∂t = ∂(q2/nz) +∂x +, +∂q5 +∂t = −∂(q1/ny) +∂x ++ ∂(q0/nx) +∂y +(16) +3 +A Qubit Lattice Representation for 2D Tensor Dielectric Media +We develop a QLA for the unitary system Eq. (16) by determining unitary collision and streaming +operators that recover the derivatives ∂qi/∂t, ∂qj/∂x and ∂qj/∂y. (i, j = 1..6). Our finite difference +scheme is to recover Eq. (16) to second order in a perturbation parameter δ, where the spatial +lattice spacing is defined to be O(δ). To recover the partial derivatives on the 6-qubit Q in the +x−direction, we consider the unitary collision entangling operator +CX = +� +������� +1 +0 +0 +0 +0 +0 +0 +cos θ1 +0 +0 +0 +−sin θ1 +0 +0 +cos θ2 +0 +−sin θ2 +0 +0 +0 +0 +1 +0 +0 +0 +0 +sin θ2 +0 +cos θ2 +0 +0 +sin θ1 +0 +0 +0 +cos θ1 +� +������� +(17) +where we shall need two collision angles θ1 and θ2. The unitary streaming operators will be of the +form S+x +14 which shifts qubits q1 and q4 one lattice unit δ in the +x−direction, while leaving the +other 4 qubit components invariant. The final unitary collide-stream sequence in the x-direction is +UX = S+x +25 .C† +X.S−x +25 .CX.S−x +14 .C† +X.S+x +14 .CX.S−x +25 .CX.S+x +25 .C† +X.S+x +14 .CX.S−x +14 .C† +X +(18) +. +Similarly for the y-direction, the corresponding unitary collision entangling operator is +CY = +� +������� +cos θ0 +0 +0 +0 +0 +sin θ0 +0 +1 +0 +0 +0 +0 +0 +0 +cos θ2 +0 +sin θ2 +0 +0 +0 +−sin θ2 +cos θ2 +0 +0 +0 +0 +0 +0 +1 +0 +−sin θ0 +0 +0 +0 +0 +cos θ0 +� +������� +, +(19) +and the corresponding unitary collide-stream sequence in the y-direction +UY = S+y +25 .C† +Y .S−y +25 .CY .S−y +03 .C† +Y .S+y +03 .CY .S−y +25 .CY .S+y +25 .C† +Y .S+y +03 .CY .S−y +03 .C† +Y +(20) +4 + +We will discuss the specific collision angles θ0, θ1 and θ2 after introducing the external potential +operators. +The terms that remain to be recovered by the QLA are the spatial derivatives on the refractive +index components ∂ni/∂x and ∂ni/∂y. These terms will be recovered by the following (non-unitary) +sparse external potential operators: +VX = +� +������� +1 +0 +0 +0 +0 +0 +0 +1 +0 +0 +0 +0 +0 +0 +1 +0 +0 +0 +0 +0 +0 +1 +0 +0 +0 +0 +−sin β2 +0 +cos β2 +0 +0 +sin β0 +0 +0 +0 +cos β0 +� +������� +(21) +and +VY = +� +������� +1 +0 +0 +0 +0 +o +0 +1 +0 +0 +0 +0 +0 +0 +1 +0 +0 +0 +0 +0 +cos β3 +sin β3 +0 +0 +0 +0 +0 +0 +1 +0 +−sin β1 +0 +0 +0 +0 +cos β1 +� +������� +(22) +for particular angles β0 .. β3. +Thus one possible QLA algorithm that advances the 6-qubit Q from time t to time t + ∆t is +Q(t + ∆t) = VY .VX.UY.UX.Q(t) +(23) +Indeed, using Mathematica, one can show that with the collision angles +θ0 = +δ +4nx +, +θ1 = +δ +4ny +, +θ2 = +δ +4nz +, +(24) +and +β0 = δ2 ∂ny/∂x +n2y +, +β1 = δ2 ∂nx/∂y +n2x +, +β2 = δ2 ∂nz/∂x +n2z +, +β3 = δ2 ∂nz/∂y +n2z +(25) +we will have a second order QLA representation of the 2D Maxwell continuum equations +∂q0 +∂t = δ2 +∆t +1 +nx +∂q5 +∂y + O( δ4 +∆t) +∂q1 +∂t = − δ2 +∆t +1 +ny +∂q5 +∂x + O( δ4 +∆t) +∂q2 +∂t = δ2 +∆t +1 +nz +�∂q4 +∂x − ∂q3 +∂y +� ++ O( δ4 +∆t) +∂q3 +∂t = − δ2 +∆t +� 1 +nz +∂q2 +∂y − ∂nz/∂y +n2z +q2 +� ++ O( δ4 +∆t) +∂q4 +∂t = δ2 +∆t +� 1 +nz +∂q2 +∂x − ∂nz/∂x +n2z +q2 +� ++ O( δ4 +∆t) +∂q5 +∂t = δ2 +∆t +� +− 1 +ny +∂q1 +∂x + ∂ny/∂x +n2y +q1 + 1 +nx +∂q0 +∂y − ∂nx/∂y +n2x +q0 +� ++ O( δ4 +∆t) +(26) +under diffusion ordering, ∆t ≈ δ2. +5 + +3.1 +Conservation of Instantaneous Total Electromagnetic Energy in QLA Sim- +ulations +It is important to monitor the conservation of energy in the QLA, particularly since our current +QLA is not fully unitary. The normalized total electromagnetic energy for a square lattice domain +of length L is E(t) +E(t) = 1 +L2 +� L +0 +� L +0 +dxdy +� +n2 +xE2 +x + n2 +yE2 +y + n2 +zE2 +z + B2� += 1 +L2 +� L +0 +� L +0 +dxdyQ · Q +, +(27) +In our QLA simulations, we will consider the scattering of a 1D Gaussian pulse propagating in the +x−direction, and scattering from a localized tensor 2D dielectric object in the x − y plane. We +choose L to be significantly greater than the dielectric object so that for y ≈ 0, and for y ≈ L the +electromagnetic fields there will be that of the 1D Gaussian pulse yielding a Poynting vector E×B +in the ˆx. Thus the contribution to the Poynting flux +� +C E × B · dℓ on y = 0 and on y = L is zero. +In our time evolution QLA simulations, we integrate only to t < tmax so that there are no fields +generated on the sides x = 0 and x = L. Thus, in our QLA simulations we have set up parameters +such that the total electromagnetic energy E(t) = const., Eq. (27), for t < tmax. +E(t) is nothing but the norm of Q−qubits , and will be exactly conserved in a fully unitary +QLA. One must also be careful in the ordering of the external potential angles, Eq. (25) : they +must be O(δ2) in order to recover Maxwell equations. +While we will discuss in detail in Sect. 4 our numerical QLA simulation of a 1D electromagnetic +pulse scattering from a localized dielectric object it is appropriate to discuss here some QLA +simulation results for the total energy. Since QLA, Eq. (23) is a perturbation theory, it will recover +the 2D Maxwell equations as δ → 0. For δ = 0.3, we find the following time variation in the total +energy E(t) in Fig. 1a. tmax = 20, 000 lattice time steps. +(a) E(t) , δ = 0.3 , +(b) E(t) , δ = 0.1 +Figure 1: The instantaneous total electromagnetic energy E(t), Eq. +(27), for various values of +the perturbation parameter δ : (a) δ = 0.3, (b) δ = 0.1. +A more accurate QLA results from +interleaving the external potentials with the unitary collide-stream operators. For δ = 0.01, E(t) +shows no variation on this scale, with variations in the 9th significant figure. Lattice grid L = 8192. +On lowering the perturbation parameter to δ = 0.1 there is a nice reduction in the time variation +of E(t), Fig 1(b). To reach the same physics tmax = 60K. +6 + +4.032 +X 10'4 +4.03 +4.028 + 0.3 +Energy. +4.026 +4.024 +4.022 +4.02 +0 +5000 +10000 +15000 +20000 +time4.022 + × 104 +4.0215 +: 0.1 +Energy. 8= ( +4.021 +Interleavedpotential +4.0205 +4.02 +0 +10000 +20000 +30000 +40000 +50000 +60000 +timeHowever, if we interleave the external potential operators among the unitary collide-stream +sequence (and similarly for the y-direction) in the form +V′ +XUX = V ′ +XS+x +25 .C† +X.S−x +25 .CX.S−x +14 .C† +X.S+x +14 .CX.V ′ +X.S−x +25 .CX.S+x +25 .C† +X.S+x +14 .CX.S−x +14 .C† +X +(28) +(with the corresponding potential angle reduced by a factor of 2) we find E(t) ≈ const. for all times, +see Fig. 1(b). There is a further strong improvement in E(t) = const. for δ = 0.01. +4 +Scattering of a Polarized Pulse from an Anisotropic Dielectric +Object +We first consider a 1D Gaussian pulse propagating in a vacuum in the x-direction towards a localized +anisotropic dielectric object, with diagonal tensor components which are conical in nz(x, y), and +cylindrical in the x and y directions with nx(x, y) = ny(x, y), Fig. 2 +(a) nz(x, y) +, +(b) nx(x, y) = ny(x, y) +Figure 2: Anisotropic tensor dielectric : (a) conical in nz, and (b) cylindrical in nx = ny. Initially, +a 1D Gaussian pulse propagates in the x-direction, with either a polarization Ez(x, t) < 0 or a +polarization Ey(x, t) and scatters off this tensor dielectric object. In the region away from the +tensor dielectric object, we have a vacuum with ni = 1.0. In the dielectric, ni,max = 3.0. Lattice +domain 81922. +4.1 +Scattering of 1D pulse with Ez polarization +When the 1D pulse with non-zero Ez(x, t), By(x, t) fields starts to interact with the 2D tensor +dielectric n(x, y), the scattered fields become 2D (see Fig. 3), with By(x, y, t) dependence. The +QLA will then spontaneously generate a Bx(x, y, t) field so that ∂Bx/∂x + ∂By/∂y ≈ 0. +Because of the relatively weak dielectric tensor gradients for a cone, there is very little reflection +back into the vacuum of the incident Ez field (Fig. 4). There is a localized transmitted Ez within +the dielectric. +At t = 36k we plot both the Ez and the By , Fig. +5-6. +Of considerable interest is the +spontaneously generated Bx(x, y, t) field so that ∇ · B = 0. From Fig. 7 we see that Bx has dipole +7 + +8000 +6000 x +4000 +2000 +0 +2.5 +2.0 +1.5 +1.0 +0 +2000 +4000 +6000 +y +80008000 +3.0 +6000 +2.5 +2.0 +x4000 +1.5 +2000 +1.0 +0 +2000 +4000 +0 +6000 +8000 +y(a) Ez(x, y, t0) < 0 at t0 = 18k +, +(b) Ez(x, y, t0) > 0 at t0 = 18k +Figure 3: Ez after interacting with the localized tensor dielectric. Since the phase speed in the +tensor dielectric is less than in the vacuum, the 2D structure in Ez lags the rest of the 1D pulse +that has not interacted with the localized dielectric object (Fig. 1). The perspective (b) is obtained +from (a) by rotating by π about the line y = L/2. +structure, since the plane of the plot Fig. 7(b) for the field Bx < 0 is generated by rotating the +plane through π about the axis x = L/2 +We find in our QLA simulations, that maxx,y +� +∇ · B/|B| < 10−3� +4.2 +Scattering of 1D pulse with Ey polarization +We now turn to the 1D pulse with Ey polarization, propagating in the x−direction toward the 2D +tensor dielectric object, Fig. 1. The other non-zero vacuum electromagnetic field is Bz(x, t). On +interacting with the tensor dielectric n(x, y), the scattered fields will develop a spatial dependence +on (x, y). Thus ∇ · B = 0 exactly, and no new magnetic filed components need be generated, This +is recognized by the QLA and so the only non-zero magnetic field throughout the run is Bz(x, y, t). +In Fig. 8 we plot the Ey-field at time t = 18k, the same time snapshot as for the case of Ez +polarization, Fig. 3. The significant differences in the scattered field arise from the differences +between the cylinder dielectric dependence of ny(x, y) and the cone nz(x, y). +Also, what can be seen in Fig. 8 is the outward propagating circular-like wavefront which seems +to be reminiscent of the reflected pulse in 1D scattering. In particular, one sees elements of a π +phase change in this reflected wavefront. +The corresponding Ey wavefronts at t = 36k are shown in Fig. 9 +The accompanying Bz field of the initial 1D electromagnetic pulse is shown after its scattering +from the tensor dielectric at times t = 18k, Fig 10, and at t = 36k, Fig. 11 +Finally we consider the last of the Maxwell equations to be enforced: ∇ · D = 0. The QLA +established a qubit basis for the curl-curl subset of Maxwell equations. For the initial polarization +Ez(x, t) and refractive indices n = n(x, y), the ∇ · D = 0 is automatically satisfied, while ∇ · B = 0 +8 + +-0.09998 -0.07448 -0.04899 -0.02350 +DB: Ezf.118000.bov +0.001997 +Max: 0.001997 +Min: -0.09998-0.09998 -0.07448-0.04899 -0.02350 +DB: Ezf.1 18000.b0v +0.001997 +Max: 0.001997 +Min: -0.09998(a) Ez(x, y, t1) < 0 at t1 = 24k +, +(b) Ez(x, y, t1) > 0 at t1 = 24k +Figure 4: For early times, from the perspective of the tensor dielectric object the electromagnetic +pulse within the dielectric is the transmitted field and has a localized Ez which becomes greater than +the original Ez in the vacuum region. There is little reflected field since Ez will be predominantly +interacting with the nz component of the tensor dielectric. The perspective (b) is obtained from +(a) by rotating by π about the line y = L/2. +(a) Ez(x, y, t2) < 0 at t2 = 36k +, +(b) Ez(x, y, t2) > 0 at t2 = 36k +Figure 5: The Ez field at a late stage of development. The perspective (b) is obtained from (a) by +rotating by π about the line y = L/2. +9 + +DB: Ezf.136000.b0v +Max: 0.04157 +Min: -0.09995-0.1823 +-0.1241 +-0.06594 -0.007730 0.05048 +DB: Ezf.124000.b0v +Max: 0.05048 +Min: -0.1823-0.1823 +-0.1241 +DB: Ezf.124000.bov +-0.06594 -0.007730 0.05048 +Max: 0.05048 +Min: -0.1823DB: Ezf.136000.b0v +Max: 0.04157 +Min: -0.09995(a) By(x, y, t0) > 0 at t0 = 36k +, +(b) By(x, y, t0) < 0 at t0 = 36k +Figure 6: The corresponding By field at time t = 36k to the Ez field in Fig. 5. The perspective +(b) is obtained from (a) by rotating by π about the line y = L/2. +(a) Bx(x, y, t0) > 0 at t0 = 36k +, +(b) Bx(x, y, t0) < 0 at t0 = 36k +Figure 7: The spontaneously Bx field at time t = 36k that is generated by the QLA so that +∇ · B = 0. This time corresponds to the Ez field in Fig. 5, and By field in FIg. 6. The dipole +structure of Bx is clear on comparing (a) and (b). The perspective (b) is obtained from (a) by +rotating by π about the line y = L/2. +10 + +-0.03172 0.001195 0.03411 +0.06703 +0.09995 +DB: Byf.136000.bov +Max: 0.09995 +Min: -0.03172-0.03172 0.001195 0.03411 +0.06703 +0.09995 +DB: Byf.136000.bov +Max: 0.09995 +Min: -0.03172 +X-0.07529 -0.03764 1.051e-05 0.03766 +0.07531 +DB: Bxf.136000.b0v +Max: 0.0753 1 +Min: -0.07529-0.07529 -0.03764 1.051e-05 0.03766 +0.07531 +DB: Bxf.136000.b0v +Max: 0.0753 1 +Min: -0.07529 +X +Z(a) Ey(x, y, t0) > 0 at t0 = 18k +, +(b) Ey(x, y, t0) < 0 at t0 = 18k +Figure 8: Ey after interacting with the localized tensor dielectric. Since the cylindrical ny dielectric +has a sharper boundary layer than the conic nz dielectric, there is now a marked ”reflected” +wavefront propagating into the vacuum region together with the ”transmitted” part of the pulse +into the dielectric region itself. This ”reflected” wavefront is absent when the major scattering is +off the conic dielectric component, Fig. 3. The perspective (b) is obtained from (a) by rotating by +π about the line y = L/2. +11 + +DB: Eyf. 118000.bov +-0.03580-0.001856 0.03209 +0.06603 +0.09998 +Max:0.09998 +Min: -0.03580 ++DB: Eyf. 118000.bov +-0.03580-0.0018560.03209 +0.06603 +0.09998 +Max:0.09998 +Min: -0.03580 +X(a) Ey(x, y, t2) > 0 at t2 = 36k +, +(b) Ey(x, y, t2) < 0 at t2 = 36k +Figure 9: The Ey wavefronts at a late stage of development, as the ”reflected” pulse is about to +reach the lattice boundaries. The perspective (b) is obtained from (a) by rotating by π about the +line y = L/2. +(a) Bz(x, y, t1) > 0 at t1 = 18k +, +(b) Bz(x, y, t1) < 0 at t1 = 18k +Figure 10: The Bz wavefronts corresponding to the Ey - field in Fig. 8. The perspective (b) is +obtained from (a) by rotating by π about the line y = L/2. +12 + +DB: Eyf.136000.bov +0.08481-0.038620.0075710.05376 +0.09996 +Max:0.09996 +Min: -0.08481DB: Eyf.136000.bov +0.08481-0.038620.0075710.05376 +0.09996 +Max:0.09996 +Min: -0.08481 +X-0.1032 +0.0007075 +0.1046 +0.2086 +0.3125 +DB: Bzf. 1 18000.bov +Max: 0.3125 +Min: -0.1032 +XDB: Bzf.118000.bov +-0.1032 +0.00070750.1046 +0.2086 +0.3125 +Max: 0.3125 +Min:0.1032 +X(a) Bz(x, y, t2) > 0 at t2 = 36k +, +(b) Bz(x, y, t2) < 0 at t2 = 36k +Figure 11: The Bz wavefronts at a late stage of development, as the ”reflected” pulse is about to +reach the lattice boundaries. The corresponding Ey field is shown in Fig. 9. The perspective (b) is +obtained from (a) by rotating by π about the line y = L/2. +was spontaneously satisfied by the self-consistent generation of a Bx field. +Now, if the initial +polarization was Ey(x, t), then ∇·B = 0 is automatically satisfied, while a spontaneously generated +Ex field is generated by the QLA so that ∇ · D = 0 is satisfied. In Fig. 12 we show the wavefronts +of the Ex field at time t = 18k +5 +Summary +Determining a Dyson map, we have been able to develop a required basis from which the evolution +equations for Maxwell equations can be unitary. In particular, we have shown that for inhomoge- +neous non-magnetic dielectric media, the field basis (E, B) will not lead to a unitary representation. +However, a particular Dyson map shows that (n.E, B), where n is a diagonal tensor dielectric, is a +basis for a unitary representation. Other unitary representations can be immediately determined +from this basis by unitary transformation, in particular the Riemann-Silberstein-Weber basis. +Here we have concentrated on the basis (n.E, B), primarily because the fields are real and so +lead to quicker computations. Our QLA directly encodes these fields into qubit representation. A +unitary set of interleaved collision-streaming operators are then applied to these qubits: the unitary +collision operators entangle the qubits, while the streaming operators move this entanglement +throughout the lattice. With our current set of unitary collision-streaming operators, we do not +generate the effects of derivatives on the inhomogeneous medium. These effects are included by +the introduction of external potential operators - but at the expense of loosing the unitarity of the +complete algorithm. +In this paper we have performed QLA simulations on 2D scattering of a 1D electromagnetic pulse +from a localized Hermitian tensor dielectric object. Both polsrizations are considered with different +field evolutions because of the anisotropic in the tensor dielectric. The QLA we consider here are +13 + +-0.2197 +-0.1345 +-0.04931 +0.03587 +DB: Bzf.136000.bov +0.1210 +Max: 0.1210 +Min: -0.2197DB: Bzf.136000.bov +-0.2197 +-0.1345 +-0.04931 +0.03587 +0.1210 +Max: 0.1210 +Min: -0.2197 +X(a) Ex(x, y, t1) > 0 at t1 = 18k +, +(b) Ex(x, y, t1) < 0 at t1 = 18k +Figure 12: The Ex wavefronts at time 18k spontaneously generated by QLA so as to (implicitly) +satisfy the Maxwell equation ∇ · D = 0. As the Ex < 0 plot perspective is generated from the +Ex > 0 plot by rotating about the y = L/2 axis through an angle π, it is immediately seen the the +Ex field strongly exhibits dipole structure. +based on the two curl equations of Maxwell. Moreover the QLA is a perturbative representation, +with small parameter δ representative of the spatial lattice width, with QLA → curl − curl − +Maxwell as δ → 0. It is not at all obvious that the QLA has the right structure to recover Maxwell +equations - but only through symbolic manipulations (Mathematica) do we determine this Maxwell +limit. Hence it is of some interest to see how well QLA satisfies to two divergence equations of +Maxwell that are not directly encoded in the QLA process. We find spontaneous generation in the +QLA so that ∇ · B = 0, ∇ · D = 0. +Finally we comment on the conservation of energy E: +E(t) = 1 +L2 +� L +0 +� L +0 +dxdy +� +n2 +xE2 +x + n2 +yE2 +y + n2 +zE2 +z + B2� +In QLA, E = E(t, δ). Under appropriate scaling of the QLA operator angles, one recovers perturba- +tively the curl-curl Maxwell equations as δ → 0. Moreover, we find that EQLA → const. as δ → 0. +The QLA simulations presented here were run on a lattice grid of 81922, with δ = 0.1. +The next step is to determine a fully unitary QLA for the Maxwell equations in anisotropic +media. +The conservation of energy would be automatically satisfied as the norm of the qubit +basis. +This unitary would then permit the QLA to be immediately encodable on a quantum +computer. +In the meantime, while we await error-correcting qubits and long decoherence time +quantum computes, our current QLA’s are ideally parallelized on classical supercomputers without +core saturation effects. +14 + +DB: Exf.1 18000.bov +-0.04137 +-0.02067 +3.775e-05 +0.02074 +0.04145 +Max: 0.04145 +Min: -0.04137DB: Exf.1 18000.bov +0.04137 +-0.02067 +3.775e-05 +0.02074 +0.04145 +Max: 0.04145 +Min: -0.04137 +Z6 +Acknowledgments +This research was partially supported by Department of Energy grants DE-SC0021647, DE-FG0291ER- +54109, DE-SC0021651, DE-SC0021857, and DE-SC0021653. This work has been carried out par- +tially within the framework of the EUROfusion Consortium. E.K has received funding from the +Euratom research and training program WPEDU under grant agreement no. 101052200 as well +as from the National Program for Controlled Thermonuclear Fusion, Hellenic Republic. K.H is +supported by the National Program for Controlled Thermonuclear Fusion, Hellenic Republic. The +views and opinions expressed herein do not necessarily reflect those of the European Commission. +7 +References +[1] VAHALA, G, VAHALA, L & YEPEZ, J. 2003 Quantum lattice gas representation of some +classical solitons. Phys. Lett A310, 187-196 +[2] VAHALA, L, VAHALA, G & YEPEZ, J. 2003 Lattice Boltzmann and quantum lattice gas +representations of one-dimensional magnetohydrodynamic turbulence. Phys. Lett A306, 227-234. +[3] VAHALA, G, VAHALA, L & YEPEZ, J. 2004. Inelastic vector soliton collisions: a lattice- +based quantum representation. Phil. Trans: Mathematical, Physical and Engineering Sciences, +The Royal Society, 362, 1677-1690 [4] VAHALA, G, VAHALA, L & YEPEZ, J. 2005 Quantum +lattice representations for vector solitons in external potentials. Physica A362, 215-221. +[5] YEPEZ, J. 2002 An efficient and accurate quantum algorithm for the Dirac equation. arXiv: +0210093. +[6] YEPEZ, J. 2005 Relativistic Path Integral as a Lattice-Based Quantum Algorithm. Quant. +Info. Proc. 4, 471-509. +[7] YEPEZ, J, VAHALA, G & VAHALA, L. 2009a Vortex-antivortex pair in a Bose-Einstein +condensate, Quantum lattice gas model of theory in the mean-field approximation. Euro. Phys. J. +Special Topics 171, 9-14 +[8] YEPEZ, J, VAHALA, G, VAHALA, L & SOE, M. 2009b Superfluid turbulence from quantum +Kelvin wave to classical Kolmogorov cascades. Phys. Rev. Lett. 103, 084501. +[9] VAHALA, G, YEPEZ, J, VAHALA, L, SOE, M, ZHANG, B, & ZIEGELER, S. 2011 Poincare +recurrence and spectral cascades in three-dimensional quantum turbulence. +Phys. +Rev. +E84, +046713 +[10] VAHALA, G, YEPEZ, J, VAHALA, L &SOE, M, 2012 Unitary qubit lattice simulations +of complex vortex structures. Comput. Sci. Discovery 5, 014013 +[11] VAHALA, G, ZHANG, B, YEPEZ, J, VAHALA. L & SOE, M. 2012 Unitary Qubit Lattice +Gas Representation of 2D and 3D Quantum Turbulence. Chpt. 11 (pp. 239 - 272), in Advanced +Fluid Dynamics, ed. H. W. Oh, (InTech Publishers, Croatia) +[12] YEPEZ, J. 2016 Quantum lattice gas algorithmic representation of gauge field theory. SPIE +9996, paper 9996-2 +[13] OGANESOV, A, VAHALA, G, VAHALA, L, YEPEZ, J & SOE, M. 2016a. Benchmarking +the Dirac-generated unitary lattice qubit collision-stream algorithm for 1D vector Manakov soliton +collisions. Computers Math. with Applic. 72, 386 +[14] OGANESOV, A, FLINT, C, VAHALA, G, VAHALA, L, YEPEZ, J & SOE, M 2016b +Imaginary time integration method using a quantum lattice gas approach. Rad Effects Defects +Solids 171, 96 − 102 +[15] OGANESOV, A, VAHALA, G, VAHALA, L & SOE, M. 2018. Effects of Fourier Transform +on the streaming in quantum lattice gas algorithms. Rad. Eff. Def. Solids, 173, 169-174 +15 + +[16] VAHALA, G., SOE, M., VAHALA, L., & RAM, A. K., 2021 One- and Two-Dimensional +quantum lattice algorithms for Maxwell equations in inhomogeneous scalar dielectric media I : +theory. Rad. Eff. Def. Solids 176, 49-63. +[17] VAHALA, G., SOE, M., VAHALA, L., & RAM, A. K., 2021 One- and Two-Dimensional +quantum lattice algorithms for Maxwell equations in inhomogeneous scalar dielectric media II : +Simulations. Rad. Eff. Def. Solids 176, 64-72. +[18] VAHALA, G, VAHALA, L, SOE, M & RAM, A, K. 2020. Unitary Quantum Lattice Sim- +ulations for Maxwell Equations in Vacuum and in Dielectric Media, J. Plasma Phys 86, 905860518 +[19] VAHALA, L, SOE, M, VAHALA, G & YEPEZ, J. 2019a. Unitary qubit lattice algorithms +for spin-1 Bose-Einstein condensates. Rad Eff. Def. Solids 174, 46-55 +[20] VAHALA, L, VAHALA, G, SOE, M, RAM, A & YEPEZ, J. 2019b. Unitary qubit lat- +tice algorithm for three-dimensional vortex solitons in hyperbolic self-defocusing media. Commun +Nonlinear Sci Numer Simulat 75, 152-159 +[21] RAM, A. K., VAHALA, G., VAHALA, L. & SOE, M 2021 Reflection and transmission +of electromagnetic pulses at a planar dielectric interface - theory and quantum lattice simulations +AIP Advances 11, 105116 (1-12). +[22] MERMIN, N. D., 2007 Quantum computer science, Cambridge University Press, Cambridge +[23] KOUKOUTSIS, E., HIZANIDIS, K., RAM, A. K., & VAHALA, G. 2022. Dyson Maps and +Unitary Evolution for Maxwell Equations in Tensor Dielectric Media. arXiv:2209.08523 +16 + diff --git a/1tFRT4oBgHgl3EQfmjcL/content/tmp_files/load_file.txt b/1tFRT4oBgHgl3EQfmjcL/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..53dcc82e48d6045e228e75e23bdee4be3997f498 --- /dev/null +++ b/1tFRT4oBgHgl3EQfmjcL/content/tmp_files/load_file.txt @@ -0,0 +1,692 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf,len=691 +page_content='Qubit Lattice Algorithm Simulations of Maxwell’s Equations for Scattering from Anisotropic Dielectric Objects George Vahala 1, Min Soe 2, Linda Vahala 3, Abhay K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Ram 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Efstratios Koukoutsis 5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Kyriakos Hizanidis 5 1 Department of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' William & Mary,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Williamsburg,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' VA23185 2 Department of Mathematics and Physical Sciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Rogers State University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Claremore,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='OK 74017 3 Department of Electrical & Computer Engineering,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Old Dominion University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Norfolk,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' VA 23529 4 Plasma Science and Fusion Center,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' MIT,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Cambridge,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' MA 02139 5 School of Electrical and Computer Engineering,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' National Technical University of Athens,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='Zographou 15780,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Greece Abstract A Dyson map explicitly determines the appropriate basis of electromagnetic fields which yields a unitary representation of the Maxwell equations in an inhomogeneous medium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' A qubit lattice algorithm (QLA) is then developed perturbatively to solve this representation of Maxwell equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' QLA consists of an interleaved unitary sequence of collision operators (that entangle on lattice-site qubits) and streaming operators (that move this entanglement throughout the lattice).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' External potential operators are introduced to handle gradients in the refractive indices, and these operators are typically non-unitary, but sparse matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' By also interleaving the external potential operators with the unitary collide-stream operators one achieves a QLA which conserves energy to high accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Some two dimensional simulations results are presented for the scattering of a one-dimensional (1D) pulse off a localized anisotropic dielectric object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 1 Introduction There is much interest in developing algorithms to solve specific classical problems that can be encoded onto a quantum computer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' One class of such algorithms is the qubit lattice algorithm (QLA) [1-21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' After identifying an appropriate set of qubits, QLA proceeds to define a unitary set of interleaved non-commuting collision-streaming operators which acts on this basis set of qubits so as to perturbatively recover the classical physics of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The entanglement of qubits is at the essence of an efficient quantum algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' A maximally entangled 2-qubit state is known as a Bell state [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Now the Hilbert space of a 2-qubit basis consists of the states {|00⟩, |01⟩, |10⟩, |11⟩}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Consider the collision operator C = � cos θ sin θ − sin θ cos θ � (1) 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='13601v1 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='plasm-ph] 31 Jan 2023 acting on the subspace {|00⟩, |11⟩}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The most general tensor product state that can be generated from the qubit states {a0|0⟩ + a1|1⟩} , and {b0|0⟩ + b1|1⟩} is a0b0|00⟩ + a0b1|01⟩ + a1b0|10⟩ + a1b1|11⟩ (2) Now consider the so-called Bell state B+ = |00⟩ + |11⟩ √ 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' (3) This state cannot be recovered from the tensor-product state of the 2 qubits, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Indeed, to eliminate the |01⟩ state from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' (2) one requires either a0 = 0 or b1 = 0 - and this would eliminate either the state |00⟩ or the state |11⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' States that can not be recovered from tensor product states are called entangled states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The entangled Bell state Eq, (3) is obtained usingthe collision operator C, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' (1), with angle θ = π/4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' It is simplest to develop a QLA for the two curl-Maxwell equations, treating the divergence equations as initial constraints on the electromagnetic fields E, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' We shall do this in a Hermitian tensor dielectric medium, and comment on the discreteness effects on the time evolution of ∇ · B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 2 we shall see that in an inhomogeneous medium, the electromagnetic basis set (E, B) cannot lead to a unitary evolution of the two curl Maxwell equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' However, a Dyson map is introduced that will map the basis (E, B) into the basis (nxEx, nyEy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='nzEz, B) resulting in a fully unitary evolution for this basis set [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Here we have transformed to principal axes making the dielectric tensor diagonal with ϵi = n2 i , i = x, y, z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The more familiar complex Riemann-Silberstein- Weber basis F ± i = (niEi ±iBi) is immediately generated from the real basis (niEi, Bi) by a unitary transformation so that this will also lead to a unitary time evolution representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 2 we will develop a QLA for the solution of 2D Maxwell equations in a tensor Hermitian dielectric medium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' All our previous Maxwell QLA [16-18, 21] were restricted to scalar dielectrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' We will present a simplified discussion of the Dyson map [23] that will permit us to transform from a non-unitary to unitary basis for the representation of the two curl equations of Maxwell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' For these continuum qubit partial differential equations we will generate in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 3 a discrete QLA for tensor dielectric media that recovers the desired equations to second order perturbation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' While the collide-stream operator sequence of QLA is fully unitary, the external potential operators required to recover the derivatives of the refractive indices in Maxwell equations are not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' However these non-unitary matrices are very sparse and should be amenable to some unitary approximate representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The role of the perturbation parameter δ introduced in the QLA for Maxwell equations is quite subtle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' One important test of the QLA is the conservation of electromagnetic energy density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' This will be seen to be very well satisfied, as δ → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 4 we present some 2D QLA simulations for a 1D Gaussian electromagnetic pulse scattering from an anisotropic dielectric localized object - showing results for both polarizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Finally, in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 5 we summaries the results of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 2 A Unitary Representation of the two curl Maxwell Equations 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1 Scalar dielectric medium First, consider a simple dielectric non-magnetic medium with the constitutive equations D = ϵE, B = µ0H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' (4) 2 It is convenient to define u = (E, H)T as the fundamental fields, and d = (D, B)T the derived fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' (4), in matrix form, is d = Wu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' (5) W is a Hermitian 6 × 6 matrix W = � ϵI3×3 03×3 03×3 µ0I3×3 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' (6) I3×3 is the 3 × 3 identity matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' and the superscript T is the transpose operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The curl-curl Maxwell equations ∇ × E = −∂B/∂t, and ∇ × H = ∂D/∂t can then be written i∂d ∂t = Mu (7) where, under standard boundary conditions, the curl-matrix operator M is Hermitian : M = � 03×3 i∇× −i∇× 03×3 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' (8) Now W is invertible, so that Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' (7) can finally be written in terms of the basic electromagnetic fields u = (E, H) i∂u ∂t = W−1Mu (9) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1 inhomogeneous scalar dielectric media We immediately note that for inhomogeneous dielectric media, W−1 will not commute with M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Thus Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' (9) will not yield unitary evolution for the fields u = (E, H)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' However Koukoutsis et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' [23] have shown how to determine a Dyson map from the fields u to a new field representation U such that the resultant representation in terms of the new field U will result in a unitary evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' In particular, the Dyson map [23] U = W1/2u (10) yields a unitary evolution equation for U : i∂U ∂t = W−1/2MW−1/2U (11) since now the matrix operator W−1/2MW−1/2 is indeed Hermitian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Explicitly, the U vector for non-magnetic materials,is just U = � ϵ1/2E, µ1/2 0 H �T (12) This can be rotated into the RWS unitary representation by the unitary matrix L = 1 √ 2 � I3×3 iI3×3 I3×3 −iI3×3 � (13) yielding URSW = LU with URSW = 1 √ 2 � ϵ1/2E + iµ1/2 0 H ϵ1/2E − iµ1/2 0 H � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' (14) 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='2 Inhomogeneous tensor dielectric media The theory can be immediately extended to diagonal tensor dielectric media, with (assuming non- magnetic materials) the 6-qubit representation Q of the field U = � nxEx, nyEy, nzEz, µ1/2 0 H �T ≡ Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' (15) (nx, ny, nz) is the vector (diagonal) refractive index, with ϵx = n2 x .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The explicit unitary representation of the Maxwell equations for 2D x-y spatially dependent fields written in terms of the 6-Q qubit components are ∂q0 ∂t = 1 nx ∂q5 ∂y , ∂q1 ∂t = − 1 ny ∂q5 ∂x , ∂q2 ∂t = 1 nz �∂q4 ∂x − ∂q3 ∂y � ∂q3 ∂t = −∂(q2/nz) ∂y , ∂q4 ∂t = ∂(q2/nz) ∂x , ∂q5 ∂t = −∂(q1/ny) ∂x + ∂(q0/nx) ∂y (16) 3 A Qubit Lattice Representation for 2D Tensor Dielectric Media We develop a QLA for the unitary system Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' (16) by determining unitary collision and streaming operators that recover the derivatives ∂qi/∂t, ∂qj/∂x and ∂qj/∂y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' (i, j = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='.6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Our finite difference scheme is to recover Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' (16) to second order in a perturbation parameter δ, where the spatial lattice spacing is defined to be O(δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' To recover the partial derivatives on the 6-qubit Q in the x−direction, we consider the unitary collision entangling operator CX = � ������� 1 0 0 0 0 0 0 cos θ1 0 0 0 −sin θ1 0 0 cos θ2 0 −sin θ2 0 0 0 0 1 0 0 0 0 sin θ2 0 cos θ2 0 0 sin θ1 0 0 0 cos θ1 � ������� (17) where we shall need two collision angles θ1 and θ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The unitary streaming operators will be of the form S+x 14 which shifts qubits q1 and q4 one lattice unit δ in the +x−direction, while leaving the other 4 qubit components invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The final unitary collide-stream sequence in the x-direction is UX = S+x 25 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='C† X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='S−x 25 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='CX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='S−x 14 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='C† X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='S+x 14 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='CX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='S−x 25 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='CX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='S+x 25 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='C† X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='S+x 14 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='CX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='S−x 14 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='C† X (18) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Similarly for the y-direction, the corresponding unitary collision entangling operator is CY = � ������� cos θ0 0 0 0 0 sin θ0 0 1 0 0 0 0 0 0 cos θ2 0 sin θ2 0 0 0 −sin θ2 cos θ2 0 0 0 0 0 0 1 0 −sin θ0 0 0 0 0 cos θ0 � ������� , (19) and the corresponding unitary collide-stream sequence in the y-direction UY = S+y 25 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='C† Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='S−y 25 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='CY .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='S−y 03 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='C† Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='S+y 03 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='CY .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='S−y 25 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='CY .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='S+y 25 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='C† Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='S+y 03 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='CY .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='S−y 03 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='C† Y (20) 4 We will discuss the specific collision angles θ0, θ1 and θ2 after introducing the external potential operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The terms that remain to be recovered by the QLA are the spatial derivatives on the refractive index components ∂ni/∂x and ∂ni/∂y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' These terms will be recovered by the following (non-unitary) sparse external potential operators: VX = � ������� 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 −sin β2 0 cos β2 0 0 sin β0 0 0 0 cos β0 � ������� (21) and VY = � ������� 1 0 0 0 0 o 0 1 0 0 0 0 0 0 1 0 0 0 0 0 cos β3 sin β3 0 0 0 0 0 0 1 0 −sin β1 0 0 0 0 cos β1 � ������� (22) for particular angles β0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='. β3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Thus one possible QLA algorithm that advances the 6-qubit Q from time t to time t + ∆t is Q(t + ∆t) = VY .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='VX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='UY.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='UX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='Q(t) (23) Indeed,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' using Mathematica,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' one can show that with the collision angles θ0 = δ 4nx ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' θ1 = δ 4ny ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' θ2 = δ 4nz ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' (24) and β0 = δ2 ∂ny/∂x n2y ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' β1 = δ2 ∂nx/∂y n2x ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' β2 = δ2 ∂nz/∂x n2z ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='β3 = δ2 ∂nz/∂y ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='n2z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='(25) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='we will have a second order QLA representation of the 2D Maxwell continuum equations ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∂q0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∂t = δ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∆t ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='nx ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∂q5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∂y + O( δ4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∆t) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∂q1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∂t = − δ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∆t ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='ny ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∂q5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∂x + O( δ4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∆t) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∂q2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∂t = δ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∆t ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='nz ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='�∂q4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∂x − ∂q3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∂y ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='+ O( δ4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∆t) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∂q3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∂t = − δ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∆t ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='� 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='nz ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∂q2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∂y − ∂nz/∂y ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='n2z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='q2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='+ O( δ4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∆t) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∂q4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∂t = δ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∆t ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='� 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='nz ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∂q2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∂x − ∂nz/∂x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='n2z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='q2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='+ O( δ4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∆t) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∂q5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∂t = δ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∆t ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='− 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='ny ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∂q1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∂x + ∂ny/∂x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='n2y ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='q1 + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='nx ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∂q0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∂y − ∂nx/∂y ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='n2x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='q0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='+ O( δ4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='∆t) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='(26) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='under diffusion ordering,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' ∆t ≈ δ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1 Conservation of Instantaneous Total Electromagnetic Energy in QLA Sim- ulations It is important to monitor the conservation of energy in the QLA, particularly since our current QLA is not fully unitary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The normalized total electromagnetic energy for a square lattice domain of length L is E(t) E(t) = 1 L2 � L 0 � L 0 dxdy � n2 xE2 x + n2 yE2 y + n2 zE2 z + B2� = 1 L2 � L 0 � L 0 dxdyQ · Q , (27) In our QLA simulations, we will consider the scattering of a 1D Gaussian pulse propagating in the x−direction, and scattering from a localized tensor 2D dielectric object in the x − y plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' We choose L to be significantly greater than the dielectric object so that for y ≈ 0, and for y ≈ L the electromagnetic fields there will be that of the 1D Gaussian pulse yielding a Poynting vector E×B in the ˆx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Thus the contribution to the Poynting flux � C E × B · dℓ on y = 0 and on y = L is zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' In our time evolution QLA simulations, we integrate only to t < tmax so that there are no fields generated on the sides x = 0 and x = L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Thus, in our QLA simulations we have set up parameters such that the total electromagnetic energy E(t) = const.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=', Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' (27), for t < tmax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' E(t) is nothing but the norm of Q−qubits , and will be exactly conserved in a fully unitary QLA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' One must also be careful in the ordering of the external potential angles, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' (25) : they must be O(δ2) in order to recover Maxwell equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' While we will discuss in detail in Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 4 our numerical QLA simulation of a 1D electromagnetic pulse scattering from a localized dielectric object it is appropriate to discuss here some QLA simulation results for the total energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Since QLA, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' (23) is a perturbation theory, it will recover the 2D Maxwell equations as δ → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' For δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='3, we find the following time variation in the total energy E(t) in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 1a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' tmax = 20, 000 lattice time steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' (a) E(t) , δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='3 , (b) E(t) , δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1 Figure 1: The instantaneous total electromagnetic energy E(t), Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' (27), for various values of the perturbation parameter δ : (a) δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='3, (b) δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' A more accurate QLA results from interleaving the external potentials with the unitary collide-stream operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' For δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='01, E(t) shows no variation on this scale, with variations in the 9th significant figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Lattice grid L = 8192.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' On lowering the perturbation parameter to δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1 there is a nice reduction in the time variation of E(t), Fig 1(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' To reach the same physics tmax = 60K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content="032 X 10'4 4." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='03 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='028 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='3 Energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='026 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='024 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='022 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='02 0 5000 10000 15000 20000 time4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='022 × 104 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='0215 : 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1 Energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 8= ( 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='021 Interleavedpotential 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='0205 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='02 0 10000 20000 30000 40000 50000 60000 timeHowever, if we interleave the external potential operators among the unitary collide-stream sequence (and similarly for the y-direction) in the form V′ XUX = V ′ XS+x 25 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='C† X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='S−x 25 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='CX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='S−x 14 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='C† X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='S+x 14 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='CX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='V ′ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='S−x 25 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='CX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='S+x 25 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='C† X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='S+x 14 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='CX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='S−x 14 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='C† X (28) (with the corresponding potential angle reduced by a factor of 2) we find E(t) ≈ const.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' for all times, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 1(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' There is a further strong improvement in E(t) = const.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' for δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 4 Scattering of a Polarized Pulse from an Anisotropic Dielectric Object We first consider a 1D Gaussian pulse propagating in a vacuum in the x-direction towards a localized anisotropic dielectric object, with diagonal tensor components which are conical in nz(x, y), and cylindrical in the x and y directions with nx(x, y) = ny(x, y), Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 2 (a) nz(x, y) , (b) nx(x, y) = ny(x, y) Figure 2: Anisotropic tensor dielectric : (a) conical in nz, and (b) cylindrical in nx = ny.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Initially, a 1D Gaussian pulse propagates in the x-direction, with either a polarization Ez(x, t) < 0 or a polarization Ey(x, t) and scatters off this tensor dielectric object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' In the region away from the tensor dielectric object, we have a vacuum with ni = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' In the dielectric, ni,max = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Lattice domain 81922.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1 Scattering of 1D pulse with Ez polarization When the 1D pulse with non-zero Ez(x, t), By(x, t) fields starts to interact with the 2D tensor dielectric n(x, y), the scattered fields become 2D (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 3), with By(x, y, t) dependence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The QLA will then spontaneously generate a Bx(x, y, t) field so that ∂Bx/∂x + ∂By/∂y ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Because of the relatively weak dielectric tensor gradients for a cone, there is very little reflection back into the vacuum of the incident Ez field (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' There is a localized transmitted Ez within the dielectric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' At t = 36k we plot both the Ez and the By , Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 5-6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Of considerable interest is the spontaneously generated Bx(x, y, t) field so that ∇ · B = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' From Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 7 we see that Bx has dipole 7 8000 6000 x 4000 2000 0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='0 0 2000 4000 6000 y 80008000 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='0 6000 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='0 x4000 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='5 2000 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='0 0 2000 4000 0 6000 8000 y(a) Ez(x, y, t0) < 0 at t0 = 18k , (b) Ez(x, y, t0) > 0 at t0 = 18k Figure 3: Ez after interacting with the localized tensor dielectric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Since the phase speed in the tensor dielectric is less than in the vacuum, the 2D structure in Ez lags the rest of the 1D pulse that has not interacted with the localized dielectric object (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The perspective (b) is obtained from (a) by rotating by π about the line y = L/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' structure, since the plane of the plot Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 7(b) for the field Bx < 0 is generated by rotating the plane through π about the axis x = L/2 We find in our QLA simulations, that maxx,y � ∇ · B/|B| < 10−3� 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='2 Scattering of 1D pulse with Ey polarization We now turn to the 1D pulse with Ey polarization, propagating in the x−direction toward the 2D tensor dielectric object, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The other non-zero vacuum electromagnetic field is Bz(x, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' On interacting with the tensor dielectric n(x, y), the scattered fields will develop a spatial dependence on (x, y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Thus ∇ · B = 0 exactly, and no new magnetic filed components need be generated, This is recognized by the QLA and so the only non-zero magnetic field throughout the run is Bz(x, y, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 8 we plot the Ey-field at time t = 18k, the same time snapshot as for the case of Ez polarization, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The significant differences in the scattered field arise from the differences between the cylinder dielectric dependence of ny(x, y) and the cone nz(x, y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Also, what can be seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 8 is the outward propagating circular-like wavefront which seems to be reminiscent of the reflected pulse in 1D scattering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' In particular, one sees elements of a π phase change in this reflected wavefront.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The corresponding Ey wavefronts at t = 36k are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 9 The accompanying Bz field of the initial 1D electromagnetic pulse is shown after its scattering from the tensor dielectric at times t = 18k, Fig 10, and at t = 36k, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 11 Finally we consider the last of the Maxwell equations to be enforced: ∇ · D = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The QLA established a qubit basis for the curl-curl subset of Maxwell equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' For the initial polarization Ez(x, t) and refractive indices n = n(x, y), the ∇ · D = 0 is automatically satisfied, while ∇ · B = 0 8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='09998 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='07448 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='04899 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='02350 DB: Ezf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='118000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='bov 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='001997 Max: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='001997 Min: -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='09998-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='09998 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='07448-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='04899 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='02350 DB: Ezf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1 18000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='b0v 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='001997 Max: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='001997 Min: -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='09998(a) Ez(x, y, t1) < 0 at t1 = 24k , (b) Ez(x, y, t1) > 0 at t1 = 24k Figure 4: For early times, from the perspective of the tensor dielectric object the electromagnetic pulse within the dielectric is the transmitted field and has a localized Ez which becomes greater than the original Ez in the vacuum region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' There is little reflected field since Ez will be predominantly interacting with the nz component of the tensor dielectric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The perspective (b) is obtained from (a) by rotating by π about the line y = L/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' (a) Ez(x, y, t2) < 0 at t2 = 36k , (b) Ez(x, y, t2) > 0 at t2 = 36k Figure 5: The Ez field at a late stage of development.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The perspective (b) is obtained from (a) by rotating by π about the line y = L/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 9 DB: Ezf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='136000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='b0v Max: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='04157 Min: -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='09995-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1823 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1241 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='06594 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='007730 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='05048 DB: Ezf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='124000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='b0v Max: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='05048 Min: -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1823-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1823 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1241 DB: Ezf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='124000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='bov 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='06594 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='007730 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='05048 Max: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='05048 Min: -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1823DB: Ezf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='136000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='b0v Max: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='04157 Min: -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='09995(a) By(x, y, t0) > 0 at t0 = 36k , (b) By(x, y, t0) < 0 at t0 = 36k Figure 6: The corresponding By field at time t = 36k to the Ez field in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The perspective (b) is obtained from (a) by rotating by π about the line y = L/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' (a) Bx(x, y, t0) > 0 at t0 = 36k , (b) Bx(x, y, t0) < 0 at t0 = 36k Figure 7: The spontaneously Bx field at time t = 36k that is generated by the QLA so that ∇ · B = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' This time corresponds to the Ez field in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 5, and By field in FIg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The dipole structure of Bx is clear on comparing (a) and (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The perspective (b) is obtained from (a) by rotating by π about the line y = L/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='03172 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='001195 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='03411 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='06703 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='09995 DB: Byf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='136000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='bov Max: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='09995 Min: -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='03172-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='03172 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='001195 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='03411 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='06703 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='09995 DB: Byf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='136000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='bov Max: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='09995 Min: -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='03172 X-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='07529 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='03764 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='051e-05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='03766 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='07531 DB: Bxf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='136000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='b0v Max: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='0753 1 Min: -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='07529-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='07529 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='03764 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='051e-05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='03766 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='07531 DB: Bxf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='136000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='b0v Max: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='0753 1 Min: -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='07529 X Z(a) Ey(x, y, t0) > 0 at t0 = 18k , (b) Ey(x, y, t0) < 0 at t0 = 18k Figure 8: Ey after interacting with the localized tensor dielectric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Since the cylindrical ny dielectric has a sharper boundary layer than the conic nz dielectric, there is now a marked ”reflected” wavefront propagating into the vacuum region together with the ”transmitted” part of the pulse into the dielectric region itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' This ”reflected” wavefront is absent when the major scattering is off the conic dielectric component, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The perspective (b) is obtained from (a) by rotating by π about the line y = L/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 11 DB: Eyf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 118000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='bov 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='03580-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='001856 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='03209 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='06603 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='09998 Max:0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='09998 Min: -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='03580 +DB: Eyf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 118000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='bov 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='03580-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='0018560.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='03209 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='06603 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='09998 Max:0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='09998 Min: -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='03580 X(a) Ey(x, y, t2) > 0 at t2 = 36k , (b) Ey(x, y, t2) < 0 at t2 = 36k Figure 9: The Ey wavefronts at a late stage of development, as the ”reflected” pulse is about to reach the lattice boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The perspective (b) is obtained from (a) by rotating by π about the line y = L/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' (a) Bz(x, y, t1) > 0 at t1 = 18k , (b) Bz(x, y, t1) < 0 at t1 = 18k Figure 10: The Bz wavefronts corresponding to the Ey - field in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The perspective (b) is obtained from (a) by rotating by π about the line y = L/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 12 DB: Eyf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='136000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='bov 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='08481-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='038620.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='0075710.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='05376 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='09996 Max:0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='09996 Min: -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='08481DB: Eyf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='136000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='bov 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='08481-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='038620.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='0075710.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='05376 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='09996 Max:0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='09996 Min: -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='08481 X-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1032 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='0007075 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1046 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='2086 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='3125 DB: Bzf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 1 18000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='bov Max: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='3125 Min: -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1032 XDB: Bzf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='118000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='bov 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1032 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='00070750.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1046 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='2086 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='3125 Max: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='3125 Min:0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1032 X(a) Bz(x, y, t2) > 0 at t2 = 36k , (b) Bz(x, y, t2) < 0 at t2 = 36k Figure 11: The Bz wavefronts at a late stage of development, as the ”reflected” pulse is about to reach the lattice boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The corresponding Ey field is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The perspective (b) is obtained from (a) by rotating by π about the line y = L/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' was spontaneously satisfied by the self-consistent generation of a Bx field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Now, if the initial polarization was Ey(x, t), then ∇·B = 0 is automatically satisfied, while a spontaneously generated Ex field is generated by the QLA so that ∇ · D = 0 is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 12 we show the wavefronts of the Ex field at time t = 18k 5 Summary Determining a Dyson map, we have been able to develop a required basis from which the evolution equations for Maxwell equations can be unitary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' In particular, we have shown that for inhomoge- neous non-magnetic dielectric media, the field basis (E, B) will not lead to a unitary representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' However, a particular Dyson map shows that (n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='E, B), where n is a diagonal tensor dielectric, is a basis for a unitary representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Other unitary representations can be immediately determined from this basis by unitary transformation, in particular the Riemann-Silberstein-Weber basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Here we have concentrated on the basis (n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='E, B), primarily because the fields are real and so lead to quicker computations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Our QLA directly encodes these fields into qubit representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' A unitary set of interleaved collision-streaming operators are then applied to these qubits: the unitary collision operators entangle the qubits, while the streaming operators move this entanglement throughout the lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' With our current set of unitary collision-streaming operators, we do not generate the effects of derivatives on the inhomogeneous medium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' These effects are included by the introduction of external potential operators - but at the expense of loosing the unitarity of the complete algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' In this paper we have performed QLA simulations on 2D scattering of a 1D electromagnetic pulse from a localized Hermitian tensor dielectric object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Both polsrizations are considered with different field evolutions because of the anisotropic in the tensor dielectric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The QLA we consider here are 13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='2197 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1345 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='04931 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='03587 DB: Bzf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='136000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='bov 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1210 Max: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1210 Min: -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='2197DB: Bzf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='136000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='bov 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='2197 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1345 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='04931 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='03587 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1210 Max: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1210 Min: -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='2197 X(a) Ex(x, y, t1) > 0 at t1 = 18k , (b) Ex(x, y, t1) < 0 at t1 = 18k Figure 12: The Ex wavefronts at time 18k spontaneously generated by QLA so as to (implicitly) satisfy the Maxwell equation ∇ · D = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' As the Ex < 0 plot perspective is generated from the Ex > 0 plot by rotating about the y = L/2 axis through an angle π, it is immediately seen the the Ex field strongly exhibits dipole structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' based on the two curl equations of Maxwell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Moreover the QLA is a perturbative representation, with small parameter δ representative of the spatial lattice width, with QLA → curl − curl − Maxwell as δ → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' It is not at all obvious that the QLA has the right structure to recover Maxwell equations - but only through symbolic manipulations (Mathematica) do we determine this Maxwell limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Hence it is of some interest to see how well QLA satisfies to two divergence equations of Maxwell that are not directly encoded in the QLA process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' We find spontaneous generation in the QLA so that ∇ · B = 0, ∇ · D = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Finally we comment on the conservation of energy E: E(t) = 1 L2 � L 0 � L 0 dxdy � n2 xE2 x + n2 yE2 y + n2 zE2 z + B2� In QLA, E = E(t, δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Under appropriate scaling of the QLA operator angles, one recovers perturba- tively the curl-curl Maxwell equations as δ → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Moreover, we find that EQLA → const.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' as δ → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The QLA simulations presented here were run on a lattice grid of 81922, with δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The next step is to determine a fully unitary QLA for the Maxwell equations in anisotropic media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The conservation of energy would be automatically satisfied as the norm of the qubit basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' This unitary would then permit the QLA to be immediately encodable on a quantum computer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' In the meantime, while we await error-correcting qubits and long decoherence time quantum computes, our current QLA’s are ideally parallelized on classical supercomputers without core saturation effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 14 DB: Exf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1 18000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='bov 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='04137 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='02067 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='775e-05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='02074 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='04145 Max: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='04145 Min: -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='04137DB: Exf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='1 18000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='bov 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='04137 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='02067 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='775e-05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='02074 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='04145 Max: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='04145 Min: -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='04137 Z6 Acknowledgments This research was partially supported by Department of Energy grants DE-SC0021647, DE-FG0291ER- 54109, DE-SC0021651, DE-SC0021857, and DE-SC0021653.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' This work has been carried out par- tially within the framework of the EUROfusion Consortium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='K has received funding from the Euratom research and training program WPEDU under grant agreement no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 101052200 as well as from the National Program for Controlled Thermonuclear Fusion, Hellenic Republic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='H is supported by the National Program for Controlled Thermonuclear Fusion, Hellenic Republic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' The views and opinions expressed herein do not necessarily reflect those of the European Commission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 7 References [1] VAHALA, G, VAHALA, L & YEPEZ, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 2003 Quantum lattice gas representation of some classical solitons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Lett A310, 187-196 [2] VAHALA, L, VAHALA, G & YEPEZ, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 2003 Lattice Boltzmann and quantum lattice gas representations of one-dimensional magnetohydrodynamic turbulence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Lett A306, 227-234.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' [3] VAHALA, G, VAHALA, L & YEPEZ, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Inelastic vector soliton collisions: a lattice- based quantum representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Phil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Trans: Mathematical, Physical and Engineering Sciences, The Royal Society, 362, 1677-1690 [4] VAHALA, G, VAHALA, L & YEPEZ, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 2005 Quantum lattice representations for vector solitons in external potentials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Physica A362, 215-221.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' [5] YEPEZ, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 2002 An efficient and accurate quantum algorithm for the Dirac equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' arXiv: 0210093.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' [6] YEPEZ, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 2005 Relativistic Path Integral as a Lattice-Based Quantum Algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Info.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 4, 471-509.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' [7] YEPEZ, J, VAHALA, G & VAHALA, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 2009a Vortex-antivortex pair in a Bose-Einstein condensate, Quantum lattice gas model of theory in the mean-field approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Euro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Special Topics 171, 9-14 [8] YEPEZ, J, VAHALA, G, VAHALA, L & SOE, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 2009b Superfluid turbulence from quantum Kelvin wave to classical Kolmogorov cascades.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 103, 084501.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' [9] VAHALA, G, YEPEZ, J, VAHALA, L, SOE, M, ZHANG, B, & ZIEGELER, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 2011 Poincare recurrence and spectral cascades in three-dimensional quantum turbulence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' E84, 046713 [10] VAHALA, G, YEPEZ, J, VAHALA, L &SOE, M, 2012 Unitary qubit lattice simulations of complex vortex structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Discovery 5, 014013 [11] VAHALA, G, ZHANG, B, YEPEZ, J, VAHALA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' L & SOE, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 2012 Unitary Qubit Lattice Gas Representation of 2D and 3D Quantum Turbulence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Chpt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 11 (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 239 - 272), in Advanced Fluid Dynamics, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Oh, (InTech Publishers, Croatia) [12] YEPEZ, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 2016 Quantum lattice gas algorithmic representation of gauge field theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' SPIE 9996, paper 9996-2 [13] OGANESOV, A, VAHALA, G, VAHALA, L, YEPEZ, J & SOE, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 2016a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Benchmarking the Dirac-generated unitary lattice qubit collision-stream algorithm for 1D vector Manakov soliton collisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Computers Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' with Applic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 72, 386 [14] OGANESOV, A, FLINT, C, VAHALA, G, VAHALA, L, YEPEZ, J & SOE, M 2016b Imaginary time integration method using a quantum lattice gas approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Rad Effects Defects Solids 171, 96 − 102 [15] OGANESOV, A, VAHALA, G, VAHALA, L & SOE, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Effects of Fourier Transform on the streaming in quantum lattice gas algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Rad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Eff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Solids, 173, 169-174 15 [16] VAHALA, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=', SOE, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=', VAHALA, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=', & RAM, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=', 2021 One- and Two-Dimensional quantum lattice algorithms for Maxwell equations in inhomogeneous scalar dielectric media I : theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Rad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Eff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Solids 176, 49-63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' [17] VAHALA, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=', SOE, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=', VAHALA, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=', & RAM, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=', 2021 One- and Two-Dimensional quantum lattice algorithms for Maxwell equations in inhomogeneous scalar dielectric media II : Simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Rad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Eff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Solids 176, 64-72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' [18] VAHALA, G, VAHALA, L, SOE, M & RAM, A, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Unitary Quantum Lattice Sim- ulations for Maxwell Equations in Vacuum and in Dielectric Media, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Plasma Phys 86, 905860518 [19] VAHALA, L, SOE, M, VAHALA, G & YEPEZ, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 2019a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Unitary qubit lattice algorithms for spin-1 Bose-Einstein condensates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Rad Eff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Solids 174, 46-55 [20] VAHALA, L, VAHALA, G, SOE, M, RAM, A & YEPEZ, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 2019b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Unitary qubit lat- tice algorithm for three-dimensional vortex solitons in hyperbolic self-defocusing media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Commun Nonlinear Sci Numer Simulat 75, 152-159 [21] RAM, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=', VAHALA, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=', VAHALA, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' & SOE, M 2021 Reflection and transmission of electromagnetic pulses at a planar dielectric interface - theory and quantum lattice simulations AIP Advances 11, 105116 (1-12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' [22] MERMIN, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=', 2007 Quantum computer science, Cambridge University Press, Cambridge [23] KOUKOUTSIS, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=', HIZANIDIS, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=', RAM, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=', & VAHALA, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' Dyson Maps and Unitary Evolution for Maxwell Equations in Tensor Dielectric Media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content=' arXiv:2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} +page_content='08523 16' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFRT4oBgHgl3EQfmjcL/content/2301.13601v1.pdf'} diff --git a/29E4T4oBgHgl3EQf0A2b/content/2301.05279v1.pdf b/29E4T4oBgHgl3EQf0A2b/content/2301.05279v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..9872807d14f89ce92faa54944713f5048e363134 --- /dev/null +++ b/29E4T4oBgHgl3EQf0A2b/content/2301.05279v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:04d4c7ac763cb7b3b836794a11934f5407365a68f58d271e27f084f1f019a158 +size 1457747 diff --git a/29FIT4oBgHgl3EQf5SvC/content/2301.11389v1.pdf b/29FIT4oBgHgl3EQf5SvC/content/2301.11389v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..ef51910f32c192175443cf04a0ca3df71e6ec0d2 --- /dev/null +++ b/29FIT4oBgHgl3EQf5SvC/content/2301.11389v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c186fb56ae90d426d50f16ed70ecdcba72f1f712adc0fea61c5f78899fb9a849 +size 2665027 diff --git a/2dE2T4oBgHgl3EQfjAeF/content/2301.03964v1.pdf b/2dE2T4oBgHgl3EQfjAeF/content/2301.03964v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..b1f57d64a6c832538e136c68b4a29bf55a536589 --- /dev/null +++ b/2dE2T4oBgHgl3EQfjAeF/content/2301.03964v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1717f33ddc28c413c69e55c1986d4aed91e54436c004f36031fe1e5b3fa5e0ab +size 1413041 diff --git a/2dE2T4oBgHgl3EQfjAeF/vector_store/index.pkl b/2dE2T4oBgHgl3EQfjAeF/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..c13b5301d0180a9b12c4813d5a1f486cb2154b39 --- /dev/null +++ b/2dE2T4oBgHgl3EQfjAeF/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:63a17d773996d31abf8e02accf49236fc4e44874dd5d4d2bf5da99fcf681b177 +size 264079 diff --git a/39E1T4oBgHgl3EQfmARV/content/tmp_files/2301.03292v1.pdf.txt b/39E1T4oBgHgl3EQfmARV/content/tmp_files/2301.03292v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..d419bfda23b597f610cb355f976f67c35ed2eddd --- /dev/null +++ b/39E1T4oBgHgl3EQfmARV/content/tmp_files/2301.03292v1.pdf.txt @@ -0,0 +1,2142 @@ +Spin-lattice and magnetoelectric couplings enhanced by orbital degrees of freedom in +polar magnets +Vilmos Kocsis,1, 2 Yusuke Tokunaga,1, 3 Toomas R˜o˜om,4 Urmas Nagel,4 +Jun Fujioka,5 Yasujiro Taguchi,1 Yoshinori Tokura,1, 6 and S´andor Bord´acs7, 8 +1RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan +2Institut f¨ur Festk¨orperforschung, Leibniz IFW-Dresden, 01069 Dresden, Germany +3Department of Advanced Materials Science, University of Tokyo, Kashiwa 277-8561, Japan +4National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia +5Institute of Materials Science, University of Tsukuba, Ibaraki 305-8573, Japan +6Tokyo College and Department of Applied Physics, +University of Tokyo, Hongo, Tokyo 113-8656, Japan +7Department of Physics, Institute of Physics, Budapest University of +Technology and Economics, M˝uegyetem rkp. 3., H-1111 Budapest, Hungary +8Quantum Phase Electronics Center and Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan +Orbital degrees of freedom mediating an interaction between spin and lattice were predicted +to raise strong magnetoelectric effect, i.e. +realize an efficient coupling between magnetic and +ferroelectric orders. +However, the effect of orbital fluctuations have been considered only in a +few magnetoelectric materials, as orbital degeneracy driven Jahn-Teller effect rarely couples to +polarization. Here, we explore the spin-lattice coupling in multiferroic Swedenborgites with mixed +valence and Jahn-Teller active transition metal ions on a stacked triangular/Kagome lattice using +infrared and dielectric spectroscopy. On one hand, in CaBaM4O7 (M = Co, Fe), we observe strong +magnetic order induced shift in the phonon frequencies and a corresponding large change in the +dielectric response. Remarkably, as an unusual manifestation of the spin-phonon coupling, the spin- +fluctuations reduce the phonon life-time by an order of magnitude at the magnetic phase transitions. +On the other hand, lattice vibrations, dielectric response, and electric polarization show no variation +at the N´eel temperature of CaBaFe2Co2O7, which is built up by orbital singlet ions. Our results +provide a showcase for orbital degrees of freedom enhanced magnetoelectric coupling via the example +of Swedenborgites. +Spin-orbit coupling (SOC) is considered among the +most essential interactions in condensed matter science, +standing in the background of topological insulators [1] +and superconductors [2], Dirac and Weyl semimetals [3, +4], Kitaev physics [5] as well of multiferroics [6, 7]. In the +latter compounds, SOC induces magnetoelectric (ME) +coupling between electric polarization and magnetism +making them interesting for basic research and appealing +for applications, however, this interaction is usually weak +due to its relativistic nature. [8–12]. While the relativistic +spin-orbit interaction enables the ME coupling on a single +(a pair) of magnetic ion(s), theoretical works proposed +early that the charge and orbital degrees of freedoms +can mediate an enhanced ME interaction via the Kugel- +Khomski˘ı-type spin-orbital coupling [13–16]. +However, +materials realizing this scenario are exceptional, +as +charge and orbital order alone rarely break the inversion +symmetry [16–22]. +The two most studied cases are +Fe3O4, where the ME effect is attributed to the charge +and orbital orderings [16–19], and LuFe2O4 in which +the ferroelectricity is debated to emerge from charge +ordering [20]. +Recently, CaMn7O12 was also identified +with a chiral magnetic structure stabilized by the charge +and orbital ordering [21, 22]. +Swedenborgites +CaBaM4O7 +(M=Co, +Fe) +provide +another platform to study the interplay between spins +and orbitals, but there, unlike the previous examples, +the charge degree of freedom is quenched. +The polar +Swedenborgites are built up by alternating layers of +triangular and kagom´e sheets of MO4 tetrahedra, all +pointing to the c axis, as shown in Fig. 1(a). The M 2.5+ +nominal valence, suggests a 1:1 mixture of M 2+ and M 3+ +ions, subjected to geometric frustration. The buckling of +the kagom´e lattice releases the frustration and reduces +the symmetry to orthorhombic at TS=450 K [23, 24] +and TS=380 K [25, 26] in CaBaCo4O7 and CaBaFe4O7, +respectively. +In both compounds, X-ray spectroscopy +studies confirmed the coexistence of distinct valences, +M 2+ and M 3+ (electron configurations sketched in +Fig. 2), and suggested charge order with the M 3+ +ions occupying the triangular and one of the kagom´e +sites [23, 25, 27–29]. Therefore, both CaBaCo4O7 and +CaBaFe4O7 contain the Jahn-Teller active Co3+ and +Fe2+ ions, respectively, though, no further information +is available on orbital ordering. +However, the solid- +solution CaBaFe2Co2O7 lacks orbital degeneracy, namely +solely the orbital singlet Fe3+ and Co2+ charge states are +present in this compound [28–30]. +In CaBaCo4O7, spins order antiferromegnetically at +TN=70 K [31], and then a ferrimagnetic structure emerges +below TC=60 K [23, 32], as shown in Fig. 1(c). The latter +phase is accompanied by one of the largest magnetic- +order-induced polarization detected so far [33, 34] as +well as exceptionally large magnetostriction [35]. +Its +arXiv:2301.03292v1 [cond-mat.str-el] 9 Jan 2023 + +2 +FIG. 1. +(a) The polar structural unit cell of trigonal +Swedenborgites are built up by alternating triangular and +Kagom´e layers of co-aligned MO4 +tetrahedra. +(b) In +the trigonal CaBaFe2Co2O7, one Fe3+ ion occupies the +triangular lattice, while the remaining Fe3+/Co2+/Co2+ ions +are distributed randomly on the Kagome lattice. The +√ +3 × +√ +3-type antiferromagnetic order develops below TN=152 K +(spin S, +green arrow, +reproduced after Ref. 37.) +(c) +The orthorhombic CaBaCo4O7 has charge order and a +ferrimagnetic order below TC=60 K, reproduced after Ref. 23 +and 27. +sister compound, CaBaFe4O7 also show peculiar ME +properties. +It becomes multiferroic close to room +temperature, TC1=275 K upon a ferrimagnetic ordering, +which is followed by a reorientation transition below +TC2=211 K +[25, +26]. +CaBaFe2Co2O7 +develops +an +antiferromagnetic structure at TN=152 K [30, 36, 37] +(Fig. 1(b)), +however, +its ME properties have been +unknown. +In this Letter, we investigate the effect of magnetic +ordering on the charge dynamics of Swedenborgites +via infrared and dielectric spectroscopy. We compared +members of the material family with and without orbital +degree of freedom, +and found a strong spin-lattice +coupling only in CaBaM4O7 (M = Co, Fe) with Jahn- +Teller active ions. +In these pristine compounds, the +phonon frequencies show a sudden shift at TC, related +to the large magnetic-order-induced polarization and +magnetocapacitance. +Moreover, we observed an order +of magnitude decrease of the phonon life-times at the +ferrimagnetic phase transitions. In contrast, we found no +phonon nor dielectric anomalies and negligible change in +the pyroelectric polarization upon the magnetic ordering +in the orbital-singlet CaBaCo2Fe2O7. +Therefore, our +results highlight the importance of orbital degrees +of freedom in the enhancement of the spin-lattice +interaction and the ME effect in multiferroics. +Large single crystals of CaBaCo4O7, CaBaFe4O7, +CaBaFe2Co2O7, and YBaCo3AlO7 were grown by the +floating zone technique [26, 30, 33, 38, 39]. Polarized, +near normal incidence reflectivity was measured on +polished cuts. +Temperature dependent experiments +were carried out up to 40000 cm−1 with an FT- +IR spectrometer (Vertex80v, Bruker) and a grating- +monochromator +spectrometer +(MSV-370YK, +Jasco). +The +reflectivity +spectrum +of +each +compound +was +measured up to 250000 cm−1 at room temperature +with use of synchrotron radiation at UVSOR Institute +for Molecular Science, Okazaki, Japan. +The optical +conductivity was calculated using the Kramers-Kronig +transformation [24]. +The pyroelectric polarization was +obtained by measuring and integrating the displacement +current with an electrometer (6517A, Keithley) while +the temperature was swept in a Physical Property +Measurement System (PPMS, Quantum Design). +The +dielectric properties were also measured in a PPMS, +using an LCR meter (E4980A, Keysight Technologies) +while the ac magnetization was measured in a Magnetic +Property +Measurement +System +(MPMS3, +Quantum +Design). +For quantitative analysis, we fitted the real part of the +optical conductivity as a sum of Lorentz oscillators: +σ (ω) = −iωϵ0 +� +�ϵ∞ + +� +j +Sj +ω2 +0,j − ω2 − iγjω +� +� , +(1) +where ω0,j, Sj, and γj are the frequency, oscillator +strength, and damping rate of the jth mode, and ϵ∞ is +the high-frequency dielectric constant, respectively. +In Fig. 2, +we show the temperature dependence +of the reflectivity and optical conductivity spectra +around the lowest energy phonon modes of CaBaCo4O7, +CaBaFe2Co2O7, and CaBaFe4O7 for light polarization +Eω ∥ z. The reflectivity spectra over the whole photon +energy range covered by our experiment for both Eω ∥ z +and Eω +⊥ z are presented in the supplement [24]. +The phonon spectra of CaBaCo4O7 and CaBaFe4O7 +(see Figs. 2(a,d), +S3 and 2(c,f), +S4, +respectively) +change markedly with temperature. The resonances are +narrow at low temperatures and get significantly broader +above the magnetic ordering temperature. +Contrary +to the pristine compounds, +the phonon modes of +CaBaFe2Co2O7 depend weakly on the temperature and +show no anomaly at TN, as shown in Figs. 2(b,e), and S5. +In Fig. 3, we compare the temperature dependence of +the phonon parameters, frequency (ω0,j) and damping +rate (γj) in CaBaCo4O7 and CaBaFe2Co2O7 for selected, + +3 +50 +60 +70 +80 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +50 +60 +70 +80 +0 +20 +40 +60 +80 +50 +60 +70 +80 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +50 +60 +70 +80 +0 +10 +20 +30 +40 +50 +60 +80 +100 +120 +140 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +60 +80 +100 +120 +140 +0 +10 +20 +30 +40 +50 +e +5E + Reflectivity +CaBaCo4O7 +Eω || z +(a) +4A2 +t2 +Co2+ Co3+ +#1 +#2 +Conductivity (Ω-1cm-1) +CaBaCo4O7 +Eω || z +Wavenumber (cm-1) + 70K +200K +300K + T = 10K + 50K + 55K + TC=60K + 65K +(d) +#2 +#1 +6A1 + Reflectivity +CaBaFe4O7 +Eω || z +(c) +5E +e +t2 +Fe2+ Fe3+ +#2 +#1 + T = 10K + 50K + 100K + 150K + 200K +TC2=211K + 250K +TC1=275K + 300K +CaBaFe4O7 +Eω || z +Conductivity (Ω-1cm-1) +Wavenumber (cm-1) +(f) +#2 +#1 + Reflectivity +CaBaFe2Co2O7 +Eω || z +(b) +e +4A2 +t2 +Co2+ Fe3+ +6A1 +#2 +#1 + Wavenumber (cm-1) + T = 10K + 50K + 100K + 150K +TN=152K + 200K + 250K + 300K + Conductivity (Ω-1cm-1) +CaBaFe2Co2O7 +Eω || z +(e) +#2 +#1 +FIG. 2. The reflectivity and the optical conductivity spectra of (a,d) CaBaCo4O7, (b,e) CaBaFe2Co2O7, and (c,f) CaBaFe4O7 +at selected temperatures in the frequency range of the lowest energy phonon modes. +well-separated phonon modes. +In the orthorhombic +CaBaCo4O7 and CaBaFe4O7, the phonon modes are +non-degenerate already at room temperature, and we +did not resolve new modes below the magnetic phase +transition temperatures. However, in both compounds +the phonon frequencies change abruptly at the onset +of the ferrimagnetic phase transitions. As an example, +the magnitude of phonon energy shift becomes as +large as ∆ω0/ω0 +∼4 % for modes #1 and #2 in +CaBaCo4O7, shown in Fig. 3(a). +This is significantly +higher than ∆ω0/ω0 ∼1 %, the highest value observed +in other multiferroics [40–42] and in magnets with +strong spin-phonon coupling [43, 44]. +This indicates +an extremely strong spin-lattice coupling [45–48], which +agrees with recent experiments demonstrating giant +magnetostriction [35]. In CaBaFe2Co2O7, however, the +phonon frequencies change slightly with the temperature +and we could not resolve any splitting of the phonon +modes (see Fig. S5 and S8). +The most remarkable changes in the infrared spectra +of CaBaCo4O7 and CaBaFe4O7 are the drastic increase +in the damping rates of all phonon modes as warmed +above the ferrimagnetic phase transitions, see Fig. 3 and +S8, respectively. Modes #1 and #2 of CaBaCo4O7 well +exemplify this tendency: At T=10 K the damping rates +of these modes are as low as 0.5 cm−1. +Such sharp +phonons with γ/ω0 < 1 % are unusual in condensed +matter systems, and only observed in non-magnetic +molecular crystals [49–52]. However, in the vicinity of +TC the phonon lifetime decreases, i.e. +the damping +rate grows by an order of magnitude indicating a strong +scattering of phonons by spin-fluctuations. +In the +paramagnetic phase, γ keeps increasing and at room +temperature the phonon modes are strongly damped with +γ/ω0 ratios exceeding 10 %. +The strong temperature +dependence of the damping rates away from TC, besides +the strong spin-lattice coupling, suggests strong lattice +anharmonicity [53, 54]. The damping rates of modes #16 +and #21, and those of CaBaFe4O7 (see Fig. S8) follow +similar temperature dependence with pronounced change +at the ferrimagnetic phase transitions. In contrast, the +damping rates in CaBaFe2Co2O7 show weak temperature +dependence and no anomalies at TN. +As demonstrated in Fig. 4 and S9, the emergence +of magnetic order strongly influences the pyroelectric +polarization and the low-frequency dielectric response of +CaBaCo4O7. We observed large magnetic-order-induced +polarization change for P ∥ z in agreement with former +results [33, 34] and negligible for P ⊥ z [55]. The real +part of the dielectric constants, both ϵ⊥z and ϵ∥z, exhibit +a step-like change when crossing TC [see Fig. 4(d,f)], +with similar magnitude to that of in DyMn2O5 showing +colossal magnetodielectric effect [56]. +Since the step +height is independent of frequency between 102 and + +川川川川4 +66 +67 +68 +69 +415 +420 +425 +CaBaCo4O7 +525 +530 +52 +53 +54 +0 +100 +200 +300 +1 +10 +0 +100 +200 +300 +1 +10 +CaBaFe2Co2O7 +555 +560 +565 +262 +264 +266 +80 +85 +90 +95 +#2 + ω0 (cm-1) +#16 +#21 +TC +(a) +#1 +� (cm-1) +Temperature (K) +(c) +Temperature (K) +(d) +#10 +TN +(b) +#5 +#2 +#1 +FIG. 3. (a,b) Temperature dependence of the fitted phonon +frequencies (ω0) and (c,d) damping rates (γ) in CaBaCo4O7 +and CaBaFe2Co2O7, +respectively. +The strong coupling +between magnetic and elastic properties in CaBaCo4O7 is +demonstrated by the changes in ω0 and γ around the magnetic +phase transition (TC), indicated by dashed lines. +105 Hz, and observed for both ϵ⊥z and ϵ∥z, the drop in the +static dielectric function is related to the sudden changes +in the phonon resonances. In addition to the step-edge +in the real part, both the real and the imaginary parts of +ϵ∥z have a peak at the close vicinity of TC. The frequency +dependence and the related finite dissipation indicate +electric dipoles with low-frequency dynamics and strong +scattering. +The peak shape in the real part suggests +that the magnetic fluctuations can couple to electric +dipoles and contribute to the phonon scattering [57, 58]. +Toward higher temperatures, the dielectric constants +increase, not due to the change of phonon frequency +but due to the decrease of the resistivity caused by +the thermally activated carriers, as shown in Fig. S2. +Although CaBaFe2Co2O7 has a similar pyroelectric +crystal structure and a relatively high TN, its polarization +is not affected by the antiferromagnetic order, +as +displayed in Fig. 4(c). The dielectric properties of this +compound show a smooth variation on temperature in +accordance with the phonon spectrum. +We now discuss the enhanced scattering of phonons +by spin fluctuations and the origin of the strong +anomaly in the dielectric constant observed only in the +pristine Swedenborgites, CaBaCo4O7 and CaBaFe4O7. +Remarkably, such a large drop of the phonon damping +rate induced by magnetic ordering is rare. Only minor +changes in the damping rate have been detected in +emblematic multiferroics including manganites RMnO3 +(R = Ho, Y) [59, 60], TbMnO3 [61], RMn2O5 (R = +Tb, Eu, Dy, Bi) [62, 63], delafossite CuFeO2 [64] or +Ni3V2O8 [65]. +Although several different mechanisms +are responsible for the spin-lattice coupling in these +materials, ranging from exchange striction [11, 66], +inverse Dzyaloshinskii-Moriya interaction [8, 9] to on- +site anisotropy term [12], none of them results in such +a strong magnetic-order-induced change of phonon life- +time. +We note that charge fluctuations are frozen +in the studied Swedenborgites as indicated by the +large dc resistivity and the corresponding few-100 meV +optical charge gap (see Fig. S2 and S7), thus, these +cannot modify the spin-lattice interaction. +Instead, +we argue that low-energy fluctuations of the orbital +degrees of freedom open a new channel and mediate +a more efficient spin-lattice interaction in CaBaCo4O7 +and CaBaFe4O7 since orbitals can strongly interact with +both spin fluctuations and phonons. +This may lead +to considerable broadening of phonon modes when the +ordered state becomes paramagnetic as demonstrated +in LaTiO3 [44]. +It is instructive to compare the case +of Swedenborgites to that of hexagonal manganites. +Although both class of compounds crystallize in a polar +structure with geometric frustration, the phonons are +scattered strongly by spin fluctuations exclusively in the +Swedenborgites. In hexagonal mangnites, Mn3+ ions sit +in a trigonal bipyramid, thus, they have S = 2 spins +just like tetrahedrally coordinated Co3+ and Fe2+ ions, +however, they are not Jahn-Teller active and their orbital +singlet ground state is well separated from other 3d +states [67, 68]. This fact also suggests that presence of +orbital degrees of freedom allows the unusually strong +spin-lattice coupling in Swedenborgites. +Finally, we +mention that a recent study of infrared phonons in +Fe2Mo3O8 shows similar enhancement of the damping +rate across its antiferromagnetic phase transition [42]. +In +CaBaCo4O7 +and +CaBaFe4O7, +both +the +tetrahedrally coordinated Co3+ and Fe2+ ions possess +the orbital-degenerate +5E ground state multiplet as +shown in the inset of Fig. 2. The orbital degeneracy is +released by the trigonal to orthorhombic phase transition +at TS, as illustrated in Fig. 4(a). The symmetry of the +surrounding oxygen ligands is reduced to monoclinic, +the dx2−y2 and dxy orbitals are separated by a small +energy gap, and mixed with d3z2−r2 orbitals [25, 27]. +Since these strongly fluctuating low-symmetry orbitals +can +efficiently +couple +to +the +lattice, +the +phonons +strongly scatter on this hybridized ground state in +the paramagnetic phase. +As the magnetic order +develops, the second-order spin-orbit interaction can +further polarize the orbitals, as an example spins along + +5 +0 +100 +200 +0 +10 +20 +30 +0 +100 +200 +0 +10 +20 +30 +10 +20 +30 +10 +20 +30 +57 60 63 +0 +1 +2 +3 +0 +100 +200 +0.0 +0.5 +1.0 +0 +100 +200 +0.0 +0.5 +1.0 +Temperature (K) +Eω || z +ε||z +Im{ε} + ×5 +Re{ε} +(f) +Temperature (K) +Re{ε} +Eω || z +Im{ε} + ×5 +(g) +••10kHz +••100kHz +••100Hz +Eω⊥ z +Im{ε} + ×5 +ε⊥z +••1kHz +Re{ε} +(d) +Eω ⊥ z +Im{ε} ×5 +Re{ε} +(e) +(h) +P (� C/cm2) +P⊥z +P||z +CaBaCo4O7 +(b) +TC +(a) +P||z +CaBaFe2Co2O7 +(c) +TN +Co3+ in +CaBaCo4O7 +FIG. 4. (a) Schematics of the ground state multiplet structure +of Jahn-Teller active Co3+ ion in CaBaCo4O7. +The Jahn- +Teller active Fe2+ ion in CaBaFe4O7 has the same multiplet +structure. The magnetic ions in the tetrahedral environment +(Td) have the orbital-degenerate 5E ground state, which is +preserved by the spin orbit interaction. At high temperature +(TS < T), the oxygen environment is distorted to the polar +C3v symmetry, but the orbital degeneracy is preserved by the +E ground states {dx2−y2, dxy}. The trigonal to orthorombic +distortion decreases the local symmetry to monoclinic Cs +(TC < T < TS), releases the orbital degeneracy ({d∗ +x2−y2}), +and deforms the orbitals. The ordering to the ferrimagnetic +magnetic state (T < TC) further distorts the orbitals and +selects only one (d∗∗). +Temperature dependence of the +(b,c) pyroelectric polarization and (d-g) dielectric constant of +CaBaCo4O7 and CaBaFe2Co2O7, respectively. The (h) inset +shows the peak in the imaginary part of ϵ∥z at TC. +the y axis favours the dz2−x2 orbital [69, 70]. +The +magnetic order in CaBaCo4O7 selects the same orbital +shape at each Co3+ site and consequently reduces the +fluctuations. According to this scenario, the quenching +of the orbitals at TC strongly influences the lattice +as well [23], which explains the exceptionally large +magnetostriction, magnetic-order-induced polarization, +and change in the dielectric response in CaBaCo4O7 +and CaBaFe4O7. +The on-site anisotropy as well as +the orbital dependence of the exchange interactions +(Kugel-Khomski˘ı-type interaction) may equally play an +important role in the enhanced spin-phonon coupling, +however, our experiment is sensitive only to the Γ-point +lattice vibrations, thus it cannot distinguish between +these mechanisms. On one hand, the orbitals may affect +the bond orientation dependence of the exchange and +its bond-length variation. +On the other hand, they +may distort the local environment and spins drive a +distortion of the local coordination. This question may +be addressed by studying the momentum dependence +of the phonon dispersion and lifetime in a scattering +experiment. +As the magnetic ions in CaBaFe2Co2O7 +have +exclusively +orbital-singlet +ground +states, +the +magnetic order has no effect on the orbitals and the +absence of orbital degrees of freedom diminishes the +spin-lattice coupling. +Furthermore, orbital degeneracy +can be the driving force behind the phonon anomalies in +Fe2Mo3O8 [42], as it contains tetrahedrally coordinated +Fe2+ +ions with orbital degrees of freedom, +which +suggests that the orbitals can enhance magetoelastic and +magnetoelectric couplings not only in Swedenborgites, +but also in broader classes of multiferroics. +This idea +is further supported by the effect of Ni-doping in +CaBaCo4O7, where the substitution of orbital singlet +Co2+ to Ni2+ ions with orbital degeneracy leads to +further enhancement of the ME effect [71]. +Although +precise theoretical description of these materials is +challenging, +we believe these findings will motivate +further experimental and theoretical research. +ACKNOWLEDGMENTS +The authors are grateful to Karlo Penc for fruitful +discussions, and to Akiko Kikkawa and Markus Kriener +for the technical assistance. +V.K. was supported by +the Alexander von Humboldt Foundation. +This work +was supported by the Hungarian National Research, +Development and Innovation Office – NKFIH grants +FK 135003 and the bilateral program of the Estonian +and Hungarian Academies of Sciences under the contract +NKM 2021-24, and by the Estonian Research Council +grant PRG736, institutional research funding IUT23-3 of +the Estonian Ministry of Education and Research and the +European Regional Development Fund project TK134. + +W +sAE+ A& +sAS+ AS +2 +m +3E +sAS+ AS +1XX6 +Illustration of the structural unit cell was created using +the software VESTA[72]. +[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 +(2010). +[2] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 +(2011). +[3] Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, +D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, +Z. Hussain, and Y. L. Chen, Science 343, 864 (2014). +[4] S.-Y. Xu, +I. Belopolski, +N. Alidoust, +M. Neupane, +G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.- +C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, +B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, +S. Jia, and M. Z. Hasan, Science 349, 613 (2015). +[5] A. Kitaev, Annals of Physics 321, 2 (2006). +[6] M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005). +[7] Y. Tokura, S. Seki, and N. Nagaosa, Reports on Progress +in Physics 77, 076501 (2014). +[8] H. Katsura, N. Nagaosa, and A. V. Balatsky, Physical +Review Letters 95, 057205 (2005). +[9] I. A. Sergienko and E. Dagotto, Physical Review B 73, +094434 (2006). +[10] C. Jia, S. Onoda, N. Nagaosa, and J. H. Han, Physical +Review B 74, 224444 (2006). +[11] C. Jia, S. Onoda, N. Nagaosa, and J. H. Han, Physical +Review B 76, 144424 (2007). +[12] T. Arima, Journal of the Physical Society of Japan 76, +073702 (2007). +[13] K. I. Kugel’ and D. I. Khomski˘ı, Soviet Physics Uspekhi +25, 231 (1982). +[14] Y. Tokura and N. Nagaosa, Science 288, 462 (2000). +[15] J. van den Brink and D. I. Khomskii, Journal of Physics: +Condensed Matter 20, 434217 (2008). +[16] K. Yamauchi and S. Picozzi, Phys. Rev. B 85, 085131 +(2012). +[17] G. T. Rado and J. M. Ferrari, Phys. Rev. B 12, 5166 +(1975). +[18] K. Kato and S. Iida, Journal of the Physical Society of +Japan 51, 1335 (1982). +[19] M. Alexe, M. Ziese, D. Hesse, P. Esquinazi, K. Yamauchi, +T. Fukushima, S. Picozzi, and U. G¨osele, Advanced +Materials 21, 4452 (2009). +[20] J. de Groot, T. Mueller, R. A. Rosenberg, D. J. Keavney, +Z. Islam, J.-W. Kim, and M. Angst, Phys. Rev. Lett. 108, +187601 (2012). +[21] R. D. Johnson, +L. C. Chapon, +D. D. Khalyavin, +P. Manuel, P. G. Radaelli, and C. Martin, Phys. Rev. +Lett. 108, 067201 (2012). +[22] N. Perks, R. Johnson, C. Martin, L. Chapon, and +P. Radaelli, Nature Communications 3, 1277 (2012). +[23] V. Caignaert, V. Pralong, V. Hardy, C. Ritter, and +B. Raveau, Physical Review B 81, 094417 (2010). +[24] See Supplemental Material at [URL will be inserted +by the production group] for additional specific heat, +reflectivity, and dielectric constant measurements, which +includes Refs. [73, 74]. +[25] N. Hollmann, M. Valldor, H. Wu, Z. Hu, N. Qureshi, +T. Willers, Y.-Y. Chin, J. C. Cezar, A. Tanaka, N. B. +Brookes, and L. H. Tjeng, Physical Review B 83, 180405 +(2011). +[26] V. Kocsis, Y. Tokunaga, S. Bord´acs, M. Kriener, A. Puri, +U. Zeitler, Y. Taguchi, Y. Tokura, and I. K´ezsm´arki, +Phys. Rev. B 93, 014444 (2016). +[27] S. Chatterjee and T. Saha-Dasgupta, Physical Review B +84, 085116 (2011). +[28] V. Cuartero, J. Blasco, G. Sub´ıas, J. Garc´ıa, J. A. +Rodr´ıguez-Velamaz´an, and C. Ritter, Inorg. Chem. 57, +3360 (2018). +[29] V. R. Galakhov, S. N. Shamin, and V. V. Mesilov, JETP +Letters 107, 583 (2018). +[30] J. D. Reim, E. Ros´en, W. Schweika, M. Meven, N. R. +Leo, D. Meier, M. Fiebig, M. Schmidt, C.-Y. Kuo, +T.-W. Pi, Z. Hu, and M. Valldor, Journal of Applied +Crystallography 47, 2038 (2014). +[31] T. Omi, Y. Watanabe, N. Abe, H. Sagayama, A. Nakao, +K. Munakata, Y. Tokunaga, and T.-h. Arima, Phys. Rev. +B 103, 184412 (2021). +[32] S. Bord´acs, V. Kocsis, Y. Tokunaga, U. Nagel, T. R˜o om, +Y. Takahashi, Y. Taguchi, and Y. Tokura, Phys. Rev. B +92, 214441 (2015). +[33] V. +Caignaert, +A. +Maignan, +K. +Singh, +C. +Simon, +V. Pralong, B. Raveau, J. F. Mitchell, H. Zheng, A. Huq, +and L. C. Chapon, Physical Review B 88, 174403 (2013). +[34] R. D. Johnson, K. Cao, F. Giustino, and P. G. Radaelli, +Physical Review B 90, 045129 (2014). +[35] Y.-S. Chai, J.-Z. Cong, J.-C. He, D. Su, X.-X. Ding, +J. Singleton, V. Zapf, and Y. Sun, Phys. Rev. B 103, +174433 (2021). +[36] M. Soda, Y. Yasui, T. Moyoshi, M. Sato, N. Igawa, and +K. Kakurai, Journal of the Physical Society of Japan 75, +054707 (2006). +[37] J. D. Reim, +E. Ros´en, +O. Zaharko, +M. Mostovoy, +J. Robert, M. Valldor, and W. Schweika, Phys. Rev. B +97, 144402 (2018). +[38] M. Valldor, N. Hollmann, J. Hemberger, and J. A. +Mydosh, Physical Review B 78, 024408 (2008). +[39] M. Valldor, R. P. Hermann, J. Wuttke, M. Zamponi, and +W. Schweika, Physical Review B 84, 224426 (2011). +[40] J. Laverdi`ere, S. Jandl, A. A. Mukhin, V. Y. Ivanov, +V. G. Ivanov, and M. N. Iliev, Phys. Rev. B 73, 214301 +(2006). +[41] R. Basistyy, T. N. Stanislavchuk, A. A. Sirenko, A. P. +Litvinchuk, +M. Kotelyanskii, +G. L. Carr, +N. Lee, +X. Wang, and S.-W. Cheong, Phys. Rev. B 90, 024307 +(2014). +[42] S. +Reschke, +A. +A. +Tsirlin, +N. +Khan, +L. +Prodan, +V. Tsurkan, I. K´ezsm´arki, and J. Deisenhofer, Phys. Rev. +B 102, 094307 (2020). +[43] K. Wakamura and T. Arai, Journal of Applied Physics +63, 5824 (1988). +[44] C. +Ulrich, +G. +Khaliullin, +M. +Guennou, +H. +Roth, +T. Lorenz, and B. Keimer, Phys. Rev. Lett. 115, 156403 +(2015). +[45] W. Baltensperger and J. S. Helman, Helv. Phys. Acta +41, 668 (1968). +[46] W. Baltensperger, Journal of Applied Physics 41, 1052 +(1970). +[47] A. B. Souchkov, J. R. Simpson, M. Quijada, H. Ishibashi, +N. Hur, J. S. Ahn, S. W. Cheong, A. J. Millis, and H. D. +Drew, Physical Review Letters 91, 027203 (2003). +[48] C. J. Fennie and K. M. Rabe, Phys. Rev. Lett. 96, 205505 +(2006). + +7 +[49] D. D. Dlott, Annual Review of Physical Chemistry 37, +157 (1986). +[50] P. Foggi and V. Schettino, La Rivista del Nuovo Cimento +(1978-1999) 15, 1 (1992). +[51] J. Fujioka, S. Horiuchi, F. Kagawa, and Y. Tokura, Phys. +Rev. Lett. 102, 197601 (2009). +[52] J. Fujioka, S. Horiuchi, N. Kida, R. Shimano, and +Y. Tokura, Phys. Rev. B 80, 125134 (2009). +[53] P. G. Klemens, Phys. Rev. 148, 845 (1966). +[54] M. Balkanski, R. F. Wallis, and E. Haro, Phys. Rev. B +28, 1928 (1983). +[55] H. Iwamoto, M. Ehara, M. Akaki, and H. Kuwahara, +Journal of Physics: +Conference Series 400, 032031 +(2012). +[56] A. B. Sushkov, R. V. Aguilar, S. Park, S.-W. Cheong, and +H. D. Drew, Physical Review Letters 98, 027202 (2007). +[57] G. Lawes, A. P. Ramirez, C. M. Varma, and M. A. +Subramanian, Phys. Rev. Lett. 91, 257208 (2003). +[58] G. Lawes, T. Kimura, C. M. Varma, M. A. Subramanian, +N. Rogado, R. J. Cava, and A. P. Ramirez, Progress in +Solid State Chemistry 37, 40 (2009). +[59] A. P. Litvinchuk, M. N. Iliev, V. N. Popov, and M. M. +Gospodinov, J. Phys.: Condens. Matter 16, 809 (2004). +[60] M. Zaghrioui, V. Ta Phuoc, R. A. Souza, and M. Gervais, +Phys. Rev. B 78, 184305 (2008). +[61] R. Schleck, R. L. Moreira, H. Sakata, and R. P. S. M. +Lobo, Phys. Rev. B 82, 144309 (2010). +[62] R. Vald´es Aguilar, A. B. Sushkov, S. Park, S.-W. Cheong, +and H. D. Drew, Phys. Rev. B 74, 184404 (2006). +[63] A. F. Garcia-Flores, E. Granado, H. Martinho, R. R. +Urbano, C. Rettori, E. I. Golovenchits, V. A. Sanina, +S. B. Oseroff, S. Park, and S.-W. Cheong, Physical +Review B 73, 104411 (2006). +[64] O. Aktas, K. D. Truong, T. Otani, G. Balakrishnan, M. J. +Clouter, T. Kimura, and G. Quirion, Journal of Physics: +Condensed Matter 24, 036003 (2011). +[65] L. I. Vergara, J. Cao, N. Rogado, Y. Q. Wang, R. P. +Chaudhury, R. J. Cava, B. Lorenz, and J. L. Musfeldt, +Physical Review B 80, 052303 (2009). +[66] M. Matsumoto, K. Chimata, and M. Koga, Journal of +the Physical Society of Japan 86, 034704 (2017). +[67] C. Degenhardt, M. Fiebig, D. Fr¨ohlich, T. Lottermoser, +and R. V. Pisarev, Applied Physics B 73, 139 (2001). +[68] S. Lee, A. Pirogov, M. Kang, K.-H. Jang, M. Yonemura, +T. Kamiyama, +S.-W. Cheong, +F. Gozzo, +N. Shin, +H. Kimura, Y. Noda, and J.-G. Park, Nature 451, 805 +(2008). +[69] S. Ohtani, Y. Watanabe, M. Saito, N. Abe, K. Taniguchi, +H. Sagayama, T. Arima, M. Watanabe, and Y. Noda, J. +Phys.: Condens. Matter 22, 176003 (2010). +[70] Y. Nii, H. Sagayama, T. Arima, S. Aoyagi, R. Sakai, +S. Maki, E. Nishibori, H. Sawa, K. Sugimoto, H. Ohsumi, +and M. Takata, Phys. Rev. B 86, 125142 (2012). +[71] M. +Gen, +A. +Miyake, +H. +Yagiuchi, +Y. +Watanabe, +A. Ikeda, Y. H. Matsuda, M. Tokunaga, T. Arima, and +Y. Tokunaga, Phys. Rev. B 105, 214412 (2022). +[72] K. +Momma +and +F. +Izumi, +Journal +of +Applied +Crystallography 41, 653 (2008). +[73] P. Lunkenheimer, V. Bobnar, A. V. Pronin, A. I. Ritus, +A. A. Volkov, and A. Loidl, Phys. Rev. B 66, 052105 +(2002). +[74] P. Lunkenheimer, S. Krohns, S. Riegg, S. Ebbinghaus, +A. Reller, and A. Loidl, The European Physical Journal +Special Topics 180, 61 (2009). + +8 +Supplementary Material +ADDITIONAL EXPERIMENTAL DATA +200 +300 +400 +500 +600 +700 +800 +0.5 +0.6 +0.7 +0.8 +0.9 +1.0 +1.1 +1.2 +CaBaFe4O7 + +Cp (Jg-1K-1) +Temperature (K) +(b) before +(a) +(c) after +(d) +TS= 455K +CaBaCo4O7 +CaBaCo4O7 +CaBaCo4O7 +CaBaCo4O7 +TS= 380K +TC1= 275K +TC2= 211K +500µm +100µm +FIG. S1. (Color online) (a) Specific heat of CaBaCo4O7 and +CaBaFe4O7 measured for warming runs. Specific heat data +of CaBaFe4O7 is reproduced after Ref. 26. +(b-d) Optical +microscopy images (b) before and (c) after the specific heat +measurements on CaBaCo4O7. +Dark and light contrasted +regions correspond to the orthorombic domains. CaBaCo4O7 +shows strong twinning on the microscopic scale. (c) Following +the specific heat measurements, the orthorombic domains +rearrange in a meander-like pattern. +Panel (d) shows a +magnified region in panel (c). +Figure S1(a) shows the specific heat of CaBaCo4O7 +and CaBaFe4O7 measured in the warming runs. +The +orthorombic to trigonal phase transition temperatures +are +TS=455 K +for +CaBaCo4O7 +and +TS=380 K +for +CaBaFe4O7. +Above TS, neither materials show any +further phase transitions. Figures S1(b-d) show optical +microscopy images of CaBaCo4O7 before and after a +high-temperature heat treatment procedure. The sample +was heated to T=600 K for 4 h in air, then quenched to +room temperature. The microscope images were made in +the so-called crossed Nicholson configuration; dark and +light contrasted regions correspond to the orthorombic +domains. +CaBaCo4O7 shows strong twinning on the +microscopic scale. After the heat treatment procedure +in Fig. S1(c,d), the orthorombic domains rearrange in a +meander-like pattern. +Figure S2 shows the temperature dependence of the +resistivity (ρ) in CaBaCo4O7, +CaBaFe2Co2O7, +and +CaBaFe4O7. The resistivity was measured with currents +parallel (ρ∥z) and perpendicular to the z axis (ρ⊥z). The +resistivity data of CaBaFe4O7 shows only a very subtle +anomaly at TS, and has semiconductor-like temperature +dependence both below and above TS. The absence of +strong anomalies in the specific heat and resistivity data +at temperatures above TS in Figs. S1 and S2 implies +that the charge ordered state is not melted up to the +decomposition temperatures in CaBaFe4O7. +Figures S3, S4, S5, and S6 show the reflectivity +and +optical +conductivity +spectra +of +CaBaCo4O7, +CaBaFe4O7, +CaBaFe2Co2O7, +and +YBaCo3AlO7 +at +selected temperatures. In each figure, panels (a,c) and +(b,d) correspond to measurements with Eω ⊥ z and Eω ∥ +z, respectively. YBaCo3AlO7 is a spin-glass (Tf=17 K), +has the hexagonal P63mc structure [38], and it hosts +exclusively orbital-singlet Co2+ ions. +Comparison of +YBaCo3AlO7 to CaBaFe2Co2O7 and to the ferrimagnetic +compounds helped us to examine the role of long-range +order. +Similarly to the solid solution CaBaFe2Co2O7, +the phonons of YBaCo3AlO7 in Fig. S5 show only weak +temperature dependence. +The +optical +conductivity +spectra +were +calculated +from the reflectivity data using the Kramers-Kronig +transformation. +The low-energy part of the measured +reflectivity spectra was extrapolated to zero photon +energy as a constant value. +Figure S7 shows the UV +and hard-UV optical reflectivity and optical conductivity +of CaBaCo4O7, CaBaFe2Co2O7, and CaBaFe4O7, which +was used as a high-energy extension for the Kramers- +Kronig transformation. Spectra above k=106 cm−1 were +assumed to follow the free electron model. +Figure S8 summarizes the temperature dependence +of +the +fitted +phonon +frequencies +(ω0), +oscillator +strengths (S), and damping rates (γ) in CaBaCo4O7, +CaBaFe2Co2O7, +and CaBaFe4O7. +Data shown in +Fig. S8(a,b,g,h) are the same as those in Fig. 2. At the +magnetic phase transitions, the phonon frequencies and +damping rates show remarkable changes in the pristine +compounds. +In CaBaFe2Co2O7, none of the phonon +parameters show change in the vicinity of TN. +We +detect the appearance of no new phonon modes, which +is supported by the temperature dependence of S in +S8(d,e,f), which show changes only around the magnetic +phase transitions. +Figures S9(a-c) show the real and imaginary parts +of the dielectric constants (ϵ) measured in CaBaCo4O7, +CaBaFe2Co2O7, and CaBaFe4O7, respectively for Eω ⊥ +z in the upper panels and Eω +∥ +z in the lower + +9 +panels. +The real and imaginary parts of the ac +magnetic susceptibility (ac-χ) measured in CaBaCo4O7, +CaBaFe2Co2O7, and CaBaFe4O7 for Hω ⊥ z and Hω ∥ z +are shown in Figs. S9(d), S9(e), and S9(f), respectively. +The magnitude of the oscillating magnetic field was +δHω=5 Oe. The ac-χ measurements were performed in +the absence of static H field, except for the lower panel +of Fig. S9(f), where a moderate H = 3 kOe static field +was applied. In CaBaCo4O7, the real part of ϵ⊥z has a +step like jump, while the imaginary part rapidly increases +above TC. +The real part of ϵ∥z has a double peak +structure (strongest peak at TC), and the imaginary part +has a single peak at TC. Above TC, all components of the +dielectric constants show strong frequency dependence +and anisotropy, i.e. +ϵ∥z increases more rapidly with +temperature than ϵ⊥z. However, for low frequencies these +features are an aggregate of the anisotropic resistivity +and the Maxwell-Wagner relaxation caused by Schottky +barriers forming at sample electrode interfaces [73, +74]. +Figures S9(d) and S9(f) also show the frequency +dependence of the imaginary part of the ac-χ in +CaBaCo4O7 and CaBaFe4O7, respectively. The inset of +panel (d), Fig. S9(g), shows the imaginary part of the ac- +χ measured in CaBaCo4O7 for a magnified region. The +imaginary parts of the ac-χ both in CaBaCo4O7 and in +CaBaFe4O7 has asymmetric peaks around TC and TC2, +respectively, which means increased dissipation on the +magnetic domain walls at low-frequencies (below 1 kHz). +In CaBaCo4O7, the broad symmetric peak at TC in the +real part of χ⊥z is accompanied by an asymmetric peak +in the imaginary part, and a step in Re{χ∥z}. Frequency +dependence of the magnetic Im{χ⊥z} resembles to +that of the dielectric Im{ϵ∥z}, however at much lower +frequencies. In contrast to the pristine compounds, the +antiferromagnetic CaBaFe2Co2O7 has no features in the +dielectric constants in Fig. S9(b), and has only a small +peak in the ac magnetic susceptibility in Fig. S9(e). +Although the ac-χ has similar features to ϵ, which would +suggest a strong connection between magnetic and lattice +fluctuations, however, the magnetic fluctuations are at +very low frequencies and the strength of the magnetic +fluctuations decay quickly towards higher frequencies. +Therefore, magnetic fluctuations alone cannot account +for the increased phonon scattering observed in the +optical measurements at significantly higher frequencies. +As a conclusion, in CaBaCo4O7 and CaBaFe4O7, the +electric and magnetic fluctuations are relevant only +in the vicinity of the ferrimagnetic phase transitions, +while the magnetic fluctuations are not relevant at +optical frequencies. Therefore, the strong anharmonicity +of phonon modes in the pristine compounds are not +explained by these fluctuations. +0 +100 +200 +300 +400 +10-1 +101 +103 +105 +107 +109 +1011 +0 +100 +200 +300 +400 +10-1 +101 +103 +105 +107 +109 +1011 +0 +100 +200 +300 +400 +10-1 +101 +103 +105 +107 +109 +1011 +360 380 400 +2 +4 +6 +� (Ωcm) +CaBaCo4O7 +TC +(a) +� ⊥z +� ||z +� (Ωcm) +TN +CaBaFe2Co2O7 +(b) +� ⊥z +� ||z +Temperature (K) +� ⊥z +� (Ωcm) +TC1 +TC2 +CaBaFe4O7 +(c) +� ||z +TS +TS +(d) +FIG. S2. +(Color online) Temperature dependence of the +resistivity of (a) CaBaCo4O7, +(b) CaBaFe2Co2O7, +and +(c) CaBaFe4O7, measured with currents parallel (ρ∥z) and +perpendicular to the z-axis (ρ∥z). +Panel (d) shows the +resistivity of CaBaFe4O7 at TS. Note, that CaBaFe4O7 shows +very little change in the resistivity, i.e. +there is definitely +no charge order-disorder type of transition accompanying the +structural phase transition. +LATTICE EXCITATIONS IN SWEDENBORGITES +Swedenborgites, CaBaM4O7 (M=Co, Fe) are built +up by alternating layers of triangular and kagom´e +lattices of tetrahedrally coordinated transition metal +ions. +In general, these compounds realize a trigonal +structure (P31c), with P63mc as the possible highest +symmetry mother-structure. Note that the space group +of the hexagonal manganites is P63cm. The irreducible +representations of the infrared-active normal modes for +the P63mc mother structure are: +ΓIR = 9A1(z) + 12E1(xy). +(S2) + +10 +Namely, for Eω ∥ z the reflectivity spectra may show +9 non-degenerate A1 modes, and for Eω ⊥ z 12 doubly +degenerate E1 modes. Note, that YBaCo3AlO7 in Fig. S6 +shows 9 modes for Eω ∥ z. +At +high-temperatures +(above +TS), +the +pristine +CaBaFe4O7 and CaBaCo4O7, as well as the solid solution +CaBaFe2Co2O7 at all temperatures have the trigonal +structure, described by the P31c space group. +The +irreducible representations of the infrared-active phonons +are: +ΓIR = 12A1(z) + 25E(xy). +(S3) +Therefore, for Eω ∥ z and Eω ⊥ z, the reflectivity spectra +may show 12 A1 and 25 E modes, respectively. For Eω ∥ +z in Fig. S5(b,d), CaBaFe2Co2O7 shows 12 modes. +Below TS, CaBaCo4O7 and CaBaFe4O7 have the +orthorombic Pbn21 structure and the infrared-active +phonons are: +ΓIR = 39A1(z) + 39B1(y) + 39B2(x). +(S4) +Namely, the reflectivity spectra should show 39 non- +degenerate modes for all three polarizations of the +electromagnetic radiation. For Eω ∥ z in Figs S3(b,d) +and S4(b,d) we identify 22 and 31 phonon modes for +CaBaCo4O7 and CaBaFe4O7, respectively. +The lower +number of phonons compared to the expected may come +from accidental degenerations or from modes outside +the spectral window with k=25 cm−1 cutoff energy. We +note that low-energy orbital fluctuations of tetrahedral +Fe2+ ions can also be active and mix among the phonon +excitations. + +11 +100 +200 +300 +400 +500 +600 +700 +800 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +100 +200 +300 +400 +500 +600 +700 +800 +0 +100 +200 +300 +400 +100 +200 +300 +400 +500 +600 +700 +800 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +100 +200 +300 +400 +500 +600 +700 +800 +0 +100 +200 +300 +400 +(d) +(c) +(a) +(b) + Reflectivity +CaBaCo4O7 + Eω ⊥ z + 80K + 90K + 120K + 150K + 200K + 250K + 300K +Conductivity (Ω-1cm-1) +CaBaCo4O7 + Eω ⊥ z +Wavenumber (cm-1) + T = 10K + 20K + 30K + 40K + 50K + 60K + 70K +#2 +#1 +#21 + Reflectivity +CaBaCo4O7 + Eω || z +#16 +Conductivity (Ω-1cm-1) +CaBaCo4O7 + Eω || z +Wavenumber (cm-1) + T = 10K + 20K + 30K + 40K + 50K + 60K + 70K + 80K + 90K + 120K + 150K + 200K + 250K + 300K +#2 +#1 +#16 +#21 +FIG. S3. (Color online) Temperature dependence of the (a,b) optical reflectivity and (c,d) calculated optical conductivity +spectra of CaBaCo4O7. Panels (a,c) and panels (b,d) show measurements for Eω ⊥ z and Eω ∥ z, respectively. +100 +200 +300 +400 +500 +600 +700 +800 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +100 +200 +300 +400 +500 +600 +700 +800 +0 +50 +100 +150 +200 +250 +100 +200 +300 +400 +500 +600 +700 +800 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +100 +200 +300 +400 +500 +600 +700 +800 +0 +50 +100 +150 +200 +250 +(d) +(c) +(a) +(b) + Reflectivity +CaBaFe4O7 + Eω ⊥ z +Conductivity (Ω-1cm-1) +CaBaFe4O7 + Eω ⊥ z +Wavenumber (cm-1) + 212K + 225K + 250K + 260K + 270K + 285K + 300K + T = 10K + 25K + 50K + 75K + 100K + 125K + 150K + 175K + 200K +#29 + Reflectivity +CaBaFe4O7 + Eω || z +#1 +#2 +#23 + 212K + 225K + 250K + 260K + 270K + 285K + 300K + T = 10K + 25K + 50K + 75K + 100K + 125K + 150K + 175K + 200K +Conductivity (Ω-1cm-1) +CaBaFe4O7 + Eω || z +Wavenumber (cm-1) +#23 +#29 +#2 +#1 +FIG. S4. (Color online) Temperature dependence of the (a,b) optical reflectivity and (c,d) calculated optical conductivity +spectra of CaBaFe4O7. Panels (a,c) and panels (b,d) show measurements for Eω ⊥ z and Eω ∥ z, respectively. + +12 +100 +200 +300 +400 +500 +600 +700 +800 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +100 +200 +300 +400 +500 +600 +700 +800 +0 +100 +200 +300 +400 +500 +100 +200 +300 +400 +500 +600 +700 +800 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +100 +200 +300 +400 +500 +600 +700 +800 +0 +50 +100 +150 +200 +(d) +(c) +(a) +(b) + Reflectivity +CaBaFe2Co2O7 + Eω ⊥ z +Conductivity (Ω-1cm-1) +CaBaFe2Co2O7 + Eω ⊥ z +Wavenumber (cm-1) + T = 10K + 25K + 50K + 75K + 100K + 125K + 150K + 175K + 200K + 225K + 250K + 300K + Reflectivity +CaBaFe2Co2O7 + Eω || z +#1#2 +#5 +#10 +Conductivity (Ω-1cm-1) +CaBaFe2Co2O7 + Eω || z +Wavenumber (cm-1) + T = 10K + 25K + 50K + 75K + 100K + 125K + 150K + 175K + 200K + 225K + 250K + 300K +#10 +#1#2 +#5 +FIG. S5. (Color online) Temperature dependence of the (a,b) optical reflectivity and (c,d) calculated optical conductivity +spectra of CaBaFe2Co2O7. Panels (a,c) and panels (b,d) show measurements for Eω ⊥ z and Eω ∥ z, respectively. +100 +200 +300 +400 +500 +600 +700 +800 +900 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +100 +200 +300 +400 +500 +600 +700 +800 +900 +0 +50 +100 +150 +200 +250 +100 +200 +300 +400 +500 +600 +700 +800 +900 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +100 +200 +300 +400 +500 +600 +700 +800 +900 +0 +50 +100 +150 +200 +250 +(d) +(c) +(a) +(b) + Reflectivity +YBaCo3AlO7 + Eω ⊥ z +Conductivity (Ω +-1cm +-1) +YBaCo3AlO7 + Eω ⊥ z +Wavenumber (cm +-1) + T = 10K + 25K + 50K + 75K + 100K + 150K + 200K + 250K + 300K + Reflectivity +YBaCo3AlO7 + Eω || z + T = 10K + 25K + 50K + 75K + 100K + 150K + 200K + 250K + 300K +Conductivity (Ω +-1cm +-1) +YBaCo3AlO7 + Eω || z +Wavenumber (cm +-1) +FIG. S6. (Color online) Temperature dependence of the (a,b) optical reflectivity and (c,d) calculated optical conductivity +spectra of YBaCo3AlO7. Panels (a,c) and panels (b,d) show measurements for Eω ⊥ z and Eω ∥ z, respectively. + +13 +0 +5 +10 +15 +20 +25 +0.0 +0.1 +0.2 +0.3 +0 +5 +10 +15 +20 +25 +0 +1 +2 +3 +4 +5 +Reflectivity +CaBaCo4O7 +CaBaFe2Co2O7 +CaBaFe4O7 +(a) +CaBaCo4O7 +CaBaFe2Co2O7 +CaBaFe4O7 +Conductivity (103 Ω-1cm-1) +Energy (eV) +(b) +FIG. S7. +(Color online) (a) Hard UV reflectivity and (b) +optical conductivity spectra of CaBaCo4O7, CaBaFe2Co2O7, +and CaBaFe4O7 measured at T=300 K. + +14 +66 +67 +68 +69 +415 +420 +425 +CaBaCo4O7 +525 +530 +52 +53 +54 +0 +100 +200 +300 +1 +10 +0.0 +0.5 +1.0 +1.5 +2.0 +0 +100 +200 +300 +1 +10 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +CaBaFe2Co2O7 +555 +560 +565 +262 +264 +266 +80 +85 +90 +95 +0 +100 +200 +300 +1 +10 +0.0 +0.2 +0.4 +480 +485 +490 +CaBaFe4O7 +625 +626 +627 +64 +66 +68 +45 +50 +55 +#2 + ω0 (cm-1) +#16 +#21 +TC +(a) +#1 +� (cm-1) +Temperature (K) +(g) +×50 +S (106cm-2) +×50 +(d) +Temperature (K) +� (cm-1) +(h) +S (106cm-2) +(e) +#10 +TN +(b) +TC1 +#5 +#2 + ω0 (cm-1) +#1 +Temperature (K) +� (cm-1) +(i) +×10 +×10 +S (106cm-2) +(f) +(c) +#23 +TC2 +#29 + ω0 (cm-1) +#2 +#1 +FIG. S8. (Color online) Temperature dependence of the fitted (a,b,c) phonon frequencies (ω0), (d,e,f) oscillator strengths (S), +and (g,h,i) damping rates (γ) of CaBaCo4O7, CaBaFe2Co2O7, and CaBaFe4O7, respectively. + +15 +0 +100 +200 +300 +0 +5 +10 +15 +0 +100 +200 +300 +1.8 +2.0 +2.2 +2.4 +2.6 +5 +10 +15 +1.8 +2.0 +2.2 +2.4 +0 +100 +200 +300 +0 +10 +20 +0 +100 +200 +300 +0 +10 +20 +CaBaCo4O7 +0 +10 +20 +30 +CaBaFe2Co2O7 +0 +10 +20 +30 +0 +10 +20 +30 +0 +100 +200 +300 +0 +10 +20 +0 +25 +50 +75 +100 +0 +100 +200 +300 +0 +5 +10 +15 +20 +••100Hz +••200Hz +••500Hz +••1kHz +60 +63 +0 +1 +2 +Hω || z +Temperature (K) +� ||z (a.u.) +Re{χ} +H = 0kOe +� ||z (a.u.) +Temperature (K) +Re{χ} +Hω || z +H = 0kOe +•100Hz +Hω⊥ z +� ⊥z (a.u.) +Im{χ} + ×5 +Re{χ} +TC +H = 0kOe +•100Hz +� ⊥z (a.u.) +Re{χ} +Hω ⊥ z +(e) +•100Hz +TN +H = 0kOe +Eω || z +ε||z +Im{ε} + ×5 +Re{ε} +••100Hz +••1kHz +••10kHz +••100kHz +ε||z +Re{ε} +Eω || z +Im{ε} + ×5 +••10kHz +••100kHz +••100Hz +Eω⊥ z +Im{ε} + ×5 +ε⊥z +••1kHz +Re{ε} +(a) +ε⊥z +Eω ⊥ z +Im{ε} ×5 +Re{ε} +(b) +(d) +CaBaFe4O7 +••100Hz +••1kHz +••10kHz +••100kHz +Im{ε} ×5 +Re{ε} +ε⊥z +(c) +Eω ⊥ z +Eω || z +ε||z +Re{ε} +Im{ε} ×5 +TC2 +� ⊥z (a.u.) +Hω ⊥ z +Re{χ} +(f) +TC1 +•100Hz +H = 0kOe +••100Hz +Temperature (K) +� ||z (a.u.) +Hω || z +Im{χ} + ×10 +Re{χ} +H = 3kOe +(g) + +FIG. S9. (Color online) Temperature dependence of (a,b,c) the dielectric constant and (d,e,f) the ac magnetic susceptibility +of CaBaCo4O7, CaBaFe2Co2O7, and CaBaFe4O7, respectively. +Note that the imaginary part of the dielectric constant is +multiplied by a factor of 5 for better visibility. (g) The inset shows a magnified region of the imaginary part of the ac-χ from +panel (d). + diff --git a/39E1T4oBgHgl3EQfmARV/content/tmp_files/load_file.txt b/39E1T4oBgHgl3EQfmARV/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..2a4317a7474043f37cd1faaf9f59469ac638d0cc --- /dev/null +++ b/39E1T4oBgHgl3EQfmARV/content/tmp_files/load_file.txt @@ -0,0 +1,1251 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf,len=1250 +page_content='Spin-lattice and magnetoelectric couplings enhanced by orbital degrees of freedom in polar magnets Vilmos Kocsis,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 2 Yusuke Tokunaga,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 3 Toomas R˜o˜om,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='4 Urmas Nagel,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='4 Jun Fujioka,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='5 Yasujiro Taguchi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='1 Yoshinori Tokura,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 6 and S´andor Bord´acs7,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 8 1RIKEN Center for Emergent Matter Science (CEMS),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Wako,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Saitama 351-0198,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Japan 2Institut f¨ur Festk¨orperforschung,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Leibniz IFW-Dresden,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 01069 Dresden,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Germany 3Department of Advanced Materials Science,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' University of Tokyo,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Kashiwa 277-8561,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Japan 4National Institute of Chemical Physics and Biophysics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 12618 Tallinn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Estonia 5Institute of Materials Science,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' University of Tsukuba,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Ibaraki 305-8573,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Japan 6Tokyo College and Department of Applied Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' University of Tokyo,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Hongo,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Tokyo 113-8656,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Japan 7Department of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Institute of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Budapest University of Technology and Economics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' M˝uegyetem rkp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=', H-1111 Budapest, Hungary 8Quantum Phase Electronics Center and Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan Orbital degrees of freedom mediating an interaction between spin and lattice were predicted to raise strong magnetoelectric effect, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' realize an efficient coupling between magnetic and ferroelectric orders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' However, the effect of orbital fluctuations have been considered only in a few magnetoelectric materials, as orbital degeneracy driven Jahn-Teller effect rarely couples to polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Here, we explore the spin-lattice coupling in multiferroic Swedenborgites with mixed valence and Jahn-Teller active transition metal ions on a stacked triangular/Kagome lattice using infrared and dielectric spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' On one hand, in CaBaM4O7 (M = Co, Fe), we observe strong magnetic order induced shift in the phonon frequencies and a corresponding large change in the dielectric response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Remarkably, as an unusual manifestation of the spin-phonon coupling, the spin- fluctuations reduce the phonon life-time by an order of magnitude at the magnetic phase transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' On the other hand, lattice vibrations, dielectric response, and electric polarization show no variation at the N´eel temperature of CaBaFe2Co2O7, which is built up by orbital singlet ions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Our results provide a showcase for orbital degrees of freedom enhanced magnetoelectric coupling via the example of Swedenborgites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Spin-orbit coupling (SOC) is considered among the most essential interactions in condensed matter science, standing in the background of topological insulators [1] and superconductors [2], Dirac and Weyl semimetals [3, 4], Kitaev physics [5] as well of multiferroics [6, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' In the latter compounds, SOC induces magnetoelectric (ME) coupling between electric polarization and magnetism making them interesting for basic research and appealing for applications, however, this interaction is usually weak due to its relativistic nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [8–12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' While the relativistic spin-orbit interaction enables the ME coupling on a single (a pair) of magnetic ion(s), theoretical works proposed early that the charge and orbital degrees of freedoms can mediate an enhanced ME interaction via the Kugel- Khomski˘ı-type spin-orbital coupling [13–16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' However, materials realizing this scenario are exceptional, as charge and orbital order alone rarely break the inversion symmetry [16–22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The two most studied cases are Fe3O4, where the ME effect is attributed to the charge and orbital orderings [16–19], and LuFe2O4 in which the ferroelectricity is debated to emerge from charge ordering [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Recently, CaMn7O12 was also identified with a chiral magnetic structure stabilized by the charge and orbital ordering [21, 22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Swedenborgites CaBaM4O7 (M=Co, Fe) provide another platform to study the interplay between spins and orbitals, but there, unlike the previous examples, the charge degree of freedom is quenched.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The polar Swedenborgites are built up by alternating layers of triangular and kagom´e sheets of MO4 tetrahedra, all pointing to the c axis, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 1(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The M 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='5+ nominal valence, suggests a 1:1 mixture of M 2+ and M 3+ ions, subjected to geometric frustration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The buckling of the kagom´e lattice releases the frustration and reduces the symmetry to orthorhombic at TS=450 K [23, 24] and TS=380 K [25, 26] in CaBaCo4O7 and CaBaFe4O7, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' In both compounds, X-ray spectroscopy studies confirmed the coexistence of distinct valences, M 2+ and M 3+ (electron configurations sketched in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 2), and suggested charge order with the M 3+ ions occupying the triangular and one of the kagom´e sites [23, 25, 27–29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Therefore, both CaBaCo4O7 and CaBaFe4O7 contain the Jahn-Teller active Co3+ and Fe2+ ions, respectively, though, no further information is available on orbital ordering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' However, the solid- solution CaBaFe2Co2O7 lacks orbital degeneracy, namely solely the orbital singlet Fe3+ and Co2+ charge states are present in this compound [28–30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' In CaBaCo4O7, spins order antiferromegnetically at TN=70 K [31], and then a ferrimagnetic structure emerges below TC=60 K [23, 32], as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 1(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The latter phase is accompanied by one of the largest magnetic- order-induced polarization detected so far [33, 34] as well as exceptionally large magnetostriction [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Its arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='03292v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='str-el] 9 Jan 2023 2 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' (a) The polar structural unit cell of trigonal Swedenborgites are built up by alternating triangular and Kagom´e layers of co-aligned MO4 tetrahedra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' (b) In the trigonal CaBaFe2Co2O7, one Fe3+ ion occupies the triangular lattice, while the remaining Fe3+/Co2+/Co2+ ions are distributed randomly on the Kagome lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The √ 3 × √ 3-type antiferromagnetic order develops below TN=152 K (spin S, green arrow, reproduced after Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=') (c) The orthorhombic CaBaCo4O7 has charge order and a ferrimagnetic order below TC=60 K, reproduced after Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 23 and 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' sister compound, CaBaFe4O7 also show peculiar ME properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' It becomes multiferroic close to room temperature, TC1=275 K upon a ferrimagnetic ordering, which is followed by a reorientation transition below TC2=211 K [25, 26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' CaBaFe2Co2O7 develops an antiferromagnetic structure at TN=152 K [30, 36, 37] (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 1(b)), however, its ME properties have been unknown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' In this Letter, we investigate the effect of magnetic ordering on the charge dynamics of Swedenborgites via infrared and dielectric spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' We compared members of the material family with and without orbital degree of freedom, and found a strong spin-lattice coupling only in CaBaM4O7 (M = Co, Fe) with Jahn- Teller active ions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' In these pristine compounds, the phonon frequencies show a sudden shift at TC, related to the large magnetic-order-induced polarization and magnetocapacitance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Moreover, we observed an order of magnitude decrease of the phonon life-times at the ferrimagnetic phase transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' In contrast, we found no phonon nor dielectric anomalies and negligible change in the pyroelectric polarization upon the magnetic ordering in the orbital-singlet CaBaCo2Fe2O7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Therefore, our results highlight the importance of orbital degrees of freedom in the enhancement of the spin-lattice interaction and the ME effect in multiferroics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Large single crystals of CaBaCo4O7, CaBaFe4O7, CaBaFe2Co2O7, and YBaCo3AlO7 were grown by the floating zone technique [26, 30, 33, 38, 39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Polarized, near normal incidence reflectivity was measured on polished cuts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Temperature dependent experiments were carried out up to 40000 cm−1 with an FT- IR spectrometer (Vertex80v, Bruker) and a grating- monochromator spectrometer (MSV-370YK, Jasco).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The reflectivity spectrum of each compound was measured up to 250000 cm−1 at room temperature with use of synchrotron radiation at UVSOR Institute for Molecular Science, Okazaki, Japan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The optical conductivity was calculated using the Kramers-Kronig transformation [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The pyroelectric polarization was obtained by measuring and integrating the displacement current with an electrometer (6517A, Keithley) while the temperature was swept in a Physical Property Measurement System (PPMS, Quantum Design).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The dielectric properties were also measured in a PPMS, using an LCR meter (E4980A, Keysight Technologies) while the ac magnetization was measured in a Magnetic Property Measurement System (MPMS3, Quantum Design).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' For quantitative analysis, we fitted the real part of the optical conductivity as a sum of Lorentz oscillators: σ (ω) = −iωϵ0 � �ϵ∞ + � j Sj ω2 0,j − ω2 − iγjω � � , (1) where ω0,j, Sj, and γj are the frequency, oscillator strength, and damping rate of the jth mode, and ϵ∞ is the high-frequency dielectric constant, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 2, we show the temperature dependence of the reflectivity and optical conductivity spectra around the lowest energy phonon modes of CaBaCo4O7, CaBaFe2Co2O7, and CaBaFe4O7 for light polarization Eω ∥ z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The reflectivity spectra over the whole photon energy range covered by our experiment for both Eω ∥ z and Eω ⊥ z are presented in the supplement [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The phonon spectra of CaBaCo4O7 and CaBaFe4O7 (see Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 2(a,d), S3 and 2(c,f), S4, respectively) change markedly with temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The resonances are narrow at low temperatures and get significantly broader above the magnetic ordering temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Contrary to the pristine compounds, the phonon modes of CaBaFe2Co2O7 depend weakly on the temperature and show no anomaly at TN, as shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 2(b,e), and S5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 3, we compare the temperature dependence of the phonon parameters, frequency (ω0,j) and damping rate (γj) in CaBaCo4O7 and CaBaFe2Co2O7 for selected, 3 50 60 70 80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 50 60 70 80 0 20 40 60 80 50 60 70 80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 50 60 70 80 0 10 20 30 40 50 60 80 100 120 140 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='120 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='140 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='e ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='5E ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='Reflectivity ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='CaBaCo4O7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='Eω || z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='(a) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='4A2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='t2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='Co2+ Co3+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='#1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='#2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='Conductivity (Ω-1cm-1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='CaBaCo4O7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='Eω || z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='Wavenumber (cm-1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='70K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='200K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='300K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='T = 10K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='50K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='55K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='TC=60K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='65K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='(d) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='#2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='#1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='6A1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='Reflectivity ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='CaBaFe4O7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='Eω || z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='(c) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='5E ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='e ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='t2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='Fe2+ Fe3+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='#2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='#1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='T = 10K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='50K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='100K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='150K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='200K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='TC2=211K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='250K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='TC1=275K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='300K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='CaBaFe4O7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='Eω || z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='Conductivity (Ω-1cm-1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='Wavenumber (cm-1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='(f) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='#2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='#1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='Reflectivity ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='CaBaFe2Co2O7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='Eω || z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='(b) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='e ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='4A2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='t2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='Co2+ Fe3+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='6A1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='#2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='#1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='Wavenumber (cm-1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='T = 10K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='50K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='100K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='150K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='TN=152K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='200K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='250K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='300K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='Conductivity (Ω-1cm-1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='CaBaFe2Co2O7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='Eω || z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='(e) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='#2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='#1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The reflectivity and the optical conductivity spectra of (a,d) CaBaCo4O7, (b,e) CaBaFe2Co2O7, and (c,f) CaBaFe4O7 at selected temperatures in the frequency range of the lowest energy phonon modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' well-separated phonon modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' In the orthorhombic CaBaCo4O7 and CaBaFe4O7, the phonon modes are non-degenerate already at room temperature, and we did not resolve new modes below the magnetic phase transition temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' However, in both compounds the phonon frequencies change abruptly at the onset of the ferrimagnetic phase transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' As an example, the magnitude of phonon energy shift becomes as large as ∆ω0/ω0 ∼4 % for modes #1 and #2 in CaBaCo4O7, shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 3(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' This is significantly higher than ∆ω0/ω0 ∼1 %, the highest value observed in other multiferroics [40–42] and in magnets with strong spin-phonon coupling [43, 44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' This indicates an extremely strong spin-lattice coupling [45–48], which agrees with recent experiments demonstrating giant magnetostriction [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' In CaBaFe2Co2O7, however, the phonon frequencies change slightly with the temperature and we could not resolve any splitting of the phonon modes (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' S5 and S8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The most remarkable changes in the infrared spectra of CaBaCo4O7 and CaBaFe4O7 are the drastic increase in the damping rates of all phonon modes as warmed above the ferrimagnetic phase transitions, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 3 and S8, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Modes #1 and #2 of CaBaCo4O7 well exemplify this tendency: At T=10 K the damping rates of these modes are as low as 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='5 cm−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Such sharp phonons with γ/ω0 < 1 % are unusual in condensed matter systems, and only observed in non-magnetic molecular crystals [49–52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' However, in the vicinity of TC the phonon lifetime decreases, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' the damping rate grows by an order of magnitude indicating a strong scattering of phonons by spin-fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' In the paramagnetic phase, γ keeps increasing and at room temperature the phonon modes are strongly damped with γ/ω0 ratios exceeding 10 %.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The strong temperature dependence of the damping rates away from TC, besides the strong spin-lattice coupling, suggests strong lattice anharmonicity [53, 54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The damping rates of modes #16 and #21, and those of CaBaFe4O7 (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' S8) follow similar temperature dependence with pronounced change at the ferrimagnetic phase transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' In contrast, the damping rates in CaBaFe2Co2O7 show weak temperature dependence and no anomalies at TN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' As demonstrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 4 and S9, the emergence of magnetic order strongly influences the pyroelectric polarization and the low-frequency dielectric response of CaBaCo4O7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' We observed large magnetic-order-induced polarization change for P ∥ z in agreement with former results [33, 34] and negligible for P ⊥ z [55].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The real part of the dielectric constants, both ϵ⊥z and ϵ∥z, exhibit a step-like change when crossing TC [see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 4(d,f)], with similar magnitude to that of in DyMn2O5 showing colossal magnetodielectric effect [56].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Since the step height is independent of frequency between 102 and 川川川川4 66 67 68 69 415 420 425 CaBaCo4O7 525 530 52 53 54 0 100 200 300 1 10 0 100 200 300 1 10 CaBaFe2Co2O7 555 560 565 262 264 266 80 85 90 95 #2 ω0 (cm-1) #16 #21 TC (a) #1 � (cm-1) Temperature (K) (c) Temperature (K) (d) #10 TN (b) #5 #2 #1 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' (a,b) Temperature dependence of the fitted phonon frequencies (ω0) and (c,d) damping rates (γ) in CaBaCo4O7 and CaBaFe2Co2O7, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The strong coupling between magnetic and elastic properties in CaBaCo4O7 is demonstrated by the changes in ω0 and γ around the magnetic phase transition (TC), indicated by dashed lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 105 Hz, and observed for both ϵ⊥z and ϵ∥z, the drop in the static dielectric function is related to the sudden changes in the phonon resonances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' In addition to the step-edge in the real part, both the real and the imaginary parts of ϵ∥z have a peak at the close vicinity of TC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The frequency dependence and the related finite dissipation indicate electric dipoles with low-frequency dynamics and strong scattering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The peak shape in the real part suggests that the magnetic fluctuations can couple to electric dipoles and contribute to the phonon scattering [57, 58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Toward higher temperatures, the dielectric constants increase, not due to the change of phonon frequency but due to the decrease of the resistivity caused by the thermally activated carriers, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Although CaBaFe2Co2O7 has a similar pyroelectric crystal structure and a relatively high TN, its polarization is not affected by the antiferromagnetic order, as displayed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 4(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The dielectric properties of this compound show a smooth variation on temperature in accordance with the phonon spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' We now discuss the enhanced scattering of phonons by spin fluctuations and the origin of the strong anomaly in the dielectric constant observed only in the pristine Swedenborgites, CaBaCo4O7 and CaBaFe4O7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Remarkably, such a large drop of the phonon damping rate induced by magnetic ordering is rare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Only minor changes in the damping rate have been detected in emblematic multiferroics including manganites RMnO3 (R = Ho, Y) [59, 60], TbMnO3 [61], RMn2O5 (R = Tb, Eu, Dy, Bi) [62, 63], delafossite CuFeO2 [64] or Ni3V2O8 [65].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Although several different mechanisms are responsible for the spin-lattice coupling in these materials, ranging from exchange striction [11, 66], inverse Dzyaloshinskii-Moriya interaction [8, 9] to on- site anisotropy term [12], none of them results in such a strong magnetic-order-induced change of phonon life- time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' We note that charge fluctuations are frozen in the studied Swedenborgites as indicated by the large dc resistivity and the corresponding few-100 meV optical charge gap (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' S2 and S7), thus, these cannot modify the spin-lattice interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Instead, we argue that low-energy fluctuations of the orbital degrees of freedom open a new channel and mediate a more efficient spin-lattice interaction in CaBaCo4O7 and CaBaFe4O7 since orbitals can strongly interact with both spin fluctuations and phonons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' This may lead to considerable broadening of phonon modes when the ordered state becomes paramagnetic as demonstrated in LaTiO3 [44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' It is instructive to compare the case of Swedenborgites to that of hexagonal manganites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Although both class of compounds crystallize in a polar structure with geometric frustration, the phonons are scattered strongly by spin fluctuations exclusively in the Swedenborgites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' In hexagonal mangnites, Mn3+ ions sit in a trigonal bipyramid, thus, they have S = 2 spins just like tetrahedrally coordinated Co3+ and Fe2+ ions, however, they are not Jahn-Teller active and their orbital singlet ground state is well separated from other 3d states [67, 68].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' This fact also suggests that presence of orbital degrees of freedom allows the unusually strong spin-lattice coupling in Swedenborgites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Finally, we mention that a recent study of infrared phonons in Fe2Mo3O8 shows similar enhancement of the damping rate across its antiferromagnetic phase transition [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' In CaBaCo4O7 and CaBaFe4O7, both the tetrahedrally coordinated Co3+ and Fe2+ ions possess the orbital-degenerate 5E ground state multiplet as shown in the inset of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The orbital degeneracy is released by the trigonal to orthorhombic phase transition at TS, as illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 4(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The symmetry of the surrounding oxygen ligands is reduced to monoclinic, the dx2−y2 and dxy orbitals are separated by a small energy gap, and mixed with d3z2−r2 orbitals [25, 27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Since these strongly fluctuating low-symmetry orbitals can efficiently couple to the lattice, the phonons strongly scatter on this hybridized ground state in the paramagnetic phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' As the magnetic order develops, the second-order spin-orbit interaction can further polarize the orbitals, as an example spins along 5 0 100 200 0 10 20 30 0 100 200 0 10 20 30 10 20 30 10 20 30 57 60 63 0 1 2 3 0 100 200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 0 100 200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 Temperature (K) Eω || z ε||z Im{ε} ×5 Re{ε} (f) Temperature (K) Re{ε} Eω || z Im{ε} ×5 (g) ••10kHz ••100kHz ••100Hz Eω⊥ z Im{ε} ×5 ε⊥z ••1kHz Re{ε} (d) Eω ⊥ z Im{ε} ×5 Re{ε} (e) (h) P (� C/cm2) P⊥z P||z CaBaCo4O7 (b) TC (a) P||z CaBaFe2Co2O7 (c) TN Co3+ in CaBaCo4O7 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' (a) Schematics of the ground state multiplet structure of Jahn-Teller active Co3+ ion in CaBaCo4O7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The Jahn- Teller active Fe2+ ion in CaBaFe4O7 has the same multiplet structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The magnetic ions in the tetrahedral environment (Td) have the orbital-degenerate 5E ground state, which is preserved by the spin orbit interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' At high temperature (TS < T), the oxygen environment is distorted to the polar C3v symmetry, but the orbital degeneracy is preserved by the E ground states {dx2−y2, dxy}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The trigonal to orthorombic distortion decreases the local symmetry to monoclinic Cs (TC < T < TS), releases the orbital degeneracy ({d∗ x2−y2}), and deforms the orbitals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The ordering to the ferrimagnetic magnetic state (T < TC) further distorts the orbitals and selects only one (d∗∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Temperature dependence of the (b,c) pyroelectric polarization and (d-g) dielectric constant of CaBaCo4O7 and CaBaFe2Co2O7, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The (h) inset shows the peak in the imaginary part of ϵ∥z at TC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' the y axis favours the dz2−x2 orbital [69, 70].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The magnetic order in CaBaCo4O7 selects the same orbital shape at each Co3+ site and consequently reduces the fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' According to this scenario, the quenching of the orbitals at TC strongly influences the lattice as well [23], which explains the exceptionally large magnetostriction, magnetic-order-induced polarization, and change in the dielectric response in CaBaCo4O7 and CaBaFe4O7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The on-site anisotropy as well as the orbital dependence of the exchange interactions (Kugel-Khomski˘ı-type interaction) may equally play an important role in the enhanced spin-phonon coupling, however, our experiment is sensitive only to the Γ-point lattice vibrations, thus it cannot distinguish between these mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' On one hand, the orbitals may affect the bond orientation dependence of the exchange and its bond-length variation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' On the other hand, they may distort the local environment and spins drive a distortion of the local coordination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' This question may be addressed by studying the momentum dependence of the phonon dispersion and lifetime in a scattering experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' As the magnetic ions in CaBaFe2Co2O7 have exclusively orbital-singlet ground states, the magnetic order has no effect on the orbitals and the absence of orbital degrees of freedom diminishes the spin-lattice coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Furthermore, orbital degeneracy can be the driving force behind the phonon anomalies in Fe2Mo3O8 [42], as it contains tetrahedrally coordinated Fe2+ ions with orbital degrees of freedom, which suggests that the orbitals can enhance magetoelastic and magnetoelectric couplings not only in Swedenborgites, but also in broader classes of multiferroics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' This idea is further supported by the effect of Ni-doping in CaBaCo4O7, where the substitution of orbital singlet Co2+ to Ni2+ ions with orbital degeneracy leads to further enhancement of the ME effect [71].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Although precise theoretical description of these materials is challenging, we believe these findings will motivate further experimental and theoretical research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' ACKNOWLEDGMENTS The authors are grateful to Karlo Penc for fruitful discussions, and to Akiko Kikkawa and Markus Kriener for the technical assistance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' was supported by the Alexander von Humboldt Foundation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' This work was supported by the Hungarian National Research, Development and Innovation Office – NKFIH grants FK 135003 and the bilateral program of the Estonian and Hungarian Academies of Sciences under the contract NKM 2021-24, and by the Estonian Research Council grant PRG736, institutional research funding IUT23-3 of the Estonian Ministry of Education and Research and the European Regional Development Fund project TK134.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' W sAE+ A& sAS+ AS 2 m 3E sAS+ AS 1XX6 Illustration of the structural unit cell was created using the software VESTA[72].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [1] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Hasan and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Kane, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 82, 3045 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [2] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Qi and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Zhang, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 83, 1057 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [3] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Liu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Zhou, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Zhang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Wang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Weng, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Prabhakaran, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Mo, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Shen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Fang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Dai, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Hussain, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Chen, Science 343, 864 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [4] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Xu, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Belopolski, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Alidoust, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Neupane, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Bian, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Zhang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Sankar, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Chang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Yuan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='- C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Lee, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Huang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Zheng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Ma, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Sanchez, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Wang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Bansil, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Chou, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Shibayev, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Lin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Jia, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Hasan, Science 349, 613 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Kitaev, Annals of Physics 321, 2 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [6] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Fiebig, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' D: Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 38, R123 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [7] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Tokura, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Seki, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Nagaosa, Reports on Progress in Physics 77, 076501 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [8] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Katsura, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Nagaosa, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Balatsky, Physical Review Letters 95, 057205 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [9] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Sergienko and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Dagotto, Physical Review B 73, 094434 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [10] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Jia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Onoda, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Nagaosa, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Han, Physical Review B 74, 224444 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [11] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Jia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Onoda, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Nagaosa, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Han, Physical Review B 76, 144424 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [12] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Arima, Journal of the Physical Society of Japan 76, 073702 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [13] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Kugel’ and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Khomski˘ı, Soviet Physics Uspekhi 25, 231 (1982).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [14] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Tokura and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Nagaosa, Science 288, 462 (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [15] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' van den Brink and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Khomskii, Journal of Physics: Condensed Matter 20, 434217 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [16] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Yamauchi and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Picozzi, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' B 85, 085131 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [17] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rado and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Ferrari, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' B 12, 5166 (1975).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [18] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Kato and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Iida, Journal of the Physical Society of Japan 51, 1335 (1982).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [19] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Alexe, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Ziese, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Hesse, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Esquinazi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Yamauchi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Fukushima, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Picozzi, and U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' G¨osele, Advanced Materials 21, 4452 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [20] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' de Groot, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Mueller, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rosenberg, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Keavney, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Islam, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Kim, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Angst, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 108, 187601 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [21] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Johnson, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Chapon, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Khalyavin, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Manuel, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Radaelli, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Martin, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 108, 067201 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [22] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Perks, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Johnson, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Martin, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Chapon, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Radaelli, Nature Communications 3, 1277 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [23] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Caignaert, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Pralong, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Hardy, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Ritter, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Raveau, Physical Review B 81, 094417 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [24] See Supplemental Material at [URL will be inserted by the production group] for additional specific heat, reflectivity, and dielectric constant measurements, which includes Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [73, 74].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [25] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Hollmann, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Valldor, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Wu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Hu, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Qureshi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Willers, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Chin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Cezar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Tanaka, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Brookes, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Tjeng, Physical Review B 83, 180405 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [26] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Kocsis, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Tokunaga, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Bord´acs, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Kriener, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Puri, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Zeitler, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Taguchi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Tokura, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' K´ezsm´arki, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' B 93, 014444 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [27] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Chatterjee and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Saha-Dasgupta, Physical Review B 84, 085116 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [28] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Cuartero, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Blasco, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Sub´ıas, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Garc´ıa, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rodr´ıguez-Velamaz´an, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Ritter, Inorg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 57, 3360 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [29] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Galakhov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Shamin, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Mesilov, JETP Letters 107, 583 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [30] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Reim, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Ros´en, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Schweika, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Meven, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Leo, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Meier, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Fiebig, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Schmidt, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Kuo, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Pi, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Hu, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Valldor, Journal of Applied Crystallography 47, 2038 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [31] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Omi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Watanabe, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Abe, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Sagayama, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Nakao, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Munakata, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Tokunaga, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='-h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Arima, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' B 103, 184412 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [32] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Bord´acs, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Kocsis, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Tokunaga, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Nagel, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' R˜o om, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Takahashi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Taguchi, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Tokura, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' B 92, 214441 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [33] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Caignaert, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Maignan, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Singh, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Simon, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Pralong, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Raveau, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Mitchell, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Zheng, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Huq, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Chapon, Physical Review B 88, 174403 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [34] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Johnson, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Cao, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Giustino, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Radaelli, Physical Review B 90, 045129 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [35] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Chai, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='-Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Cong, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' He, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Su, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Ding, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Singleton, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Zapf, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Sun, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' B 103, 174433 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [36] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Soda, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Yasui, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Moyoshi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Sato, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Igawa, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Kakurai, Journal of the Physical Society of Japan 75, 054707 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [37] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Reim, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Ros´en, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Zaharko, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Mostovoy, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Robert, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Valldor, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Schweika, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' B 97, 144402 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [38] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Valldor, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Hollmann, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Hemberger, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Mydosh, Physical Review B 78, 024408 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [39] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Valldor, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Hermann, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Wuttke, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Zamponi, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Schweika, Physical Review B 84, 224426 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [40] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Laverdi`ere, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Jandl, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Mukhin, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Ivanov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Ivanov, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Iliev, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' B 73, 214301 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [41] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Basistyy, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Stanislavchuk, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Sirenko, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Litvinchuk, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Kotelyanskii, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Carr, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Lee, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Wang, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Cheong, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' B 90, 024307 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [42] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Reschke, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Tsirlin, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Khan, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Prodan, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Tsurkan, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' K´ezsm´arki, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Deisenhofer, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' B 102, 094307 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [43] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Wakamura and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Arai, Journal of Applied Physics 63, 5824 (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [44] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Ulrich, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Khaliullin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Guennou, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Roth, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Lorenz, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Keimer, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 115, 156403 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [45] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Baltensperger and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Helman, Helv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Acta 41, 668 (1968).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [46] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Baltensperger, Journal of Applied Physics 41, 1052 (1970).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [47] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Souchkov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Simpson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Quijada, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Ishibashi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Hur, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Ahn, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Cheong, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Millis, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Drew, Physical Review Letters 91, 027203 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [48] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Fennie and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rabe, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 96, 205505 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 7 [49] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Dlott, Annual Review of Physical Chemistry 37, 157 (1986).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [50] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Foggi and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Schettino, La Rivista del Nuovo Cimento (1978-1999) 15, 1 (1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [51] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Fujioka, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Horiuchi, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Kagawa, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Tokura, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 102, 197601 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [52] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Fujioka, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Horiuchi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Kida, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Shimano, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Tokura, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' B 80, 125134 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [53] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Klemens, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 148, 845 (1966).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [54] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Balkanski, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Wallis, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Haro, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' B 28, 1928 (1983).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [55] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Iwamoto, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Ehara, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Akaki, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Kuwahara, Journal of Physics: Conference Series 400, 032031 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [56] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Sushkov, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Aguilar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Park, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Cheong, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Drew, Physical Review Letters 98, 027202 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [57] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Lawes, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Ramirez, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Varma, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Subramanian, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 91, 257208 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [58] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Lawes, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Kimura, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Varma, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Subramanian, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rogado, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Cava, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Ramirez, Progress in Solid State Chemistry 37, 40 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [59] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Litvinchuk, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Iliev, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Popov, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Gospodinov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' : Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Matter 16, 809 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [60] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Zaghrioui, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Ta Phuoc, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Souza, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Gervais, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' B 78, 184305 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [61] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Schleck, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Moreira, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Sakata, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Lobo, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' B 82, 144309 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [62] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Vald´es Aguilar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Sushkov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Park, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Cheong, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Drew, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' B 74, 184404 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [63] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Garcia-Flores, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Granado, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Martinho, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Urbano, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rettori, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Golovenchits, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Sanina, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Oseroff, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Park, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Cheong, Physical Review B 73, 104411 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [64] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Aktas, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Truong, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Otani, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Balakrishnan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Clouter, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Kimura, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Quirion, Journal of Physics: Condensed Matter 24, 036003 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [65] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Vergara, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Cao, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rogado, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Wang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Chaudhury, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Cava, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Lorenz, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Musfeldt, Physical Review B 80, 052303 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [66] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Matsumoto, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Chimata, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Koga, Journal of the Physical Society of Japan 86, 034704 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [67] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Degenhardt, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Fiebig, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Fr¨ohlich, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Lottermoser, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Pisarev, Applied Physics B 73, 139 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [68] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Lee, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Pirogov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Kang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Jang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Yonemura, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Kamiyama, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Cheong, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Gozzo, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Shin, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Kimura, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Noda, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Park, Nature 451, 805 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [69] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Ohtani, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Watanabe, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Saito, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Abe, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Taniguchi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Sagayama, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Arima, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Watanabe, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Noda, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' : Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Matter 22, 176003 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [70] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Nii, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Sagayama, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Arima, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Aoyagi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Sakai, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Maki, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Nishibori, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Sawa, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Sugimoto, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Ohsumi, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Takata, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' B 86, 125142 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [71] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Gen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Miyake, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Yagiuchi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Watanabe, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Ikeda, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Matsuda, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Tokunaga, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Arima, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Tokunaga, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' B 105, 214412 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [72] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Momma and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Izumi, Journal of Applied Crystallography 41, 653 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [73] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Lunkenheimer, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Bobnar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Pronin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Ritus, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Volkov, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Loidl, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' B 66, 052105 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' [74] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Lunkenheimer, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Krohns, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Riegg, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Ebbinghaus, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Reller, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Loidl, The European Physical Journal Special Topics 180, 61 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 8 Supplementary Material ADDITIONAL EXPERIMENTAL DATA 200 300 400 500 600 700 800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='2 CaBaFe4O7 Cp (Jg-1K-1) Temperature (K) (b) before (a) (c) after (d) TS= 455K CaBaCo4O7 CaBaCo4O7 CaBaCo4O7 CaBaCo4O7 TS= 380K TC1= 275K TC2= 211K 500µm 100µm FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' (Color online) (a) Specific heat of CaBaCo4O7 and CaBaFe4O7 measured for warming runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Specific heat data of CaBaFe4O7 is reproduced after Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' (b-d) Optical microscopy images (b) before and (c) after the specific heat measurements on CaBaCo4O7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Dark and light contrasted regions correspond to the orthorombic domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' CaBaCo4O7 shows strong twinning on the microscopic scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' (c) Following the specific heat measurements, the orthorombic domains rearrange in a meander-like pattern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Panel (d) shows a magnified region in panel (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Figure S1(a) shows the specific heat of CaBaCo4O7 and CaBaFe4O7 measured in the warming runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The orthorombic to trigonal phase transition temperatures are TS=455 K for CaBaCo4O7 and TS=380 K for CaBaFe4O7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Above TS, neither materials show any further phase transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Figures S1(b-d) show optical microscopy images of CaBaCo4O7 before and after a high-temperature heat treatment procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The sample was heated to T=600 K for 4 h in air, then quenched to room temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The microscope images were made in the so-called crossed Nicholson configuration;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' dark and light contrasted regions correspond to the orthorombic domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' CaBaCo4O7 shows strong twinning on the microscopic scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' After the heat treatment procedure in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' S1(c,d), the orthorombic domains rearrange in a meander-like pattern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Figure S2 shows the temperature dependence of the resistivity (ρ) in CaBaCo4O7, CaBaFe2Co2O7, and CaBaFe4O7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The resistivity was measured with currents parallel (ρ∥z) and perpendicular to the z axis (ρ⊥z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The resistivity data of CaBaFe4O7 shows only a very subtle anomaly at TS, and has semiconductor-like temperature dependence both below and above TS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The absence of strong anomalies in the specific heat and resistivity data at temperatures above TS in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' S1 and S2 implies that the charge ordered state is not melted up to the decomposition temperatures in CaBaFe4O7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Figures S3, S4, S5, and S6 show the reflectivity and optical conductivity spectra of CaBaCo4O7, CaBaFe4O7, CaBaFe2Co2O7, and YBaCo3AlO7 at selected temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' In each figure, panels (a,c) and (b,d) correspond to measurements with Eω ⊥ z and Eω ∥ z, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' YBaCo3AlO7 is a spin-glass (Tf=17 K), has the hexagonal P63mc structure [38], and it hosts exclusively orbital-singlet Co2+ ions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Comparison of YBaCo3AlO7 to CaBaFe2Co2O7 and to the ferrimagnetic compounds helped us to examine the role of long-range order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Similarly to the solid solution CaBaFe2Co2O7, the phonons of YBaCo3AlO7 in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' S5 show only weak temperature dependence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The optical conductivity spectra were calculated from the reflectivity data using the Kramers-Kronig transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The low-energy part of the measured reflectivity spectra was extrapolated to zero photon energy as a constant value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Figure S7 shows the UV and hard-UV optical reflectivity and optical conductivity of CaBaCo4O7, CaBaFe2Co2O7, and CaBaFe4O7, which was used as a high-energy extension for the Kramers- Kronig transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Spectra above k=106 cm−1 were assumed to follow the free electron model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Figure S8 summarizes the temperature dependence of the fitted phonon frequencies (ω0), oscillator strengths (S), and damping rates (γ) in CaBaCo4O7, CaBaFe2Co2O7, and CaBaFe4O7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Data shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' S8(a,b,g,h) are the same as those in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' At the magnetic phase transitions, the phonon frequencies and damping rates show remarkable changes in the pristine compounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' In CaBaFe2Co2O7, none of the phonon parameters show change in the vicinity of TN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' We detect the appearance of no new phonon modes, which is supported by the temperature dependence of S in S8(d,e,f), which show changes only around the magnetic phase transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Figures S9(a-c) show the real and imaginary parts of the dielectric constants (ϵ) measured in CaBaCo4O7, CaBaFe2Co2O7, and CaBaFe4O7, respectively for Eω ⊥ z in the upper panels and Eω ∥ z in the lower 9 panels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The real and imaginary parts of the ac magnetic susceptibility (ac-χ) measured in CaBaCo4O7, CaBaFe2Co2O7, and CaBaFe4O7 for Hω ⊥ z and Hω ∥ z are shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' S9(d), S9(e), and S9(f), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The magnitude of the oscillating magnetic field was δHω=5 Oe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The ac-χ measurements were performed in the absence of static H field, except for the lower panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' S9(f), where a moderate H = 3 kOe static field was applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' In CaBaCo4O7, the real part of ϵ⊥z has a step like jump, while the imaginary part rapidly increases above TC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The real part of ϵ∥z has a double peak structure (strongest peak at TC), and the imaginary part has a single peak at TC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Above TC, all components of the dielectric constants show strong frequency dependence and anisotropy, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' ϵ∥z increases more rapidly with temperature than ϵ⊥z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' However, for low frequencies these features are an aggregate of the anisotropic resistivity and the Maxwell-Wagner relaxation caused by Schottky barriers forming at sample electrode interfaces [73, 74].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Figures S9(d) and S9(f) also show the frequency dependence of the imaginary part of the ac-χ in CaBaCo4O7 and CaBaFe4O7, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The inset of panel (d), Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' S9(g), shows the imaginary part of the ac- χ measured in CaBaCo4O7 for a magnified region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The imaginary parts of the ac-χ both in CaBaCo4O7 and in CaBaFe4O7 has asymmetric peaks around TC and TC2, respectively, which means increased dissipation on the magnetic domain walls at low-frequencies (below 1 kHz).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' In CaBaCo4O7, the broad symmetric peak at TC in the real part of χ⊥z is accompanied by an asymmetric peak in the imaginary part, and a step in Re{χ∥z}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Frequency dependence of the magnetic Im{χ⊥z} resembles to that of the dielectric Im{ϵ∥z}, however at much lower frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' In contrast to the pristine compounds, the antiferromagnetic CaBaFe2Co2O7 has no features in the dielectric constants in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' S9(b), and has only a small peak in the ac magnetic susceptibility in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' S9(e).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Although the ac-χ has similar features to ϵ, which would suggest a strong connection between magnetic and lattice fluctuations, however, the magnetic fluctuations are at very low frequencies and the strength of the magnetic fluctuations decay quickly towards higher frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Therefore, magnetic fluctuations alone cannot account for the increased phonon scattering observed in the optical measurements at significantly higher frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' As a conclusion, in CaBaCo4O7 and CaBaFe4O7, the electric and magnetic fluctuations are relevant only in the vicinity of the ferrimagnetic phase transitions, while the magnetic fluctuations are not relevant at optical frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Therefore, the strong anharmonicity of phonon modes in the pristine compounds are not explained by these fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 0 100 200 300 400 10-1 101 103 105 107 109 1011 0 100 200 300 400 10-1 101 103 105 107 109 1011 0 100 200 300 400 10-1 101 103 105 107 109 1011 360 380 400 2 4 6 � (Ωcm) CaBaCo4O7 TC (a) � ⊥z � ||z � (Ωcm) TN CaBaFe2Co2O7 (b) � ⊥z � ||z Temperature (K) � ⊥z � (Ωcm) TC1 TC2 CaBaFe4O7 (c) � ||z TS TS (d) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' (Color online) Temperature dependence of the resistivity of (a) CaBaCo4O7, (b) CaBaFe2Co2O7, and (c) CaBaFe4O7, measured with currents parallel (ρ∥z) and perpendicular to the z-axis (ρ∥z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Panel (d) shows the resistivity of CaBaFe4O7 at TS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Note, that CaBaFe4O7 shows very little change in the resistivity, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' there is definitely no charge order-disorder type of transition accompanying the structural phase transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' LATTICE EXCITATIONS IN SWEDENBORGITES Swedenborgites, CaBaM4O7 (M=Co, Fe) are built up by alternating layers of triangular and kagom´e lattices of tetrahedrally coordinated transition metal ions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' In general, these compounds realize a trigonal structure (P31c), with P63mc as the possible highest symmetry mother-structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Note that the space group of the hexagonal manganites is P63cm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The irreducible representations of the infrared-active normal modes for the P63mc mother structure are: ΓIR = 9A1(z) + 12E1(xy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' (S2) 10 Namely, for Eω ∥ z the reflectivity spectra may show 9 non-degenerate A1 modes, and for Eω ⊥ z 12 doubly degenerate E1 modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Note, that YBaCo3AlO7 in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' S6 shows 9 modes for Eω ∥ z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' At high-temperatures (above TS), the pristine CaBaFe4O7 and CaBaCo4O7, as well as the solid solution CaBaFe2Co2O7 at all temperatures have the trigonal structure, described by the P31c space group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The irreducible representations of the infrared-active phonons are: ΓIR = 12A1(z) + 25E(xy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' (S3) Therefore, for Eω ∥ z and Eω ⊥ z, the reflectivity spectra may show 12 A1 and 25 E modes, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' For Eω ∥ z in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' S5(b,d), CaBaFe2Co2O7 shows 12 modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Below TS, CaBaCo4O7 and CaBaFe4O7 have the orthorombic Pbn21 structure and the infrared-active phonons are: ΓIR = 39A1(z) + 39B1(y) + 39B2(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' (S4) Namely, the reflectivity spectra should show 39 non- degenerate modes for all three polarizations of the electromagnetic radiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' For Eω ∥ z in Figs S3(b,d) and S4(b,d) we identify 22 and 31 phonon modes for CaBaCo4O7 and CaBaFe4O7, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' The lower number of phonons compared to the expected may come from accidental degenerations or from modes outside the spectral window with k=25 cm−1 cutoff energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' We note that low-energy orbital fluctuations of tetrahedral Fe2+ ions can also be active and mix among the phonon excitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 11 100 200 300 400 500 600 700 800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 100 200 300 400 500 600 700 800 0 100 200 300 400 100 200 300 400 500 600 700 800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 100 200 300 400 500 600 700 800 0 100 200 300 400 (d) (c) (a) (b) Reflectivity CaBaCo4O7 Eω ⊥ z 80K 90K 120K 150K 200K 250K 300K Conductivity (Ω-1cm-1) CaBaCo4O7 Eω ⊥ z Wavenumber (cm-1) T = 10K 20K 30K 40K 50K 60K 70K #2 #1 #21 Reflectivity CaBaCo4O7 Eω || z #16 Conductivity (Ω-1cm-1) CaBaCo4O7 Eω || z Wavenumber (cm-1) T = 10K 20K 30K 40K 50K 60K 70K 80K 90K 120K 150K 200K 250K 300K #2 #1 #16 #21 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' S3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' (Color online) Temperature dependence of the (a,b) optical reflectivity and (c,d) calculated optical conductivity spectra of CaBaCo4O7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Panels (a,c) and panels (b,d) show measurements for Eω ⊥ z and Eω ∥ z, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 100 200 300 400 500 600 700 800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 100 200 300 400 500 600 700 800 0 50 100 150 200 250 100 200 300 400 500 600 700 800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='600 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='700 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='800 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='250 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='(d) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='(c) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='(a) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='(b) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='Reflectivity ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='CaBaFe4O7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='Eω ⊥ z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='Conductivity (Ω-1cm-1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='CaBaFe4O7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='Eω ⊥ z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='Wavenumber (cm-1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='212K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='225K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='250K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='260K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='270K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='285K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='300K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='T = 10K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='25K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='50K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='75K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='100K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='125K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='150K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='175K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='200K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='#29 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='Reflectivity ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='CaBaFe4O7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='Eω || z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='#1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='#2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='#23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='212K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='225K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='250K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='260K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='270K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='285K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='300K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='T = 10K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='25K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='50K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='75K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='100K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='125K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='150K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='175K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='200K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='Conductivity (Ω-1cm-1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='CaBaFe4O7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='Eω || z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='Wavenumber (cm-1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='#23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='#29 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='#2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='#1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' S4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' (Color online) Temperature dependence of the (a,b) optical reflectivity and (c,d) calculated optical conductivity spectra of CaBaFe4O7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Panels (a,c) and panels (b,d) show measurements for Eω ⊥ z and Eω ∥ z, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 12 100 200 300 400 500 600 700 800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 100 200 300 400 500 600 700 800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 100 200 300 400 500 600 700 800 0 50 100 150 200 (d) (c) (a) (b) Reflectivity CaBaFe2Co2O7 Eω ⊥ z Conductivity (Ω-1cm-1) CaBaFe2Co2O7 Eω ⊥ z Wavenumber (cm-1) T = 10K 25K 50K 75K 100K 125K 150K 175K 200K 225K 250K 300K Reflectivity CaBaFe2Co2O7 Eω || z #1#2 #5 #10 Conductivity (Ω-1cm-1) CaBaFe2Co2O7 Eω || z Wavenumber (cm-1) T = 10K 25K 50K 75K 100K 125K 150K 175K 200K 225K 250K 300K #10 #1#2 #5 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' S5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' (Color online) Temperature dependence of the (a,b) optical reflectivity and (c,d) calculated optical conductivity spectra of CaBaFe2Co2O7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Panels (a,c) and panels (b,d) show measurements for Eω ⊥ z and Eω ∥ z, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 100 200 300 400 500 600 700 800 900 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 100 200 300 400 500 600 700 800 900 0 50 100 150 200 250 100 200 300 400 500 600 700 800 900 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 100 200 300 400 500 600 700 800 900 0 50 100 150 200 250 (d) (c) (a) (b) Reflectivity YBaCo3AlO7 Eω ⊥ z Conductivity (Ω 1cm 1) YBaCo3AlO7 Eω ⊥ z Wavenumber (cm 1) T = 10K 25K 50K 75K 100K 150K 200K 250K 300K Reflectivity YBaCo3AlO7 Eω || z T = 10K 25K 50K 75K 100K 150K 200K 250K 300K Conductivity (Ω 1cm 1) YBaCo3AlO7 Eω || z Wavenumber (cm 1) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' S6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' (Color online) Temperature dependence of the (a,b) optical reflectivity and (c,d) calculated optical conductivity spectra of YBaCo3AlO7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Panels (a,c) and panels (b,d) show measurements for Eω ⊥ z and Eω ∥ z, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 13 0 5 10 15 20 25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='3 0 5 10 15 20 25 0 1 2 3 4 5 Reflectivity CaBaCo4O7 CaBaFe2Co2O7 CaBaFe4O7 (a) CaBaCo4O7 CaBaFe2Co2O7 CaBaFe4O7 Conductivity (103 Ω-1cm-1) Energy (eV) (b) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' S7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' (Color online) (a) Hard UV reflectivity and (b) optical conductivity spectra of CaBaCo4O7, CaBaFe2Co2O7, and CaBaFe4O7 measured at T=300 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 14 66 67 68 69 415 420 425 CaBaCo4O7 525 530 52 53 54 0 100 200 300 1 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 0 100 200 300 1 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 CaBaFe2Co2O7 555 560 565 262 264 266 80 85 90 95 0 100 200 300 1 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='4 480 485 490 CaBaFe4O7 625 626 627 64 66 68 45 50 55 #2 ω0 (cm-1) #16 #21 TC (a) #1 � (cm-1) Temperature (K) (g) ×50 S (106cm-2) ×50 (d) Temperature (K) � (cm-1) (h) S (106cm-2) (e) #10 TN (b) TC1 #5 #2 ω0 (cm-1) #1 Temperature (K) � (cm-1) (i) ×10 ×10 S (106cm-2) (f) (c) #23 TC2 #29 ω0 (cm-1) #2 #1 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' S8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' (Color online) Temperature dependence of the fitted (a,b,c) phonon frequencies (ω0), (d,e,f) oscillator strengths (S), and (g,h,i) damping rates (γ) of CaBaCo4O7, CaBaFe2Co2O7, and CaBaFe4O7, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' 15 0 100 200 300 0 5 10 15 0 100 200 300 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='6 5 10 15 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='4 0 100 200 300 0 10 20 0 100 200 300 0 10 20 CaBaCo4O7 0 10 20 30 CaBaFe2Co2O7 0 10 20 30 0 10 20 30 0 100 200 300 0 10 20 0 25 50 75 100 0 100 200 300 0 5 10 15 20 ••100Hz ••200Hz ••500Hz ••1kHz 60 63 0 1 2 Hω || z Temperature (K) � ||z (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=') Re{χ} H = 0kOe � ||z (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=') Temperature (K) Re{χ} Hω || z H = 0kOe 100Hz Hω⊥ z � ⊥z (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=') Im{χ} ×5 Re{χ} TC H = 0kOe 100Hz � ⊥z (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=') Re{χ} Hω ⊥ z (e) 100Hz TN H = 0kOe Eω || z ε||z Im{ε} ×5 Re{ε} ••100Hz ••1kHz ••10kHz ••100kHz ε||z Re{ε} Eω || z Im{ε} ×5 ••10kHz ••100kHz ••100Hz Eω⊥ z Im{ε} ×5 ε⊥z ••1kHz Re{ε} (a) ε⊥z Eω ⊥ z Im{ε} ×5 Re{ε} (b) (d) CaBaFe4O7 ••100Hz ••1kHz ••10kHz ••100kHz Im{ε} ×5 Re{ε} ε⊥z (c) Eω ⊥ z Eω || z ε||z Re{ε} Im{ε} ×5 TC2 � ⊥z (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=') Hω ⊥ z Re{χ} (f) TC1 100Hz H = 0kOe ••100Hz Temperature (K) � ||z (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=') Hω || z Im{χ} ×10 Re{χ} H = 3kOe (g) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' S9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' (Color online) Temperature dependence of (a,b,c) the dielectric constant and (d,e,f) the ac magnetic susceptibility of CaBaCo4O7, CaBaFe2Co2O7, and CaBaFe4O7, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' Note that the imaginary part of the dielectric constant is multiplied by a factor of 5 for better visibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} +page_content=' (g) The inset shows a magnified region of the imaginary part of the ac-χ from panel (d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfmARV/content/2301.03292v1.pdf'} diff --git a/3dE1T4oBgHgl3EQf5wXA/vector_store/index.pkl b/3dE1T4oBgHgl3EQf5wXA/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..f5bd4df036e7c53e3b30b2d32fcba2e0e8044298 --- /dev/null +++ b/3dE1T4oBgHgl3EQf5wXA/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7960064bb8486c5b238f51cc416e708dabf0f8561330d67e7c2def5757b1b9ec +size 89490 diff --git a/4NE2T4oBgHgl3EQfOQYe/vector_store/index.faiss b/4NE2T4oBgHgl3EQfOQYe/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..1e086a9488aa27469edc275738e956bf9662ccfd --- /dev/null +++ b/4NE2T4oBgHgl3EQfOQYe/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6b4472e045dbb37d73e87528d18b637aa13debc3f61c8fb023827c6c976263e2 +size 2359341 diff --git a/59AzT4oBgHgl3EQff_xu/content/2301.01461v1.pdf b/59AzT4oBgHgl3EQff_xu/content/2301.01461v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..3db812301563845ff318a18666724d5c091e6f1b --- /dev/null +++ b/59AzT4oBgHgl3EQff_xu/content/2301.01461v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8e0883dbe209b937cbe8d63853279e14c75b1df909425e435f304af6705b8e34 +size 2529793 diff --git a/59AzT4oBgHgl3EQff_xu/vector_store/index.faiss b/59AzT4oBgHgl3EQff_xu/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..f93a0745cf4e3498e90ba6af8553857b54f0f084 --- /dev/null +++ b/59AzT4oBgHgl3EQff_xu/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fe084494a375b179828651195372595d1417f54bcb1b1c038ce844ca7cd42f92 +size 5177389 diff --git a/59AzT4oBgHgl3EQff_xu/vector_store/index.pkl b/59AzT4oBgHgl3EQff_xu/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..d7040947e7cba164909e21ef928609e81576ffd1 --- /dev/null +++ b/59AzT4oBgHgl3EQff_xu/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:41b0ba3ad7edd84f67da55cebb4c460086a31468c9cf60c78de7bd0a6ca02b34 +size 185645 diff --git a/59E2T4oBgHgl3EQfOwac/vector_store/index.faiss b/59E2T4oBgHgl3EQfOwac/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..80a79f62838f33e5d7bc2d36fbb15348f3a33b23 --- /dev/null +++ b/59E2T4oBgHgl3EQfOwac/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:429846f11160c9e32ac9c6e545119f2fa987155695e7771a2faaba87a4c4a2a5 +size 9568301 diff --git a/59E2T4oBgHgl3EQfOwac/vector_store/index.pkl b/59E2T4oBgHgl3EQfOwac/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..a75a1622137ae45eace7214685ca94e827c8f905 --- /dev/null +++ b/59E2T4oBgHgl3EQfOwac/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e37a42d01b594702b7fadade1f775b686d10623833ad48e1a72e0bfce675b022 +size 309031 diff --git a/5NFKT4oBgHgl3EQfSS3g/content/2301.11775v1.pdf b/5NFKT4oBgHgl3EQfSS3g/content/2301.11775v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..2b3d129d0fdd9f64b1b3eb5125311928052bd897 --- /dev/null +++ b/5NFKT4oBgHgl3EQfSS3g/content/2301.11775v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:823ce029938d7495be6ee158e15df2b21d78433125c108c95e9fe4df80dcf999 +size 379653 diff --git a/5NFKT4oBgHgl3EQfSS3g/vector_store/index.pkl b/5NFKT4oBgHgl3EQfSS3g/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..bdfb23f6d49c4163e2e7e8ada0efe7c96a3adf0d --- /dev/null +++ b/5NFKT4oBgHgl3EQfSS3g/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:178ef607cff42d86c46fb5d3ff5507ad8b6015ddee37fad7475736e544754998 +size 184814 diff --git a/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf b/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..7bdb214f0a9017d7d163032354b354927cfb5489 --- /dev/null +++ b/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:32a8a8c1be4ff6e0b06f4ad24d70341d5db646018df329e6fa299ea37d976bf1 +size 404426 diff --git a/6tAyT4oBgHgl3EQfQfaP/vector_store/index.pkl b/6tAyT4oBgHgl3EQfQfaP/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..329e74b7cdd845896c83d1e259050bddc9328d55 --- /dev/null +++ b/6tAyT4oBgHgl3EQfQfaP/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:651c446d72fcaef0a306cabb6aebe40e79109861b5470bfd0937714493910915 +size 34855 diff --git a/7dE3T4oBgHgl3EQfqArY/content/tmp_files/2301.04648v1.pdf.txt b/7dE3T4oBgHgl3EQfqArY/content/tmp_files/2301.04648v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..2f5bf60c7862fa67a26ea7f986f77b861bf897e0 --- /dev/null +++ b/7dE3T4oBgHgl3EQfqArY/content/tmp_files/2301.04648v1.pdf.txt @@ -0,0 +1,1296 @@ +Head-Free Lightweight Semantic Segmentation with Linear Transformer +Bo Dong 1*, Pichao Wang 1 †, Fan Wang 2 +1 Alibaba Group +{bo.dong.cst, pichaowang}@gmail.com; fan.w@alibaba-inc.com +Abstract +Existing semantic segmentation works have been mainly fo- +cused on designing effective decoders; however, the com- +putational load introduced by the overall structure has long +been ignored, which hinders their applications on resource- +constrained hardwares. In this paper, we propose a head-free +lightweight architecture specifically for semantic segmenta- +tion, named Adaptive Frequency Transformer (AFFormer). +AFFormer adopts a parallel architecture to leverage proto- +type representations as specific learnable local descriptions +which replaces the decoder and preserves the rich image +semantics on high-resolution features. Although removing +the decoder compresses most of the computation, the accu- +racy of the parallel structure is still limited by low com- +putational resources. Therefore, we employ heterogeneous +operators (CNN and Vision Transformer) for pixel embed- +ding and prototype representations to further save compu- +tational costs. Moreover, it is very difficult to linearize the +complexity of the vision Transformer from the perspective +of spatial domain. Due to the fact that semantic segmenta- +tion is very sensitive to frequency information, we construct a +lightweight prototype learning block with adaptive frequency +filter of complexity O(n) to replace standard self atten- +tion with O(n2). Extensive experiments on widely adopted +datasets demonstrate that AFFormer achieves superior accu- +racy while retaining only 3M parameters. On the ADE20K +dataset, AFFormer achieves 41.8 mIoU and 4.6 GFLOPs, +which is 4.4 mIoU higher than Segformer, with 45% less +GFLOPs. On the Cityscapes dataset, AFFormer achieves 78.7 +mIoU and 34.4 GFLOPs, which is 2.5 mIoU higher than +Segformer with 72.5% less GFLOPs. Code is available at +https://github.com/dongbo811/AFFormer. +Introduction +Semantic segmentation aims to partition an image into sub- +regions (collections of pixels) and is defined as a pixel-level +classification task (Long, Shelhamer, and Darrell 2015; Xie +et al. 2021; Zhao et al. 2017; Chen et al. 2018; Strudel et al. +2021; Cheng, Schwing, and Kirillov 2021) since Fully Con- +volutional Networks (FCN) (Long, Shelhamer, and Darrell +*Work done during an internship at Alibaba Group. +†Corresponding author; work done at Alibaba Group, and now +affiliated with Amazon Prime Video. +Copyright © 2023, Association for the Advancement of Artificial +Intelligence (www.aaai.org). All rights reserved. +0 +256 +512 +768 +1024 +1280 +1536 +1792 +2048 +0 +50 +100 +150 +200 +250 +300 +350 +400 +FLOPs +Input Scale + PSPNet + DeepLabV3+ + SegFormer + AFFormer +2.1x 1.8x +2.1x +2.5x +3.0x +3.6x +4.4x +5.3x +11.3x +5.6x +81.0 +78.0 +75.0 +44.0 +40.0 +36.0 ++4.4 mIoU +……. ++2.5 mIoU +……. +SegFormer +AFFormer +Input Scale +FLOPs +ADE20K +Cityscapes +Figure 1: Left: Computational complexity under differ- +ent input scales. Segformer (Xie et al. 2021) significantly +reduces the computational complexity compared to tra- +ditional methods, such as PSPNet (Zhao et al. 2017) +and DeepLabV3+ (Chen et al. 2018) which have mo- +bilenetV2 (Sandler et al. 2018) as backbone. However, Seg- +former still has a huge computational burden for higher +resolutions. Right: AFFormer achieves better accuracy on +ADE20K and Cityscapes datasets with significantly lower +FLOPs. +2015). It has two unique characteristics compared to image +classification: pixel-wise dense prediction and multi-class +representation, which is usually built upon high-resolution +features and requires a global inductive capability of im- +age semantics, respectively. Previous semantic segmenta- +tion methods (Zhao et al. 2017; Chen et al. 2018; Strudel +et al. 2021; Xie et al. 2021; Cheng, Schwing, and Kirillov +2021; Yuan et al. 2021b) focus on using the classification +network as backbone to extract multi-scale features, and de- +signing a complicated decoder head to establish the rela- +tionship between multi-scale features. However, these im- +provements come at the expense of large model size and +high computational cost. For instance, the well-known PSP- +Net (Zhao et al. 2017) using light-weight MobilenetV2 (San- +dler et al. 2018) as backbone contains 13.7M parameters and +52.2 GFLOPs with the input scale of 512×512. The widely- +used DeepLabV3+ (Chen et al. 2018) with the same back- +bone requires 15.4M parameters and 25.8 GFLOPs. The in- +herent design manner limits the development of this field +arXiv:2301.04648v1 [cs.CV] 11 Jan 2023 + +and hinders many real-world applications. Thus, we raise the +following question: can semantic segmentation be as simple +as image classification? +Recently vision Transformers (ViTs) (Liu et al. 2021; Lee +et al. 2022; Xie et al. 2021; Strudel et al. 2021; Cheng, +Schwing, and Kirillov 2021; Xu et al. 2021; Lee et al. +2022) have shown great potential in semantic segmenta- +tion, however, they face the challenges of balancing perfor- +mance and memory usage when deployed on ultra-low com- +puting power devices. Standard Transformers has computa- +tional complexity of O(n2) in the spatial domain, where n +is the input resolution. Existing methods alleviate this sit- +uation by reducing the number of tokens (Xie et al. 2021; +Wang et al. 2021; Liang et al. 2022; Ren et al. 2022) or +sliding windows (Liu et al. 2021; Yuan et al. 2021a), but +they introduce limited reduction on computational complex- +ity and even compromise global or local semantics for the +segmentation task. Meanwhile, semantic segmentation as a +fundamental research field, has extensive application scenar- +ios and needs to process images with various resolutions. +As shown in Figure 1, although the well-known efficient +Segformer (Xie et al. 2021) achieves a great breakthrough +compared to PSPNet and DeepLabV3+, it still faces a huge +computational burden for higher resolutions. At the scale +of 512 × 512, although Segformer is very light compared +to PSPNet and DeepLabV3+, it is almost twice as expen- +sive as ours (8.4 GFLOPs vs 4.6 GFLOPs); at the scale of +2048 × 2048, even 5x GFLOPs is required (384.3 GFLOPs +vs 73.2 GFLOPs). Thus, we raise another question: can we +design an efficient and lightweight Transformer network for +semantic segmentation in ultra-low computational scenar- +ios? +The answers to above two questions are affirmative. To +this end, we propose a head-free lightweight semantic seg- +mentation specific architecture, named Adaptive Frequency +Transformer (AFFormer). Inspired by the properties that +ViT maintains a single high-resolution feature map to keep +details (Dosovitskiy et al. 2021) and the pyramid structure +reduces the resolution to explore semantics and reduce com- +putational cost (He et al. 2016; Wang et al. 2021; Liu et al. +2021), AFFormer adopts a parallel architecture to lever- +age the prototype representations as specific learnable lo- +cal descriptions which replace the decoder and preserves +the rich image semantics on high-resolution features. The +parallel structure compresses the majority of the compu- +tation by removing the decoder, but it is still not enough +for ultra-low computational resources. Moreover, we em- +ploy heterogeneous operators for pixel embedding features +and local description features to save more computational +costs. A Transformer-based module named prototype learn- +ing (PL) is used to learn the prototype representations, while +a convolution-based module called pixel descriptor (PD) +takes pixel embedding features and the learned prototype +representations as inputs, transforming them back into the +full pixel embedding space to preserve high-resolution se- +mantics. +However, it is still very difficult to linearize the complex- +ity of the vision Transformer from the perspective of spatial +domain. Inspired by the effects of frequency on classifica- +tion tasks (Rao et al. 2021; Wang et al. 2020), we find that +semantic segmentation is also very sensitive to frequency +information. Thus, we construct a lightweight adaptive fre- +quency filter of complexity O(n) as prototype learning to re- +place the standard self attention with O(n2). The core of this +module is composed of frequency similarity kernel, dynamic +low-pass and high-pass filters, which capture frequency in- +formation that is beneficial to semantic segmentation from +the perspectives of emphasizing important frequency com- +ponents and dynamically filtering frequency, respectively. +Finally, the computational cost is further reduced by sharing +weights in high and low frequency extraction and enhance- +ment modules. We also embed a simplified depthwise con- +volutional layer in the feed-forward network (FFN) layer to +enhance the fusion effect, reducing the size of the two matrix +transformations. +With the help of parallel heterogeneous architecture and +adaptive frequency filter, we use only one convolutional +layer as classification layer (CLS) for single-scale feature, +achieving the best performance and making semantic seg- +mentation as simple as image classification. We demonstrate +the advantages of the proposed AFFormer on three widely- +used datasets: ADE20K, Cityscapes and COCO-stuff. With +only 3M parameters, AFFormer significantly outperforms +the state-of-the-art lightweight methods. On ADE20K, AF- +Former achieves 41.8 mIoU with 4.6 GFLOPs, outperform- +ing Segformer by 4.4 mIoU, while reducing GFLOPs by +45%. On Cityscapes, AFFormer achieves 78.7 mIoU and +34.4 GFLOPs, which is 2.5 mIoU higher than Segformer, +with 72.5% less GFLOPs. Extensive experimental results +demonstrate that it is possible to apply our model in compu- +tationally constrained scenarios, which still maintaining the +high performance and robustness across different datasets. +Related Work +Semantic Segmentation +Semantic segmentation is regarded as a pixel classification +task (Strudel et al. 2021; Xu et al. 2017; Xie et al. 2021). +In the last two years, new paradigms based on visual Trans- +formers have emerged, which enable mask classification via +queries or dynamic kernels (Zhang et al. 2021; Li et al. 2022; +Cheng, Schwing, and Kirillov 2021; Cheng et al. 2022). For +instance, Maskformer (Cheng, Schwing, and Kirillov 2021) +learns an object query and converts it into an embedding +of masks. Mask2former (Cheng et al. 2022) enhances the +query learning with a powerful multi-scale masked Trans- +former (Zhu et al. 2021). K-Net (Zhang et al. 2021) adopts +dynamic kernels for masks generation. MaskDINO (Li et al. +2022) brings object detection to semantic segmentation, fur- +ther improving query capabilities. However, all above meth- +ods are not suitable for low computing power scene due +to the high computational cost of learning efficient queries +and dynamic kernels. We argue that the essence of these +paradigms is to update pixel semantics by replacing the +whole with individual representations. Therefore, we lever- +age pixel embeddings as a specific learnable local descrip- +tion that extracts image and pixel semantics and allows se- +mantic interaction. + +DC-FFN +AFF +Add & Norm +Restoring +(i) +Clustering +(iii) Pixel Descriptor (PD) +(ii) Prototype Learning ( +) +Positional +Encodings +Add & Norm +PL +Clustering +PD +Image +CLS +Stem +Pixel Classification +PL +Clustering +PD +PL +Clustering +PD +PL +Clustering +PD +… +… +… +… +Sharing +AFF +DC-FFN +Stem +Adaptive Frequency Filter +Depthwise +Feed-Forward Network +Two Convolutional Layers +CLS +A Convolutional Layer +Figure 2: An Overview of Adaptive Frequency Transformer (AFFormer). We first displays the overall structure of parallel +heterogeneous network. Specifically, the feature F after patch embedding is first clustered to obtain the prototype feature G, +so as to construct a parallel network structure, which includes two heterogeneous operators. A Transformer-based module +as prototype learning to capture favorable frequency components in G, resulting prototype representation G′. Finally G′ is +restored by a CNN-based pixel descriptor, resulting F ′ for the next stage. +Efficient Vision Transformers +The lightweight solution of vision Transformer mainly fo- +cuses on the optimization of self attention, including follow- +ing ways: reducing the token length (Wang et al. 2021; Xie +et al. 2021; Wang et al. 2022) and using local windows (Liu +et al. 2021; Yuan et al. 2021a). PVT (Wang et al. 2021) +performs spatial compression on keys and values through +spatial reduction, and PVTv2 (Wang et al. 2022) further re- +places the spatial reduction by pooling operation, but many +details are lost in this way. Swin (Liu et al. 2021; Yuan +et al. 2021a) significantly reduce the length of the token +by restricting self attention to local windows, while these +against the global nature of Transformer and restrict the +global receptive field. At the same time, many lightweight +designs (Chen et al. 2022; Mehta and Rastegari 2022) in- +troduce Transformers in MobileNet to obtain more global +semantics, but these methods still suffer from the square- +level computational complexity of conventional Transform- +ers. Mobile-Former (Chen et al. 2022) combines the par- +allel design of MobileNet (Sandler et al. 2018) and Trans- +former (Dosovitskiy et al. 2021), which can achieve bidi- +rectional fusion performance of local and global features far +beyond lightweight networks such as MobileNetV3. How- +ever, it only uses a very small number of tokens, which is +not conducive to semantic segmentation tasks. +Method +In this section, we introduce the lightweight parallel hetero- +geneous network for semantic segmentation. The basic in- +formation is first provivided on the replacement of semantic +decoder by parallel heterogeneous network. Then, we intro- +duce the modeling of pixel descriptions and semantic fre- +quencies. Finally, the specific details and the computational +overhead of parallel architectures are discussed. +Parallel Heterogeneous Architecture +The semantic decoder propagates the image semantics ob- +tained by the encoder to each pixel and restores the lost de- +tails in downsampling. A straightforward alternative is to +extract image semantics in high resolution features, but it +introduces a huge amount of computation, especially for vi- +sion Transformers. In contrast, we propose a novel strategy +to describe pixel semantic information with prototype se- +mantics. For each stage, given a feature F ∈ RH×W ×C, +we first initial a grid G ∈ Rh×w×C as a prototype of the +image, where each point in G acts as a local cluster center, +and the initial state simply contains information about the +surrounding area. Here we use a 1 × C vector to represent +the local semantic information of each point. For each spe- +cific pixel, because the semantics of the surrounding pixels +are not consistent, there are overlap semantics between each +cluster centers. The cluster centers are weighted initialized +in its corresponding area α2, and the initialization of each +cluster center is expressed as: +G(s) = +n +� +i=0 +wixi +(1) +where n = α × α, wi denotes the weight of xi, and α is +set to 3. Our purpose is to update each cluster center s in +the grid G instead of updating the feature F directly. As +h × w ≪ H × W, it greatly simplifies the computation. +Here, we use a Transformer-based module as prototype +learning to update each cluster center, which contains L lay- +ers in total, and the updated center is denoted as G′(s). For +each updated cluster center, we recover it by a pixel descrip- +tor. Let F ′ +i denote the recovered feature, which contains not +only the rich pixel semantics from F, but also the prototype +semantics collected by the cluster centers G′(s). Since the +cluster centers aggregate the semantics of surrounding pix- + +200 175 150 125 100 +75 +50 +25 +5 +10 +15 +20 +25 +30 +35 +40 +mIoU +Filter Radius +Filtered Image +Figure 3: The effect of different frequency components on +semantic segmentation. We use the cut-edge method Seg- +former (Xie et al. 2021) to evaluate the impact of frequency +components on semantic segmentation on the widely used +ADE20K dataset (Zhou et al. 2017). The image is trans- +formed into the frequency domain by a fast Fourier trans- +form +(Heideman, Johnson, and Burrus 1984), and high- +frequency information is filtered out using a low-pass op- +erator with a radius. Removing high-frequency components +at different levels results the prediction performance drops +significantly. +els, resulting in the loss of local details, PD first models local +details in F with pixel semantics. Specifically, F is projected +to a low-dimensional space, establishing local relationships +between pixels such that each local patch keeps a distinct +boundary. Then G′(s) is embedded into F to restore to the +original space feature F ′ through bilinear interpolation. Fi- +nally, they are integrated through a linear projection layer. +Prototype Learning by Adaptive Frequency Filter +Motivation +Semantic segmentation is an extremely com- +plex pixel-level classification task that is prone to category +confusion. The frequency representation can be used as a +new paradigm of learning difference between categories, +which can excavate the information ignored by human vi- +sion (Zhong et al. 2022; Qian et al. 2020). As shown in +Figure 3, humans are robust to frequency information re- +moval unless the vast majority of frequency components are +filtered out. However, the model is extremely sensitive to +frequency information removal, and even removing a small +amount would result in significant performance degrada- +tion. It shows that for the model, mining more frequency +information can enhance the difference between categories +and make the boundary between each category more clear, +thereby improving the effect of semantic segmentation. +Since feature F contains rich frequency features, each +cluster center in the grid G also collects these frequency in- +formation. Motivated by the above analysis, extracting more +beneficial frequencies in grid G helps to discriminate the +attributes of each cluster. To extract different frequency fea- +tures, the straightforward way is to transform the spatial do- +main features into spectral features through Fourier trans- +form, and use a simple mask filter in the frequency domain +H Groups +Dynamic Low-pass Filters +N Groups +… + + + + +… +Dynamic High-pass Filters +Weight +Sharing +Frequency +Aggregation + +Frequency Similarity Kernel + +M Groups +Aggregation +Convolution +Upsampling +Figure 4: Structure of the adaptive frequency filter in pro- +totype learning. The prototype as learnable local descrip- +tion utilizes frequency component similarity kernel to en- +hance different components while combining efficient and +dynamic low-pass and high-pass filters to capture more fre- +quency information. +to enhance or attenuate the intensity of each frequency com- +ponent of the spectrum. Then the extracted frequency fea- +tures are converted to the spatial domain by inverse Fourier +transform. However, Fourier transform and inverse trans- +form bring in additional computational expenses, and such +operators are not supported on many hardwares. Thus, we +design an adaptive frequency filter block based on the vanilla +vision Transformer from the perspective of spectral correla- +tion to capture important high frequency and low frequency +features directly in the spatial domain. The core components +are shown in Figure 4 and the formula is defined as: +AF F (X) = ||Dfc +h (X)||H +� +�� +� +corr. ++ ||Dlf +m(X)||M + ||Dhf +n (X)||N +� +�� +� +dynamic filters +, +(2) +where Dfc +h , Dlf +m(X) and Dhf +n (X) denote the frequency +similarity kernel with H groups to achieve frequency com- +ponent correlation enhancement, dynamical low-pass filters +with M groups and dynamical high-pass filters with N +groups, respectively. || · || denotes concatenation. It is worth +noting that these operators adopt a parallel structure to fur- +ther reduce the computational cost by sharing weights. +Frequency Similarity Kernel (FSK) +Different frequency +components distribute over in G, and our purpose is to se- +lect and enhance the important components that helps se- +mantic parsing. To this end, we design a frequency similar- +ity kernel module. Generally, this module is implemented +by the vision Transformer. Given a feature X ∈ R(hw)×C, +with relative position encoding on G through a convolution +layer (Wu et al. 2021). We first use a fixed-size similarity +kernel A ∈ RC/H×C/H to represent the correspondence be- +tween different frequency components, and select the impor- +tant frequency components by querying the similarity ker- +nel. We treat it as a function transfer that computes the keys +K and values V of frequency components through a linear + +layer, and normalizes the keys across frequency components +by a Softmax operation. Each component integrates a simi- +larity kernel Ai,j, which is computed as: +Ai,j = ekiv⊤ +j / +n +� +j=1 +eki, +(3) +where ki represents the i-th frequency component in K, +vj represents the j-th frequency component in V . We also +transform the input X into the query Q through a linear +layer, and obtain the component-enhanced output through +interactions on the fixed-size similarity kernel. +Dynamic Low-Pass Filters (DLF) +Low-frequency com- +ponents occupy most of the energy in the absolute image and +represent most of the semantic information. A low-pass fil- +ter allows signals below the cutoff frequency to pass, while +signals above the cutoff frequency are obstructed. Thus, we +employ typical average pooling as a low-pass filter. How- +ever, the cutoff frequencies of different images are different. +To this end, we control different kernels and strides in multi- +groups to generate dynamic low-pass filters. For m-th group, +we have: +Dlf +m(vm)) = B(Γs×s(vm)), +(4) +where B(·) represents bilinear interpolation and Γs×s de- +notes the adaptive average pooling with the output size of +s × s. +Dynamic High-Pass Filters (DHF) +High-frequency in- +formation is crucial to preserve details in segmentation. As +a typical high-pass operator, convolution can filter out irrel- +evant low-frequency redundant components to retain favor- +able high-frequency components. The high-frequency com- +ponents determine the image quality and the cutoff fre- +quency of the high-pass for each image is different. Thus, +we divide the value V into N groups, resulting vn. For each +group, we use a convolution layer with different kernels to +simulate the cutoff frequencies in different high-pass filters. +For the n-th group, we have: +Dhf +n (vn)) = Λk×k(vn), +(5) +where Λk×k denotes the depthwise convolution layer with +kernel size of k ×k. In addition, we use the Hadamard prod- +uct of query and high-frequency features to suppress high +frequencies inside objects, which are noise for segmentation. +FFN helps to fuse the captured frequency information, but +owns a large amount of calculation, which is often ignored +in lightweight designs. Here we reduce the dimension of the +hidden layer by introducing a convolution layer to make up +for the missing capability due to dimension compression. +Discuss +For the frequency similarity kernel, the compu- +tational complexity is O(hwC2). The computational com- +plexity of each dynamic high-pass filter is O(hwCk2), +which is much smaller than that of frequency similarity +kernel. Since the dynamic low-pass filter is implemented +by adaptive mean pooling of each group, its computational +complexity is about O(hwC). Therefore, the computational +complexity of a module is linear with the resolution, which +Table 1: Comparison to state of the art methods on +ADE20K with resolution at 512 × 512. Here we use +the +Segformer +as +the +baseline +and +report +the +per- +centage growth. MV2=MobileNetV2, EN=EfficientNet, +SV2=ShuffleNetV2. +Model +#Param. +FLOPs +mIoU +FCN-8s +9.8M +39.6G +19.7 +PSPNet (MV2) +13.7M +52.2G +29.6 +DeepLabV3+ (MV2) +15.4M +25.8G +38.1 +DeepLabV3+ (EN) +17.1M +26.9G +36.2 +DeepLabV3+ (SV2) +16.9M +15.3G +37.6 +Lite-ASPP +2.9M +4.4G +36.6 +R-ASPP +2.2M +2.8G +32.0 +LR-ASPP +3.2M +2.0G +33.1 +HRNet-W18-Small +4.0M +10.2G +33.4 +HR-NAS-A +2.5M +1.4G +33.2 +HR-NAS-B +3.9M +2.2G +34.9 +PVT-v2-B0 +7.6M +25.0G +37.2 +TopFormer +5.1M +1.8G +37.8 +EdgeViT-XXS +7.9M +24.4G +39.7 +Segformer (LVT) +3.9M +10.6G +39.3 +Swin-tiny +31.9M +46G +41.5 +Xcit-T12/16 +8.4M +21.5G +38.1 +ViT +10.2M +24.6G +37.4 +PVT-tiny +17.0M +33G +36.6 +Segformer +3.8M +8.4G +37.4 +AFFormer-tiny +1.6M(-58%) +2.8G(-67%) +38.7(+1.3) +AFFormer-small +2.3M(-41%) +3.6G(-61%) +40.2(+2.8) +AFFormer-base +3.0M(-21%) +4.6G(-45%) +41.8(+4.4) +is advantageous for high resolution in semantic segmenta- +tion. +Experiments +Implementation Details +We validate the proposed AFFormer on three publicly +datasets: ADE20K (Zhou et al. 2017), Cityscapes (Cordts +et al. 2016) and COCO-stuff (Caesar, Uijlings, and Fer- +rari 2018). We implement our AFFormer with the PyTorch +framework base on MMSegmentation toolbox (Contributors +2020). Follow previous works (Cheng, Schwing, and Kir- +illov 2021; Zhao et al. 2017), we use ImageNet-1k to pre- +train our model. During semantic segmentation training, we +employ the widely used AdamW optimizer for all datasets +to update the model parameters. For fair comparisons, our +training parameters mainly follow the previous work (Xie +et al. 2021). For the ADE20K and Cityscapes datasets, we +adopt the default training iterations 160K in Segformer, +where mini-batchsize is set to 16 and 8, respectively. For the +COCO-stuff dataset, we set the training iterations to 80K and +the minibatch to 16. In addition, we implement data augmen- +tation during training for ADE20K, Cityscapes, COCO-stuff +by random horizontal flipping, random resizing with a ratio +of 0.5-2.0, and random cropping to 512×512, 1024×1024, +512 × 512, respectively. We evaluate the results with mean +Intersection over Union (mIoU) metric. + +Table 2: Comparison to state of the art methods on +Cityscapes val set. The FLOPs are test on the resolution of +1024 × 2048. Meanwhile, we also report the percentage in- +crease compared to Segformer. +Model +#Param. +FLOPs +mIoU +FCN +9.8M +317G +61.5 +PSPNet (MV2) +13.7M +423G +70.2 +DeepLabV3+ (MV2) +15.4M +555G +75.2 +SwiftNetRN +11.8M +104G +75.5 +EncNet +55.1M +1748G +76.9 +Segformer +3.8M +125G +76.2 +AFFormer-tiny +1.6M(-58%) 23.0G(-82%) +76.5(+0.3) +AFFormer-small +2.3M(-41%) 26.2G(-79%) +77.6(+1.4) +AFFormer-base +3.0M(-21%) 34.4G(-73%) +78.7(+2.5) +Comparisons with Existing Works +Results on ADE20K Dataset. +We compare our AF- +Former with top-ranking semantic segmentation methods, +including CNN-based and vision Transformer-based mod- +els. Following the inference settings in (Xie et al. 2021), we +test FLOPs at 512×512 resolution and show the single scale +results in Table 1. Our model AFFormer-base improves by +5.2 mIoU under the same computing power consumption as +Lite-ASPP, reaching 41.8 mIoU. At the same time, by reduc- +ing the number of layers and channels, we obtain AFFormer- +tiny and AFFormer-small versions to adapt to different com- +puting power scenarios. For the lightweight and efficient +Segformer (8.4 GFLOPs),our base version (4.6 GFLOPs) +also gain 4.4 mIoU using half the computing power and +the tiny version (2.4 GFLOPs) with only 1/4 the computing +power improving 1.3 mIoU. Only 1.8 GFLOPs are needed +for the lighter topformer, but our base version has 2.1M less +parameters (5.1M vs 3M) with 4.0 higher mIoU. +Results on Cityscapes Dataset. +Table 2 shows the results +of our model and the cutting-edge methods on Cityscapes. +Although the Segformer is efficient enough, due to its +square-level complexity, we only use 30% of the compu- +tational cost to reach 78.7 mIoU, which is 2.5 mIoU im- +provement with a 70% reduction in FLOPs. Meanwhile, we +report the results at different high resolutions in Table 3. At +the short side of {512, 640, 768, 1024}, the computational +cost of our model is 51.4%, 57.5%, 62.5% and 72.5% of +that of Segformer, respectively. Meanwhile, the mIoU are +improved by 1.6, 1.9, 1.2 and 2.5, respectively. The higher +the input resolution, the more advantageous of our model in +both computational cost and accuracy. +Results on COCO-stuff Dataset. +COCO-stuff dataset +contains a large number of difficult samples that collected +in COCO. As show in Table 4, although complex decoders +(e.g., PSPNet, DeepLabV3+) can achieve better results than +LR-ASPP (MV3), they bring a lot of computational cost. +Our model achieves an accuracy of 35.1 mIoU while only +taking 4.5 GFLOPs, achieving the best trade-off. +Ablation Studies +All the ablation studies are conducted on ADE20K dataset +with AFFormer-base unless otherwise specified. +Rationalization of Parallel Structures. +Parallel architec- +ture is the key to removing the decoder head and ensuring +accuracy and efficiency. We first adjust the proposed struc- +ture to a naive pyramid architecture (denoted as “w/o PD”) +and a ViT architecture (denoted as “w/o PL”) to illustrate the +advantages of the parallel architecture. Specifically, the “w/o +PD” means removing PD module and keeping only PL mod- +ule, while the “w/o PL” does the opposite. As shown in Ta- +ble 5, the setting “w/o PD” reduces 2.6 mIoU due to the lack +of high-resolution pixel semantic information. The “w/o PL” +structure without the pyramid structure has a significant re- +duction in accuracy due to few parameters and lack of rich +image semantic information. It also demonstrates that our +parallel architecture can effectively combine the advantages +of both architectures. +Advantages of Heterogeneous Structure. +The purpose +of the heterogeneous approach is to further reduce the com- +putational overhead. The PL module is adopted to learn +the prototype representation in the clustered features, and +then use PD to combine the original features for restoration, +which avoids direct calculation on the high-resolution origi- +nal features and reduce the computational cost. It can be seen +from Table 6 that when the parallel branch is adjusted to the +pixel description module (denote as “All PD”), which means +that the prototype representation is learned by PD module. +The model size is only 0.6M, and the FLOPs are reduced by +2.5G, but the accuracy is reduced by 14.3 mIoU. This is due +to the PD lacks the ability to learn great prototype represen- +tations. In contrast, after we replace the PD module with the +PL module (denote as “All PL”), the FLOPs are increased +by 2.4G, but there is almost no difference in accuracy. We +believe that the PD module is actually only a simple way to +restore the learned prototype, and the relatively complex PL +module saturates the model capacity. +Advantages of Adaptive Frequency Filter. +We use two +datasets with large differences, including ADE20K and +Cityscapes, to explore the core components in adaptive fre- +quency filter module. The main reason is that the upper limit +of the ADE20K dataset is only 40 mIoU, while the upper +limit of the Cityscapes is 80 mIoU. The two datasets have +different degrees of sensitivity to different frequencies. We +report the benefits of each internal component in the Table 7. +We find that DHF alone outperforms DLF, especially on the +Cityscapes dataset by 2.6 mIoU, while FSK is significantly +higher than DLF and DHF on ADE20K. This shows that +ADE20K may be more inclined to an intermediate state be- +tween high frequency and low frequency, while Cityscapes +needs more high frequency information. The combined ex- +periments show that the combination of the advantages of +each component can stably improve the results of ADE20K +and Cityscapes. +Frequency Statistics Visualization. +We first count the +characteristic frequency distribution of different stages, as +shown in Figure 5. It can be found that the curves of G2 +and F2 almost overlap, indicating that the frequencies after +clustering are very similar to those in the original features. +The same goes for G3 and F3. Whereas, the learned proto- + +Table 3: Speed-accuracy tradeoffs at different scales on Cityscapes. +Model +size +FLOPs +mIoU +Segformer (3.8M) +512 × 1024 +17.7G +71.9 +AFFormer-base (3.0M) +512 × 1024 +8.6G(-51.4%) +73.5(+1.6) +Segformer (3.8M) +640 × 1280 +31.5G +73.7 +AFFormer-base (3.0M) +640 × 1280 +13.4G(-57.5%) +75.6(+1.9) +Segformer (3.8M) +768 × 1536 +51.7G +75.3 +AFFormer-base (3.0M) +768 × 1536 +19.4G(-62.5%) +76.5(+1.2) +Segformer (3.8M) +1024 × 2048 +125G +76.2 +AFFormer-base (3.0M) +1024 × 2048 +34.4G(-72.5%) +78.7(+2.5) +Table 4: Comparison to state of the art meth- +ods on COCO-stuff. We use a single-scale +results at the input resolution of 512 × 512. +MV3=MobileNetV3 +Model +#Param. +FLOPs +mIoU +PSPNet (MV2) +13.7M +52.9G +30.1 +DeepLabV3+ (MV2) +15.4M +25.9G +29.9 +DeepLabV3+ (EN) +17.1M +27.1G +31.5 +LR-ASPP (MV3) +– +2.37G +25.2 +AFFormer-base +3.0M +4.6G +35.1 +Table 5: Ablation studies on the parallel structure. +Setting +#Param. +FLOPs +mIoU +w/o PD +2.78G +2.98G +39.2 +w/o PL +0.42G +1.65G +19.5 +Parallel +3.0G +4.6G +41.8 +Table 6: Ablation studies on heterogeneous architecture. +Setting +#Param. +FLOPs +mIoU +All PD +0.6M +1.85G +27.4 +All PL +3.6M +7.0G +41.6 +Heterogeneous +3.0M +4.6G +41.8 +Table 7: Ablation studies on frequency aware statistics. +Setting +#Param. +FLOPs +ADE20K +Cityscapes +DLF +2.4M +3.6G +38.7 +75.7 +DHF +2.6M +3.9G +39.3 +78.3 +FSK +2.9M +4.2G +40.5 +75.3 +DLF + DHF +2.7M +3.9G +41.1 +77.8 +DLF + FSK +2.8M +4.2G +40.0 +76.2 +DHF + FSK +2.9M +4.3G +41.2 +77.3 +Whole +3.0M +4.6G +41.8 +78.7 +type representation after frequency adaptive filtering signifi- +cantly improves the contained frequency information. After +PD restoration, different frequency components can be em- +phasized in different stages. As shwon in Figure 6, we also +analyze the frequency effects of the core components in the +AFF module. As expected, DLF and DHF show strong low- +pass and high-pass capabilities, respectively, as FSK does. +At the same time, we also found that the important frequency +components screened and enhanced by FSK are mainly con- +centrated in the high frequency part, but the frequency signal +is more saturated than that of DHF. This also shows that the +high-frequency component part is particularly important in +the semantic segmentation task, because it emphasizes more +on the boundary details and texture differences between ob- +jects. Meanwhile, according to the analysis in Table 7 (the +effects of ADE20K and Cityscapes have been steadily im- +proved), each core component has its own advantages, and +the AFF module shows strong robustness in various types +and complex scenes. +Speed and Memory Costs. +Meanwhile, we report the +speed on the Cityscapes dataset in Table 8. We can find that +the proposed model improves by 10 FPS and performs much +better than Segformer on such high-resolution Cityscapes +images. +Table 8: The FPS is tested on a V100 NVIDIA GPU with a +batch size of 1 on the resolution of 1024x2048. +Model +FPS +mIoU +Segformer +12 +76.2 +AFFormer +22 +78.7 +Figure 5: Frequency analysis of stage-2 (left) and stage-3 +(right). +Input +DHF +DLF +FSK +DHF +Input +DLF +FSK +Figure 6: Frequency analysis of the core components in PL +module. +Conclusion +In this paper, we propose AFFormer, a head-free lightweight +semantic segmentation specific architecture. The core is to +learn the local description representation of the clustered +prototypes from the frequency perspective, instead of di- +rectly learning all the pixel embedding features. It removes +the complicated decoder while having linear complexity +Transformer and realizes semantic segmentation as simple +as regular classification. The various experiments demon- +strate that the AFFormer owns powerful accuracy and great +stability and robustness at low computational cost. + +8.0 +7.0 +Log amplitude +6.0 +5.0 +4.0 +3.0 +2.0 +0.0l +0.2πl +0.4π +0.6㎡l +0.8Tl +1.0l +Frequency8.0 +7.0 +6.0 + Log amplitude +5.0 +4.0 +3.0 +2.0 +1.0 +0.0 +0.0l +0.2 +0.4 +0.6 +0.8 +1.0π +Frequency0 +5 +10 +15 +20 +25 +30 +0 +5 +10 +15 +20 +25 +304.0 +2.0 +0.0 +-2.0 +-4.0 +-6.0- +0.0 +0.2π +0.4π +0.6π +0.8π +1.0π +Frequency0 +5 +10 +15 +20 +25 +30 +5 +10 +15 +20 +25 +300 +5 +10 +15 +20 +25 +30 +0 +5 +10 +15 +20 +25 - +300 +5 +10 +15 +20 +25 +30 +0 +5 - +10 +15 +20 +25 +30Acknowledgements +This work was supported by Alibaba Group through Alibaba +Research Intern Program. +References +Caesar, H.; Uijlings, J.; and Ferrari, V. 2018. Coco-stuff: +Thing and stuff classes in context. In Proceedings of the +IEEE conference on computer vision and pattern recogni- +tion, 1209–1218. +Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; and +Adam, H. 2018. Encoder-decoder with atrous separable con- +volution for semantic image segmentation. In Proceedings +of the European conference on computer vision (ECCV), +801–818. +Chen, Y.; Dai, X.; Chen, D.; Liu, M.; Dong, X.; Yuan, L.; +and Liu, Z. 2022. Mobile-former: Bridging mobilenet and +transformer. In Proceedings of the IEEE/CVF Conference +on Computer Vision and Pattern Recognition, 5270–5279. +Cheng, B.; Misra, I.; Schwing, A. G.; Kirillov, A.; and Gird- +har, R. 2022. Masked-attention mask transformer for univer- +sal image segmentation. In Proceedings of the IEEE/CVF +Conference on Computer Vision and Pattern Recognition, +1290–1299. +Cheng, B.; Schwing, A.; and Kirillov, A. 2021. Per-pixel +classification is not all you need for semantic segmenta- +tion. Advances in Neural Information Processing Systems, +34: 17864–17875. +Contributors, M. 2020. +MMSegmentation: OpenMMLab +Semantic Segmentation Toolbox and Benchmark. +https: +//github.com/open-mmlab/mmsegmentation. +Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, +M.; Benenson, R.; Franke, U.; Roth, S.; and Schiele, B. +2016. The cityscapes dataset for semantic urban scene un- +derstanding. In Proceedings of the IEEE conference on com- +puter vision and pattern recognition, 3213–3223. +Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, +D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; +Heigold, G.; Gelly, S.; Uszkoreit, J.; and Houlsby, N. 2021. +An Image is Worth 16x16 Words: Transformers for Image +Recognition at Scale. ICLR. +He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid- +ual learning for image recognition. In Proceedings of the +IEEE conference on computer vision and pattern recogni- +tion, 770–778. +Heideman, M.; Johnson, D.; and Burrus, C. 1984. Gauss +and the history of the fast Fourier transform. IEEE ASSP +Magazine, 1(4): 14–21. +Lee, Y.; Kim, J.; Willette, J.; and Hwang, S. J. 2022. MPViT: +Multi-path vision transformer for dense prediction. In Pro- +ceedings of the IEEE/CVF Conference on Computer Vision +and Pattern Recognition, 7287–7296. +Li, F.; Zhang, H.; Liu, S.; Zhang, L.; Ni, L. M.; Shum, H.-Y.; +et al. 2022. Mask DINO: Towards A Unified Transformer- +based Framework for Object Detection and Segmentation. +arXiv preprint arXiv:2206.02777. +Liang, Y.; Ge, C.; Tong, Z.; Song, Y.; Wang, J.; and Xie, +P. 2022. Not All Patches are What You Need: Expediting +Vision Transformers via Token Reorganizations. In Interna- +tional Conference on Learning Representations. +Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, +S.; and Guo, B. 2021. Swin transformer: Hierarchical vi- +sion transformer using shifted windows. In Proceedings of +the IEEE/CVF International Conference on Computer Vi- +sion, 10012–10022. +Long, J.; Shelhamer, E.; and Darrell, T. 2015. Fully convo- +lutional networks for semantic segmentation. In Proceed- +ings of the IEEE conference on computer vision and pattern +recognition, 3431–3440. +Mehta, S.; and Rastegari, M. 2022. Mobilevit: light-weight, +general-purpose, and mobile-friendly vision transformer. +ICLR. +Qian, Y.; Yin, G.; Sheng, L.; Chen, Z.; and Shao, J. 2020. +Thinking in frequency: Face forgery detection by mining +frequency-aware clues. +In European conference on com- +puter vision, 86–103. Springer. +Rao, Y.; Zhao, W.; Zhu, Z.; Lu, J.; and Zhou, J. 2021. Global +filter networks for image classification. Advances in Neural +Information Processing Systems, 34: 980–993. +Ren, S.; Zhou, D.; He, S.; Feng, J.; and Wang, X. 2022. +Shunted Self-Attention via Multi-Scale Token Aggregation. +In Proceedings of the IEEE/CVF Conference on Computer +Vision and Pattern Recognition, 10853–10862. +Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; and +Chen, L.-C. 2018. Mobilenetv2: Inverted residuals and lin- +ear bottlenecks. In Proceedings of the IEEE conference on +computer vision and pattern recognition, 4510–4520. +Strudel, R.; Garcia, R.; Laptev, I.; and Schmid, C. 2021. +Segmenter: Transformer for semantic segmentation. +In +Proceedings of the IEEE/CVF International Conference on +Computer Vision, 7262–7272. +Wang, H.; Wu, X.; Huang, Z.; and Xing, E. P. 2020. +High-frequency component helps explain the generaliza- +tion of convolutional neural networks. +In Proceedings of +the IEEE/CVF Conference on Computer Vision and Pattern +Recognition, 8684–8694. +Wang, W.; Xie, E.; Li, X.; Fan, D.-P.; Song, K.; Liang, D.; +Lu, T.; Luo, P.; and Shao, L. 2021. Pyramid vision trans- +former: A versatile backbone for dense prediction without +convolutions. In Proceedings of the IEEE/CVF International +Conference on Computer Vision, 568–578. +Wang, W.; Xie, E.; Li, X.; Fan, D.-P.; Song, K.; Liang, D.; +Lu, T.; Luo, P.; and Shao, L. 2022. Pvt v2: Improved base- +lines with pyramid vision transformer. Computational Vi- +sual Media, 8(3): 415–424. +Wu, K.; Peng, H.; Chen, M.; Fu, J.; and Chao, H. 2021. Re- +thinking and Improving Relative Position Encoding for Vi- +sion Transformer. In Proceedings of the IEEE/CVF Inter- +national Conference on Computer Vision (ICCV), 10033– +10041. +Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J. M.; +and Luo, P. 2021. SegFormer: Simple and efficient design + +for semantic segmentation with transformers. Advances in +Neural Information Processing Systems, 34: 12077–12090. +Xu, N.; Price, B.; Cohen, S.; and Huang, T. 2017. Deep +image matting. In Proceedings of the IEEE conference on +computer vision and pattern recognition, 2970–2979. +Xu, W.; Xu, Y.; Chang, T.; and Tu, Z. 2021. +Co-Scale +Conv-Attentional Image Transformers. In Proceedings of +the IEEE/CVF International Conference on Computer Vi- +sion (ICCV), 9981–9990. +Yuan, Y.; Fu, R.; Huang, L.; Lin, W.; Zhang, C.; Chen, X.; +and Wang, J. 2021a. Hrformer: High-resolution vision trans- +former for dense predict. Advances in Neural Information +Processing Systems, 34: 7281–7293. +Yuan, Y.; Huang, L.; Guo, J.; Zhang, C.; Chen, X.; and +Wang, J. 2021b. +OCNet: Object context for semantic +segmentation. +International Journal of Computer Vision, +129(8): 2375–2398. +Zhang, W.; Pang, J.; Chen, K.; and Loy, C. C. 2021. K-net: +Towards unified image segmentation. Advances in Neural +Information Processing Systems, 34: 10326–10338. +Zhao, H.; Shi, J.; Qi, X.; Wang, X.; and Jia, J. 2017. Pyra- +mid scene parsing network. In Proceedings of the IEEE con- +ference on computer vision and pattern recognition, 2881– +2890. +Zhong, Y.; Li, B.; Tang, L.; Kuang, S.; Wu, S.; and Ding, S. +2022. Detecting Camouflaged Object in Frequency Domain. +In Proceedings of the IEEE/CVF Conference on Computer +Vision and Pattern Recognition, 4504–4513. +Zhou, B.; Zhao, H.; Puig, X.; Fidler, S.; Barriuso, A.; and +Torralba, A. 2017. Scene parsing through ade20k dataset. In +Proceedings of the IEEE conference on computer vision and +pattern recognition, 633–641. +Zhu, X.; Su, W.; Lu, L.; Li, B.; Wang, X.; and Dai, J. 2021. +Deformable detr: Deformable transformers for end-to-end +object detection. ICLR. + diff --git a/7dE3T4oBgHgl3EQfqArY/content/tmp_files/load_file.txt b/7dE3T4oBgHgl3EQfqArY/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..941304cdd0ea5d447748fc8219ef1f81103a2db0 --- /dev/null +++ b/7dE3T4oBgHgl3EQfqArY/content/tmp_files/load_file.txt @@ -0,0 +1,1111 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf,len=1110 +page_content='Head-Free Lightweight Semantic Segmentation with Linear Transformer Bo Dong 1*, Pichao Wang 1 †, Fan Wang 2 1 Alibaba Group {bo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='dong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='cst, pichaowang}@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='com;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' fan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='w@alibaba-inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='com Abstract Existing semantic segmentation works have been mainly fo- cused on designing effective decoders;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' however, the com- putational load introduced by the overall structure has long been ignored, which hinders their applications on resource- constrained hardwares.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' In this paper, we propose a head-free lightweight architecture specifically for semantic segmenta- tion, named Adaptive Frequency Transformer (AFFormer).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' AFFormer adopts a parallel architecture to leverage proto- type representations as specific learnable local descriptions which replaces the decoder and preserves the rich image semantics on high-resolution features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Although removing the decoder compresses most of the computation, the accu- racy of the parallel structure is still limited by low com- putational resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Therefore, we employ heterogeneous operators (CNN and Vision Transformer) for pixel embed- ding and prototype representations to further save compu- tational costs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Moreover, it is very difficult to linearize the complexity of the vision Transformer from the perspective of spatial domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Due to the fact that semantic segmenta- tion is very sensitive to frequency information, we construct a lightweight prototype learning block with adaptive frequency filter of complexity O(n) to replace standard self atten- tion with O(n2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Extensive experiments on widely adopted datasets demonstrate that AFFormer achieves superior accu- racy while retaining only 3M parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' On the ADE20K dataset, AFFormer achieves 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8 mIoU and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6 GFLOPs, which is 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4 mIoU higher than Segformer, with 45% less GFLOPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' On the Cityscapes dataset, AFFormer achieves 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='7 mIoU and 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4 GFLOPs, which is 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5 mIoU higher than Segformer with 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5% less GFLOPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Code is available at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='com/dongbo811/AFFormer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Introduction Semantic segmentation aims to partition an image into sub- regions (collections of pixels) and is defined as a pixel-level classification task (Long, Shelhamer, and Darrell 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Xie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Zhao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Strudel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Cheng, Schwing, and Kirillov 2021) since Fully Con- volutional Networks (FCN) (Long, Shelhamer, and Darrell Work done during an internship at Alibaba Group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' †Corresponding author;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' work done at Alibaba Group, and now affiliated with Amazon Prime Video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='aaai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='org).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' All rights reserved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 0 256 512 768 1024 1280 1536 1792 2048 0 50 100 150 200 250 300 350 400 FLOPs Input Scale PSPNet DeepLabV3+ SegFormer AFFormer 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='1x 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8x 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='1x 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5x 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0x 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6x 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4x 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='3x 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='3x 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6x 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 +4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4 mIoU ……' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' +2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5 mIoU ……' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' SegFormer AFFormer Input Scale FLOPs ADE20K Cityscapes Figure 1: Left: Computational complexity under differ- ent input scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Segformer (Xie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021) significantly reduces the computational complexity compared to tra- ditional methods, such as PSPNet (Zhao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2017) and DeepLabV3+ (Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2018) which have mo- bilenetV2 (Sandler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2018) as backbone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' However, Seg- former still has a huge computational burden for higher resolutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Right: AFFormer achieves better accuracy on ADE20K and Cityscapes datasets with significantly lower FLOPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' It has two unique characteristics compared to image classification: pixel-wise dense prediction and multi-class representation, which is usually built upon high-resolution features and requires a global inductive capability of im- age semantics, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Previous semantic segmenta- tion methods (Zhao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Strudel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Xie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Cheng, Schwing, and Kirillov 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Yuan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021b) focus on using the classification network as backbone to extract multi-scale features, and de- signing a complicated decoder head to establish the rela- tionship between multi-scale features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' However, these im- provements come at the expense of large model size and high computational cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' For instance, the well-known PSP- Net (Zhao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2017) using light-weight MobilenetV2 (San- dler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2018) as backbone contains 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='7M parameters and 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2 GFLOPs with the input scale of 512×512.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' The widely- used DeepLabV3+ (Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2018) with the same back- bone requires 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4M parameters and 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8 GFLOPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' The in- herent design manner limits the development of this field arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='04648v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='CV] 11 Jan 2023 and hinders many real-world applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Thus, we raise the following question: can semantic segmentation be as simple as image classification?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Recently vision Transformers (ViTs) (Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Xie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Strudel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Cheng, Schwing, and Kirillov 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2022) have shown great potential in semantic segmenta- tion, however, they face the challenges of balancing perfor- mance and memory usage when deployed on ultra-low com- puting power devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Standard Transformers has computa- tional complexity of O(n2) in the spatial domain, where n is the input resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Existing methods alleviate this sit- uation by reducing the number of tokens (Xie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Liang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Ren et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2022) or sliding windows (Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Yuan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021a), but they introduce limited reduction on computational complex- ity and even compromise global or local semantics for the segmentation task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Meanwhile, semantic segmentation as a fundamental research field, has extensive application scenar- ios and needs to process images with various resolutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' As shown in Figure 1, although the well-known efficient Segformer (Xie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021) achieves a great breakthrough compared to PSPNet and DeepLabV3+, it still faces a huge computational burden for higher resolutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' At the scale of 512 × 512, although Segformer is very light compared to PSPNet and DeepLabV3+, it is almost twice as expen- sive as ours (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4 GFLOPs vs 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6 GFLOPs);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' at the scale of 2048 × 2048, even 5x GFLOPs is required (384.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='3 GFLOPs vs 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2 GFLOPs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Thus, we raise another question: can we design an efficient and lightweight Transformer network for semantic segmentation in ultra-low computational scenar- ios?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' The answers to above two questions are affirmative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' To this end, we propose a head-free lightweight semantic seg- mentation specific architecture, named Adaptive Frequency Transformer (AFFormer).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Inspired by the properties that ViT maintains a single high-resolution feature map to keep details (Dosovitskiy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021) and the pyramid structure reduces the resolution to explore semantics and reduce com- putational cost (He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021), AFFormer adopts a parallel architecture to lever- age the prototype representations as specific learnable lo- cal descriptions which replace the decoder and preserves the rich image semantics on high-resolution features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' The parallel structure compresses the majority of the compu- tation by removing the decoder, but it is still not enough for ultra-low computational resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Moreover, we em- ploy heterogeneous operators for pixel embedding features and local description features to save more computational costs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' A Transformer-based module named prototype learn- ing (PL) is used to learn the prototype representations, while a convolution-based module called pixel descriptor (PD) takes pixel embedding features and the learned prototype representations as inputs, transforming them back into the full pixel embedding space to preserve high-resolution se- mantics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' However, it is still very difficult to linearize the complex- ity of the vision Transformer from the perspective of spatial domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Inspired by the effects of frequency on classifica- tion tasks (Rao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2020), we find that semantic segmentation is also very sensitive to frequency information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Thus, we construct a lightweight adaptive fre- quency filter of complexity O(n) as prototype learning to re- place the standard self attention with O(n2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' The core of this module is composed of frequency similarity kernel, dynamic low-pass and high-pass filters, which capture frequency in- formation that is beneficial to semantic segmentation from the perspectives of emphasizing important frequency com- ponents and dynamically filtering frequency, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Finally, the computational cost is further reduced by sharing weights in high and low frequency extraction and enhance- ment modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' We also embed a simplified depthwise con- volutional layer in the feed-forward network (FFN) layer to enhance the fusion effect, reducing the size of the two matrix transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' With the help of parallel heterogeneous architecture and adaptive frequency filter, we use only one convolutional layer as classification layer (CLS) for single-scale feature, achieving the best performance and making semantic seg- mentation as simple as image classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' We demonstrate the advantages of the proposed AFFormer on three widely- used datasets: ADE20K, Cityscapes and COCO-stuff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' With only 3M parameters, AFFormer significantly outperforms the state-of-the-art lightweight methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' On ADE20K, AF- Former achieves 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8 mIoU with 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6 GFLOPs, outperform- ing Segformer by 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4 mIoU, while reducing GFLOPs by 45%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' On Cityscapes, AFFormer achieves 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='7 mIoU and 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4 GFLOPs, which is 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5 mIoU higher than Segformer, with 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5% less GFLOPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Extensive experimental results demonstrate that it is possible to apply our model in compu- tationally constrained scenarios, which still maintaining the high performance and robustness across different datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Related Work Semantic Segmentation Semantic segmentation is regarded as a pixel classification task (Strudel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Xie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' In the last two years, new paradigms based on visual Trans- formers have emerged, which enable mask classification via queries or dynamic kernels (Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Cheng, Schwing, and Kirillov 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Cheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' For instance, Maskformer (Cheng, Schwing, and Kirillov 2021) learns an object query and converts it into an embedding of masks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Mask2former (Cheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2022) enhances the query learning with a powerful multi-scale masked Trans- former (Zhu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' K-Net (Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021) adopts dynamic kernels for masks generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' MaskDINO (Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2022) brings object detection to semantic segmentation, fur- ther improving query capabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' However, all above meth- ods are not suitable for low computing power scene due to the high computational cost of learning efficient queries and dynamic kernels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' We argue that the essence of these paradigms is to update pixel semantics by replacing the whole with individual representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Therefore, we lever- age pixel embeddings as a specific learnable local descrip- tion that extracts image and pixel semantics and allows se- mantic interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' DC-FFN AFF Add & Norm Restoring (i) Clustering (iii) Pixel Descriptor (PD) (ii) Prototype Learning ( ) Positional Encodings Add & Norm PL Clustering PD Image CLS Stem Pixel Classification PL Clustering PD PL Clustering PD PL Clustering PD … … … … Sharing AFF DC-FFN Stem Adaptive Frequency Filter Depthwise Feed-Forward Network Two Convolutional Layers CLS A Convolutional Layer Figure 2: An Overview of Adaptive Frequency Transformer (AFFormer).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' We first displays the overall structure of parallel heterogeneous network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Specifically, the feature F after patch embedding is first clustered to obtain the prototype feature G, so as to construct a parallel network structure, which includes two heterogeneous operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' A Transformer-based module as prototype learning to capture favorable frequency components in G, resulting prototype representation G′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Finally G′ is restored by a CNN-based pixel descriptor, resulting F ′ for the next stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Efficient Vision Transformers The lightweight solution of vision Transformer mainly fo- cuses on the optimization of self attention, including follow- ing ways: reducing the token length (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Xie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2022) and using local windows (Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Yuan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' PVT (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021) performs spatial compression on keys and values through spatial reduction, and PVTv2 (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2022) further re- places the spatial reduction by pooling operation, but many details are lost in this way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Swin (Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Yuan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021a) significantly reduce the length of the token by restricting self attention to local windows, while these against the global nature of Transformer and restrict the global receptive field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' At the same time, many lightweight designs (Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Mehta and Rastegari 2022) in- troduce Transformers in MobileNet to obtain more global semantics, but these methods still suffer from the square- level computational complexity of conventional Transform- ers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Mobile-Former (Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2022) combines the par- allel design of MobileNet (Sandler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2018) and Trans- former (Dosovitskiy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021), which can achieve bidi- rectional fusion performance of local and global features far beyond lightweight networks such as MobileNetV3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' How- ever, it only uses a very small number of tokens, which is not conducive to semantic segmentation tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Method In this section, we introduce the lightweight parallel hetero- geneous network for semantic segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' The basic in- formation is first provivided on the replacement of semantic decoder by parallel heterogeneous network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Then, we intro- duce the modeling of pixel descriptions and semantic fre- quencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Finally, the specific details and the computational overhead of parallel architectures are discussed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Parallel Heterogeneous Architecture The semantic decoder propagates the image semantics ob- tained by the encoder to each pixel and restores the lost de- tails in downsampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' A straightforward alternative is to extract image semantics in high resolution features, but it introduces a huge amount of computation, especially for vi- sion Transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' In contrast, we propose a novel strategy to describe pixel semantic information with prototype se- mantics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' For each stage, given a feature F ∈ RH×W ×C, we first initial a grid G ∈ Rh×w×C as a prototype of the image, where each point in G acts as a local cluster center, and the initial state simply contains information about the surrounding area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Here we use a 1 × C vector to represent the local semantic information of each point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' For each spe- cific pixel, because the semantics of the surrounding pixels are not consistent, there are overlap semantics between each cluster centers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' The cluster centers are weighted initialized in its corresponding area α2, and the initialization of each cluster center is expressed as: G(s) = n � i=0 wixi (1) where n = α × α, wi denotes the weight of xi, and α is set to 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Our purpose is to update each cluster center s in the grid G instead of updating the feature F directly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' As h × w ≪ H × W, it greatly simplifies the computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Here, we use a Transformer-based module as prototype learning to update each cluster center, which contains L lay- ers in total, and the updated center is denoted as G′(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' For each updated cluster center, we recover it by a pixel descrip- tor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Let F ′ i denote the recovered feature, which contains not only the rich pixel semantics from F, but also the prototype semantics collected by the cluster centers G′(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Since the cluster centers aggregate the semantics of surrounding pix- 200 175 150 125 100 75 50 25 5 10 15 20 25 30 35 40 mIoU Filter Radius Filtered Image Figure 3: The effect of different frequency components on semantic segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' We use the cut-edge method Seg- former (Xie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021) to evaluate the impact of frequency components on semantic segmentation on the widely used ADE20K dataset (Zhou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' The image is trans- formed into the frequency domain by a fast Fourier trans- form (Heideman, Johnson, and Burrus 1984), and high- frequency information is filtered out using a low-pass op- erator with a radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Removing high-frequency components at different levels results the prediction performance drops significantly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' els, resulting in the loss of local details, PD first models local details in F with pixel semantics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Specifically, F is projected to a low-dimensional space, establishing local relationships between pixels such that each local patch keeps a distinct boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Then G′(s) is embedded into F to restore to the original space feature F ′ through bilinear interpolation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Fi- nally, they are integrated through a linear projection layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Prototype Learning by Adaptive Frequency Filter Motivation Semantic segmentation is an extremely com- plex pixel-level classification task that is prone to category confusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' The frequency representation can be used as a new paradigm of learning difference between categories, which can excavate the information ignored by human vi- sion (Zhong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Qian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' As shown in Figure 3, humans are robust to frequency information re- moval unless the vast majority of frequency components are filtered out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' However, the model is extremely sensitive to frequency information removal, and even removing a small amount would result in significant performance degrada- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' It shows that for the model, mining more frequency information can enhance the difference between categories and make the boundary between each category more clear, thereby improving the effect of semantic segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Since feature F contains rich frequency features, each cluster center in the grid G also collects these frequency in- formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Motivated by the above analysis, extracting more beneficial frequencies in grid G helps to discriminate the attributes of each cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' To extract different frequency fea- tures, the straightforward way is to transform the spatial do- main features into spectral features through Fourier trans- form, and use a simple mask filter in the frequency domain H Groups Dynamic Low-pass Filters N Groups … … Dynamic High-pass Filters Weight Sharing Frequency Aggregation Frequency Similarity Kernel M Groups Aggregation Convolution Upsampling Figure 4: Structure of the adaptive frequency filter in pro- totype learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' The prototype as learnable local descrip- tion utilizes frequency component similarity kernel to en- hance different components while combining efficient and dynamic low-pass and high-pass filters to capture more fre- quency information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' to enhance or attenuate the intensity of each frequency com- ponent of the spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Then the extracted frequency fea- tures are converted to the spatial domain by inverse Fourier transform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' However, Fourier transform and inverse trans- form bring in additional computational expenses, and such operators are not supported on many hardwares.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Thus, we design an adaptive frequency filter block based on the vanilla vision Transformer from the perspective of spectral correla- tion to capture important high frequency and low frequency features directly in the spatial domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' The core components are shown in Figure 4 and the formula is defined as: AF F (X) = ||Dfc h (X)||H � �� � corr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' + ||Dlf m(X)||M + ||Dhf n (X)||N � �� � dynamic filters , (2) where Dfc h , Dlf m(X) and Dhf n (X) denote the frequency similarity kernel with H groups to achieve frequency com- ponent correlation enhancement, dynamical low-pass filters with M groups and dynamical high-pass filters with N groups, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' || · || denotes concatenation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' It is worth noting that these operators adopt a parallel structure to fur- ther reduce the computational cost by sharing weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Frequency Similarity Kernel (FSK) Different frequency components distribute over in G, and our purpose is to se- lect and enhance the important components that helps se- mantic parsing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' To this end, we design a frequency similar- ity kernel module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Generally, this module is implemented by the vision Transformer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Given a feature X ∈ R(hw)×C, with relative position encoding on G through a convolution layer (Wu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' We first use a fixed-size similarity kernel A ∈ RC/H×C/H to represent the correspondence be- tween different frequency components, and select the impor- tant frequency components by querying the similarity ker- nel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' We treat it as a function transfer that computes the keys K and values V of frequency components through a linear layer, and normalizes the keys across frequency components by a Softmax operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Each component integrates a simi- larity kernel Ai,j, which is computed as: Ai,j = ekiv⊤ j / n � j=1 eki, (3) where ki represents the i-th frequency component in K, vj represents the j-th frequency component in V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' We also transform the input X into the query Q through a linear layer, and obtain the component-enhanced output through interactions on the fixed-size similarity kernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Dynamic Low-Pass Filters (DLF) Low-frequency com- ponents occupy most of the energy in the absolute image and represent most of the semantic information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' A low-pass fil- ter allows signals below the cutoff frequency to pass, while signals above the cutoff frequency are obstructed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Thus, we employ typical average pooling as a low-pass filter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' How- ever, the cutoff frequencies of different images are different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' To this end, we control different kernels and strides in multi- groups to generate dynamic low-pass filters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' For m-th group, we have: Dlf m(vm)) = B(Γs×s(vm)), (4) where B(·) represents bilinear interpolation and Γs×s de- notes the adaptive average pooling with the output size of s × s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Dynamic High-Pass Filters (DHF) High-frequency in- formation is crucial to preserve details in segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' As a typical high-pass operator, convolution can filter out irrel- evant low-frequency redundant components to retain favor- able high-frequency components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' The high-frequency com- ponents determine the image quality and the cutoff fre- quency of the high-pass for each image is different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Thus, we divide the value V into N groups, resulting vn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' For each group, we use a convolution layer with different kernels to simulate the cutoff frequencies in different high-pass filters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' For the n-th group, we have: Dhf n (vn)) = Λk×k(vn), (5) where Λk×k denotes the depthwise convolution layer with kernel size of k ×k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' In addition, we use the Hadamard prod- uct of query and high-frequency features to suppress high frequencies inside objects, which are noise for segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' FFN helps to fuse the captured frequency information, but owns a large amount of calculation, which is often ignored in lightweight designs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Here we reduce the dimension of the hidden layer by introducing a convolution layer to make up for the missing capability due to dimension compression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Discuss For the frequency similarity kernel, the compu- tational complexity is O(hwC2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' The computational com- plexity of each dynamic high-pass filter is O(hwCk2), which is much smaller than that of frequency similarity kernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Since the dynamic low-pass filter is implemented by adaptive mean pooling of each group, its computational complexity is about O(hwC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Therefore, the computational complexity of a module is linear with the resolution, which Table 1: Comparison to state of the art methods on ADE20K with resolution at 512 × 512.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Here we use the Segformer as the baseline and report the per- centage growth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' MV2=MobileNetV2, EN=EfficientNet, SV2=ShuffleNetV2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Model #Param.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' FLOPs mIoU FCN-8s 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8M 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6G 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='7 PSPNet (MV2) 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='7M 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2G 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6 DeepLabV3+ (MV2) 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4M 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8G 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='1 DeepLabV3+ (EN) 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='1M 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='9G 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2 DeepLabV3+ (SV2) 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='9M 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='3G 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6 Lite-ASPP 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='9M 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4G 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6 R-ASPP 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2M 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8G 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 LR-ASPP 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2M 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0G 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='1 HRNet-W18-Small 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0M 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2G 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4 HR-NAS-A 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5M 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4G 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2 HR-NAS-B 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='9M 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2G 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='9 PVT-v2-B0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6M 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0G 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2 TopFormer 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='1M 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8G 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8 EdgeViT-XXS 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='9M 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4G 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='7 Segformer (LVT) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='9M 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6G 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='3 Swin-tiny 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='9M 46G 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5 Xcit-T12/16 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4M 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5G 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='1 ViT 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2M 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6G 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4 PVT-tiny 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0M 33G 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6 Segformer 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8M 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4G 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4 AFFormer-tiny 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6M(-58%) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8G(-67%) 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='7(+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='3) AFFormer-small 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='3M(-41%) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6G(-61%) 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2(+2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8) AFFormer-base 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0M(-21%) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6G(-45%) 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8(+4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4) is advantageous for high resolution in semantic segmenta- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Experiments Implementation Details We validate the proposed AFFormer on three publicly datasets: ADE20K (Zhou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2017), Cityscapes (Cordts et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2016) and COCO-stuff (Caesar, Uijlings, and Fer- rari 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' We implement our AFFormer with the PyTorch framework base on MMSegmentation toolbox (Contributors 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Follow previous works (Cheng, Schwing, and Kir- illov 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Zhao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2017), we use ImageNet-1k to pre- train our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' During semantic segmentation training, we employ the widely used AdamW optimizer for all datasets to update the model parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' For fair comparisons, our training parameters mainly follow the previous work (Xie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' For the ADE20K and Cityscapes datasets, we adopt the default training iterations 160K in Segformer, where mini-batchsize is set to 16 and 8, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' For the COCO-stuff dataset, we set the training iterations to 80K and the minibatch to 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' In addition, we implement data augmen- tation during training for ADE20K, Cityscapes, COCO-stuff by random horizontal flipping, random resizing with a ratio of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0, and random cropping to 512×512, 1024×1024, 512 × 512, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' We evaluate the results with mean Intersection over Union (mIoU) metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Table 2: Comparison to state of the art methods on Cityscapes val set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' The FLOPs are test on the resolution of 1024 × 2048.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Meanwhile, we also report the percentage in- crease compared to Segformer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Model #Param.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' FLOPs mIoU FCN 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8M 317G 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5 PSPNet (MV2) 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='7M 423G 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2 DeepLabV3+ (MV2) 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4M 555G 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2 SwiftNetRN 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8M 104G 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5 EncNet 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='1M 1748G 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='9 Segformer 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8M 125G 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2 AFFormer-tiny 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6M(-58%) 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0G(-82%) 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5(+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='3) AFFormer-small 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='3M(-41%) 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2G(-79%) 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6(+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4) AFFormer-base 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0M(-21%) 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4G(-73%) 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='7(+2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5) Comparisons with Existing Works Results on ADE20K Dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' We compare our AF- Former with top-ranking semantic segmentation methods, including CNN-based and vision Transformer-based mod- els.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Following the inference settings in (Xie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021), we test FLOPs at 512×512 resolution and show the single scale results in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Our model AFFormer-base improves by 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2 mIoU under the same computing power consumption as Lite-ASPP, reaching 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8 mIoU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' At the same time, by reduc- ing the number of layers and channels, we obtain AFFormer- tiny and AFFormer-small versions to adapt to different com- puting power scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' For the lightweight and efficient Segformer (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4 GFLOPs),our base version (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6 GFLOPs) also gain 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4 mIoU using half the computing power and the tiny version (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4 GFLOPs) with only 1/4 the computing power improving 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='3 mIoU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Only 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8 GFLOPs are needed for the lighter topformer, but our base version has 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='1M less parameters (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='1M vs 3M) with 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 higher mIoU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Results on Cityscapes Dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Table 2 shows the results of our model and the cutting-edge methods on Cityscapes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Although the Segformer is efficient enough, due to its square-level complexity, we only use 30% of the compu- tational cost to reach 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='7 mIoU, which is 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5 mIoU im- provement with a 70% reduction in FLOPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Meanwhile, we report the results at different high resolutions in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' At the short side of {512, 640, 768, 1024}, the computational cost of our model is 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4%, 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5%, 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5% and 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5% of that of Segformer, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Meanwhile, the mIoU are improved by 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='9, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' The higher the input resolution, the more advantageous of our model in both computational cost and accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Results on COCO-stuff Dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' COCO-stuff dataset contains a large number of difficult samples that collected in COCO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' As show in Table 4, although complex decoders (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=', PSPNet, DeepLabV3+) can achieve better results than LR-ASPP (MV3), they bring a lot of computational cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Our model achieves an accuracy of 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='1 mIoU while only taking 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5 GFLOPs, achieving the best trade-off.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Ablation Studies All the ablation studies are conducted on ADE20K dataset with AFFormer-base unless otherwise specified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Rationalization of Parallel Structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Parallel architec- ture is the key to removing the decoder head and ensuring accuracy and efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' We first adjust the proposed struc- ture to a naive pyramid architecture (denoted as “w/o PD”) and a ViT architecture (denoted as “w/o PL”) to illustrate the advantages of the parallel architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Specifically, the “w/o PD” means removing PD module and keeping only PL mod- ule, while the “w/o PL” does the opposite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' As shown in Ta- ble 5, the setting “w/o PD” reduces 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6 mIoU due to the lack of high-resolution pixel semantic information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' The “w/o PL” structure without the pyramid structure has a significant re- duction in accuracy due to few parameters and lack of rich image semantic information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' It also demonstrates that our parallel architecture can effectively combine the advantages of both architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Advantages of Heterogeneous Structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' The purpose of the heterogeneous approach is to further reduce the com- putational overhead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' The PL module is adopted to learn the prototype representation in the clustered features, and then use PD to combine the original features for restoration, which avoids direct calculation on the high-resolution origi- nal features and reduce the computational cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' It can be seen from Table 6 that when the parallel branch is adjusted to the pixel description module (denote as “All PD”), which means that the prototype representation is learned by PD module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' The model size is only 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6M, and the FLOPs are reduced by 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5G, but the accuracy is reduced by 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='3 mIoU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' This is due to the PD lacks the ability to learn great prototype represen- tations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' In contrast, after we replace the PD module with the PL module (denote as “All PL”), the FLOPs are increased by 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4G, but there is almost no difference in accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' We believe that the PD module is actually only a simple way to restore the learned prototype, and the relatively complex PL module saturates the model capacity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Advantages of Adaptive Frequency Filter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' We use two datasets with large differences, including ADE20K and Cityscapes, to explore the core components in adaptive fre- quency filter module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' The main reason is that the upper limit of the ADE20K dataset is only 40 mIoU, while the upper limit of the Cityscapes is 80 mIoU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' The two datasets have different degrees of sensitivity to different frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' We report the benefits of each internal component in the Table 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' We find that DHF alone outperforms DLF, especially on the Cityscapes dataset by 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6 mIoU, while FSK is significantly higher than DLF and DHF on ADE20K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' This shows that ADE20K may be more inclined to an intermediate state be- tween high frequency and low frequency, while Cityscapes needs more high frequency information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' The combined ex- periments show that the combination of the advantages of each component can stably improve the results of ADE20K and Cityscapes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Frequency Statistics Visualization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' We first count the characteristic frequency distribution of different stages, as shown in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' It can be found that the curves of G2 and F2 almost overlap, indicating that the frequencies after clustering are very similar to those in the original features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' The same goes for G3 and F3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Whereas, the learned proto- Table 3: Speed-accuracy tradeoffs at different scales on Cityscapes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Model size FLOPs mIoU Segformer (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8M) 512 × 1024 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='7G 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='9 AFFormer-base (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0M) 512 × 1024 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6G(-51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4%) 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5(+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6) Segformer (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8M) 640 × 1280 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5G 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='7 AFFormer-base (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0M) 640 × 1280 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4G(-57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5%) 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6(+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='9) Segformer (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8M) 768 × 1536 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='7G 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='3 AFFormer-base (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0M) 768 × 1536 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4G(-62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5%) 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5(+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2) Segformer (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8M) 1024 × 2048 125G 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2 AFFormer-base (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0M) 1024 × 2048 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4G(-72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5%) 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='7(+2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5) Table 4: Comparison to state of the art meth- ods on COCO-stuff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' We use a single-scale results at the input resolution of 512 × 512.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' MV3=MobileNetV3 Model #Param.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' FLOPs mIoU PSPNet (MV2) 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='7M 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='9G 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='1 DeepLabV3+ (MV2) 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4M 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='9G 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='9 DeepLabV3+ (EN) 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='1M 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='1G 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5 LR-ASPP (MV3) – 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='37G 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2 AFFormer-base 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0M 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6G 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='1 Table 5: Ablation studies on the parallel structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Setting #Param.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' FLOPs mIoU w/o PD 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='78G 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='98G 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2 w/o PL 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='42G 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='65G 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5 Parallel 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0G 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6G 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8 Table 6: Ablation studies on heterogeneous architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Setting #Param.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' FLOPs mIoU All PD 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6M 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='85G 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4 All PL 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6M 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0G 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6 Heterogeneous 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0M 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6G 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8 Table 7: Ablation studies on frequency aware statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Setting #Param.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' FLOPs ADE20K Cityscapes DLF 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4M 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6G 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='7 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='7 DHF 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6M 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='9G 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='3 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='3 FSK 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='9M 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2G 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='5 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='3 DLF + DHF 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='7M 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='9G 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='1 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8 DLF + FSK 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8M 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2G 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2 DHF + FSK 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='9M 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='3G 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='3 Whole 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0M 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6G 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='7 type representation after frequency adaptive filtering signifi- cantly improves the contained frequency information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' After PD restoration, different frequency components can be em- phasized in different stages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' As shwon in Figure 6, we also analyze the frequency effects of the core components in the AFF module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' As expected, DLF and DHF show strong low- pass and high-pass capabilities, respectively, as FSK does.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' At the same time, we also found that the important frequency components screened and enhanced by FSK are mainly con- centrated in the high frequency part, but the frequency signal is more saturated than that of DHF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' This also shows that the high-frequency component part is particularly important in the semantic segmentation task, because it emphasizes more on the boundary details and texture differences between ob- jects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Meanwhile, according to the analysis in Table 7 (the effects of ADE20K and Cityscapes have been steadily im- proved), each core component has its own advantages, and the AFF module shows strong robustness in various types and complex scenes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Speed and Memory Costs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Meanwhile, we report the speed on the Cityscapes dataset in Table 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' We can find that the proposed model improves by 10 FPS and performs much better than Segformer on such high-resolution Cityscapes images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Table 8: The FPS is tested on a V100 NVIDIA GPU with a batch size of 1 on the resolution of 1024x2048.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Model FPS mIoU Segformer 12 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2 AFFormer 22 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='7 Figure 5: Frequency analysis of stage-2 (left) and stage-3 (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Input DHF DLF FSK DHF Input DLF FSK Figure 6: Frequency analysis of the core components in PL module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Conclusion In this paper, we propose AFFormer, a head-free lightweight semantic segmentation specific architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' The core is to learn the local description representation of the clustered prototypes from the frequency perspective, instead of di- rectly learning all the pixel embedding features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' It removes the complicated decoder while having linear complexity Transformer and realizes semantic segmentation as simple as regular classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' The various experiments demon- strate that the AFFormer owns powerful accuracy and great stability and robustness at low computational cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 Log amplitude 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0l 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2πl 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4π 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6㎡l 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8Tl 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0l Frequency8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 Log amplitude 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0l 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0π Frequency0 5 10 15 20 25 30 0 5 10 15 20 25 304.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='2π 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='4π 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='6π 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='8π 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='0π Frequency0 5 10 15 20 25 30 5 10 15 20 25 300 5 10 15 20 25 30 0 5 10 15 20 25 - 300 5 10 15 20 25 30 0 5 - 10 15 20 25 30Acknowledgements This work was supported by Alibaba Group through Alibaba Research Intern Program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' References Caesar, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Uijlings, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Ferrari, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Coco-stuff: Thing and stuff classes in context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' In Proceedings of the IEEE conference on computer vision and pattern recogni- tion, 1209–1218.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Chen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Zhu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Papandreou, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Schroff, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Adam, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Encoder-decoder with atrous separable con- volution for semantic image segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' In Proceedings of the European conference on computer vision (ECCV), 801–818.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Chen, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Dai, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Chen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Liu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Dong, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Yuan, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Liu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Mobile-former: Bridging mobilenet and transformer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 5270–5279.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Cheng, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Misra, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Schwing, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Kirillov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Gird- har, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Masked-attention mask transformer for univer- sal image segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 1290–1299.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Cheng, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Schwing, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Kirillov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Per-pixel classification is not all you need for semantic segmenta- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Advances in Neural Information Processing Systems, 34: 17864–17875.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Contributors, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' MMSegmentation: OpenMMLab Semantic Segmentation Toolbox and Benchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' https: //github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='com/open-mmlab/mmsegmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Cordts, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Omran, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Ramos, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Rehfeld, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Enzweiler, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Benenson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Franke, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Roth, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Schiele, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' The cityscapes dataset for semantic urban scene un- derstanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' In Proceedings of the IEEE conference on com- puter vision and pattern recognition, 3213–3223.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Dosovitskiy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Beyer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Kolesnikov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Weissenborn, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Zhai, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Unterthiner, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Dehghani, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Minderer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Heigold, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Gelly, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Uszkoreit, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Houlsby, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' ICLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' He, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Zhang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Ren, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Sun, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Deep resid- ual learning for image recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' In Proceedings of the IEEE conference on computer vision and pattern recogni- tion, 770–778.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Heideman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Johnson, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Burrus, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 1984.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Gauss and the history of the fast Fourier transform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' IEEE ASSP Magazine, 1(4): 14–21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Lee, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Kim, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Willette, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Hwang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' MPViT: Multi-path vision transformer for dense prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' In Pro- ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 7287–7296.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Li, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Zhang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Liu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Zhang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Ni, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Shum, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Mask DINO: Towards A Unified Transformer- based Framework for Object Detection and Segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' arXiv preprint arXiv:2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='02777.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Liang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Ge, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Tong, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Song, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Xie, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Not All Patches are What You Need: Expediting Vision Transformers via Token Reorganizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' In Interna- tional Conference on Learning Representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Liu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Lin, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Cao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Hu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Wei, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Zhang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Lin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Guo, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Swin transformer: Hierarchical vi- sion transformer using shifted windows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF International Conference on Computer Vi- sion, 10012–10022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Long, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Shelhamer, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Darrell, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Fully convo- lutional networks for semantic segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' In Proceed- ings of the IEEE conference on computer vision and pattern recognition, 3431–3440.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Mehta, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Rastegari, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Mobilevit: light-weight, general-purpose, and mobile-friendly vision transformer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' ICLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Qian, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Yin, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Sheng, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Chen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Shao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Thinking in frequency: Face forgery detection by mining frequency-aware clues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' In European conference on com- puter vision, 86–103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Rao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Zhao, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Zhu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Lu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Zhou, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Global filter networks for image classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Advances in Neural Information Processing Systems, 34: 980–993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Ren, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Zhou, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' He, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Feng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Shunted Self-Attention via Multi-Scale Token Aggregation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 10853–10862.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Sandler, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Howard, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Zhu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Zhmoginov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Chen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Mobilenetv2: Inverted residuals and lin- ear bottlenecks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' In Proceedings of the IEEE conference on computer vision and pattern recognition, 4510–4520.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Strudel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Garcia, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Laptev, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Schmid, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Segmenter: Transformer for semantic segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF International Conference on Computer Vision, 7262–7272.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Wang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Wu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Huang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Xing, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' High-frequency component helps explain the generaliza- tion of convolutional neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8684–8694.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Wang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Xie, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Fan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Song, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Liang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Lu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Luo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Shao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Pyramid vision trans- former: A versatile backbone for dense prediction without convolutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF International Conference on Computer Vision, 568–578.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Wang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Xie, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Fan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Song, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Liang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Lu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Luo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Shao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Pvt v2: Improved base- lines with pyramid vision transformer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Computational Vi- sual Media, 8(3): 415–424.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Wu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Peng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Chen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Fu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Chao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Re- thinking and Improving Relative Position Encoding for Vi- sion Transformer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF Inter- national Conference on Computer Vision (ICCV), 10033– 10041.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Xie, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Wang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Yu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Anandkumar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Alvarez, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Luo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' SegFormer: Simple and efficient design for semantic segmentation with transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Advances in Neural Information Processing Systems, 34: 12077–12090.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Xu, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Price, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Cohen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Huang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Deep image matting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' In Proceedings of the IEEE conference on computer vision and pattern recognition, 2970–2979.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Xu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Xu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Chang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Tu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Co-Scale Conv-Attentional Image Transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF International Conference on Computer Vi- sion (ICCV), 9981–9990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Yuan, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Fu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Huang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Lin, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Zhang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Chen, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Hrformer: High-resolution vision trans- former for dense predict.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Advances in Neural Information Processing Systems, 34: 7281–7293.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Yuan, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Huang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Guo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Zhang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Chen, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' OCNet: Object context for semantic segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' International Journal of Computer Vision, 129(8): 2375–2398.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Zhang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Pang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Chen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Loy, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' K-net: Towards unified image segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Advances in Neural Information Processing Systems, 34: 10326–10338.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Zhao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Shi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Qi, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Jia, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Pyra- mid scene parsing network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' In Proceedings of the IEEE con- ference on computer vision and pattern recognition, 2881– 2890.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Zhong, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Li, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Tang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Kuang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Wu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Ding, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Detecting Camouflaged Object in Frequency Domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4504–4513.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Zhou, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Zhao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Puig, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Fidler, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Barriuso, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Torralba, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Scene parsing through ade20k dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' In Proceedings of the IEEE conference on computer vision and pattern recognition, 633–641.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Zhu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Su, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Lu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Li, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' and Dai, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' Deformable detr: Deformable transformers for end-to-end object detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} +page_content=' ICLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE3T4oBgHgl3EQfqArY/content/2301.04648v1.pdf'} diff --git a/8dAyT4oBgHgl3EQfp_jS/vector_store/index.faiss b/8dAyT4oBgHgl3EQfp_jS/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..a282f4806bffa7f7114e02cc9a4ddb5b43d27bc3 --- /dev/null +++ b/8dAyT4oBgHgl3EQfp_jS/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:815ba8da0e998b860a0d12e7c4d326d4cff40dc8f82937df9d3eef7c44417e90 +size 6684717 diff --git a/AdE4T4oBgHgl3EQf4w7g/content/2301.05317v1.pdf b/AdE4T4oBgHgl3EQf4w7g/content/2301.05317v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..da63064b2b50652272d2ed1233238003d119fc4d --- /dev/null +++ b/AdE4T4oBgHgl3EQf4w7g/content/2301.05317v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2c42c9fae3cc2ba39f55f3c00792e40c51e15dfb789929b68b648349aed254db +size 348992 diff --git a/AdE4T4oBgHgl3EQf4w7g/vector_store/index.pkl b/AdE4T4oBgHgl3EQf4w7g/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..428d5ed58afead2d36cc25914f1027b8d7a2c298 --- /dev/null +++ b/AdE4T4oBgHgl3EQf4w7g/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:38e4967b3ef875eca1392bbd03a00dc0e48b8101af9ef3a2a33f11a5af3a67c5 +size 146214 diff --git a/AdFRT4oBgHgl3EQftzji/content/tmp_files/2301.13629v1.pdf.txt b/AdFRT4oBgHgl3EQftzji/content/tmp_files/2301.13629v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..e18c108b0cb4e8d44fed78fc996d204d7aff3889 --- /dev/null +++ b/AdFRT4oBgHgl3EQftzji/content/tmp_files/2301.13629v1.pdf.txt @@ -0,0 +1,2114 @@ +DiffSTG: Probabilistic Spatio-Temporal Graph Forecasting +with Denoising Diffusion Models +Haomin Wen 1 Youfang Lin 1 Yutong Xia 2 Huaiyu Wan 1 Roger Zimmermann 2 Yuxuan Liang � 2 +Abstract +Spatio-temporal graph neural networks (STGNN) +have emerged as the dominant model for spatio- +temporal graph (STG) forecasting. Despite their +success, they fail to model intrinsic uncertainties +within STG data, which cripples their practicality +in downstream tasks for decision-making. To this +end, this paper focuses on probabilistic STG fore- +casting, which is challenging due to the difficulty +in modeling uncertainties and complex ST depen- +dencies. In this study, we present the first attempt +to generalize the popular denoising diffusion prob- +abilistic models to STGs, leading to a novel non- +autoregressive framework called DiffSTG, along +with the first denoising network UGnet for STG +in the framework. Our approach combines the +spatio-temporal learning capabilities of STGNNs +with the uncertainty measurements of diffusion +models. Extensive experiments validate that Diff- +STG reduces the Continuous Ranked Probabil- +ity Score (CRPS) by 4%-14%, and Root Mean +Squared Error (RMSE) by 2%-7% over existing +methods on three real-world datasets. +1. Introduction +Humans enter a world that is inherently structured, in which +a myriad of elements interact with each other both spatially +and temporally, resulting in a spatio-temporal composition. +Spatio-Temporal Graph (STG) is the de facto most popular +tool for injecting such structural information into the formu- +lation of practical problems, especially in smart cities. In +this paper, we focus on the problem of STG forecasting, i.e., +predicting the future signals generated on a graph given its +historical observations, such as traffic prediction (Li et al., +2018), weather forecasting (Simeunovi´c et al., 2021), and +taxi demand estimation (Yao et al., 2018). To facilitate +understanding, a sample illustration is given in Figure 1(a). +1School of Computer and Information Technology, Beijing Jiao- +tong University, Beijing, China 2School of Computing, National +University of Singapore, Singapore. Correspondence to: Yuxuan +Liang . +Preprint. Under review. +STG Forecasting +2 +Problem Definition +h +T +V D +h +X +  + +p +T +V D +p +X +  + +STG Model +➢ Given the historical spatial-temporal graph (STG) to predict the future STG. +➢ Stochastic Prediction +Problem +Definition +Related Work +Motivation +Solution +Experiment +Stochastic STG Forecasting +t +Prediction +(a) Spatio-Temporal Graph +(b) Probabilistic Prediction +Time +1t +2t +3t +… +… +Space +Forecast +History +Figure 1. Illustration of probabilistic STG forecasting. +Recent techniques for STG forecasting are mostly determin- +istic, calculating future graph signals exactly without the +involvement of randomness. Spatio-Temporal Graph Neural +Networks (STGNN) have emerged as the dominant model +in this research line. They resort to GNNs for modeling spa- +tial correlations among nodes, and Temporal Convolutional +Networks (TCN) or Recurrent Neural Networks (RNN) for +capturing temporal dependencies. Though promising, these +deterministic approaches still fall short of handling uncer- +tainties within STGs, which considerably trims down their +practicality in downstream tasks for decision-making. For +example, Figure 1(b) depicts the prediction results of passen- +ger flows in a metro station. In the black box, the determin- +istic method cannot provide the reliability of its predictions. +Conversely, the probabilistic method renders higher uncer- +tainties (see the green shadow), which indicates a potential +outbreaking of passenger flows in that region. By knowing a +range of possible outcomes we may experience and the like- +lihood of each, the traffic system is able to take operations +in advance for public safety management. +While prior endeavors on stochastic STG forecasting were +conventionally scarce, we are witnessing a blossom of prob- +abilistic models for time series forecasting (Rubanova et al., +2019; Salinas et al., 2020; Rasul et al., 2021). Denoising +Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) +are one of the most prevalent methods in this stream, whose +key insight is to produce the future samples by gradually +transforming a noise into a plausible prediction through a +denoising process. Unlike vanilla unconditional DDPMs +that were originally designed for image generation, such +transformation function between consecutive steps is condi- +tioned on the historical time series readings. For example, +TimeGrad (Rasul et al., 2021) sets the LSTM-encoded rep- +resentation of the current time series as the condition, and +arXiv:2301.13629v1 [cs.LG] 31 Jan 2023 + +100 +groud-truth +06 +deterministic +80 - +probabilistic +70 +60 - +50- +40- +30 - +20 +10 +0 +5 +10 +15 +20Probabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion Models +estimates the future regressively. CSDI (Tashiro et al., 2021) +directly utilizes observed values as the condition to model +the data distribution. +However, the above probabilistic time series models are still +insufficient for modeling STGs. Firstly, they only model +the temporal dependencies within a single node, without +capturing the spatial correlations between different nodes. +In reality, objects are correlated with each other spatially, for +example, nearby sensors in a road network tend to witness +similar traffic trends. Failing to encode such spatial depen- +dencies will drastically deteriorate the predictive accuracy +(Yu et al., 2018; Wu et al., 2019). Secondly, the training and +inference of existing probabilistic time series models, e.g., +Latent ODE (Rubanova et al., 2019) and TimeGrad, suffer +notorious inefficiency due to their sequential nature, thereby +posing a hurdle to long-term forecasting. +To address these issues, we generalize the popular DDPMs +to spatio-temporal graphs for the first time, leading to a +novel framework called DiffSTG, which couples the spatio- +temporal learning capabilities of STGNNs with the uncer- +tainty measurements of DDPMs. Targeting the first chal- +lenge, we devise a simple yet effective module (UGnet) as +the denoising network of DiffSTG. As its name suggests, +UGnet leverages a Unet-based architecture (Ronneberger +et al., 2015) to capture multi-scale temporal dependencies +and GNN to model spatial correlations. Compared to ex- +isting denoising networks in standard DDPMs, our UGnet +performs more accurate denoising in the reverse process +by virtue of capturing ST dependencies. To overcome the +second issue, our DiffSTG produces future samples in a +non-autoregressive fashion. In other words, our framework +efficiently generates multi-horizon predictions all at once, +rather than producing them step by step as what TimeGrad +did. In summary, our contributions lie in three aspects: +• We hit the problem of probabilistic STG forecasting from +a score-based diffusion perspective with the first shot. Our +DiffSTG can effectively model the complex ST dependen- +cies and intrinsic uncertainties within STG data. +• We develop a novel denoising network called UGNet +dedicated to STGs for the first time. It contributes as a +new and powerful member of DDPMs’ denoising network +family for modeling ST-dependencies in STG data. +• We empirically show that DiffSTG reduces the Continu- +ous Ranked Probability Score (CRPS) by 4%-14%, and +Root Mean Squared Error (RMSE) by 2%-7% over exist- +ing probabilistic methods on three real-world datasets. +The rest of this paper is organized as follows. We delineate +the concepts of DDPM in Section 2. The formulation and +implementation of the proposed DiffSTG are detailed in Sec- +tion 3 and 4, respectively. We then examine our framework +and present the empirical findings in Section 5. Lastly, we +introduce related arts in Section 6 and conclude in Section 7. +2. Denoising Diffusion Probabilistic Models +Given samples from a data distribution q(x0), Denoising +Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) +are unconditional generative models aiming to learn a model +distribution pθ(x0) that approximates q(x0) and is easy to +sample from. Let xn for n = 1, · · · , N be a sequence +of latent variables from the same sample space of x0 (de- +noted as X). DDPM are latent variable models of the form +pθ(x0) = +� +pθ(x0:N)dx1:N. It contains two processes, +namely the forward process and the reverse process. +Forward process. The forward process is defined by a +Markov chain which progressively adds Gaussian noise to +the observation x0: +q(x1:N|x0) = +N +� +n=1 +q(xn|xn−1), +(1) +where q(xn|xn−1) is a Gaussian distribution as +q(xn|xn−1) = N(xn; +� +1 − βnxn−1, βnI), +(2) +and {β1, · · · , βN} is an increasing variance schedule with +βn ∈ (0, 1) that represents the noise level at forward step n. +Unlike typical latent variable models such as the variational +autoencoder (Rezende et al., 2014), the approximate pos- +terior q(x1:N|x0) in diffusion probabilistic models is not +trainable but fixed to a Markow chain depicted by the above +Gaussian transition process. +Let ˆαn = 1 − βn and αn = �N +n=1 ˆαn be the cumulative +product of ˆαn, a special property of the forward process is +that the distribution of xn given x0 has a close form: +q(xn|x0) = N(xn; √αnx0, (1 − αn)I), +(3) +which can also be expressed as xn = √αnx0 + √1 − αnϵ +by the reparameteriztioin trick (Kingma & Welling, 2013), +with ϵ ∈ N(0; I) as a sampled noise. The above property +allows us to directly sample xn at any arbitrary noise level +n, instead of computing the forward process step by step. +Reverse process. The reverse process denoises xN to re- +cover x0 recurrently. It also follows a Markov chain but +with learnable Gaussian transitions starting with p(xN) = +N(xN; 0, I), which is defined as +pθ(x0:N) = p(xN) +1 +� +n=N +pθ(xn−1|xn). +(4) +Then, the transition between two nearby latent variables is +denoted by +pθ(xn−1|xn) = N(xn−1; µθ(xn, n), σθ(xn, n)), +(5) +with shared parameters θ. Here we choose the same param- +eterization of pθ(xn−1|xn) as in (Ho et al., 2020) in light + +Probabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion Models +of its promising performance on image generation: +µθ(xn, n) = 1 +αn +� +xn − +βn +√1 − αn +ϵθ (xn, n) +� +, +(6) +σθ(xn, n) = 1 − αn−1 +1 − αn +βn, +(7) +where ϵθ(X ×R) → X is a trainable denoising function that +decides how much noise should be removed at the current +denoising step. The parameters θ are learned by solving the +following optimization problem: +min +θ +L(θ) = min +θ +Ex0∼q(x0),ϵ∼N (0,I),n ∥ϵ − ϵθ (xn, n)∥2 +2 . +Since we already know x0 in the training stage, and recall +that xn = √αnx0 + √1 − αnϵ by the property as men- +tioned in the forward process, the above training objective +of unconditional generation can be specified as +min +θ +L(θ) = min +θ +E +��ϵ − ϵθ +�√αnx0 + +√ +1 − αnϵ, n +���2 +2 . +(8) +This training objective can be viewed as a simplified ver- +sion of loss similar to the one in Noise Conditional Score +Networks (Song & Ermon, 2019; 2020). Once trained, +we can sample x0 from Eq. (4) and Eq. (5) starting from +the Guassian noise xN. This reverse process resembles +Langevin dynamics, where we first sample from the most +noise-perturbed distribution and then reduce the noise scale +step by step until we reach the smallest one. We provide +details of DDPM in Appendix A.1. +3. DiffSTG Formulation +Let G = {V, E, A} represent a graph with V nodes, where +V, E are the node set and edge set, respectively. A ∈ +RV ×V is a weighted adjacency matrix to describe the graph +topology. For V = {v1, . . . , vV }, let xt ∈ RF ×V denote +F-dimentional signals generated by the V nodes at time t. +Given historical graph signals xh = [x1, · · · , xTh] of Th +time steps and the graph G as inputs, STG forcasting aims +at learning a function F to predict future graph signals xp, +formulated as: +F : (xh; G) → [xTh+1, · · · , xTh+Tp] := xp, +(9) +where Tp is the forecasting horizon. In this study, we focus +on the task of probabilistic STG forecasting, which aims to +estimate the distribution of future graph signals. +As introduced in Section 1, on the one hand, current de- +terministic STGNNs are capable of capturing the spatial- +temporal correlation in STG data, while failing to model the +uncertainty of the prediction. On the other hand, diffusion- +based probabilistic time series forecasting models (Rasul +et al., 2021; Tashiro et al., 2021) have powerful abilities +in learning high-dimensional sequential data distributions, +while incapable of capturing spatial dependencies and facing +efficiency problems when applied to STG data. +To this end, we generalize the popular DDPM to spatio- +temporal graphs and present out a novel framework called +DiffSTG for probabilistic STG forecasting in this section. +DiffSTG couples the spatio-temporal learning capabilities +of STGNNs with the uncertainty measurements of diffusion +models. +3.1. Conditional Diffusion Model +The original DDPM is designed to generate an image from +a white noise without condition, which is not aligned with +our task where the future signals are generated conditioned +on their histories. Therefore, for STG forecasting, we first +extend the DDPM to a conditional one by making a few +modifications to the reverse process. In the unconditional +DDPM, the reverse process pθ(x0:N) in Eq. (4) is used to +calculate the final data distribution q(x0). To get a con- +ditional diffusion model for our task, a natural approach +is adding the history xh and the graph structure G as the +condition in the reverse process in Eq. (4). In this way, the +conditioned reverse diffusion process can be expressed as +pθ(xp +0:N|xh, G) = p(xp +N) +1 +� +n=N +pθ(xp +n−1|xp +n, xh, G). +(10) +The transition probability of two latent variables in Eq. (5) +can be extended as +pθ(xp +n−1|xp +n, xh, G) += N(xp +n−1; µθ(xp +n, n|xh, G), σθ(xp +n, n|xh, G)). +(11) +Furthermore, the training objective in Eq. (8) can be rewrit- +ten as a conditional one: +min +θ +L(θ) = min +θ +Exp +0,ϵ +��ϵ − ϵθ +� +xp +n, n|xh, G +���2 +2 . +(12) +3.2. Generalized Conditional Diffusion Model +In Eq. (10)-(12), the condition xh and denoising target xp +are separated into two sample space xh ∈ X h and xp ∈ X p. +However, they are indeed extracted from two consecutive +periods. Here we propose to consider the history xh and fu- +ture xp as a whole, i.e., xall = [xh, xp] ∈ RF ×V ×T , where +T = Th + Tp. The history can be represented by masking +all future time steps in xall, denoted by xall +msk. So that the +condition xall +msk and denoise target xall share the same sam- +ple space X all. Thus, the masked version of Eq. (10) can be +rewritten as +pθ(xall +0:N|xall +msk, G) = p(xall +N ) +1 +� +n=N +pθ(xall +n−1|xall +n , xall +msk, G). +(13) + +Probabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion Models +The masked version of Eq. (12) can be rewritten as +min +θ +L(θ) = min +θ +Exall +0 ,ϵ +���ϵ − ϵθ +� +xall +n , n|xall +msk, G +���� +2 +2 . +(14) +Compared with the formulation in Eq. (10)-(12), this new +formulation is a more generalized one which has the fol- +lowing merits. Firstly, the loss in Eq. (14) unifies the recon- +struction of the history and estimation of the future, thus the +historical data can be fully utilized to model the data distri- +bution. Secondly, the new formulation unifies various STG +tasks in the same framework, including STG prediction, +generation, and interpolation (Li & Revesz, 2004). +Training. In the training process, given the conditional +masked information xall +msk, graph G and the target xall +0 , we +sample noise targets xall +n += √αnxall +0 ++ √1 − αnϵ, and +then train ϵθ by the loss function in Eq. (14). The training +procedure of DiffSTG is presented in Algorithm 1. +Algorithm 1 Training of DiffSTG +1: Input: distribution of training data q(xall +0 ), number of diffu- +sion step N, variance schedule {β1, · · · , βN}, graph G. +2: Output: Trained denoising function ϵθ +3: repeat +4: +n ∼ Uniform({1, · · · , N}), xall +0 +∼ q(xall +0 ) +5: +Constructing the masked signals xall +msk according to ob- +served values +6: +Sample ϵ ∼ N(0, I) where ϵ’s dimension corresponds to +xall +0 +7: +Calculate noisy targets xall +n = √αnxall +0 + √1 − αnϵ +8: +Take gradient step ∇θ∥ϵ − ϵθ(xall +n , n|xall +msk, G))∥2 +2 accord- +ing to Eq. (14) +9: until converged +Inference. As outlined in Algorithm 2, the inference pro- +cess utilizes the trained denoising function ϵθ to sample +xall +n−1 step by step according to Eq. (13), under the guidance +of xall +msk and G. +Algorithm 2 Sampling of DiffSTG +1: Input: Historical graph signal xh, graph G, trained denoising +function ϵθ +2: Output: Future forecasting xp +3: Construct xall +msk according to xh +4: Sample ϵ ∼ N(0, I) where ϵ’s dimension corresponds to +xall +msk +5: for n = N to 1 do +6: +Sample xall +n−1 using Eq. (13) by taking xall +msk and G as +condition +7: end for +8: Take out the forecast target in xall +0 , i.e., xp +9: Return xp +4. DiffSTG Implementation +After introducing the DiffSTG’s formulation, we implement +it via elaborately-designed model architecture, which is +illustrated in Figure 2. At the heart of the model is the pro- +posed denoising network (UGnet) ϵθ in the reverse diffusion +process, which performs accurate denoising with the ability +to effectively model ST dependencies in the data. +4.1. Denoising Network: UGnet +Denoising network ϵθ in previous works can be mainly +classified into two classes, Unet-based architecture (Ron- +neberger et al., 2015) for image-related tasks (Rombach +et al., 2022; Voleti et al., 2022; Ho et al., 2020), and +WaveNet-based architecture (van den Oord et al., 2016) for +sequence-related tasks (Kong et al., 2020; Liu et al., 2022b; +Kim et al., 2020). These networks consider the input as ei- +ther grids or segments, lacking the ability to capture spatio- +temporal correlations in STG data. To bridge this gap, we +propose a new denoising network ϵθ(X all × R|X all +msk, G) → +X all, named UGnet. It adopts an Unet-like architecture in +the temporal dimension to capture temporal dependencies +at different granularities (e.g., 15 minutes or 30 minutes), +and utilizes GNN to model the spatial correlations. +Specifically, as shown in Figure 2, UGnet takes xall +msk, xall +n , +n, G as inputs, and outputs the denoised noise ϵ. It first +concatenates xall +n ∈ RF ×V ×T and xall +msk ∈ RF ×V ×T in the +temporal dimension to form a new tensor �xall +n ∈ RF ×V ×2T , +which is projected to a high-dimensional representation +H ∈ RC×V ×2T by a linear layer, where C is the projected +dimension. Then H is fed into several Spatio-temporal +Residual Blocks (ST-Residual Blocks for short), with each +capturing temporal dependencies and spatial dependencies, +respectively. Let Hi ∈ RC×V ×Ti (where H0 = H) denote +the input of the i-th ST-Residual Block, where Ti is the +length of time dimension. +Temporal Dependency Modeling. As shown in Figure 7, +at each ST-Residual Block, Hi is fed into a Temporal Con- +volution Network (TCN) (Bai et al., 2018) for modeling +temporal dependence, which is a 1-D gated causal convo- +lution of K kernel size with padding to get the same shape +with input. The convolution kernel ΓT ∈ RK×Ct +in×Ct +out +maps the input Hi to outputs Pi, Qi ∈ RCt +out×V ×Ti with +the same shape. Formally, the temporal gated convolution +can be defined as +ΓT (Hi) = Pi ⊙ σ(Qi) ∈ RCt +out×V ×Ti, +(15) +where ⊙ is the element-wise Hadamard product, and σ is +the sigmoid activation function. The item σ(Qi) can be +considered a gate that filters the useful information of Pi +into the next layer. We denote the output of TCN as Hi. +Spatial Dependency Modeling. Graph Convolution Net- +works (GCNs) are generally employed to extract highly +meaningful features in the space domain (Zhou et al., 2020). +The graph convolution can be formulated as +ΓG(Hi) = σ +� +Φ +� +Agcn, Hi +� +Wi +� +, +(16) + +Probabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion Models +UGnet +Solution:Model V3: Masked Conditional STG Diffusion for Prediction and Interpolation +Problem +Definition +Related Work +all +all +1 +( +| +) +n +n +q x +x − +all +all +ll +ms +1 +a +k +( +| +, +, ) +n +n +p +x +x +x + +− +Forward Diffusion Process +Time +… +… +Space +… +… +… +… +all +msk +( +, ) +x +Time +… +… +Space +Reverse Denoising Diffusion Process +… +Noise Schedule +… +… +… +Conditional Noise +Predictor UGnet +all +nx +condition: +all +0x +all +1 +nx − +all +nx +all +N +x +DiffSTG +Time +… +… +Space +Forecast +History +Time +… +… +Space +… +… +… +… +… +… +n + +G ++ +Temporal Conv +Temporal Conv +Graph Conv +Layer Norm +Up/Down-Sample +emb ++ +ST-Residual Block +n +all +nx +all +msk +x +Concatenate +ST-Residual Block +ST-Residual Block +ST-Residual +Block +ST-Residual Block +ST-Residual Block +FC +H +i +C V T +i +  + +e( ) +n +Figure 2. Illustration of proposed DiffSTG and denoising network UGnet. +where Wi ∈ RCg +in×Cg +in denotes a trainable parameter and σ +is an activation function. Φ(·) is an aggregation function that +decides the rule of how neighbors’ features are aggregated +into the target node. In this work, we do not focus on +developing the function Φ(·). Instead, we use the form +in the most popular vanilla GCN (Kipf & Welling, 2017) +that defines a symmetric normalized summation function +as Φgcn +� +Agcn, Hi +� += AgcnHi, where Agcn = D− 1 +2 (A + +I)D− 1 +2 ∈ RV ×V is a normalized adjacent matrix of graph G. +I is the identity matrix and D is the diagonal degree matrix +with Dii = � +j(A + I)ij. Note that we reshape the output +of the TCN layer to Hi ∈ RV ×Cg +in, where Cg +in = Ti × Ct +out, +and fed this node feature Hi to GCN. +Noise Level Embedding. +As shown in the right part +of Figure 2, like previous diffusion-based models (Rasul +et al., 2021), we use positional encodings of the noise level +n ∈ [1, N] and process it using a transformer positional +embedding (Vaswani et al., 2017): +e(n) = +� +. . . , cos +� +n/r +−2d +D +� +, sin +� +n/r +−2d +D +� +, . . . +�T +, +(17) +where d = 1, · · · , D/2 is the dimension number of the +embedding (set to 32), and r is a large constant 10000. For +more details about UGnet, please refer to Appendix A.2. +4.2. Sampling Acceleration +From a variational perspective, a large N (e.g., N = 1000 +in (Ho et al., 2020)) allows results of the forward process +to be close to a Gaussian distribution so that the reverse de- +noise process started with Gaussian distribution becomes a +good approximation. However, large N makes the sampling +low-efficiency since all N iterations have to be performed +sequentially. To accelerate the sampling process, we adopt +the sampling strategy in (Song et al., 2020), which only sam- +ples a subset {τ1, · · · , τM} of M diffusion steps. Formally, +the accelerated sampling process can be denoted as +xτm−1 = √ατm−1 +� +xτm−√ +1−ατmϵ(τm) +θ +√ατm +� ++ +� +1 − ατm−1 − σ2τm · ϵ(τm) +θ ++ στmϵτm, +(18) +where ϵτm +∼ N(0, I) is standard Gaussian noise in- +dependent of xn. +And στm controls how stochas- +tic +the +denoising +process +is. +We +set +σn += +� +(1 − αn−1) / (1 − αn) +� +1 − αn/αn−1 for all diffusion +steps, to make the generative process become a DDPM. +When the length of the sampling trajectory is much smaller +than N, we can achieve significant increases in computa- +tional efficiency. Moreover, note that the data in the last k +few reverse steps xall +i +(i ∈ {1, . . . , k}) can be considered +a good approximation of the target. Thus we can also add +them as samples, reducing the number of the reverse diffu- +sion process from S to S/k, where S is the required sample +number to form the data distribution. +4.3. Comparsion among Different Approaches +We give the overview of related models in Figure 3: i) De- +terministic STGNNs calculate future graph signals exactly +without the involvement of randomness. While the vanilla +DDPM is a latent variable generative model without con- +dition; ii) To estimate the data distribution from a trained +model, i.e., getting S samples, TimeGrad runs S × Tp × N +diffusion steps for the prediction of all future time steps, +where N, Tp is the diffusion step, prediction length, respec- +tively; iii) Compared with current diffusion-based models +for time series, DiffSTG 1) incorporates the graph as the +condition so that the spatial correlations can be captured, +and 2) is a non-autoregressive approach with �S × � +N dif- +fusion steps to get the estimated data distribution, where +�S = S/k < S and � +N = M < N. +… +𝑥h +𝑥p +STGNN +STGNNs +DDPM +𝑥0 +𝑥𝑛 +𝑥𝑁 +… +… +… +ℎ𝑡−2 +ℎ𝑡−1 +𝑥0 +𝑡−1 +𝑇𝑝 +RNN +TimeGrad +DiffSTG +… +𝑥0 +𝑡 +𝑥𝑛−1 +𝑡 +𝑥𝑛𝑡 +𝑥𝑁 +𝑡 +… +… +𝑥0 +p +𝑥𝑛−1 +p +𝑥𝑛 +p +𝑥𝑁 +p +𝑥h , +( ) +… +… +… +… +… +condition: +Figure 3. Overview of different models. + +Probabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion Models +Table 1. Experiment Results. Smaller MAE, RMSE, and CRPS indicate better performance. +Method +AIR-BJ +AIR-GZ +PEMS08 +MAE +RMSE +CRPS +MAE +RMSE +CRPS +MAE +RMSE +CRPS +Latent ODE (Rubanova et al., 2019) +20.61 +32.27 +0.47 +12.92 +18.76 +0.30 +26.05 +39.50 +0.11 +DeepAR (Salinas et al., 2020) +20.15 +32.09 +0.37 +11.77 +17.45 +0.23 +21.56 +33.37 +0.07 +CSDI (Tashiro et al., 2021) +26.52 +40.33 +0.50 +13.75 +19.40 +0.28 +32.11 +47.40 +0.11 +TimeGrad (Rasul et al., 2021) +18.64 +31.86 +0.36 +12.36 +18.15 +0.25 +24.46 +38.06 +0.09 +MC Dropout (Wu et al., 2021) +20.80 +40.54 +0.45 +11.12 +17.07 +0.25 +19.01 +29.35 +0.07 +DiffSTG (ours) +17.88 +29.60 +0.34 +10.95 +16.66 +0.22 +17.68 +27.13 +0.06 +Improvement +4.1% +7.1% +5.6% +1.5% +2.4% +4.3% +7.0% +7.6% +14.3% +5. Experiments +We conduct extensive experiments to evaluate the effective- +ness of our proposed DiffSTG on three real-world datasets +and compare it with other probabilistic baselines. +5.1. Dataset and Experiment Settings +Datasets. In the experiments, we choose three real-world +datasets from two domains, including a traffic flow dataset +PEMS08 (Song et al., 2020), and two air quality datasets +AIR-BJ and AIR-GZ (Yi et al., 2018). The PEMS08 dataset +records the traffic flow collected by sensors deployed on the +road network. The air quality datasets AIR-BJ and AIR-GZ +consist of one-year PM2.5 readings collected by air quality +monitoring stations in two metropolises (i.e., Beijing and +Guangzhou) in China, respectively. Statistics of the datasets +are shown in Table 2. More details on the datasets are +provided in Appendix A.3. +Table 2. Details of all datasets. +Dataset +Nodes +F +Data Type +Time interval +#Samples +PEMS08 +170 +1 +Traffic flow +5 minutes +17,856 +AIR-BJ +34 +1 +PM2.5 +1 hour +8,760 +AIR-GZ +41 +1 +PM2.5 +1 hour +8,760 +Implementation Details. As for hyperparameters, we set +the batch size as 8 and use the Adam optimizer with a learn- +ing rate of 0.002, which is halved every 5 epochs. For CSDI +and DiffSTG, we adopt the following quadratic schedule +for variance schedule: βn = +� +N−n +N−1 +√β1 + n−1 +N−1 +√βN +�2 +. +We set the minimum noise level β1 = 0.0001 and hidden +size C = 32 and search the number of the diffusion step N +and the maximum noise level βN from a given parameter +space (N ∈ [50, 100, 200], and βN ∈ [0, 1, 0.2, 0.3, 0.4]), +and each model’s best performance is reported in the ex- +periment. For other baselines, we utilize their codes and +parameters in the original paper. For all datasets, the history +length Th, and prediction length Tp are both set to 12. All +datasets are split into the training, validation, and test sets +in chronological order with a ratio of 6:2:2. The models are +trained on the training set and validated on the validation +set by the early stopping strategy. The source code will be +released after the review process. +5.2. Performance Comparison +The efforts of stochastic models for probabilistic STG fore- +casting were traditionally scarce. Hence, we compare our +model with baselines in the field of probabilistic time se- +ries forecasting, including Latent ODE (Rubanova et al., +2019), DeepAR (Salinas et al., 2020), TimeGrad (Rasul +et al., 2021), CSDI (Tashiro et al., 2021), and a recent STG +probabilistic forecasting method MC Dropout (Wu et al., +2021). We choose the Continuous Ranked Probability Score +(CRPS) (Matheson & Winkler, 1976) as an evaluation met- +ric, which is used to measure the compatibility of an es- +timated probability distribution with an observation. We +also report MAE and RMSE of the deterministic forecast- +ing results by averaging S (set to 8 in our paper) generated +samples. More details are provided in Appendix A.3. +In Table 1, DiffSTG outperforms all the probabilistic base- +lines: it reduces the CRPS by 5.6%, 4.3%, and 14.3% on +the three datasets compared to the most competitive base- +line in each dataset, respectively. Distributions in DeepAR +and Latent ODE can be viewed as some types of low-rank +approximations of the target, which naturally restricts their +capability to model the true data distribution. TimeGrad out- +performs LatentODE due to its DDPM-based architecture +with tractable likelihoods that models the distribution in a +general fashion. CSDI is a diffusion-based model originally +proposed for time series imputation, thus performing worse +in our forecasting tasks. MC Dropout achieves the second +best performance on MAE and RMSE in most datasets, due +to its strong ability in modeling the ST correlations. Our +DiffSTG yields the best performance in both deterministic +and probabilistic prediction, revealing that it can preserve +the spatio-temporal learning capabilities of STGNNs as well +as the uncertainty measurements of the diffusion models. +Inference Time. Table 3 reports the average time cost per +prediction of two diffusion-based forecasting models. We +observe that TimeGrad is extremely time-consuming due to +its recurrent architecture. DiffSTG (with M=100 and k=1) +achieves 40× speed-up compared to TimeGrad, which stems +from its non-autoregressive architecture. The accelerated +sampling strategy achieves 3∼4× speed-up beyond Diff- +STG (M=100, k=1). We also find that when S is large, one +can increase k for efficiency without loss of performance. +See Appendix A.4 for more details. + +Probabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion Models +Case +AIR-GZ +AIR-GZ +PEMS08 +PEMS08 +PM 2.5 +PM 2.5 +Traffic Flow +Traffic Flow +Reconstruction +of history +Prediction +of future +(a) +(b) +(c) +(d) +(e) +AIR-GZ +AIR-GZ +AIR-GZ +PM 2.5 +PM 2.5 +PM 2.5 +Geographic +Location +Figure 4. Example of probabilistic spatio-temporal graph forecasting for air quality and traffic dataset. +Table 3. Time cost (by seconds) of TimeGrad and DiffSTG in AIR- +GZ (Th = 12, Tp = 12, N = 100). S is the number of samples. +Method +S = 8 +S = 16 +S = 32 +TimeGrad (Rasul et al., 2021) +9.58 +128.40 +672.12 +DiffSTG (M=100, k=1) +0.24 +0.48 +0.95 +DiffSTG (M=40, k=1) +0.12 +0.20 +0.71 +DiffSTG (M=40, k=2) +0.07 +0.12 +0.21 +Visualization. We plot the predicted distribution of dif- +ferent methods to investigate their performance intuitively. +We choose the AIR-GZ and PEMS08 for demonstration, +and more examples on other datasets can be found in Ap- +pendix A.5. We have the following observations: 1) Fig- +ure 4(a) shows that DiffSTG can capture the data distribution +more precisely than DeepAR; 2) in Figure 4(b), where the +predictions of both DeepAR and DiffSTG cover the observa- +tions, DiffSTG provides a more compact prediction interval, +indicating the ability to provide more reliable estimations. +3) Note that the model also needs to learn to reconstruct +the history in the loss of Eq. (14), we also illustrate the +model’s capability in history reconstruction in Figure 4(c); +4) Figure 4(d) draws the prediction result by a deterministic +method STGCN (Yu et al., 2018) and DiffSTG. In the red +box of Figure 4(d), the deterministic method fails to give an +accurate prediction. In contrast, our DiffSTG model renders +a bigger area (which covers the ground truth) in that region, +indicating that the data therein is coupled with higher un- +certainties. Such ability to accurately provide uncertainty +can be of great help for practical decision-making; 5) More- +over, as shown in Figure 4(e), we illustrate the estimated +distribution of DiffSTG on three stations, to illustrate its +spatial dependency learning ability. Compared with station +29, the estimated distribution of station 4 is more similar to +station 1, which is reasonable because the air quality of a +station has stronger connections with its nearby neighbors. +Equipped with the proposed denoising network UGnet, the +model is able to capture the ST correlations, leading to more +reliable and accurate estimation. +5.3. Ablation Study +We conduct an ablation study on the AIR-GZ dataset to +verify the effect of each component. Figure 5 illustrates +the results. Firstly, removing the spatial dependency learn- +ing in UGnet (w/o Spatial) brings considerable degenera- +tion, which validates the importance of modeling spatial +correlations between nodes. Secondly, when turning off +the temporal dependency learning in UGnet (w/o Tempo- +ral), the performance drops significantly on all evaluation +metrics. Thirdly, we detach the Unet-based structure in +UGnet and only use one TCN block (w/o U-structure) for +feature extraction, the performance degrades dramatically, +which demonstrates the merits of a Unet-based structure in +capturing ST-dependencies at different granularities. +DiffSTG +w/o Spatial +w/o Temporal +DiffSTG +w/o Spatial +w/o Temporal +w/o Spatial +w/o Temporal +w/o U-structure +Figure 5. Ablation Study. +5.4. Hyperparameter Study +In this section, we examine the impact of several crucial +hyperparameters on DiffSTG. Specifically, we report the +performance on AIR-GZ under different variance sched- +ules (i.e., the combination of βN and diffusion step N) and +hidden size C. +For different variance schedules {β1, . . . , βN}, we set +β1 = 0.0001 and let βN and N be from two search spaces, +where N ∈ [50, 100, 200] and βN ∈ [0.1, 0.2, 0.3, 0.4]. A +variance schedule can be specified by a combination of βN + +node:4 +100 +90 +80 +70 +60 +50 +40 +30 +0 +5 +10 +15 +20node:29 +90 +80 +70 +60 +50 +40 +30 +0 +5 +10 +15 +202980 +60 +40 +20 +0 +0 +5 +10 +15 +20node:29 +550 +500 +450 +400 +350 +300 +5 +10 +15 +20node:1 +550 +500 +450 +400 +350 +300 +0 +5 +10 +15 +2080 +60 +40 +20 +0 +5 +10 +15 +20DiffSTG 90% interval +DeepAR 90% interval +observationsobservationsDiffSTGDiffSTG +STGCN +. +observationsnode:1 +120 +100 +80 +60 +40 +0 +5 +10 +15 +2011.50 +0.240 +22.0 +11.40 +21.0 +0.235 +11.30 +20.0 +0.230 +19.0 +11.20 +18.0 +0.225 +17.0 +11.10 +0.220 +16.0 +11.00 +15.0 +0.215 +MAE +RMSE +CRPSProbabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion Models +(a) The effect of variance schedule +(b) The effect of hidden size +Figure 6. Influence of hyperparameters. +and N. The results are shown in Figure 6. We note that +the performance deteriorates rapidly when N = 50 and +βN = 0.1. In this case, the result of the forward process +is far away from a Gaussian distribution. Consequently, +the reverse process starting with Gaussian distribution be- +comes an inaccurate approximation, which heavily injures +the model performance. When N gets larger, there is a +higher chance of getting a promising result. +Figure 6 shows the results of DiffSTG with N = 100, and +βN = 0.4 vs. different hidden size C, from which we +observe that the performance first slightly increases and +then drops with the increase in hidden size. Compared with +the variance schedule, the model’s performance is much less +sensitive to the hidden size. We also investigated the effect +of other hyperparameters in Appendix A.4. +5.5. Limitations +Though promising in probabilistic prediction, DiffSTG still +has a performance gap compared with current state-of-the- +art STGNNs in terms of deterministic forecasting. Table 4 +shows the deterministic prediction performance of DiffSTG +(by averaging 8 in generate samples) and four deterministic +methods, including DCRNN (Li et al., 2018), STGCN (Yu +et al., 2018), STGNCDE (Choi et al., 2022), and GMSDR +(Liu et al., 2022a). While DiffSTG is competitive with most +probabilistic methods, it is still inferior to the state-of-the-art +deterministic methods. Different from deterministic meth- +ods, the optimization goal of DiffSTG is derived from a vari- +ational inference perspective (see details in Appendix. A.1), +where the learned posterior distribution might be inaccurate +when the data samples are insufficient. We have similar ob- +servations in other DDPM-based models, such as TimeGrad +and CSDI, as shown Table 1. We leave improving DiffSTG +to surpass those deterministic methods in future work. +Table 4. Comparison with deterministic methods. Lower MAE, +and RMSE indicate better performance. +Method +AIR-BJ +AIR-GZ +PEMS08 +MAE +RMSE +MAE +RMSE +MAE +RMSE +DCRNN +16.99 +28.00 +10.23 +15.21 +18.56 +28.73 +STGCN +19.54 +30.51 +11.05 +16.54 +20.15 +30.14 +STGNCDE +19.17 +29.56 +10.51 +16.11 +15.83 +25.05 +GMSDR +16.60 +28.50 +9.72 +14.55 +16.01 +24.84 +DiffSTG +17.88 +29.60 +11.04 +16.75 +17.68 +27.13 +6. Related Work +Spatio-temporal Graph Forcasting. +Recently, a large +body of research has been studied on spatio-temporal fore- +casting in different scenarios, such as traffic forecasting (Yu +et al., 2018; Wu et al., 2019; Guo et al., 2021; Peng et al., +2020; Ji et al., 2022) and air quality forecasting (Liang et al., +2022). STGNNs have become dominant models in this field, +which combine GNN and temporal components (e.g., TCN +and RNN) to capture the spatial correlations and tempo- +ral features, respectively. However, most existing works +focus on point estimation while ignoring quantifying the +uncertainty of predictions. To fill this gap, this paper devel- +ops a conditional diffusion-based method that couples the +spatio-temporal learning capabilities of STGNNs with the +uncertainty measurements of diffusion models. +Score-based Generative Models. The diffusion model that +we adopt belongs to score-based generative models (please +refer to Section 2 for more details), which learn the gra- +dient of the log-density with respect to the inputs, called +Stein Score function (Hyv¨arinen & Dayan, 2005; Vincent, +2011). At inference time, they use the gradient estimate to +sample the data via Langevin dynamics (Song & Ermon, +2019). By perturbing the data through different noise levels, +these models can capture both coarse and fine-grained fea- +tures in the original data. Which, leads to their impressive +performance in many domains, such as image (Ho et al., +2020), audio (Kong et al., 2020; Chen et al., 2020), graph +(Niu et al., 2020) and time series (Rasul et al., 2021; Tashiro +et al., 2021). +Time Series Forecasting. Methods in time series forecast- +ing can be classified into two streams: i) deterministic meth- +ods, including transformer-based approaches (Zhou et al., +2021; 2022) and RNN-based models (Che et al., 2018); and +ii) probabilistic methods such as popular diffusion-based +models (Rasul et al., 2021; Hernandez & Dumas, 2022; Li +et al., 2023; Chang et al., 2023). +7. Conclusion and Future Work +In this paper, we propose a novel probabilistic framework +called DiffSTG for spatio-temporal graph forecasting. To +the best of our knowledge, this is the first work that general- +izes the DDPM to spatio-temporal graphs. DiffSTG com- +bines the spatio-temporal learning capabilities of STGNNs +with the uncertainty measurements of diffusion models. +Moreover, unlike previous diffusion-based models designed +for the image or sequential data, we devise the first denoising +network UGnet for capturing the spatial and temporal cor- +relations in STG data. Extensive experiments demonstrate +the effectiveness and efficiency of our proposed method. A +direction of future work is to apply DiffSTG to other STG +learning tasks, such as spatio-temporal graph imputation. + +Probabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion Models +References +Bai, S., Kolter, J. Z., and Koltun, V. An empirical evalua- +tion of generic convolutional and recurrent networks for +sequence modeling. arXiv preprint arXiv:1803.01271, +2018. +Chang, P., Li, H., Quan, S. F., Roveda, J., and Li, +A. +Tdstf: Transformer-based diffusion probabilistic +model for sparse time series forecasting. arXiv preprint +arXiv:2301.06625, 2023. +Che, Z., Purushotham, S., Cho, K., Sontag, D., and Liu, Y. +Recurrent neural networks for multivariate time series +with missing values. Scientific reports, 8(1):6085, 2018. +Chen, N., Zhang, Y., Zen, H., Weiss, R. J., Norouzi, M., and +Chan, W. Wavegrad: Estimating gradients for waveform +generation. In International Conference on Learning +Representations, 2020. +Choi, J., Choi, H., Hwang, J., and Park, N. Graph neural +controlled differential equations for traffic forecasting. In +Proceedings of the AAAI Conference on Artificial Intelli- +gence, volume 36, pp. 6367–6374, 2022. +Gal, Y., Hron, J., and Kendall, A. Concrete dropout. Ad- +vances in neural information processing systems, 30, +2017. +Guo, S., Lin, Y., Wan, H., Li, X., and Cong, G. Learning dy- +namics and heterogeneity of spatial-temporal graph data +for traffic forecasting. IEEE Transactions on Knowledge +and Data Engineering, 2021. +Hernandez, E. and Dumas, J. Denoising diffusion proba- +bilistic models for probabilistic energy forecasting. arXiv +preprint arXiv:2212.02977, 2022. +Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba- +bilistic models. Advances in Neural Information Process- +ing Systems, 33:6840–6851, 2020. +Hyv¨arinen, A. and Dayan, P. Estimation of non-normalized +statistical models by score matching. Journal of Machine +Learning Research, 6(4), 2005. +Ji, J., Wang, J., Jiang, Z., Jiang, J., and Zhang, H. Stden: +Towards physics-guided neural networks for traffic flow +prediction. In Proceedings of the AAAI Conference on +Artificial Intelligence, volume 36, pp. 4048–4056, 2022. +Kim, J., Kim, S., Kong, J., and Yoon, S. Glow-tts: A gen- +erative flow for text-to-speech via monotonic alignment +search. Advances in Neural Information Processing Sys- +tems, 33:8067–8077, 2020. +Kingma, D. P. and Welling, M. Auto-encoding variational +bayes. arXiv preprint arXiv:1312.6114, 2013. +Kipf, T. N. and Welling, M. Semi-supervised classifica- +tion with graph convolutional networks. In International +Conference on Learning Representations, 2017. +Kong, Z., Ping, W., Huang, J., Zhao, K., and Catanzaro, B. +Diffwave: A versatile diffusion model for audio synthesis. +In International Conference on Learning Representations, +2020. +Li, L. and Revesz, P. Interpolation methods for spatio- +temporal geographic data. Computers, Environment and +Urban Systems, 28(3):201–227, 2004. +Li, Y., Yu, R., Shahabi, C., and Liu, Y. Diffusion con- +volutional recurrent neural network: Data-driven traffic +forecasting. In International Conference on Learning +Representations, 2018. +Li, Y., Lu, X., Wang, Y., and Dou, D. Generative time series +forecasting with diffusion, denoise, and disentanglement. +arXiv preprint arXiv:2301.03028, 2023. +Liang, Y., Xia, Y., Ke, S., Wang, Y., Wen, Q., Zhang, J., +Zheng, Y., and Zimmermann, R. Airformer: Predicting +nationwide air quality in china with transformers. arXiv +preprint arXiv:2211.15979, 2022. +Liu, D., Wang, J., Shang, S., and Han, P. Msdr: Multi- +step dependency relation networks for spatial temporal +forecasting. In Proceedings of the 28th ACM SIGKDD +Conference on Knowledge Discovery and Data Mining, +pp. 1042–1050, 2022a. +Liu, J., Li, C., Ren, Y., Chen, F., and Zhao, Z. Diffsinger: +Singing voice synthesis via shallow diffusion mechanism. +In Proceedings of the AAAI Conference on Artificial In- +telligence, volume 36, pp. 11020–11028, 2022b. +Matheson, J. E. and Winkler, R. L. Scoring rules for contin- +uous probability distributions. Management science, 22 +(10):1087–1096, 1976. +Niu, C., Song, Y., Song, J., Zhao, S., Grover, A., and Ermon, +S. Permutation invariant graph generation via score-based +generative modeling. In International Conference on Ar- +tificial Intelligence and Statistics, pp. 4474–4484. PMLR, +2020. +Peng, H., Wang, H., Du, B., Bhuiyan, M. Z. A., Ma, H., Liu, +J., Wang, L., Yang, Z., Du, L., Wang, S., et al. Spatial +temporal incidence dynamic graph neural networks for +traffic flow forecasting. Information Sciences, 521:277– +290, 2020. +Rasul, K., Seward, C., Schuster, I., and Vollgraf, R. Au- +toregressive denoising diffusion models for multivariate +probabilistic time series forecasting. In International Con- +ference on Machine Learning, pp. 8857–8868. PMLR, +2021. + +Probabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion Models +Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic +backpropagation and approximate inference in deep gen- +erative models. In International conference on machine +learning, pp. 1278–1286. PMLR, 2014. +Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and +Ommer, B. High-resolution image synthesis with latent +diffusion models. In Proceedings of the IEEE/CVF Con- +ference on Computer Vision and Pattern Recognition, pp. +10684–10695, 2022. +Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolu- +tional networks for biomedical image segmentation. In In- +ternational Conference on Medical image computing and +computer-assisted intervention, pp. 234–241. Springer, +2015. +Rubanova, Y., Chen, R. T., and Duvenaud, D. K. Latent +ordinary differential equations for irregularly-sampled +time series. Advances in neural information processing +systems, 32, 2019. +Salinas, D., Flunkert, V., Gasthaus, J., and Januschowski, +T. Deepar: Probabilistic forecasting with autoregressive +recurrent networks. International Journal of Forecasting, +36(3):1181–1191, 2020. +Simeunovi´c, J., Schubnel, B., Alet, P.-J., and Carrillo, R. E. +Spatio-temporal graph neural networks for multi-site pv +power forecasting. IEEE Transactions on Sustainable +Energy, 13(2):1210–1220, 2021. +Song, C., Lin, Y., Guo, S., and Wan, H. Spatial-temporal +synchronous graph convolutional networks: A new frame- +work for spatial-temporal network data forecasting. AAAI +2020: The Thirty-Fourth AAAI Conference on Artificial +Intelligence, 34(1):914–921, 2020. +Song, J., Meng, C., and Ermon, S. Denoising diffusion +implicit models. In International Conference on Learning +Representations, 2020. +Song, Y. and Ermon, S. Generative modeling by estimating +gradients of the data distribution. Advances in Neural +Information Processing Systems, 32, 2019. +Song, Y. and Ermon, S. Improved techniques for train- +ing score-based generative models. Advances in neural +information processing systems, 33:12438–12448, 2020. +Tashiro, Y., Song, J., Song, Y., and Ermon, S. Csdi: Con- +ditional score-based diffusion models for probabilistic +time series imputation. Advances in Neural Information +Processing Systems, 34:24804–24816, 2021. +van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., +Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., +and Kavukcuoglu, K. Wavenet: A generative model for +raw audio. In 9th ISCA Speech Synthesis Workshop, pp. +125–125, 2016. +Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, +L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At- +tention is all you need. Advances in neural information +processing systems, 30, 2017. +Vincent, P. A connection between score matching and de- +noising autoencoders. Neural computation, 23(7):1661– +1674, 2011. +Voleti, V., Jolicoeur-Martineau, A., and Pal, C. +Mcvd- +masked conditional video diffusion for prediction, gener- +ation, and interpolation. In Advances in Neural Informa- +tion Processing Systems, 2022. +Wu, D., Gao, L., Chinazzi, M., Xiong, X., Vespignani, A., +Ma, Y.-A., and Yu, R. Quantifying uncertainty in deep +spatiotemporal forecasting. In Proceedings of the 27th +ACM SIGKDD Conference on Knowledge Discovery & +Data Mining, pp. 1841–1851, 2021. +Wu, Z., Pan, S., Long, G., Jiang, J., and Zhang, C. Graph +wavenet for deep spatial-temporal graph modeling. In +IJCAI 2019: 28th International Joint Conference on Arti- +ficial Intelligence, pp. 1907–1913, 2019. +Yao, H., Wu, F., Ke, J., Tang, X., Jia, Y., Lu, S., Gong, P., Ye, +J., and Li, Z. Deep multi-view spatial-temporal network +for taxi demand prediction. In Proceedings of the AAAI +conference on artificial intelligence, volume 32, 2018. +Yi, X., Zhang, J., Wang, Z., Li, T., and Zheng, Y. Deep +distributed fusion network for air quality prediction. In +Proceedings of the 24th ACM SIGKDD International +Conference on Knowledge Discovery & Data Mining, pp. +965–973, 2018. +Yu, B., Yin, H., and Zhu, Z. Spatio-temporal graph convo- +lutional networks: A deep learning framework for traffic +forecasting. In IJCAI 2018: 27th International Joint Con- +ference on Artificial Intelligence, pp. 3634–3640, 2018. +Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., +and Zhang, W. Informer: Beyond efficient transformer for +long sequence time-series forecasting. In Proceedings of +the AAAI conference on artificial intelligence, volume 35, +pp. 11106–11115, 2021. +Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, +L., Li, C., and Sun, M. Graph neural networks: A review +of methods and applications. AI Open, 1:57–81, 2020. +Zhou, T., Ma, Z., Wen, Q., Wang, X., Sun, L., and Jin, +R. Fedformer: Frequency enhanced decomposed trans- +former for long-term series forecasting. In International +Conference on Machine Learning, pp. 27268–27286. +PMLR, 2022. + +Probabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion Models +A. Appendix +A.1. Details of DDPM +We introduce the details of denoising diffusion probabilistic +models in this section. +Diffusion probabilistic models are latent variable models +that consist of two processes, namely the forward process +and the reverse process. The forward process is a fixed +Gaussian transition process as defined in Eq. (1) and Eq. (2). +The reverse process is a learnable Gaussian transition pro- +cess defined in Eq. (4) and Eq. (5). Then, the parameters θ +are learned by minimizing the negative log-likelihood via +the variational lower bound (ELBO): +minθ Eq(x0) [− log pθ(x0)] +≤ − log pθ (x0) + DKL (q (x1:N | x0) ∥pθ (x1:N | x0)) += − log pθ (x0) + Ex1:N∼q(x1:N|x0) +� +log +q(x1:N|x0) +pθ(x0:N)/pθ(x0) +� += − log pθ (x0) + Eq +� +log q(x1:N|x0) +pθ(x0:N) + log pθ (x0) +� += Eq(x0:N) +� +log q(x1:N|x0) +pθ(x0:N) +� +:= LELBO. +(19) +We can further decompose LELBO into different terms ac- +cording to the property of Markov chains: +LELBO += Eq(x0:N ) +� +log q(x1:N |x0) +pθ(x0:N ) +� += Eq +� +log +�N +n=1 q(xn|xn−1) +pθ(xN ) �N +n=1 pθ(xn−1|xn) +� += Eq +� +− log pθ (xN) + �N +t=2 log +q(xn|xn−1) +pθ(xn−1|xn) + log +q(x1|x0) +pθ(x0|x1) +� += Eq +� +log q(xN |x0) +pθ(xN ) + �N +t=2 log +q(xn−1|xn,x0) +pθ(xn−1|xn) − log pθ (x0|x1) +� += Eq[DKL (q (xN | x0) ∥pθ (xN)) +� +�� +� +LN ++ �N +t=2 DKL (q (xn−1 | xn, x0) ∥pθ (xn−1 | xn)) +� +�� +� +Ln−1 +− log pθ (x0 | x1) +� +�� +� +L0 +]. +(20) +By the property in Eq. (3), (Ho et al., 2020) show that +the forward process posterior when conditioned on x0, i.e., +q(xn−1|xn, x0) is tractable, formulated as +q (xn−1 | xn, x0) = N +� +xn−1; ˜µ (xn, x0) , ˜βnI +� +(21) +where +˜µn (xn, x0) = +√αn−1βn +1 − αn +x0 + +√αn (1 − αn−1) +1 − αn +xn, +(22) +and +˜βn = 1 − αn−1 +1 − αn +βn. +(23) +So far, we can see that each term in LELBO (except for +L0) calculates the KL Divergence between two Gaussian +distributions, therefore they can be computed in closed form. +LN is constant that can be ignored in training because q has +no learnable parameters and xN is a Gaussian noise. (Ho +et al., 2020) models L0 using a separate discrete decoder. +Especially, the loss term of Lt (t ∈ {2, · · · , T}), have the +following closed form: +Ex0,ϵ +� +β2 +n +2Σθαn (1 − αn) +��ϵ − ϵθ +�√αnx0 + +√ +1 − αnϵ, n +���2� +, +which can be further simplified by removing the coefficient +in the loss term, formulated as +Ex0,ϵ +���ϵ − ϵθ +�√αnx0 + +√ +1 − αnϵ, n +���2� +. +A.2. Details of UGnet +We propose a novel denoising network to effectively capture +spatio-temporal correlations in STG data, named UGnet. +It adopts an Unet-like architecture in the temporal dimen- +sion and can also process the graph as the condition. Unet +structure can capture features at different levels because its +Convolutional Neural Networks (CNN) kernels gradually +merge low-level features into high-level features. Similarly, +in the context of spatio-temporal forecasting, we naturally +have different granularities in the temporal dimension (e.g., +15 minutes, 30 minutes, and 1 hour). Therefore, an intuitive +way is to adopt the idea in Unet that gradually reduce the +shape in the temporal dimension and reverse it back so that +temporal features at different levels can be well captured. +Doing so also brings the model the ability to scale up to +large STG. +Specifically, as shown in Figure +7, UGnet ϵθ(X all × +R|X all +msk, G) → X all takes xall +msk, xall +n , n, G as input, and +outputs the denoised noise ϵ. We first concatenate xall +n ∈ +RF ×V ×T and xall +msk ∈ RF ×V ×T in the temporal dimen- +sion to form a new matrix �xall +n ∈ RF ×V ×2T . UGnet con- +tains several Spatio-temporal Residual Blocks (ST-Residual +Block for short) with two types: the down-residual block and +the up-residual block. The down-residual blocks gradually +reduce the shape in the temporal dimension (i.e., increase +the temporal granularity). While the up-residual blocks +gradually convert the temporal granularity back to the level +that is the same as the input. Both blocks contain the same +residual block that can capture both spatial and temporal +correlations in the data with the help of the graph structure. +Here, we introduce the details of the ST-Residual block. We +first project input xall +n ∈ RF ×V ×T into a high-dimensional +representation H ∈ RC×V ×2T by a linear layer, where C +is the projected dimension. Let Hi ∈ RC×V ×Ti denote the +input of the i-th ST-Residual Block, where Ti is the length +of the time dimension, and H0 = H. + +Probabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion Models +1 +5 +Solution:How to capture the ST-correlation in p_theta? +Problem +Definition +Related Work +Motivation +Solution +Experiment +concatenate +ST-Residual Block +ST-Residual Block +ST-Residual +Block +ST-Residual Block +ST-Residual Block +FC +all +nx +msk +nx +n + +Gated Causal Convolution +Gated Causal Convolution +Graph Convolution +Layer Norm +Up / Down-Sample ++ +emb ++ +ST-Residual +Block +n +Hi +( , , ) +F V T +( , , ) +F V T +H +( , ,2 ) +F V +T +( , , ) +C V T +( , , +/ 2) +C V T +( , , ) +C V T +( , , ) +C V T +( , , +) +i +C V T +( , ,2 ) +F V +T +( , , ) +F V T +Figure 7. The architecture of denoising network UGnet. It adopts +an Unet-like structure to model both spatial and temporal depen- +dencies at different temporal granularities, conditioned on the noise +level and given graph structure. +Temporal Dependence Modeling. As shown in Figure +7, Hi is first fed into a Temporal Convolution Network +(TCN) (Bai et al., 2018) for modeling temporal dependence, +which is a 1-D gated causal convolution with K kernel +size with padding to get the same shape with input. The +convolution kernel ΓT ∈ RK×Ct +in×Ct +out maps the input +Hi to two outputs Pi, Qi with the same shape Pi/Qi ∈ +RCt +out×V ×Ti. As a result, the temporal gated convolution +can be defined as, +ΓT (Hi) = Pi ⊙ σ(Qi) ∈ RCt +out×V ×Ti := Hi, +(24) +where ⊙ is the element-wise Hadamard product, and σ is the +sigmoid activation function of GLU. The item σ(Qi) can +be considered a gate that filters the useful information of Pi +into the next layer. Furthermore, residual connections are +implemented among stacked temporal convolutional layers +to further exploit the full input times horizon. +Spatial Dependence Modeling. Graph convolution net- +work (GCN) is employed to directly extract highly meaning- +ful features and patterns in the space domain. The input of +GCN is the node feature matrix, which is reshaped output of +the TCN layer in our case, denoted as Hi ∈ RV ×Cg +in, where +Cg +in = Ti×Ct +out). A general formulation (Zhou et al., 2020) +of a graph convolution can be denoted as +ΓG(Hi) = σ +� +Φ +� +Agcn, Hi +� +Wi +� +, +(25) +where Wi ∈ RCg +in×Cg +in denotes a trainable parameter and σ +is an activation function. Φ(·) is an aggregation function that +decides the rule of how neighbors’ features are aggregated +into the target node. In our work, we do not focus on how to +develop an elaborately designed function Φ(·). Therefore, +we use the form in the most popular vanilla GCN (Kipf & +Welling, 2017) that defines a symmetric normalized sum- +mation function as Φgcn +� +Agcn, Hi +� += AgcnHi, where +Agcn = D− 1 +2 (A + I)D− 1 +2 ∈ RV ×V is a normalized adja- +cent matrix. I is the identity matrix and D is the diagonal +degree matrix with Dii = � +j(A + I)ij. +A.3. Details of datasets and baselines +Datasets. PEMS08 is a traffic flow dataset collected by +the Caltrans Performance Measurement System (PeMS). +It records the traffic flow recorded by sensors (nodes) de- +ployed on the road network. In this work, we use the dataset +extracted by STSGCN (Song et al., 2020). The traffic net- +works (adjacency matrix) for these datasets are constructed +according to the actual road network. If the two sensors are +on the same road, the two points are considered connected +in the spatial network. +Air quality datasets were collected by our system, containing +the PM2.5 readings from air quality monitoring stations. The +system details can be found in (Yi et al., 2018). AIR-BJ +records data from 34 stations in Beijing from 2019/01/01 to +2019/12/31. And AIR-GZ records data from 41 stations in +Guangzhou from 2017/01/01 to 2017/12/31. We build the +spatial correlation matrix A using the distance between two +stations. +Probabilistic baselines. The following methods are imple- +mented as baselines for probabilistic STG forecasting: +• Latent ODE (Rubanova et al., 2019). It defines a proba- +bilistic generative process over time series from a latent +initial state, which can be trained with variational infer- +ence. +• DeepAR (Salinas et al., 2020), which utilizes a Gaussian +distribution to model the data distribution; +• TimeGrad (Rasul et al., 2021), which is an auto-regressive +model that combines the diffusion model with an RNN- +based encoder; +• CSDI (Tashiro et al., 2021), which is a diffusion-based +non-autoregressive model first proposed for multivariate +time series imputation. We mask all the future signals to +adapt CSDI to our task. +• MC Dropout (Wu et al., 2021), which is developed based +on MC Dropout (Gal et al., 2017) for probabilistic spatio- +temporal forecasting. +Deterministic baselines. We choose some popular and +state-of-the-art methods for comparison: +• DCRNN (Li et al., 2018): Diffusion Convolutional Re- +current Neural Network integrates diffusion convolution +with sequence-to-sequence architecture to learn the repre- +sentations of spatial dependencies and temporal relations. +• STGCN (Yu et al., 2018): Spatial-Temporal Graph Con- +volution Network combines spectral graph convolution +with 1D convolution to capture spatial and temporal cor- +relations. + +Probabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion Models +• STGNCDE (Choi et al., 2022). Spatio-Temporal Graph +Neural Controlled Differential Equation introduces two +neural control differential equations (NCDE) for process- +ing spatial and sequential data, respectively, which can +be considered as an NCDE-based interpretation of graph +convolutional networks. +• GMSDR (Liu et al., 2022a): Graph-based Multi-Step +Dependency Relation improves RNN by explicitly taking +the hidden states of multiple historical time steps as the +input of each time unit. +Metrics. We choose the Continuous Ranked Probability +Score (CRPS) (Matheson & Winkler, 1976) as the metric to +evaluate the performance of probabilistic prediction, which +is commonly used to measure the compatibility of an esti- +mated probability distribution F with an observation x: +CRPS(F, x) = +� +R +(F(z) − I{x ≤ z})2 dz, +(26) +where I{x ≤ z} is an indicator function which equals one +if x ≤ z, and zero otherwise. Smaller CRPS means better +performance. +In addition, we leverage Mean Absolute Error (MAE) +and Root Mean Squared Error (RMSE) to evaluate +the performance of deterministic prediction. +Let Y +be the label, +and +ˆY +denote the predictive result. +MAE(Y, ˆY ) = +1 +|Y | +�|Y | +i=1 +���Yi − ˆYi +��� , and RMSE(Y, ˆY ) = +� +1 +|Y | +�|Y | +i=1 +� +Yi − ˆYi +�2 +, where a smaller metric means bet- +ter performance. +A.4. Additional results and experiments +Effect of the number of generated samples S. We inves- +tigate the relationship between the number of samples S +and the performance in Figure 8. It shows the effect of prob- +abilistic forecasting, as well as the effect on deterministic +forecasting. From which we can see that five or ten samples +are enough to estimate good distributions. While increasing +the number of samples further improves the performance, +the improvement becomes marginal over 32 samples. +Effect of k. Recall that k is the number of utilized samples +in the last few diffusion steps when sampling S samples. +We provide the results of k = 1 and k = 2 in Figure 8, in +which we have several interesting observations: i) When S +is large enough (i.e., S > 32), the performance of k = 2 is +almost the same as k = 1, and the sample speed of k = 2 is +1.5 times faster than k = 1; ii) When the number of reverse +diffusion processes (i.e., S/k) is settled, a large k can in- +crease sample diversity thus leading to better performance, +especially when S is small. +0 +25 +50 +75 +100 +S +0.200 +0.225 +0.250 +0.275 +0.300 +0.325 +CRPS +k=1 +k=2 +0 +25 +50 +75 +100 +S +11 +12 +13 +MAE +k=1 +k=2 +0 +25 +50 +75 +100 +S +0.0 +0.5 +1.0 +1.5 +Time +k=1 +k=2 +Figure 8. The effect of the number of generated samples. +In light of the above results, we give the following recom- +mendations for the combination of S and k: 1) when S +is small, a small k is recommended to increase the sam- +ple diversity for better performance; 2) when S is large, +one can increase k for efficiency without much lose of the +performance. +A.5. Additional examples of probabilistic forecasting +This section illustrates various probabilistic forecasting ex- +amples to show the characteristic of different methods. Note +that the scales of the y-axis depend on the stations. +We compare DiffSTG with DeepAR and TimeGrad for se- +lected stations of AIR-BJ in Figure 10-11. The geographic +distribution of stations is shown in Figure 9. We select two +groups of nodes according to their spatial location. Nodes +in the first group are far away from each other, including +nodes 0, 2, 17, and 20. While nodes in the second group are +close to each other, including nodes 7, 8, 9, and 18. +For the comparison in Figure 10, while TimeGrad fails to +capture the data distribution, DiffSTG computes reason- +able probabilistic forecasting for a majority of the stations. +For the comparison in Figure 11, DiffSTG provides tighter +uncertainty than DeepAR. And in both Figure 10 and Fig- +ure 11, we can see that DiffSTG tends to provide similar +estimated distribution for stations nearby, which is reason- +able since the air quality of a station is strongly correlated +with its neighbors. The above examples further illustrate +that DiffSTG can effectively learn the spatial and tempo- +ral dependency in STG, thus providing more reliable and +accurate estimations than others. +Figure 9. Geographic distribution of stations on AIR-BJ. + +20 +0 +18 +17 +7 +2 +98Probabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion Models +Figure 10. Comparison of probabilistic STG forecasting between TimeGrad and DiffSTG for air quality dataset (AIR-BJ). + +Probabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion Models +Figure 11. Comparison of probabilistic STG forecasting between DeepAR and DiffSTG for air quality dataset (AIR-BJ). + diff --git a/AdFRT4oBgHgl3EQftzji/content/tmp_files/load_file.txt b/AdFRT4oBgHgl3EQftzji/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..94ac9d54742cd5cb43573af6af2f34fd8381cfb9 --- /dev/null +++ b/AdFRT4oBgHgl3EQftzji/content/tmp_files/load_file.txt @@ -0,0 +1,1207 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFRT4oBgHgl3EQftzji/content/2301.13629v1.pdf,len=1206 +page_content='DiffSTG: Probabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion Models Haomin Wen 1 Youfang Lin 1 Yutong Xia 2 Huaiyu Wan 1 Roger Zimmermann 2 Yuxuan Liang � 2 Abstract Spatio-temporal graph neural networks (STGNN) have emerged as the dominant model for spatio- temporal graph (STG) forecasting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFRT4oBgHgl3EQftzji/content/2301.13629v1.pdf'} +page_content=' Despite their success, they fail to model intrinsic uncertainties within STG data, which cripples their practicality in downstream tasks for decision-making.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFRT4oBgHgl3EQftzji/content/2301.13629v1.pdf'} +page_content=' To this end, this paper focuses on probabilistic STG fore- casting, which is challenging due to the difficulty in modeling uncertainties and complex ST depen- dencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFRT4oBgHgl3EQftzji/content/2301.13629v1.pdf'} +page_content=' In this study, we present the first attempt to generalize the popular denoising diffusion prob- abilistic models to STGs, leading to a novel non- autoregressive framework called DiffSTG, along with the first denoising network UGnet for STG in the framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFRT4oBgHgl3EQftzji/content/2301.13629v1.pdf'} +page_content=' Our approach combines the spatio-temporal learning capabilities of STGNNs with the uncertainty measurements of diffusion models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFRT4oBgHgl3EQftzji/content/2301.13629v1.pdf'} +page_content=' Extensive experiments validate that Diff- STG reduces the Continuous Ranked Probabil- ity Score (CRPS) by 4%-14%, and Root Mean Squared Error (RMSE) by 2%-7% over existing methods on three real-world datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFRT4oBgHgl3EQftzji/content/2301.13629v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFRT4oBgHgl3EQftzji/content/2301.13629v1.pdf'} +page_content=' Introduction Humans enter a world that is inherently structured, in which a myriad of elements interact with each other both spatially and temporally, resulting in a spatio-temporal composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFRT4oBgHgl3EQftzji/content/2301.13629v1.pdf'} +page_content=' Spatio-Temporal Graph (STG) is the de facto most popular tool for injecting such structural information into the formu- lation of practical problems, especially in smart cities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFRT4oBgHgl3EQftzji/content/2301.13629v1.pdf'} +page_content=' In this paper, we focus on the problem of STG forecasting, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFRT4oBgHgl3EQftzji/content/2301.13629v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFRT4oBgHgl3EQftzji/content/2301.13629v1.pdf'} +page_content=', predicting the future signals generated on a graph given its historical observations, such as traffic prediction (Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFRT4oBgHgl3EQftzji/content/2301.13629v1.pdf'} +page_content=', 2018), weather forecasting (Simeunovi´c et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFRT4oBgHgl3EQftzji/content/2301.13629v1.pdf'} +page_content=', 2021), and taxi demand estimation (Yao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFRT4oBgHgl3EQftzji/content/2301.13629v1.pdf'} +page_content=', 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFRT4oBgHgl3EQftzji/content/2301.13629v1.pdf'} +page_content=' To facilitate understanding, a sample illustration is given in Figure 1(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFRT4oBgHgl3EQftzji/content/2301.13629v1.pdf'} +page_content=' 1School of Computer and Information Technology, Beijing Jiao- tong University, Beijing, China 2School of Computing, National University of Singapore, Singapore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdFRT4oBgHgl3EQftzji/content/2301.13629v1.pdf'} +page_content=' Correspondence to: Yuxuan Liang 0 there is a neighbourhoodU ⊆ G(0) of xsuchthatsuppf∩s−1(U) ⊆ +IE and ∣∥resy(f)∥−∥resx(f)∥∣ < ε for all y ∈ U. Since G(0) is locally compact, by Tietze’s theorem +there is g ∈ C(G(0)) with 0 ≤ g ≤ 1, g∣G(0)∖U ≡ 1 and g(x) = 0. Then f ∗ g ∈ Ix and we find that +∥f + Ix∥ ≤ ∥f − f ∗ g∥ ≤ sup +y∈U +∥resy(f)∥ ≤ ∥resx(f)∥ + ε. +Further, +∥resx(f)∥ = inf +h∈Ix ∥resx(f + h)∥ ≤ inf +h∈Ix ∥f + h∥ = ∥f + Ix∥. +It remains to show that Ix is equal to the ideal J generated by C0(G(0) ∖{x}) in L1(G,E). If f ∈ Ix +and ε > 0, there is ˜f ∈ C(G,E) such that ∥f − ˜f∥I < ε. Thus ∥resx( ˜f)∥ < ε and hence we find as +above g ∈ C0(G(0) ∖ {x}) such that ∥ ˜f − ˜f ∗ g∥I < ε. This implies that ∥f − ˜f ∗ g∥ < 2ε. Since +˜f ∗ g ∈ J and ε > 0 was arbitrary, this finishes the proof. +We are now ready to prove the main result of this section, which generalises [AO22, Theorem 3.1]. +It is stated and proven in the generality needed for Theorem 6.5. Extending usual conventions and +accepting zero-fibres, for a ∗-homomorphism C0(X) → Z(M(A)), we denote by Ax the quotient +of A by the ideal generated by the image of C0(X ∖ {x}). +Theorem 4.4. Let E be a twist over a second-countable locally compact étale Hausdorff groupoid G. As- +sume that there is a dense subset D ⊆ G(0) such that ℓ1(IG +x ,IE +x ) ⊆ C∗ +red(IG +x ,IE +x) has the ideal inter- +section property for all x ∈ D. Let π∶C∗ +red(G,E) → A be a ∗-homomorphism into a C∗-algebra. If +πx∶C∗ +red(IGx ,IEx ) → π(C∗ +red(IG,IE))x restricts to an injection of ℓ1(IGx ,IEx ) for all x ∈ D, then π is +injective. +Proof. Let π∶C∗ +red(G,E) → A and D ⊆ G(0) be as in the statement of the theorem. Without loss +of generality, we may assume that π is non-degenerate. By Theorem 2.9, it suffices to show that +π∣C∗ +red(IG,IE) is injective. Since πx∣ℓ1(IG +x ,IEx ) is injective for all x ∈ D, it is in particular non-zero, +so that density of D ⊆ G(0) implies that π∣C0(G(0)) is injective. Hence B = π(C∗ +red(IG,IE)) is a +C0(G(0))-algebra. Denote by B = (Bx)x the upper semi-continuous C∗-bundle associated with it +by [Nil96, Theorem 2.3], which recovers B as the algebra of sections B ≅ Γ0(B). +By Lemma 4.3, we obtain the following commutative diagram upon taking quotients by the +ideal generated by C0(G(0) ∖ {x}) in each algebra of its top row. +L1(IG,IE) +C∗ +red(IG,IE) +B +ℓ1(IGx ,IEx ) +C∗ +red(IGx ,IEx ) +Bx +πx +For x ∈ D, the ∗-homomorphism ℓ1(IG +x ,IE +x ) → Bx is injective and (IG +x ,IE +x ) has the ℓ1-ideal in- +tersection property. So πx is an isomorphism of C∗-algebras and as such an isometry. Let now +f ∈ Γ0(B) be an element in the image of L1(IG,IE). Then +∥f∥B = sup +x∈G(0) ∥f(x)∥Bx ≥ sup +x∈D +∥f(x)∥Bx = sup +x∈D +∥f(x)∥C∗ +red(IG +x ,IEx ) = ∥f∥C∗ +red(IG,IE) +since the regular representations of (IG,IE) are continuous by construction [Kum86, Section 2]. +10 + +Corollary 4.5. Let E be a twist over a second-countable locally compact étale Hausdorff groupoid G. +Assume that there is a dense subset D ⊆ G(0) such that (IG +x ,IE +x ) has the ℓ1-ideal intersection property for +all x ∈ D. Then (G,E) has the L1-ideal intersection property. +Proof. Let π∶C∗ +red(G,E) → A be a ∗-homomorphism that is injective on L1(G,E) and write +B = π(C∗ +red(IG,IE)). In order to prove injectivity of π, by Theorem 4.4, it suffices to check that +πx∶C∗ +red(IGx ,IEx ) → Bx is injective when restricted to ℓ1(IGx ,IEx ) for all x ∈ G(0). By Lemma 4.3, +taking the quotient by the ideal generated by C0(G(0) ∖ {x}) in the inclusion L1(G,E) ↪ B, we +indeed obtain the desired inclusion ℓ1(IGx ,IEx ) ↪ Bx, which finishes the proof. +5 +Groupoid C*-algebras from abelian normal subgroups +In this section we describe a twisted groupoid associated with an inclusion of a normal abelian +subgroup into a discrete group endowed with an S1-valued 2-cocycle. This construction should be +folklore, but has not been presented explicitly to our knowledge. +Definition 5.1. Let A ⊴ Γ be a normal abelian subgroup of a discrete group. A cocycle σ ∈ +Z2(Γ,S1) is A-admissible if it satisfies +• σ∣A×A ≡ 1, and +• σ(γ,a)σ(γa,γ−1) = 1 = σ(a,γ−1)σ(γ,aγ−1) for all γ ∈ Γ and a ∈ A. +Let A ⊴ G and σ be as above. Write Λ = Γ/A and consider the action Λ +α↷ A given by +αλ(a) = γaγ−1 for γA = λ. Since A is abelian, this is well-defined. Denote by G = Λ ⋉ ˆA the +transformation groupoid associated with the dual action of α. Further, let Γ ⋉σ (S1 × ˆA) be the +twisted transformation groupoid whose product is given by +(γ1,µ1,γ2χ)(γ2,µ2,χ) = (γ1γ2,µ1µ2σ(γ1,γ2),χ) +for γ1,γ2 ∈ Γ, µ1,µ2 ∈ S1 and χ ∈ ˆA. and consider +N = {(a−1,χ(a),χ) ∣ a ∈ A,χ ∈ ˆA} ⊆ Γ ⋉σ (S1 × ˆA). +The following lemma describes a twisted groupoid associated to the tuple (Γ,A,σ). +Lemma 5.2. The set N ⊆ Γ ⋉σ (S1 × ˆA) is a closed normal subgroupoid. Further, Γ ⋉σ (S1 × ˆA)/N is +a twist over G. +Proof. It follows from the fact that evaluation of characters in ˆA is continuous, that N is closed. +Further, it is multiplicatively closed since σ∣A×A ≡ 1 and the calculation +(a−1,χ(a),χ)−1 = (a,χ(a)σ(a−1,a),χ) = (a,χ(a−1),χ) +for a ∈ A and χ ∈ ˆA shows that N is also closed under inverses. So it is a closed subgroupoid of +Γ ⋉σ (S1 × ˆA). We next check normality of N. Thanks to centrality of S1 it suffices to observe for +a ∈ A, γ ∈ Γ and χ ∈ ˆA that +(γ,1,χ)(a−1,χ(a),χ)(γ−1,1,γχ) = (γa−1γ−1,χ(a)σ(γ,a−1)σ(γa−1,γ−1),γχ) += (γa−1γ−1,γχ(γaγ−1)),γχ). +11 + +We now want to show that the quotient E = Γ ⋉σ (S1 × ˆA)/N is a twist over G. The inclusion +{e} × S1 × ˆA ⊆ Γ ⋉σ (S1 × ˆA) descends to an inclusion i∶S1 × ˆA �→ E since N ∩ ({e} × S1 × ˆA) = +{(e,1)} × ˆA. Further, the projection onto the first and last component Γ ⋉σ (S1 × ˆA) �→ Γ × ˆA +induces a continuous quotient map q∶E �→ Γ/A ⋉ ˆA = G. It is clear that i(S1 × ˆA) is central in +E and that q−1({eA} × ˆA) = i(S1 × ˆA). What remains to be shown is that E is locally trivial. Let +(γA,χ0) ∈ G and consider the open bisection U = {γA} × ˆA. The map S∶U �→ E∶(γA,χ) ↦ +(γ,1,χ) is continuous and satisfies q ○ S = idU. Further, +q−1(U) = {[γa,µ,χ] ∈ E ∣ µ ∈ S1,a ∈ A,χ ∈ ˆA} += {[γ,µ,χ] ∈ E ∣ µ ∈ S1,χ ∈ ˆA} +is naturally isomorphic with S1 × U. +Let us introduce some notation in order to refer to the twisted groupoid just constructed. +Definition 5.3. Given a group Γ with a normal abelian subgroup A and an A-admissible 2-cocycle +σ ∈ Z2(Γ,S1), we denote the associated twisted groupoid by +G(Γ,A,σ) = Γ/A ⋉ ˆA +E(Γ,A,σ) = Γ ⋉σ (S1 × ˆA)/{(a−1,χ(a),χ) ∣ a ∈ A,χ ∈ ˆA}. +We next identify the twisted group algebras associated to (Γ,σ) with the twisted groupoid algebra +associated with a normal abelian subgroup A ⊴ Γ for which σ is admissible. This proposition +generalises the identification described in Remark 2.7. +Proposition 5.4. Let A ⊴ Γ be an abelian normal subgroup of a discrete group and σ ∈ Z2(Γ,S1) an A- +admissible cocycle. Let (G,E) = (G(Γ,A,σ),E(Γ,A,σ)) be the associated twisted groupoid and write +elements of C ×S1 E as equivalence classes [z,γ,µ,χ] with z ∈ C, γ ∈ Γ, µ ∈ S1 and χ ∈ ˆA. Given γ ∈ Γ +define the following section of C ×S1 E ↠ G: +fγ(gA,χ) = +⎧⎪⎪⎨⎪⎪⎩ +[1,γ,1,χ] +if gA = γA +0 +otherwise. +Then the map γ ↦ fγ +(i) extends to a contractive embedding ℓ1(Γ,σ) ↪ L1(G,E), which +(ii) extends to an isomorphism C∗ +red(Γ,σ) ↪ C∗ +red(G,E). +Proof. We first show that the map γ → fγ is σ-twisted multiplicative. For γ1,γ2,g ∈ Γ and χ ∈ ˆA, +we find that +fγ1 ∗ fγ2(gA,χ) = +∑ +(g1A)(g2A)=gA +fγ1(g1A,g2χ)fγ2(g2A,χ) += +∑ +(g1A)(g2A)=gA +g1A=γ1A, g2A=γ2A +[1,g1,1,g2χ][1,g2,1,χ] += +⎧⎪⎪⎨⎪⎪⎩ +[1,γ1,1,γ2χ][1,γ2,1,χ] = [1,γ1γ2,σ(γ1,γ2),χ] +if gA = γ1γ2A +0 +otherwise += σ(γ1,γ2)fγ1γ2(gA,χ). +12 + +Since fe is the neutral element for the convolution product, this shows that the map γ ↦ fγ extends +to a unital ∗-homomorphism C[Γ,σ] → L1(G,E). +We next show that this ∗-homomorphism extends to a contraction ℓ1(Γ,σ) → L1(G,E). To +this end, we need to identify the functions ˜fγ ∈ C(G,E) associated with fγ. We claim that +˜fγ([g,µ,χ]) = +⎧⎪⎪⎨⎪⎪⎩ +µχ(g−1γ) +if γA = gA +0 +otherwise. +Indeed, for γA = gA, µ ∈ S1 and χ ∈ ˆA we calculate +[µχ(g−1γ),g,µ,χ] = [χ(g−1γ),γγ−1g,1,χ] = [χ(g−1γ),γ,χ(γ−1g),χ] = [1,γ,1,χ]. +Take now ∑γ∈Γ cγuγ ∈ C[Γ,σ]. Then +sup +χ∈ ˆ +A +∥ ∑ +γ∈Γ +cγ ˜fγ∥ℓ1(Gχ) = sup +χ∈ ˆ +A +∑ +gA∈Γ/A +∣∑ +γ∈Γ +cγ ˜fγ([g,1,χ])∣ +≤ sup +χ∈ ˆ +A +∑ +gA∈Γ/A +∣ ∑ +γ∈gA +cγχ(γ−1g)∣ +≤ ∑ +γ +∣cγ∣. +Similarly, we obtain that +sup +χ∈ ˆ +A +∥ ∑ +γ∈Γ +cγ ˜fγ∥ℓ1(Gχ) = sup +χ∈ ˆ +A +∑ +gA∈Γ/A +∣∑ +γ∈Γ +cγ ˜fγ([g,1,g−1χ])∣ +≤ sup +χ∈ ˆ +A +∑ +gA∈Γ/A +∣ ∑ +γ∈gA +cγχ(gγ−1)∣ +≤ ∑ +γ +∣cγ∣. +Together, these calculations show that ∥∑γ cγ ˜fγ∥I ≤ ∥∑γ cγuγ∥ℓ1(Γ). So indeed, we obtain a con- +traction ℓ1(Γ,σ) → L1(G,E). +We now show that the contraction above extends to a ∗-isomorphism C∗ +red(Γ,σ) ≅ C∗ +red(G,E). +This will imply in particularthatthe map ℓ1(Γ,σ) → L1(G,E)is injective. Considerthe conditional +expectation E∶C∗ +red(G,E) → C( ˆA) given by restriction of functions in C(G,E). Further, denote by +∫ dχ the Haar integral on ˆA. We observe that for every γ ∈ Γ, we have +∫ dχ ○ E(fγ) = ∫ +ˆ +A +˜fγ([e,1,χ])dχ += +⎧⎪⎪⎨⎪⎪⎩ +∫ ˆ +A χ(γ)dχ +if γ ∈ A +0 +otherwise += +⎧⎪⎪⎨⎪⎪⎩ +1 +if γ = e +0 +otherwise. +13 + +This shows that we obtain an isometric ∗-homomorphism C∗ +red(Γ,σ) → C∗ +red(G,E) and it remains +to argue that it has dense image. To this end it suffices to show that for every gA ∈ Γ/A and every +section f∶G → C×S1 E supported on {gA}× ˆA lies in the image of C∗ +red(Γ,σ). Let f ˆ +A∶ ˆA → C be the +unique continuous function such that f(gA,χ) = [f ˆ +A(χ),g,1,χ] for all χ ∈ ˆA. We can identify +f ˆ +A with an element in C(G,E), and find that f = fg ∗ f ˆ +A, which finishes the proof. +Let us next describe the isotropy groups and the associated twists. Recall that for a group action +Γ ↷ X and x ∈ X, the subgroup Γ○x = {γ ∈ Γ ∣ ∃U open ∶ x ∈ U,γ∣U = idU} is the neighbourhood +stabiliser of x in Γ. +Proposition 5.5. Let A ⊴ Γ be an abelian normal subgroup and σ ∈ Z2(Γ,S1) an A-admissible cocycle. +Let (G,E) be the associated twisted groupoid. Then the fibre of (IG,IE) at χ ∈ ˆA is given by the quotient +Γ○χ ×σ S1/N → Γ○χ/A obtained from Γ○χ ×σ S1 → Γ○χ/A by dividing out the normal subgroup N = +⟪(a,χ(a) ∣ a ∈ A⟫ ⊴ Γ○χ ×σ S1. +Furthermore, given a section s∶Γ○χ/A → Γ○χ and the associated 2-cocycle ρ ∈ Z2(Γ○χ/A,A), we define +a section ˜s∶Γ○ +χ/A → Γ○ +χ ×σ S1/N by ˜s(h) = [s(h),1]. Then the associated S1-valued 2-cocycle is +(χ ○ ρ) ⋅ (σ ○ (s × s)). +Proof. It is clear that IGχ = Γ○χ/A. We can thus calculate the fibre +IE +χ = {[γ,µ,χ] ∣ γ ∈ Γ○ +χ,µ ∈ S1} ≅ Γ○ +χ ×σ S1/N . +Now fix a section s∶Γ○ +χ/A → Γ○ +χ and define ˜s(h) = [s(h),1] as in the statement of the theorem. +For h1,h2 ∈ Γ○χ/A, using the fact that χ is fixed by Γ○χ, we find that +˜s(h1)˜s(h2) = [s(h1),1][s(h2),1] += [ρ(h1,h2)s(h1h2),σ(s(h1),s(h2))] += [s(h1h2)(s(h1h2)−1ρ(h1,h2)s(h1h2)),σ(s(h1),s(h2))] += [s(h1h2),(χ ○ ρ(h1,h2)) ⋅ (σ(s(h1),s(h2)))] += (χ ○ ρ(h1,h2)) ⋅ (σ(s(h1),s(h2)))˜s(h1h2). +This shows that (χ ○ ρ) ⋅ (σ ○ (s × s)) is indeed a 2-cocycle and that it is the extension cocycle +associated with ˜s. +6 +Proof of the main results +In this section we prove all main results described in the introduction. We start with three lemmas, +which will be used in the proof of Theorem 6.5. +Lemma 6.1. Let Γ be a group whose subgroups all have the ℓ1-ideal intersection property. Then any +action of Γ on a locally compact Hausdorff space has the ℓ1-ideal intersection property. +Proof. This directly follows from Corollary 4.5 applied to the transformation groupoid Γ⋉X with +a trivial twist. +Lemma 6.2. Let Γ be finite-by-(C∗-simple) and σ ∈ Z2(Γ,S1). Then (Γ,σ) satisfies the ℓ1-ideal inter- +section property. +14 + +Proof. Let F ⊴ Γ be a finite normal subgroup such that Λ = Γ/F is C∗-simple and let σ ∈ Z2(Γ,S1). +After a choice of section s∶Λ → Γ satisfying s(e) = e, we infer from [PR89, Theorem 4.1] that +C∗ +red(Γ,σ) ≅ C[F,σ] ⋊α,ρ,red Λ, where the twisted crossed product is defined with respect to the +maps +α∶Λ → Aut(C[F,σ])∶αh(uf) = σ(s(h),f)σ(s(h)fs(h)−1,s(h))us(h)fs(h)−1 +ρ∶Λ × Λ → U(C[F,σ])∶ +σ(h1,h2) = σ(s(h1),s(h2))σ(s(h1)s(h2)s(h1h2)−1,s(h1h2))us(h1)s(h2)s(h1h2)−1 . +Inspection of the proof of [PR89, Theorem 4.1] shows that moreover the inclusion ℓ1(Γ,σ) ⊆ +C∗ +red(Γ,σ) is isomorphic with the inclusion of twisted crossed products C[F,σ] ⋊α,ρ,ℓ1 Λ ⊆ +C[F,σ] ⋊α,ρ,red Λ. So it suffices to show that C[F,σ] ⊆ C[F,σ] ⋊α,ρ,red Λ satisfies the ideal in- +tersection property. +Since C[F,σ] is finite dimensional, it is a multi-matrix algebra and hence the twisted +C∗-dynamical system (C[F,σ],Λ,α,ρ) decomposes as a direct sum of Λ-simple dynamical sys- +tems, say C[F,σ] ≅ ⊕n +i=1 Ai. We can apply [BK18, Corollary4.4] to infer that Ai⋊α,ρ,redΛ is simple. +So ideals of C[F,σ] ⋊α,ρ,red Λ are precisely of the form +I = ⊕ +i∈S +(Ai ⋊α,ρ,red Λ) +for some subset S ⊆ {1,... ,n}. If I ∩ C[F,σ] = {0}, then S = ∅ follows, which in turn implies +I = 0. This finishes the proof of the lemma. +For the next lemma recall the notion of admissible cocycles from Definition 5.1. +Lemma 6.3. Let A ⊴ Γ be a normal finitely generated abelian subgroup and let σ ∈ Z2(Γ,Z/nZ). There +is a finite index characteristic subgroup B ≤ A and a B-admissible cocycle ρ ∈ Z2(Γ,Z/nZ) equivalent +to σ. +Proof. Denote by o = ∣Tors(A)∣ the order of the torsion subgroup of A and let B ≤ A be the in- +tersection of all its finite index subgroups of index o. Then B has finite index, since A is finitely +generated, and B is characteristic in A. Also B is a finitely generated torsion-free abelian group +so that the isomorphism H2(B) ≅ B ∧ B together with the universal coefficient theorem in coho- +mology imply that σ∣B×B ∈ Z2(B,Z/nZ) is equivalent to a bicharacter. Specifically, there is a map +ϕ∶B → Z/nZ such that (b1,b2) ↦ σ(b1,b2)−ϕ(b1b2)+ϕ(b1)+ϕ(b2) is a bicharacter. Extending +ϕ to a map ˜ϕ∶Γ → Z/nZ, we may replace σ by an equivalent 2-cocycle ρ satisfying +ρ(γ1,γ2) = σ(γ1,γ2) − ˜ϕ(γ1γ2) + ˜ϕ(γ1) + ˜ϕ(γ2). +Let i be the index of the finite index subgroup {b ∈ B ∣ ∀b′ ∈ B ∶ σ(b,b′) = σ(b′,b) = 0} ≤ B. +We denote by C the intersection of all subgroups of B with index i, which is of finite index and +characteristic in B. Consider now the central extension +Z/nZ ↪ ˜Γ ↠ Γ +associated with ρ. Since C is torsion-free, its preimage in ˜Γ is isomorphic with C ⊕ Z/nZ in such +a way that the action of Γ on it is given by αγ(c,k) = (γcγ−1,σ(γ,c) + σ(γc,γ−1)) for all γ ∈ Γ, +c ∈ C. In particular, since Z/nZ has exponent n, we find that +(γcnγ−1,σ(γ,cn) + σ(γcn,γ−1)) = αγ((cn,0)) = αγ((c,0))n = ((γcγ−1)n,0). +15 + +This implies that the subgroup D = ⟨cn ∣ c ∈ C⟩ ≤ C satisfies ρ(γ,d) + ρ(γd,γ−1) = 0 for all γ ∈ Γ +and d ∈ D. By definition D ≤ C is characteristic. Further it has finite index, because C is finitely +generated abelian. +The next definition describes the groups for which we prove the ℓ1-ideal intersection property in +the subsequent theorem. +Definition 6.4. We denote by U the class of all discrete groups Γ such that the following three +conditions hold for every finitely generated subgroup of Λ ≤ Γ: +• the Furstenberg subgroup of every subgroup of Λ equals its amenable radical, +• the Tits alternative holds for Λ, and +• there is l ∈ N such that every solvable subgroup of Λ is polycyclic of Hirsch length at most l. +We are now ready to prove the main theorem of this work. +Theorem 6.5. Let Γ be a group from the class U, let X be a locally compact Hausdorff space and let +Γ ↷ X be an action by homeomorphisms. Further, let σ ∈ Z2(Γ,S1) be a 2-cocycle taking values in a +finite subgroup of S1. Then (X,Γ,σ) has the ℓ1-ideal intersection property. +Proof. By Lemma 6.1, it suffices to consider the case where X is a point, that is twisted group +C∗-algebras. +The statement is clear for finite groups. For an induction, fix l ≥ 1 and assume that the ℓ1-ideal +intersection property holds for all 2-cocycles with values in a finite subgroup of S1 on groups in U +whose polycyclic subgroups all have Hirsch length at most l − 1. Let Γ be a group in U all whose +polycyclic subgroups have Hirsch length at most l ≥ 1, and let σ ∈ Z2(Γ,S1) be a cocycle with +values in a finite subgroup of S1, say Z/nZ ⊆ S1. Thanks to Proposition 3.5, we may assume that Γ +is finitely generated. Let ν∶ℓ1(Γ,σ) → R≥0 be a C∗-norm dominated by ∥ ⋅ ∥red. We denote by A = +ℓ1(Γ,σ) +ν the completion with respect to ν. Since Γ ∈ U, its amenable radical is virtually polycyclic. +If it is finite, we infer from Proposition 2.3 that Γ itself is finite-by-(C∗-simple). So Lemma 6.2 can +be applied. Otherwise, its maximal polycyclic subgroup Λ ≤ R(Γ) is infinite. Let d be the derived +length of Λ and observe that Λ(d−1) is a finitely generated abelian group. By Lemma 6.3, there is +a finite index characteristic subgroup A ≤ Λ(d−1) and an A-admissible cocycle ρ ∈ Z2(Γ,Z/nZ) +equivalent to σ. Since equivalence of cocycles preserves the isomorphism class of twisted group +algebras, we may assume that ρ = σ. +Observe that all the inclusions A ≤ Λ(d−1) ≤ Λ ≤ R(Γ) ≤ Γ are characteristic and hence A ≤ Γ +is characteristic. In particular, A is normal in Γ. +Denote by (G,E) the twisted groupoid constructed from (Γ,A,σ) as in Definition 5.3. By +Proposition 5.4, there is a commutative diagram +ℓ1(Γ,σ) +C∗ +red(Γ,σ) +A +L1(G,E) +C∗ +red(G,E) +≅ +π +16 + +We need to prove that π is injective. +Since finitely generated abelian groups are C∗-unique by Theorem 2.2, the restriction of π to +C( ˆA) is injective. Let D = Tors( ˆA) be the torsion subgroup of ˆA, which is dense, because A +is a free abelian group. By Theorem 4.4 it suffices to prove that for all χ ∈ D the induced map +πχ∶C∗ +red(IG +χ,IE +χ) → π(C∗ +red(IG,IE))χ is injective on ℓ1(IG +χ,IE +χ). +Fix χ ∈ D and consider the neighbourhood stabiliser Γ○χ = {g ∈ Γ ∣ ∃U ∋ χ∶g∣U = idU} for the +action Γ ↷ ˆA. Observe that A ≤ Γ○ +χ. By Proposition 5.5, the inclusion ℓ1(IG +χ,IE +χ) ⊆ C∗ +red(IG +χ,IE +χ) +is isomorphic with ℓ1(Γ○χ/A,(χ ○ ρ) ⋅ (σ ○ (s × s))) ⊆ C∗ +red(Γ○χ/A,(χ ○ ρ) ⋅ (σ ○ (s × s))), where +s∶Γ○ +χ/A → Γ○ +χ is a section and ρ ∈ Z2(Γ○ +χ/A,A) the associated extension cocycle. We write ˜σ = +(χ ○ ρ) ⋅ (σ ○ (s × s). +Let (H,F) be the groupoid associated with (Γ○χ,A,σ), where by abuse of notation we still keep +the notation σ instead of writing σ∣Γ○χ×Γ○χ. We have an inclusion of twisted groupoids (IG,IE) ↪ +(H,F) ↪ (G,E). Let I ⊴ π(C∗ +red(H,F)) be the ideal generated by C0( ˆA∖{χ}) and observe that +we have a commutative diagram +π(C∗ +red(IG,IE)) +π(C∗ +red(IG,IE))χ +π(C∗ +red(H,F)) +π(C∗ +red(H,F))/I +≅ +We write B = π(C∗ +red(H,F)) and B/I = Bχ. By Lemma 4.3, the kernel of the restriction map +resχ∶L1(H,F) → ℓ1(Hχ,Fχ) ≅ ℓ1(Γ○ +χ/A, ˜σ) is the ideal J generated by C0(H(0)∖{χ}) = C0( ˆA∖ +{χ}). Using the fact that we have a commutative diagram +ℓ1(Γ○χ,σ) +L1(H,F) +ℓ1(Γ○ +χ/A, ˜σ) +resχ +we infer that the injection ℓ1(Γ○χ,σ) ↪ B ⊆ A when dividing by J ∩ ℓ1(Γ○χ,σ) and I = π(J) +descends to an injection ℓ1(Γ○χ/A, ˜σ) ↪ Bχ. So the induction hypothesis can be applied, since A +being infinite, the Hirsch length of every subgroup of Γ○ +χ/A is at most l − 1. So we have shown that +we have a commutative diagram +ℓ1(Γ○ +χ/A, ˜σ) +Bχ +ℓ1(IGχ,IEχ) +π(C∗ +red(IG,IE))χ +≅ +≅ +πχ +which implies what we had to show. +We now describe several classes of groups to which Theorem 6.5 applies. Our first application +concerns the large class of acylindrically hyperbolic groups. We remark that the ℓ1-ideal intersec- +tion property for their group algebras can be deduced directly from Lemma 6.2, while the general +statement for dynamical systems could be deduced using solely Lemma 6.1 and C∗-uniqueness of +virtually cyclic groups. +17 + +Corollary 6.6. Let Γ be an acylindrically hyperbolic group and Γ ↷ X an action on a locally compact +Hausdorff space. Then C0(X) ⋊ℓ1 Γ ⊆ C0(X) ⋊red Γ has the ideal intersection property. +Proof. In orderto apply Theorem 6.5, we needto checkall conditions ofDefinition 6.4. By [DGO17, +Theorem 2.35] combined with Proposition 2.3 the first condition is satisfied. The second and third +conditions are satisfied thanks to [Osi16, Theorem 1.1], which shows that subgroups of acylindri- +cally hyperbolic groups are virtually cyclic or contain a copy of the free group. +In order to obtain our next class of examples to which our main result applies, we need the fol- +lowing result, which is folklore. We refer the reader unfamiliar with Lie theory to [OV90, Table 9, +p. 312-317] for the classification of simple real Lie algebras and their rank, which by definition is +the dimension of a maximal R-diagonalisable Lie subalgebra. +Proposition 6.7. Let Γ be a lattice in a connected Lie group. Then there is l ∈ N such that every solvable +subgroup of Γ is virtually polycyclic and has Hirsch length at most l. +Proof. Let G be a connected Lie group in which Γ is a lattice. By [Pra76, Lemma 6], there is a normal +subgroup Λ ⊴ Γ suchthatΛ is virtually a lattice in a connectedsolvable Lie group andΓ/Λ is a lattice +in a connected semisimple Lie group with trivial centre and without compact factors. By [Rag72, +Proposition 3.7] every lattice in a connected simply connected solvable Lie group is polycyclic of +Hirsch length bounded by the dimension of the Lie group. Since every connected solvable Lie group +is a quotient by a central discrete subgroup of its universal cover, the conclusion applies to lattices +in arbitrary connected solvable Lie groups. So we may assume for the rest of the proof that Γ is a +lattice in a connected semisimple Lie group G with trivial centre and without compact factors. +Passing to a finite index subgroup of Γ, there are direct product decompositions G = ∏n +i=1 Gi +and Γ = ∏n +i=1 Γi such that Γi ≤ Gi is an irreducible lattice [Rag72, Theorem 5.22]. It hence suffices +to consider the case where Γ ≤ G is already irreducible. Assuming that G is locally isomorphic +with SO+(n,1) or SU(n,1), the group Γ acts on the hyperbolic boundary of G. Thus, every solv- +able subgroup of G is virtually cyclic, finishing the proof in this case. Assume that G is not locally +isomorphic with either SO+(n,1) or SU(n,1). Then the arithmeticity theorems of Margulis for +lattices in semisimple Lie groups of higher rank presented in [Mar91, Chapter IX] and [Zim84, +Theorem 6.1.2], and the arithmeticity theorem for simple Lie groups of rank one locally isomor- +phic with Sp(n,1) or F4(−20) by Corlette [Cor92] and Gromov-Schoen [GS92] applies to show that +Γ is virtually linear over Z. Say it virtually embeds into GLn(Z). Now [DFO13, Proposition 2.9] +says that there is l = l(n) such that every solvable subgroup of GLn(Z) is polycyclic of Hirsch +length at most l. +Corollary 6.8. Let Γ be a lattice in a connected Lie group. Then any action of Γ on a locally compact +Hausdorff space has the ℓ1-ideal intersection property. +Proof. In order to apply Theorem 6.5, we have to check all conditions of Definition 6.4. Let Λ be the +amenable radical of Γ. Then by [Pra76, Lemma 6], we infer that Λ is virtually a lattice in a connected +solvable Lie group and that Γ/Λ is a lattice in a semisimple Lie group with trivial centre and without +compact factors. Since Lie groups with trivial centre are linear, [Bre+17, Theorem 6.9] implies that +Γ/Λ is C∗-simple. So the first condition of Definition 6.4 is verified thanks to Proposition 2.3. +Also, the Tits alternative for linear groups in characteristic zero [Tit72] shows that every amenable +subgroup of Γ/Λ is virtually solvable. Since Λ is virtually solvable, this shows that every amenable +subgroup of Γ is virtually solvable. This checks the second condition of Definition 6.4. In order to +verify the last one, we can apply Proposition 6.7. +18 + +A variation of the core arguments in the previous theorem, also covers many linear groups. +Corollary 6.9. Let Γ be a linear group over the integers of a number field. Then any action of Γ on a +locally compact Hausdorff space has the ℓ1-ideal intersection property. +Proof. Let Γ be as in the statement of the theorem. We have to check all three conditions of +Definition 6.4. The first condition is satisfied thanks to, Proposition 2.3 combined with [Bre+17, +Theorem 6.9]. The second condition holds thanks to the Tits alternative for linear groups in char- +acteristic zero [Tit72]. The last condition holds thanks to [DFO13, Proposition 2.9]. +Our final class of examples to which Theorem 6.5 applies are virtually polycyclic groups, and more +generally locally virtually polycyclic groups, which are precisely those groups whose finitely gen- +erated subgroups are virtually polycyclic. We state the result in terms of C∗-uniqueness. +Corollary 6.10. Every locally virtually polycyclic group is C∗-unique. +Proof. By Proposition 3.5, it suffices to show that every virtually polycyclic group satisfies the +conditions of Definition 6.4. The first condition is satisfied since virtually polycyclic groups are +amenable. The second condition holds, since every subgroup of a polycyclic group is polycyclic. +Finally, the Hirsch length is monotone for inclusions of groups, so that the last condition is also +satisfied. Now Theorem 6.5 applies. +Remark 6.11. It would be interesting to understand whether all linear groups have the ℓ1-ideal in- +tersection property. We expect that a positive answer can be obtained. However, the groupoid +techniques employed in the present work will likely not be sufficient to prove such a result for two +reasons. First, there need not be any torsion points in the dual of an abelian group, so that an induc- +tion like in the proof of Theorem 6.5 cannot be performed. Second, following the strategy of the +present work, there is no clear induction variable available for solvable groups which are not poly- +cyclic. The derived length is not suitable. Indeed, the induction step in the proof of Theorem 6.5 +only divides out a (possibly proper) subgroup of the last term in the derived series. +Concrete examples of solvable, non-polycyclic groups can nevertheless be covered by our +present methods. The arguments presented show that metabelian groups have the ℓ1-ideal intersec- +tion property, since each such group is an inductive limit of semi-direct products A⋊Zni for some +monotone sequence of natural numbers (ni)i. We don’t give any details of the argument. Many +metabelian groups are already known to have the ℓ1-ideal intersection property by [Boi+78, p. 11, +Korollar]. +References +[Ale19] +V. Alekseev. (Non)-uniqueness of C∗-norms on group rings of amenable groups. C∗- +algebras. Abstracts from the workshop held August 11–17, 2019. Ed. by M. Rørdam, +D. L. Shlyakhtenko, A. Thom, and S. Vaes. Vol. 16. Oberwolfach Rep. 3. 2019. DOI: +10.4171/OWR/2019/37. +[AK19] +V. Alekseev and D. Kyed. Uniqueness questions for C∗-norms on group rings. Pac. J. +Math. 298.2 (2019), pp. 257–266. DOI: 10.2140/pjm.2019.298.257. +[Arm22] +B. Armstrong. A uniqueness theorem for twisted groupoid C∗-algebras. J. Funct. Anal. +283.6 (2022). Id/No 109551, p. 33. DOI: 10.1016/j.jfa.2022.109551. +19 + +[AO22] +A. Austad and E. Ortega. C∗-uniqueness results for groupoids. Int. Math. Res. Not. +2022.4 (2022), pp. 3057–3073. DOI: 10.1093/imrn/rnaa225. +[Bar83] +B. A. Barnes. The properties *-regularity and uniqueness of C∗-norm in a general *- +algebra. Trans. Am. Math. Soc. 279 (1983), pp. 841–859. DOI: 10.2307/1999571. +[Boi80] +J. Boidol. *-regularity of exponential Lie groups. Invent. Math. 56 (1980), pp. 231–238. +DOI: 10.1007/BF01390046. +[Boi84] +J. Boidol. Group algebras with a unique C∗-norm. J. Funct. Anal. 55 (1984), pp. 220–232. +DOI: 10.1016/0022-1236(84)90011-9. +[Boi+78] +J. Boidol, H. Leptin, J. Schürmann, and D. Vahle. Räume primitiver Ideale in Gruppe- +nalgebren. Math. Ann. 236 (1978), pp. 1–13. DOI: 10.1007/BF01420252. +[Bor19] +C. +Borys. +The +Furstenberg +Boundary +of +a +Groupoid. +Preprint. +2019. +arXiv:1904.10062. +[Bre+17] +E. Breuillard, M. Kalantar, M. Kennedy, and N. Ozawa. C∗-simplicity and the unique +trace property for discrete groups. Publ. Math. Inst. Hautes Étud. Sci. 126.1 (2017), +pp. 35–71. DOI: 10.1007/s10240-017-0091-2. +[Bro+16] +J. H. Brown, G. Nagy, S. Reznikoff, A. Sims, and D. P. Williams. Cartan subalgebras in +C∗-algebras of Hausdorff étale groupoids. Integral Equations Oper. Theory 85.1 (2016), +pp. 109–126. DOI: 10.1007/s00020-016-2285-2. +[BK18] +R. S. Bryder and M. Kennedy. Reduced twisted crossed products over C∗- +simple +groups. +Int. +Math. +Res. +Not. +2018.6 +(2018), +pp. +1638–1655. +DOI: +10.1093/imrn/rnw296. +[Cor92] +K. Corlette. Archimedean superrigidity and hyperbolic geometry. Ann. Math. (2) 135.1 +(1992), pp. 165–182. DOI: 10.2307/2946567. +[DGO17] +F. Dahmani, V. Guirardel, and D. Osin. Hyperbolically embedded subgroups and ro- +tating families in groups acting on hyperbolic spaces. Mem. Am. Math. Soc. 245.1156 +(2017), 152 pages. DOI: 10.1090/memo/1156. +[DPS15] +R. J. Deeley, I. F. Putnam, and K. R. Strung. Constructing minimal homeomorphisms on +point-like spaces and a dynamical presentation of the Jiang-Su algebra. J. Reine Angew. +Math. 742 (2015), pp. 241–261. DOI: 10.1515/crelle-2015-0091. +[DFO13] +A. S. Detinko, D. L. Flannery, and E. A. O’Brien. Algorithms for linear groups of finite +rank. J. Algebra 393 (2013), pp. 187–196. DOI: 10.1016/j.jalgebra.2013.06.006. +[EW08] +S. Echterhoff and D. P. Williams. The Mackey machine for crossed products: inducing +primitive ideals. Group representations, ergodic theory, and mathematical physics. A tribute +to George W. Mackey. AMS special session honoring the memory of George W. Mackey, New +Orleans, LA, USA, January 7–8, 2007. Providence, RI: American Mathematical Society, +2008, pp. 129–136. ISBN: 978-0-8218-4225-6. +[GMR18] +R. Grigorchuk, M. Musat, and M. Rørdam. Just-infinite C∗-algebras. Comment. Math. +Helv. 93.1 (2018), pp. 157–201. DOI: 10.4171/CMH/432. +[GS92] +M. Gromov and R. Schoen. Harmonic maps into singular spaces and p-adic super- +rigidity for lattices in groups of rank one. Publ. Math., Inst. Hautes Étud. Sci. 76 (1992), +pp. 165–246. DOI: 10.1007/BF02699433. +20 + +[Haa16] +U. Haagerup. A new look at C∗-simplicity and the unique trace property of a group. +Operator Algebras and Applications. Ed. by T. M. Carlsen, N. S. Larsen, S. Neshveyev, +and C. Skau. Vol. 12. Abel Symposia. Cham: Springer, 2016, pp. 167–176. DOI: +10.1007/978-3-319-39286-8_7. +[HWZ15] +I. Hirshberg, W. Winter, and J. Zacharias. Rokhlin dimension and C∗-dynamics. Com- +mun. Math. Phys. 335.2 (2015), pp. 637–670. DOI: 10.1007/s00220-014-2264-x. +[KK17] +M. Kalantar and M. Kennedy. Boundaries of reduced C∗-algebras of discrete groups. J. +Reine Angew. Math. 727 (2017), pp. 247–267. DOI: 10.1515/crelle-2014-0111. +[Kaw17] +T. Kawabe. Uniformly recurrent subgroups and the ideal structure of reduced crossed +products. Preprint. 2017. arXiv:1701.03413. +[Ken20] +M. Kennedy. An intrinsic characterization of C∗-simplicity. Ann. Sci. Éc. Norm. Supér. +53.5 (2020), pp. 1105–1119. DOI: 10.24033/asens.2441. +[Ken+21] +M. Kennedy, S.-J. Kim, X. Li, S. Raum, and D. Ursu. The ideal intersection property for +essential groupoid C∗-algebras. Preprint. 2021. arXiv:2107:03980. +[KS20] +D. Kerr and G. Szabó. Almost finiteness and the small boundary property. Commun. +Math. Phys. 374.1 (2020), pp. 1–31. DOI: 10.1007/s00220-019-03519-z. +[Kum86] +A. Kumjian. On C∗-diagonals. Can. J. Math. 38.4 (1986), pp. 969–1008. DOI: +10.4153/CJM-1986-048-0. +[LN04] +C.-W. Leung and C.-K. Ng. Some permanence properties of C∗-unique groups. J. Funct. +Anal. 210.2 (2004), pp. 376–390. DOI: 10.1016/j.jfa.2003.11.003. +[Mar91] +G.A.Margulis.Discretesubgroupsof semisimpleLiegroups.Vol.17.ErgebnissederMathe- +matik und ihrer Grenzgebiete, 3. Folge. Berlin etc.: Springer-Verlag, 1991, 388 p. ISBN: +3-540-12179-X. +[Nil96] +M.Nilsen.C∗-bundlesandC0(X)-algebras.Indiana Univ.Math.J.45.2(1996),pp.463– +477. DOI: 10.1512/iumj.1996.45.1086. +[OV90] +A. L. Onishchik and E. B. Vinberg. Lie groups and algebraic groups. Springer Series in +Soviet Mathematics. Translated from the Russian by D. A. Leites. Berlin etc.: Springer- +Verlag, 1990. ISBN: 3-540-50614-4. DOI: 10.1007/978-3-642-74334-4. +[Osi16] +D. Osin. Acylindrally hyperbolic groups. Trans. Am. Math. Soc. 368.2 (2016), pp. 851– +888. DOI: 10.1090/tran/6343. +[PR89] +J. A. Packer and I. Raeburn. Twisted crossed products of C∗-algeras. Math. Proc. Camb. +Philos. Soc. 106.2 (1989), pp. 293–311. DOI: 10.1017/S0305004100078129. +[Pra76] +G. Prasad. Discrete subgroups isomorphic to lattices in Lie groups. Am. J. Math. 98 +(1976), pp. 853–863. DOI: 10.2307/2374033. +[Rag72] +M. S. Raghunathan. Discrete subgroups of Lie groups. Vol. 68. Ergeb. Math. Grenzgeb. +Berlin: Springer-Verlag, 1972. ISBN: 978-3-642-86428-5. +[Ros94] +J. Rosenberg. C∗-algebras and Mackey’s theory of group representations. C∗-algebras: +1943-1993. A fifty year celebration. AMS special session commemorating the first fifty years of +C∗-algebra theory. January 13-14, 1993. San Antonio, Texas. Ed. by R. S. Doran. Vol. 167. +Contemporary Mathematics. 1994. +21 + +[Sca20] +E. Scarparo. A torsion-free algebraically C∗-unique group. Rocky Mt. J. Math. 50.5 +(2020), pp. 1813–1815. DOI: 10.1216/rmj.2020.50.1813. +[Seg83] +D. Segal. Polycyclic groups. Vol. 82. Cambridge Tracts in Mathematics. Cam- +bridge etc.: Cambridge University Press, 1983, 289 p. ISBN: 9780511565953. DOI: +10.1017/CBO9780511565953. +[SSW20] +A. Sims, G. Szabó, and D. Williams. Operator algebras and dynamics: groupoids, crossed +products, and Rokhlin dimension. Ed. by F. Perera. Advanced Courses in Mathemat- +ics CRM Barcelona. Cham: Birkhäuser/Springer, 2020, x+163 pp. ISBN: 978-3-030- +39712-8. DOI: 10.1007/978-3-030-39713-5. +[Sza15] +G. Szabó. The Rokhlin dimension of topological Zn-actions. Proc. Lond. Math. Soc. (3) +110.3 (2015), pp. 673–694. DOI: 10.1112/plms/pdu065. +[Tit72] +J. Tits. Free subgroups in linear groups. J. Algebra 20 (1972), pp. 250–270. DOI: +10.1016/0021-8693(72)90058-0. +[Tom92] +J. Tomiyama. The interplay between topological dynamics and theory of C∗-algebras. Lecture +Notes Series, Seoul. 2. Seoul: Seoul National University, College of Natural Sciences, +Department of Mathematics, 1992, 69 p. +[Zim84] +R. J. Zimmer. Ergodic theory and semisimple groups. Vol. 81. Monographs in Mathematics. +Boston-Basel-Stuttgart: Birkhäuser, 1984. +Are Austad +Department of Mathematics and Computer Science +University of Southern Denmark +Campusvej 55 +DK-5230 Odense +Denmark +are@sdu.dk +Sven Raum +Department of Mathematics +Stockholm University +Albanovägen 28 +SE-114 19 Stockholm +Sweden +raum@math.su.se +22 + diff --git a/CNAzT4oBgHgl3EQfGPv8/content/tmp_files/load_file.txt b/CNAzT4oBgHgl3EQfGPv8/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..0b339a9c87478f92648ace206de7ed6115854e64 --- /dev/null +++ b/CNAzT4oBgHgl3EQfGPv8/content/tmp_files/load_file.txt @@ -0,0 +1,1187 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf,len=1186 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='01027v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='OA] 3 Jan 2023 Detecting ideals in reduced crossed product C*-algebras of topological dynamical systems Are Austad and Sven Raum Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We introduce the ℓ1-ideal intersection property for crossed product C∗-algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' It is implied by C∗-simplicity as well as C∗-uniqueness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We show that topological dynamical systems of arbitrary lattices in connectedLie groups, arbitrary lineargroups overthe integers in a numberfield and arbitrary virtually polycyclic groups have the ℓ1-ideal intersection property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' On the way, we extend previous results on C∗-uniqueness of L1-groupoid algebras to the general twisted stetting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 1 Introduction Crossed products associated with topological dynamical systems are among the prime sources of examples in the theory of C∗-algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' In recent years, amenable dynamical systems received abun- dant attention in the context of Elliott’s classification programme (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [HWZ15;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Sza15;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DPS15;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' KS20]), while reduced group C∗-algebras were put in the spotlight by breakthrough results on C∗- simplicity [KK17;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Bre+17;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Ken20;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Haa16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' A foundational problem about crossed product C∗-algebras concerns their ideal structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' For tame dynamical systems it is possible to give a complete description of the primitive ideal space of the associated crossed product in terms of induced primitive ideals, thanks to the Mackey machine [Ros94;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' EW08].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' For wilder dynamical systems and for group C∗-algebras, it is the question of sim- plicity that received most attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Following seminal work on simplicity of group C∗-algebras [KK17;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Bre+17], a satisfactory characterisation of topological dynamical systems whose crossed product C∗-algebras are simple could be obtained in [Kaw17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' This line of research even led to complete results about simplicity of C∗-algebras associated with étale groupoids [Bor19;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Ken+21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' One important insight from the study of the ideal structure of groupoid C∗-algebras was the insight originating from [Tom92] that specific subalgebras have the potential to detect ideals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Much fewer results are available for dynamical systems that neither are tame nor give rise to simple crossed products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' However, the idea of employing subalgebras to detect ideals had surfaced earlier in a completely different context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' In work on abstract harmonic analysis and representation theory of solvable Lie groups, the concept of C∗-uniqueness of L1-convolution algebras was intro- duced in the late 1970’s and early 1980’s [Boi+78;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Boi84].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' This notion can be reformulated as an ideal intersection property for the inclusion L1(G) ⊆ C∗(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' While for exponential solvable Lie groups Boidol could establish conclusive results [Boi80], there have been no noteworthy advances in the investigation of C∗-uniqueness of discrete groups beyond the positive results for virtually nilpotent groups and some metabelian groups in [Boi+78].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Nevertheless, it is considered an open question whether every amenable discrete group is C∗-unique [LN04, Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' In some recent work starting with [GMR18], variations of C∗-uniqueness replacing the ℓ1-convolution algebra of a discrete group by its complex group algebra have been considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Results from [AK19;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Ale19;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Sca20] create an unclear image of which groups might have this property termed algebraic C∗- uniqueness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' last modified on January 4, 2023 MSC 2020 classification: 46L05, 37B02, 22E40, 20G30, 20F16 Keywords: ideal intersection property, crossed product C∗-algebra, topological dynamical system, lattices in Lie groups, linear groups, polycyclic groups The aim of this article is to introduce and study a new ideal intersection property for crossed product C∗-algebras, which can be established for a large class of examples including all C∗-simple groups andall C∗-unique groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Atpresent, we have no example of a topological dynamical system Γ ↷ X that fails the following ℓ1-ideal intersection property: every non-zero ideal of the C∗-algebraic crossed product C0(X)⋊redΓ has non-zero intersection with the ℓ1-crossed product C0(X)⋊ℓ1 Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The next two theorems describe non-amenable and amenable examples of groups for which we can establish the ℓ1-ideal intersection property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Theorem A (See Corollary 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='6, Corollary 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='8 and Corollary 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let Γ be either an acylindri- cally hyperbolic group, a lattice in a connected Lie group or a linear group over integers in a number field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Then every action of Γ on a locally compact Hausdorff space has the ℓ1-ideal intersection property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Weremarkthat(acylindrically)hyperbolicgroupsandtheiractionontheirGromovboundary, map- ping class groups, and algebraic actions of arithmetic groups fall in the scope of our theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' For amenable groups the ℓ1-ideal intersection property coincides with the notion of C∗-uniqueness, so that we obtain the first major enlargement of the class of groups for which this property is known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Theorem B (See Corollary 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Every action of a locally virtually polycyclic group on a locally com- pact Hausdorff space has the ℓ1-ideal intersection property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' In particular, every locally virtually polycyclic group is C∗-unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We remark that also metabelian groups can be covered by our methods, as noted in Remark 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Thus our results cover and extend all previously known examples of C∗-unique groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' In order to obtain the results above, we establish a general criterion on groups to satisfy the ℓ1-ideal intersec- tion property for all their dynamical systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' It combines assumptions that relate to C∗-simplicity with conditions on the structure of amenable subgroups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Theorem C (See Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let Γ be a discrete group such that the following three conditions hold for every finitely generated subgroup of Λ ≤ Γ: the Furstenberg subgroup of every subgroup of Λ equals its amenable radical, the Tits alternative holds for Λ, and there is l ∈ N such that every solvable subgroup of Λ is polycyclic of Hirsch length at most l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Then every action of Γ on a locally compact Hausdorff space has the ℓ1-ideal intersection property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The proof of Theorem C employs groupoid techniques in order to set up an induction scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The assumptions on amenable subgroups are exploited to construct a twisted groupoid, which is analysed from the point of view of the L1-ideal intersection property for groupoids, previously studied in [AO22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Ultimately our induction argument reduces the maximal possible Hirsch length of polycyclic subgroups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The following generalisation of work from [AO22] allows us to analyse the twisted groupoids we obtain when applying our strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' It might be of independent interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Theorem D (See Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let E be a twist over a second-countable locally compact étale Haus- dorff groupoid G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Assume that there is a dense subset D ⊆ G(0) such the fibres (IG x ,IE x ) have the ℓ1-ideal intersection property for all x ∈ D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Then (G,E) has the L1-ideal intersection property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 2 Structure of the article In Section 2, we introduce necessary background material and fix notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' In Section 3 we for- mally define the ℓ1-ideal intersection property for twisted C∗-dynamical systems and show in par- ticular that it is closed under directed unions of groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' In Section 4 we study the L1-ideal inter- section property for twisted groupoids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' In Section 5 we present certain twisted group C∗-algebras as twisted groupoid C∗-algebras, which is a key ingredient for the subsequent Section 6, where we obtain our main results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Acknowledgements ThefirstauthorgratefullyacknowledgesthefinancialsupportfromtheIndependentResearchFund Denmark through grant number 1026-00371B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The second author was supported by the Swedish Research Council through grant number 2018-04243.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The authors would like to thank the organ- isers of the 28th Nordic Congress of Mathematicians in Aalto, where this project was initiated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' They are grateful to Matthew Kennedy for interesting discussions about the ℓ1-ideal intersection property and to Magnus Goffeng for asking whether beyond group algebras also crossed product C∗-algebras could be investigated with the present techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We thank Becky Armstrong for clarifying conversations on the role of the second-countability assumption in her work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 2 Preliminaries Convention 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' All groups in this article are discrete unless otherwise specified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1 Virtually polycyclic groups A group Γ is called polycyclic if there exists a subnormal series 1 = Γ0 ⊴ Γ1⋯ ⊴ Γn−1 ⊴ Γn = Γ such that each of the factor groups Γi/Γi−1 is cyclic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The group is called poly-Z if each of the factor groups are isomorphic to Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' It is known that polycyclic groups are precisely the solvable groups for which every subgroup is finitely generated, see [Seg83, Chapter 1, Proposition 4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' This fact will be extensively used in the present article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We also recall from [Seg83, Chapter 1, Proposition 2] that a group Γ is virtually polycyclic if and only if it is (poly-Z)-by-finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The Hirsch length of a virtually polycyclic group Γ is the number of infinite cyclic factors in a subnormal series with cyclic or finite factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' It is denoted by h(Γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' See [Seg83, Chapter 1, Part C] for a discussion of the Hirsch length and its properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' In particular, we will make use of the following properties: If Λ ≤ Γ, then h(Λ) ≤ h(Γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Equality holds if and only if [Γ ∶ Λ] < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' If Λ ⊴ Γ is normal, then h(Γ) = h(Λ) + h(Γ/Λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='2 C*-uniqueness A group Γ is called ℓ1-to-C∗-unique or just C∗-unique for short if ℓ1(Γ) has a unique C∗-norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' It is clear that every C∗-unique group is amenable and that a group Γ is C∗-unique if and only if ℓ1(Γ) has non-zero intersection with every non-zero ideal of C∗(Γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The following result is a special case of [Boi+78, Satz 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Every finitely generated group of polynomial growth is C∗-unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' In this work we will only need to apply Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='2 in the special case of finitely generated torsion-free abelian groups, that is groups isomorphic with Zn for some n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' For the sake of a self-contained presentation, we give a short and direct proof in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Proof of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='2 for Zn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' It suffices to show that ℓ1(Zn) ⊆ C∗(Zn) has the ideal intersection property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Consider the Schwartz algebra S(Zn) = {f ∈ ℓ1(Zn) ∣ ∀k ∈ N ∶ f(x)∣x∣k → 0 as x �→ ∞} and the Fourier isomorphism F∶C∗(Zn) �→ C(Tn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Then F(S(Zn)) = C∞(Tn) is the algebra of smooth functions and it suffices to show that C∞(Tn) ⊆ C(Tn) has the ideal intersection property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' If I = {f ∈ C(Tn) ∣ f∣A ≡ 0} for some proper closed subset A ⊆ Tn is an ideal in C(Tn), then there is a non-zero smooth function f ∈ C∞ c (Tn ∖ A) ⊆ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' So I ∩ C∞(Tn) ≠ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='3 C*-simplicity In this section we recall some terminology from the theory of C∗-simple groups, and prove one result which is needed for our work and can be directly deduced from the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' A group Γ is called C∗-simple if C∗ red(Γ) is simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' It is clear that every C∗-simple group has the ℓ1-ideal intersection property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' As proven in [Ken20], a group Γ is C∗-simple if and only if the stabiliser URS (uniformly recur- rent subgroup) of its Furstenberg boundary ∂FΓ is trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We call a group in this URS a Furstenberg subgroup, and by abuse of notation will talk about the Furstenberg subgroup of Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Recall also that the amenable radical R(Γ) is the largest amenable normal subgroup of Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We need the following result that is not explicitly stated in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let Γ be a group whose Furstenberg subgroup is the amenable radical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Then Γ/R(Γ) is C∗-simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' It follows from [Kaw17, Corollary 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='5] that the C∗-algebra generated by the image of the quasi-regular representation with respect to a Furstenberg subgroup is simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' So by assumption C∗ red(Γ/R(Γ)) = λΓ/R(Γ)(C∗ red(Γ)) is simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='4 Twisted C*-dynamical systems A twisted C∗-dynamical system is a tuple (A,Γ,α,σ) where A is a C∗-algebra, Γ is a group and α∶Γ → Aut(A), σ∶Γ × Γ → U(M(A)) are maps satisfying αg1 ○ αg2 = Ad(σ(g1,g2)) ○ αg1g2 σ(g1,g2)σ(g1g2,g3) = αg1(σ(g2,g3))σ(g1,g2g3) σ(g1,e) = σ(e,g1) = 1 4 for all g1,g2,g3 ∈ Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The special case of A = C corresponds exactly to a group Γ with the choice of a 2-cocycle in Z2(Γ,S1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Denotingby π∶A → B(H)the universal representation ofA, the reducedtwistedcrossedprod- uct associated with (A,Γ,α,σ) is the C∗-subalgebra A ⋊α,σ,red Γ ⊆ B(H ⊗ ℓ2(Γ)) generated by the elements πα(a)λσ(g) for a ∈ A, g ∈ Γ, where πα∶A → B(H ⊗ ℓ2(Γ)) is given by πα(a)(ξ ⊗ δg) = π(α−1 g (a))ξ ⊗ δg and λσ is the twisted regular representation given by λσ(γ)(ξ ⊗ δg) = π(σ((γg)−1,γ))ξ ⊗ δγg .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Here a ∈ A, γ,g ∈ Γ and ξ ∈ H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' If A = C, then the reduced twisted crossed product C∗-algebra is equal to the reduced twisted group C∗-algebra where the twist is given by the 2-cocycle associated to the twisted C∗-dynamical system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The ∗-algebra generated by the elements πα(a)λσ(g) for a ∈ A, g ∈ Γ can be equipped with the ℓ1-norm ∥∑ g∈Γ πα(ag)λσ(g)∥ ℓ1 = ∑ g∈Γ ∥ag∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Its completion with respect to this norm is the twisted ℓ1-crossed product A ⋊α,σ,ℓ1 Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Convention 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Below we will need to consider restrictions of a twisted C∗-dynamical system (A,Γ,α,σ) to subgroups Λ ≤ Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' For notational ease, we will denote the restrictions of α and σ by the same symbols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='5 Twisted groupoid algebras For material on étale Hausdorff groupoids and groupoid twists we refer the reader to [SSW20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We recall the definition of a twist over a groupoid and its convolution algebra, which will be used in this article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let G be an étale groupoid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' A twist over G is a sequence G(0) × S1 E G i q where G(0) × S1 is the trivial group bundle with fibres S1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' where E is a locally compact Hausdorff groupoid with unit space i(G(0) ×{1}),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' and i and q are continuous groupoid homomorphisms that restrict to homeomorphisms of unit spaces,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' such that i is injective,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' E is a locally trivial G-bundle,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' that is for every point α ∈ G there is an open neighbourhood U that is a bisection and on which there exists a continuous section S∶U �→ E satisfying q ○S = idU,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' and such that the map (α,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='µ) ↦ i(r(α),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='µ)S(α) is a homeomorphism of U ×S1 onto q−1(U) i(G(0) × T) is central in E,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' that is i(r(g),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='µ)g = gi(s(g),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='µ) holds for all g ∈ E and µ ∈ S1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' and 5 q−1(G(0)) = i(G(0) × S1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Notation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' A twist as in the definition above will be denoted by (E,i,q) or simply by E if no confusion is possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Further, we will frequently identify the unit space of E and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Given a twist q∶E ↠ G over a locally compact étale Hausdorff groupoid G we write C(G,E) ∶= {f ∈ Cc(E) ∣ f(µ ⋅ g) = µf(g) for all g ∈ E and µ ∈ S1}, which becomes a ∗-algebra when equipped with the following convolution product and involution [Kum86, Proposition 5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We consider the action S1 ↷ C × E given by µ(z,g) = (µz,µg) and let C×S1 E be the quotient, which is a complex line bundle over G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' It carries a partially defined product (that is, it is a small category) given by [z1,g1][z2,g2] = [z1z2,g1g2] for any pair of composable elements g1,g2 ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The space C(G,E) is isomorphic with the space of sections Γ(C ×S1 E → G) by mapping f ∈ C(G,E) to the section q(g) ↦ [f(g),g].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' This is well-defined since (f(µg),µg) = (µf(g),µg) = µ(f(g),g) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The space Γ(C ×S1 E) carries the natural involution f ∗(g) = f(g−1) and the convolution product f1 ∗ f2(g) = ∑ g1g2=g f1(g1)f2(g2), for f,f1,f2 ∈ Γ(C ×S1 E) and g ∈ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The attentive reader will have noticed that our conventions for C(E,G) slightly differ from the usual requirement that f(µg) = µf(g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' This goes hand-in-hand with the divergence from Kumjian’s convention µ(z,g) = (µz,µg).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Our choice of conventions is justified by the following example, which is the basis for understanding the construction presented in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Given a discrete group Γ and a cocycle σ ∈ Z2(Γ,S1) one associates the central extension S1 ↪ Γ ×σ S1 ↠ Γ, where the product in Γ ×σ S1 is given by (γ1,µ1)(γ2,µ2) = (γ1γ2,σ(γ1,γ2)µ1µ2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We observe that (Γ,Γ×σS1) is a twisted groupoid and one expects an identification C(Γ,Γ×σ S1) ≅ C[Γ,σ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' This is the case with our conventions, while the usual conventions yield the anticipated natural isomorphism C(Γ,Γ ×σ S1) ≅ C[Γ,σ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let us elaborate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' For γ ∈ Γ, we define the section fγ(γ′) = δγ,γ′[1,γ,1] ∈ C ×S1 (Γ ×σ S1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Observe that the function in C(Γ,Γ ×σ S1) associated with it is the unnatural map (γ,µ) ↦ µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We show that the map γ ↦ fγ is σ-multiplicative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Indeed, for γ1,γ2,γ′ ∈ Γ we make the calculation fγ1 ∗ fγ2(γ′) = ∑ γ′=g1g2 fγ1(g1)fγ2(g2) = δγ′,γ1γ2[1,γ1,1][1,γ2,1] = δγ′,γ1γ2[1,γ1γ2,σ(γ1,γ2)] = δγ′,γ1γ2[σ(γ1,γ2),γ1γ2,1] = σ(γ1,γ2)δγ′,γ1γ2[1,γ1γ2,1] = σ(γ1,γ2)fγ1γ2(γ′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' This justifies our conventions sufficiently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Convention 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' If Γ is a group, then a twist over Γ is the same as an extension 1 → S1 → E → Γ → 1 and hence up to choice of a section Γ → E the same as an element in H2(Γ,S1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' In view of Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='7, in some situations we continue to use the notation C∗ red(Γ,E) for the associated twisted group C∗-algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 6 We will also use the following completions of the twisted groupoid algebra C(G,E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We denote by L1(G,E) its I-norm completion, which is a Banach ∗-algebra, C∗(G,E) the enveloping C∗-algebra of L1(G,E), and C∗ red(G,E) the reduced C∗-algebra completion of L1(G,E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' For a locally compact étale Hausdorff groupoid G we denote the interior of its isotropy groupoid by IG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' For x ∈ G(0), let IG x be the group appearing in the fibre x of IG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' It has been shown in [Arm22, Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='11] that for a twist E over a locally compact étale Hausdorff groupoid G the interior of the isotropy subgroupoid IE is a twist over the interior of the isotropy sub- groupoid IG, and for each x ∈ G(0), the isotropy group IE x is a twist over the isotropy group IG x .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We will apply the following result on the ideal intersection property for twisted groupoid C∗- algebras associated with a twist over a locally compact étale Hausdorff groupoid and its restriction to the interior of the isotropy bundle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We summarise results from [Arm22, Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1 and Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='3], which generalised previous work in the untwisted case published in [Bro+16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='9 ([Arm22]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let E be a twist over a second-countable locally compact étale Hausdorff groupoid G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' There is an injective ∗-homomorphism ι∶C∗ red(IG,IE) → C∗ red(G,E) such that ι(f)(g) = ⎧⎪⎪⎨⎪⎪⎩ f(g) if g ∈ IE 0 if g /∈ IE , for all f ∈ C(IG,IE) and all g ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The image of ι has the ideal intersection property in C∗ red(G,E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 3 The ℓ1-ideal intersection property for twisted C*-algebraic dynamical systems: basic results We will in later sections need to consider the ideal intersection property in the setting of twisted crossed products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' In this section we therefore define the ideal intersection property in this gener- ality, before deriving some useful reformulations and results which come in handy later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' A twisted C∗-dynamical system (A,Γ,α,σ) is said to have the ℓ1-ideal intersec- tion property if every non-zero ideal A ⋊α,σ,red Γ has non-zero intersection with A ⋊α,σ,ℓ1 Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' In situations, where partof the twistedaction is trivial, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' fortwistedgroup C∗-algebras associated with a pair (Γ,σ) or untwisted crossed products associated with an action Γ ↷ X, we simplify notation and say that (Γ,σ), respectively Γ ↷ X has the ideal intersection property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let us put the notion introduced in the previous definition into context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Every twisted C∗-dynamical system with a simple crossed product trivially has the ℓ1-ideal intersection property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Such systems arise from C∗-simple groups [BK18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 7 For amenable twisted C∗-dynamical system (A,Γ,α,σ) the ℓ1-ideal intersection property is equivalent to C∗-uniqueness of A⋊α,σ,ℓ1 Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' This can be inferred from the fact that reduced and universal crossed products of such systems coincide combined with [Bar83, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Alternatively, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='3 below can be employed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The following reformulation shows that the ℓ1-ideal intersection property for twisted C∗-dynamical systems is a question of minimality of the reduced C∗-algebra norm on A ⋊ℓ1,σ Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' It will be frequently used without further reference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let (A,Γ,α,σ) denote a twisted C∗-dynamical system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The following conditions are equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' (i) (A,Γ,α,σ) has the ℓ1-ideal intersection property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' (ii) If a ∗-homomorphism into a C∗-algebra π∶A ⋊α,σ,red Γ → B is injective on A ⋊α,σ,ℓ1 Γ then it is injective itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' (iii) The reduced C∗-norm on A ⋊α,σ,ℓ1 Γ is minimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Suppose that (A,Γ,α,σ) has the ℓ1-ideal intersection property and let π∶A ⋊α,σ,red Γ → B be injective on A ⋊α,σ,ℓ1 Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Then ker π ∩ A ⋊α,σ,ℓ1 Γ = {0} implies that ker π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' So π itself is injective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Assume next that Item (ii) holds and let ν∶A ⋊α,σ,ℓ1 Γ → R≥0 be a C∗-norm dominated by the reduced C∗-norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Denoting by B = A ⋊α,σ,ℓ1 Γ ν the completion, the natural ∗-homomorphism π∶A⋊α,σ,red Γ → B is faithful on the ℓ1-crossed product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The assumption implies that π is injective and henceforth isometric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Thus, ν is equal to the reduced C∗-norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Now assume that Item (iii) holds and let I ⊴ A⋊α,σ,red Γ be a non-zero ideal with quotient map π∶A⋊α,σ,redΓ → B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The assumption allows us to infer that ker π∩A⋊α,σ,ℓ1Γ ≠ {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Since I = ker π and I was arbitrary, we conclude that (A,Γ,α,σ) has the ℓ1-ideal intersection property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The analogue of the minimality of the reduced C∗-norm featuring in Item (iii) of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='3 has previously been introduced for algebraic group rings in [AK19] under the name C∗ r -uniqueness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We next show that the ℓ1-ideal intersection property is closed under directed unions, in the follow- ing precise sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let (A,Γ,α,σ) be a twisted C∗-dynamical system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Assume that Γ = ⋃i∈I Γi is a directed unionsuch that (A,Γi,α,σ)hastheℓ1-ideal intersectionpropertyfor all i ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Then(A,Γ,α,σ) has the ℓ1-ideal intersection property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We employ the characterisation in Item (ii) of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='3 of the ℓ1-ideal intersection property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let π∶A⋊α,σ,red Γ → B be a ∗-homomorphism whose restriction to the ℓ1-crossed prod- uct is injective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The assumptions imply that for all i ∈ I the restriction π∣A⋊α,σ,redΓi is injective and thus isometric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Since ⋃i∈I A ⋊α,σ,red Γi is dense in A ⋊α,σ,red Γ, the result follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 8 4 The L1-ideal intersection property for twisted groupoids and their isotropy bundles In this section we prove the L1-ideal intersection property for certain twisted groupoids, in the same spirit as [AO22] did for cocycle twisted groupoids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' In view of applications in Section 6, our statements are established in slightly greater generality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' A twisted locally compact étale Hausdorff groupoid (G,E) is said to have the L1- ideal intersection property if every non-zero ideal of C∗ red(G,E) has non-zero intersection with L1(G,E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The next result shows that in order to establish the L1-ideal intersection property for a twisted groupoid, it suffices to study its isotropy bundle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' It is a direct consequence of Armstrong’s results recalledin Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='5, andits analogue in the contextofC∗-uniqueness of cocycle twistedgroupoid C∗-algebras was obtained in [AO22, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let G be a second-countable locally compact étale Hausdorff groupoid and let E be a twist over G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' If (IG,IE) has the L1-ideal intersection property, then so does (G,E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let I ⊴ C∗ red(G,E) be a non-zero ideal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Appealing to the work of [Arm22] described in Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='9 and identifying C∗ red(IG,IE) with its image in C∗ red(G,E), we find a that J = I ∩ C∗ red(IG,IE) is a non-zero ideal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' By assumption of the proposition, we can thus conclude that 0 ≠ J ∩ L1(IG,IE) ⊆ I ∩ L1(G,E) which completes the proof of the proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' In the remainder of this section we aim to prove that if sufficiently many fibres of the isotropy bundle have the ℓ1-ideal intersection property, then the full isotropy bundle has the L1-ideal inter- section property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Following the same strategy as in [AO22], we achieve this by decomposing any C∗-completion of L1(IG,IE) as a C∗-bundle over G(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We will need the following lemma in or- der to describe the fibres of this bundle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' It generalises [AO22, Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='4], but we give a shorter proof which applies in greater generality, which is later needed in the proof of Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Given a groupoid G, we call x ∈ G(0) strongly fixed if Gx = IG x .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let E be a twist over a locally compact étale Hausdorff groupoid G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Assume that x ∈ G(0) is a strongly fixed point and denote by resx∶L1(G,E) �→ L1(Gx,Ex) the restriction map and by Ix its kernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Then resx is a continuous ∗-homomorphism which induces an isometric ∗-isomorphism between L1(G,E)/Ix and L1(Gx,Ex).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Further, Ix is the ideal generated by C0(G(0) ∖ {x}).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' It is clear that resx is continuous and in order to show that it induces an isometric ∗-isomorphism, it suffices to show that resx∣C(G,E) factors through to an isometry with dense image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We first prove density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let fx ∈ C(Gx,Ex) be arbitrary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Considering Ex ⊆ E as a closed subset and making use of local compactness of the latter, Tietze’s theorem provides some function ˜fx ∈ Cc(E) such that ˜fx∣Ex = fx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Define f(g) = ∫ S1 µ ˜fx(µg)dµ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 9 Then f ∈ C(G,E) holds thanks to invariance of the Haar measure, and f∣Ex = fx by S1-equivariance of fx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' This proves density of the image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Given f ∈ C(G,E)andε > 0 there is a neighbourhoodU ⊆ G(0) of xsuchthatsuppf∩s−1(U) ⊆ IE and ∣∥resy(f)∥−∥resx(f)∥∣ < ε for all y ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Since G(0) is locally compact, by Tietze’s theorem there is g ∈ C(G(0)) with 0 ≤ g ≤ 1, g∣G(0)∖U ≡ 1 and g(x) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Then f ∗ g ∈ Ix and we find that ∥f + Ix∥ ≤ ∥f − f ∗ g∥ ≤ sup y∈U ∥resy(f)∥ ≤ ∥resx(f)∥ + ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Further, ∥resx(f)∥ = inf h∈Ix ∥resx(f + h)∥ ≤ inf h∈Ix ∥f + h∥ = ∥f + Ix∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' It remains to show that Ix is equal to the ideal J generated by C0(G(0) ∖{x}) in L1(G,E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' If f ∈ Ix and ε > 0, there is ˜f ∈ C(G,E) such that ∥f − ˜f∥I < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Thus ∥resx( ˜f)∥ < ε and hence we find as above g ∈ C0(G(0) ∖ {x}) such that ∥ ˜f − ˜f ∗ g∥I < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' This implies that ∥f − ˜f ∗ g∥ < 2ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Since ˜f ∗ g ∈ J and ε > 0 was arbitrary, this finishes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We are now ready to prove the main result of this section, which generalises [AO22, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' It is stated and proven in the generality needed for Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Extending usual conventions and accepting zero-fibres, for a ∗-homomorphism C0(X) → Z(M(A)), we denote by Ax the quotient of A by the ideal generated by the image of C0(X ∖ {x}).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let E be a twist over a second-countable locally compact étale Hausdorff groupoid G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' As- sume that there is a dense subset D ⊆ G(0) such that ℓ1(IG x ,IE x ) ⊆ C∗ red(IG x ,IE x) has the ideal inter- section property for all x ∈ D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let π∶C∗ red(G,E) → A be a ∗-homomorphism into a C∗-algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' If πx∶C∗ red(IGx ,IEx ) → π(C∗ red(IG,IE))x restricts to an injection of ℓ1(IGx ,IEx ) for all x ∈ D, then π is injective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let π∶C∗ red(G,E) → A and D ⊆ G(0) be as in the statement of the theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Without loss of generality, we may assume that π is non-degenerate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' By Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='9, it suffices to show that π∣C∗ red(IG,IE) is injective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Since πx∣ℓ1(IG x ,IEx ) is injective for all x ∈ D, it is in particular non-zero, so that density of D ⊆ G(0) implies that π∣C0(G(0)) is injective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Hence B = π(C∗ red(IG,IE)) is a C0(G(0))-algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Denote by B = (Bx)x the upper semi-continuous C∗-bundle associated with it by [Nil96, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='3], which recovers B as the algebra of sections B ≅ Γ0(B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' By Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='3, we obtain the following commutative diagram upon taking quotients by the ideal generated by C0(G(0) ∖ {x}) in each algebra of its top row.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' L1(IG,IE) C∗ red(IG,IE) B ℓ1(IGx ,IEx ) C∗ red(IGx ,IEx ) Bx πx For x ∈ D, the ∗-homomorphism ℓ1(IG x ,IE x ) → Bx is injective and (IG x ,IE x ) has the ℓ1-ideal in- tersection property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' So πx is an isomorphism of C∗-algebras and as such an isometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let now f ∈ Γ0(B) be an element in the image of L1(IG,IE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Then ∥f∥B = sup x∈G(0) ∥f(x)∥Bx ≥ sup x∈D ∥f(x)∥Bx = sup x∈D ∥f(x)∥C∗ red(IG x ,IEx ) = ∥f∥C∗ red(IG,IE) since the regular representations of (IG,IE) are continuous by construction [Kum86, Section 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 10 Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let E be a twist over a second-countable locally compact étale Hausdorff groupoid G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Assume that there is a dense subset D ⊆ G(0) such that (IG x ,IE x ) has the ℓ1-ideal intersection property for all x ∈ D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Then (G,E) has the L1-ideal intersection property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let π∶C∗ red(G,E) → A be a ∗-homomorphism that is injective on L1(G,E) and write B = π(C∗ red(IG,IE)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' In order to prove injectivity of π, by Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='4, it suffices to check that πx∶C∗ red(IGx ,IEx ) → Bx is injective when restricted to ℓ1(IGx ,IEx ) for all x ∈ G(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' By Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='3, taking the quotient by the ideal generated by C0(G(0) ∖ {x}) in the inclusion L1(G,E) ↪ B, we indeed obtain the desired inclusion ℓ1(IGx ,IEx ) ↪ Bx, which finishes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 5 Groupoid C*-algebras from abelian normal subgroups In this section we describe a twisted groupoid associated with an inclusion of a normal abelian subgroup into a discrete group endowed with an S1-valued 2-cocycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' This construction should be folklore, but has not been presented explicitly to our knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let A ⊴ Γ be a normal abelian subgroup of a discrete group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' A cocycle σ ∈ Z2(Γ,S1) is A-admissible if it satisfies σ∣A×A ≡ 1, and σ(γ,a)σ(γa,γ−1) = 1 = σ(a,γ−1)σ(γ,aγ−1) for all γ ∈ Γ and a ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let A ⊴ G and σ be as above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Write Λ = Γ/A and consider the action Λ α↷ A given by αλ(a) = γaγ−1 for γA = λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Since A is abelian, this is well-defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Denote by G = Λ ⋉ ˆA the transformation groupoid associated with the dual action of α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Further, let Γ ⋉σ (S1 × ˆA) be the twisted transformation groupoid whose product is given by (γ1,µ1,γ2χ)(γ2,µ2,χ) = (γ1γ2,µ1µ2σ(γ1,γ2),χ) for γ1,γ2 ∈ Γ, µ1,µ2 ∈ S1 and χ ∈ ˆA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' and consider N = {(a−1,χ(a),χ) ∣ a ∈ A,χ ∈ ˆA} ⊆ Γ ⋉σ (S1 × ˆA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The following lemma describes a twisted groupoid associated to the tuple (Γ,A,σ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The set N ⊆ Γ ⋉σ (S1 × ˆA) is a closed normal subgroupoid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Further, Γ ⋉σ (S1 × ˆA)/N is a twist over G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' It follows from the fact that evaluation of characters in ˆA is continuous, that N is closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Further, it is multiplicatively closed since σ∣A×A ≡ 1 and the calculation (a−1,χ(a),χ)−1 = (a,χ(a)σ(a−1,a),χ) = (a,χ(a−1),χ) for a ∈ A and χ ∈ ˆA shows that N is also closed under inverses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' So it is a closed subgroupoid of Γ ⋉σ (S1 × ˆA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We next check normality of N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Thanks to centrality of S1 it suffices to observe for a ∈ A, γ ∈ Γ and χ ∈ ˆA that (γ,1,χ)(a−1,χ(a),χ)(γ−1,1,γχ) = (γa−1γ−1,χ(a)σ(γ,a−1)σ(γa−1,γ−1),γχ) = (γa−1γ−1,γχ(γaγ−1)),γχ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 11 We now want to show that the quotient E = Γ ⋉σ (S1 × ˆA)/N is a twist over G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The inclusion {e} × S1 × ˆA ⊆ Γ ⋉σ (S1 × ˆA) descends to an inclusion i∶S1 × ˆA �→ E since N ∩ ({e} × S1 × ˆA) = {(e,1)} × ˆA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Further, the projection onto the first and last component Γ ⋉σ (S1 × ˆA) �→ Γ × ˆA induces a continuous quotient map q∶E �→ Γ/A ⋉ ˆA = G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' It is clear that i(S1 × ˆA) is central in E and that q−1({eA} × ˆA) = i(S1 × ˆA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' What remains to be shown is that E is locally trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let (γA,χ0) ∈ G and consider the open bisection U = {γA} × ˆA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The map S∶U �→ E∶(γA,χ) ↦ (γ,1,χ) is continuous and satisfies q ○ S = idU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Further, q−1(U) = {[γa,µ,χ] ∈ E ∣ µ ∈ S1,a ∈ A,χ ∈ ˆA} = {[γ,µ,χ] ∈ E ∣ µ ∈ S1,χ ∈ ˆA} is naturally isomorphic with S1 × U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let us introduce some notation in order to refer to the twisted groupoid just constructed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Given a group Γ with a normal abelian subgroup A and an A-admissible 2-cocycle σ ∈ Z2(Γ,S1), we denote the associated twisted groupoid by G(Γ,A,σ) = Γ/A ⋉ ˆA E(Γ,A,σ) = Γ ⋉σ (S1 × ˆA)/{(a−1,χ(a),χ) ∣ a ∈ A,χ ∈ ˆA}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We next identify the twisted group algebras associated to (Γ,σ) with the twisted groupoid algebra associated with a normal abelian subgroup A ⊴ Γ for which σ is admissible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' This proposition generalises the identification described in Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let A ⊴ Γ be an abelian normal subgroup of a discrete group and σ ∈ Z2(Γ,S1) an A- admissible cocycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let (G,E) = (G(Γ,A,σ),E(Γ,A,σ)) be the associated twisted groupoid and write elements of C ×S1 E as equivalence classes [z,γ,µ,χ] with z ∈ C, γ ∈ Γ, µ ∈ S1 and χ ∈ ˆA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Given γ ∈ Γ define the following section of C ×S1 E ↠ G: fγ(gA,χ) = ⎧⎪⎪⎨⎪⎪⎩ [1,γ,1,χ] if gA = γA 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Then the map γ ↦ fγ (i) extends to a contractive embedding ℓ1(Γ,σ) ↪ L1(G,E), which (ii) extends to an isomorphism C∗ red(Γ,σ) ↪ C∗ red(G,E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We first show that the map γ → fγ is σ-twisted multiplicative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' For γ1,γ2,g ∈ Γ and χ ∈ ˆA, we find that fγ1 ∗ fγ2(gA,χ) = ∑ (g1A)(g2A)=gA fγ1(g1A,g2χ)fγ2(g2A,χ) = ∑ (g1A)(g2A)=gA g1A=γ1A, g2A=γ2A [1,g1,1,g2χ][1,g2,1,χ] = ⎧⎪⎪⎨⎪⎪⎩ [1,γ1,1,γ2χ][1,γ2,1,χ] = [1,γ1γ2,σ(γ1,γ2),χ] if gA = γ1γ2A 0 otherwise = σ(γ1,γ2)fγ1γ2(gA,χ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 12 Since fe is the neutral element for the convolution product, this shows that the map γ ↦ fγ extends to a unital ∗-homomorphism C[Γ,σ] → L1(G,E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We next show that this ∗-homomorphism extends to a contraction ℓ1(Γ,σ) → L1(G,E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' To this end, we need to identify the functions ˜fγ ∈ C(G,E) associated with fγ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We claim that ˜fγ([g,µ,χ]) = ⎧⎪⎪⎨⎪⎪⎩ µχ(g−1γ) if γA = gA 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Indeed, for γA = gA, µ ∈ S1 and χ ∈ ˆA we calculate [µχ(g−1γ),g,µ,χ] = [χ(g−1γ),γγ−1g,1,χ] = [χ(g−1γ),γ,χ(γ−1g),χ] = [1,γ,1,χ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Take now ∑γ∈Γ cγuγ ∈ C[Γ,σ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Then sup χ∈ ˆ A ∥ ∑ γ∈Γ cγ ˜fγ∥ℓ1(Gχ) = sup χ∈ ˆ A ∑ gA∈Γ/A ∣∑ γ∈Γ cγ ˜fγ([g,1,χ])∣ ≤ sup χ∈ ˆ A ∑ gA∈Γ/A ∣ ∑ γ∈gA cγχ(γ−1g)∣ ≤ ∑ γ ∣cγ∣.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Similarly, we obtain that sup χ∈ ˆ A ∥ ∑ γ∈Γ cγ ˜fγ∥ℓ1(Gχ) = sup χ∈ ˆ A ∑ gA∈Γ/A ∣∑ γ∈Γ cγ ˜fγ([g,1,g−1χ])∣ ≤ sup χ∈ ˆ A ∑ gA∈Γ/A ∣ ∑ γ∈gA cγχ(gγ−1)∣ ≤ ∑ γ ∣cγ∣.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Together, these calculations show that ∥∑γ cγ ˜fγ∥I ≤ ∥∑γ cγuγ∥ℓ1(Γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' So indeed, we obtain a con- traction ℓ1(Γ,σ) → L1(G,E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We now show that the contraction above extends to a ∗-isomorphism C∗ red(Γ,σ) ≅ C∗ red(G,E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' This will imply in particularthatthe map ℓ1(Γ,σ) → L1(G,E)is injective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Considerthe conditional expectation E∶C∗ red(G,E) → C( ˆA) given by restriction of functions in C(G,E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Further, denote by ∫ dχ the Haar integral on ˆA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We observe that for every γ ∈ Γ, we have ∫ dχ ○ E(fγ) = ∫ ˆ A ˜fγ([e,1,χ])dχ = ⎧⎪⎪⎨⎪⎪⎩ ∫ ˆ A χ(γ)dχ if γ ∈ A 0 otherwise = ⎧⎪⎪⎨⎪⎪⎩ 1 if γ = e 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 13 This shows that we obtain an isometric ∗-homomorphism C∗ red(Γ,σ) → C∗ red(G,E) and it remains to argue that it has dense image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' To this end it suffices to show that for every gA ∈ Γ/A and every section f∶G → C×S1 E supported on {gA}× ˆA lies in the image of C∗ red(Γ,σ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let f ˆ A∶ ˆA → C be the unique continuous function such that f(gA,χ) = [f ˆ A(χ),g,1,χ] for all χ ∈ ˆA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We can identify f ˆ A with an element in C(G,E), and find that f = fg ∗ f ˆ A, which finishes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let us next describe the isotropy groups and the associated twists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Recall that for a group action Γ ↷ X and x ∈ X, the subgroup Γ○x = {γ ∈ Γ ∣ ∃U open ∶ x ∈ U,γ∣U = idU} is the neighbourhood stabiliser of x in Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let A ⊴ Γ be an abelian normal subgroup and σ ∈ Z2(Γ,S1) an A-admissible cocycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let (G,E) be the associated twisted groupoid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Then the fibre of (IG,IE) at χ ∈ ˆA is given by the quotient Γ○χ ×σ S1/N → Γ○χ/A obtained from Γ○χ ×σ S1 → Γ○χ/A by dividing out the normal subgroup N = ⟪(a,χ(a) ∣ a ∈ A⟫ ⊴ Γ○χ ×σ S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Furthermore, given a section s∶Γ○χ/A → Γ○χ and the associated 2-cocycle ρ ∈ Z2(Γ○χ/A,A), we define a section ˜s∶Γ○ χ/A → Γ○ χ ×σ S1/N by ˜s(h) = [s(h),1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Then the associated S1-valued 2-cocycle is (χ ○ ρ) ⋅ (σ ○ (s × s)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' It is clear that IGχ = Γ○χ/A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We can thus calculate the fibre IE χ = {[γ,µ,χ] ∣ γ ∈ Γ○ χ,µ ∈ S1} ≅ Γ○ χ ×σ S1/N .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Now fix a section s∶Γ○ χ/A → Γ○ χ and define ˜s(h) = [s(h),1] as in the statement of the theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' For h1,h2 ∈ Γ○χ/A, using the fact that χ is fixed by Γ○χ, we find that ˜s(h1)˜s(h2) = [s(h1),1][s(h2),1] = [ρ(h1,h2)s(h1h2),σ(s(h1),s(h2))] = [s(h1h2)(s(h1h2)−1ρ(h1,h2)s(h1h2)),σ(s(h1),s(h2))] = [s(h1h2),(χ ○ ρ(h1,h2)) ⋅ (σ(s(h1),s(h2)))] = (χ ○ ρ(h1,h2)) ⋅ (σ(s(h1),s(h2)))˜s(h1h2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' This shows that (χ ○ ρ) ⋅ (σ ○ (s × s)) is indeed a 2-cocycle and that it is the extension cocycle associated with ˜s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 6 Proof of the main results In this section we prove all main results described in the introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We start with three lemmas, which will be used in the proof of Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let Γ be a group whose subgroups all have the ℓ1-ideal intersection property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Then any action of Γ on a locally compact Hausdorff space has the ℓ1-ideal intersection property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' This directly follows from Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='5 applied to the transformation groupoid Γ⋉X with a trivial twist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let Γ be finite-by-(C∗-simple) and σ ∈ Z2(Γ,S1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Then (Γ,σ) satisfies the ℓ1-ideal inter- section property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 14 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let F ⊴ Γ be a finite normal subgroup such that Λ = Γ/F is C∗-simple and let σ ∈ Z2(Γ,S1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' After a choice of section s∶Λ → Γ satisfying s(e) = e, we infer from [PR89, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1] that C∗ red(Γ,σ) ≅ C[F,σ] ⋊α,ρ,red Λ, where the twisted crossed product is defined with respect to the maps α∶Λ → Aut(C[F,σ])∶αh(uf) = σ(s(h),f)σ(s(h)fs(h)−1,s(h))us(h)fs(h)−1 ρ∶Λ × Λ → U(C[F,σ])∶ σ(h1,h2) = σ(s(h1),s(h2))σ(s(h1)s(h2)s(h1h2)−1,s(h1h2))us(h1)s(h2)s(h1h2)−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Inspection of the proof of [PR89, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1] shows that moreover the inclusion ℓ1(Γ,σ) ⊆ C∗ red(Γ,σ) is isomorphic with the inclusion of twisted crossed products C[F,σ] ⋊α,ρ,ℓ1 Λ ⊆ C[F,σ] ⋊α,ρ,red Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' So it suffices to show that C[F,σ] ⊆ C[F,σ] ⋊α,ρ,red Λ satisfies the ideal in- tersection property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Since C[F,σ] is finite dimensional, it is a multi-matrix algebra and hence the twisted C∗-dynamical system (C[F,σ],Λ,α,ρ) decomposes as a direct sum of Λ-simple dynamical sys- tems, say C[F,σ] ≅ ⊕n i=1 Ai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We can apply [BK18, Corollary4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='4] to infer that Ai⋊α,ρ,redΛ is simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' So ideals of C[F,σ] ⋊α,ρ,red Λ are precisely of the form I = ⊕ i∈S (Ai ⋊α,ρ,red Λ) for some subset S ⊆ {1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' ,n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' If I ∩ C[F,σ] = {0}, then S = ∅ follows, which in turn implies I = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' This finishes the proof of the lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' For the next lemma recall the notion of admissible cocycles from Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let A ⊴ Γ be a normal finitely generated abelian subgroup and let σ ∈ Z2(Γ,Z/nZ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' There is a finite index characteristic subgroup B ≤ A and a B-admissible cocycle ρ ∈ Z2(Γ,Z/nZ) equivalent to σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Denote by o = ∣Tors(A)∣ the order of the torsion subgroup of A and let B ≤ A be the in- tersection of all its finite index subgroups of index o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Then B has finite index, since A is finitely generated, and B is characteristic in A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Also B is a finitely generated torsion-free abelian group so that the isomorphism H2(B) ≅ B ∧ B together with the universal coefficient theorem in coho- mology imply that σ∣B×B ∈ Z2(B,Z/nZ) is equivalent to a bicharacter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Specifically, there is a map ϕ∶B → Z/nZ such that (b1,b2) ↦ σ(b1,b2)−ϕ(b1b2)+ϕ(b1)+ϕ(b2) is a bicharacter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Extending ϕ to a map ˜ϕ∶Γ → Z/nZ, we may replace σ by an equivalent 2-cocycle ρ satisfying ρ(γ1,γ2) = σ(γ1,γ2) − ˜ϕ(γ1γ2) + ˜ϕ(γ1) + ˜ϕ(γ2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let i be the index of the finite index subgroup {b ∈ B ∣ ∀b′ ∈ B ∶ σ(b,b′) = σ(b′,b) = 0} ≤ B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We denote by C the intersection of all subgroups of B with index i, which is of finite index and characteristic in B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Consider now the central extension Z/nZ ↪ ˜Γ ↠ Γ associated with ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Since C is torsion-free, its preimage in ˜Γ is isomorphic with C ⊕ Z/nZ in such a way that the action of Γ on it is given by αγ(c,k) = (γcγ−1,σ(γ,c) + σ(γc,γ−1)) for all γ ∈ Γ, c ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' In particular, since Z/nZ has exponent n, we find that (γcnγ−1,σ(γ,cn) + σ(γcn,γ−1)) = αγ((cn,0)) = αγ((c,0))n = ((γcγ−1)n,0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 15 This implies that the subgroup D = ⟨cn ∣ c ∈ C⟩ ≤ C satisfies ρ(γ,d) + ρ(γd,γ−1) = 0 for all γ ∈ Γ and d ∈ D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' By definition D ≤ C is characteristic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Further it has finite index, because C is finitely generated abelian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The next definition describes the groups for which we prove the ℓ1-ideal intersection property in the subsequent theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We denote by U the class of all discrete groups Γ such that the following three conditions hold for every finitely generated subgroup of Λ ≤ Γ: the Furstenberg subgroup of every subgroup of Λ equals its amenable radical, the Tits alternative holds for Λ, and there is l ∈ N such that every solvable subgroup of Λ is polycyclic of Hirsch length at most l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We are now ready to prove the main theorem of this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let Γ be a group from the class U, let X be a locally compact Hausdorff space and let Γ ↷ X be an action by homeomorphisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Further, let σ ∈ Z2(Γ,S1) be a 2-cocycle taking values in a finite subgroup of S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Then (X,Γ,σ) has the ℓ1-ideal intersection property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' By Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1, it suffices to consider the case where X is a point, that is twisted group C∗-algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The statement is clear for finite groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' For an induction, fix l ≥ 1 and assume that the ℓ1-ideal intersection property holds for all 2-cocycles with values in a finite subgroup of S1 on groups in U whose polycyclic subgroups all have Hirsch length at most l − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let Γ be a group in U all whose polycyclic subgroups have Hirsch length at most l ≥ 1, and let σ ∈ Z2(Γ,S1) be a cocycle with values in a finite subgroup of S1, say Z/nZ ⊆ S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Thanks to Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='5, we may assume that Γ is finitely generated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let ν∶ℓ1(Γ,σ) → R≥0 be a C∗-norm dominated by ∥ ⋅ ∥red.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We denote by A = ℓ1(Γ,σ) ν the completion with respect to ν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Since Γ ∈ U, its amenable radical is virtually polycyclic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' If it is finite, we infer from Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='3 that Γ itself is finite-by-(C∗-simple).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' So Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='2 can be applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Otherwise, its maximal polycyclic subgroup Λ ≤ R(Γ) is infinite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let d be the derived length of Λ and observe that Λ(d−1) is a finitely generated abelian group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' By Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='3, there is a finite index characteristic subgroup A ≤ Λ(d−1) and an A-admissible cocycle ρ ∈ Z2(Γ,Z/nZ) equivalent to σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Since equivalence of cocycles preserves the isomorphism class of twisted group algebras, we may assume that ρ = σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Observe that all the inclusions A ≤ Λ(d−1) ≤ Λ ≤ R(Γ) ≤ Γ are characteristic and hence A ≤ Γ is characteristic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' In particular, A is normal in Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Denote by (G,E) the twisted groupoid constructed from (Γ,A,σ) as in Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' By Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='4, there is a commutative diagram ℓ1(Γ,σ) C∗ red(Γ,σ) A L1(G,E) C∗ red(G,E) ≅ π 16 We need to prove that π is injective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Since finitely generated abelian groups are C∗-unique by Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='2, the restriction of π to C( ˆA) is injective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let D = Tors( ˆA) be the torsion subgroup of ˆA, which is dense, because A is a free abelian group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' By Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='4 it suffices to prove that for all χ ∈ D the induced map πχ∶C∗ red(IG χ,IE χ) → π(C∗ red(IG,IE))χ is injective on ℓ1(IG χ,IE χ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Fix χ ∈ D and consider the neighbourhood stabiliser Γ○χ = {g ∈ Γ ∣ ∃U ∋ χ∶g∣U = idU} for the action Γ ↷ ˆA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Observe that A ≤ Γ○ χ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' By Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='5, the inclusion ℓ1(IG χ,IE χ) ⊆ C∗ red(IG χ,IE χ) is isomorphic with ℓ1(Γ○χ/A,(χ ○ ρ) ⋅ (σ ○ (s × s))) ⊆ C∗ red(Γ○χ/A,(χ ○ ρ) ⋅ (σ ○ (s × s))), where s∶Γ○ χ/A → Γ○ χ is a section and ρ ∈ Z2(Γ○ χ/A,A) the associated extension cocycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We write ˜σ = (χ ○ ρ) ⋅ (σ ○ (s × s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let (H,F) be the groupoid associated with (Γ○χ,A,σ), where by abuse of notation we still keep the notation σ instead of writing σ∣Γ○χ×Γ○χ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We have an inclusion of twisted groupoids (IG,IE) ↪ (H,F) ↪ (G,E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let I ⊴ π(C∗ red(H,F)) be the ideal generated by C0( ˆA∖{χ}) and observe that we have a commutative diagram π(C∗ red(IG,IE)) π(C∗ red(IG,IE))χ π(C∗ red(H,F)) π(C∗ red(H,F))/I ≅ We write B = π(C∗ red(H,F)) and B/I = Bχ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' By Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='3, the kernel of the restriction map resχ∶L1(H,F) → ℓ1(Hχ,Fχ) ≅ ℓ1(Γ○ χ/A, ˜σ) is the ideal J generated by C0(H(0)∖{χ}) = C0( ˆA∖ {χ}).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Using the fact that we have a commutative diagram ℓ1(Γ○χ,σ) L1(H,F) ℓ1(Γ○ χ/A, ˜σ) resχ we infer that the injection ℓ1(Γ○χ,σ) ↪ B ⊆ A when dividing by J ∩ ℓ1(Γ○χ,σ) and I = π(J) descends to an injection ℓ1(Γ○χ/A, ˜σ) ↪ Bχ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' So the induction hypothesis can be applied, since A being infinite, the Hirsch length of every subgroup of Γ○ χ/A is at most l − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' So we have shown that we have a commutative diagram ℓ1(Γ○ χ/A, ˜σ) Bχ ℓ1(IGχ,IEχ) π(C∗ red(IG,IE))χ ≅ ≅ πχ which implies what we had to show.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We now describe several classes of groups to which Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='5 applies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Our first application concerns the large class of acylindrically hyperbolic groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We remark that the ℓ1-ideal intersec- tion property for their group algebras can be deduced directly from Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='2, while the general statement for dynamical systems could be deduced using solely Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1 and C∗-uniqueness of virtually cyclic groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 17 Corollary 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let Γ be an acylindrically hyperbolic group and Γ ↷ X an action on a locally compact Hausdorff space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Then C0(X) ⋊ℓ1 Γ ⊆ C0(X) ⋊red Γ has the ideal intersection property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' In orderto apply Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='5, we needto checkall conditions ofDefinition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' By [DGO17, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='35] combined with Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='3 the first condition is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The second and third conditions are satisfied thanks to [Osi16, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1], which shows that subgroups of acylindri- cally hyperbolic groups are virtually cyclic or contain a copy of the free group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' In order to obtain our next class of examples to which our main result applies, we need the fol- lowing result, which is folklore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We refer the reader unfamiliar with Lie theory to [OV90, Table 9, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 312-317] for the classification of simple real Lie algebras and their rank, which by definition is the dimension of a maximal R-diagonalisable Lie subalgebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let Γ be a lattice in a connected Lie group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Then there is l ∈ N such that every solvable subgroup of Γ is virtually polycyclic and has Hirsch length at most l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let G be a connected Lie group in which Γ is a lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' By [Pra76, Lemma 6], there is a normal subgroup Λ ⊴ Γ suchthatΛ is virtually a lattice in a connectedsolvable Lie group andΓ/Λ is a lattice in a connected semisimple Lie group with trivial centre and without compact factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' By [Rag72, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='7] every lattice in a connected simply connected solvable Lie group is polycyclic of Hirsch length bounded by the dimension of the Lie group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Since every connected solvable Lie group is a quotient by a central discrete subgroup of its universal cover, the conclusion applies to lattices in arbitrary connected solvable Lie groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' So we may assume for the rest of the proof that Γ is a lattice in a connected semisimple Lie group G with trivial centre and without compact factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Passing to a finite index subgroup of Γ, there are direct product decompositions G = ∏n i=1 Gi and Γ = ∏n i=1 Γi such that Γi ≤ Gi is an irreducible lattice [Rag72, Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' It hence suffices to consider the case where Γ ≤ G is already irreducible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Assuming that G is locally isomorphic with SO+(n,1) or SU(n,1), the group Γ acts on the hyperbolic boundary of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Thus, every solv- able subgroup of G is virtually cyclic, finishing the proof in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Assume that G is not locally isomorphic with either SO+(n,1) or SU(n,1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Then the arithmeticity theorems of Margulis for lattices in semisimple Lie groups of higher rank presented in [Mar91, Chapter IX] and [Zim84, Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='2], and the arithmeticity theorem for simple Lie groups of rank one locally isomor- phic with Sp(n,1) or F4(−20) by Corlette [Cor92] and Gromov-Schoen [GS92] applies to show that Γ is virtually linear over Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Say it virtually embeds into GLn(Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Now [DFO13, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='9] says that there is l = l(n) such that every solvable subgroup of GLn(Z) is polycyclic of Hirsch length at most l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Corollary 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let Γ be a lattice in a connected Lie group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Then any action of Γ on a locally compact Hausdorff space has the ℓ1-ideal intersection property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' In order to apply Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='5, we have to check all conditions of Definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let Λ be the amenable radical of Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Then by [Pra76, Lemma 6], we infer that Λ is virtually a lattice in a connected solvable Lie group and that Γ/Λ is a lattice in a semisimple Lie group with trivial centre and without compact factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Since Lie groups with trivial centre are linear, [Bre+17, Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='9] implies that Γ/Λ is C∗-simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' So the first condition of Definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='4 is verified thanks to Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Also, the Tits alternative for linear groups in characteristic zero [Tit72] shows that every amenable subgroup of Γ/Λ is virtually solvable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Since Λ is virtually solvable, this shows that every amenable subgroup of Γ is virtually solvable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' This checks the second condition of Definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' In order to verify the last one, we can apply Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 18 A variation of the core arguments in the previous theorem, also covers many linear groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Corollary 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let Γ be a linear group over the integers of a number field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Then any action of Γ on a locally compact Hausdorff space has the ℓ1-ideal intersection property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Let Γ be as in the statement of the theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We have to check all three conditions of Definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The first condition is satisfied thanks to, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='3 combined with [Bre+17, Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The second condition holds thanks to the Tits alternative for linear groups in char- acteristic zero [Tit72].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The last condition holds thanks to [DFO13, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Our final class of examples to which Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='5 applies are virtually polycyclic groups, and more generally locally virtually polycyclic groups, which are precisely those groups whose finitely gen- erated subgroups are virtually polycyclic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We state the result in terms of C∗-uniqueness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Corollary 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Every locally virtually polycyclic group is C∗-unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' By Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='5, it suffices to show that every virtually polycyclic group satisfies the conditions of Definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The first condition is satisfied since virtually polycyclic groups are amenable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The second condition holds, since every subgroup of a polycyclic group is polycyclic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Finally, the Hirsch length is monotone for inclusions of groups, so that the last condition is also satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Now Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='5 applies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Remark 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' It would be interesting to understand whether all linear groups have the ℓ1-ideal in- tersection property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We expect that a positive answer can be obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' However, the groupoid techniques employed in the present work will likely not be sufficient to prove such a result for two reasons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' First, there need not be any torsion points in the dual of an abelian group, so that an induc- tion like in the proof of Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='5 cannot be performed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Second, following the strategy of the present work, there is no clear induction variable available for solvable groups which are not poly- cyclic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The derived length is not suitable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Indeed, the induction step in the proof of Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='5 only divides out a (possibly proper) subgroup of the last term in the derived series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Concrete examples of solvable, non-polycyclic groups can nevertheless be covered by our present methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The arguments presented show that metabelian groups have the ℓ1-ideal intersec- tion property, since each such group is an inductive limit of semi-direct products A⋊Zni for some monotone sequence of natural numbers (ni)i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' We don’t give any details of the argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Many metabelian groups are already known to have the ℓ1-ideal intersection property by [Boi+78, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 11, Korollar].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' References [Ale19] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Alekseev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' (Non)-uniqueness of C∗-norms on group rings of amenable groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' C∗- algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Abstracts from the workshop held August 11–17, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' by M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Rørdam, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Shlyakhtenko, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Thom, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Vaes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Oberwolfach Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='4171/OWR/2019/37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [AK19] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Alekseev and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Kyed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Uniqueness questions for C∗-norms on group rings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Pac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 298.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='2 (2019), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 257–266.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='2140/pjm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='298.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='257.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [Arm22] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Armstrong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' A uniqueness theorem for twisted groupoid C∗-algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 283.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='6 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Id/No 109551, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='jfa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='109551.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 19 [AO22] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Austad and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Ortega.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' C∗-uniqueness results for groupoids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='4 (2022), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 3057–3073.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1093/imrn/rnaa225.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [Bar83] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Barnes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The properties *-regularity and uniqueness of C∗-norm in a general *- algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 279 (1983), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 841–859.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='2307/1999571.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [Boi80] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Boidol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' *-regularity of exponential Lie groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Invent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 56 (1980), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 231–238.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1007/BF01390046.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [Boi84] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Boidol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Group algebras with a unique C∗-norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 55 (1984), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 220–232.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1016/0022-1236(84)90011-9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [Boi+78] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Boidol, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Leptin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Schürmann, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Vahle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Räume primitiver Ideale in Gruppe- nalgebren.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 236 (1978), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 1–13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1007/BF01420252.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [Bor19] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Borys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The Furstenberg Boundary of a Groupoid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' arXiv:1904.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='10062.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [Bre+17] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Breuillard, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Kalantar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Kennedy, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Ozawa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' C∗-simplicity and the unique trace property for discrete groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Publ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Hautes Étud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 126.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1 (2017), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 35–71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1007/s10240-017-0091-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [Bro+16] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Brown, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Nagy, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Reznikoff, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Sims, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Williams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Cartan subalgebras in C∗-algebras of Hausdorff étale groupoids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Integral Equations Oper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Theory 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1 (2016), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 109–126.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1007/s00020-016-2285-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [BK18] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Bryder and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Kennedy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Reduced twisted crossed products over C∗- simple groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='6 (2018), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 1638–1655.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1093/imrn/rnw296.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [Cor92] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Corlette.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Archimedean superrigidity and hyperbolic geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' (2) 135.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1 (1992), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 165–182.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='2307/2946567.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [DGO17] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Dahmani, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Guirardel, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Osin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Hyperbolically embedded subgroups and ro- tating families in groups acting on hyperbolic spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Mem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 245.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1156 (2017), 152 pages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1090/memo/1156.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [DPS15] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Deeley, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Putnam, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Strung.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Constructing minimal homeomorphisms on point-like spaces and a dynamical presentation of the Jiang-Su algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Reine Angew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 742 (2015), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 241–261.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1515/crelle-2015-0091.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [DFO13] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Detinko, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Flannery, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' O’Brien.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Algorithms for linear groups of finite rank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Algebra 393 (2013), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 187–196.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='jalgebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [EW08] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Echterhoff and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Williams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The Mackey machine for crossed products: inducing primitive ideals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Group representations, ergodic theory, and mathematical physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' A tribute to George W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Mackey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' AMS special session honoring the memory of George W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Mackey, New Orleans, LA, USA, January 7–8, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Providence, RI: American Mathematical Society, 2008, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 129–136.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' ISBN: 978-0-8218-4225-6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [GMR18] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Grigorchuk, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Musat, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Rørdam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Just-infinite C∗-algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Comment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Helv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1 (2018), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 157–201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='4171/CMH/432.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [GS92] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Gromov and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Schoen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Harmonic maps into singular spaces and p-adic super- rigidity for lattices in groups of rank one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Publ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=', Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Hautes Étud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 76 (1992), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 165–246.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1007/BF02699433.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 20 [Haa16] U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Haagerup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' A new look at C∗-simplicity and the unique trace property of a group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Operator Algebras and Applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' by T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Carlsen, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Larsen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Neshveyev, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Skau.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Abel Symposia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Cham: Springer, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 167–176.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1007/978-3-319-39286-8_7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [HWZ15] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Hirshberg, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Winter, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Zacharias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Rokhlin dimension and C∗-dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Com- mun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 335.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='2 (2015), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 637–670.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1007/s00220-014-2264-x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [KK17] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Kalantar and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Kennedy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Boundaries of reduced C∗-algebras of discrete groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Reine Angew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 727 (2017), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 247–267.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1515/crelle-2014-0111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [Kaw17] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Kawabe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Uniformly recurrent subgroups and the ideal structure of reduced crossed products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' arXiv:1701.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='03413.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [Ken20] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Kennedy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' An intrinsic characterization of C∗-simplicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Éc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Supér.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='5 (2020), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 1105–1119.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='24033/asens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='2441.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [Ken+21] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Kennedy, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Kim, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Li, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Raum, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Ursu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The ideal intersection property for essential groupoid C∗-algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' arXiv:2107:03980.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [KS20] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Kerr and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Szabó.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Almost finiteness and the small boundary property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 374.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1 (2020), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 1–31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1007/s00220-019-03519-z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [Kum86] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Kumjian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' On C∗-diagonals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Can.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='4 (1986), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 969–1008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='4153/CJM-1986-048-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [LN04] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Leung and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Ng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Some permanence properties of C∗-unique groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='2 (2004), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 376–390.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='jfa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [Mar91] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='Margulis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='Discretesubgroupsof semisimpleLiegroups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='ErgebnissederMathe- matik und ihrer Grenzgebiete, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Folge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Berlin etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' : Springer-Verlag, 1991, 388 p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' ISBN: 3-540-12179-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [Nil96] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='Nilsen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='C∗-bundlesandC0(X)-algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='Indiana Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='2(1996),pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='463– 477.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1512/iumj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1086.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [OV90] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Onishchik and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Vinberg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Lie groups and algebraic groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Springer Series in Soviet Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Translated from the Russian by D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Leites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Berlin etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' : Springer- Verlag, 1990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' ISBN: 3-540-50614-4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1007/978-3-642-74334-4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [Osi16] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Osin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Acylindrally hyperbolic groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 368.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='2 (2016), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 851– 888.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1090/tran/6343.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [PR89] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Packer and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Raeburn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Twisted crossed products of C∗-algeras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Camb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Philos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='2 (1989), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 293–311.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1017/S0305004100078129.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [Pra76] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Prasad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Discrete subgroups isomorphic to lattices in Lie groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 98 (1976), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 853–863.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='2307/2374033.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [Rag72] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Raghunathan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Discrete subgroups of Lie groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Ergeb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Grenzgeb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Berlin: Springer-Verlag, 1972.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' ISBN: 978-3-642-86428-5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [Ros94] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Rosenberg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' C∗-algebras and Mackey’s theory of group representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' C∗-algebras: 1943-1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' A fifty year celebration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' AMS special session commemorating the first fifty years of C∗-algebra theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' January 13-14, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' San Antonio, Texas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' by R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Doran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 167.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Contemporary Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 21 [Sca20] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Scarparo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' A torsion-free algebraically C∗-unique group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Rocky Mt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='5 (2020), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 1813–1815.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1216/rmj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1813.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [Seg83] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Segal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Polycyclic groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Cambridge Tracts in Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Cam- bridge etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' : Cambridge University Press, 1983, 289 p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' ISBN: 9780511565953.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1017/CBO9780511565953.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [SSW20] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Sims, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Szabó, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Williams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Operator algebras and dynamics: groupoids, crossed products, and Rokhlin dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' by F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Perera.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Advanced Courses in Mathemat- ics CRM Barcelona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Cham: Birkhäuser/Springer, 2020, x+163 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' ISBN: 978-3-030- 39712-8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1007/978-3-030-39713-5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [Sza15] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Szabó.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The Rokhlin dimension of topological Zn-actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Lond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' (3) 110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='3 (2015), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 673–694.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1112/plms/pdu065.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [Tit72] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Tits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Free subgroups in linear groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Algebra 20 (1972), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 250–270.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='1016/0021-8693(72)90058-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [Tom92] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Tomiyama.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' The interplay between topological dynamics and theory of C∗-algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Lecture Notes Series, Seoul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Seoul: Seoul National University, College of Natural Sciences, Department of Mathematics, 1992, 69 p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' [Zim84] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Zimmer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Ergodic theory and semisimple groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Monographs in Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Boston-Basel-Stuttgart: Birkhäuser, 1984.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content=' Are Austad Department of Mathematics and Computer Science University of Southern Denmark Campusvej 55 DK-5230 Odense Denmark are@sdu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='dk Sven Raum Department of Mathematics Stockholm University Albanovägen 28 SE-114 19 Stockholm Sweden raum@math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='su.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} +page_content='se 22' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfGPv8/content/2301.01027v1.pdf'} diff --git a/DNE4T4oBgHgl3EQfew0W/vector_store/index.pkl b/DNE4T4oBgHgl3EQfew0W/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..c8bdb97a63a1b9f22536a9ab71d85c16970d52a2 --- /dev/null +++ b/DNE4T4oBgHgl3EQfew0W/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:db42a74c5c994d06a5b03a4098855d5b3852a6530f7d59b21bfbe620be8c9ac7 +size 278379 diff --git a/E9FLT4oBgHgl3EQfFi_K/content/2301.11988v1.pdf b/E9FLT4oBgHgl3EQfFi_K/content/2301.11988v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..37d3be6ef8d8d6b6dce3f818897073995b384921 --- /dev/null +++ b/E9FLT4oBgHgl3EQfFi_K/content/2301.11988v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a7e5f67856ce51024d5bc18ca9e136a55bf738fe31180d2c1a68b1d1f237f4f7 +size 281493 diff --git a/FNAzT4oBgHgl3EQfUPz_/vector_store/index.faiss b/FNAzT4oBgHgl3EQfUPz_/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..223d32be49a0565236da2dc8414ac5e03660ab45 --- /dev/null +++ b/FNAzT4oBgHgl3EQfUPz_/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9c7cdaf947bc92ab898f8ccf4f55529387020200cd773276bcb9c5feb69dab0d +size 5832749 diff --git a/FNE2T4oBgHgl3EQfSwf4/content/2301.03797v1.pdf b/FNE2T4oBgHgl3EQfSwf4/content/2301.03797v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..f3bba0803415e145491d81c3de8e2241e0172e6c --- /dev/null +++ b/FNE2T4oBgHgl3EQfSwf4/content/2301.03797v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6c744b8beb593b2ac2203bfdd08ec78254af186cdbdfe23d13c3afcdd6efb594 +size 233427 diff --git a/FNE2T4oBgHgl3EQfSwf4/vector_store/index.pkl b/FNE2T4oBgHgl3EQfSwf4/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..d12bf73283ea1ab2b1eb6f9bf6186f708b543ba3 --- /dev/null +++ b/FNE2T4oBgHgl3EQfSwf4/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4dddbe6e8b3c202b208f128e63a0848728e6f3b465b450ef64a4aab09fd399cd +size 225081 diff --git a/G9E5T4oBgHgl3EQfWA_j/vector_store/index.faiss b/G9E5T4oBgHgl3EQfWA_j/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..b0594a51bf9e63d1890aad920e305194a5452ad6 --- /dev/null +++ b/G9E5T4oBgHgl3EQfWA_j/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ca399b071e36aaeca7836530d5459a6cef1666b3e8e23e55582ad6a8d2559ab1 +size 4718637 diff --git a/H9AyT4oBgHgl3EQf5vo1/content/2301.00809v1.pdf b/H9AyT4oBgHgl3EQf5vo1/content/2301.00809v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..3d6090a5fbc34d0b76a31e39051b54c0fd93cf15 --- /dev/null +++ b/H9AyT4oBgHgl3EQf5vo1/content/2301.00809v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:63d672e66ac9c095f4e7ec7bf82f4acf26c584ce3af520449012aada11e79e0c +size 2429463 diff --git a/H9AyT4oBgHgl3EQf5vo1/vector_store/index.pkl b/H9AyT4oBgHgl3EQf5vo1/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..5b324e3878a2997732bada34ff0471dc8c60b272 --- /dev/null +++ b/H9AyT4oBgHgl3EQf5vo1/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fd193dcd1a096849188ddc0469054876f2866781775191d6f686436325f8a5da +size 188338 diff --git a/J9AyT4oBgHgl3EQfsPnV/content/2301.00575v1.pdf b/J9AyT4oBgHgl3EQfsPnV/content/2301.00575v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..8e2ac321214227839d82f71777ee5b4aeb0f879b --- /dev/null +++ b/J9AyT4oBgHgl3EQfsPnV/content/2301.00575v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e14802e660f0292992cfdff83a7fce202b150fc88216a89af10e067dde8d4333 +size 1304458 diff --git a/J9AyT4oBgHgl3EQfsPnV/vector_store/index.faiss b/J9AyT4oBgHgl3EQfsPnV/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..534955f3ba0062a103f6c7b00599a3e397492a57 --- /dev/null +++ b/J9AyT4oBgHgl3EQfsPnV/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:552596ff29c79c07aa81167cb662714c6f2dd9cd757d9d0fa45bd4ca45c4b1e8 +size 2818093 diff --git a/J9AyT4oBgHgl3EQfsPnV/vector_store/index.pkl b/J9AyT4oBgHgl3EQfsPnV/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..9a773cc67cd159d6d69cfca8cc5d600c25a3eba2 --- /dev/null +++ b/J9AyT4oBgHgl3EQfsPnV/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4421810421f5ceadddaa235081f95cfedfb352a26a1b77806cada29ce5115492 +size 93394 diff --git a/JNE1T4oBgHgl3EQfYQQS/content/tmp_files/2301.03135v1.pdf.txt b/JNE1T4oBgHgl3EQfYQQS/content/tmp_files/2301.03135v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..983470be5f74a54941e31be9f6826f125f6958e2 --- /dev/null +++ b/JNE1T4oBgHgl3EQfYQQS/content/tmp_files/2301.03135v1.pdf.txt @@ -0,0 +1,571 @@ +arXiv:2301.03135v1 [math.NT] 9 Jan 2023 +On an upper bound of the degree of polynomial +identities regarding linear recurrence sequences +Ana Paula Chavesa,1,, Eduardo Henrique Rodrigues do Nascimentob +aInstituto de Matem´atica e Estat´ıstica, Universidade Federal de Goi´as, Goiˆania, +74001-970, Brazil +bArena Highschool, Goiˆania, 74215-160, Brazil +Abstract +Let (Fn)n≥0 be the Fibonacci sequence given by Fn+2 = Fn+1 + Fn, for +n ≥ 0, where F0 = 0 and F1 = 1. There are several interesting identities +involving this sequence such as F 2 +n + F 2 +n+1 = F2n+1, for all n ≥ 0. +In a +very recent paper, Chaves, Marques and Togb´e proved that if if (Gm)m is a +linear recurrence sequence (under weak assumptions) and Gs +n + · · · + Gs +n+k ∈ +(Gm)m, for infinitely many positive integers n, then s is bounded by an +effectively computable constant depending only on k and the parameters of +Gm. In this paper, we will generalize this result, proving, in particular, that if +(Gm)m, (Hm)m are linear recurrence sequences (under weak assumptions) and +ǫ0R(Gn) + ǫ1R(Gn+1) + · · · + ǫk−1R(Gn+k−1) + R(Gn+k), for infinitely many +positive integers n, then s is bounded by an effectively computable constant +depending only on upper and lower bounds of the ǫi and the parameters of +Gm (but surprisingly not on k). +Keywords: +Fibonacci, linear forms in logarithms, reduction method, linear +recurrence sequence +2000 MSC: 11B39, 11J86 +∗Corresponding author +Email address: apchaves@ufg.br (Ana Paula Chaves) +1Supported by FAPERJ-Brazil +Preprint submitted to - +January 10, 2023 + +On the sum of powers of terms of a linear recurrence sequence +2 +1. Introduction +A sequence (Gn)n≥0 is said to be a linear recurrence sequence with coef- +ficients c0, c1, . . . , ck−1, where c0 ̸= 0, if +Gn+k = ck−1Gn+k−1 + · · · + c1Gn+1 + c0Gn, +(1) +for all n ≥ 0. A linear recurrence sequence is therefore completely determined +by its initial values G0, . . . , Gk−1, and by the coefficients c0, c1, . . . , ck−1. The +integer k is called the order of the linear recurrence. +The characteristic +polynomial of the sequence (Gn)n≥0 is given by +G(x) = xk − ck−1xk−1 − · · · − c1x − c0. +It is well-known that for all n +Gn = g1(n)rn +1 + · · · + gℓ(n)rn +ℓ , +(2) +where rj is a root of G(x) and gj(x) is a polynomial over Q[r1, . . . , rℓ], for +j = 1, ..., ℓ. A root rj of the recurrence is called a dominant root if |rj| > |ri|, +for all j ̸= i ∈ {1, ..., ℓ}. In this paper, we consider only recurrence sequences +whose coefficients and initial values are real algebraic numbers, i.e., whose +terms are real algebraic numbers. Hence, gj(n) is an algebraic number, for +all j = 1, ..., ℓ, and n ∈ N. +A general Lucas sequence (Cn)n≥0 given by Cn+2 = aCn+1 + bCn, for +n ≥ 0, where the values a, b, C0 and C1 are previously fixed, is an example +of a linear recurrence of order 2 (also called binary). For instance, if C0 = 0 +and C1 = a = b = 1, then (Cn)n≥0 = (Fn)n≥0 is the well-known Fibonacci +sequence: +0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... +The Fibonacci numbers are famous for their amazing properties (see [8] and +[4]). Among many identities satisfied by these numbers, we have the following +F 2 +n + F 2 +n+1 = F2n+1, for all n ≥ 0. +(3) +which tells us that the sum of the square of two consecutive Fibonacci num- +bers is still a Fibonacci number. Marques and Togb´e [6] questioned what +about such sums with higher powers, and showed that, if x ≥ 1 is an integer +such that F x +n + F x +n+1 is a Fibonacci number for all sufficiently large n, then + +On the sum of powers of terms of a linear recurrence sequence +3 +x ∈ {1, 2}. In 2011, Luca and Oyono [5] solved this problem completely by +showing that the Diophantine equation +F s +m + F s +m+1 = Fn +(4) +has no solutions (m, n, s) with m ≥ 2 and s ≥ 3. Since then, many authors +have considered variations of (4), looking for solutions when the Fibonacci +sequence is replaced by one of its generalizations, such as the k-generalized +Fibonacci sequence (see [1, 2, 9]). +Our main interest, relies on the following result, yet related to (3). In +2010, Chaves, Marques and Togb´e [3] considered the sum of many powers +of terms of a linear recurrence sequence. Their main theorem stated that +if (Gn)n is an integer linear recurrence sequence (under some assumptions), +s, k and b are positive integer numbers and ǫj ∈ {0, 1}, with 0 ≤ j ≤ k − 1, +such that +Gs +n + ǫ1Gs +n+1 + · · · + ǫk−1Gs +n+k−1 + Gs +n+k +(5) +belongs to the sequence (b·Gn)n for infinitely many n ∈ N, then s is bounded +by an effectively computable constant depending on k, b and the parameters +of (Gn)n. +The assumption is that the characteristic polynomial of (Gn)n +has a simple positive root being the unique zero outside the unit circle. +For instance, (Fn)n and some of its high order generalizations, satisfies this +condition. +The aim of this paper is to extend the main result of [3], approaching a much +more general set of linear recurrence sequences, and also of combinations of +powers of terms of such sequences that could also belong to other recurrence +sequences. More precisely, we prove the following. +Theorem 1. Let (Gn)n≥0 and (Hn)n≥0 be unbounded linear recurrence se- +quences, such that (Hn)n≥0 has a simple root h ∈ R, and the dominant root +of (Gn)n≥0, given by g, is a positive rational power of h. Also, let c ∈ R ∩ Q, +and M, m ∈ R>0. Then, there exists an effectively computable constant E, +such that if R(z) ∈ C[z], is a monic polynomial of degree s, k ∈ N and +ǫj ∈ C, not all zero, where m ≤ |ǫj| ≤ M, for all ǫj ̸= 0, with 0 ≤ j ≤ k − 1, +and +ǫ0R(Gn) + ǫ1R(Gn+1) + · · · + ǫk−1R(Gn+k−1) + R(Gn+k) +belongs to the sequence (c · Hn)n, for infinitely many positive integers n, then +s < E. The constant E depends only on m, M, c and the parameters of (Gn)n +and (Hn)n (but not on k). + +On the sum of powers of terms of a linear recurrence sequence +4 +2. Auxiliary results +In this section, we recall some results that will be very useful for the proof +of the above theorems. Let G(x) be the characteristic polynomial of a linear +recurrence Gn. One can factor G(x) over the set of complex numbers as +G(x) = (x − r1)m1(x − r2)m2 · · · (x − rℓ)mℓ, +where r1, ..., rℓ are distinct non-zero complex numbers (called the roots of the +recurrence) and m1, ..., mℓ are positive integers. A root rj of the recurrence is +called a dominant root if |rj| > |ri|, for all j ̸= i ∈ {1, ..., ℓ}. The correspond- +ing polynomial gj(n) is named the dominant polynomial of the recurrence. A +fundamental result in the theory of recurrence sequences asserts that there +exist uniquely determined non-zero polynomials g1, ..., gℓ ∈ Q({rj}ℓ +j=1)[x], +with deg gj ≤ mj − 1, for j = 1, ..., ℓ, such that +Gn = g1(n)rn +1 + · · · + gℓ(n)rn +ℓ , for all n. +(6) +For more details, see [10, Theorem C.1]. +In the case of the Fibonacci sequence, the above formula is known as +Binet’s formula: +Fn = αn − βn +α − β , +where α = (1 + +√ +5)/2 (the golden number) and β = (1 − +√ +5)/2 = −1/α. +Equation (6) and some tricks will allow us to obtain linear forms in three +logarithms and then determine lower bounds `a la Baker for these linear forms. +From the main result of Matveev [7], we deduce the following lemma. +Lemma 1. Let α1, α2, α3 be real algebraic numbers and let b1, b2, b3 be non- +zero integer rational numbers. Define +Λ = αb1 +1 αb2 +2 αb3 +3 − 1. +Let D be the degree of the number field Q(α1, α2, α3) over Q and let A1, A2, A3 +be positive real numbers which satisfy +Aj ≥ max{Dh(αj), | log αj|, 0.16}, for j = 1, 2, 3. + +On the sum of powers of terms of a linear recurrence sequence +5 +Assume that B ≥ max{{|bj|; 1 ≤ j ≤ 3}}. Define also +C1 = 1.4 × 306 × 34.5 × D2 log(eD) +If Λ ̸= 0, then +|Λ| > exp(−C1A1A2A3 log(eB)). +As usual, in the previous statement, the logarithmic height of an n-degree +algebraic number α is defined as +h(α) = 1 +n(log |a| + +n +� +j=1 +log max{1, |α(j)|}), +where a is the leading coefficient of the minimal polynomial of α (over Z) +and (α(j))1≤j≤n are the conjugates of α. +The next lemma plays an important role in the proof of Theorem 1, since +it will allow us to prove that a certain linear form is a non-zero real number. +Lemma 2. Let (Gn)n be a linear recurrence such that its characteristic poly- +nomial has a simple dominant root r1. Then the dominant polynomial g1(x) +of (Gn)n is a non-zero real constant and Gn ∼ g1.rn +1. +Proof We know that +Gn = g1(n)rn +1 + · · · + gℓ(n)rn +ℓ , +where each rj is a root of characteristic polynomial of Gn, with multiplicity +mj, and each gj(n) is a non-zero polynomial with degree ≤ mj − 1. Suppose +that r1 is the dominant root, since it is simple, we have immediately m1 = 1 +and then the degree of dominant polynomial is at most m1 − 1 = 0, so it is +a non-zero constant. Now note that +Gn +rn +1 += g1 + +ℓ +� +j=2 +gj(n). +�rj +r1 +�n +. +However, since | rj +r1| < 1 and polynomials lose to exponential functions, +each term of the summation goes to zero as n → ∞. Since it has a bounded +number of terms, this concludes our proof. +□ + +On the sum of powers of terms of a linear recurrence sequence +6 +Lemma 3. Let r ∈ R and (an)n be a sequence of integers. If +lim +n→∞ ran +exists and is equal to a real number L, then L is either 0 or an integer power +of r. +Proof: If r ∈ {−1, 0, 1}, this is clear. +We may assume without loss of +generality that |r| < 1, because if |r| > 1, we can exchange an for −an and r +for r−1. Note that an is bounded below. If an is not bounded above, +lim inf +n→∞ ran = 0, +so our limit is 0. If it is, there is a finite set S of the possible values of ran when +n varies over the positive integers. Taking ǫ = 0.5 min{|a − b| : a ̸= b ∈ S} +on the definition of the statement’s limit, we get that for n large +|ran+1 − ran| = |(ran+1 − L) + (L − ran)| ≤ |ran+1 − L| + |L − ran| < 2ǫ, +which is impossible unless ran = ran+1 =⇒ an = an+1 for all large n. Hence, +an equals some integer constant a for all large n, so L = ra. +□ +Now let’s start the proof of our results. +3. The proof of Theorem 1 +Throughout our proof, we will use Landau’s big-oh symbol in a slight +variation of its usual meaning, considering c, M, m, (Gn)n, (Hn)n to be fixed, +while k, s are variables. +First notice that |g|, |h| > 1. Indeed, since Gn ∼ agn, if |g| ≤ 1, (Gn)n +would be bounded. Similarly, |h| must be greater than 1. +Now suppose there exists an infinite subset N ⊆ N and a sequence +(tn)n∈N, such that for every n in N , we have +ǫ0R(Gn) + ǫ1R(Gn+1) + · · · + ǫk−1R(Gn+k−1) + R(Gn+k) = cHtn . +(7) +Then, by dividing both sides by gsn, we get +ǫ0R(Gn) +gsn ++ · · · + ǫk−1R(Gn+k−1) +gsn ++ R(Gn+k) +gsn += cHtn +gsn . +(8) + +On the sum of powers of terms of a linear recurrence sequence +7 +Now, looking at the limit of both sides of (8), as n ∈ N goes to infinity, we +obtain +lim +n→∞ +R(Gn+i) +gsn += +� +lim +n→∞ +R(Gn+i) +Gs +n+i +� +· +� +lim +n→∞ +Gs +n+i +gsn +� += lim +n→∞ +�Gn+i +gn +�s +. +Since g is the dominant root of (Gn)n, by (6) +lim +n→∞ +�Gn+i +gn +�s += +� +lim +n→∞ +Gn+i +gn +�s += gsi +� +lim +n→∞ +Gn+i +gn+i +�s += gsias, +where a is the dominant polynomial of (Gn)n (a ∈ R, from Lemma 2). Denote +by b ∈ R the dominant polynomial of (Hn)n. Then, the limit of the left-hand +side of (8) exists and equals to +as(ǫ0 + ǫ1gs + · · · + ǫk−1g(k−1)s + gks). +Due to this, the limit of the right-hand side of (8) exists. Since g is a positive +rational power of h, there exists an algebraic number f and x, y positive +integers such that g = f x, h = f y. Hence, the right-hand side of (8) equals +the following expressions involving other (existing) limits, +lim +n→∞ +cHtn +f xsn = +� +lim +n→∞ +cHtn +htn +� +· +� +lim +n→∞ +f ytn +f xsn +� += cb · lim +n→∞ f ytn−xsn +From Lemma 3, we have two cases. First, if limn→∞ f ytn−xsn = 0, then +ǫ0 + ǫ1gs + · · · + ǫk−1g(k−1)s + gks = 0, +and by the triangle inequality, +|gks| ≤ |ǫ0| + |ǫ1||gs| + · · · + |ǫk−1g(k−1)s| ≤ M |g|ks − 1 +|g|s − 1 ≤ M +|g|ks +|g|s − 1 +which gives us +|g|s ≤ M + 1 =⇒ s ≤ log(M + 1) +log |g| +, +so E := log(M + 1)/ log |g|, in this case. Now, for limn→∞ f ytn−xsn ̸= 0, we +have +as(ǫ0 + ǫ1gs + · · · + ǫk−1g(k−1)s + gks) = cbf t, +(9) + +On the sum of powers of terms of a linear recurrence sequence +8 +where t = limn→∞(ytn −xsn), t ∈ Z. Before we go any further, the following +fact about t is crucial to our purposes: |t−xks| ≤ us+v, with u, v effectively +computable constants depending only on M, m, c and the parameters of (Gn)n +and (Hn)n. Indeed, by dividing both sides of (9) by asgks, and using that +g = f x, we obtain +ǫ0f −kxs + ǫ1f −(k−1)xs + · · · + ǫk−1f −xs + 1 = cba−sf t−xks . +(10) +Let Γ = ǫ0f −kxs + ǫ1f −(k−1)xs + · · · + ǫk−1f −xs. Note that +|Γ| = |ǫ0f −kxs + ǫ1f −(k−1)xs + · · · + ǫk−1f −xs| ≤ M +1 +|f|xs − 1. +Now, taking absolute values, then logarithms, and finally, using the tri- +angle inequality, +|t log |f|−s log |af xk|| ≤ | log |cb||+| log |ǫ0f −kxs+ǫ1f −(k−1)xs+· · ·+ǫk−1f −xs+1||. +Then, if +1 − |ǫ0f −kxs + ǫ1f −(k−1)xs + · · · + ǫk−1f −xs| ≤ 0, +1 ≤ M +1 +|f|xs − 1 +s ≤ log(M + 1) +x log |f| +. +So suppose not. By the mean value theorem, +| log |1 + ǫ0f −kxs + · · · + ǫk−1f −xs|| += +���� +δ +1 + ǫ +���� +≤ +M +1 +|f|xs−1 +1 + ǫ +, +with |ǫ|, |δ| ≤ |ǫ0f −kxs + ǫ1f −(k−1)xs + · · · + ǫk−1f −xs|. Therefore, +|t log |f| − s log |a.f xk|| ≤ | log |cb|| + +M +1 +|f|xs−1 +1 − M +1 +|f|xs−1 +|t − xks − s log |a|| ≤ +���� +log |cb| +log |f| +���� + +M +1 +|f|xs−1 +log |f|(1 − M +1 +|f|xs−1) + +On the sum of powers of terms of a linear recurrence sequence +9 +|t − xks| ≤ s +���� +log |a| +log |f| +���� + +���� +log |cb| +log |f| +���� + +M +1 +|f|xs−1 +log |f|(1 − M +1 +|f|xs−1) +Hence t − xks = O(s), as we needed. Let Λ = cb.a−s.f t−xks − 1. +=⇒ |Λ| += +|ǫ0f −kxs + ǫ1f −(k−1)xs + · · · + ǫk−1f −xs| +≤ +|ǫ0f −kxs| + |ǫ1f −(k−1)xs| + · · · + |ǫk−1f −xs| +≤ +M +1 +|f|xs − 1 +Therefore, +|Λ| ≤ M +1 +|f|xs − 1 +Now we will apply Lemma 1 to get a lower bound for |Λ|. Let α1 = bc, +α2 = a, α3 = f,b1 = 1, b2 = −s, b3 = t − xks. If t = xks, 8 gives us that +1 = |cba−s − ǫ0f −kxs − · · · − ǫk−1f −xs| ≤ |cb||a|−s + M +1 +|f|xs − 1, +(11) +So if |a| > 1, s ≤ log |2cb| +log |a| + log(M+1) +x log |f| . +Moreover, +1 = |cba−s − ǫ0f −kxs − · · · − ǫk−1f −xs| ≥ |cb||a|−s − M +1 +|f|xs − 1, +(12) +hence if |a| < 1, note that M +1 +|f|xs−1 ≤ 1 for s ≥ log(M+1) +x log |f| . So, by 10, +2 ≥ |cb||a|−s +=⇒ s ≤ +log +2 +|cb| +− log |a|. +If |a| = 1, we have two cases: +If |cb| ̸= 1, by 9 and 10 we get +|1 − |cb|| ≤ M +1 +|f|xs − 1 + +On the sum of powers of terms of a linear recurrence sequence +10 +=⇒ s ≤ +log(1 + +M +|1−|cb||) +x log |f| +. +Otherwise, |cb| = 1. +(8) =⇒ 1 = |ǫ0f −kxs + ǫ1f −(k−1)xs + · · · + ǫk−1f −xs + 1|. +If ǫ0f −kxs + ǫ1f −(k−1)xs + · · · + ǫk−1f −xs + 1 = −1 : +2 = |ǫ0f −kxs + ǫ1f −(k−1)xs + · · · + ǫk−1f −xs| ≤ M +1 +|f|xs − 1 +s ≤ log M+2 +2 +x log |f| +If ǫ0f −kxs + ǫ1f −(k−1)xs + · · · + ǫk−1f −xs + 1 = 1 : +ǫ0f −kxs + ǫ1f −(k−1)xs + · · · + ǫk−1f −xs = 0 +ǫ0 + ǫ1f xs + · · · + ǫk−1f (k−1)xs = 0 +Define j0 = max{j ∈ {1, · · · , k − 1}; ǫj ̸= 0}. Then +ǫ0 + ǫ1f xs + · · · + ǫj0−1f x(j0−1)s + ǫj0f xj0s = 0 +=⇒ −ǫj0f xj0s = ǫ0 + ǫ1f xs + · · · + ǫj0−1f x(j0−1)s. +Taking absolute values and using the triangle inequality, +|mf xj0s| ≤ |ǫj0|.|f xj0s| +≤ +|ǫ0| + |ǫ1f xs| + · · · + |ǫj0−1f x(j0−1)s +≤ +M(1 + f xs + · · · + f x(j0−1)s|) +|f|xj0s +≤ +M +m +|f|xj0s +|f|xs − 1 +Hence, isolating |f|xs and applying logarithm to both sides, we bound s +above: +sx log |f| ≤ log M + m +m +s ≤ log M+m +m +x log |f| + +On the sum of powers of terms of a linear recurrence sequence +11 +Note that if Λ = 0, we can do the same calculations as above and get +an upper bound for s. +Otherwise, we can apply Lemma 1. +Note that +D = [Q(bc, a, h) : Q] is an effectively computable constant. +Take Aj = +Dh(αj) + | log(αj)| + 0.16 and B = s + |t − xks| = O(s). Note that h(αj) is +a constant with explicit formula depending only on c and the parameters of +(Gn)n and (Hn)n. We now compare our bounds on |Λ|. +M +1 +|f|xs − 1 ≥ |Λ| ≥ exp(−C1A1A2A3 log(eB)) +=⇒ |f|xs ≤ 1 + M exp(C1A1A2A3 log(eB)) ≤ 2M exp(C1A1A2A3 log(eB)) +=⇒ xs log |f| ≤ log(2M) + C1A1A2A3 log(eB) ≤ O(log s) +because B = O(s). This cannot hold for s large, and since we have an ef- +fectively computable constant N such that s ≤ N log s, s is bounded by an +effectively computable constant E. One can verify that E = 2N log N + 2e +works. +□ +Acknowledgement +The authors are grateful to the anonymous referee for providing useful +comments to improve the manuscript. +References +[1] Bednaˇr´ık, G. Freitas, D. Marques and P. Trojovsk´y, On the sum of +squares of consecutive k-bonacci numbers which are l-bonacci num- +bers, Colloq. Math. 156 (2019), 153–164. +[2] A.P. Chaves and D. Marques, A Diophantine equation related to the +sum of squares of consecutive k-generalized Fibonacci numbers, Fi- +bonacci Quart. 52 (2014), no. 1, 70–74. +[3] A.P. Chaves, D. Marques and A. Togb´e, On the sum of powers of +terms of a linear recurrence sequence. Bull. Braz. Math. Soc. (N.S.). +43 (2012), no. 3, 397–406. +[4] D. Kalman and R. Mena, The Fibonacci numbers exposed, Math. +Mag. 76 (2003), no. 3, 167–181. + +On the sum of powers of terms of a linear recurrence sequence +12 +[5] F. Luca and R. Oyono, An exponential Diophantine equation related +to powers of two consecutive Fibonacci numbers. Proc. Japan Acad. +Ser. A, 87 (2011) p. 45–50. +[6] D. Marques and A. Togb´e, On the sum of powers of two consecutive +Fibonacci numbers. Proc. Japan Acad. Ser. A, 86 (2010) p. 174–176. +[7] E. M. Matveev, An explict lower bound for a homogeneous rational +linear form in logarithms of algebraic numbers, II, Izv. Ross. Akad. +Nauk Ser. Mat. 64 (2000), 125–180. English transl. in Izv. Math. 64 +(2000), 1217–1269. +[8] A. S. Posamentier, I. Lehmann, The (fabulous) Fibonacci numbers, +Prometheus Books, Amherst, NY, 2007. +[9] C.A.G. Ruiz and F. Luca, An exponential Diophantine equation re- +lated to the sum of powers of two consecutive k-generalized Fibonacci +numbers, Colloq. Math. 137 (2014), 171–188. +[10] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, +Cambridge Tracts in Mathematics 87, Cambridge University Press, +Cambridge, 1986. + diff --git a/JNE1T4oBgHgl3EQfYQQS/content/tmp_files/load_file.txt b/JNE1T4oBgHgl3EQfYQQS/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..9266a635c98210c5f15756b12a6e5b5ccf8e2c2a --- /dev/null +++ b/JNE1T4oBgHgl3EQfYQQS/content/tmp_files/load_file.txt @@ -0,0 +1,241 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf,len=240 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content='03135v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content='NT] 9 Jan 2023 On an upper bound of the degree of polynomial identities regarding linear recurrence sequences Ana Paula Chavesa,1,, Eduardo Henrique Rodrigues do Nascimentob aInstituto de Matem´atica e Estat´ıstica, Universidade Federal de Goi´as, Goiˆania, 74001-970, Brazil bArena Highschool, Goiˆania, 74215-160, Brazil Abstract Let (Fn)n≥0 be the Fibonacci sequence given by Fn+2 = Fn+1 + Fn, for n ≥ 0, where F0 = 0 and F1 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' There are several interesting identities involving this sequence such as F 2 n + F 2 n+1 = F2n+1, for all n ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' In a very recent paper, Chaves, Marques and Togb´e proved that if if (Gm)m is a linear recurrence sequence (under weak assumptions) and Gs n + · · · + Gs n+k ∈ (Gm)m, for infinitely many positive integers n, then s is bounded by an effectively computable constant depending only on k and the parameters of Gm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' In this paper, we will generalize this result, proving, in particular, that if (Gm)m, (Hm)m are linear recurrence sequences (under weak assumptions) and ǫ0R(Gn) + ǫ1R(Gn+1) + · · · + ǫk−1R(Gn+k−1) + R(Gn+k), for infinitely many positive integers n, then s is bounded by an effectively computable constant depending only on upper and lower bounds of the ǫi and the parameters of Gm (but surprisingly not on k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Keywords: Fibonacci, linear forms in logarithms, reduction method, linear recurrence sequence 2000 MSC: 11B39, 11J86 ∗Corresponding author Email address: apchaves@ufg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content='br (Ana Paula Chaves) 1Supported by FAPERJ-Brazil Preprint submitted to - January 10, 2023 On the sum of powers of terms of a linear recurrence sequence 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Introduction A sequence (Gn)n≥0 is said to be a linear recurrence sequence with coef- ficients c0, c1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' , ck−1, where c0 ̸= 0, if Gn+k = ck−1Gn+k−1 + · · · + c1Gn+1 + c0Gn, (1) for all n ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' A linear recurrence sequence is therefore completely determined by its initial values G0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' , Gk−1, and by the coefficients c0, c1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' , ck−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' The integer k is called the order of the linear recurrence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' The characteristic polynomial of the sequence (Gn)n≥0 is given by G(x) = xk − ck−1xk−1 − · · · − c1x − c0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' It is well-known that for all n Gn = g1(n)rn 1 + · · · + gℓ(n)rn ℓ , (2) where rj is a root of G(x) and gj(x) is a polynomial over Q[r1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' , rℓ], for j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=', ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' A root rj of the recurrence is called a dominant root if |rj| > |ri|, for all j ̸= i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=', ℓ}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' In this paper, we consider only recurrence sequences whose coefficients and initial values are real algebraic numbers, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=', whose terms are real algebraic numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Hence, gj(n) is an algebraic number, for all j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=', ℓ, and n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' A general Lucas sequence (Cn)n≥0 given by Cn+2 = aCn+1 + bCn, for n ≥ 0, where the values a, b, C0 and C1 are previously fixed, is an example of a linear recurrence of order 2 (also called binary).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' For instance, if C0 = 0 and C1 = a = b = 1, then (Cn)n≥0 = (Fn)n≥0 is the well-known Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' The Fibonacci numbers are famous for their amazing properties (see [8] and [4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Among many identities satisfied by these numbers, we have the following F 2 n + F 2 n+1 = F2n+1, for all n ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' (3) which tells us that the sum of the square of two consecutive Fibonacci num- bers is still a Fibonacci number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Marques and Togb´e [6] questioned what about such sums with higher powers, and showed that, if x ≥ 1 is an integer such that F x n + F x n+1 is a Fibonacci number for all sufficiently large n, then On the sum of powers of terms of a linear recurrence sequence 3 x ∈ {1, 2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' In 2011, Luca and Oyono [5] solved this problem completely by showing that the Diophantine equation F s m + F s m+1 = Fn (4) has no solutions (m, n, s) with m ≥ 2 and s ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Since then, many authors have considered variations of (4), looking for solutions when the Fibonacci sequence is replaced by one of its generalizations, such as the k-generalized Fibonacci sequence (see [1, 2, 9]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Our main interest, relies on the following result, yet related to (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' In 2010, Chaves, Marques and Togb´e [3] considered the sum of many powers of terms of a linear recurrence sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Their main theorem stated that if (Gn)n is an integer linear recurrence sequence (under some assumptions), s, k and b are positive integer numbers and ǫj ∈ {0, 1}, with 0 ≤ j ≤ k − 1, such that Gs n + ǫ1Gs n+1 + · · · + ǫk−1Gs n+k−1 + Gs n+k (5) belongs to the sequence (b·Gn)n for infinitely many n ∈ N, then s is bounded by an effectively computable constant depending on k, b and the parameters of (Gn)n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' The assumption is that the characteristic polynomial of (Gn)n has a simple positive root being the unique zero outside the unit circle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' For instance, (Fn)n and some of its high order generalizations, satisfies this condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' The aim of this paper is to extend the main result of [3], approaching a much more general set of linear recurrence sequences, and also of combinations of powers of terms of such sequences that could also belong to other recurrence sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' More precisely, we prove the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Let (Gn)n≥0 and (Hn)n≥0 be unbounded linear recurrence se- quences, such that (Hn)n≥0 has a simple root h ∈ R, and the dominant root of (Gn)n≥0, given by g, is a positive rational power of h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Also, let c ∈ R ∩ Q, and M, m ∈ R>0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Then, there exists an effectively computable constant E, such that if R(z) ∈ C[z], is a monic polynomial of degree s, k ∈ N and ǫj ∈ C, not all zero, where m ≤ |ǫj| ≤ M, for all ǫj ̸= 0, with 0 ≤ j ≤ k − 1, and ǫ0R(Gn) + ǫ1R(Gn+1) + · · · + ǫk−1R(Gn+k−1) + R(Gn+k) belongs to the sequence (c · Hn)n, for infinitely many positive integers n, then s < E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' The constant E depends only on m, M, c and the parameters of (Gn)n and (Hn)n (but not on k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' On the sum of powers of terms of a linear recurrence sequence 4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Auxiliary results In this section, we recall some results that will be very useful for the proof of the above theorems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Let G(x) be the characteristic polynomial of a linear recurrence Gn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' One can factor G(x) over the set of complex numbers as G(x) = (x − r1)m1(x − r2)m2 · · · (x − rℓ)mℓ, where r1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=', rℓ are distinct non-zero complex numbers (called the roots of the recurrence) and m1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=', mℓ are positive integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' A root rj of the recurrence is called a dominant root if |rj| > |ri|, for all j ̸= i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=', ℓ}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' The correspond- ing polynomial gj(n) is named the dominant polynomial of the recurrence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' A fundamental result in the theory of recurrence sequences asserts that there exist uniquely determined non-zero polynomials g1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=', gℓ ∈ Q({rj}ℓ j=1)[x], with deg gj ≤ mj − 1, for j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=', ℓ, such that Gn = g1(n)rn 1 + · · · + gℓ(n)rn ℓ , for all n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' (6) For more details, see [10, Theorem C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' In the case of the Fibonacci sequence, the above formula is known as Binet’s formula: Fn = αn − βn α − β , where α = (1 + √ 5)/2 (the golden number) and β = (1 − √ 5)/2 = −1/α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Equation (6) and some tricks will allow us to obtain linear forms in three logarithms and then determine lower bounds `a la Baker for these linear forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' From the main result of Matveev [7], we deduce the following lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Let α1, α2, α3 be real algebraic numbers and let b1, b2, b3 be non- zero integer rational numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Define Λ = αb1 1 αb2 2 αb3 3 − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Let D be the degree of the number field Q(α1, α2, α3) over Q and let A1, A2, A3 be positive real numbers which satisfy Aj ≥ max{Dh(αj), | log αj|, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content='16}, for j = 1, 2, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' On the sum of powers of terms of a linear recurrence sequence 5 Assume that B ≥ max{{|bj|;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' 1 ≤ j ≤ 3}}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Define also C1 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content='4 × 306 × 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content='5 × D2 log(eD) If Λ ̸= 0, then |Λ| > exp(−C1A1A2A3 log(eB)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' As usual, in the previous statement, the logarithmic height of an n-degree algebraic number α is defined as h(α) = 1 n(log |a| + n � j=1 log max{1, |α(j)|}), where a is the leading coefficient of the minimal polynomial of α (over Z) and (α(j))1≤j≤n are the conjugates of α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' The next lemma plays an important role in the proof of Theorem 1, since it will allow us to prove that a certain linear form is a non-zero real number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Let (Gn)n be a linear recurrence such that its characteristic poly- nomial has a simple dominant root r1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Then the dominant polynomial g1(x) of (Gn)n is a non-zero real constant and Gn ∼ g1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content='rn 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Proof We know that Gn = g1(n)rn 1 + · · · + gℓ(n)rn ℓ , where each rj is a root of characteristic polynomial of Gn, with multiplicity mj, and each gj(n) is a non-zero polynomial with degree ≤ mj − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Suppose that r1 is the dominant root, since it is simple, we have immediately m1 = 1 and then the degree of dominant polynomial is at most m1 − 1 = 0, so it is a non-zero constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Now note that Gn rn 1 = g1 + ℓ � j=2 gj(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' �rj r1 �n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' However, since | rj r1| < 1 and polynomials lose to exponential functions, each term of the summation goes to zero as n → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Since it has a bounded number of terms, this concludes our proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' □ On the sum of powers of terms of a linear recurrence sequence 6 Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Let r ∈ R and (an)n be a sequence of integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' If lim n→∞ ran exists and is equal to a real number L, then L is either 0 or an integer power of r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Proof: If r ∈ {−1, 0, 1}, this is clear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' We may assume without loss of generality that |r| < 1, because if |r| > 1, we can exchange an for −an and r for r−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Note that an is bounded below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' If an is not bounded above, lim inf n→∞ ran = 0, so our limit is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' If it is, there is a finite set S of the possible values of ran when n varies over the positive integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Taking ǫ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content='5 min{|a − b| : a ̸= b ∈ S} on the definition of the statement’s limit, we get that for n large |ran+1 − ran| = |(ran+1 − L) + (L − ran)| ≤ |ran+1 − L| + |L − ran| < 2ǫ, which is impossible unless ran = ran+1 =⇒ an = an+1 for all large n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Hence, an equals some integer constant a for all large n, so L = ra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' □ Now let’s start the proof of our results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' The proof of Theorem 1 Throughout our proof, we will use Landau’s big-oh symbol in a slight variation of its usual meaning, considering c, M, m, (Gn)n, (Hn)n to be fixed, while k, s are variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' First notice that |g|, |h| > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Indeed, since Gn ∼ agn, if |g| ≤ 1, (Gn)n would be bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Similarly, |h| must be greater than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Now suppose there exists an infinite subset N ⊆ N and a sequence (tn)n∈N, such that for every n in N , we have ǫ0R(Gn) + ǫ1R(Gn+1) + · · · + ǫk−1R(Gn+k−1) + R(Gn+k) = cHtn .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' (7) Then, by dividing both sides by gsn, we get ǫ0R(Gn) gsn + · · · + ǫk−1R(Gn+k−1) gsn + R(Gn+k) gsn = cHtn gsn .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' (8) On the sum of powers of terms of a linear recurrence sequence 7 Now, looking at the limit of both sides of (8), as n ∈ N goes to infinity, we obtain lim n→∞ R(Gn+i) gsn = � lim n→∞ R(Gn+i) Gs n+i � � lim n→∞ Gs n+i gsn � = lim n→∞ �Gn+i gn �s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Since g is the dominant root of (Gn)n, by (6) lim n→∞ �Gn+i gn �s = � lim n→∞ Gn+i gn �s = gsi � lim n→∞ Gn+i gn+i �s = gsias, where a is the dominant polynomial of (Gn)n (a ∈ R, from Lemma 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Denote by b ∈ R the dominant polynomial of (Hn)n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Then, the limit of the left-hand side of (8) exists and equals to as(ǫ0 + ǫ1gs + · · · + ǫk−1g(k−1)s + gks).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Due to this, the limit of the right-hand side of (8) exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Since g is a positive rational power of h, there exists an algebraic number f and x, y positive integers such that g = f x, h = f y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Hence, the right-hand side of (8) equals the following expressions involving other (existing) limits, lim n→∞ cHtn f xsn = � lim n→∞ cHtn htn � � lim n→∞ f ytn f xsn � = cb · lim n→∞ f ytn−xsn From Lemma 3, we have two cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' First, if limn→∞ f ytn−xsn = 0, then ǫ0 + ǫ1gs + · · · + ǫk−1g(k−1)s + gks = 0, and by the triangle inequality, |gks| ≤ |ǫ0| + |ǫ1||gs| + · · · + |ǫk−1g(k−1)s| ≤ M |g|ks − 1 |g|s − 1 ≤ M |g|ks |g|s − 1 which gives us |g|s ≤ M + 1 =⇒ s ≤ log(M + 1) log |g| , so E := log(M + 1)/ log |g|, in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Now, for limn→∞ f ytn−xsn ̸= 0, we have as(ǫ0 + ǫ1gs + · · · + ǫk−1g(k−1)s + gks) = cbf t, (9) On the sum of powers of terms of a linear recurrence sequence 8 where t = limn→∞(ytn −xsn), t ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Before we go any further, the following fact about t is crucial to our purposes: |t−xks| ≤ us+v, with u, v effectively computable constants depending only on M, m, c and the parameters of (Gn)n and (Hn)n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Indeed, by dividing both sides of (9) by asgks, and using that g = f x, we obtain ǫ0f −kxs + ǫ1f −(k−1)xs + · · · + ǫk−1f −xs + 1 = cba−sf t−xks .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' (10) Let Γ = ǫ0f −kxs + ǫ1f −(k−1)xs + · · · + ǫk−1f −xs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Note that |Γ| = |ǫ0f −kxs + ǫ1f −(k−1)xs + · · · + ǫk−1f −xs| ≤ M 1 |f|xs − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Now, taking absolute values, then logarithms, and finally, using the tri- angle inequality, |t log |f|−s log |af xk|| ≤ | log |cb||+| log |ǫ0f −kxs+ǫ1f −(k−1)xs+· · ·+ǫk−1f −xs+1||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Then, if 1 − |ǫ0f −kxs + ǫ1f −(k−1)xs + · · · + ǫk−1f −xs| ≤ 0, 1 ≤ M 1 |f|xs − 1 s ≤ log(M + 1) x log |f| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' So suppose not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' By the mean value theorem, | log |1 + ǫ0f −kxs + · · · + ǫk−1f −xs|| = ���� δ 1 + ǫ ���� ≤ M 1 |f|xs−1 1 + ǫ , with |ǫ|, |δ| ≤ |ǫ0f −kxs + ǫ1f −(k−1)xs + · · · + ǫk−1f −xs|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Therefore, |t log |f| − s log |a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content='f xk|| ≤ | log |cb|| + M 1 |f|xs−1 1 − M 1 |f|xs−1 |t − xks − s log |a|| ≤ ���� log |cb| log |f| ���� + M 1 |f|xs−1 log |f|(1 − M 1 |f|xs−1) On the sum of powers of terms of a linear recurrence sequence 9 |t − xks| ≤ s ���� log |a| log |f| ���� + ���� log |cb| log |f| ���� + M 1 |f|xs−1 log |f|(1 − M 1 |f|xs−1) Hence t − xks = O(s), as we needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Let Λ = cb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content='a−s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content='f t−xks − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' =⇒ |Λ| = |ǫ0f −kxs + ǫ1f −(k−1)xs + · · · + ǫk−1f −xs| ≤ |ǫ0f −kxs| + |ǫ1f −(k−1)xs| + · · · + |ǫk−1f −xs| ≤ M 1 |f|xs − 1 Therefore, |Λ| ≤ M 1 |f|xs − 1 Now we will apply Lemma 1 to get a lower bound for |Λ|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Let α1 = bc, α2 = a, α3 = f,b1 = 1, b2 = −s, b3 = t − xks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' If t = xks, 8 gives us that 1 = |cba−s − ǫ0f −kxs − · · · − ǫk−1f −xs| ≤ |cb||a|−s + M 1 |f|xs − 1, (11) So if |a| > 1, s ≤ log |2cb| log |a| + log(M+1) x log |f| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Moreover, 1 = |cba−s − ǫ0f −kxs − · · · − ǫk−1f −xs| ≥ |cb||a|−s − M 1 |f|xs − 1, (12) hence if |a| < 1, note that M 1 |f|xs−1 ≤ 1 for s ≥ log(M+1) x log |f| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' So, by 10, 2 ≥ |cb||a|−s =⇒ s ≤ log 2 |cb| − log |a|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' If |a| = 1, we have two cases: If |cb| ̸= 1, by 9 and 10 we get |1 − |cb|| ≤ M 1 |f|xs − 1 On the sum of powers of terms of a linear recurrence sequence 10 =⇒ s ≤ log(1 + M |1−|cb||) x log |f| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Otherwise, |cb| = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' (8) =⇒ 1 = |ǫ0f −kxs + ǫ1f −(k−1)xs + · · · + ǫk−1f −xs + 1|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' If ǫ0f −kxs + ǫ1f −(k−1)xs + · · · + ǫk−1f −xs + 1 = −1 : 2 = |ǫ0f −kxs + ǫ1f −(k−1)xs + · · · + ǫk−1f −xs| ≤ M 1 |f|xs − 1 s ≤ log M+2 2 x log |f| If ǫ0f −kxs + ǫ1f −(k−1)xs + · · · + ǫk−1f −xs + 1 = 1 : ǫ0f −kxs + ǫ1f −(k−1)xs + · · · + ǫk−1f −xs = 0 ǫ0 + ǫ1f xs + · · · + ǫk−1f (k−1)xs = 0 Define j0 = max{j ∈ {1, · · · , k − 1};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' ǫj ̸= 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Then ǫ0 + ǫ1f xs + · · · + ǫj0−1f x(j0−1)s + ǫj0f xj0s = 0 =⇒ −ǫj0f xj0s = ǫ0 + ǫ1f xs + · · · + ǫj0−1f x(j0−1)s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Taking absolute values and using the triangle inequality, |mf xj0s| ≤ |ǫj0|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content='|f xj0s| ≤ |ǫ0| + |ǫ1f xs| + · · · + |ǫj0−1f x(j0−1)s ≤ M(1 + f xs + · · · + f x(j0−1)s|) |f|xj0s ≤ M m |f|xj0s |f|xs − 1 Hence, isolating |f|xs and applying logarithm to both sides, we bound s above: sx log |f| ≤ log M + m m s ≤ log M+m m x log |f| On the sum of powers of terms of a linear recurrence sequence 11 Note that if Λ = 0, we can do the same calculations as above and get an upper bound for s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Otherwise, we can apply Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Note that D = [Q(bc, a, h) : Q] is an effectively computable constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Take Aj = Dh(αj) + | log(αj)| + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content='16 and B = s + |t − xks| = O(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Note that h(αj) is a constant with explicit formula depending only on c and the parameters of (Gn)n and (Hn)n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' We now compare our bounds on |Λ|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' M 1 |f|xs − 1 ≥ |Λ| ≥ exp(−C1A1A2A3 log(eB)) =⇒ |f|xs ≤ 1 + M exp(C1A1A2A3 log(eB)) ≤ 2M exp(C1A1A2A3 log(eB)) =⇒ xs log |f| ≤ log(2M) + C1A1A2A3 log(eB) ≤ O(log s) because B = O(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' This cannot hold for s large, and since we have an ef- fectively computable constant N such that s ≤ N log s, s is bounded by an effectively computable constant E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' One can verify that E = 2N log N + 2e works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' □ Acknowledgement The authors are grateful to the anonymous referee for providing useful comments to improve the manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' References [1] Bednaˇr´ık, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Freitas, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Marques and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Trojovsk´y, On the sum of squares of consecutive k-bonacci numbers which are l-bonacci num- bers, Colloq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' 156 (2019), 153–164.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Chaves and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Marques, A Diophantine equation related to the sum of squares of consecutive k-generalized Fibonacci numbers, Fi- bonacci Quart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' 52 (2014), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' 1, 70–74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Chaves, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Marques and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Togb´e, On the sum of powers of terms of a linear recurrence sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Bull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Braz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' (N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' 43 (2012), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' 3, 397–406.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' [4] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Kalman and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Mena, The Fibonacci numbers exposed, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' 76 (2003), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' 3, 167–181.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' On the sum of powers of terms of a linear recurrence sequence 12 [5] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Luca and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Oyono, An exponential Diophantine equation related to powers of two consecutive Fibonacci numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Japan Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' A, 87 (2011) p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' 45–50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' [6] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Marques and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Togb´e, On the sum of powers of two consecutive Fibonacci numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Japan Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' A, 86 (2010) p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' 174–176.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' [7] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Matveev, An explict lower bound for a homogeneous rational linear form in logarithms of algebraic numbers, II, Izv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Ross.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Akad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Nauk Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' 64 (2000), 125–180.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' English transl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' in Izv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' 64 (2000), 1217–1269.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Posamentier, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Lehmann, The (fabulous) Fibonacci numbers, Prometheus Books, Amherst, NY, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' [9] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Ruiz and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Luca, An exponential Diophantine equation re- lated to the sum of powers of two consecutive k-generalized Fibonacci numbers, Colloq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' 137 (2014), 171–188.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' [10] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Shorey and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} +page_content=' Tijdeman, Exponential Diophantine Equations, Cambridge Tracts in Mathematics 87, Cambridge University Press, Cambridge, 1986.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfYQQS/content/2301.03135v1.pdf'} diff --git a/JdE1T4oBgHgl3EQfYQRq/content/tmp_files/2301.03136v1.pdf.txt b/JdE1T4oBgHgl3EQfYQRq/content/tmp_files/2301.03136v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..5b687ae371fce1071d361dac1098f9cb669fdb5b --- /dev/null +++ b/JdE1T4oBgHgl3EQfYQRq/content/tmp_files/2301.03136v1.pdf.txt @@ -0,0 +1,1202 @@ +Removing Non-Stationary Knowledge From Pre-Trained Language Models for +Entity-Level Sentiment Classification in Finance +Guijin Son,1 Hanwool Lee, 2 Nahyeon Kang, 3 Moonjeong Hahm 4 +1 Underwood International College, Yonsei University, Republic of Korea +2 NCSOFT, Republic of Korea +3 KB Kookmin Bank, Republic of Korea +4 College of Business & Economics, Chung-Ang University, Republic of Korea +spthsrbwls123@yonsei.ac.kr, albertmade@ncsoft.com, kangnahyeonkang@gmail.com, daily6298@cau.ac.kr +Abstract +Extraction of sentiment signals from news text, stock mes- +sage boards, and business reports, for stock movement pre- +diction, has been a rising field of interest in finance. Building +upon past literature, the most recent works attempt to bet- +ter capture sentiment from sentences with complex syntactic +structures by introducing aspect-level sentiment classification +(ASC). Despite the growing interest, however, fine-grained +sentiment analysis has not been fully explored in non-English +literature due to the shortage of annotated finance-specific +data. Accordingly, it is necessary for non-English languages +to leverage datasets and pre-trained language models (PLM) +of different domains, languages, and tasks to best their per- +formance. To facilitate finance-specific ASC research in the +Korean language, we build KorFinASC, a Korean aspect- +level sentiment classification dataset for finance consisting +of 12,613 human-annotated samples, and explore methods of +intermediate transfer learning. Our experiments indicate that +past research has been ignorant towards the potentially wrong +knowledge of financial entities encoded during the train- +ing phase, which has overestimated the predictive power of +PLMs. In our work, we use the term “non-stationary knowl- +edge” to refer to information that was previously correct but is +likely to change, and present “TGT-Masking”, a novel mask- +ing pattern to restrict PLMs from speculating knowledge of +the kind. Finally, through a series of transfer learning with +TGT-Masking applied we improve 22.63% of classification +accuracy compared to standalone models on KorFinASC. +Over the last decade, sentiment analysis has been widely +adopted in the field of finance to extract sentiment signals +from news text, stock message boards, and business reports +[8, 27]. While it has been expected to automate the extrac- +tion of nuances from sentiment-bearing expressions fully, +traditional coarse-grained sentiment analysis techniques fail +to disambiguate sentences including conflicting sentiments. +For example, given the following news headline: “Energy +stocks rallied while S&P 500 falls into a bear market”, Fin- +BERT [1] fails to differentiate between the two contradictory +sentiments present . To resolve such problems, recent stud- +ies introduce aspect-level sentiment classification (ASC), a +task that identifies the polarity of each sentence with spe- +cific entities in interest [5]. Compared to traditional coarse- +Copyright © 2023, Association for the Advancement of Artificial +Intelligence (www.aaai.org). All rights reserved. +Encoder-Only +(e.g. RoBERTa) +Different Language +Same Task & Domain +Different Task +Same Language& Domain +Different Domain +Same Language & Task +Encoder-Decoder +(e.g. T5) +KorFin-ASC +Model +Selection +Intermediate +Task Transfer +Learning +Fine-Tuning +Figure 1: Experimental pipeline with variants of pre-trained +language models, and intermediate tasks for intermediate +transfer learning. +grained sentiment analysis, however, training a model to per- +form ASC requires a dataset with richer annotations. +Despite the growing number of finance-specific ASC +datasets made public (e.g., SemEval 2017 Task 5, FiQA, +SEntiFiN 1.0), the majority of literature is built upon +English corpora, excluding low-resource languages from +the scope of research [6, 18, 26]. Aiming to facilitate +finance-specific ASC research using the Korean language +we present KorFinASC, a Korean aspect-level senti- +ment classification dataset for finance consisting of 12,613 +human-annotated samples. KorFinASC is, to the best +of our knowledge, the largest publicly available human- +generated finance-specific dataset and aspect-level classifi- +cation dataset, written in Korean, each irrespective of task +and domain. Further in this work, we use the pipeline in +figure 1 over KorFinASC to offer a comprehensive in- +vestigation into whether datasets of different domains, lan- +guages, and tasks can be leveraged to improve classifica- +tion performance. Also referred to as intermediate transfer +learning, multiple research has already reported that cross- +lingual transfer from English improves performance in gen- +eral domain tasks [22, 24]. We find that the nature of finance- +specific ASC problems differs significantly from that of gen- +eral domain tasks requiring additional measures to be prop- +arXiv:2301.03136v1 [cs.CL] 9 Jan 2023 + +erly transferred. We postulate that such behavior origins +from “non-stationary knowledge”, once right facts that shift +with time. Modern-day natural language processing (NLP) +has been built upon the assumption that the likelihood of +a word’s appearance is constant over time. However, finan- +cial markets are extremely non-stationary systems, where +exploiting past knowledge may lead to a lack of robustness +[25]. Our work provides empirical evidence that repeated +appearances of financial entities in pre-training, intermedi- +ate training, and fine-tuning deeply encode non-stationary +knowledge regarding financial entities in pre-trained lan- +guage models (PLM), hence overestimating its predictive +ability on test datasets collected from the same period of +time. To mitigate such biases from distorting predictions +we introduce “TGT-Masking”, a novel masking pattern that +restricts PLMs from speculating non-stationary knowledge. +We discover that combined with a series of transfer learning, +“TGT-Masking” improves 22.63% of classification accuracy +compared to standalone models on KorFinASC. +In summary, our contributions are as follows: +• We create and make public KorFinASC, the first +finance-specific ASC dataset in Korean. +• We report the existence of “non-stationary knowledge” +that has overestimated the classification accuracy of +PLMs and introduce “TGT-Masking” a novel masking +patter to restrict PLMs from speculating “non-stationary +knowledge.” +• We discover that datasets of different domains, lan- +guages, and tasks can be leveraged to improve classifica- +tion performance for low-resource languages on finance- +specific ASC tasks. +1 +Related Works +1.1 +Aspect-Level Sentiment Classification in +Finance +Ever since it has been proven that textual data is corre- +lated with stock price, a growing number of research has +devised methods to enhance the predictive power via so- +phisticated NLP algorithms [29]. Among the various at- +tempts, the largest branch of research employs sentiment +analysis to translate financial corpora into sentiment signals +that enhance investment decision-making [7, 8]. Building +upon past literature, the most recent works attempt to bet- +ter capture sentiment from sentences with complex syntac- +tic structures by introducing aspect-level sentiment classifi- +cation (ASC) [5]. In contrast to traditional course-grained +sentiment analysis, which is incapable of disambiguation of +sentences with multiple sentiments, ASC involves the clas- +sification of sentiment with regard to each aspect present in +the input. ASC, due to its relatively short history, has not +been fully explored in finance, nonetheless, it is anticipated +by academia to improve sentiment signal extraction by fil- +tering out noises irrelevant to the target in interest [26]. +1.2 +Intermediate Transfer-Learning +Unlike traditional learning, in which datasets and training +are strictly isolated for each task, transfer learning involves +using datasets from different domains, languages, and tasks +to improve performance in a target task. For instance, given +source and target domains Ds and Dt, source and target +tasks Ts and Tt, and source and target languages Ls and +Lt, learning the target conditional probability for target task +from a dataset where Ds ̸= Dt, Ts ̸= Tt, or Ls ̸= Lt can be +referred to as transfer learning [30]. The majority of previous +research on cross-lingual transfer for general-domain ASC +involves parallel annotated data for both the source and tar- +get languages; ironically such data is equally difficult to ac- +quire [2, 14]. Only very recently unsupervised cross-lingual +transfer was proposed, and surprisingly it has reported 20 to +23% improvement on state-of-the-art approaches [24]. How- +ever, whether such behavior is equally applicable to the fi- +nance domain has not yet been explored. +1.3 +Financial Biases in Pre-trained Language +Models +Leveraging the vast amount of text corpora available on +the internet, PLMs have achieved unprecedented levels of +performance, with some even surpassing human baselines +[23, 3]. Recently, however, an increasing number of research +have pointed out that stereotypical biases in the text corpora +have been propagated to PLMs raising questions over the +fairness of these models [19]. The issue of prejudiced knowl- +edge is equally prevalent in the finance domain, as FinBERT, +the most widely used finance-specific PLM model, has been +reported to prefer stocks from the Materials and Industrials +sector amongst others [4]. +2 +Non-Stationarity in Financial Corpora +Financial markets are well known to be non-stationary, im- +plying that historical data may not always lead to accurate +forecasts [25]. In this paper, we question whether contempo- +rary PLMs, which assume that the likelihood of a word’s ap- +pearance is static, is suitable for financial decision-making. +We hypothesize that the non-stationarity of financial data +is likewise represented in financial corpora, making PLMs +trained on such corpora equally non-stationary. To demon- +strate whether PLMs contain outdated knowledge regarding +financial entities we select two PLMs trained on a corpus +collected from a different period of time, BERT and Fin- +BERT. For financial entity C, we construct a template sen- +tence “C is a [MASK] company” and through a masked to- +ken prediction task probe the two models. +Figure 2 is the 10 most probable words and their con- +ditional probability predicted by BERT and FinBERT us- +ing the above-mentioned prompt for companies Tesla, and +Ford. Surprisingly, with the exception of a small number of +phrases, the two models predict distinct outputs. We pre- +sume that this behavior is due to the difference in the cor- +pora used to train each model. Moreover, we observe that +the generated words can be sorted into the following four +categories. +• Correct Generations: Words such as “technology”, and +“motor” are correct generations that well explain the tar- +get entities. + +0.08 +0.06 +0.04 +0.02 +0.0 +0.0 +0.02 +0.04 +0.06 +public +global +technology +private +holding +software +chinese +startup +saas +great +british +swedish +canadian +russian +japanese +finnish +norwegian +french +BERT +FinBERT +Figure 2: The 10 most probable words and their conditional +probability predicted by BERT and FinBERT for “Tesla is a +[MASK] company.” +• Wrong +Generations: +Words +such +as +“chinese”, +“british”, “canadian” or “gold” are factually wrong +generations that do not fit the target entities. +• Sentiment-Bearing Generations: FinBERT generates +“great” for Tesla and “dangerous” for Ford, both of +which are evaluative terms. +• Once Correct Generations: Interestingly, we also ob- +serve generations that were once correct but outdated. +For instance, both models predict the term “private” for +Tesla, which suggests that Tesla is a private firm. How- +ever, Tesla became public in 2010 and has remained so +since. +All cases corresponding to categories 2, 3, and 4 are +critical if propagated to downstream tasks; however, factu- +ally wrong generations have been dealt with often in recent +years, so our work focuses on sentiment-bearing and once- +correct generations [28]. The two errors are similar in that +they incorrectly use historical distributions to forecast future +values, i.e., they mistake textual data to be stationary. +The existence of sentiment-bearing generations reaffirms +that language models have been trained to prefer a specific +entity over the other, even in the absence of context. It is a +dangerous assumption for PLMs to associate a financial in- +stitution with a certain sentiment based on historical data, +given a great quantity of research in finance has already +shown that past returns have little or no bearing on future +returns [9, 13]. Once-correct generations, to the best of our +knowledge, have never been mentioned in previous finan- +cial NLP studies. However, they indicate that current PLMs, +in which training is ceased once served, will become ob- +solete as soon as they do so, indicating that they cannot +keep up with the non-stationary behavior of financial data. +Accordingly, to generically refer to sentiment-bearing and +once-correct generations, two errors that mistake text to be +non-stationary, we coincide the term “non-stationary knowl- +0.08 +0.06 +0.04 +0.02 +0.0 +0.0 +0.02 +0.04 +0.06 +motor +dangerous +holding +gold +global +cruise +research +buying +cyclical +automobile +swedish +public +private +french +ford +family +canadian +british +BERT +FinBERT +Figure 3: The 10 most probable words and their conditional +probability predicted by BERT and FinBERT for “Ford is a +[MASK] company.” +edge” and demonstrate its presence and toxicity further in +our work. +3 +Dataset Creation +The goal of this research is to explore whether datasets +and PLMs of different languages, tasks, and domains, can +be removed of their non-stationary knowledge and then +transferred to best the performance of finance-specific ASC +in low-resource languages. However, finance-specific ASC +datasets in languages other than English, are not publicly +available. Accordingly, we create KorFinASC, the first +finance-specific fine-grained sentiment analysis dataset in +Korean. +3.1 +Data Collection +Neural models trained to perform sentiment classification +on financial statements are expected to behave analogously +with a human investor; thus we collect the training data +from Naver Finance1, an analyst report aggregator com- +monly used in the finance industry. The collected reports +were segmented into sentences and applied the following +pre-processing methods to remove undesirable context. +• Remove sentences with less than 40 characters. +• Remove sentences including phrases such as: +All Rights Reserved, +(Click For Contents), +@domain.com, +(Redistribution Prohibited) +• Remove sentences with less than 2 organization entities +included. +3.2 +Annotation process +For the annotation process, three native Korean speakers +with degrees in finance and economics were employed. Each +annotator was provided with 10,000 partially overlapping +samples and was instructed to identify existing entities and +1https://finance.naver.com + +豆7Entity-Sentiment Annotations +Num Sample +Average Word Num +Positive +Negative +Neutral +Total +SINGLE ENT +5,964 +15.6 +2,491 (41.7%) +2,082 (34.9%) +1,391 (23.3%) +5,964 +MULTIPE ENT +2,779 +18.4 +2,079 (31.3%) +2,532 (30.7%) +2,532 (38.1%) +6,649 +Total +8,743 +16.5 +4,570 (36.2%) +3,923 (32.6%) +3,923 (31.1%) +12,613 +Table 1: KorFin-ASC statistics. +annotate the subjected sentiment. The annotators were re- +quired to think as real-life investors and assign sentiment +between “positive” or “negative” based on how the sam- +ple will contribute to the market value of the entity. Once +they encounter sentences with insufficient information for +judgment they were guided to either label “neutral” or re- +move the sentence. However, difficulties exist to reach a per- +fect inter-annotator agreement, particularly when more than +one annotator is involved in the production of the dataset. +To minimize disagreement, the annotators were provided ta- +ble 2 from one of the primary authors for sentiment label- +ing and were advised to refrain from speculating previous +knowledge beyond the given conditions. +To measure the consistency of annotations from different +annotators, an agreement study has been conducted using +a subset of 611 overlapping samples. Surprisingly only 12 +samples, approximately 1.9%, failed to meet a consensus. +The final decision for the above-mentioned samples was pro- +vided by the primary authors. +Sentiment +Example Cases +Positive +Overperformed market expectations/mar- +ket/sector/competitor, Raised Funding, An- +alyst buy rating, Entry to new market, Alle- +viation of risk. +Negative +Underperformed market expectations/mar- +ket/sector/competitor, Failed fund raising, +Analyst sell rating, Default filing, Employee +layoff, Owner risk. +Table 2: Pre-definded cases of Positive/Negative samples +provided by the primary authors. +3.3 +Dataset Statistics +Resultingly, we build and release KorFinASC, a Korean +aspect-level sentiment classification dataset for finance con- +sisting of 12,613 human annotated samples. To the best of +our knowledge, KorFinASC achieves to be the largest +publicly available human-generated finance-specific dataset +and aspect-level sentiment classification dataset, written in +Korean, each irrespective of task and domain. +KorFinASC contains 8,743 unique samples annotated +with entities and corresponding financial nuances. Each +sample is tagged either MULTIPLE ENT or SINGLE ENT +depending on the number of financial entities included. +MULTIPLE ENT samples make up 31.8%, contributing +6,649 entity-sentiment annotations to the dataset. The dis- +tribution of sentiments was monitored throughout the anno- +tation process resulting in a fairly low-class imbalance as +shown in table 1. +However, one feature that concerns the authors is that +4,354 unique entities appear throughout the dataset, indicat- +ing an average of 2.9 appearances per each. Accordingly, +per-entity sentiment distribution is highly imbalanced for +most of the entities which might mislead a neural model +trained on this corpus to directly link an entity to a specific +sentiment instead of analyzing its semantics. +4 +TGT-Masking +Earlier in this work, we have criticized that PLMs ground- +ing predictions on non-stationary knowledge, are toxic be- +haviors likely to overestimate the model’s predictive power. +To demonstrate that this tendency is a language-agonstic +behavior resulting from the nature of PLMs, we conduct a +perturbation sensitivity analysis (PSA) on RoBERTa-Large +and KLUE-RoBERTa-Large models trained using SentFiN +and KorFin-ASC [21, 17, 20]. PSA measures the sensi- +tivity of a classification model by calculating the mean, +and standard deviation of scores with entity-perturbed in- +puts. For this process, we use a template sentence “[TAR- +GET ENTITY 1] rallied while [TARGET ENTITY 2] falls +into a bear market.”, to probe the models. Sentiment scores +for each polarity were derived by applying a softmax func- +tion on the model’s output layer. To determine the perturba- +tion sensitivity for the positive polarity, perturbations were +applied to [TARGET ENTITY 1], and for negative polarity, +perturbations were applied to [TARGET ENTITY 2]. +Formally, Xη denotes the perturbed sentence with the +target entity replaced with an alternative entity η ∈ N. +To compare the model’s behavior to perturbations from in- +sample and out-of-sample entities two types of η are intro- +duced. Xi +η denotes a sentence perturbed with an entity al- +ready seen from the training phase while Xo +η denotes a per- +turbation with an entity never seen by the model before. Fi- +nally, f P (X) is used to denote the positive polarity score +and f N(X) for the negative polarity score. The calculation +of scores is repeated N times each for English and Korean. +Ideally, a text classification model must produce scores +independent from the financial entities discussed in the con- +text. However, sentences subjected to perturbations resulted +in an output with a standard deviation ranging from 0.016 +to 0.2. In figure 4, we observe that models exhibit lower +confidence levels and more uncertainty in response to per- +turbations involving out-of-sample entities (distributions in +red). For instance, the average mean score of F P (X) and +F N(X) for out-of-sample entities was 0.06 points lower for +both models when compared to sentences with in-sample en- +tity perturbations. Consequently, we discover that PLMs ref- + +KorFinASC_POS +KorFinASC_NEG +SentFiN_POS +Probility Distribution(In-Sample) +SentFiN_NEG +KorFinASC_POS +KorFinASC_NEG +SentFiN_POS +Probility Distribution(Out-Sample) +SentFiN_NEG +Figure 4: A plot assuming a normal distribution for polari- +ties positive(POS) and negative(NEG), over datasets KorFi- +nASC and SentFiN. +erencing non-stationary information result in unstable pre- +diction ability that varies depending on the financial entity +present in the context. +To mitigate the issue we propose “TGT-Masking”, a novel +masking pattern that restricts PLMs from speculating non- +stationary knowledge. TGT-Masking applies to both the +training and test phases by substituting the financial entity +of interest with a special token [TGT], a short for “target”. +Doing so, not only prevents the PLM from learning non- +stationary traits about the entity during the training phase +but also, by replacing the target entity with an identical to- +ken for each prediction, keeps the output polarity score for +homogeneous contexts constant. We postulate that the pro- +posed method is a better option for debasing compared to +past approaches which mostly concentrated on de-biasing +augmentations to solve the problem for two reasons [16, 10]. +First, debiasing-augmentation approaches involve using a +fixed prompt to generate unseen samples to align the model’s +predicted label distribution, inevitably training the model on +an identical template with varying entities multiple times. +However, recent work has proven that duplication of data +harms the model from achieving a higher accuracy [15]. Sec- +ond, augmentation methods require a generative language +model to generate data samples, however, TGT-Masking is +implemented by simple replace functions in the data loader +requiring much fewer computing resources. +5 +Experimental Setup +We conduct our experiments, using the pipeline men- +tioned in figure 1, on KorFinASCtest and KorFinASC- +Perturbtest. KorFinASC-Perturbtest is a maliciously +modified version of the original test set in which the orig- +inal financial institutions have been substituted with out- +of-distribution entities, similar to control tasks described +in past literature[12]. As larger models are expected to be +more robust towards biases, or non-stationary knowledge in +this research, we compare mT5-Large(1.2B params), XLM- +RoBERTa-Large(550M params), and KLUE-RoBERTa- +Large (337M params). The size of the three models is based +on the original BERT recipe, however, mT5 is an encoder- +decoder model having twice as many parameters as its +encoder-only counterparts. Note that, the difference in pa- +rameter count between encoder-only models comes from the +larger vocabulary size used on XLM-RoBERTa-Large. +5.1 +Intermediate Transfer Learning +In our research, we investigate the following types of inter- +mediate transfer learning. When the source and target do- +mains are denoted as Ds and Dt, source and target tasks as +Ts and Tt, and source and target language as Ls and Lt, and +dataset as DS: +• Language Transfer (Language.T): Uses DS = {Ds = +Dt, Ts = Tt, Ls ̸= Lt}, to inform the model about +the task and domain beforehand. In our paper, we use +SentFiN. +• Domain Transfer (Domain.T): Uses DS = {Ds ̸= +Dt, Ts = Tt, Ls = Lt}, to inform the model about the +task and language beforehand. In our paper, we use Ko- +ABSA. +• Task Transfer (Task.T): Uses DS = {Ds = Dt, Ts ̸= +Tt, Ls = Lt}, to inform the model about the domain +and language beforehand. In our paper, we use Financial +PhraseBank, and Ko-FinSA. +Additionally, we test variations with two successive trans- +fers, including Task.T + Language.T, Domain.T + Lan- +guage.T, and Task.T + Domain.T. Details for the datasets +used for intermediate transfer learning are listed in table 3. In +our work, PLMs are trained for only 3 epochs in each phase +unlike Domain Adaptive Pretraining (DAPT) or Task Adap- +tive Pretraining (TAPT) described in past publication [11]. +This reduces the models’ repetitive exposure to identical +texts. +Dataset +Ls +Ds +Ts +N +SentFiN +En +Finance +ASC +14k +Financial PhraseBank +En +Finance +SA +5k +Ko-ABSA +Ko +General +ASC +5k +Ko-FinSA +Ko +Finance +SA +10k +Table 3: Datasets used for intermediate transfer learning. N +denotes the number of samples in the dataset. +5.2 +Task Formulation +Unlike conventional sentiment analysis tasks which receive +raw sentences as input, target aspects must be specified for +ASC tasks. For models which use TGT-Masking during its +training phase, we anticipate the existence of [TGT] mask +to guide the model to analyze the input in the interest of +the token while preventing the encoding of non-stationary + +KorFinASCtest +KorFinASC-Perturbtest +TGT-Masking +Transfer Learning +SINGLE ENT +MULTIPLE ENT +SINGLE ENT +MULTIPLE ENT +ACC +F1 +ACC +F1 +ACC +F1 +ACC +F1 +Model: XLM-RoBERTa-Large +TRUE +N/A +77.85 +73.24 +79.23 +79.27 +77.85 +73.24 +79.23 +79.27 +Language.T +79.24 +75.74 +81.79 +81.77 +79.24 +75.74 +81.79 +81.77 +Task.T + Language.T +79.35 +76.54 +82.91 +82.58 +79.35 +76.54 +82.91 +82.58 +Language.T + Domain.T +79.12 +75.66 +82.21 +82.24 +79.12 +75.66 +82.21 +82.24 +FALSE +N/A +79.18 +75.35 +81.42 +81.49 +65.16 +60.62 +60.28 +58.05 +Language.T +79.41 +75.3 +83.82 +83.67 +61.1 +58.24 +61.79 +59.69 +Task.T + Language.T +82.87 +79.13 +83.67 +83.69 +72.82 +68.33 +58.47 +57.94 +Language.T + Domain.T +79 +73.99 +82.15 +82.11 +62.17 +61.74 +64.16 +61.09 +Model : mT5-Large +TRUE +N/A +70.76 +64.6 +57.86 +55.41 +70.76 +64.6 +57.86 +55.41 +Language.T +68.75 +75.72 +60.69 +58.11 +68.75 +75.72 +60.69 +58.11 +Task.T + Language.T +76.06 +70.59 +79.74 +77.41 +76.06 +70.59 +79.74 +77.41 +Language.T + Domain.T +72.99 +67.77 +74.45 +71.31 +72.99 +67.77 +74.45 +71.31 +FALSE +N/A +77.06 +71.55 +64.11 +62.31 +76.12 +69.77 +60.64 +58.76 +Language.T +78.24 +73.1 +79.54 +77.22 +73.38 +65 +71.07 +68.59 +Task.T + Language.T +72.77 +68.83 +79.23 +76.32 +76.51 +71.76 +79.39 +77.77 +Language.T + Domain.T +53.64 +48.89 +47.43 +44.03 +40.29 +36.42 +36.04 +32.98 +Model: KLUE-RoBERTa-Large +TRUE +N/A +81.08 +76.7 +79.94 +79.72 +81.08 +76.7 +79.94 +79.72 +Task.T +80.25 +77.07 +83.07 +83.73 +80.25 +77.07 +83.07 +83.73 +Domain.T +80.47 +76.77 +82.26 +82.23 +80.47 +76.77 +82.26 +82.23 +Task.T + Domain.T +79.3 +76.72 +83.01 +82.41 +79.3 +76.72 +83.01 +82.41 +Domain.T + Task.T +79.41 +76.94 +82.51 +82.03 +79.41 +76.94 +82.51 +82.03 +FALSE +N/A +81.98 +79.06 +83.72 +83.52 +76.62 +70.92 +77.17 +76.59 +Task.T +82.09 +79.30 +85.43 +85.18 +78.4 +72.77 +58.71 +57.88 +Domain.T +80.41 +76.31 +85.13 +85.05 +63.72 +61.26 +74.13 +72.22 +Task.T + Domain.T +81.08 +78.93 +83.62 +83.39 +71.37 +69.6 +70.26 +68.39 +Domain.T + Task.T +80 +75.63 +80.42 +80.5 +52.68 +44.81 +41.84 +43.36 +Table 4: Results for XLM-RoBERTa-Large, mT5-Large, and KLUE-RoBERTa-Large over KorFinASCtest +and +KorFinASC-Perturbtest. All models are trained for 3 epochs in each training phase. F1(MAX) and accuracy are reported +for the tests. +information. On the other hand, for models without TGT- +Masking, we follow previous research and present the target +aspect with a special token delimiting it from the original +sequence. Following are example inputs for each condition. +• With TGT-Masking: +Energy stocks rallied while [TGT] falls into a bear mar- +ket. +• Without TGT-Masking: +Energy stocks rallied while S&P 500 falls into a bear +market. [SEP] S&P 500 +6 +Results +This section explores and measures the impact of TGT- +Masking and intermediate transfer learning on PLMs. +F1(MAX) and accuracy are reported separately for SIN- +GLE ENT and MULTIPLE ENT. SINGLE ENT scores +represent classification performance for sentences contain- +ing a single sentiment. MULTIPLE ENT denotes scores for +classification performance over inputs with two or more sen- +timents included. +6.1 +TGT-Masking and Intermediate Transfer +Learning +Table 4 compares XLM-RoBERTa-Large, mT5-Large, +and KLUE-RoBERTa-Large over KorFinASCtest and +KorFinASC-Perturbtest. +Surprisingly, +for +XLM- +RoBERTa-Large, mT5-Large, and KLUE-RoBERTa-Large, +models +trained +with +TGT-Masking +and +intermediate +transfer learning overperform their standalone versions +on MULTIPLE ENT accuracy by 22.63, 19.1, and 5.9 +percentage points, correspondingly. Furthermore, through +our experiments, we report 3 notable findings. +First, we show that TGT-Masking is an effective way +for stopping PLMs from speculating non-stationary knowl- +edge regarding financial entities. Earlier in our work, we +discussed that the existence of non-stationary knowledge +disturbs PLMs from making reliable predictions indepen- +dent of the entities given in the input context. In our +experiments, models trained with TGT-Masking demon- +strate stable performance across both test sets, but mod- +els without TGT-Masking underperform themselves on + +KorFinASC-Perturbtest. Interestingly, mT5-Large with +Task.T + Language.T applied results in greater performance +on KorFinASC-Perturbtest; nevertheless, this may also +be seen as a failure of PLMs, since ideally, scores should not +change and moreover, the improvement cannot be explained. +Second, we provide evidence that intermediate transfer +learning improves the performance of PLMs on KorFin- +ASC. The performance of the transfer-learned multilingual +models is comparable to that of KLUE-RoBERTa-Large, a +PLM native to the Korean language, recommending the use +of intermediate transfer learning with multilingual models in +future research on languages without a native PLM. +Finally, we find that for multilingual models XLM- +RoBERTa-Large and mT5-Large, Task.T is preferable to +Domain.T. We assume that this is because acquiring knowl- +edge in the finance domain is substantially more challeng- +ing than acquiring task-related knowledge. Consequently, it +is unlikely for such behavior to be universal over different +tasks and domains. +6.2 +Transferring in Lower-Resource +Environments +In +the +previous +section, +models +were +trained +using +KorFinASC. However, it is difficult to find datasets +with n +> +10K samples for finance-specific ASC for +the majority of languages. Accordingly, we constructed +KorFinASC(0.3), a variation of the original dataset that +is 30% in size. Using KorFinASC(0.3) we investigate +the effectiveness of intermediate transfer learning and TGT- +Masking in even lower-resource environments. The scope +of experiments in this section was downsized according to +the findings from the preceding section. First, because we +have shown that TGT-Masking effectively eliminates non- +stationary information from distorting the predictions, we no +longer test models without TGT-Masking. Second, for each +model, just one transfer learning setting, the one with the +highest performance in previous tests, was investigated. +KorFinASC(0.3)test +Transfer Learning +SINGLE ENT +MULTIPLE ENT +ACC +F1 +ACC +F1 +Model: XLM-RoBERTa-Large +N/A +47.18 +36.13 +33.58 +31.25 +Task.T + Language.T +78.47 +75.54 +79.21 +79.26 +Model: mT5-Large +N/A +55.52 +50.33 +52.67 +45.92 +Task.T + Language.T +76.9 +72.69 +78.02 +75.63 +Model: KLUE-RoBERTa-Large +N/A +79.02 +76.23 +82.36 +82.31 +Task.T +77.06 +73.09 +79.74 +79.91 +Table 5: Results for XLM-RoBERTa-Large, mT5-Large, +and KLUE-RoBERTa-Large over KorFinASC(0.3)test. +All models are trained for 3 epochs in each training phase. +F1(MAX) and accuracy are reported for the tests. +We observe that test results, table 5, reaffirm our findings. +Despite the limited data, intermediate transfer learning al- +lows multilingual models XLM-RoBERTa-Large and mT5- +Large, to reach performance that does not differ significantly +from previous experiments using full-scale data. +7 +Conclusion +Our work explores non-English aspect-level sentiment clas- +sification in the finance domain. We discuss “non-stationary +knowledge” existent in financial corpora that have overesti- +mated the performance of past models and present “TGT- +Masking”, a novel masking pattern, that allows PLMs to +output reliable predictions independent from the aforemen- +tioned biases. Finally, we investigate a series of intermedi- +ate transfer learning and conclude that PLM and datasets +from different languages, domains, or tasks can be used +to improve classification performance in low-resource lan- +guages. We benchmark our findings on KorFin-ASC, the +first finance-specific ASC dataset in Korean, and achieve +22.63, 19.1, and 5.9 percentage points improvements with +XLM-RoBERTa-Large, mT5-Large, and KLUE-RoBERTa- +Large against their standalone counterparts. We release our +models, dataset, and code 2. +References +[1] Araci, +D. +2019. +FinBERT: +Financial +Senti- +ment Analysis with Pre-trained Language Models. +arXiv:1908.10063. +[2] Balahur, A.; and Turchi, M. 2012. Multilingual Sen- +timent Analysis using Machine Translation? In Pro- +ceedings of the 3rd Workshop in Computational Ap- +proaches to Subjectivity and Sentiment Analysis, 52– +60. Jeju, Korea: Association for Computational Lin- +guistics. +[3] Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, +J. D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sas- +try, G.; Askell, A.; et al. 2020. Language models are +few-shot learners. In Advances in neural information +processing systems, volume 33, 1877–1901. +[4] Chuang, C.; and Yang, Y. 2022. +Buy Tesla, Sell +Ford: Assessing Implicit Stock Market Preference in +Pre-trained Language Models. In Proceedings of the +60th Annual Meeting of the Association for Computa- +tional Linguistics (Volume 2: Short Papers), 100–105. +Dublin, Ireland: Association for Computational Lin- +guistics. +[5] Consoli, S.; Barbaglia, L.; and Manzan, S. 2022. Fine- +grained, aspect-based sentiment analysis on economic +and financial lexicon. In Knowledge-Based Systems, +volume 247, 108781. +[6] Cortis, K.; Freitas, A.; Daudert, T.; Huerlimann, M.; +Zarrouk, M.; Handschuh, S.; and Davis, B. 2017. +SemEval-2017 Task 5: Fine-Grained Sentiment Analy- +sis on Financial Microblogs and News. In Proceedings +of the 11th International Workshop on Semantic Eval- +uation (SemEval-2017), 519–535. Vancouver, Canada: +Association for Computational Linguistics. +2Our models and code are available at: +Will be added after submission due to anonymity issues. + +[7] Das, S. R.; and Chen, M. Y. 2007. Yahoo! For Ama- +zon: Sentiment Extraction from Small Talk on the Web. +In Management Science, volume 53, 1375–1388. IN- +FORMS. +[8] Ding, X.; Zhang, Y.; Liu, T.; and Duan, J. 2014. Using +Structured Events to Predict Stock Price Movement: +An Empirical Investigation. In Proceedings of the 2014 +Conference on Empirical Methods in Natural Lan- +guage Processing (EMNLP), 1415–1425. Doha, Qatar: +Association for Computational Linguistics. +[9] Fama, E. F. 1965. The behavior of stock-market prices. +In The journal of Business, volume 38, 34–105. JS- +TOR. +[10] Guo, Y.; Yang, Y.; and Abbasi, A. 2022. Auto-Debias: +Debiasing Masked Language Models with Automated +Biased Prompts. In Proceedings of the 60th Annual +Meeting of the Association for Computational Linguis- +tics (Volume 1: Long Papers), 1012–1023. Dublin, Ire- +land: Association for Computational Linguistics. +[11] Gururangan, S.; Marasovi´c, A.; Swayamdipta, S.; Lo, +K.; Beltagy, I.; Downey, D.; and Smith, N. A. 2020. +Don’t Stop Pretraining: Adapt Language Models to +Domains and Tasks. In Proceedings of the 58th Annual +Meeting of the Association for Computational Linguis- +tics, 8342–8360. +[12] Hewitt, J.; and Liang, P. 2019. +Designing and In- +terpreting Probes with Control Tasks. +In Proceed- +ings of the 2019 Conference on Empirical Methods +in Natural Language Processing and the 9th Inter- +national Joint Conference on Natural Language Pro- +cessing (EMNLP-IJCNLP), 2733–2743. Hong Kong, +China: Association for Computational Linguistics. +[13] Huang, D.; Li, J.; Wang, L.; and Zhou, G. 2020. Time +series momentum: Is it there? In Journal of Financial +Economics, volume 135, 774–794. Elsevier. +[14] Lambert, P. 2015. Aspect-Level Cross-lingual Senti- +ment Classification with Constrained SMT. +In Pro- +ceedings of the 53rd Annual Meeting of the Associa- +tion for Computational Linguistics and the 7th Inter- +national Joint Conference on Natural Language Pro- +cessing (Volume 2: Short Papers), 781–787. Beijing, +China: Association for Computational Linguistics. +[15] Lee, K.; Ippolito, D.; Nystrom, A.; Zhang, C.; Eck, +D.; Callison-Burch, C.; and Carlini, N. 2021. Dedu- +plicating training data makes language models better. +arXiv:2107.06499. +[16] Lee, M.; Won, S.; Kim, J.; Lee, H.; Park, C.; and Jung, +K. 2021. CrossAug: A Contrastive Data Augmenta- +tion Method for Debiasing Fact Verification Models. +In Proceedings of the 30th ACM International Con- +ference on Information & Knowledge Management, +3181–3185. +[17] Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; +Levy, O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V. +2019. Roberta: A robustly optimized bert pretraining +approach. arXiv:1907.11692. +[18] Maia, M.; Handschuh, S.; Freitas, A.; Davis, B.; Mc- +Dermott, R.; Zarrouk, M.; and Balahur, A. 2018. +WWW’18 Open Challenge: Financial Opinion Min- +ing and Question Answering. In Companion Proceed- +ings of the The Web Conference 2018, WWW ’18, +1941–1942. Republic and Canton of Geneva, CHE: +International World Wide Web Conferences Steering +Committee. ISBN 9781450356404. +[19] Nadeem, M.; Bethke, A.; and Reddy, S. 2021. Stere- +oSet: Measuring stereotypical bias in pretrained lan- +guage models. +In Proceedings of the 59th Annual +Meeting of the Association for Computational Linguis- +tics and the 11th International Joint Conference on +Natural Language Processing (Volume 1: Long Pa- +pers), 5356–5371. Online: Association for Computa- +tional Linguistics. +[20] Park, S.; Moon, J.; Kim, S.; Cho, W. I.; Han, J.; +Park, J.; Song, C.; Kim, J.; Song, Y.; Oh, T.; et al. +2021. Klue: Korean language understanding evalua- +tion. arXiv:2105.09680. +[21] Prabhakaran, V.; Hutchinson, B.; and Mitchell, M. +2019. +Perturbation sensitivity analysis to detect un- +intended model biases. arXiv:1910.04210. +[22] Pruksachatkun, Y.; Phang, J.; Liu, H.; Htut, P. M.; +Zhang, X.; Pang, R. Y.; Vania, C.; Kann, K.; and +Bowman, S. R. 2020. +Intermediate-task trans- +fer learning with pretrained models for natural lan- +guage understanding: When and why does it work? +arXiv:2005.00628. +[23] Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, +S.; Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2019. +Exploring the Limits of Transfer Learning with a Uni- +fied Text-to-Text Transformer. arXiv:1910.10683. +[24] Sattar, K.; Umer, Q.; Vasbieva, D. G.; Chung, S.; Latif, +Z.; and Lee, C. 2021. +A Multi-Layer Network for +Aspect-Based Cross-Lingual Sentiment Classification. +In IEEE Access, volume 9, 133961–133973. IEEE. +[25] Schmitt, T. A.; Chetalova, D.; Sch¨afer, R.; and Guhr, T. +2013. Non-stationarity in financial time series: Generic +features and tail behavior. In EPL (Europhysics Let- +ters), volume 103, 58003. IOP Publishing. +[26] Sinha, A.; Kedas, S.; Kumar, R.; and Malo, P. 2022. +SEntFiN 1.0: Entity-aware sentiment analysis for fi- +nancial news. In Journal of the Association for Infor- +mation Science & Technology, volume 73. +[27] von Beschwitz, B.; Keim, D. B.; and Massa, M. 2019. +First to “Read” the News: News Analytics and Algo- +rithmic Trading. In The Review of Asset Pricing Stud- +ies, volume 10, 122–178. +[28] Weidinger, L.; Mellor, J.; Rauh, M.; Griffin, C.; Ue- +sato, J.; Huang, P.-S.; Cheng, M.; Glaese, M.; Balle, +B.; Kasirzadeh, A.; et al. 2021. Ethical and social risks +of harm from language models. arXiv:2112.04359. +[29] Wysocki, P. D. 1998. Cheap talk on the web: The de- +terminants of postings on stock message boards. Tech- +nical Report 98025, University of Michigan Business +School. + +[30] Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; +Xiong, H.; and He, Q. 2019. A Comprehensive Survey +on Transfer Learning. arXiv:1911.02685. + diff --git a/JdE1T4oBgHgl3EQfYQRq/content/tmp_files/load_file.txt b/JdE1T4oBgHgl3EQfYQRq/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..5dab7b27240d93a95c245a207beb28e23163e35a --- /dev/null +++ b/JdE1T4oBgHgl3EQfYQRq/content/tmp_files/load_file.txt @@ -0,0 +1,948 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf,len=947 +page_content='Removing Non-Stationary Knowledge From Pre-Trained Language Models for Entity-Level Sentiment Classification in Finance Guijin Son,1 Hanwool Lee, 2 Nahyeon Kang, 3 Moonjeong Hahm 4 1 Underwood International College, Yonsei University, Republic of Korea 2 NCSOFT, Republic of Korea 3 KB Kookmin Bank, Republic of Korea 4 College of Business & Economics, Chung-Ang University, Republic of Korea spthsrbwls123@yonsei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='kr, albertmade@ncsoft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='com, kangnahyeonkang@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='com, daily6298@cau.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='kr Abstract Extraction of sentiment signals from news text, stock mes- sage boards, and business reports, for stock movement pre- diction, has been a rising field of interest in finance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Building upon past literature, the most recent works attempt to bet- ter capture sentiment from sentences with complex syntactic structures by introducing aspect-level sentiment classification (ASC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Despite the growing interest, however, fine-grained sentiment analysis has not been fully explored in non-English literature due to the shortage of annotated finance-specific data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Accordingly, it is necessary for non-English languages to leverage datasets and pre-trained language models (PLM) of different domains, languages, and tasks to best their per- formance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' To facilitate finance-specific ASC research in the Korean language, we build KorFinASC, a Korean aspect- level sentiment classification dataset for finance consisting of 12,613 human-annotated samples, and explore methods of intermediate transfer learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Our experiments indicate that past research has been ignorant towards the potentially wrong knowledge of financial entities encoded during the train- ing phase, which has overestimated the predictive power of PLMs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In our work, we use the term “non-stationary knowl- edge” to refer to information that was previously correct but is likely to change, and present “TGT-Masking”, a novel mask- ing pattern to restrict PLMs from speculating knowledge of the kind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Finally, through a series of transfer learning with TGT-Masking applied we improve 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='63% of classification accuracy compared to standalone models on KorFinASC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Over the last decade, sentiment analysis has been widely adopted in the field of finance to extract sentiment signals from news text, stock message boards, and business reports [8, 27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' While it has been expected to automate the extrac- tion of nuances from sentiment-bearing expressions fully, traditional coarse-grained sentiment analysis techniques fail to disambiguate sentences including conflicting sentiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' For example, given the following news headline: “Energy stocks rallied while S&P 500 falls into a bear market”, Fin- BERT [1] fails to differentiate between the two contradictory sentiments present .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' To resolve such problems, recent stud- ies introduce aspect-level sentiment classification (ASC), a task that identifies the polarity of each sentence with spe- cific entities in interest [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Compared to traditional coarse- Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='aaai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='org).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' All rights reserved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Encoder-Only (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' RoBERTa) Different Language Same Task & Domain Different Task Same Language& Domain Different Domain Same Language & Task Encoder-Decoder (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' T5) KorFin-ASC Model Selection Intermediate Task Transfer Learning Fine-Tuning Figure 1: Experimental pipeline with variants of pre-trained language models, and intermediate tasks for intermediate transfer learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' grained sentiment analysis, however, training a model to per- form ASC requires a dataset with richer annotations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Despite the growing number of finance-specific ASC datasets made public (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=', SemEval 2017 Task 5, FiQA, SEntiFiN 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='0), the majority of literature is built upon English corpora, excluding low-resource languages from the scope of research [6, 18, 26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Aiming to facilitate finance-specific ASC research using the Korean language we present KorFinASC, a Korean aspect-level senti- ment classification dataset for finance consisting of 12,613 human-annotated samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' KorFinASC is, to the best of our knowledge, the largest publicly available human- generated finance-specific dataset and aspect-level classifi- cation dataset, written in Korean, each irrespective of task and domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Further in this work, we use the pipeline in figure 1 over KorFinASC to offer a comprehensive in- vestigation into whether datasets of different domains, lan- guages, and tasks can be leveraged to improve classifica- tion performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Also referred to as intermediate transfer learning, multiple research has already reported that cross- lingual transfer from English improves performance in gen- eral domain tasks [22, 24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' We find that the nature of finance- specific ASC problems differs significantly from that of gen- eral domain tasks requiring additional measures to be prop- arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='03136v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='CL] 9 Jan 2023 erly transferred.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' We postulate that such behavior origins from “non-stationary knowledge”, once right facts that shift with time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Modern-day natural language processing (NLP) has been built upon the assumption that the likelihood of a word’s appearance is constant over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' However, finan- cial markets are extremely non-stationary systems, where exploiting past knowledge may lead to a lack of robustness [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Our work provides empirical evidence that repeated appearances of financial entities in pre-training, intermedi- ate training, and fine-tuning deeply encode non-stationary knowledge regarding financial entities in pre-trained lan- guage models (PLM), hence overestimating its predictive ability on test datasets collected from the same period of time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' To mitigate such biases from distorting predictions we introduce “TGT-Masking”, a novel masking pattern that restricts PLMs from speculating non-stationary knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' We discover that combined with a series of transfer learning, “TGT-Masking” improves 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='63% of classification accuracy compared to standalone models on KorFinASC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In summary, our contributions are as follows: We create and make public KorFinASC, the first finance-specific ASC dataset in Korean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' We report the existence of “non-stationary knowledge” that has overestimated the classification accuracy of PLMs and introduce “TGT-Masking” a novel masking patter to restrict PLMs from speculating “non-stationary knowledge.” We discover that datasets of different domains, lan- guages, and tasks can be leveraged to improve classifica- tion performance for low-resource languages on finance- specific ASC tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 1 Related Works 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='1 Aspect-Level Sentiment Classification in Finance Ever since it has been proven that textual data is corre- lated with stock price, a growing number of research has devised methods to enhance the predictive power via so- phisticated NLP algorithms [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Among the various at- tempts, the largest branch of research employs sentiment analysis to translate financial corpora into sentiment signals that enhance investment decision-making [7, 8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Building upon past literature, the most recent works attempt to bet- ter capture sentiment from sentences with complex syntac- tic structures by introducing aspect-level sentiment classifi- cation (ASC) [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In contrast to traditional course-grained sentiment analysis, which is incapable of disambiguation of sentences with multiple sentiments, ASC involves the clas- sification of sentiment with regard to each aspect present in the input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' ASC, due to its relatively short history, has not been fully explored in finance, nonetheless, it is anticipated by academia to improve sentiment signal extraction by fil- tering out noises irrelevant to the target in interest [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='2 Intermediate Transfer-Learning Unlike traditional learning, in which datasets and training are strictly isolated for each task, transfer learning involves using datasets from different domains, languages, and tasks to improve performance in a target task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' For instance, given source and target domains Ds and Dt, source and target tasks Ts and Tt, and source and target languages Ls and Lt, learning the target conditional probability for target task from a dataset where Ds ̸= Dt, Ts ̸= Tt, or Ls ̸= Lt can be referred to as transfer learning [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' The majority of previous research on cross-lingual transfer for general-domain ASC involves parallel annotated data for both the source and tar- get languages;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' ironically such data is equally difficult to ac- quire [2, 14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Only very recently unsupervised cross-lingual transfer was proposed, and surprisingly it has reported 20 to 23% improvement on state-of-the-art approaches [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' How- ever, whether such behavior is equally applicable to the fi- nance domain has not yet been explored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='3 Financial Biases in Pre-trained Language Models Leveraging the vast amount of text corpora available on the internet, PLMs have achieved unprecedented levels of performance, with some even surpassing human baselines [23, 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Recently, however, an increasing number of research have pointed out that stereotypical biases in the text corpora have been propagated to PLMs raising questions over the fairness of these models [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' The issue of prejudiced knowl- edge is equally prevalent in the finance domain, as FinBERT, the most widely used finance-specific PLM model, has been reported to prefer stocks from the Materials and Industrials sector amongst others [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2 Non-Stationarity in Financial Corpora Financial markets are well known to be non-stationary, im- plying that historical data may not always lead to accurate forecasts [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In this paper, we question whether contempo- rary PLMs, which assume that the likelihood of a word’s ap- pearance is static, is suitable for financial decision-making.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' We hypothesize that the non-stationarity of financial data is likewise represented in financial corpora, making PLMs trained on such corpora equally non-stationary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' To demon- strate whether PLMs contain outdated knowledge regarding financial entities we select two PLMs trained on a corpus collected from a different period of time, BERT and Fin- BERT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' For financial entity C, we construct a template sen- tence “C is a [MASK] company” and through a masked to- ken prediction task probe the two models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Figure 2 is the 10 most probable words and their con- ditional probability predicted by BERT and FinBERT us- ing the above-mentioned prompt for companies Tesla, and Ford.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Surprisingly, with the exception of a small number of phrases, the two models predict distinct outputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' We pre- sume that this behavior is due to the difference in the cor- pora used to train each model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Moreover, we observe that the generated words can be sorted into the following four categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Correct Generations: Words such as “technology”, and “motor” are correct generations that well explain the tar- get entities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='06 public global technology private holding software chinese startup saas great british swedish canadian russian japanese finnish norwegian french BERT FinBERT Figure 2: The 10 most probable words and their conditional probability predicted by BERT and FinBERT for “Tesla is a [MASK] company.” Wrong Generations: Words such as “chinese”, “british”, “canadian” or “gold” are factually wrong generations that do not fit the target entities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Sentiment-Bearing Generations: FinBERT generates “great” for Tesla and “dangerous” for Ford, both of which are evaluative terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Once Correct Generations: Interestingly, we also ob- serve generations that were once correct but outdated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' For instance, both models predict the term “private” for Tesla, which suggests that Tesla is a private firm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' How- ever, Tesla became public in 2010 and has remained so since.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' All cases corresponding to categories 2, 3, and 4 are critical if propagated to downstream tasks;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' however, factu- ally wrong generations have been dealt with often in recent years, so our work focuses on sentiment-bearing and once- correct generations [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' The two errors are similar in that they incorrectly use historical distributions to forecast future values, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=', they mistake textual data to be stationary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' The existence of sentiment-bearing generations reaffirms that language models have been trained to prefer a specific entity over the other, even in the absence of context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' It is a dangerous assumption for PLMs to associate a financial in- stitution with a certain sentiment based on historical data, given a great quantity of research in finance has already shown that past returns have little or no bearing on future returns [9, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Once-correct generations, to the best of our knowledge, have never been mentioned in previous finan- cial NLP studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' However, they indicate that current PLMs, in which training is ceased once served, will become ob- solete as soon as they do so, indicating that they cannot keep up with the non-stationary behavior of financial data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Accordingly, to generically refer to sentiment-bearing and once-correct generations, two errors that mistake text to be non-stationary, we coincide the term “non-stationary knowl- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='06 motor dangerous holding gold global cruise research buying cyclical automobile swedish public private french ford family canadian british BERT FinBERT Figure 3: The 10 most probable words and their conditional probability predicted by BERT and FinBERT for “Ford is a [MASK] company.” edge” and demonstrate its presence and toxicity further in our work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 3 Dataset Creation The goal of this research is to explore whether datasets and PLMs of different languages, tasks, and domains, can be removed of their non-stationary knowledge and then transferred to best the performance of finance-specific ASC in low-resource languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' However, finance-specific ASC datasets in languages other than English, are not publicly available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Accordingly, we create KorFinASC, the first finance-specific fine-grained sentiment analysis dataset in Korean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='1 Data Collection Neural models trained to perform sentiment classification on financial statements are expected to behave analogously with a human investor;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' thus we collect the training data from Naver Finance1, an analyst report aggregator com- monly used in the finance industry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' The collected reports were segmented into sentences and applied the following pre-processing methods to remove undesirable context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Remove sentences with less than 40 characters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Remove sentences including phrases such as: All Rights Reserved, (Click For Contents), @domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='com, (Redistribution Prohibited) Remove sentences with less than 2 organization entities included.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='2 Annotation process For the annotation process, three native Korean speakers with degrees in finance and economics were employed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Each annotator was provided with 10,000 partially overlapping samples and was instructed to identify existing entities and 1https://finance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='naver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='com 豆7Entity-Sentiment Annotations Num Sample Average Word Num Positive Negative Neutral Total SINGLE ENT 5,964 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='6 2,491 (41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='7%) 2,082 (34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='9%) 1,391 (23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='3%) 5,964 MULTIPE ENT 2,779 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='4 2,079 (31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='3%) 2,532 (30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='7%) 2,532 (38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='1%) 6,649 Total 8,743 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='5 4,570 (36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='2%) 3,923 (32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='6%) 3,923 (31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='1%) 12,613 Table 1: KorFin-ASC statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' annotate the subjected sentiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' The annotators were re- quired to think as real-life investors and assign sentiment between “positive” or “negative” based on how the sam- ple will contribute to the market value of the entity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Once they encounter sentences with insufficient information for judgment they were guided to either label “neutral” or re- move the sentence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' However, difficulties exist to reach a per- fect inter-annotator agreement, particularly when more than one annotator is involved in the production of the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' To minimize disagreement, the annotators were provided ta- ble 2 from one of the primary authors for sentiment label- ing and were advised to refrain from speculating previous knowledge beyond the given conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' To measure the consistency of annotations from different annotators, an agreement study has been conducted using a subset of 611 overlapping samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Surprisingly only 12 samples, approximately 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='9%, failed to meet a consensus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' The final decision for the above-mentioned samples was pro- vided by the primary authors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Sentiment Example Cases Positive Overperformed market expectations/mar- ket/sector/competitor, Raised Funding, An- alyst buy rating, Entry to new market, Alle- viation of risk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Negative Underperformed market expectations/mar- ket/sector/competitor, Failed fund raising, Analyst sell rating, Default filing, Employee layoff, Owner risk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Table 2: Pre-definded cases of Positive/Negative samples provided by the primary authors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='3 Dataset Statistics Resultingly, we build and release KorFinASC, a Korean aspect-level sentiment classification dataset for finance con- sisting of 12,613 human annotated samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' To the best of our knowledge, KorFinASC achieves to be the largest publicly available human-generated finance-specific dataset and aspect-level sentiment classification dataset, written in Korean, each irrespective of task and domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' KorFinASC contains 8,743 unique samples annotated with entities and corresponding financial nuances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Each sample is tagged either MULTIPLE ENT or SINGLE ENT depending on the number of financial entities included.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' MULTIPLE ENT samples make up 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='8%, contributing 6,649 entity-sentiment annotations to the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' The dis- tribution of sentiments was monitored throughout the anno- tation process resulting in a fairly low-class imbalance as shown in table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' However, one feature that concerns the authors is that 4,354 unique entities appear throughout the dataset, indicat- ing an average of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='9 appearances per each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Accordingly, per-entity sentiment distribution is highly imbalanced for most of the entities which might mislead a neural model trained on this corpus to directly link an entity to a specific sentiment instead of analyzing its semantics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 4 TGT-Masking Earlier in this work, we have criticized that PLMs ground- ing predictions on non-stationary knowledge, are toxic be- haviors likely to overestimate the model’s predictive power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' To demonstrate that this tendency is a language-agonstic behavior resulting from the nature of PLMs, we conduct a perturbation sensitivity analysis (PSA) on RoBERTa-Large and KLUE-RoBERTa-Large models trained using SentFiN and KorFin-ASC [21, 17, 20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' PSA measures the sensi- tivity of a classification model by calculating the mean, and standard deviation of scores with entity-perturbed in- puts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' For this process, we use a template sentence “[TAR- GET ENTITY 1] rallied while [TARGET ENTITY 2] falls into a bear market.”, to probe the models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Sentiment scores for each polarity were derived by applying a softmax func- tion on the model’s output layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' To determine the perturba- tion sensitivity for the positive polarity, perturbations were applied to [TARGET ENTITY 1], and for negative polarity, perturbations were applied to [TARGET ENTITY 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Formally, Xη denotes the perturbed sentence with the target entity replaced with an alternative entity η ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' To compare the model’s behavior to perturbations from in- sample and out-of-sample entities two types of η are intro- duced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Xi η denotes a sentence perturbed with an entity al- ready seen from the training phase while Xo η denotes a per- turbation with an entity never seen by the model before.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Fi- nally, f P (X) is used to denote the positive polarity score and f N(X) for the negative polarity score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' The calculation of scores is repeated N times each for English and Korean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Ideally, a text classification model must produce scores independent from the financial entities discussed in the con- text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' However, sentences subjected to perturbations resulted in an output with a standard deviation ranging from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='016 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In figure 4, we observe that models exhibit lower confidence levels and more uncertainty in response to per- turbations involving out-of-sample entities (distributions in red).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' For instance, the average mean score of F P (X) and F N(X) for out-of-sample entities was 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='06 points lower for both models when compared to sentences with in-sample en- tity perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Consequently, we discover that PLMs ref- KorFinASC_POS KorFinASC_NEG SentFiN_POS Probility Distribution(In-Sample) SentFiN_NEG KorFinASC_POS KorFinASC_NEG SentFiN_POS Probility Distribution(Out-Sample) SentFiN_NEG Figure 4: A plot assuming a normal distribution for polari- ties positive(POS) and negative(NEG), over datasets KorFi- nASC and SentFiN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' erencing non-stationary information result in unstable pre- diction ability that varies depending on the financial entity present in the context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' To mitigate the issue we propose “TGT-Masking”, a novel masking pattern that restricts PLMs from speculating non- stationary knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' TGT-Masking applies to both the training and test phases by substituting the financial entity of interest with a special token [TGT], a short for “target”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Doing so, not only prevents the PLM from learning non- stationary traits about the entity during the training phase but also, by replacing the target entity with an identical to- ken for each prediction, keeps the output polarity score for homogeneous contexts constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' We postulate that the pro- posed method is a better option for debasing compared to past approaches which mostly concentrated on de-biasing augmentations to solve the problem for two reasons [16, 10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' First, debiasing-augmentation approaches involve using a fixed prompt to generate unseen samples to align the model’s predicted label distribution, inevitably training the model on an identical template with varying entities multiple times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' However, recent work has proven that duplication of data harms the model from achieving a higher accuracy [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Sec- ond, augmentation methods require a generative language model to generate data samples, however, TGT-Masking is implemented by simple replace functions in the data loader requiring much fewer computing resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 5 Experimental Setup We conduct our experiments, using the pipeline men- tioned in figure 1, on KorFinASCtest and KorFinASC- Perturbtest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' KorFinASC-Perturbtest is a maliciously modified version of the original test set in which the orig- inal financial institutions have been substituted with out- of-distribution entities, similar to control tasks described in past literature[12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' As larger models are expected to be more robust towards biases, or non-stationary knowledge in this research, we compare mT5-Large(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='2B params), XLM- RoBERTa-Large(550M params), and KLUE-RoBERTa- Large (337M params).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' The size of the three models is based on the original BERT recipe, however, mT5 is an encoder- decoder model having twice as many parameters as its encoder-only counterparts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Note that, the difference in pa- rameter count between encoder-only models comes from the larger vocabulary size used on XLM-RoBERTa-Large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='1 Intermediate Transfer Learning In our research, we investigate the following types of inter- mediate transfer learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' When the source and target do- mains are denoted as Ds and Dt, source and target tasks as Ts and Tt, and source and target language as Ls and Lt, and dataset as DS: Language Transfer (Language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T): Uses DS = {Ds = Dt, Ts = Tt, Ls ̸= Lt}, to inform the model about the task and domain beforehand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In our paper, we use SentFiN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Domain Transfer (Domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T): Uses DS = {Ds ̸= Dt, Ts = Tt, Ls = Lt}, to inform the model about the task and language beforehand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In our paper, we use Ko- ABSA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Task Transfer (Task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T): Uses DS = {Ds = Dt, Ts ̸= Tt, Ls = Lt}, to inform the model about the domain and language beforehand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In our paper, we use Financial PhraseBank, and Ko-FinSA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Additionally, we test variations with two successive trans- fers, including Task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T + Language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T, Domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T + Lan- guage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T, and Task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T + Domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Details for the datasets used for intermediate transfer learning are listed in table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In our work, PLMs are trained for only 3 epochs in each phase unlike Domain Adaptive Pretraining (DAPT) or Task Adap- tive Pretraining (TAPT) described in past publication [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' This reduces the models’ repetitive exposure to identical texts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Dataset Ls Ds Ts N SentFiN En Finance ASC 14k Financial PhraseBank En Finance SA 5k Ko-ABSA Ko General ASC 5k Ko-FinSA Ko Finance SA 10k Table 3: Datasets used for intermediate transfer learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' N denotes the number of samples in the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='2 Task Formulation Unlike conventional sentiment analysis tasks which receive raw sentences as input, target aspects must be specified for ASC tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' For models which use TGT-Masking during its training phase, we anticipate the existence of [TGT] mask to guide the model to analyze the input in the interest of the token while preventing the encoding of non-stationary KorFinASCtest KorFinASC-Perturbtest TGT-Masking Transfer Learning SINGLE ENT MULTIPLE ENT SINGLE ENT MULTIPLE ENT ACC F1 ACC F1 ACC F1 ACC F1 Model: XLM-RoBERTa-Large TRUE N/A 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='85 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='24 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='23 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='27 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='85 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='24 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='23 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='27 Language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='24 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='74 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='79 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='77 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='24 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='74 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='79 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='77 Task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T + Language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='35 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='54 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='91 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='58 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='35 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='54 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='91 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='58 Language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T + Domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='12 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='66 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='21 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='24 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='12 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='66 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='21 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='24 FALSE N/A 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='18 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='35 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='42 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='49 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='16 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='62 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='28 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='05 Language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='41 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='3 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='82 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='67 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='1 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='24 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='79 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='69 Task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T + Language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='87 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='13 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='67 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='69 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='82 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='33 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='47 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='94 Language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T + Domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T 79 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='99 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='15 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='11 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='17 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='74 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='16 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='09 Model : mT5-Large TRUE N/A 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='76 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='6 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='86 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='41 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='76 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='6 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='86 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='41 Language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='75 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='72 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='69 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='11 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='75 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='72 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='69 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='11 Task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T + Language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='06 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='59 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='74 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='41 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='06 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='59 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='74 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='41 Language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T + Domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='99 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='77 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='45 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='31 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='99 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='77 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='45 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='31 FALSE N/A 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='06 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='55 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='11 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='31 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='12 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='77 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='64 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='76 Language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='24 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='1 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='54 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='22 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='38 65 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='07 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='59 Task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T + Language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='77 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='83 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='23 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='32 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='51 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='76 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='39 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='77 Language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T + Domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='64 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='89 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='43 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='03 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='29 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='42 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='04 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='98 Model: KLUE-RoBERTa-Large TRUE N/A 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='08 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='7 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='94 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='72 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='08 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='7 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='94 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='72 Task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='25 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='07 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='07 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='73 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='25 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='07 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='07 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='73 Domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='47 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='77 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='26 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='23 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='47 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='77 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='26 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='23 Task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T + Domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='3 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='72 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='01 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='41 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='3 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='72 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='01 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='41 Domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T + Task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='41 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='94 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='51 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='03 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='41 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='94 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='51 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='03 FALSE N/A 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='98 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='06 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='72 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='52 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='62 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='92 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='17 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='59 Task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='09 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='30 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='43 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='18 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='4 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='77 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='71 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='88 Domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='41 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='31 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='13 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='05 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='72 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='26 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='13 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='22 Task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T + Domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='08 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='93 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='62 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='39 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='37 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='6 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='26 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='39 Domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T + Task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T 80 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='63 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='42 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='5 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='68 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='81 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='84 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='36 Table 4: Results for XLM-RoBERTa-Large, mT5-Large, and KLUE-RoBERTa-Large over KorFinASCtest and KorFinASC-Perturbtest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' All models are trained for 3 epochs in each training phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' F1(MAX) and accuracy are reported for the tests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' On the other hand, for models without TGT- Masking, we follow previous research and present the target aspect with a special token delimiting it from the original sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Following are example inputs for each condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' With TGT-Masking: Energy stocks rallied while [TGT] falls into a bear mar- ket.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Without TGT-Masking: Energy stocks rallied while S&P 500 falls into a bear market.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [SEP] S&P 500 6 Results This section explores and measures the impact of TGT- Masking and intermediate transfer learning on PLMs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' F1(MAX) and accuracy are reported separately for SIN- GLE ENT and MULTIPLE ENT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' SINGLE ENT scores represent classification performance for sentences contain- ing a single sentiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' MULTIPLE ENT denotes scores for classification performance over inputs with two or more sen- timents included.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='1 TGT-Masking and Intermediate Transfer Learning Table 4 compares XLM-RoBERTa-Large, mT5-Large, and KLUE-RoBERTa-Large over KorFinASCtest and KorFinASC-Perturbtest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Surprisingly, for XLM- RoBERTa-Large, mT5-Large, and KLUE-RoBERTa-Large, models trained with TGT-Masking and intermediate transfer learning overperform their standalone versions on MULTIPLE ENT accuracy by 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='63, 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='1, and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='9 percentage points, correspondingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Furthermore, through our experiments, we report 3 notable findings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' First, we show that TGT-Masking is an effective way for stopping PLMs from speculating non-stationary knowl- edge regarding financial entities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Earlier in our work, we discussed that the existence of non-stationary knowledge disturbs PLMs from making reliable predictions indepen- dent of the entities given in the input context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In our experiments, models trained with TGT-Masking demon- strate stable performance across both test sets, but mod- els without TGT-Masking underperform themselves on KorFinASC-Perturbtest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Interestingly, mT5-Large with Task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T + Language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T applied results in greater performance on KorFinASC-Perturbtest;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' nevertheless, this may also be seen as a failure of PLMs, since ideally, scores should not change and moreover, the improvement cannot be explained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Second, we provide evidence that intermediate transfer learning improves the performance of PLMs on KorFin- ASC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' The performance of the transfer-learned multilingual models is comparable to that of KLUE-RoBERTa-Large, a PLM native to the Korean language, recommending the use of intermediate transfer learning with multilingual models in future research on languages without a native PLM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Finally, we find that for multilingual models XLM- RoBERTa-Large and mT5-Large, Task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T is preferable to Domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' We assume that this is because acquiring knowl- edge in the finance domain is substantially more challeng- ing than acquiring task-related knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Consequently, it is unlikely for such behavior to be universal over different tasks and domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='2 Transferring in Lower-Resource Environments In the previous section, models were trained using KorFinASC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' However, it is difficult to find datasets with n > 10K samples for finance-specific ASC for the majority of languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Accordingly, we constructed KorFinASC(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='3), a variation of the original dataset that is 30% in size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Using KorFinASC(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='3) we investigate the effectiveness of intermediate transfer learning and TGT- Masking in even lower-resource environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' The scope of experiments in this section was downsized according to the findings from the preceding section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' First, because we have shown that TGT-Masking effectively eliminates non- stationary information from distorting the predictions, we no longer test models without TGT-Masking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Second, for each model, just one transfer learning setting, the one with the highest performance in previous tests, was investigated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' KorFinASC(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='3)test Transfer Learning SINGLE ENT MULTIPLE ENT ACC F1 ACC F1 Model: XLM-RoBERTa-Large N/A 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='18 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='13 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='58 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='25 Task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T + Language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='47 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='54 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='21 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='26 Model: mT5-Large N/A 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='52 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='33 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='67 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='92 Task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T + Language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='9 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='69 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='02 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='63 Model: KLUE-RoBERTa-Large N/A 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='02 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='23 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='36 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='31 Task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='T 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='06 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='09 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='74 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='91 Table 5: Results for XLM-RoBERTa-Large, mT5-Large, and KLUE-RoBERTa-Large over KorFinASC(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='3)test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' All models are trained for 3 epochs in each training phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' F1(MAX) and accuracy are reported for the tests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' We observe that test results, table 5, reaffirm our findings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Despite the limited data, intermediate transfer learning al- lows multilingual models XLM-RoBERTa-Large and mT5- Large, to reach performance that does not differ significantly from previous experiments using full-scale data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 7 Conclusion Our work explores non-English aspect-level sentiment clas- sification in the finance domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' We discuss “non-stationary knowledge” existent in financial corpora that have overesti- mated the performance of past models and present “TGT- Masking”, a novel masking pattern, that allows PLMs to output reliable predictions independent from the aforemen- tioned biases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Finally, we investigate a series of intermedi- ate transfer learning and conclude that PLM and datasets from different languages, domains, or tasks can be used to improve classification performance in low-resource lan- guages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' We benchmark our findings on KorFin-ASC, the first finance-specific ASC dataset in Korean, and achieve 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='63, 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='1, and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='9 percentage points improvements with XLM-RoBERTa-Large, mT5-Large, and KLUE-RoBERTa- Large against their standalone counterparts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' We release our models, dataset, and code 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' References [1] Araci, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' FinBERT: Financial Senti- ment Analysis with Pre-trained Language Models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' arXiv:1908.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='10063.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [2] Balahur, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' and Turchi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Multilingual Sen- timent Analysis using Machine Translation?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In Pro- ceedings of the 3rd Workshop in Computational Ap- proaches to Subjectivity and Sentiment Analysis, 52– 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Jeju, Korea: Association for Computational Lin- guistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [3] Brown, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Mann, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Ryder, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Subbiah, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Kaplan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Dhariwal, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Neelakantan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Shyam, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Sas- try, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Askell, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Language models are few-shot learners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In Advances in neural information processing systems, volume 33, 1877–1901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [4] Chuang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' and Yang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Buy Tesla, Sell Ford: Assessing Implicit Stock Market Preference in Pre-trained Language Models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In Proceedings of the 60th Annual Meeting of the Association for Computa- tional Linguistics (Volume 2: Short Papers), 100–105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Dublin, Ireland: Association for Computational Lin- guistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [5] Consoli, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Barbaglia, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' and Manzan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Fine- grained, aspect-based sentiment analysis on economic and financial lexicon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In Knowledge-Based Systems, volume 247, 108781.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [6] Cortis, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Freitas, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Daudert, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Huerlimann, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Zarrouk, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Handschuh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' and Davis, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' SemEval-2017 Task 5: Fine-Grained Sentiment Analy- sis on Financial Microblogs and News.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In Proceedings of the 11th International Workshop on Semantic Eval- uation (SemEval-2017), 519–535.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Vancouver, Canada: Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2Our models and code are available at: Will be added after submission due to anonymity issues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [7] Das, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' and Chen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Yahoo!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' For Ama- zon: Sentiment Extraction from Small Talk on the Web.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In Management Science, volume 53, 1375–1388.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' IN- FORMS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [8] Ding, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Liu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' and Duan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Using Structured Events to Predict Stock Price Movement: An Empirical Investigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In Proceedings of the 2014 Conference on Empirical Methods in Natural Lan- guage Processing (EMNLP), 1415–1425.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Doha, Qatar: Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [9] Fama, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 1965.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' The behavior of stock-market prices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In The journal of Business, volume 38, 34–105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' JS- TOR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [10] Guo, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Yang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' and Abbasi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Auto-Debias: Debiasing Masked Language Models with Automated Biased Prompts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In Proceedings of the 60th Annual Meeting of the Association for Computational Linguis- tics (Volume 1: Long Papers), 1012–1023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Dublin, Ire- land: Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [11] Gururangan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Marasovi´c, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Swayamdipta, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Lo, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Beltagy, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Downey, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' and Smith, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Don’t Stop Pretraining: Adapt Language Models to Domains and Tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In Proceedings of the 58th Annual Meeting of the Association for Computational Linguis- tics, 8342–8360.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [12] Hewitt, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' and Liang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Designing and In- terpreting Probes with Control Tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In Proceed- ings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th Inter- national Joint Conference on Natural Language Pro- cessing (EMNLP-IJCNLP), 2733–2743.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Hong Kong, China: Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [13] Huang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Wang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' and Zhou, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Time series momentum: Is it there?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In Journal of Financial Economics, volume 135, 774–794.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Elsevier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [14] Lambert, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Aspect-Level Cross-lingual Senti- ment Classification with Constrained SMT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In Pro- ceedings of the 53rd Annual Meeting of the Associa- tion for Computational Linguistics and the 7th Inter- national Joint Conference on Natural Language Pro- cessing (Volume 2: Short Papers), 781–787.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Beijing, China: Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [15] Lee, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Ippolito, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Nystrom, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Zhang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Eck, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Callison-Burch, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' and Carlini, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Dedu- plicating training data makes language models better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' arXiv:2107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='06499.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [16] Lee, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Won, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Kim, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Lee, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Park, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' and Jung, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' CrossAug: A Contrastive Data Augmenta- tion Method for Debiasing Fact Verification Models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In Proceedings of the 30th ACM International Con- ference on Information & Knowledge Management, 3181–3185.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [17] Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Ott, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Goyal, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Du, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Joshi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Chen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Levy, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Lewis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Zettlemoyer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' and Stoyanov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Roberta: A robustly optimized bert pretraining approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' arXiv:1907.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='11692.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [18] Maia, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Handschuh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Freitas, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Davis, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Mc- Dermott, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Zarrouk, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' and Balahur, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' WWW’18 Open Challenge: Financial Opinion Min- ing and Question Answering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In Companion Proceed- ings of the The Web Conference 2018, WWW ’18, 1941–1942.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Republic and Canton of Geneva, CHE: International World Wide Web Conferences Steering Committee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' ISBN 9781450356404.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [19] Nadeem, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Bethke, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' and Reddy, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Stere- oSet: Measuring stereotypical bias in pretrained lan- guage models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In Proceedings of the 59th Annual Meeting of the Association for Computational Linguis- tics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Pa- pers), 5356–5371.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Online: Association for Computa- tional Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [20] Park, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Moon, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Kim, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Cho, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Han, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Park, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Song, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Kim, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Song, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Oh, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Klue: Korean language understanding evalua- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' arXiv:2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='09680.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [21] Prabhakaran, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Hutchinson, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' and Mitchell, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Perturbation sensitivity analysis to detect un- intended model biases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' arXiv:1910.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='04210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [22] Pruksachatkun, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Phang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Liu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Htut, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Zhang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Pang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Vania, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Kann, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' and Bowman, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Intermediate-task trans- fer learning with pretrained models for natural lan- guage understanding: When and why does it work?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' arXiv:2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='00628.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [23] Raffel, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Shazeer, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Roberts, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Lee, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Narang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Matena, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Zhou, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Li, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' and Liu, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Exploring the Limits of Transfer Learning with a Uni- fied Text-to-Text Transformer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' arXiv:1910.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='10683.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [24] Sattar, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Umer, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Vasbieva, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Chung, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Latif, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' and Lee, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' A Multi-Layer Network for Aspect-Based Cross-Lingual Sentiment Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In IEEE Access, volume 9, 133961–133973.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [25] Schmitt, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Chetalova, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Sch¨afer, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' and Guhr, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Non-stationarity in financial time series: Generic features and tail behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In EPL (Europhysics Let- ters), volume 103, 58003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' IOP Publishing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [26] Sinha, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Kedas, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Kumar, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' and Malo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' SEntFiN 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='0: Entity-aware sentiment analysis for fi- nancial news.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In Journal of the Association for Infor- mation Science & Technology, volume 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [27] von Beschwitz, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Keim, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' and Massa, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' First to “Read” the News: News Analytics and Algo- rithmic Trading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' In The Review of Asset Pricing Stud- ies, volume 10, 122–178.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [28] Weidinger, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Mellor, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Rauh, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Griffin, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Ue- sato, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Huang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Cheng, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Glaese, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Balle, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Kasirzadeh, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Ethical and social risks of harm from language models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' arXiv:2112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='04359.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [29] Wysocki, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Cheap talk on the web: The de- terminants of postings on stock message boards.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Tech- nical Report 98025, University of Michigan Business School.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' [30] Zhuang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Qi, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Duan, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Xi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Zhu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Zhu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' Xiong, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' and He, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' A Comprehensive Survey on Transfer Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content=' arXiv:1911.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} +page_content='02685.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE1T4oBgHgl3EQfYQRq/content/2301.03136v1.pdf'} diff --git a/KdAzT4oBgHgl3EQfVfys/content/2301.01286v1.pdf b/KdAzT4oBgHgl3EQfVfys/content/2301.01286v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..01901e49a779749797d504da33681f2ec2258567 --- /dev/null +++ b/KdAzT4oBgHgl3EQfVfys/content/2301.01286v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8a70cf869928f6531ea2c2c51b50c7ab2a46088897c6c4993dd1e536cad54966 +size 1505587 diff --git a/KdAzT4oBgHgl3EQfVfys/vector_store/index.faiss b/KdAzT4oBgHgl3EQfVfys/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..2d7395228dd7879b9fea1f10bb0fcafe1865b475 --- /dev/null +++ b/KdAzT4oBgHgl3EQfVfys/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1419beb78ad0fc3eb78a151b0f452ce8e85f307eb48794643898beb6ea53baaf +size 1966125 diff --git a/KdAzT4oBgHgl3EQfVfys/vector_store/index.pkl b/KdAzT4oBgHgl3EQfVfys/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..f85d18bebc9ab27e4a8ce4de83f88639385fe410 --- /dev/null +++ b/KdAzT4oBgHgl3EQfVfys/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:13abfa192d5079e91a07191ed147ea7540ded2bb42ea5c98bfa02094df658c32 +size 67257 diff --git a/LdAyT4oBgHgl3EQfgPhu/content/tmp_files/2301.00355v1.pdf.txt b/LdAyT4oBgHgl3EQfgPhu/content/tmp_files/2301.00355v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..cb5d6af7827c9b4fab779d6c9baa9880b761ea36 --- /dev/null +++ b/LdAyT4oBgHgl3EQfgPhu/content/tmp_files/2301.00355v1.pdf.txt @@ -0,0 +1,1710 @@ +arXiv:2301.00355v1 [cs.CL] 1 Jan 2023 +Second Thoughts are Best: Learning to Re-Align With +Human Values from Text Edits +Ruibo Liu1, Chenyan Jia2, Ge Zhang3,4, +Ziyu Zhuang1∗, Tony X. Liu2, Soroush Vosoughi1 +1Dartmouth College, 2Stanford University, +3Beijing Academy of Artificial Intelligence, 4University of Michigan, Ann Arbor +1{ruibo.liu.gr, soroush.vosoughi}@dartmouth.edu +Abstract +We present SECOND THOUGHTS, a new learning paradigm that enables language +models (LMs) to re-align with human values. By modeling the chain-of-edits +between value-unaligned and value-aligned text, with LM fine-tuning and addi- +tional refinement through reinforcement learning, SECOND THOUGHTS not only +achieves superior performance in three value alignment benchmark datasets but +also shows strong human-value transfer learning ability in few-shot scenarios. The +generated editing steps also offer better interpretability and ease for interactive er- +ror correction. Extensive human evaluations further confirm its effectiveness. +1 +Introduction +“Machines can and will make better decisions than humans +but only when the values are aligned with those of human race.” +——Prof. Stuart Russell, Value Alignment, 2015 +Figure 1: Fine-tuned language models (LMs) still +tend to generate text violating human values in cer- +tain contexts. Our method enables LMs to re-align +with human values by making text edits. +Current large-scale pre-trained language mod- +els (LMs) have shown great success in many +knowledge-recalling tasks, such as question +answering (Talmor et al., 2022) and entity re- +trieval (Cao et al., 2021); however, their ability +to select socially good text from bad (or generat- +ing prosocial text) in open-world settings is still +limited (Hendrycks et al., 2021a), even when +the models are scaled up to hundreds of billions +of parameters (Lin et al., 2021). In other words, +pre-training ever-larger LMs does not lead to +expected substantive gains in tasks that re- +quire human value judgment (Hoffmann et al., +2022). +Consider the example in Figure 1: given a con- +text, a fine-tuned LM GPT-2 (Radford et al., +2019) assigns a larger probability mass2 to the +∗Work done during the internship at Dartmouth College. +2We take the log-probability predicted by the LM, log Pr(y∣x), which is the conditional log-probability +of generating option y given input context x. We then compute its exponential for better readability. Such a +protocol is also adopted by BIG-Bench: https://github.com/google/BIG-bench. +36th Conference on Neural Information Processing Systems (NeurIPS 2022). + +immoral option than to the moral ground truth. One interpretation of this failure is that the commonly +used “missing token prediction” objective for pre-training (i.e., MLE) does not directly model hu- +man values (Ouyang et al., 2022). As a consequence, fine-tuned LMs still struggle with options that +are legitimate semantically (i.e., low language modeling loss) but are not aligned with human values. +To tackle this misalignment problem, prior work has proposed using binary answers (Jiang et al., +2021; Sap et al., 2020), rankings (Forbes et al., 2020; Brown et al., 2019), or ratings (Ziems et al., +2022; Lourie et al., 2020) to model human value preferences. +For example, Askell et +al. (Askell et al., 2021) create a platform to collect Likert-scale human ratings on LM-generated +utterances in dialogues, aiming to teach the LM to be helpful, honest, and harmless. However, with- +out considering how to recover from responses that already violate human values, these methods +cannot serve as robust remedies in real-world applications, since they can be easily attacked by +poisoned queries (Gehman et al., 2020). +More recent attempts, such as InstructGPT (Ouyang et al., 2022), formulate the alignment problem +as about teaching the machine to follow human instructions—they fine-tune GPT-3 on a variety of +prompts written by human users of OpenAI’s GPT-3 API (Brown et al., 2020). Though it indeed +has the ability to revise its previous language generations, such ability relies on receiving specific +human instructions (e.g., “Please make the following sentence aligned with moral values.”). Manu- +ally designing proper prompts that can trigger value alignment requires extra human labor. Besides, +specifically-designed prompts do not always exist in real-world human-AI interaction, and we can- +not expect most users to know how to design appropriate prompts to improve the human-value +alignment of an AI agent (Li & Liang, 2021). +On the other hand, rather than steering the language generation with artificial prompts, humans can +easily fix immoral language by making hierarchical and recursive edits (Du et al., 2022b; Lee et al., +2022), where human value judgments serve as the guide for each edit. Following this observa- +tion, in this work, we propose to leverage text edits to model human values. Our method, called +SECOND THOUGHTS, echoes the theory of “utilitarian ethics”, which says that humans choose the +actions (e.g. edits) which maximize the perceived positive impact on the most people (Van Staveren, +2007; Quinton, 1973). Specifically, we model human edits by three generic operations: insert, delete, +and replace, and automatically infer the “chain-of-edits” by a dynamic programming algorithm. Be- +sides the commonly used MLE training, we deliberately include a reinforcement learning based +refinement step, to further encourage valid edits which are not only aligned with human values, but +also coherent with the context. +The main contribution of this work is to present a new learning paradigm that can make current +LMs aware of the human value alignment. Trained with SECOND THOUGHTS, LMs can not only +re-align their generation with human values, even when the context has already been poisoned, but +also show the chain of editing steps for ease of interpretability and to facilitate further edits (§4.5). +Through extensive human evaluation, we find that the edited responses by SECOND THOUGHTS +(based on a 345M GPT-2) are on average scored higher with respect to their value alignment than +those from InstructGPT (based on a 1.3B GPT-3) (§4.2). Our experiments confirm that simply +scaling LMs is not adequate for good alignment with human values, which echoes the findings +of recent studies (Perez et al., 2022; Lin et al., 2021). Instead, smaller LMs trained with a few +properly decomposed human demonstrations can often lead to better results (§4.4). We also provide +a discussion on the impact of human factors during human evaluation (§5), which is crucially ignored +in current AI studies. +2 +Related Work +We briefly review existing work that considers in-context explanations during prompting or training. +We also summarize other value alignment methods for language models. +Learning From In-Context Instructions. The few-shot performance of LMs can be enhanced +by learning from in-context instructions (Sanh et al., 2021; Liu et al., 2021b), in the forms of task +descriptions (Mishra et al., 2021; Raffel et al., 2019), answer demonstrations (Brown et al., 2020), +targeting formats (Marasovi´c et al., 2021), etc., which can be positioned before (Wei et al., 2022) +or even after (Lampinen et al., 2022) the answer. Recent studies have shown improved results by +including decomposed reasoning steps into the instructions (Nye et al., 2021; Narang et al., 2020). +However, the instructions normally require careful human design, which is costly and whose quality +2 + +greatly affects performance (Zhao et al., 2021; Holtzman et al., 2021). In comparison with these +methods, SECOND THOUGHTS learns from text edits inferred by an algorithm, and presents the +chain-of-edits for each alignment, which eases error diagnosis and enables interactive correction. +Human Value Alignment for Language Models. +Trained on unfiltered and problematic lan- +guage from the web, current large-scale LMs have be shown to be poorly aligned with human +values (Bommasani et al., 2021). For example, GPT-3 performs only marginally better than a ran- +dom baseline on a virtue matching task (Weidinger et al., 2021), and scaling-up LMs can even lead +to deterioration in truthfulness (Lin et al., 2021). Existing general-purpose remedies include filter- +ing the training data (Gururangan et al., 2020), attribute-control generation (Dathathri et al., 2020), +and modifying the decoding algorithm with hard (e.g., token blocklists; Schick et al. (Schick et al., +2021)) or soft constraints (e.g., reference LMs; Liu et al. (Liu et al., 2021a)). Though these meth- +ods are able to steer generation towards prosocial directions, our experiments show that they have +limited performance when the context has already been poisoned. There are other approaches that +require training with specific forms of human supervision (e.g., fine-grained ratings) (Ouyang et al., +2022; Stiennon et al., 2020; Ziegler et al., 2019; Christiano et al., 2017), but these are often costly +and not always available in every value alignment dataset. SECOND THOUGHTS differs from all +these methods in its offline nature and ability to re-align in poisoned contexts, requiring neither extra +human labeling nor specially-designed prompts or instructions. +3 +Approach +SECOND THOUGHTS comprises two main steps. We first infer chain-of-edits automatically from +source and target responses with a dynamic programming algorithm, and fine-tune an LM on the +edits-augmented training data (§3.2). Then, we deploy a reinforce learning stage to refine the gen- +eration, by either adversarial imitation learning or value modeling (§3.3). We begin by introducing +the problem of value re-alignment (§3.1). +3.1 +Problem Statement of Re-alignment +Figure +2: +(a) +Existing +learning +paradigm +trains +in +vanilla +text-to-text +form; +(b) +SECOND THOUGHTS +learns to re-align with +decomposed chain-of-edits. +Value alignment datasets normally consist of +contexts (i.e., social situations), value-aligned +responses (i.e., prosocial behaviors), and value- +unaligned responses (i.e., antisocial behav- +iors). +Existing alignment methods formulate +the value alignment task as a conditional gen- +eration problem: given a situation as the con- +text, train a model that can generate responses +resembling a value-aligned target rather than +a not-aligned wrong target (Figure 2 (a)). +However, many studies have shown that LMs +trained with such a paradigm can be easily +derailed by poisoned contexts (Ouyang et al., +2022; Gehman et al., 2020)—i.e., contexts that +already include value-unaligned content, either +from the model’s own generation or from ma- +licious users3. In other words, unlike humans, +these models lack the ability of re-alignment +(the ability to recover from poisoned contexts). +To teach a model how to re-align, we deliberately add the value-unaligned response into the context, +referred to as the source, and keep the value-aligned response as the target. The intuition behind +this is that instead of learning from mistakes after a misalignment occurs in the generation, the +model learns how to make edits as it is generating the text. Specifically, we include the unaligned +source as part of the new “context”, and then train an LM to learn how to make sequential edits on +the source to produce the target (Figure 2 (b)). This way the model learns how to recover from a +value-unaligned, poisoned context during the generation phase. +3As an example, it has been reported that Microsoft’s chatbot Cortana will “get mad” if the user starts saying +offensive things (Insider, 2016). Similar outcomes have been observed in Apple’s Siri (BusinessInsider, 2018). +3 + +3.2 +Augmented Edits Modeling +DP-based Edits Inference. Given two text strings, source and target, one can find unlimited ways +to edit source to produce target. Thus, we apply two constraints onto the editing: (1) the edits should +be combinations of generic editing operations—inserting, deleting, and replacing a single token; (2) +each edit operation has a cost and our goal is to infer the chain-of-edits that has minimum cost. +Under these constraints, the edits inference problem can be converted to a token-level “edit distance +problem” (Jurafsky, 2000), which can be solved by dynamic programming (DP). We modify the +algorithm to be able to receive customized editing costs (e.g., insert-1, delete-1, replace-2), to try to +model different preferences on editing. We use special tokens to mark the start/end of editing and +the new content to be inserted/replaced, and develop a decipher module that can translate the edit +operations produced by DP into natural language (see §A.1 for a visualization of the whole process, +and §A.3 for more discussion on edit based models). +Augmented Edits Modeling (AEM). To augment the edits, we run the DP algorithm on the same +source and target pairs with a variety of editing costs4 to create a collection of chain-of-edits for each +source-target pair, which we call positive demonstrations (y+). We then fine-tune an LM on these +source-edits-target text inputs (recall that the edits are turned into natural language). We call this +Augmented Edits Modeling (AEM). Different from common language modeling, AEM includes +the labor-free decomposition (i.e., the editing steps) into the training object, whereas prior works +either train on costly manually-created decomposition (Ouyang et al., 2022; Wang et al., 2022) or, +rather than training, prompt with such decomposition (Wei et al., 2022; Nye et al., 2021). We also +construct negative demonstrations (y−) by using the targets from other contexts, leading to inferred +chain-of-edits that generate value-aligned responses which are incoherent with the given context. +These will be used during the RL refinement described below. +3.3 +Refinement by Reinforcement Learning +Though the generation of an LM trained with AEM can already align well with human values, many +of the generated responses are not coherent with the given contexts. Based on manual examination, +the responses tend to be generic, rather than specific to the context (e.g., the sidestep error in Ta- +ble A6). We are thus motivated to deploy a reinforcement learning (RL) stage to further refine the +generation quality, mainly to improve the coherence to the context. +Notation. Given the concatenation of context and source as x, SECOND THOUGHTS will generate +chain-of-edits and corresponding target as y. In RL language, we define the state at time t as the +set of generated tokens before t (i.e., st = y N, so x∞ = gngn−1 · · · g0 · x0 ∈ Cn+1. This +implies that x∞ ∈ � +n Cn and Gn · x∞ = Cn for each n. +In the end, we denote Gx∞ = {g ∈ G : g · x∞ = x∞} and put f : G → X +as f(g) = g · x∞. Since f is continuous and {x∞} is clopen in X, it follows +that Gx∞ = f −1(x∞) is a clopen subgroup of G. So there exists an m such +that Gm ⊆ Gx∞. Then we have Cm = Gm · x∞ = {x∞}, contradicting that +(m, Cm) ∈ T X +G . +□ + +6 +LONGYUN DING AND XU WANG +Given two sets X and Y . Let E = (En) and F = (Fn) be two decreasing +sequences of equivalence relations on X and Y respectively. Let θ : X → Y +be an injection such that θ is a reduction of En to Fn for each n < ω, i.e., +∀n < ω ∀x, x′ ∈ X (xEnx′ ⇐⇒ θ(x)Fnθ(x′)). +For (n, C) ∈ T X +E , put φ(n, C) = (n, [θ(C)]Fn). +Proposition 3.4. φ is a Lipschitz embedding from T X +E to T Y +F . In particular, +if θ is a bijection, then φ is an order preserving isomorphism. +Proof. Note that θ is injective. For (n, C) ∈ T X +E , C is not a singleton, so +neither is [θ(C)]Fn, and thus we have φ(n, C) ∈ T Y +F . The rest of the proof +is trivial. +□ +Definition 3.5. Let (T, <) be a tree, (ni) a strictly increasing sequence of +natural numbers. We define +T|(ni) = +� +i +Lni(T). +It is trivial to see that (T|(ni), <) is a tree too, and Lj(T|(ni)) = Lnj(T) for +each j < ω. We call T|(ni) a level-subtree of T. +Lemma 3.6. Let (T, <) be a well-founded tree, (ni) a strictly increasing +sequence of natural numbers. Then we have +ω(ρ(T)) ≤ ρ(T|(ni)) ≤ ρ(T). +In particular, if ρ(T) is a limit ordinal, then ρ(T|(ni)) = ρ(T). +Proof. ρ(T|(ni)) ≤ ρ(T) follows from Proposition 2.3. We prove ω(ρ(T)) ≤ +ρ(T|(ni)) by induction on ρ(T). +First, if ρ(T) < ω, then ρ(T) = min{n : Ln(T) = ∅}, and hence ρ(T|(ni)) = +min{i : Lni(T) = ∅}. So we have ω(ρ(T)) = 0 ≤ ρ(T|(ni)). +For t ∈ T|(ni), note that (T|(ni))t = {u ∈ T|(ni) : t = u ∨ t < u} is a +level-subtree of Tt as well. +Case 1: If ρ(T) is a limit ordinal, then ω(ρ(T)) = ρ(T). Proposition 2.1 +gives ρ(T) = sup{ρ(Tt) : t ∈ T}. Since ρ(T) is a limit ordinal and ρ(Tt) is a +successor ordinal, we have ρ(Tt) < ρ(T) for t ∈ T. +Subcase 1.1: If there is no maximum in {ω(ρ(Tt)) : t ∈ T}, we have +ρ(T) = sup{ρ(Tt) : t ∈ T} = sup{ω(ρ(Tt)) : t ∈ T}. +By induction hypothesis, we have ω(ρ(Tt)) ≤ ρ((T|(ni))t). Proposition 2.3 +gives ρ((T|(ni))t) ≤ ρ(T|(ni)) for each t ∈ T, so we have ρ(T|(ni)) = ρ(T). +Subcase 1.2: Otherwise, let α = max{ω(ρ(Tt)) : t ∈ T}. Since ρ(Tt) < +ρ(T) for t ∈ T, we have ρ(T) = α + ω. We can find a sequence of tm, m < ω +in L0 such that ρ(Ttm) = α + km with sup{km : m < ω} = ω. +By +Proposition 2.1, for each m < ω and n < km we can find tn +m ∈ Ln(T) +such that tm = t0 +m < t1 +m < · · · < tkm−1 +m +and ρ(Ttnm) = α + (km − n). +For km > n0, let im be the biggest i such that ni < km, then tnj +m ∈ + +A HIERARCHY ON NON-ARCHIMEDEAN CLI POLISH GROUPS +7 +Lj(T|(ni)) = Lnj(T) for j ≤ im. By induction hypothesis, α = ω(ρ(Tt +nj +m )) ≤ +ρ((T|(ni))t +nj +m ). Since ρ((T|(ni))t +nj +m ) ≥ ρ((T|(ni))t +nj+1 +m +) + 1 for each j < im, +we have ρ((T|(ni))tn0 +m ) ≥ α + im. By the definition of im, we have sup{im : +m < ω} = ω. This gives ρ(T|(ni)) = α + ω = ρ(T). +Case 2: If ρ(T) = ω(ρ(T)) + n with 1 ≤ n < ω, then there exists some +t0 ∈ L0(T) such that ρ(T) = ρT (t0) + 1. Since {u ∈ T|(ni) : t0 < u} is a +level-subtree of {u ∈ T : t0 < u} and ρ({u ∈ T : t0 < u}) = ρT (t0) < ρ(T), +by induction hypothesis and Proposition 2.3, we have +ω(ρT (t0)) = ω(ρ({u ∈ T : t0 < u})) ≤ ρ({u ∈ T|(ni) : t0 < u}) ≤ ρ(T|(ni)). +It follows that ω(ρ(T)) = ω(ρT (t0)) ≤ ρ(T|(ni)). +□ +In general, the tree T X +G +and the ordinal ρ(T X +G ) depends on G, not only +on the action G ↷ X. The following key lemma shows that, ω(ρ(T X +G )) is +independent to the choice of G. +Lemma 3.7. Let G be a non-archimedean CLI Polish group, X a countable +discrete Polish G-space, and let G = (Gn), G′ = (G′ +n) ∈ dgnb(G). Then we +have +ω(ρ(T X +G )) = ω(ρ(T X +G′ )). +Proof. (1) First, we consider the case that (G′ +n) is a subsequence of (Gn), +i.e., there is a strictly increasing sequence (ni) of natural numbers such that +G′ +i = Gni for each i < ω. +We define ψ : T X +G′ → T X +G +as ψ(i, C) = (ni, C). It is clear that ψ is an +order preserving isomorphism from T X +G′ onto T X +G |(ni). It follows that +ω(ρ(T X +G )) ≤ ρ(T X +G′ ) = ρ(T X +G |(ni)) ≤ ρ(T X +G ). +So we have ω(ρ(T X +G )) = ω(ρ(T X +G′ )). +(2) Since (Gn), (G′ +n) ∈ dgnb(G), we can find two strictly increasing nat- +ural numbers (ni) and (mj) such that n0 = 0, m0 = 0, and +G0 ⊇ G′ +m0 ⊇ Gn1 ⊇ G′ +m1 ⊇ Gn2 ⊇ · · · . +Denote H2i = Gni and H2i+1 = G′ +mi for each i < ω. Then (Hk) ∈ dgnb(G). +Put H = (Hk), K = (Gni), and K′ = (G′ +mi). +Note that (Gni) is a subsequence of (Gn) and also a subsequence of (Hk). +From (1), we have +ω(ρ(T X +G )) = ω(ρ(T X +K )) = ω(ρ(T X +H )). +Similarly, we have +ω(ρ(T X +G′ )) = ω(ρ(T X +K′)) = ω(ρ(T X +H )). +So we have ω(ρ(T X +G )) = ω(ρ(T X +G′ )). +□ +Now we are going to find a special G-space X(G) such that ω(ρ(T X(G) +G +)) +reaches the maximum value among all ω(ρ(T X +G )). This leads to that the +value of ω(ρ(T X(G) +G +)) is determined by G itself. + +8 +LONGYUN DING AND XU WANG +Lemma 3.8. Given two sets X and Y . Let E = (En) and F = (Fn) be two +decreasing sequences of equivalence relations on X and Y respectively. Let +θ : X → Y be a surjection such that +∀n < ω ∀x ∈ X (θ([x]En) = [θ(x)]Fn). +Then there exists a Lipschitz embedding ψ : T Y +F → T X +E . In particular, if T X +E +is well-founded, so is T Y +F , and then ρ(T Y +F ) ≤ ρ(T X +E ). +Proof. For any (n, C) ∈ T Y +F , we construct ψ(n, C) by induction on n such +that ψ(n, C) = (n, [x]En) for some x ∈ X with [θ(x)]Fn = C. +If n = 0, since θ is a surjection, we can find an x ∈ X with θ(x) ∈ C. +Then we put ψ(0, C) = (0, [x]E0). +If n > 0, since C is an Fn-equivalence class, there exists an unique Fn−1- +equivalence class D ⊇ C. By induction hypothesis, we can find an x′ ∈ +X such that ψ(n − 1, D) = (n − 1, [x′]En−1) with [θ(x′)]Fn−1 = D. Since +θ([x′]En−1) = [θ(x′)]Fn−1 = D ⊇ C, we can find x ∈ [x′]En−1 such that +θ(x) ∈ C. Then we put ψ(n, C) = (n, [x]En). +Since C is not a singleton, by θ([x]En) = [θ(x)]Fn = C, we can see that +[x]En is not a singleton. So ψ(n, C) ∈ T X +E . From the construction, it is +routine to check that ψ : T Y +F → T X +E +is a Lipschitz embedding. +In the end, if T X +E +is well-founded, by Proposition 2.3, T Y +F is well-founded +too, and then ρ(T Y +F ) ≤ ρ(T X +E ). +□ +Definition 3.9. Let G be a non-archimedean CLI Polish group, and let +G = (Gn) ∈ dgnb(G). +For k < ω, we define an action G ↷ G/Gk as, +g · hGk = ghGk for g, h ∈ G. We denote ρk(G) = ρ(T G/Gk +G +). Furthermore, +letting X(G) = � +k G/Gk, we denote ρ(G) = ρ(T X(G) +G +). +Note that G · gGk = {hgGk : h ∈ G} = G/Gk for any g ∈ G. +It is clear that ρ0(G) = 0, since G = G0. +Lemma 3.10. +(1) ρ(G) = sup{ρk(G) : k < ω}. +(2) (ρk(G)) is an increasing sequence of countable non-limit ordinals. +Proof. (1) Note that L0(T X(G) +G +) = {(0, G/Gk) : G ̸= Gk}. By +(T X(G) +G +)(0,G/Gk) ∼= T G/Gk +G +for G ̸= Gk, and (T X(G) +G +)(0,G/Gk) = T G/Gk +G += ∅ for G = Gk, so +ρ(G) += ρ(T X(G) +G +) = sup{ρ((T X(G) +G +)(0,G/Gk)) : k < ω} += sup{ρ(T G/Gk +G +) : k < ω} = sup{ρk(G) : k < ω}. +(2) Given k < ω, we define θ : G/Gk+1 → G/Gk as θ(gGk+1) = gGk for +g ∈ G. It is clear that θ is well defined and is a surjection. Furthermore, for +n < ω and g ∈ G, we have +θ(Gn · gGk+1) += {θ(hgGk+1) : h ∈ Gn} += {hgGk : h ∈ Gn} = Gn · gGk = Gn · θ(gGk+1). + +A HIERARCHY ON NON-ARCHIMEDEAN CLI POLISH GROUPS +9 +From Lemma 3.8, we have +ρ(T G/Gk +G +) ≤ ρ(T G/Gk+1 +G +), +i.e., (ρk(G)) is increasing. +For each k < ω, since T G/Gk +G +is countable, ρk(G) is countable too. +If +G = Gk, then T G/Gk +G += ∅; else if G ̸= Gk, then L0(T G/Gk +G +) = {(0, G/Gk)} is +a singleton. So ρk(G) = ρ(T G/Gk +G +) is either 0 or a successor ordinal. +□ +Recall that a G-space X is said to be transitive if X itself is an orbit. +Lemma 3.11. Let G be a non-archimedean CLI Polish group, X a countable +discrete transitive Polish G-space, and let G = (Gn) ∈ dgnb(G). Then we +can find some k < ω such that ρ(T X +G ) ≤ ρk(G). +Proof. Fix an x ∈ X. Since {x} is clopen in X, by the continuity of the +group action of G on X, we have Gx is a clopen subgroup of G. So there +is some k < ω such that Gk ⊆ Gx. Then we can define θ : G/Gk → X as +θ(gGk) = g · x for g ∈ G. Since X is transitive G-space, θ is surjective and +θ(Gn · gGk) = Gn · θ(gGk) for each n < ω and g ∈ G. From Lemma 3.8, we +have ρ(T X +G ) ≤ ρk(G). +□ +Corollary 3.12. Let G be a non-archimedean CLI Polish group, X a count- +able discrete Polish G-space, and let G = (Gn) ∈ dgnb(G). Then we have +ρ(T X +G ) ≤ ρ(G). +Proof. Note that L0(T X +G ) = {(0, G · x) : x ∈ X ∧ G · x ̸= {x}} and T G·x +G +∼= +(T X +G )(0,G·x) for G · x ̸= {x}, so we have +ρ(T X +G ) = sup{ρ((T X +G )(0,G·x)) : x ∈ X} = sup{ρ(T G·x +G +) : x ∈ X}. +Then by Lemma 3.11, we have +ρ(T X +G ) ≤ sup{ρk(G) : k < ω} = ρ(G). +□ +Corollary 3.13. Let G be a non-archimedean Polish group, G = (Gn) ∈ +dgnb(G). Then G is CLI iff T G/Gk +G +is well-founded for any k < ω. +Proof. (⇒) part follows from Lemma 3.3. +(⇐). Given a countable Polish G-space X. Following the arguments in +the proof of Lemma 3.11, we can see that, for any x ∈ X, there is a k < ω and +a Lipschitz embedding from T G·x +G +to T G/Gk +G +. Since T G/Gk +G +is well-founded, so +is T G·x +G +. By the arbitrary of x ∈ X, we have T X +G is also well-founded. Then +[5, Theorem 6] gives that G is CLI. +□ +Theorem 3.14. Let G be a non-archimedean CLI Polish group, G = (Gn), G′ = +(G′ +n) ∈ dgnb(G). Then we have ω(ρ(G)) = ω(ρ(G′)). + +10 +LONGYUN DING AND XU WANG +Proof. By Corollary 3.12, we have ρ(T X(G) +G′ +) ≤ ρ(G′). Then Lemma 3.7 gives +ω(ρ(G)) = ω(ρ(T X(G) +G +)) = ω(ρ(T X(G) +G′ +)) ≤ ω(ρ(G′)), +and vice verse. +□ +By the preceding theorem, there is an unique ordinal β < ω1 which is +independent to the choice of G = (Gn) ∈ dgnb(G) with +ω(ρ(G)) = ω · β, +denoted by β = rank(G). +Lemma 3.15. +(1) If ρ(G) = ω · rank(G), then either rank(G) = 0 or +ρk(G) < ω · rank(G) for any k < ω. +(2) If ρ(G) > ω · rank(G), then there exists an m > 0 such that ρk(G) = +ω · rank(G) + m for large enough k < ω. +Proof. (1) If rank(G) > 0, then ω·rank(G) is a limit ordinal. By Lemma 3.10, +ρk(G) is either 0 or a successor ordinal, so ρk(G) < ω·rank(G) for any k < ω. +(2) Clearly, ρ(G) = ω · rank(G) + m for some 0 < m < ω. Again by +Lemma 3.10, (ρk(G)) is increasing, so ρk(G) = ω · rank(G) + m for large +enough k < ω. +□ +Theorem 3.16. Let G be a non-archimedean CLI Polish group, G = (Gn), G′ = +(G′ +n) ∈ dgnb(G). Then ρ(G) = ω · rank(G) iff ρ(G′) = ω · rank(G). +Proof. If rank(G) = 0, then ρ(G) = ω · rank(G) implies that ρk(G) = 0 for +any k < ω. So T G/Gk +G += ∅, and hence G0 · Gk /∈ T G/Gk +G +. It follows that +G0 · Gk = {Gk}, i.e., G = G0 = Gk for any k < ω. This gives G = {1G}. +Then we can easily see that T +G/G′ +k +G′ += ∅ for k < ω. So ρ(G′) = ω · rank(G) +holds. And vice verse. +If rank(G) > 0, assume for contradiction that ρ(G) = ω · rank(G), but +ρ(G′) > ω ·rank(G). From Lemma 3.15, we have ρk(G) < ω ·rank(G) for any +k < ω, but ρl(G′) = ω · rank(G) + m for some 0 < m < ω and large enough +l < ω. From lemmas 3.7 and 3.11, for any l < ω, there is some k < ω with +ω(ρl(G′)) = ω(ρ(T +G/G′ +l +G′ +)) = ω(ρ(T +G/G′ +l +G +)) ≤ ρ(T +G/G′ +l +G +) ≤ ρk(G). +A contradiction! +□ +Now we are ready to define a hierarchy on non-archimedean CLI Polish +groups. +Definition 3.17. Let G be a non-archimedean CLI Polish group, G = +(Gn) ∈ dgnb(G), and let α < ω1 be an ordinal. +(1) If ρ(G) ≤ ω · α, we say G is α-CLI; +(2) if ω(ρ(G)) ≤ ω · α, i.e., rank(G) ≤ α, we say G is L-α-CLI. +It is clear that, if G is L-α-CLI, it is also (α + 1)-CLI. +From theorems 3.14 and 3.16, we see that the definitions α-CLI and L-α- +CLI are independent to the choice of G ∈ dgnb(G). + +A HIERARCHY ON NON-ARCHIMEDEAN CLI POLISH GROUPS +11 +Recall that a metric d on a group G is two sided invariant if d(gh, gk) = +d(h, k) = d(hg, kg) for all g, h, k ∈ G. A Polish group is TSI if it admits a +compatible complete two sided invariant metric. +Theorem 3.18. Let G be a non-archimedean CLI Polish group. Then we +have +(1) G is 0-CLI iff G = {1G}; +(2) G is L-0-CLI iff G is discrete; +(3) G is 1-CLI iff G is TSI. +Proof. Fix a sequence G = (Gn) ∈ dgnb(G). +(1) It follows from the first paragraph of the proof of Theorem 3.16. +(2) If G is L-0-CLI, then we have rank(G) = 0. So there is an m < ω +such that ρ(T G/Gk +G +) = ρk(G) = m for large enough k < ω. Then we have +Lm(T G/Gk +G +) = ∅. This implies that Gm · Gk = {Gk}. So Gm ⊆ Gk for large +enough k < ω, and thus Gm = {1G}. It follows that G is discrete. +On the other hand, if G is discrete, then there is an m < ω such that +Gm = {1G}. Therefore, for any k < ω, we have Lm(T G/Gk +G +) = ∅, and hence +ρk(G) ≤ m. This gives rank(G) = 0, i.e., G is L-0-CLI. +(3) If G is 1-CLI, then Lemma 3.15 implies that ρk(G) < ω for any k < ω. +So there is mk < ω such that Lmk(T G/Gk +G +) = ∅. Then it follows that, for +g ∈ G, Gmk · gGk = {gGk}, so g−1Gmkg ⊆ Gk. Put Uk = �{g−1Gmkg : g ∈ +G} ⊆ Gk. Then (Uk) is a neighborhood base of 1G with g−1Ukg = Uk for +all g ∈ G. By Klee’s theorem (c.f. [4] or [2, Exercise 2.1.4]), G is TSI. +On the other hand, if G is TSI, again by Klee’s theorem, we can find a +neighborhood base (Um) of 1G with g−1Umg = Um for all g ∈ G. For any +n < ω, there is an mn < ω such that Umn ⊆ Gn. Let Vn = Umn ∩ U −1 +mn and +G′ +n = � +i V i +n. Then G′ +n is an open normal subgroup of G with G′ +n ⊆ Gn. So +(G′ +n) ∈ dgnb(G). Put G′ = (G′ +n). Then G′ +k · gG′ +k = {gG′ +k} for all g ∈ G and +k < ω, thus Lk(T +G/G′ +k +G′ +) = ∅. So ρk(G′) ≤ k < ω, and hence G is 1-CLI. +□ +Clause (2) in the preceding theorem can be generalize to all α < ω1. +Definition 3.19. Let G be a non-archimedean CLI Polish group, α < ω1. +We say G is locally α-CLI if G has an open subgroup which is α-CLI. +Theorem 3.20. Let G be a non-archimedean CLI Polish group, α < ω1. +Then G is L-α-CLI iff G is locally α-CLI. +Proof. (⇒). +If G is L-α-CLI, without loss of generality, we may assume +that G is not α-CLI. Fix a sequence G = (Gn) ∈ dgnb(G). There exists an +m ≥ 1 such that ρ(G) = ω · α + m, and thus we can pick a k0 > m such that +ρk(G) = ω · α + m for any k ≥ k0. We will show that Gk0 is α-CLI. +Put H = Gk0 and Hn = Gn+k0 for n < ω. Then (Hn) ∈ dgnb(H). Put +H = (Hn). +Given k < ω, define φ : T H/Hk +H +→ (T +G/Gk+k0 +G +)(k0,Gk0/Gk+k0) + +12 +LONGYUN DING AND XU WANG +as φ(n, C) = (n + k0, C). It is trivial to see that φ is an order preserving +isomorphism. From Proposition 2.2, since k0 > m, we have +ρk(H) = ρ(T H/Hk +H +) = ρ((T +G/Gk+k0 +G +)(k0,Gk0/Gk+k0)) ≤ ω · α. +So ρ(H) ≤ ω · α, and hence H = Gk0 is α-CLI. +(⇐). If G is locally α-CLI, let H be an open subgroup of G which is +α-CLI, and let H = (Hn) ∈ dgnb(H). Then ρk(H) ≤ ω · α for k < ω. +Put G0 = G and Gn = Hn−1 for n ≥ 1. Then (Gn) ∈ dgnb(G). Put +G = (Gn). Given g ∈ G and k < ω, by the similar arguments in (⇒) part, +we have T H·gHk +H +∼= (T G/Gk+1 +G +)(1,G1·gGk+1). By Lemma 3.11, there exists an +l < ω such that ρ(T H·gHk +H +) ≤ ρl(H). Therefore, by Proposition 2.1, +ρk+1(G) += ρ(T G/Gk+1 +G +) +≤ sup{ρ((T G/Gk+1 +G +)(1,G1·gGk+1)) : g ∈ G} + 1 += sup{ρ(T H·gHk +H +) : g ∈ G} + 1 +≤ sup{ρl(H) : l < ω} + 1 +≤ ω · α + 1. +So ρ(G) ≤ ω · α + 1, and hence G is L-α-CLI. +□ +4. Properties of the hierarchy +Theorem 4.1. Let G be a non-archimedean CLI Polish group, H a closed +subgroup of G, and α < ω1. +If G is α-CLI (or L-α-CLI), so is H. +In +particular, we have rank(H) ≤ rank(G). +Proof. Let G = (Gn) ∈ dgnb(G), and put Hn = H ∩ Gn for n < ω. It is +clear that (Hn) ∈ dgnb(H). Put H = (Hn). We only need to show that +ρ(H) ≤ ρ(G). +Given k < ω, define θ : H/Hk → G/Gk as θ(hHk) = hGk for h ∈ H. By +Proposition 3.4, there is a Lipschitz embedding from T H/Hk +H +to T G/Gk +G +. So +ρk(H) = ρ(T H/Hk +H +) ≤ ρ(T G/Gk +G +) = ρk(G). +Then we have ρ(H) ≤ ρ(G) as desired. +□ +Theorem 4.2. Let G be a non-archimedean CLI Polish group, N a closed +normal subgroup of G, and α < ω1. If G is α-CLI (or L-α-CLI), so is G/N. +In particular, we have rank(G/N) ≤ rank(G). +Proof. Let G = (Gn) ∈ dgnb(G), and put Hn = Gn · N = {ˆgN : ˆg ∈ Gn} for +n < ω. It is clear that H0 = G/N and (Hn) ∈ dgnb(G/N). Put H = (Hn). +We only need to show that ρ(H) ≤ ρ(G). + +A HIERARCHY ON NON-ARCHIMEDEAN CLI POLISH GROUPS +13 +Given k < ω, define θ : G/Gk → (G/N)/Hk as θ(gGk) = (gN)Hk for +g ∈ G. Note that for n < ω, +θ(Gn · gGk) += θ({ˆggGk : ˆg ∈ Gn}) += {(ˆggN)Hk : ˆg ∈ Gn} += {(ˆgN)(gN)Hk : ˆg ∈ Gn} += {(ˆgN)θ(gGk) : ˆg ∈ Gn} += {ˆgN : ˆg ∈ Gn}θ(gGk) = Hn · θ(gGk). +By Lemma 3.8, we have +ρk(H) = ρ(T (G/N)/Hk +H +) ≤ ρ(T G/Gk +G +) = ρk(G). +Then we have ρ(H) ≤ ρ(G) as desired. +□ +The above two theorems involve closed subgroups and quotient groups. +Now we turn to discuss product groups, which are more complicated. We +discuss finite product groups first. +Lemma 4.3. Let X, Y be two sets, E = (En) and F = (Fn) two decreasing +sequence of equivalence relations on X and Y respectively. Denote E × F = +(En × Fn). +(1) T X×Y +E×F +is well-founded iff T X +E +and T Y +F are well-founded. +(2) If T X×Y +E×F +is well-founded, then we have +ρ(T X×Y +E×F ) = max{ρ(T X +E ), ρ(T Y +F )}. +Proof. First, note that [(x, y)]En×Fn = [x]En × [y]Fn for all (x, y) ∈ X × Y +and n < ω. +(1) For any sequences (xn), (yn) in X, Y respectively, ((n, [(xn, yn)]En×Fn)) +is an infinite branch of T X×Y +E×F +iff either ((n, [xn]En)) or ((n, [yn]Fn)) is an +infinite branch of T X +E +or T Y +F respectively. +(2) If T X×Y +E×F +is well-founded, by (1), T X +E +and T Y +F are also well-founded. +For all (x, y) ∈ X × Y and n < ω, note that +(n, [(x, y)]En×Fn) ∈ T X×Y +E×F +⇐⇒ +[(x, y)]En×Fn ̸= {(x, y)} +⇐⇒ +[x]En ̸= {x} ∨ [y]Fn ̸= {y} +⇐⇒ +(n, [x]En) ∈ T X +E ∨ (n, [y]Fn) ∈ T Y +F . +By Proposition 2.1, it is routine to prove +ρ((T X×Y +E×F )(n,[(x,y)]En×Fn)) = max{ρ((T X +E )(n,[x]En)), ρ((T Y +F )(n,[y]Fn))} +by induction on ρ((T X×Y +E×F )(n,[(x,y)]En×Fn)). Taking supremum on both sides +of the above formula, we get +ρ(T X×Y +E×F ) = max{ρ(T X +E ), ρ(T Y +F )}. +□ + +14 +LONGYUN DING AND XU WANG +Corollary 4.4. Let G and H be two non-archimedean CLI Polish groups, +G = (Gn) ∈ dgnb(G) and H = (Hn) ∈ dgnb(H). Then we have G × H = +(Gn × Hn) ∈ dgnb(G × H) and +ρk(G × H) = max{ρk(G), ρk(H)} +(∀k < ω), +ρ(G × H) = max{ρ(G), ρ(H)}, +rank(G × H) = max{rank(G), rank(H)}. +Proof. For any k < ω, put X = G/Gk, Y = H/Hk, and define En, Fn on X +and Y for each n < ω respectively by +(ˆgGk, ˜gGk) ∈ En ⇐⇒ ∃g ∈ Gn (gˆgGk = ˜gGk) +(∀ˆg, ˜g ∈ G), +(ˆhHk, ˜hHk) ∈ Fn ⇐⇒ ∃h ∈ Hn (hˆhHk = ˜hHk) +(∀ˆh, ˜h ∈ H). +Then Lemma 4.3 gives ρk(G × H) = max{ρk(G), ρk(H)}. The rest follows +trivially. +□ +Now we are ready to discuss countably infinite product groups. +Lemma 4.5. Let (Gi) be a sequence of non-archimedean CLI Polish groups +and Gi = (Gi +n) ∈ dgnb(Gi) for each i < ω. We denote G = � +i Gi and +Gn = +� +i ω · (α + 1) as follows. +For any (λl, ˆχ) ∈ H and (1Λ, ˜χ) ∈ Hk+1, note that (λl, ˆχ)(1Λ, ˜χ) = +(λl, ˆχ˜χl), where ˜χl(λ) = ˜χ(λ−1 +l +λ) for λ ∈ Λ. It follows that +(λl, ˆχ)Hk+1 = {(λl, χ) : χ ∈ GΛ ∧ ∀i < k (χ(λlλi) ∈ ˆχ(λlλi)Gk)}. + +A HIERARCHY ON NON-ARCHIMEDEAN CLI POLISH GROUPS +17 +There is an unique li < ω with λli = λlλi for i < k. +It is clear that +πΛ((λl, ˆχ)Hk+1) = {λl} and for j < ω, +πj +G((λl, ˆχ)Hk+1) = +� +ˆχ(λli)Gk, +j = li, i < k, +G, +otherwise. +Denote ml = max{li : i < k}, then it is clear that ml ≥ k − 1 for l < ω and +sup{ml : l < ω} = ω. Note that πml +G (Hml+1 · (λl, ˆχ)Hk+1) = G/Gk is not a +singleton, so (ml + 1, Hml+1 · (λl, ˆχ)Hk+1) ∈ T H/Hk+1 +H +. Also note that +(T H/Hk+1 +H +)(ml+2,Hml+2·(λl,ˆχ)Hk+1) ∼= T +Hml+2·(λl,ˆχ)Hk+1 +H′ +, +(T G/Gk +G +)(ml+1,Gml+1·gGk) ∼= T +Gml+1·gGk +G′ +, +where H′ = (Hn+ml+2) and G′ = (Gn+ml+1) for n < ω. Define θ : H/Hk+1 → +G/Gk as θ(C) = πml +G (C). Applying Lemma 3.8 on the restriction of θ from +Hml+2 ·(λl, ˆχ)Hk+1 to Gml+1 · ˆχ(λml)Gk, and also applying Proposition 2.2, +we get +ρ((T H/Hk+1 +H +)(ml+1,Hml+1·(λl,¯χ)Hk+1)) +≥ +sup{ρ((T H/Hk+1 +H +)(ml+2,Hml+2·(λl,ˆχ)Hk+1)) : ∀i < ml (¯χ(λi) = ˆχ(λi))} + 1 +≥ +sup{ρ((T G/Gk +G +)(ml+1,Gml+1·gGk)) : g ∈ G} + 1 +≥ +ω(ρ((T G/Gk +G +)) + 1 += +ω · α + 1. +So ρ(T H/Hk+1 +H +) ≥ ω · α + ml + 2 for all l < ω, and hence +ρk+1(H) = ρ(T H/Hk+1 +H +) ≥ ω · α + ω = ω · (α + 1). +Since ρk+1(H) is a successor ordinal, we have ρk+1(H) > ω · (α + 1). +□ +Now we turn to consider the case concerning limit ordinals. To do this, +we need to prepare two lemmas first. +Lemma 4.10. Let (Gi) be a sequence of Polish groups, and let Hi be an +open subgroup of Gi for each i < ω. Suppose H = � +i Hi and +G = {(gi) ∈ +� +i +Gi : ∀∞i (gi ∈ Hi)} +equipped with the topology τ generated by the sets of the form (gi)U for +(gi) ∈ G and U open in H. Then (G, τ) is a Polish group and τ is the +unique group topology on G such that H is an open subgroup of G. +Proof. For each (gi) ∈ G, the subspace (gi)H of (G, τ) is homeomorphic to +H, so is Polish. Let Di ⊆ Gi meets every coset of Hi at exactly one point. +Then Di is countable for i < ω. We denote +D = {(gi) ∈ +� +i +Di : ∀∞i (gi = 1Gi)}. + +18 +LONGYUN DING AND XU WANG +It is clear that G/H = {(gi)H : (gi) ∈ D} is countable. So (G, τ) is a sum +of countably many Polish spaces, thus is a Polish space. +For (gi), (hi) ∈ G and U open in H with 1H ∈ H, there exists an m < ω +such that gi, hi ∈ Hi for i > m and U 0 × · · · × U m × � +i>m Hi ⊆ U, where +U i is an open subset of Hi with 1Hi ∈ U i for each i ≤ m. We can find open +neighborhoods V i and W i of 1Hi with (giV i)(hiW i)−1 ⊆ gih−1 +i U i for i ≤ m. +We denote V = V 0×· · ·×V m×� +i≥m Hi and W = W 0×· · ·×W m×� +i≥m Hi. +Then V and W are open neighborhoods of 1H, and ((gi)V )((hi)W)−1 ⊆ +(gih−1 +i )U. So (G, τ) is Polish group. +In the end, suppose τ ′ is another group topology on G such that H is an +open subgroup of G. Then for each (gi) ∈ G, the subspace (gi)H of (G, τ ′) +is homeomorphic to H, so the restrictions of τ and τ ′ on (gi)H are the same. +Hence τ = τ ′. +□ +Lemma 4.11. Let (Gi) be a sequence of non-archimedean CLI Polish groups, +Gi = (Gi +n) ∈ dgnb(Gi) for each i < ω, and let 0 < α < ω1. Suppose +sup{ρ1(Gi) : i < ω} = ω · α, +G = {(gi) ∈ +� +i +Gi : ∀∞i (gi ∈ Gi +1)} +equipped with the unique group topology so that � +i Gi +1 is an open subgroup +of G. Then G is not α-CLI. +Proof. Put G0 = G and for n ≥ 1, +Gn = +� +i 0, we have ρ1(G) > ω · α, so G is +not α-CLI. +□ +Finally, we complete all the construction in the following theorem. +Theorem 4.12. For any α < ω1, there exist non-archimedean CLI Polish +groups Gα and Hα with rank(Gα) = rank(Hα) = α such that Hα is α-CLI +and Gα is L-α-CLI but not α-CLI. + +A HIERARCHY ON NON-ARCHIMEDEAN CLI POLISH GROUPS +19 +Proof. We construct Gα and Hα by induction on α. From Corollary 4.7 and +Theorem 4.9, we only need to consider the case that α is a limit ordinal. +Let (αi) be a sequence of ordinals less than α with sup{αi : i < ω} = α. +By induction hypothesis, we can find a non-archimedean CLI Polish group +Gi for each i < ω such that Gi is L-αi-CLI but not αi-CLI. It is clear that +rank(Gi) = αi < α. +Put Hα = � +i Gi. Theorem 4.6.(1) implies that H is α-CLI. By Theo- +rem 4.1, rank(Hα) ≥ rank(Gi) for each i < ω. So rank(Hα) = α. +For i < ω, let Gi = (Gi +n) ∈ dgnb(Gi). +By Lemma 3.15, there exist +0 < ki < ω such that ω(ρki(Gi)) = ω · αi. Put Hi +0 = Gi and Hi +n+1 = Gi +n+ki +for n < ω. Then Hi = (Hi +n) ∈ dgnb(Gi) and Hi +1 = Gi +ki. By Lemma 3.7, we +have +ω(ρ1(Hi)) = ω(ρ(T Gi/Hi +1 +Hi +)) = ω(ρ(T +Gi/Gi +ki +Gi +)) = ω(ρki(Gi)) = ω · αi. +So sup{ρ1(Hi) : i < ω} = ω · α. Now we put +Gα = {(gi) ∈ +� +i +Gi : ∀∞i (gi ∈ Gi +ki)} +equipped with the unique group topology so that � +i Gi +ki is an open subgroup +of Gα. By Lemma 4.11, Gα is not α-CLI. It is clear that the open subgroup +� +i Gi +ki is α-CLI, so Gα is L-α-CLI, and hence rank(Gα) = α. +□ +References +[1] H. Becker, A.S. Kechris, The Descriptive Set Theory of Polish Group Actions, Lond. +Math. Soc. Lect. Note Ser., vol. 232, Cambridge University Press, 1996. +[2] S. Gao, Invariant Descriptive Set Theory, Monographs and Textbooks in Pure and +Applied Mathematics, vol. 293, CRC Press, 2009. +[3] S. Gao, M. Xuan, On non-Archimedean Polish groups with two-sided invariant met- +rics, Topol. Appl. 161 (2014) 343–353. +[4] V.L. Klee, Invariant metrics in groups (solution of a problem of Banach), Proc. Amer. +Math. Soc. 3 (1952) 484–487. +[5] M. Malicki, On Polish groups admitting a compatible complete left-invariant metric, +J. Symb. Logic 76 (2011) 437–447. +[6] M. Xuan, On steinhaus sets, orbit trees and universal properties of various subgroups +in the permutation group of natural numbers, Ph.D. thesis, University of North Texas, +2012. +School of Mathematical Sciences and LPMC, Nankai University, Tianjin, +300071, P.R.China +Email address: dingly@nankai.edu.cn +Email address: 1120210025@mail.nankai.edu.cn + diff --git a/LdFLT4oBgHgl3EQfMC8V/content/tmp_files/load_file.txt b/LdFLT4oBgHgl3EQfMC8V/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..424f87f71c52c3e5d7560d16cca67a05f1e905ce --- /dev/null +++ b/LdFLT4oBgHgl3EQfMC8V/content/tmp_files/load_file.txt @@ -0,0 +1,737 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf,len=736 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='12014v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='LO] 27 Jan 2023 A HIERARCHY ON NON-ARCHIMEDEAN POLISH GROUPS ADMITTING A COMPATIBLE COMPLETE LEFT-INVARIANT METRIC LONGYUN DING AND XU WANG Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' In this article, a hierarchy named α-CLI for α < ω1 is defined on non-archimedean Polish groups admitting a compatible com- plete left-invariant metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then (1) G is 0-CLI iff G = {1G};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' and (2) G is 1-CLI iff G admit a compatible complete two sided invariant metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' This notion forms a proper hierarchy because, for any α < ω1, there exist non-archimedean CLI Polish groups Gα and Hα such that Hα is α-CLI but not contains any open subgroup which is β-CLI for β < α;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' and Gα is not α-CLI but contains an open subgroup which is α-CLI, and hence Gα is (α + 1)-CLI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Introduction A Polish group is non-archimedean if it has a neighborhood base of its identity element consisting of open subgroups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' By a theorem of Becker and Kechris (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' [1, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='1]), a Polish group is non-archimedean iff it is homeomorphic to a closed subgroup of S∞, the group of all permutations of N equipped with the pointwise convergence topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' A metric d on a group G is left-invariant if d(gh, gk) = d(h, k) for all g, h, k ∈ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' A Polish group is CLI if it admits a compatible complete left-invariant metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Malicki [5] defined a notion of orbit tree TG for each closed subgroup G of S∞, and showed that G is CLI iff TG is well-founded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Moreover, he proved that the heights of orbit trees of all CLI closed subgroups of S∞ are cofinal in ω1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Granting this cofinality, Malicki proved that the family of all CLI groups is coanalytic non-Borel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' After that, Xuan defined a deferent kind of orbit trees and showed that, a closed subgroup of S∞ is locally compact iff its orbit tree has finite height (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' [6, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='7]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' It is worth noting that both kinds of orbit trees defined by Malicki and Xuan are all defined on closed subgroups of S∞ rather than directly on non-archimedean Polish groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' As a result, two mutual topological isomorphic closed subgroups of S∞ can have completely different orbit trees, and even the rank of their orbit trees can be different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Therefore, we cannot directly use the ranks of their orbit trees as a hierarchy on these groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' 2010 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Primary 03E15, 22A05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' hierarchy, non-archimedean Polish group, tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Research is partially supported by the National Natural Science Foundation of China (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' 11725103).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' 1 2 LONGYUN DING AND XU WANG In this article, for a given non-archimedean CLI Polish group G, instead of using a closed subgroup of S∞ that is topologically isomorphic to it, we use a neighborhood base of the identity element 1G to define a new kind of orbit trees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' More specifically, let G = (Gn) be a decreasing sequence of open subgroups of G with G0 = G such that (Gn) forms a neighborhood base of 1G, we will define a well-founded tree T X(G) G , whose rank denoted by ρ(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' We will show that (a) the biggest countable ordinal β with ρ(G) ≥ ω · β, denoted by rank(G), is independent to the choice of G;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' and (b) whether ρ(G) = ω ·β is also independent to the choice of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' This makes the following definitions form a well-defined hierarchy on non-archimedean CLI Polish groups: given an ordinal α < ω1, (1) if ρ(G) ≤ ω · α, we say G is α-CLI;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (2) if rank(G) ≤ α, we say G is L-α-CLI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' It is clear that, if G is L-α-CLI, it is also (α + 1)-CLI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' The following results show that this hierarchy can well classify non- archimedean CLI Polish groups: Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let G be a non-archimedean CLI Polish group, α < ω1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then we have (1) G is 0-CLI iff G = {1G};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (2) G is L-0-CLI iff G is discrete;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (3) G is 1-CLI iff G is TSI, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=', G admit a compatible complete two sided invariant metirc;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (4) G is L-α-CLI iff G is locally α-CLI, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=', G has an open subgroup which is α-CLI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' It is well know that all compact Polish groups are TSI (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' [2, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='5]), and all locally compact Polish groups are CLI (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' [2, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='5]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Now we know that all compact non-archimedean Polish groups are 1-CLI, and all locally compact non-archimedean Polish groups are L-1-CLI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let G be a non-archimedean CLI Polish group, H a closed subgroup of G, N a closed normal subgroup of G, and α < ω1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' If G is α- CLI (or L-α-CLI), so are H and G/N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' In particular, we have rank(H) ≤ rank(G) and rank(G/N) ≤ rank(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let (Gi) be a sequence of non-archimedean CLI Polish groups, α < ω1, and let G = � i Gi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then we have (1) G is α-CLI iff all Gi are α-CLI;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (2) G is L-α-CLI iff all Gi are L-α-CLI and for all but finitely many i, Gi is α-CLI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' In the end, we show that this hierarchy is proper by prove the following: Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' For any α < ω1, there exist non-archimedean CLI Polish groups Gα and Hα with rank(Gα) = rank(Hα) = α such that Hα is α-CLI and Gα is L-α-CLI but not α-CLI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' A HIERARCHY ON NON-ARCHIMEDEAN CLI POLISH GROUPS 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Preliminaries We denote Ord the class of all ordinal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' For α ∈ Ord, we denote ω(α) = max{0, λ : λ ≤ α is a limit ordinal}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then α = ω(α) + m for some m < ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let E be an equivalence relation on a set X, x ∈ X, and A ⊆ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' The E- equivalence class of x is [x]E = {y ∈ X : xEy}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Similarly, the E-saturation of A is [A]E = {y ∈ X : ∃z ∈ A (yEz)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' The identity element of a group G is denoted as 1G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let H be a subgroup of G, we denote G/H = {gH : g ∈ G} the set of all left-cosets of H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' A topological space is Polish if it is separable and completely metrizable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' A topological group is Polish if its underlying topology is Polish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let G be a Polish group and X a Polish space, an action of G on X, denoted by G ↷ X, is a map a : G × X → X satisfies that a(1G, x) = x and a(gh, x) = a(g, a(h, x)) for g, h ∈ G and x ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' The pair (X, a) is called a Polish G-space if a is continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' For brevity, we write g·x in place of a(g, x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' The orbit equivalence relation EX G defined as, xEX G y ⇐⇒ ∃g ∈ G (g·x = y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Note that the EX G -equivalence class of x is G · x = {g · x : g ∈ G}, which is also called the G-orbit of x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Similarly, for A ⊆ X, the EX G -saturation of A is G · A = {g · x : g ∈ G ∧ x ∈ A}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let < be a binary relation on a set T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' We say (T, <) is a tree if (1) ∀s ∈ T (s ̸< s), (2) ∀s, t, u ∈ T ((s < t ∧ t < u) ⇒ s < u), (3) ∀s ∈ T (|{t ∈ T : t < s}| < ω ∧ ∀t, u < s (t = u ∨ t < u ∨ u < t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' For s ∈ T, we denote lh(s) = |{t ∈ T : t < s}|, which is called the length of s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' It is clear that s < t implies lh(s) < lh(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' For n < ω, we denote the n-th level of T by Ln(T) = {s ∈ T : lh(s) = n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Each element in L0(T) is called a root of T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let (T, <) be a tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' We say T is well-founded if any non-empty subset of T contains a maximal element, or equivalently (under AC), there is no infinite strictly increasing sequence in T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let T be a well-founded tree, we define ρT : T → Ord by transfinite induction as ρT (s) = sup{ρT (t) + 1 : s < t ∧ t ∈ T}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' If ρT (s) = 0, we say s is a terminal of T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then we denote ρ(T) = sup{ρT (s) + 1 : s ∈ T}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' So ρ(T) = 0 iff T = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' It is clear that ρ(T) = sup{ρT (s) + 1 : s ∈ L0(T)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' If L0(T) = {s0} is a singleton, then ρ(T) = ρT (s0) + 1 is a successor ordinal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' For s ∈ T, we denote Ts = {t ∈ T : s = t ∨ s < t}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' 4 LONGYUN DING AND XU WANG Since L0(Ts) = {s}, we have ρ(Ts) = ρT (s) + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' For the convenience of dis- cussion, while s /∈ T, we also denote Ts = ∅, and thus ρ(Ts) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Therefore, ρ(Ts) is always a non-limit ordinal no matter s in T or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let T be a well-founded tree, then ρ(T) = sup{ρ(Ts) : s ∈ T} = sup{ρ(Ts) : s ∈ T ∧ s ∈ L0(T)}, and for all s ∈ T, ρ(Ts) = sup{ρ(Tt) : s < t ∧ t ∈ T} + 1 = sup{ρ(Tt) : s < t ∧ t ∈ T ∧ lh(t) = lh(s) + 1} + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let (T, <) be a well-founded tree, k < ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then we have (1) sup{ρ(Ts) : s ∈ Lk(T)} ≤ ρ(T) ≤ sup{ρ(Ts) : s ∈ Lk(T)} + k;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (2) ω(ρ(T)) = ω(sup{ρ(Ts) : s ∈ Lk(T)});' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (3) if ρ(Ts) ≥ α for some s ∈ Lk(T), then ρ(T) ≥ α + k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' It is routine to prove clause (1) by induction on k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Clause (2) is an easy corollary of (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' And clause (3) is trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' □ Let (S, <) and (T, <) be two trees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' A map φ : S → T is said to be an order preserving map if ∀s, t ∈ S (s < t ⇒ φ(s) < φ(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' It is said be an order preserving embedding (isomorphism) if it is injective (bijective) and ∀s, t ∈ S (s < t ⇐⇒ φ(s) < φ(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' In particular, an order preserving map φ is said to be Lipschitz if lh(φ(s)) = lh(s) for all s ∈ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let (S, <) be a tree, (T, <) a well-founded tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' If there exists an order preserving map φ : S → T, then (S, <) is well-founded too, and we have ρ(S) ≤ ρ(T).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' It S contains an infinite strictly increasing sequence (sn), then (φ(sn)) is an infinite strictly increasing sequence in T, contradicting that (T, <) is well-founded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' We prove by induction that ρS(s) ≤ ρT (φ(s)) for s ∈ S as follows: ρS(s) = sup{ρS(u) + 1 : s < u ∧ u ∈ S} ≤ sup{ρT (φ(u)) + 1 : s < u ∧ u ∈ S} ≤ sup{ρT (t) + 1 : φ(s) < t ∧ t ∈ T} = ρT (φ(s)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' And hence ρ(S) ≤ ρ(T).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' □ A HIERARCHY ON NON-ARCHIMEDEAN CLI POLISH GROUPS 5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Definition of the hierarchy Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let X be a set, E = (En) a decreasing sequence of equiva- lence relations on X, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=', En ⊇ En+1 for each n < ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' We denote T X E = {(n, C) : ∃x ∈ X (C = [x]En ̸= {x})}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' For (n, C), (m, D) ∈ T X E , we define (n, C) < (m, D) ⇐⇒ n < m ∧ C ⊇ D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' It is straightforward to check that (T X E , <) is a tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Note that (n, C) ∈ T X E iff C is a non-singleton equivalence class of En.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let G be a non-archimedean Polish group, we denote by dgnb(G) the set of all decreasing sequences G = (Gn) of open subgroups of G with G0 = G such that (Gn) forms a neighborhood base of 1G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let X be a countable discrete Polish G-space, G = (Gn) ∈ dgnb(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' We denote En = EX Gn, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=', xEny ⇐⇒ ∃g ∈ Gn (g · x = y), and hence [x]En = Gn · x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then we write E = (En) and T X G = T X E .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Therefore, (n, C) ∈ T X G iff C is a non-singleton Gn-orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' In contrast, the definitions of both orbit trees from Malicki and Xuan are based on infinite orbits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let G be a non-archimedean CLI Polish group, X a countable discrete Polish G-space, and let G = (Gn) ∈ dgnb(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then T X G is well- founded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Assume for contradiction that T X G is ill-founded, then there exists an infinite sequence (n, Cn), n ∈ ω in T X G with Cn ⊇ Cn+1 for each n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let d be a compatible complete left-invariant metric on G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Fix an x0 ∈ C0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then we have G0 · x0 = C0 ⊇ C1, so we can find a g0 ∈ G0 such that g0 ·x0 ∈ C1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Inductively, we can find a gn ∈ Gn for each n such that gngn−1 · · · g0 · x0 ∈ Cn+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Put hn = g−1 0 · · g−1 n for n ∈ ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' For any n, p ∈ ω, we have d(hn+p, hn) = d(h−1 n hn+p, 1G) = d(g−1 n+1 · · · g−1 n+p, 1G) ≤ diam(Gn+1) → 0 as n → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' It follows that (hn) is a d-Cauchy sequence in G, so converges to some h ∈ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Denote x∞ = h−1 · x0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' By hn → h, we have h−1 n → h−1, and hence h−1 n x0 → h−1 · x0 = x∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Note that X is discrete, there exists N such that h−1 n x0 = x∞ for any n > N, so x∞ = gngn−1 · · · g0 · x0 ∈ Cn+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' This implies that x∞ ∈ � n Cn and Gn · x∞ = Cn for each n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' In the end, we denote Gx∞ = {g ∈ G : g · x∞ = x∞} and put f : G → X as f(g) = g · x∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Since f is continuous and {x∞} is clopen in X, it follows that Gx∞ = f −1(x∞) is a clopen subgroup of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' So there exists an m such that Gm ⊆ Gx∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then we have Cm = Gm · x∞ = {x∞}, contradicting that (m, Cm) ∈ T X G .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' □ 6 LONGYUN DING AND XU WANG Given two sets X and Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let E = (En) and F = (Fn) be two decreasing sequences of equivalence relations on X and Y respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let θ : X → Y be an injection such that θ is a reduction of En to Fn for each n < ω, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=', ∀n < ω ∀x, x′ ∈ X (xEnx′ ⇐⇒ θ(x)Fnθ(x′)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' For (n, C) ∈ T X E , put φ(n, C) = (n, [θ(C)]Fn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' φ is a Lipschitz embedding from T X E to T Y F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' In particular, if θ is a bijection, then φ is an order preserving isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Note that θ is injective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' For (n, C) ∈ T X E , C is not a singleton, so neither is [θ(C)]Fn, and thus we have φ(n, C) ∈ T Y F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' The rest of the proof is trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' □ Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let (T, <) be a tree, (ni) a strictly increasing sequence of natural numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' We define T|(ni) = � i Lni(T).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' It is trivial to see that (T|(ni), <) is a tree too, and Lj(T|(ni)) = Lnj(T) for each j < ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' We call T|(ni) a level-subtree of T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let (T, <) be a well-founded tree, (ni) a strictly increasing sequence of natural numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then we have ω(ρ(T)) ≤ ρ(T|(ni)) ≤ ρ(T).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' In particular, if ρ(T) is a limit ordinal, then ρ(T|(ni)) = ρ(T).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' ρ(T|(ni)) ≤ ρ(T) follows from Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' We prove ω(ρ(T)) ≤ ρ(T|(ni)) by induction on ρ(T).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' First, if ρ(T) < ω, then ρ(T) = min{n : Ln(T) = ∅}, and hence ρ(T|(ni)) = min{i : Lni(T) = ∅}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' So we have ω(ρ(T)) = 0 ≤ ρ(T|(ni)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' For t ∈ T|(ni), note that (T|(ni))t = {u ∈ T|(ni) : t = u ∨ t < u} is a level-subtree of Tt as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Case 1: If ρ(T) is a limit ordinal, then ω(ρ(T)) = ρ(T).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='1 gives ρ(T) = sup{ρ(Tt) : t ∈ T}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Since ρ(T) is a limit ordinal and ρ(Tt) is a successor ordinal, we have ρ(Tt) < ρ(T) for t ∈ T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Subcase 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='1: If there is no maximum in {ω(ρ(Tt)) : t ∈ T}, we have ρ(T) = sup{ρ(Tt) : t ∈ T} = sup{ω(ρ(Tt)) : t ∈ T}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' By induction hypothesis, we have ω(ρ(Tt)) ≤ ρ((T|(ni))t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='3 gives ρ((T|(ni))t) ≤ ρ(T|(ni)) for each t ∈ T, so we have ρ(T|(ni)) = ρ(T).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Subcase 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='2: Otherwise, let α = max{ω(ρ(Tt)) : t ∈ T}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Since ρ(Tt) < ρ(T) for t ∈ T, we have ρ(T) = α + ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' We can find a sequence of tm, m < ω in L0 such that ρ(Ttm) = α + km with sup{km : m < ω} = ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' By Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='1, for each m < ω and n < km we can find tn m ∈ Ln(T) such that tm = t0 m < t1 m < · · · < tkm−1 m and ρ(Ttnm) = α + (km − n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' For km > n0, let im be the biggest i such that ni < km, then tnj m ∈ A HIERARCHY ON NON-ARCHIMEDEAN CLI POLISH GROUPS 7 Lj(T|(ni)) = Lnj(T) for j ≤ im.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' By induction hypothesis, α = ω(ρ(Tt nj m )) ≤ ρ((T|(ni))t nj m ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Since ρ((T|(ni))t nj m ) ≥ ρ((T|(ni))t nj+1 m ) + 1 for each j < im, we have ρ((T|(ni))tn0 m ) ≥ α + im.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' By the definition of im, we have sup{im : m < ω} = ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' This gives ρ(T|(ni)) = α + ω = ρ(T).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Case 2: If ρ(T) = ω(ρ(T)) + n with 1 ≤ n < ω, then there exists some t0 ∈ L0(T) such that ρ(T) = ρT (t0) + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Since {u ∈ T|(ni) : t0 < u} is a level-subtree of {u ∈ T : t0 < u} and ρ({u ∈ T : t0 < u}) = ρT (t0) < ρ(T), by induction hypothesis and Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='3, we have ω(ρT (t0)) = ω(ρ({u ∈ T : t0 < u})) ≤ ρ({u ∈ T|(ni) : t0 < u}) ≤ ρ(T|(ni)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' It follows that ω(ρ(T)) = ω(ρT (t0)) ≤ ρ(T|(ni)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' □ In general, the tree T X G and the ordinal ρ(T X G ) depends on G, not only on the action G ↷ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' The following key lemma shows that, ω(ρ(T X G )) is independent to the choice of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let G be a non-archimedean CLI Polish group, X a countable discrete Polish G-space, and let G = (Gn), G′ = (G′ n) ∈ dgnb(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then we have ω(ρ(T X G )) = ω(ρ(T X G′ )).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (1) First, we consider the case that (G′ n) is a subsequence of (Gn), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=', there is a strictly increasing sequence (ni) of natural numbers such that G′ i = Gni for each i < ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' We define ψ : T X G′ → T X G as ψ(i, C) = (ni, C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' It is clear that ψ is an order preserving isomorphism from T X G′ onto T X G |(ni).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' It follows that ω(ρ(T X G )) ≤ ρ(T X G′ ) = ρ(T X G |(ni)) ≤ ρ(T X G ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' So we have ω(ρ(T X G )) = ω(ρ(T X G′ )).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (2) Since (Gn), (G′ n) ∈ dgnb(G), we can find two strictly increasing nat- ural numbers (ni) and (mj) such that n0 = 0, m0 = 0, and G0 ⊇ G′ m0 ⊇ Gn1 ⊇ G′ m1 ⊇ Gn2 ⊇ · · · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Denote H2i = Gni and H2i+1 = G′ mi for each i < ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then (Hk) ∈ dgnb(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Put H = (Hk), K = (Gni), and K′ = (G′ mi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Note that (Gni) is a subsequence of (Gn) and also a subsequence of (Hk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' From (1), we have ω(ρ(T X G )) = ω(ρ(T X K )) = ω(ρ(T X H )).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Similarly, we have ω(ρ(T X G′ )) = ω(ρ(T X K′)) = ω(ρ(T X H )).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' So we have ω(ρ(T X G )) = ω(ρ(T X G′ )).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' □ Now we are going to find a special G-space X(G) such that ω(ρ(T X(G) G )) reaches the maximum value among all ω(ρ(T X G )).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' This leads to that the value of ω(ρ(T X(G) G )) is determined by G itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' 8 LONGYUN DING AND XU WANG Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Given two sets X and Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let E = (En) and F = (Fn) be two decreasing sequences of equivalence relations on X and Y respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let θ : X → Y be a surjection such that ∀n < ω ∀x ∈ X (θ([x]En) = [θ(x)]Fn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then there exists a Lipschitz embedding ψ : T Y F → T X E .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' In particular, if T X E is well-founded, so is T Y F , and then ρ(T Y F ) ≤ ρ(T X E ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' For any (n, C) ∈ T Y F , we construct ψ(n, C) by induction on n such that ψ(n, C) = (n, [x]En) for some x ∈ X with [θ(x)]Fn = C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' If n = 0, since θ is a surjection, we can find an x ∈ X with θ(x) ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then we put ψ(0, C) = (0, [x]E0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' If n > 0, since C is an Fn-equivalence class, there exists an unique Fn−1- equivalence class D ⊇ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' By induction hypothesis, we can find an x′ ∈ X such that ψ(n − 1, D) = (n − 1, [x′]En−1) with [θ(x′)]Fn−1 = D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Since θ([x′]En−1) = [θ(x′)]Fn−1 = D ⊇ C, we can find x ∈ [x′]En−1 such that θ(x) ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then we put ψ(n, C) = (n, [x]En).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Since C is not a singleton, by θ([x]En) = [θ(x)]Fn = C, we can see that [x]En is not a singleton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' So ψ(n, C) ∈ T X E .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' From the construction, it is routine to check that ψ : T Y F → T X E is a Lipschitz embedding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' In the end, if T X E is well-founded, by Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='3, T Y F is well-founded too, and then ρ(T Y F ) ≤ ρ(T X E ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' □ Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let G be a non-archimedean CLI Polish group, and let G = (Gn) ∈ dgnb(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' For k < ω, we define an action G ↷ G/Gk as, g · hGk = ghGk for g, h ∈ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' We denote ρk(G) = ρ(T G/Gk G ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Furthermore, letting X(G) = � k G/Gk, we denote ρ(G) = ρ(T X(G) G ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Note that G · gGk = {hgGk : h ∈ G} = G/Gk for any g ∈ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' It is clear that ρ0(G) = 0, since G = G0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (1) ρ(G) = sup{ρk(G) : k < ω}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (2) (ρk(G)) is an increasing sequence of countable non-limit ordinals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (1) Note that L0(T X(G) G ) = {(0, G/Gk) : G ̸= Gk}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' By (T X(G) G )(0,G/Gk) ∼= T G/Gk G for G ̸= Gk, and (T X(G) G )(0,G/Gk) = T G/Gk G = ∅ for G = Gk, so ρ(G) = ρ(T X(G) G ) = sup{ρ((T X(G) G )(0,G/Gk)) : k < ω} = sup{ρ(T G/Gk G ) : k < ω} = sup{ρk(G) : k < ω}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (2) Given k < ω, we define θ : G/Gk+1 → G/Gk as θ(gGk+1) = gGk for g ∈ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' It is clear that θ is well defined and is a surjection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Furthermore, for n < ω and g ∈ G, we have θ(Gn · gGk+1) = {θ(hgGk+1) : h ∈ Gn} = {hgGk : h ∈ Gn} = Gn · gGk = Gn · θ(gGk+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' A HIERARCHY ON NON-ARCHIMEDEAN CLI POLISH GROUPS 9 From Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='8, we have ρ(T G/Gk G ) ≤ ρ(T G/Gk+1 G ), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=', (ρk(G)) is increasing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' For each k < ω, since T G/Gk G is countable, ρk(G) is countable too.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' If G = Gk, then T G/Gk G = ∅;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' else if G ̸= Gk, then L0(T G/Gk G ) = {(0, G/Gk)} is a singleton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' So ρk(G) = ρ(T G/Gk G ) is either 0 or a successor ordinal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' □ Recall that a G-space X is said to be transitive if X itself is an orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let G be a non-archimedean CLI Polish group, X a countable discrete transitive Polish G-space, and let G = (Gn) ∈ dgnb(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then we can find some k < ω such that ρ(T X G ) ≤ ρk(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Fix an x ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Since {x} is clopen in X, by the continuity of the group action of G on X, we have Gx is a clopen subgroup of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' So there is some k < ω such that Gk ⊆ Gx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then we can define θ : G/Gk → X as θ(gGk) = g · x for g ∈ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Since X is transitive G-space, θ is surjective and θ(Gn · gGk) = Gn · θ(gGk) for each n < ω and g ∈ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' From Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='8, we have ρ(T X G ) ≤ ρk(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' □ Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let G be a non-archimedean CLI Polish group, X a count- able discrete Polish G-space, and let G = (Gn) ∈ dgnb(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then we have ρ(T X G ) ≤ ρ(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Note that L0(T X G ) = {(0, G · x) : x ∈ X ∧ G · x ̸= {x}} and T G·x G ∼= (T X G )(0,G·x) for G · x ̸= {x}, so we have ρ(T X G ) = sup{ρ((T X G )(0,G·x)) : x ∈ X} = sup{ρ(T G·x G ) : x ∈ X}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then by Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='11, we have ρ(T X G ) ≤ sup{ρk(G) : k < ω} = ρ(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' □ Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let G be a non-archimedean Polish group, G = (Gn) ∈ dgnb(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then G is CLI iff T G/Gk G is well-founded for any k < ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (⇒) part follows from Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (⇐).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Given a countable Polish G-space X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Following the arguments in the proof of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='11, we can see that, for any x ∈ X, there is a k < ω and a Lipschitz embedding from T G·x G to T G/Gk G .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Since T G/Gk G is well-founded, so is T G·x G .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' By the arbitrary of x ∈ X, we have T X G is also well-founded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then [5, Theorem 6] gives that G is CLI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' □ Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let G be a non-archimedean CLI Polish group, G = (Gn), G′ = (G′ n) ∈ dgnb(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then we have ω(ρ(G)) = ω(ρ(G′)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' 10 LONGYUN DING AND XU WANG Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' By Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='12, we have ρ(T X(G) G′ ) ≤ ρ(G′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='7 gives ω(ρ(G)) = ω(ρ(T X(G) G )) = ω(ρ(T X(G) G′ )) ≤ ω(ρ(G′)), and vice verse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' □ By the preceding theorem, there is an unique ordinal β < ω1 which is independent to the choice of G = (Gn) ∈ dgnb(G) with ω(ρ(G)) = ω · β, denoted by β = rank(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (1) If ρ(G) = ω · rank(G), then either rank(G) = 0 or ρk(G) < ω · rank(G) for any k < ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (2) If ρ(G) > ω · rank(G), then there exists an m > 0 such that ρk(G) = ω · rank(G) + m for large enough k < ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (1) If rank(G) > 0, then ω·rank(G) is a limit ordinal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='10, ρk(G) is either 0 or a successor ordinal, so ρk(G) < ω·rank(G) for any k < ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (2) Clearly, ρ(G) = ω · rank(G) + m for some 0 < m < ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Again by Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='10, (ρk(G)) is increasing, so ρk(G) = ω · rank(G) + m for large enough k < ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' □ Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let G be a non-archimedean CLI Polish group, G = (Gn), G′ = (G′ n) ∈ dgnb(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then ρ(G) = ω · rank(G) iff ρ(G′) = ω · rank(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' If rank(G) = 0, then ρ(G) = ω · rank(G) implies that ρk(G) = 0 for any k < ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' So T G/Gk G = ∅, and hence G0 · Gk /∈ T G/Gk G .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' It follows that G0 · Gk = {Gk}, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=', G = G0 = Gk for any k < ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' This gives G = {1G}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then we can easily see that T G/G′ k G′ = ∅ for k < ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' So ρ(G′) = ω · rank(G) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' And vice verse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' If rank(G) > 0, assume for contradiction that ρ(G) = ω · rank(G), but ρ(G′) > ω ·rank(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' From Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='15, we have ρk(G) < ω ·rank(G) for any k < ω, but ρl(G′) = ω · rank(G) + m for some 0 < m < ω and large enough l < ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' From lemmas 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='7 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='11, for any l < ω, there is some k < ω with ω(ρl(G′)) = ω(ρ(T G/G′ l G′ )) = ω(ρ(T G/G′ l G )) ≤ ρ(T G/G′ l G ) ≤ ρk(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' A contradiction!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' □ Now we are ready to define a hierarchy on non-archimedean CLI Polish groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let G be a non-archimedean CLI Polish group, G = (Gn) ∈ dgnb(G), and let α < ω1 be an ordinal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (1) If ρ(G) ≤ ω · α, we say G is α-CLI;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (2) if ω(ρ(G)) ≤ ω · α, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=', rank(G) ≤ α, we say G is L-α-CLI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' It is clear that, if G is L-α-CLI, it is also (α + 1)-CLI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' From theorems 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='14 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='16, we see that the definitions α-CLI and L-α- CLI are independent to the choice of G ∈ dgnb(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' A HIERARCHY ON NON-ARCHIMEDEAN CLI POLISH GROUPS 11 Recall that a metric d on a group G is two sided invariant if d(gh, gk) = d(h, k) = d(hg, kg) for all g, h, k ∈ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' A Polish group is TSI if it admits a compatible complete two sided invariant metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let G be a non-archimedean CLI Polish group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then we have (1) G is 0-CLI iff G = {1G};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (2) G is L-0-CLI iff G is discrete;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (3) G is 1-CLI iff G is TSI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Fix a sequence G = (Gn) ∈ dgnb(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (1) It follows from the first paragraph of the proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (2) If G is L-0-CLI, then we have rank(G) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' So there is an m < ω such that ρ(T G/Gk G ) = ρk(G) = m for large enough k < ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then we have Lm(T G/Gk G ) = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' This implies that Gm · Gk = {Gk}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' So Gm ⊆ Gk for large enough k < ω, and thus Gm = {1G}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' It follows that G is discrete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' On the other hand, if G is discrete, then there is an m < ω such that Gm = {1G}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Therefore, for any k < ω, we have Lm(T G/Gk G ) = ∅, and hence ρk(G) ≤ m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' This gives rank(G) = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=', G is L-0-CLI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (3) If G is 1-CLI, then Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='15 implies that ρk(G) < ω for any k < ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' So there is mk < ω such that Lmk(T G/Gk G ) = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then it follows that, for g ∈ G, Gmk · gGk = {gGk}, so g−1Gmkg ⊆ Gk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Put Uk = �{g−1Gmkg : g ∈ G} ⊆ Gk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then (Uk) is a neighborhood base of 1G with g−1Ukg = Uk for all g ∈ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' By Klee’s theorem (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' [4] or [2, Exercise 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='4]), G is TSI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' On the other hand, if G is TSI, again by Klee’s theorem, we can find a neighborhood base (Um) of 1G with g−1Umg = Um for all g ∈ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' For any n < ω, there is an mn < ω such that Umn ⊆ Gn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let Vn = Umn ∩ U −1 mn and G′ n = � i V i n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then G′ n is an open normal subgroup of G with G′ n ⊆ Gn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' So (G′ n) ∈ dgnb(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Put G′ = (G′ n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then G′ k · gG′ k = {gG′ k} for all g ∈ G and k < ω, thus Lk(T G/G′ k G′ ) = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' So ρk(G′) ≤ k < ω, and hence G is 1-CLI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' □ Clause (2) in the preceding theorem can be generalize to all α < ω1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let G be a non-archimedean CLI Polish group, α < ω1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' We say G is locally α-CLI if G has an open subgroup which is α-CLI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let G be a non-archimedean CLI Polish group, α < ω1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then G is L-α-CLI iff G is locally α-CLI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (⇒).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' If G is L-α-CLI, without loss of generality, we may assume that G is not α-CLI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Fix a sequence G = (Gn) ∈ dgnb(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' There exists an m ≥ 1 such that ρ(G) = ω · α + m, and thus we can pick a k0 > m such that ρk(G) = ω · α + m for any k ≥ k0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' We will show that Gk0 is α-CLI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Put H = Gk0 and Hn = Gn+k0 for n < ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then (Hn) ∈ dgnb(H).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Put H = (Hn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Given k < ω, define φ : T H/Hk H → (T G/Gk+k0 G )(k0,Gk0/Gk+k0) 12 LONGYUN DING AND XU WANG as φ(n, C) = (n + k0, C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' It is trivial to see that φ is an order preserving isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' From Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='2, since k0 > m, we have ρk(H) = ρ(T H/Hk H ) = ρ((T G/Gk+k0 G )(k0,Gk0/Gk+k0)) ≤ ω · α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' So ρ(H) ≤ ω · α, and hence H = Gk0 is α-CLI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (⇐).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' If G is locally α-CLI, let H be an open subgroup of G which is α-CLI, and let H = (Hn) ∈ dgnb(H).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then ρk(H) ≤ ω · α for k < ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Put G0 = G and Gn = Hn−1 for n ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then (Gn) ∈ dgnb(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Put G = (Gn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Given g ∈ G and k < ω, by the similar arguments in (⇒) part, we have T H·gHk H ∼= (T G/Gk+1 G )(1,G1·gGk+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='11, there exists an l < ω such that ρ(T H·gHk H ) ≤ ρl(H).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Therefore, by Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='1, ρk+1(G) = ρ(T G/Gk+1 G ) ≤ sup{ρ((T G/Gk+1 G )(1,G1·gGk+1)) : g ∈ G} + 1 = sup{ρ(T H·gHk H ) : g ∈ G} + 1 ≤ sup{ρl(H) : l < ω} + 1 ≤ ω · α + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' So ρ(G) ≤ ω · α + 1, and hence G is L-α-CLI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' □ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Properties of the hierarchy Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let G be a non-archimedean CLI Polish group, H a closed subgroup of G, and α < ω1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' If G is α-CLI (or L-α-CLI), so is H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' In particular, we have rank(H) ≤ rank(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let G = (Gn) ∈ dgnb(G), and put Hn = H ∩ Gn for n < ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' It is clear that (Hn) ∈ dgnb(H).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Put H = (Hn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' We only need to show that ρ(H) ≤ ρ(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Given k < ω, define θ : H/Hk → G/Gk as θ(hHk) = hGk for h ∈ H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' By Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='4, there is a Lipschitz embedding from T H/Hk H to T G/Gk G .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' So ρk(H) = ρ(T H/Hk H ) ≤ ρ(T G/Gk G ) = ρk(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then we have ρ(H) ≤ ρ(G) as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' □ Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let G be a non-archimedean CLI Polish group, N a closed normal subgroup of G, and α < ω1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' If G is α-CLI (or L-α-CLI), so is G/N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' In particular, we have rank(G/N) ≤ rank(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let G = (Gn) ∈ dgnb(G), and put Hn = Gn · N = {ˆgN : ˆg ∈ Gn} for n < ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' It is clear that H0 = G/N and (Hn) ∈ dgnb(G/N).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Put H = (Hn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' We only need to show that ρ(H) ≤ ρ(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' A HIERARCHY ON NON-ARCHIMEDEAN CLI POLISH GROUPS 13 Given k < ω, define θ : G/Gk → (G/N)/Hk as θ(gGk) = (gN)Hk for g ∈ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Note that for n < ω, θ(Gn · gGk) = θ({ˆggGk : ˆg ∈ Gn}) = {(ˆggN)Hk : ˆg ∈ Gn} = {(ˆgN)(gN)Hk : ˆg ∈ Gn} = {(ˆgN)θ(gGk) : ˆg ∈ Gn} = {ˆgN : ˆg ∈ Gn}θ(gGk) = Hn · θ(gGk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='8, we have ρk(H) = ρ(T (G/N)/Hk H ) ≤ ρ(T G/Gk G ) = ρk(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then we have ρ(H) ≤ ρ(G) as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' □ The above two theorems involve closed subgroups and quotient groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Now we turn to discuss product groups, which are more complicated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' We discuss finite product groups first.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let X, Y be two sets, E = (En) and F = (Fn) two decreasing sequence of equivalence relations on X and Y respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Denote E × F = (En × Fn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (1) T X×Y E×F is well-founded iff T X E and T Y F are well-founded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (2) If T X×Y E×F is well-founded, then we have ρ(T X×Y E×F ) = max{ρ(T X E ), ρ(T Y F )}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' First, note that [(x, y)]En×Fn = [x]En × [y]Fn for all (x, y) ∈ X × Y and n < ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (1) For any sequences (xn), (yn) in X, Y respectively, ((n, [(xn, yn)]En×Fn)) is an infinite branch of T X×Y E×F iff either ((n, [xn]En)) or ((n, [yn]Fn)) is an infinite branch of T X E or T Y F respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' (2) If T X×Y E×F is well-founded, by (1), T X E and T Y F are also well-founded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' For all (x, y) ∈ X × Y and n < ω, note that (n, [(x, y)]En×Fn) ∈ T X×Y E×F ⇐⇒ [(x, y)]En×Fn ̸= {(x, y)} ⇐⇒ [x]En ̸= {x} ∨ [y]Fn ̸= {y} ⇐⇒ (n, [x]En) ∈ T X E ∨ (n, [y]Fn) ∈ T Y F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' By Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='1, it is routine to prove ρ((T X×Y E×F )(n,[(x,y)]En×Fn)) = max{ρ((T X E )(n,[x]En)), ρ((T Y F )(n,[y]Fn))} by induction on ρ((T X×Y E×F )(n,[(x,y)]En×Fn)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Taking supremum on both sides of the above formula, we get ρ(T X×Y E×F ) = max{ρ(T X E ), ρ(T Y F )}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' □ 14 LONGYUN DING AND XU WANG Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let G and H be two non-archimedean CLI Polish groups, G = (Gn) ∈ dgnb(G) and H = (Hn) ∈ dgnb(H).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then we have G × H = (Gn × Hn) ∈ dgnb(G × H) and ρk(G × H) = max{ρk(G), ρk(H)} (∀k < ω), ρ(G × H) = max{ρ(G), ρ(H)}, rank(G × H) = max{rank(G), rank(H)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' For any k < ω, put X = G/Gk, Y = H/Hk, and define En, Fn on X and Y for each n < ω respectively by (ˆgGk, ˜gGk) ∈ En ⇐⇒ ∃g ∈ Gn (gˆgGk = ˜gGk) (∀ˆg, ˜g ∈ G), (ˆhHk, ˜hHk) ∈ Fn ⇐⇒ ∃h ∈ Hn (hˆhHk = ˜hHk) (∀ˆh, ˜h ∈ H).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Then Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='3 gives ρk(G × H) = max{ρk(G), ρk(H)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' The rest follows trivially.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' □ Now we are ready to discuss countably infinite product groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' Let (Gi) be a sequence of non-archimedean CLI Polish groups and Gi = (Gi n) ∈ dgnb(Gi) for each i < ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdFLT4oBgHgl3EQfMC8V/content/2301.12014v1.pdf'} +page_content=' We denote G = � i Gi and Gn = � i φhex), respectively. Note that the mean and variance of the angular +velocities decrease with φ. The bottom row shows the radial velocity profile for the (d) gas, (e) fluid, and (f) crystal. Red lines are fits to the +coarse-grained model (Eq. [1–4]). The insets show the pair correlation function g(R). The location first peak, which is insensitive to φ, is +found at a distance 1.08 ± 0.05 cm. This value is between inner (1 cm) and outer (1.2 cm) particle diameters. +the flow is driven by particle-particle collisions rather than +particle-boundary interactions [23]. The measured vt of each +data set obtained between φ = 0.078 and 0.746 can be found +in the Supplementary Figure S5 [22]. Our results provide the +first experimental investigation of flows driven by chirality as +the density varies widely, corresponding to a chiral gas, fluid, +and crystal states. +To quantify these transitions, +we plot in Fig. 2(a) +the six-fold orientational correlation function Q6(R) += +⟨q6(R)q∗ +6(0)⟩, where q6(rk) = N −1 +k ΣNk +j=1ei6θk,j, R is the +position vector (of magnitude R) between the centers of two +particles, Nk is the number of particles that particle k con- +tacts, rk is the position vector of the particle k from the cen- +ter, and θk,j is the angle between particles k and j, which +are in contact with one another. As shown in Fig. 2(b), parti- +cle orientation becomes correlated at a critical area fraction of +φhex = 0.64 over the scale of the chamber Rc and the hexag- +onal packing of particles becomes apparent as in Fig. 1(c). +The pair-correlation function g(R), which describes the den- +sity variation as a function of distance R from a particle, is +shown in the Insets of Fig 1(d), Fig 1(e) and Fig 1(f). They are +observed to be consistent with those of a gas, fluid and crys- +talline solid, respectively, with the appearance of peaks grow- +ing at R = 2r0, 2 +√ +3r0, and 4r0 corresponding to a hexagonal +lattice. The measured pair correlation function is shown in the +Supplementary Figure S6 [22] for each experiment. The small +secondary peak is absent at the lowest area fraction examined. +Because colliding particles tend to rotate about one another, +collisions transfer angular momentum from the individual ro- +tation of particles to the global rotation about the chamber. +As the contact network grows and spatial correlations increase +with φ, the average spin angular velocity ⟨ω⟩ and its root mean +fluctuations decreases as shown in Fig. 2(c). +We measure +the particles’ instantaneous two-dimensional translational ki- +netic energy Ut = +1 +2mv2 +2D, where v2D is the instantaneous +translational speed of a particle, the rotational kinetic energy +Ur = 1 +2Iω2, and the total measured energy U = Ur + Ut. As +shown in Fig. 2(d), the partitioning of energy between transla- +tional and rotational motion ⟨Ur/U⟩ = 0.55 in the gas phase, +and decreases quartically with φ in the fluid phase. As the +packing becomes crystalline—close to φhex—and ω of the +particles locks in phase with the solid body rotation, ⟨Ur/U⟩ +becomes similar to 1/3, the value predicted by the equiparti- +tion theorem. +In the dilute limit of a chiral gas, particle collisions are +dominated by two-body interactions. Because the co-rotation +of isotropically colliding particles generates no net flow, the +velocity field vanishes in the interior of the chamber [24]. The + +(a +b +24 +18 +12 +6C6 +-12 +0.04 +(d) +e) +5 +L +0.03 +R +0.02 +0 +R/ro +15 +R/ro +15 +0.01 +0 +-0.01 +0 +5 +10 +150 +5 +10 +15(f) +5 +R +6 +0 +R/ro +15 +0 +5 +10 +153 +presence of the chamber wall breaks this symmetry. Because +a particle near the wall can only be struck from the cham- +ber interior, the outer ring of particles slip over the cham- +ber walls as they are pushed from the interior. +Since this +mechanism does not reference a particular φ, one may ex- +pect an edge current even at vanishing densities. Edge cur- +rents have been shown to develop in a numerical study of a di- +lute (φ ≈ 0.12) gas of driven rotors interacting with Yukawa +potential [4]. Figure 2(e) shows that edge currents form at +area fractions as low as 0.078 even in systems which interact +sterically. We find that jedge increases approximately linearly +with φ, and jedge apparently can extend to vanishing densi- +ties provided particle-particle collisions are present. The cor- +responding flux Jtot = 2π +� +φvtrdr is shown in Fig. 2(f). +Our experiments show that a thin edge current (2r0 wide) is +maintained by short-range particle-particle interactions in a +dilute gas. Confinement induced packing structure has been +shown numerically to give rise to oscillatory flows at inter- +mediate φ, but were not clearly realized in their correspond- +ing experiments [24]. Interestingly, we observe a clear sig- +nature of oscillatory flow for φ < 0.352 (see Supplemen- +tary Figure S5 [22]) with a weak counterclockwise flow for +11 < r/r0 < 13 as a reaction to the clockwise edge current. +As φ rises, the edge current and associated flux, initially +grows and extends through the system (Fig 2[e–f]). We ob- +serve that a disordered contact network (Fig 1(b)) maintains +flow in the bulk, and thus conclude that bulk flow does not re- +quire the percolation of solid-like regions. Rather, around an +area fraction of 0.5 [22], the contact network spans the cham- +ber and the outermost particles cannot move independently of +those in the interior. However, the loose contact network per- +mits the relative motion of particles. As the outermost shell of +particles is pushed around the exterior of the chamber, it drags +the loose network. In this regime, velocity gradients begin to +extend through the entire material (Fig 1(e)). +Finally, in the dense regime, φ > φhex = 0.64, steric in- +teractions arrest the relative motion of particles, velocity gra- +dients are suppressed, and particles cease to rotate indepen- +dently of the lattice except near defects. The amplitude of +the edge current decays quickly with particle concentration +(Fig. 2(e)) and the crystal moves as a solid body (Fig. 1(f)). In- +terestingly, solid-body rotation is maintained even as system +scale dislocations form (see Supplemental Video SV2 [22]). +In the crystalline limit, particles rotate in phase with the solid +body rotation except near topological defects (see Supplemen- +tal Video SV3 [22]). +Next, we analyze the velocity profile quantitatively to un- +derstand how the macroscopic flow field is reflected in the +kinetics of particle interactions. +At particle concentrations +above φ > φhex, particles rotate about the chamber in eight +concentric lanes (Fig. 3[a]). The outermost lane—at a dis- +tance of one particle radius from the outer wall—is apparent +even at the lowest concentration examined. Multiple lanes be- +come apparent around the same φ at which contact networks +begin to span the system (Fig. 3[a]). We coarse-grain this sys- +tem in a manner in which each lane—having a width of one +Figure 2. Cluster geometry and particle motion vary systematically +with area fraction. (a) The magnitude and correlation length of the +orientation of particle contacts grows with area fraction. (b) The +formation of a single rotating crystal is identified from the point at +which Q6(Rc) increases discontinuously. (c) Average angular ve- +locity particles (blue line) and the typical fluctuations (shaded re- +gion) decrease as the size of the contact network grows. (d) As area +fraction increases, the rotational motion is slowed more quickly than +translational components. The black line, shown as a guide to the +eye, is ⟨Ur/U⟩ = 0.55 − 1.03φ4. (e) The edge current jedge is +a non-monotonic function of φ which changes abruptly at φhex. (f) +The integrated particle flux Jtot is maximized at φ = 0.69. The +black line shows the predictions of Eqs. (1–4). +particle diameter and the outermost lane is centered one par- +ticle radius from the outer wall—is densely occupied with the +average particle concentration as illustrated Fig. 3(b). +Consider the torque balance on particles in the ith lane from +the center with velocity vi and spin angular velocity ωi, where +i < N and N ≈ Rc/(2r0) is the number of lanes that fit in +the experiment. The rotation of these particles is slowed at rate +αp if the speed of its edge is faster than those of its neighbors. +The corresponding nondimensionalized torque balance on the +particles, as derived in Supplemental Document [22], is +ωi + αp +αb +(vi−1 − vi+1 + ωi−1 + 4ωi + ωi+1) = 1, +(1) +where αb is the rate that particle rotation is slowed by the bot- +tom of the chamber. In the outermost lane, particle rotation +is only slowed by collisions from the interior, within its lane, +and the bottom of the chamber. The boundary condition on + +4 +Figure 3. Particles rotate about the center of the chamber in concen- +tric lanes. Lanes form from the outer boundary and grow inwards +with increasing φ. (a) The probability density function ρ for parti- +cle density for all experiments analyzed is shown. The dashed lines +show the expected locations of lanes. (b) A schematic of particles +interacting between lanes. Each particle moves in a circular path at +velocity vi and rotates about its axis at angular velocity ωi. +particle rotation at the wall is +ωN + αp +αb +(vN−1 − vN + ωN−1 + 3ωN) = 1. +(2) +We assume that ω is smooth and continuous near r = 0. +Similarly, vt is slowed at rate βp if a particle’s edges move +more quickly than the edges it contacts. The corresponding +torque balance on lane i < N requires +vi = βp +βb +(vi−1 − 2vi + vi+1 − ωi+1 + ωi−1) , +(3) +where βb is the rate that the translational velocity is slowed by +the bottom of the chamber. Again, the outermost particles are +only affected by particles in the lane centered at rN−1. The +corresponding boundary condition is +vN = βp +βb +(vN−1 − vN + ωN−1 + ωN) . +(4) +The boundary condition at the center of the chamber requires +the angular velocity Ω = vt/r to be smooth and continuous. +Equations (1–4) uniquely determine the tangential velocity +and the angular velocity of particles in each lane. We fit the +dimensionless relaxation rates α = αp/αb and β = βp/βb to +match the measured velocity profile. Three representative fits +Figure 4. The rates at which particle (a) angular velocity and (b) +tanslational velocity relax to the speeds of the neighboring edges both +diverge at the maximum area density. The red lines are fits to power +laws. The insets show the same data on logarithmically scaled axes. +are shown in Fig 1(d–f), and all the trials are shown in the Sup- +plemental Figure S5 [22]. Remarkably, this model reproduces +the velocity profile even in the dilute regime and correctly pre- +dicts the slight retrograde motion in the N − 1 lane (Fig 1(d) +and Fig. S5). +Intuitively, the relaxation rates α and β should increase with +particle density as increasing the number of collisions simi- +larly increases the rate particles are slowed by their neighbors. +As shown in Fig. 4, α and β increase faster than exponentially +with area fraction. These trends are well fit by power law di- +vergences α(φ) = α0(φc−φ)−γ/2 and β(φ) = β0(φc−φ)−γ, +where α0 = 1.53, β0 = 0.17, γ = 3, and φc = 0.76. +Figure 2(f) shows that the particle flux predicted by the +power law divergences of α and β approximates the mea- +sured flux reasonably well. The predicted flux is not mono- +tonic [25] and vanishes at a value of φc = 0.76. The predicted +flux is maximized at φ ≈ 0.69 and is similar to the value +φs = 0.711 at which a large two-dimensional lattice of hard +spheres transitions from diffusive behavior to caging, as dis- +cussed by Reis, et al. [26]. The slightly lower value could +result from the difference in particle shapes and finite size ef- +fects. This similarity suggests that flux is maximized when +the rate of particles collisions is maximized before the rela- +tive motion of particles is arrested. +In conclusion, we have analyzed the evolution of edge cur- +rent and bulk flow across three phases of active chiral matter. +Edge currents are observed even at vanishing densities due to +occasional particle collisions and shielding of particles at the +boundaries. Upon the onset of system-scale orientational or- +der, the edge current is quickly arrested and particles rotate +as a solid body. A coarse-grained model, which respects the +emergent crystalline order and the finite particle size, accu- +rately fits the measured velocity profile across these phases. +We thank Trinh Huynh and Animesh Biswas for help +with building experimental components, and J¨orn Dunkel for +bringing Ref. [4] to our attention. This work was partially +supported by NSF Grant no. DMR-2005090 and NSF Grant +no. PHY-2042150. + +5 +[1] J.-C. Tsai, Fangfu Ye, Juan Rodriguez, J. P. Gollub, and T. C. +Lubensky. A chiral granular gas. Phys. Rev. Lett., 94:214301, +May 2005. +[2] Alexander P. Petroff, Xiao-Lun Wu, and Albert Libchaber. Fast- +moving bacteria self-organize into active two-dimensional crys- +tals of rotating cells. Phys. Rev. Lett., 114:158102, Apr 2015. +[3] Benjamin C. van Zuiden, Jayson Paulose, William T. M. Irvine, +Denis Bartolo, and Vincenzo Vitelli. Spatiotemporal order and +emergent edge currents in active spinner materials. Proceedings +of the National Academy of Sciences, 113(46):12919–12924, +nov 2016. +[4] Kinjal Dasbiswas, +Kranthi K. Mandadapu, +and Suriya- +narayanan Vaikuntanathan. Topological localization in out-of- +equilibrium dissipative systems. Proceedings of the National +Academy of Sciences, 115(39):E9031–E9040, 2018. +[5] Benno Liebchen and Demian Levis. +Chiral active matter. +Europhysics Letters, 139(6):67001, 2022. +[6] Tzer Han Tan, Alexander Mietke, Junang Li, Yuchao Chen, +Hugh Higinbotham, Peter J. Foster, Shreyas Gokhale, J¨orn +Dunkel, and Nikta Fakhri. Odd dynamics of living chiral crys- +tals. Nature, 607(7918):287–293, jul 2022. +[7] Debarghya Banerjee, Anton Souslov, Alexander G. Abanov, +and Vincenzo Vitelli. +Odd viscosity in chiral active fluids. +Nature Communications, 8(1), nov 2017. +[8] Colin Scheibner, Anton Souslov, Debarghya Banerjee, Piotr +Sur´owka, William T. M. Irvine, and Vincenzo Vitelli. Odd elas- +ticity. Nature Physics, 16(4):475–480, March 2020. +[9] Ephraim S. Bililign, Florencio Balboa Usabiaga, Yehuda A. +Ganan, +Alexis Poncet, +Vishal Soni, +Sofia Magkiriadou, +Michael J. Shelley, Denis Bartolo, and William T. Irvine. Motile +dislocations knead odd crystals into whorls. Nature Physics, +18(2). +[10] Gaˇsper Kokot, Shibananda Das, R. Winkler, Gerhard Gomp- +per, Igor Aranson, and Alexey Snezhko. Active turbulence in +a gas of self-assembled spinners. Proceedings of the National +Academy of Sciences, 114:201710188, 11 2017. +[11] Knut Drescher, Kyriacos C. Leptos, Idan Tuval, Takuji +Ishikawa, Timothy J. Pedley, and Raymond E. Goldstein. Danc- +ing volvox: Hydrodynamic bound states of swimming algae. +Phys. Rev. Lett., 102:168101, Apr 2009. +[12] A P Petroff and A Libchaber. +Nucleation of rotating crys- +tals by thiovulum majus bacteria. +New Journal of Physics, +20(1):015007, jan 2018. +[13] C. Reichhardt and C. J. O. Reichhardt. +Dynamics and non- +monotonic drag for individually driven skyrmions. Phys. Rev. +B, 104:064441, Aug 2021. +[14] Martin Brandenbourger, Colin Scheibner, Jonas Veenstra, Vin- +cenzo Vitelli, and Corentin Coulais. Limit cycles turn active +matter into robots, 2021. +[15] Christian Scholz, Anton Ldov, Thorsten P¨oschel, Michael En- +gel, and Hartmut L¨owen. Surfactants and rotelles in active chi- +ral fluids. Science Advances, 7(16):eabf8998, 2021. +[16] Daniel L. Blair, T. Neicu, and A. Kudrolli. Vortices in vibrated +granular rods. Phys. Rev. E, 67:031303, Mar 2003. +[17] Ernesto Altshuler, Jose Martin Pastor, Angel Garcimart´ın, Iker +Zuriguel, and Diego Maza. Vibrot, a simple device for the con- +version of vibration into rotation mediated by friction: Prelimi- +nary evaluation. PLOS ONE, 8(8):1–5, 08 2013. +[18] N Koumakis, A Gnoli, C Maggi, A Puglisi, and R Di Leonardo. +Mechanism of self-propulsion in 3d-printed active granular par- +ticles. New Journal of Physics, 18(11):113046, nov 2016. +[19] Christian Scholz, Michael Engel, and Thorsten P¨oschel. Ro- +tating robots move collectively and self-organize. +Nature +Communications, 9, 03 2018. +[20] Miguel +A. +L´opez-Casta˜no, +A. +Rodr´ıguez-Rivas, +and +F. Vega Reyes. +Chiral flow in a binary mixture of two- +dimensional active disks. Frontiers in Physics, 10, 2022. +[21] Dmitri Volfson, Arshad Kudrolli, and Lev S. Tsimring. +Anisotropy-driven dynamics in vibrated granular rods. Phys. +Rev. E, 70:051312, Nov 2004. +[22] Movies, and further description of the experimental system, and +the derivation of the coarse grain model can be found in the +Supplementary Documentation. +[23] Marcel Workamp, Gustavo Ramirez, Karen E. Daniels, and +Joshua A. Dijksman. Symmetry-reversals in chiral active mat- +ter. Soft Matter, 14:5572–5580, 2018. +[24] Peng Liu, Hongwei Zhu, Ying Zeng, Guangle Du, Luhui Ning, +Dunyou Wang, Ke Chen, Ying Lu, Ning Zheng, Fangfu Ye, +and Mingcheng Yang. Oscillating collective motion of active +rotors in confinement. Proceedings of the National Academy of +Science, 117(22):11901–11907, June 2020. +[25] Xiang Yang, Chenyang Ren, Kangjun Cheng, and HP Zhang. +Robust boundary flow in chiral active fluid. Physical Review E, +101(2):022603, 2020. +[26] P. M. Reis, R. A. Ingale, and M. D. Shattuck. Caging dynamics +in a granular fluid. Phys. Rev. Lett., 98:188301, Apr 2007. + diff --git a/OtE3T4oBgHgl3EQfxQus/content/tmp_files/load_file.txt b/OtE3T4oBgHgl3EQfxQus/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..29828d893173cd687a5af1e57ed548abe78e6efc --- /dev/null +++ b/OtE3T4oBgHgl3EQfxQus/content/tmp_files/load_file.txt @@ -0,0 +1,339 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf,len=338 +page_content='Density Mediated Spin Correlations Drive Edge to Bulk Flow Transition in Active Chiral Matter Alexander P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Petroff, Christopher Whittington, Arshad Kudrolli Department of Physics, Clark University, Worcester, MA 01610, USA (Dated: January 13, 2023) We demonstrate that edge currents develop in active chiral matter—composed of spinning disk-shaped grains with chirally arranged tilted legs confined in a circular vibrating chamber—due to boundary shielding over a wide range of densities corresponding to a gas, fluid, and crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The edge currents are then shown to increasingly drive circulating bulk flows with area fraction φ due to increasing spin-coupling between neighbors mediated by frictional contacts, as percolating clusters develop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Edge currents are observed even in the dilute limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' While, at low φ, the average flux vanishes except within a distance of a single particle diameter of the boundary, the penetration depth grows with increasing φ till a solid body rotation is achieved corresponding to the highest packing, where the particles are fully caged with hexagonal order and spin in phase with the entire packing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' A coarse-grained model, based on the increased collisional interlocking of the particles with φ and the emergence of order, captures the observed flow fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Chiral active matter is composed of particles or organisms that intrinsically spin [1–6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' These materials are naturally out of equilibrium;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' energy and rotation are constantly supplied to the system on the scale of the particle, and dissipated by the global motion of the particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The intrinsic rotation of each particle causes colliding particles to rotate about one another in a preferred direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Consequently, locally increasing par- ticle density also increases the local vorticity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The correspond- ing rheology of the chiral material is described by a dissipa- tionless odd viscosity and odd elasticity [7, 8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The study of these systems gives insight into non-equilibrium pattern for- mation [9, 10], may be relevant for the ecology of certain or- ganisms [11, 12], and provides inspiration for new types of engineering [13, 14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Collections of chiral grains moving on a vibrated substrate provide an avenue by which to reach a deeper understand- ing of how particle rotation at an individual level can man- ifest itself collectively [1, 15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' While collections of gran- ular rods can self-assemble to form chiral structures which spin collectively [16], particles with tilted legs and bumpy sides, which promote frictional particle-particle interactions, have been demonstrated to spin, self-organize, and give rise to further collective motion [17–19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Particle interactions oc- cur only during contact and present the opportunity to inves- tigate density effects over a wide range of area fractions, in contrast to systems in which secondary flows in the interstitial medium can give rise to attraction and other system-specific effects [11, 20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Here we examine the increasing effect of particle-particle density and spin correlations on the global flow in a mono- layer of chiral active matter as their area fraction φ increases from that of a gas to a crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' We perform experiments with 3D-printed particles composed of a solid gear cap with outer radius r0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='6 cm supported by seven elastic legs, with mass m = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='28 g and moment of inertia I = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='04 g cm2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Be- cause these legs are slanted, striking the particle from be- low causes it to spin as it accelerates upwards [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Parti- cles are confined within a quasi-two-dimensional cylindrical chamber of radius Rc = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='75 cm that oscillates vertically with frequency f = 60 Hz and amplitude A = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='17 mm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Fur- ther details on the particles and the experimental apparatus can be found in the Supplementary Document [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Images are acquired at 50 ms intervals over ten minute time inter- vals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' We vary the number of particles Np from 20 to 191, corresponding to the maximum that can be achieved in the system in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' We track the particle center and an off- center dot to measure the instantaneous position, velocity, and angular velocity of each particle in the chamber [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Iso- lated particles are found to spin counterclockwise on aver- age when viewed from above with a mean angular velocity of ω0 = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='61 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='01 s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Particles diffuse with translational diffusion coefficient D = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='134 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='07 cm2/s and rotational diffusion coefficient Dr = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='4 rad2/s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Figure 1(a-c) and Supplemental Video SV1 [22] shows representative snapshots of the system corresponding to gas, fluid, and crystal phases with increasing φ, where we have fur- ther superimposed the spin angular velocity ω on the tracked position of each particle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' We observe that the system be- comes increasingly ordered not only in the way the particles are arranged, but also in terms of their spin, with the high- est φ showing hexagonal crystalline order and little variation in ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' We construct the contact network from instantaneous positions of the particles, taking two particles to be in con- tact if their center to center distance is less than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='2r0, and is also shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' 1(a-c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Spanning contact networks appear around φ ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='5 [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' As φ is further increased, the contact network becomes ordered and the disordered fluid becomes a crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' To characterize the emergence of flow and its nature, we calculate the tangential velocity of each particle as it moves about the center of the chamber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Averaging these instan- taneous measurements over ten-minute trials, we find the steady-state velocity profile vt as a function of distance r from the chamber center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The corresponding profiles are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' 1(d–f), nondimensionalized by the characteristic speed v0 = r0ω0 = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='6 cm/s of an isolated particle’s edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' In all cases, particle speed is maximum within a particle diameter of the chamber wall, where they move with flux jedge = 2r0vt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The overall collective rotation in the chamber is in the same direction as the individual particle spin, which implies that arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='04710v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='soft] 11 Jan 2023 2 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The dynamics of a chiral material is examined across the phases of gas (left column), fluid (center), and crystal (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Panel (a) shows the distribution and angular velocities (colored spots), and contact network (solid black lines) of 60 particles in a dilute gas (φ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='23).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The scale bar is 1 cm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Panels (b) and (c) show the corresponding particle locations, angular velocities, and contact networks in a fluid of 148 particles (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='57 < φhex) and a crystal of 191 particles (φ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='74 > φhex), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Note that the mean and variance of the angular velocities decrease with φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The bottom row shows the radial velocity profile for the (d) gas, (e) fluid, and (f) crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Red lines are fits to the coarse-grained model (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' [1–4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The insets show the pair correlation function g(R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The location first peak, which is insensitive to φ, is found at a distance 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='08 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='05 cm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' This value is between inner (1 cm) and outer (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='2 cm) particle diameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' the flow is driven by particle-particle collisions rather than particle-boundary interactions [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The measured vt of each data set obtained between φ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='078 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='746 can be found in the Supplementary Figure S5 [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Our results provide the first experimental investigation of flows driven by chirality as the density varies widely, corresponding to a chiral gas, fluid, and crystal states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' To quantify these transitions, we plot in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' 2(a) the six-fold orientational correlation function Q6(R) = ⟨q6(R)q∗ 6(0)⟩, where q6(rk) = N −1 k ΣNk j=1ei6θk,j, R is the position vector (of magnitude R) between the centers of two particles, Nk is the number of particles that particle k con- tacts, rk is the position vector of the particle k from the cen- ter, and θk,j is the angle between particles k and j, which are in contact with one another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' 2(b), parti- cle orientation becomes correlated at a critical area fraction of φhex = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='64 over the scale of the chamber Rc and the hexag- onal packing of particles becomes apparent as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' 1(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The pair-correlation function g(R), which describes the den- sity variation as a function of distance R from a particle, is shown in the Insets of Fig 1(d), Fig 1(e) and Fig 1(f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' They are observed to be consistent with those of a gas, fluid and crys- talline solid, respectively, with the appearance of peaks grow- ing at R = 2r0, 2 √ 3r0, and 4r0 corresponding to a hexagonal lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The measured pair correlation function is shown in the Supplementary Figure S6 [22] for each experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The small secondary peak is absent at the lowest area fraction examined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Because colliding particles tend to rotate about one another, collisions transfer angular momentum from the individual ro- tation of particles to the global rotation about the chamber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' As the contact network grows and spatial correlations increase with φ, the average spin angular velocity ⟨ω⟩ and its root mean fluctuations decreases as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' 2(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' We measure the particles’ instantaneous two-dimensional translational ki- netic energy Ut = 1 2mv2 2D, where v2D is the instantaneous translational speed of a particle, the rotational kinetic energy Ur = 1 2Iω2, and the total measured energy U = Ur + Ut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' 2(d), the partitioning of energy between transla- tional and rotational motion ⟨Ur/U⟩ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='55 in the gas phase, and decreases quartically with φ in the fluid phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' As the packing becomes crystalline—close to φhex—and ω of the particles locks in phase with the solid body rotation, ⟨Ur/U⟩ becomes similar to 1/3, the value predicted by the equiparti- tion theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' In the dilute limit of a chiral gas, particle collisions are dominated by two-body interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Because the co-rotation of isotropically colliding particles generates no net flow, the velocity field vanishes in the interior of the chamber [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The (a b 24 18 12 6C6 12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='04 (d) e) 5 L 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='03 R 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='02 0 R/ro 15 R/ro 15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='01 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='01 0 5 10 150 5 10 15(f) 5 R 6 0 R/ro 15 0 5 10 153 presence of the chamber wall breaks this symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Because a particle near the wall can only be struck from the cham- ber interior, the outer ring of particles slip over the cham- ber walls as they are pushed from the interior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Since this mechanism does not reference a particular φ, one may ex- pect an edge current even at vanishing densities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Edge cur- rents have been shown to develop in a numerical study of a di- lute (φ ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='12) gas of driven rotors interacting with Yukawa potential [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Figure 2(e) shows that edge currents form at area fractions as low as 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='078 even in systems which interact sterically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' We find that jedge increases approximately linearly with φ, and jedge apparently can extend to vanishing densi- ties provided particle-particle collisions are present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The cor- responding flux Jtot = 2π � φvtrdr is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' 2(f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Our experiments show that a thin edge current (2r0 wide) is maintained by short-range particle-particle interactions in a dilute gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Confinement induced packing structure has been shown numerically to give rise to oscillatory flows at inter- mediate φ, but were not clearly realized in their correspond- ing experiments [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Interestingly, we observe a clear sig- nature of oscillatory flow for φ < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='352 (see Supplemen- tary Figure S5 [22]) with a weak counterclockwise flow for 11 < r/r0 < 13 as a reaction to the clockwise edge current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' As φ rises, the edge current and associated flux, initially grows and extends through the system (Fig 2[e–f]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' We ob- serve that a disordered contact network (Fig 1(b)) maintains flow in the bulk, and thus conclude that bulk flow does not re- quire the percolation of solid-like regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Rather, around an area fraction of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='5 [22], the contact network spans the cham- ber and the outermost particles cannot move independently of those in the interior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' However, the loose contact network per- mits the relative motion of particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' As the outermost shell of particles is pushed around the exterior of the chamber, it drags the loose network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' In this regime, velocity gradients begin to extend through the entire material (Fig 1(e)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Finally, in the dense regime, φ > φhex = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='64, steric in- teractions arrest the relative motion of particles, velocity gra- dients are suppressed, and particles cease to rotate indepen- dently of the lattice except near defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The amplitude of the edge current decays quickly with particle concentration (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' 2(e)) and the crystal moves as a solid body (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' 1(f)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' In- terestingly, solid-body rotation is maintained even as system scale dislocations form (see Supplemental Video SV2 [22]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' In the crystalline limit, particles rotate in phase with the solid body rotation except near topological defects (see Supplemen- tal Video SV3 [22]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Next, we analyze the velocity profile quantitatively to un- derstand how the macroscopic flow field is reflected in the kinetics of particle interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' At particle concentrations above φ > φhex, particles rotate about the chamber in eight concentric lanes (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' 3[a]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The outermost lane—at a dis- tance of one particle radius from the outer wall—is apparent even at the lowest concentration examined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Multiple lanes be- come apparent around the same φ at which contact networks begin to span the system (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' 3[a]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' We coarse-grain this sys- tem in a manner in which each lane—having a width of one Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Cluster geometry and particle motion vary systematically with area fraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' (a) The magnitude and correlation length of the orientation of particle contacts grows with area fraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' (b) The formation of a single rotating crystal is identified from the point at which Q6(Rc) increases discontinuously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' (c) Average angular ve- locity particles (blue line) and the typical fluctuations (shaded re- gion) decrease as the size of the contact network grows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' (d) As area fraction increases, the rotational motion is slowed more quickly than translational components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The black line, shown as a guide to the eye, is ⟨Ur/U⟩ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='55 − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='03φ4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' (e) The edge current jedge is a non-monotonic function of φ which changes abruptly at φhex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' (f) The integrated particle flux Jtot is maximized at φ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The black line shows the predictions of Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' (1–4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' particle diameter and the outermost lane is centered one par- ticle radius from the outer wall—is densely occupied with the average particle concentration as illustrated Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' 3(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Consider the torque balance on particles in the ith lane from the center with velocity vi and spin angular velocity ωi, where i < N and N ≈ Rc/(2r0) is the number of lanes that fit in the experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The rotation of these particles is slowed at rate αp if the speed of its edge is faster than those of its neighbors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The corresponding nondimensionalized torque balance on the particles, as derived in Supplemental Document [22], is ωi + αp αb (vi−1 − vi+1 + ωi−1 + 4ωi + ωi+1) = 1, (1) where αb is the rate that particle rotation is slowed by the bot- tom of the chamber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' In the outermost lane, particle rotation is only slowed by collisions from the interior, within its lane, and the bottom of the chamber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The boundary condition on 4 Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Particles rotate about the center of the chamber in concen- tric lanes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Lanes form from the outer boundary and grow inwards with increasing φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' (a) The probability density function ρ for parti- cle density for all experiments analyzed is shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The dashed lines show the expected locations of lanes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' (b) A schematic of particles interacting between lanes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Each particle moves in a circular path at velocity vi and rotates about its axis at angular velocity ωi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' particle rotation at the wall is ωN + αp αb (vN−1 − vN + ωN−1 + 3ωN) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' (2) We assume that ω is smooth and continuous near r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Similarly, vt is slowed at rate βp if a particle’s edges move more quickly than the edges it contacts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The corresponding torque balance on lane i < N requires vi = βp βb (vi−1 − 2vi + vi+1 − ωi+1 + ωi−1) , (3) where βb is the rate that the translational velocity is slowed by the bottom of the chamber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Again, the outermost particles are only affected by particles in the lane centered at rN−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The corresponding boundary condition is vN = βp βb (vN−1 − vN + ωN−1 + ωN) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' (4) The boundary condition at the center of the chamber requires the angular velocity Ω = vt/r to be smooth and continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Equations (1–4) uniquely determine the tangential velocity and the angular velocity of particles in each lane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' We fit the dimensionless relaxation rates α = αp/αb and β = βp/βb to match the measured velocity profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Three representative fits Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The rates at which particle (a) angular velocity and (b) tanslational velocity relax to the speeds of the neighboring edges both diverge at the maximum area density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The red lines are fits to power laws.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The insets show the same data on logarithmically scaled axes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' are shown in Fig 1(d–f), and all the trials are shown in the Sup- plemental Figure S5 [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Remarkably, this model reproduces the velocity profile even in the dilute regime and correctly pre- dicts the slight retrograde motion in the N − 1 lane (Fig 1(d) and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' S5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Intuitively, the relaxation rates α and β should increase with particle density as increasing the number of collisions simi- larly increases the rate particles are slowed by their neighbors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' 4, α and β increase faster than exponentially with area fraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' These trends are well fit by power law di- vergences α(φ) = α0(φc−φ)−γ/2 and β(φ) = β0(φc−φ)−γ, where α0 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='53, β0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='17, γ = 3, and φc = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Figure 2(f) shows that the particle flux predicted by the power law divergences of α and β approximates the mea- sured flux reasonably well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The predicted flux is not mono- tonic [25] and vanishes at a value of φc = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The predicted flux is maximized at φ ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='69 and is similar to the value φs = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='711 at which a large two-dimensional lattice of hard spheres transitions from diffusive behavior to caging, as dis- cussed by Reis, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' The slightly lower value could result from the difference in particle shapes and finite size ef- fects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' This similarity suggests that flux is maximized when the rate of particles collisions is maximized before the rela- tive motion of particles is arrested.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' In conclusion, we have analyzed the evolution of edge cur- rent and bulk flow across three phases of active chiral matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Edge currents are observed even at vanishing densities due to occasional particle collisions and shielding of particles at the boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Upon the onset of system-scale orientational or- der, the edge current is quickly arrested and particles rotate as a solid body.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' A coarse-grained model, which respects the emergent crystalline order and the finite particle size, accu- rately fits the measured velocity profile across these phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' We thank Trinh Huynh and Animesh Biswas for help with building experimental components, and J¨orn Dunkel for bringing Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' [4] to our attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' This work was partially supported by NSF Grant no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' DMR-2005090 and NSF Grant no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' PHY-2042150.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' 5 [1] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Tsai, Fangfu Ye, Juan Rodriguez, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Gollub, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Lubensky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' A chiral granular gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=', 94:214301, May 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' [2] Alexander P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Petroff, Xiao-Lun Wu, and Albert Libchaber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Fast- moving bacteria self-organize into active two-dimensional crys- tals of rotating cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=', 114:158102, Apr 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' [3] Benjamin C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' van Zuiden, Jayson Paulose, William T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Irvine, Denis Bartolo, and Vincenzo Vitelli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Spatiotemporal order and emergent edge currents in active spinner materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Proceedings of the National Academy of Sciences, 113(46):12919–12924, nov 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' [4] Kinjal Dasbiswas, Kranthi K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Mandadapu, and Suriya- narayanan Vaikuntanathan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Topological localization in out-of- equilibrium dissipative systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Proceedings of the National Academy of Sciences, 115(39):E9031–E9040, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' [5] Benno Liebchen and Demian Levis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Chiral active matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Europhysics Letters, 139(6):67001, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' [6] Tzer Han Tan, Alexander Mietke, Junang Li, Yuchao Chen, Hugh Higinbotham, Peter J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Foster, Shreyas Gokhale, J¨orn Dunkel, and Nikta Fakhri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Odd dynamics of living chiral crys- tals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Nature, 607(7918):287–293, jul 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' [7] Debarghya Banerjee, Anton Souslov, Alexander G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Abanov, and Vincenzo Vitelli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Odd viscosity in chiral active fluids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Nature Communications, 8(1), nov 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' [8] Colin Scheibner, Anton Souslov, Debarghya Banerjee, Piotr Sur´owka, William T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Irvine, and Vincenzo Vitelli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Odd elas- ticity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Nature Physics, 16(4):475–480, March 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' [9] Ephraim S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Bililign, Florencio Balboa Usabiaga, Yehuda A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Ganan, Alexis Poncet, Vishal Soni, Sofia Magkiriadou, Michael J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Shelley, Denis Bartolo, and William T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Irvine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Motile dislocations knead odd crystals into whorls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Nature Physics, 18(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' [10] Gaˇsper Kokot, Shibananda Das, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Winkler, Gerhard Gomp- per, Igor Aranson, and Alexey Snezhko.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Active turbulence in a gas of self-assembled spinners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Proceedings of the National Academy of Sciences, 114:201710188, 11 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' [11] Knut Drescher, Kyriacos C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Leptos, Idan Tuval, Takuji Ishikawa, Timothy J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Pedley, and Raymond E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Goldstein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Danc- ing volvox: Hydrodynamic bound states of swimming algae.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=', 102:168101, Apr 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' [12] A P Petroff and A Libchaber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Nucleation of rotating crys- tals by thiovulum majus bacteria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' New Journal of Physics, 20(1):015007, jan 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' [13] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Reichhardt and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Reichhardt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Dynamics and non- monotonic drag for individually driven skyrmions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' B, 104:064441, Aug 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' [14] Martin Brandenbourger, Colin Scheibner, Jonas Veenstra, Vin- cenzo Vitelli, and Corentin Coulais.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Limit cycles turn active matter into robots, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' [15] Christian Scholz, Anton Ldov, Thorsten P¨oschel, Michael En- gel, and Hartmut L¨owen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Surfactants and rotelles in active chi- ral fluids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Science Advances, 7(16):eabf8998, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' [16] Daniel L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Blair, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Neicu, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Kudrolli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Vortices in vibrated granular rods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' E, 67:031303, Mar 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' [17] Ernesto Altshuler, Jose Martin Pastor, Angel Garcimart´ın, Iker Zuriguel, and Diego Maza.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Vibrot, a simple device for the con- version of vibration into rotation mediated by friction: Prelimi- nary evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' PLOS ONE, 8(8):1–5, 08 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' [18] N Koumakis, A Gnoli, C Maggi, A Puglisi, and R Di Leonardo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Mechanism of self-propulsion in 3d-printed active granular par- ticles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' New Journal of Physics, 18(11):113046, nov 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' [19] Christian Scholz, Michael Engel, and Thorsten P¨oschel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Ro- tating robots move collectively and self-organize.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Nature Communications, 9, 03 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' [20] Miguel A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' L´opez-Casta˜no, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Rodr´ıguez-Rivas, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Vega Reyes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Chiral flow in a binary mixture of two- dimensional active disks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Frontiers in Physics, 10, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' [21] Dmitri Volfson, Arshad Kudrolli, and Lev S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Tsimring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Anisotropy-driven dynamics in vibrated granular rods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' E, 70:051312, Nov 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' [22] Movies, and further description of the experimental system, and the derivation of the coarse grain model can be found in the Supplementary Documentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' [23] Marcel Workamp, Gustavo Ramirez, Karen E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Daniels, and Joshua A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Dijksman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Symmetry-reversals in chiral active mat- ter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Soft Matter, 14:5572–5580, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' [24] Peng Liu, Hongwei Zhu, Ying Zeng, Guangle Du, Luhui Ning, Dunyou Wang, Ke Chen, Ying Lu, Ning Zheng, Fangfu Ye, and Mingcheng Yang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Oscillating collective motion of active rotors in confinement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Proceedings of the National Academy of Science, 117(22):11901–11907, June 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' [25] Xiang Yang, Chenyang Ren, Kangjun Cheng, and HP Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Robust boundary flow in chiral active fluid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Physical Review E, 101(2):022603, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' [26] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Reis, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Ingale, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Shattuck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Caging dynamics in a granular fluid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} +page_content=', 98:188301, Apr 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE3T4oBgHgl3EQfxQus/content/2301.04710v1.pdf'} diff --git a/P9FPT4oBgHgl3EQfoTUR/vector_store/index.faiss b/P9FPT4oBgHgl3EQfoTUR/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..919479a00f8c879ef96f20fe923f1dd29947c772 --- /dev/null +++ b/P9FPT4oBgHgl3EQfoTUR/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:82e923abf8614241e173d31acf8eeb064567c504f68b6caf90a68beaae917556 +size 5570605 diff --git a/PNAzT4oBgHgl3EQfzv4J/content/tmp_files/2301.01772v1.pdf.txt b/PNAzT4oBgHgl3EQfzv4J/content/tmp_files/2301.01772v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..cbc54802dcda4a57764fd834c712ac2244035a62 --- /dev/null +++ b/PNAzT4oBgHgl3EQfzv4J/content/tmp_files/2301.01772v1.pdf.txt @@ -0,0 +1,1902 @@ +Infomaxformer: Maximum Entropy Transformer for Long +Time-Series Forecasting Problem +Peiwang Tang +Institute of Advanced Technology, University of Science +and Technology of China +Hefei 230026, China +G60 STI Valley Industry & Innovation Institute, Jiaxing +University +Jiaxing 314001, China +tpw@mail.ustc.edu.cn +Xianchao Zhang∗ +Key Laboratory of Medical Electronics and Digital Health +of Zhejiang Province, Jiaxing University +Jiaxing 314001, China +Engineering Research Center of Intelligent Human Health +Situation Awareness of Zhejiang Provincey, Jiaxing +University +Jiaxing 314001, China +zhangxianchao@zjxu.edu.cn +ABSTRACT +The Transformer architecture yields state-of-the-art results in many +tasks such as natural language processing (NLP) and computer vi- +sion (CV), since the ability to efficiently capture the precise long- +range dependency coupling between input sequences. With this +advanced capability, however, the quadratic time complexity and +high memory usage prevents the Transformer from dealing with +long time-series forecasting problem (LTFP). To address these diffi- +culties: (i) we revisit the learned attention patterns of the vanilla self- +attention, redesigned the calculation method of self-attention based +the Maximum Entropy Principle. (ii) we propose a new method +to sparse the self-attention, which can prevent the loss of more +important self-attention scores due to random sampling.(iii) We pro- +pose Keys/Values Distilling method motivated that a large amount +of feature in the original self-attention map is redundant, which +can further reduce the time and spatial complexity and make it pos- +sible to input longer time-series. Finally, we propose a method that +combines the encoder-decoder architecture with seasonal-trend +decomposition, i.e., using the encoder-decoder architecture to cap- +ture more specific seasonal parts. A large number of experiments +on several large-scale datasets show that our Infomaxformer is +obviously superior to the existing methods. We expect this to open +up a new solution for Transformer to solve LTFP, and exploring +the ability of the Transformer architecture to capture much longer +temporal dependencies. +KEYWORDS +Maximum Entropy, Transformer, Time-Series, Forecasting +ACM Reference Format: +Peiwang Tang and Xianchao Zhang. 2023. Infomaxformer: Maximum En- +tropy Transformer for Long Time-Series Forecasting Problem. In Proc. of +the 22nd International Conference on Autonomous Agents and Multiagent +Systems (AAMAS 2023), London, United Kingdom, May 29 – June 2, 2023, +IFAAMAS, 10 pages. +∗corresponding author +Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys- +tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023, +London, United Kingdom. © 2023 International Foundation for Autonomous Agents +and Multiagent Systems (www.ifaamas.org). All rights reserved. ...$ACM ISBN 0 +...$0 +1 +INTRODUCTION +Defined as an ordered dataset formed with time change, time-series +refer to a series of ordered observations acquired according to time +sequence [11], which is widely used in commercial and industrial +fields, such as biomedical field [39], economic and financial field +[13], electric power [65] and transportation field [62]. As an im- +portant part of time-series analysis, time-series forecasting mainly +analyze the trend, periodicity, volatility and other time-series pat- +terns of time-series by using the time-series data observed in history +and the relevant rules that have been mastered, so as to predict the +situation in the future [3, 32, 58]. In practical applications, we can +use a large number of past time-series to achieve long-term predic- +tion for the future, i.e., long time-series forecasting problem (LTFP). +Recent deep prediction models have made great progress, especially +Transformer based models [28, 35, 40, 54, 59]. The Transformer [56] +shows better performance than the recurrent neural network (RNN) +model in modeling the long-term dependence of sequence data, and +has achieved the best results in the natural language processing +(NLP) [12, 47] and computer vision (CV) [15, 20] fields, since its +advanced self-attention mechanism. +However, there are still some problems in solving LTFP of exist- +ing Transformer models. First, the self-attention mechanism has +high performance, but also brings high time complexity and mem- +ory usage [41, 63]. Although some large-scale Transformer models +have produced impressive results in the NLP and CV fields [4, 48], +they often require dozens or even hundreds of GPUs during training, +which limits the possibility of Transformer models to solve LTFP. +Although there have been some researches on reducing the time +complexity and memory usage of the self-attention mechanism, +only realize a limited reduce of complexity to O(𝐿𝑙𝑜𝑔𝐿) [30, 33, 65]. +Moreover, some methods for reducing the complexity only ran- +domly select dot-product pairs, which will cause some performance +loss and lead to the long-term dependence of the sequences that +cannot be well captured by the self-attention mechanism. Second, +it is unreliable to find the time dependence directly from the time- +series, because these dependencies may be masked by the entangled +temporal patterns. +In order to better solve LTFP, our work explicitly and deeply +discussed the above problems, studied the sparsity of self-attention +mechanism, decomposed the time-series, and updated the network +components. Finally, we have conducted extensive experiments on +five different datasets. The final experimental results show that our +arXiv:2301.01772v1 [cs.LG] 4 Jan 2023 + +Infomaxformer Encoder +Infomaxformer Decoder +Encoder +Input +Time-series +Decomp +Feed +Forward +Prediction +Time-series +Decomp +Maximum Entropy +Self-attention +Feed +Forward ++ +Embedding +Q +K +V ++ +Maximum Entropy +Self-attention +Q +K +V +Embedding +Decoder +Input +Masked +Maximum Entropy +Self-attention +Q +K +V ++ ++ ++ +N ╳ +M ╳ +Trend ++ +d +Scalar +Conv1d +d +Feature +Map +Global Time +Local Time +Concat +Figure 1: Infomaxformer architecture +proposed Infomaxformer can significantly improve the accuracy +of prediction, and is superior to other state-of-the-art models. The +contributions of this paper are summarized as follows: +• We review the calculation method of self-attention mecha- +nism from the perspective of information entropy [52], and +sparse the calculation of self-attention by using the Maxi- +mum Entropy Principle [27] to reduce the time complex- +ity. +• In view of the data characteristic that local information of +time-series is heavy spatial redundancy, we propose the +Keys/Values Distilling method, which can further reduce the +time and space complexity to O(𝐿), and help the model to +accept longer sequence inputs. +• In order to decompose time-series and explain complex time- +series patterns, we propose a decomposition method, which +is combined with self-attention mechanism, to process com- +plex time-series and extract more useful features. +• We have conducted extensive experiments on datasets in +many different fields, and the final results show that our +proposed model achieves the most advanced performance +in a variety of experimental settings. +2 +RELATED WORK +2.1 +Time-Series Forecasting +The classical convolutional neural network (CNN) [31] model can +extract the local information unrelated to the spatial position in +the data [36]. In order to allow CNN to be used in the time-series, +scholars designed multi-layer causal convolutions to ensure that +only past information can be used for prediction [3, 6]. For the +processing of long-term dependencies, the Temporal Convolutional +Network (TCN) introduces the dilated convolutions, which changes +the interval of original look-back window from 1 to 𝑑𝑙, where 𝑑𝑙 +is a layer-specific division rate. In traditional modeling, recurrent +neural networ (RNN) is also widely used in the field of time-series +prediction owing to its architecture naturally supports inputs and +outputs with sequential relationships [37, 49, 51, 53]. The main idea +is to use the memory state of RNN neurons to store all past effective +information. However, RNN variants may be limited in learning +the long-term dependency in the data. Since all the information +in the past will decay with time and the difficult for RNN to learn +the long-term memory [23]. Long Short-Term Memory networks +(LSTM) [24] introduces some different operation gates to solve this +problem, but it does not solve the long-term dependency well. To +further these effort, attention mechanism is proposed to help the +neural network to learn long-term memory information [2]. In +short, the attention mechanism of time-series is to calculate the +dynamic weight, find the weighted sum of past hidden states, and +predict the output value with the summed state. In this way, the +vector used for prediction can contain information that predicts a +more informative time point for the current time point [16, 28, 35]. +2.2 +Sparse Attention +In the standard self-attention mechanism, each token needs to +pay attention to all other tokens [56]. However, for the trained +transformer, the learned attention matrix A is often very sparse +across most data points [9]. Therefore, the computational complex- +ity can be reduced by limiting the number of queries that want +to participate in the query-key pairs through the incorporating +structural bias. The existing methods can be divided into two cate- +gories: position-based and content-based sparse attention [38]. In +position-based sparse attention, the attention matrix is limited to +some predefined patterns [45, 61]. Although these spark patterns +change in different ways, some of them can be decomposed into +some atomic sparse patterns, e.g., global attention, band attention, +dilated attention, random attention, block local attention [5, 19]. +Many spark patterns include one or more of the above atomic sparse +patterns [64]. Another work is to create a sparse graph based on +the input content. A simple method is to select keywords that may +have a large similarity score with a given query. In order to con- +struct the sparse graph effectively, the maximum inner product +search problem can be repeated, i.e, the key with the maximum +dot product can be found by a query without calculating all dot- +product terms [33, 65]. For example, Routing transformer [50] uses +K-means clustering to cluster queries and keys on the same group +of centroid vectors. Each query only focuses on the keys belonging + +0 +2000 +4000 +6000 +8000 +0.0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0 +2000 +4000 +6000 +8000 +0.00 +0.01 +0.02 +0.03 +0.04 +0 +2000 +4000 +6000 +8000 +0.00 +0.02 +0.04 +0.06 +0.08 +0.10 +(a) Softmax scores at Head1@Encoder layer +0 +2000 +4000 +6000 +8000 +0.000 +0.025 +0.050 +0.075 +0.100 +0.125 +0.150 +0.175 +0.200 +0 +2000 +4000 +6000 +8000 +0.00 +0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +0.07 +0 +2000 +4000 +6000 +8000 +0.00 +0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +(b) Softmax scores at Head7@Encoder layer +Figure 2: The Softmax scores in the self-attention from canonical Transformer trained on ETTh1 dataset +to the same cluster. Reformer [30] uses location sensitive hash- +ing (LSH) to select key-value pairs for each query. The proposed +LSH allows each token to attend only to the tokens in the same +hash bucket. In Informer [65], based on query and key similarity +sampling dot-product pairs, ProbSparse self-attention is proposed +to reduce the time complexity of Transformer to O(𝐿 log 𝐿) and +allows it to accept longer input. +3 +METHODOLOGY +The problem of long time-series forecasting is to input the past +sequence X = +� +𝑥1, · · · ,𝑥𝐿𝑥 |𝑥𝑖 ∈ R𝑑𝑥 +� +, and the output is to predict +corresponding future sequence Y = +� +𝑦𝐿𝑥+1, · · · ,𝑦𝐿𝑥+𝐿𝑦 |𝑦𝑖 ∈ R𝑑𝑦 +� +, +where 𝐿𝑥 and 𝐿𝑦 are the lengths of input and output sequences +respectively, and 𝑑𝑥 and 𝑑𝑦 are the feature dimensions of input X +and output Y respectively. The LTFP encourages a longer input’s +length 𝐿𝑥 and a longer output’s length 𝐿𝑦 than previous works. +Our proposed Infomaxformer holds the encoder-decoder archi- +tecture and combines it with the decomposition structure to solve +LTFP. Please refer to Figure 1 for an overview and the following +sections for details. +3.1 +Vanilla Self-attention Mechanism +The scaled dot-product attention mechanism in original Trans- +former [56] performs as: +𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(Q, K, V) = 𝑆𝑜𝑓 𝑡𝑚𝑎𝑥( QK𝑇 +√ +𝑑 +)V +(1) +i.e., 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 is defined as an operation of ternary matrix, where +Q(𝑞𝑢𝑒𝑟𝑖𝑒𝑠) ∈ R𝐿𝑄×𝑑, K(𝑘𝑒𝑦𝑠) ∈ R𝐿𝐾 ×𝑑, V(𝑣𝑎𝑙𝑢𝑒𝑠) ∈ R𝐿𝑉 ×𝑑, and +𝑑 is the feature dimension. To further discuss the self-attention +mechanism, the 𝑆𝑜𝑓 𝑡𝑚𝑎𝑥 function is expanded, and use 𝑞𝑖, 𝑘𝑖 and +𝑣𝑖 to represent the 𝑖-th row in Q, K and V respectively. For the time- +series with input length 𝐿, 𝑖 represents the 𝑖-th data. Therefore, the +original self-attention mechanism for the 𝑖-th data can be expressed +as: +A(𝑖) = +𝐿 +∑︁ +𝑗 +𝑒 +𝑞𝑖𝑘𝑇 +𝑗 +√ +𝑑 +�𝐿 +𝑙 𝑒 +𝑞𝑖𝑘𝑇 +𝑙 +√ +𝑑 +𝑣𝑗 = +𝐿 +∑︁ +𝑗 +𝑘(𝑞𝑖,𝑘𝑗) +�𝐿 +𝑙 𝑘(𝑞𝑖,𝑘𝑙) +𝑣𝑗 +(2) +which 𝑘(𝑞𝑖,𝑘𝑗) = 𝑒𝑥𝑝(𝑞𝑖𝑘𝑇 +𝑗 / +√ +𝑑) [55]. +Let 𝑝(𝑞𝑖,𝑘𝑗) = 𝑘(𝑞𝑖,𝑘𝑗)/�𝐿 +𝑙 𝑘(𝑞𝑖,𝑘𝑙), 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 can be abbrevi- +ated as: +A(𝑖) = +𝐿 +∑︁ +𝑗 +𝑝 �𝑞𝑖,𝑘𝑗 +� 𝑣𝑗 +(3) +where 𝑝 �𝑞𝑖,𝑘𝑗 +� is the probability of 𝑣𝑖, then A(𝑖) is the expec- +tation of matrix V. For the probability 𝑝(𝑞𝑖,𝑘𝑗), it requires the +quadratic times dot-product computation and O(𝐿𝑄𝐿𝐾) memory +usage, which is the main reason why the traditional self-attention +mechanism cannot handle long time-series (it is easy to lead to +out-of-memory), and also the main disadvantage that limits its +prediction ability. +Many previous studies have shown that the probability distribu- +tion of self-attention mechanism has potential sparsity [9, 38], and a +selection strategy is designed for all 𝑝(𝑞𝑖,𝑘𝑗) without significantly +affecting the performance of the model [5, 19, 45, 61]. To motivate +our approach, we first revisit the learned attention patterns of the +vanilla self-attention and make a qualitative evaluation. Accord- +ing to Figure 2, in the first layer of encoder, the scores follows an +obvious long tail distribution, and the Softmax scores has obvious +blocking phenomenon, especially in the second and third layers. +So a few dot-product pairs contribute to the major attention, and +others generate negligible attention. Then, how to “select” them? +3.2 +Reformulation via the Lens of Information +Entropy +We now provide the intuition to reformulate Equation (3) via the +lens of information entropy [52]. Information entropy is a basic +concept of information theory, which describes the uncertainty of +possible events of information sources. Its formula is as follows: +𝐻 (𝑥𝑖) = − +𝐿 +∑︁ +𝑖=1 +𝑝(𝑥𝑖)𝑙𝑛𝑝(𝑥𝑖) +(4) + +where 𝑝(𝑥𝑖) represents the probability that the random event𝑋 is𝑥𝑖. +Any information has redundancy, which is related to the occurrence +probability (uncertainty) of each symbol in the information. The +probability and the amout of information generated are positively +correlated. Information is used to eliminate random uncertainty, +and information entropy is a measure of the amount of information +needed to eliminate uncertainty, i.e., the amount of information +that an unknown event may contain. +Maximum Entropy Principle When only some knowledge about +the unknown distribution is mastered, the probability distribution +with the largest entropy value should be selected [27]. +It is difficult to determine the probability distribution of random +variables. Generally, only the average values or the values under +certain limited conditions can be measured. There can be many +(even infinite) distributions that meet the measured values. The +maximum entropy principle is a criterion for selecting the statistical +characteristics of random variables that best meet the objective +conditions, also known as the Maximum Information Principle. +Based on this principle, it is effective to select a distribution with +maximum entropy as the distribution of the random variable. +Maximum Entropy Self-attention From Equation (3), the 𝑖-th +query’s attention on all the keys are defined as a probability distri- +butions p𝑖 and the output is its composition with values V. Accord- +ing to the maximum entropy principle, the dominant dot-product +pairs encourage the corresponding entropy of p𝑖 to be maximum. +However, the traversing of all the p𝑖 still needs to calculate each +dot-product pair, i.e., the time complexity is O(𝐿2). Motivated by +this, we propose a very simple but effective approximation method +to obtain the query information entropy measurement. +Proposition 3.1. For all probability distributions p𝑖 and p𝑗, if +𝜎𝑝𝑖 < 𝜎𝑝𝑗 , it can be considered that 𝐻 (𝑖) > 𝐻 (𝑗). +If the 𝑖-th query’s p𝑖 gains a smaller variance, its information en- +tropy is larger and has a higher possibility to contain the dominate +dot-product pairs. Variance is a measure of the degree of dispersion +of a group of data. The variance of data subject to the same distri- +bution is the same, so we only need to randomly sample constant +𝑈 from K to calculate the variance of the 𝑖-th query’s probability +distribution p𝑖, which only need to calculate O(𝐿𝑄) dot-product +for each query-key lookup and the layer memory usage maintains +O(𝐿𝑄). Then, select sparse Top-𝑢 from Q as ¯Q to calculate the +standard dot-product pair, so the time complexity and memory +usage maintains O(𝑢𝐿𝐾). However, the rest of queries can’t be left +without any calculation. +Theorem 3.2. In the case of discrete sources, for discrete sources +with L symbols, the information entropy can reach the maximum +value only when they appear with equal probability, that is, the +average uncertainty of sources with equal probability distribution is +the maximum +Based on the proposed measurement and Theorem 3.2, we have +the maximum entropy self-attention, i.e., MEA (the pseudo-code is +in Appendix): +A(𝑖) = + + +�𝐿 +𝑗 𝑝 �𝑞𝑖,𝑘𝑗 +� 𝑣𝑗 +, if top-u +�𝐿 +𝑗 𝑣𝑗/𝐿 +, otherwise +(5) +3.3 +Embedding Method +Infomaxformer Encdeor +Infomaxformer Decdeor +Encoder +Input +Time-series +Decomp +Feed +Forward +Prediction +Time-series +Decomp +Maximum Entropy +Self-attention +Feed +Forward ++ +Embedding +Q +K +V ++ +Maximum Entropy +Self-attention +Q +K +V +Embedding +Decoder +Input +Masked +Maximum Entropy +Self-attention +Q +K +V ++ ++ ++ +N ╳ +M ╳ +Data +Mean ++ +d +Scalar +Conv2d +d +Feature +Map +Global Time +Local Time +Stack +Figure 3: The Embedding Method +As shown in Figure 3, the input embedding consists of three +parts, a scalar, a local position and a global time stamp. We use +scalar projection SP, local position embedding PE [56] and time +embedding TE [65] to deal with the above parts respectively: +𝑆𝑃 = 𝐶𝑜𝑛𝑣1𝑑(𝑥𝑡 +𝑖 ) +(6) +𝑃𝐸(𝑖,2𝑗) = 𝑠𝑖𝑛 +� +𝑖/100002𝑗/𝑑𝑚𝑜𝑑𝑒𝑙 +� +𝑃𝐸(𝑖,2𝑗+1) = 𝑐𝑜𝑠 +� +𝑖/100002𝑗/𝑑𝑚𝑜𝑑𝑒𝑙 +� +(7) +𝑇𝐸 = 𝐸(𝑚𝑜𝑛𝑡ℎ) + 𝐸(𝑑𝑎𝑦) + 𝐸(ℎ𝑜𝑢𝑟) + 𝐸(𝑚𝑖𝑛𝑢𝑡𝑒) +(8) +For the Equation (6), we project the scalar context 𝑥𝑡 +𝑖 into 𝑑𝑚𝑜𝑑𝑒𝑙- +dim vector with 1-D convolutional filters. The kernel width is 3, +stride is 1, the input channel is 𝑑𝑥 and the output channel is 𝑑𝑚𝑜𝑑𝑒𝑙. +For the Equation (7), 𝑖 ∈ {1, . . . , 𝐿𝑥 }, 𝑗 ∈ {1, . . . , ⌊𝑑𝑚𝑜𝑑𝑒𝑙/2⌋}, +𝑑𝑚𝑜𝑑𝑒𝑙 is the feature dimension after embedding. For the Equa- +tion (8), 𝐸 is a learnable stamp embeddings with limited vocab size +(up to 60, namely taking minutes as the finest granularity). +For the three different features finally obtained, instead of the +method of addition [58, 65], we stacked them together and reduced +their dimension through a two-dimensional convolution, that is, +the input channel of convolution is 3 and the output channel is 1: +X = 𝐶𝑜𝑛𝑣2𝑑(𝑆𝑡𝑎𝑐𝑘(𝑆𝑃, 𝑃𝐸,𝑇𝐸)) +(9) +where the kernel width and stride is (1, 1). +3.4 +Keys/Values Distilling +In previous works, a feed-forward network with a single hidden +layer is proposed to linearly project the queries, keys and values +[56, 65]. As the natural consequence of the original sequence linear +project, the queries, keys and values have a lot of redundant features. +We use the distilling operation to privilege the superior keys and +values with dominating features and make a focused feature map +in the self-attention mechanism. It trims the time dimension of the +input sharply, does not arbitrarily delete the feature of the input +sequence, but recombines them into a new heads weights matrix. + +L +d +Conv2d +MaxPool2d +L5/6 +Conv2d +MaxPool2d +L4/6 +Conv2d +MaxPool2d +K/V +√ +L +Figure 2: The single stack in NewInformer’s encoder +L +Scalar +L +LocalTime +L +GlobalTime +d +Feature +Map +L +L +d +Encoder +Input +Q +LQ +K +LK +V +LV +× +Multi-Head Attention +MaxPool2d +Scale Attention +L/2 +d +Encoder +Output +Embedding +Embedding +Embedding +Conv1d +Figure 3: The single stack in NewInformer’s encoder +Figure 4: The Keys/Values Distilling +As shown in Figure 4, we distilling keys/values using a three-step +convolution operation: +K1 = 𝑀𝑎𝑥𝑝𝑜𝑜𝑙2𝑑(𝑅𝑒𝑙𝑢(𝐶𝑜𝑛𝑣2𝑑(X))) +K2 = 𝑀𝑎𝑥𝑝𝑜𝑜𝑙2𝑑(𝑅𝑒𝑙𝑢(𝐶𝑜𝑛𝑣2𝑑(K1))) +K3 = 𝑀𝑎𝑥𝑝𝑜𝑜𝑙2𝑑(𝑅𝑒𝑙𝑢(𝐶𝑜𝑛𝑣2𝑑(K2))) +(10) +where X ∈ R𝐿𝑥×𝑑𝑚𝑜𝑑𝑒𝑙 . 𝐶𝑜𝑛𝑣2𝑑() performs an 2-D convolutional +filters (kernel size=(2, 2)) with the 𝑅𝑒𝑙𝑢 activation function, the +number of input channels is the number of heads, and the num- +ber of output channels is ℎ times the number of input channels, +so after three-step convolution, the number of output channels, +i.e., the number of heads, is ℎ3 (this can be modified as needed). +𝑀𝑎𝑥𝑝𝑜𝑜𝑙2𝑑() performs an 2-D max pooling (kernel size and stride +is (𝑙, h)). Therefore, after three-step convolution, K3 ∈ R +𝐿𝑋 +𝑙3 × 𝑑𝑚𝑜𝑑𝑒𝑙 +ℎ3 +, +i.e. K ∈ R𝐿𝐾 × 𝑑𝑚𝑜𝑑𝑒𝑙 +ℎ3 +, V ∈ R𝐿𝑉 × 𝑑𝑚𝑜𝑑𝑒𝑙 +ℎ3 +, 𝐿𝐾 and 𝐿𝑉 is 𝐿𝑋 /𝑙3. +Complexity Analysis: Now we know that 𝐿𝐾 is 𝐿𝑋 /𝑙3, so the +time complexity and space complexity of our MEA is O(𝑢𝐿𝑋 /𝑙3). +We set 𝑢 = 𝑐√︁𝐿𝑄, 𝑙 = 𝐿1/6 +𝑋 , 𝑐 is a constant sampling factor, 𝑢 varies +linearly with 𝐿𝑄, so: +𝑢𝐿𝑋 /𝑙3 = 𝑐 +√︃ +𝐿𝑄𝐿𝑋 /(𝐿1/6 +𝑋 )3 = 𝑐 +√︃ +𝐿𝑄 +√︁ +𝐿𝑋 +(11) +where 𝐿𝑄 = 𝐿𝑋 = 𝐿. Consequently, our time complexity and space +complexit can reach linear O(𝐿). +3.5 +Time-Series Decomposition +In order to make long-term prediction under the input of long time- +series, we use the concept of decomposition to learn complex time +patterns, which can separate the time-series into trend and seasonal +[10, 25, 58]. These two parts respectively represent two features +including long-term development trend and seasonality of the time- +series, which are different in different time-series. To overcome such +a problem, we introduce a time-series decomposition block (TSD), +which can propose the development trend and seasonality of the +time-series from the input. Specifically, we use the moving average +to smooth out periodic fluctuations, extract long-term trends, and +highlight seasonality. For an input sequence X ∈ R𝐿×𝑑 of length 𝐿, +this process can be formulated as: +X𝑡 = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙(X) +X𝑠 = X − X𝑡 +(12) +where X𝑠, X𝑡 ∈ R𝐿×𝑑 represent extracted seasonal and trend, re- +spectively. We use X𝑡, X𝑠 = 𝑇𝑖𝑚𝑒𝑆𝑒𝑟𝑖𝑒𝑠𝐷𝑒𝑐𝑜𝑚𝑝(X) to summarize +above equations. +3.6 +Encoder and Decoder +Encoder: As shown in Figure 1, the encoder focuses on modeling +of the seasonal part. Our encoder layers are composed of two sub- +blocks. The first is a MEA mechanism, and the second is a simple, +position-wise fully connected feed-forward network (MLP). We +employ residual connections [21] around each of the sub-blocks, +but unlike previous structures [15, 56], layer normalization [1] was +not performed. The input of the encoder is only the seasonal part X𝑠 +of the input sequence X, and the output only contains the seasonal +information of the past and will be used as cross information to help +the decoder better predict the seasonal information of the future +sequence. +X𝑡, X𝑠 = 𝑇𝑖𝑚𝑒𝑆𝑒𝑟𝑖𝑒𝑠𝐷𝑒𝑐𝑜𝑚𝑝(X) +X𝑛 +𝑠1 = X𝑛−1 +𝑠 ++ 𝑀𝐸𝐴(X𝑛−1 +𝑠 +) +X𝑛 +𝑠 = X𝑛 +𝑠1 + 𝑀𝐿𝑃(X𝑛 +𝑠1) +(13) +where 𝑛 = 1 . . . 𝑁, X0 +𝑡 = X𝑡, X𝑒𝑛𝑜 = X𝑁 +𝑡 , 𝑁 is the number of layers +of the encoder, and MLP consists of two 1-D convolution operations. +Decoder: In addition to the two sub-blocks in each encoder layer, +the decoder in classic Transformer also inserts a third sub-block in +the two sub-blocks, which performs self-attention on the output +of the encoder layers. On this basis, we insert the fourth sub-block +in the decoder, i.e., the time-series decomposition block. Similar to +the encoder, we employ residual connections around each of the +sub-blocks, but did not perform layer normalization. We input the +following vectors to the decoder: +X𝑑𝑒𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡(X𝑙𝑎𝑏𝑒𝑙, X0) ∈ R(𝐿𝑙𝑎𝑏𝑒𝑙+𝐿𝑦)×𝑑𝑚𝑜𝑑𝑒𝑙 +(14) +where X𝑙𝑎𝑏𝑒𝑙 ∈ R𝐿𝑙𝑎𝑏𝑒𝑙×𝑑𝑚𝑜𝑑𝑒𝑙 is start token, 𝐿𝑙𝑎𝑏𝑒𝑙 is the label +length, X0 ∈ R𝐿𝑦×𝑑𝑚𝑜𝑑𝑒𝑙 is a placeholder for the target sequence (set +the scalar to 0). By setting masked dot-products to negative infinity, +masked multi-head attention is applied to the MEA calculation +(MMEA). This masking ensures that the prediction of position 𝑖 +can only rely on the known outputs of positions less than 𝑖, which +avoids auto-regressive. A fully connected layer acquires the final +output, and its outsize is 𝑑𝑦. For the time-series, the trend changes +are not obvious, but the specific seasonal is different. We use the +decoder to predict the seasonal of future data, and use the average +of input data to approximate the trend part of future data. +X𝑛 +1 = X𝑛−1 + 𝑀𝐸𝐴(X𝑛−1) +X𝑛 +𝑡 , X𝑛 +𝑠 = 𝑇𝑖𝑚𝑒𝑆𝑒𝑟𝑖𝑒𝑠𝐷𝑒𝑐𝑜𝑚𝑝(X𝑛 +1 ) +X𝑛 +𝑠1 = X𝑛 +𝑠 + 𝑀𝑀𝐸𝐴(X𝑛 +𝑠 , X𝑒𝑛𝑜) +X𝑛 = X𝑛 +𝑠1 + 𝑀𝐿𝑃(X𝑛 +𝑠1) + X𝑛 +𝑡 +Y = 𝑀𝑒𝑎𝑛(X𝑡) + X𝑀 +(15) +where 𝑛 = 1 . . . 𝑀, X0 = X𝑑𝑒𝑖, 𝑀 is the number of layers of the +decoder. +Loss Function: Our loss function is calculated by the mean +square error (MSE) between the model output data 𝑦𝑜 and the real + +Table 1: Multivariate long time-series forecasting results on five cases. A lower MSE or MAE indicates a better prediction, and +we use black numbers to indicate the best performance. Due to the limitation of memory, the batch size of some models is +changed to 16, which is indicated by underlined numbers. The ‘-’ indicates that there is still not enough memory after the +batch size is changed to 16 +Methods +Infomaxformer +Autoformer +Informer +Reformer +LogTrans +Transformer +LSTM +Metric +MSE +MAE +MSE +MAE +MSE +MAE +MSE +MAE +MSE +MAE +MSE +MAE +MSE +MAE +ECL +24 +0.190 +0.305 +0.195 +0.312 +0.310 +0.400 +0.280 +0.381 +0.231 +0.338 +0.244 +0.350 +0.338 +0.419 +48 +0.209 +0.321 +0.221 +0.332 +0.357 +0.425 +0.273 +0.370 +0.287 +0.373 +0.260 +0.359 +0.334 +0.412 +96 +0.218 +0.328 +0.230 +0.340 +0.367 +0.434 +0.291 +0.381 +0.292 +0.377 +0.278 +0.373 +0.330 +0.409 +192 +0.239 +0.346 +0.280 +0.347 +0.362 +0.434 +0.344 +0.420 +0.295 +0.385 +0.286 +0.377 +0.327 +0.407 +384 +0.278 +0.377 +- +0.450 +0.483 +0.327 +0.404 +0.323 +0.397 +0.290 +0.378 +0.320 +0.403 +ETTh1 +24 +0.478 +0.489 +0.499 +0.516 +1.130 +0.871 +0.624 +0.578 +0.505 +0.513 +0.882 +0.723 +1.232 +0.839 +48 +0.552 +0.528 +0.562 +0.552 +1.231 +0.905 +0.727 +0.638 +0.568 +0.544 +1.311 +0.954 +1.261 +0.873 +96 +0.564 +0.543 +0.611 +0.579 +1.345 +0.953 +0.930 +0.743 +0.714 +0.629 +1.957 +1.199 +1.268 +0.873 +192 +0.556 +0.544 +0.724 +0.625 +1.643 +1.061 +1.124 +0.821 +0.865 +0.717 +1.758 +1.136 +1.266 +0.871 +384 +0.597 +0.570 +- +1.499 +1.004 +1.270 +0.862 +0.952 +0.749 +1.405 +0.981 +1.273 +0.873 +ETTh2 +24 +0.436 +0.476 +0.437 +0.493 +2.048 +1.173 +0.975 +0.787 +0.621 +0.617 +1.016 +0.814 +3.291 +1.385 +48 +0.629 +0.544 +0.658 +0.643 +3.047 +1.471 +1.652 +1.027 +1.168 +0.985 +2.199 +1.242 +3.378 +1.408 +96 +0.593 +0.533 +0.686 +0.646 +6.882 +2.258 +3.301 +1.427 +2.279 +1.265 +5.862 +2.052 +3.488 +1.432 +192 +0.703 +0.607 +0.792 +0.671 +5.070 +1.885 +3.774 +1.617 +4.207 +1.776 +4.045 +1.675 +3.489 +1.434 +384 +0.575 +0.557 +- +4.080 +1.669 +3.363 +1.465 +3.032 +1.526 +3.549 +1.516 +3.486 +1.430 +ETTm1 +24 +0.330 +0.397 +0.414 +0.438 +0.354 +0.401 +0.430 +0.453 +0.882 +0.666 +0.355 +0.403 +1.121 +0.791 +48 +0.418 +0.454 +0.537 +0.505 +0.533 +0.521 +0.578 +0.544 +0.951 +0.707 +0.514 +0.526 +1.130 +0.799 +96 +0.494 +0.502 +0.545 +0.517 +0.592 +0.571 +0.710 +0.612 +0.558 +0.540 +0.740 +0.657 +1.141 +0.805 +192 +0.558 +0.531 +0.605 +0.534 +0.768 +0.682 +0.896 +0.702 +0.591 +0.565 +0.700 +0.641 +1.141 +0.806 +384 +0.611 +0.561 +- +0.938 +0.765 +1.072 +0.781 +0.767 +0.650 +0.838 +0.719 +1.153 +0.810 +Weather +24 +0.307 +0.357 +0.455 +0.489 +0.348 +0.401 +0.370 +0.426 +0.385 +0.427 +0.326 +0.378 +0.492 +0.500 +48 +0.381 +0.422 +0.544 +0.542 +0.488 +0.505 +0.443 +0.475 +0.498 +0.505 +0.447 +0.664 +0.497 +0.504 +96 +0.456 +0.481 +0.554 +0.546 +0.603 +0.574 +0.511 +0.520 +0.562 +0.550 +0.548 +0.532 +0.500 +0.506 +192 +0.508 +0.517 +0.585 +0.560 +0.700 +0.632 +0.537 +0.541 +0.591 +0.570 +0.620 +0.575 +0.503 +0.517 +384 +0.511 +0.514 +- +0.681 +0.621 +0.536 +0.535 +0.622 +0.585 +0.630 +0.579 +0.513 +0.524 +data 𝑦. and the loss is propagated back from the decoder’s outputs +across the entire model. +Table 2: Complexity analysis of different forecasting models. +The ★ denotes applying generative style decoder [65]. +Methods +Training +Forecasting +Time +Memory +Steps +Infomaxformer +O(𝐿) +O(𝐿) +1 +Autoformer +O(𝐿 log 𝐿) +O(𝐿 log 𝐿) +1 +Informer +O(𝐿 log 𝐿) +O(𝐿 log 𝐿) +1 +Transformer +O(𝐿2) +O(𝐿2) +𝐿 +LogTrans +O(𝐿 log 𝐿) +O(𝐿2) +1★ +Reformer +O(𝐿 log 𝐿) +O(𝐿 log 𝐿) +𝐿 +LSTM +O(𝐿) +O(𝐿) +𝐿 +4 +EXPERIMENT +4.1 +Datasets +ETT(Electricity Transformer Temperature):1 The ETT is a key +indicator for long-term deployment of the electric power, which +collects data from two counties in China from July 2016 to July 2018 +for a total of two years. +ECL (Electricity Consuming Load):2 It collects the electricity +consumption (Kwh) of 321 customers. Due to the lack of data [33], +we follow the settings in Informer [65] to convert the dataset to +hourly consumption for 2 years. +Weather:3 This dataset contains the local climatologicale data +of nearly 1600 locations in the United States. The data are collected +by once an hour from 2010 to 2013. +1ETT dataset was acquired at [65]. +2ECL +dataset +was +acquired +at +https://archive.ics.uci.edu/ml/datasets/ +ElectricityLoadDiagrams20112014. +3Weather +dataset +was +acquired +at +https://www.ncei.noaa.gov/data/local- +climatological-data/. + +Table 3: Different input lengths for two prediction lengths in ETTh1. The ‘-’ indicates failure for the out-of-memory +Predicition length +336 +480 +Encoder’s input +336 +480 +720 +960 +1200 +1440 +480 +720 +960 +1200 +1440 +Informer +MSE +1.474 +1.576 +1.644 +1.607 +1.580 +1.766 +1.441 +1.531 +1.508 +1.428 +1.520 +MAE +0.999 +1.024 +1.045 +1.043 +1.037 +1.124 +0.971 +0.998 +0.997 +0.967 +1.017 +Reformer +MSE +1.000 +1.043 +1.200 +1.159 +- +- +1.148 +1.259 +- +- +- +MAE +0.766 +0.790 +0.842 +0.829 +0.827 +0.870 +Transformer +MSE +1.085 +1.161 +1.630 +1.922 +- +- +1.083 +1.410 +- +- +- +MAE +0.830 +0.858 +1.065 +1.159 +0.836 +0.969 +LogTrans +MSE +1.136 +1.127 +1.059 +1.075 +1.060 +1.067 +0.888 +0.940 +0.892 +0.885 +0.914 +MAE +0.851 +0.849 +0.817 +0.823 +0.818 +0.816 +0.733 +0.764 +0.736 +0.732 +0.745 +Autoformer +MSE +0.581 +0.560 +0.748 +- +- +- +0.573 +- +- +- +- +MAE +0.547 +0.547 +0.650 +0.558 +Infomaxformer +MSE +0.567 +0.556 +0.544 +0.566 +0.568 +0.624 +0.537 +0.583 +0.597 +0.599 +0.709 +MAE +0.545 +0.547 +0.543 +0.563 +0.564 +0.602 +0.551 +0.581 +0.587 +0.585 +0.653 +4.2 +Experimental Details +Baselines: We selected six methods as comparison, including Trans- +former [56], four latest state-of-the-art Transformer-based mod- +els: Reformer [30], LogTrans [33], Informer [65], Autoformer [58], +and one RNN-based models: LSTM (Long Short-Term Memory net- +works) [24]. +Experiment setting: Our experiment was implemented in Py- +toch [46], and all the experiments are conducted on a single Nvidia +RTX 3090 GPU (24GB memory). The input of each dataset is zero- +mean normalized. We use two evaluation metrics, including mean +square error (MSE): 𝑀𝑆𝐸 = 1 +𝑛 +�𝑛 +𝑖=1 +�𝑑 +𝑗=1 +(𝑦− ˆ𝑦)2 +𝑑 +and mean absolute +error (MAE): 𝑀𝐴𝐸 = 1 +𝑛 +�𝑛 +𝑖=1 +�𝑑 +𝑗=1 +|𝑦− ˆ𝑦| +𝑑 +, where 𝑛 is the length of +the sequence and 𝑑 is the dimension of data at each time point. +We use these two evaluation metrics on each prediction window +to calculate the average of forecasts and roll the whole set with +𝑠𝑡𝑟𝑖𝑑𝑒 = 1. +Our implementation details follows common practice of Informer +[65] training, and all experiments are repeated five times. We use +Adam [29] optimizer for optimization with a learning rate starts +from 1𝑒−4, decaying two times smaller every epoch, and the batch +size is 32. The number of encoder layers is 3 and the number of +decoder layers is 2. There is no limit to the total number of epochs, +with appropriate early stopping, i.e., when the loss of the validation +set does not decrease on three epochs, the training will be stopped. +More detailed settings can be found in Appendix 4.2. +4.3 +Multivariate Time-series Forecasting +To compare the performance of different prediction lengths, we +fixed the input length 𝐿𝑥 to 784 and gradually extended the predic- +tion length 𝐿𝑦, i.e., {24, 48, 96, 192, 384}, representing {6h, 12h, 24h, +48h, 96h} in ETTm, {1d, 2d, 4d, 8d, 16d} in {ETTh, ECL, Weather}, +and we set the length of the label to double 𝐿𝑦. +As shown in Table 1, our proposed Infomaxformer model achieves +the best performance in all benchmarks and all predicted length +settings. Although the performance of Autoformer is closest to our +model, it can only set the batch size to 32 when the prediction +length is 24. When the prediction length is 384, the batch size to +16 will also lead to out-of-memory. This shows that our proposed +Infomaxformer model can increase the prediction ability, while +greatly reducing the use of memory. In addition, we also found that +with the increase of prediction length, the prediction performance +of Infomaxformer is more stable, and there is no sudden drop in +performance, which means that Infomaxformer maintains good +long-term robustness. Low memory usage, good robustness, high- +performance prediction, etc., which is very meaningful for practical +applications, and our model has the above advantages. +4.4 +Parameter Sensitivity +We perform the sensitivity analysis of the proposed Infomaxformer +model on ETTh1. +Input Length: As shown in the Table 3, we gradually extended +the size of the input sequence 𝐿𝑥, i.e., {336, 480, 720, 960, 1200, 1440}, +while keeping the predicted length 𝐿𝑦 unchanged, and the length +𝐿𝑙𝑎𝑏𝑒𝑙 of the label sequence is consistent with 𝐿𝑦. Our 𝐿𝑦 selected +two values, 336 and 480. In Table 3, it can be seen that increasing +the input length will lead to the decrease of MSE and MAE, because +long input will bring repeated short-term patterns. However, as the +input sequence increases, there may be more dependencies between +the inputs, and the influence of noise in the input data will also +increase. Some models can not effectively eliminate the influence +of these noises and can not better grasp the dependence of long +time-series, so MSE and MAE may increase. In this experiment, the +batch size of Autoformer is set to 16, because too large batch size + +1 +2 +3 +4 +5 +6 +7 +8 +9 +Different Sampling Factor c +0.40 +0.45 +0.50 +0.55 +0.60 +0.65 +0.70 +MSE +24 +48 +96 +192 +1 +2 +3 +4 +5 +6 +7 +8 +9 +Different Sampling Factor c +0.40 +0.45 +0.50 +0.55 +0.60 +0.65 +MAE +24 +48 +96 +192 +(a) Sampling Factor 𝑐 +5 +10 +15 +20 +25 +30 +35 +40 +Different Sampling Factor U +0.40 +0.45 +0.50 +0.55 +0.60 +0.65 +MSE +24 +48 +96 +192 +5 +10 +15 +20 +25 +30 +35 +40 +Different Sampling Factor U +0.40 +0.45 +0.50 +0.55 +0.60 +0.65 +MAE +24 +48 +96 +192 +(b) Sampling Factor 𝑈 +Figure 5: The parameter sensitivity of two components in Infomaxformer +will directly lead to out-of-memory. In Table 2, we make statistics +on the time complexity and memory usage of various models. It +can be seen that there is still a certain gap between the memory +usage of many model theories and the actual application. It seems +that the Autoformer with memory usage of O(𝐿 log 𝐿) is not better +than the original Transformer with memory usage of O(𝐿2). +Sampling Factor 𝑐: The sampling factor 𝑐 controls the infor- +mation bandwidth of MEA in Equation (5). We start with small +factors (=1) and gradually increase to large factors (=9). As can be +seen in Figure 5(a), the performance of our Infomaxformer does not +change much, and it is not similar to the case that the performance +of Informer is slightly improved with the change of sampling factor. +This is because our initial sampling is +√ +𝐿, not log 𝐿 in Informer [65], +so enough dominant queries is selected to calculate the dot-product +to prevent the loss of important features. +Sampling Factor 𝑈 : The sampling factor 𝑈 controls how many +keys are selected to calculate the variance. Although the variance +of data subject to the same distribution is the same, too few data +samples will cause the calculated variance to be not the actual +variance. It can be seen from Figure 5(b) that when 𝑈 is too low, +the performance of the Infomaxformer model will indeed be af- +fected. However, when 𝑈 gradually increases, the performance of +the model tends to be stable. +Table 4: Ablation study of the Infomaxformer +Encoder’s input +720 +960 +1200 +1440 +Infomaxformer +MSE +0.566 +0.588 +0.633 +0.573 +MAE +0.579 +0.585 +0.617 +0.585 +Infomaxformer1 +MSE +1.326 +1.237 +0.880 +1.290 +MAE +0.911 +0.891 +0.736 +0.882 +Infomaxformer2 +MSE +0.906 +0.681 +0.839 +0.831 +MAE +0.763 +0.638 +0.727 +0.720 +Infomaxformer3 +MSE +1.074 +1.018 +0.964 +1.121 +MAE +0.822 +0.823 +0.789 +0.846 +4.5 +Ablation Study +We also performed some additional experiments for ablation analy- +sis on ETTh1. Infomaxformer1 indicates that Keys/Values Distilling +is replaced with the original projection operation, Infomaxformer2 +indicates that MEA is replaced with the canonical self-attention +mechanism, and Infomaxformer3 indicates that we have not taken +our proposed Time-Series Decomposition. In this experiment, we +set the predicted length 𝐿𝑦 to 720 and select four ultra long input +lengths. As shown in the Table 4, without any part of the Info- +maxformer model, the performance will be degraded. Only the +complete Infomaxformer can achieve the best performance. The +impact of MEA mechanism on the performance of Infomaxformer +is not as obvious as the other two, because the mechanism focuses +on sparing self-attention and reducing time complexity. +Table 5: Comparative experiment of different Decomposi- +tion Block in Infomaxformer and Autoformer +Predicition length +96 +192 +384 +720 +TSD+MEA +MSE +0.554 +0.496 +0.567 +0.551 +MAE +0.540 +0.513 +0.555 +0.559 +SDB+MEA +MSE +0.709 +0.770 +0.683 +0.677 +MAE +0.624 +0.662 +0.626 +0.626 +TSD+AC +MSE +0.706 +0.677 +- +- +MAE +0.627 +0.605 +- +- +SDB+AC +MSE +0.623 +0.699 +- +- +MAE +0.577 +0.619 +- +- +Different Time-Series Decomposition: In order to better com- +pare the TSD proposed by us with the Series decomposition block +(SDB) proposed by Autoformer [58], we freely combined MEA, +Auto-Correlation (AC) [58] with TSD, SDB. As shown in the Table +5, we found an interesting phenomenon. No matter Infomaxformer +(TSD+MEA) or Autoformer (SDB+AC), only the complete state +model has the best performance. Our TSD is inferior to SDB in +short sequence prediction (𝐿𝑦 = 96), but superior to SDB in long +sequence prediction (𝐿𝑦 = 192). The sparsity of MEA results in +the model being able to output longer sequences, but it is precisely +because of this sparsity that the performance of MEA is inferior +to AC when memory allows. However, the perfect combination of +TSD and MEA proposed by us can output longer sequences and +maintain better prediction performance. + +5 +CONCLUSION +In this paper, we studied the long time-series forecasting prob- +lem (LTFP) and proposed Infomaxformer to predict time-series. +Specifically, we designed the Maximum Enterprise Self-attention +mechanism and Keys/Values Distilling operation to deal with the +challenges of quadratic time complexity and quadratic memory us- +age in vanilla Transformers. Finally, we reduce the time complexity +and memory usage to O(𝐿). In addition, the well-designed time- +series decomposition and the perfect combination with Transformer +architecture can effectively deal with the complex time-series pat- +terns of time-series, thus alleviating the limitations of the traditional +decomposition architecture. The experiments on real-word data +have proved the effectiveness of Infomaxformer in improving the +prediction ability of LTFP. +REFERENCES +[1] J. L. Ba, J. R. Kiros, and G. E. Hinton, Layer normalization, arXiv preprint +arXiv:1607.06450, (2016). +[2] D. Bahdanau, K. Cho, and Y. Bengio, Neural machine translation by jointly +learning to align and translate, arXiv preprint arXiv:1409.0473, (2014). +[3] S. Bai, J. Z. Kolter, and V. Koltun, An empirical evaluation of generic +convolutional and recurrent networks for sequence modeling, arXiv preprint +arXiv:1803.01271, (2018). +[4] H. Bao, L. Dong, and F. Wei, Beit: Bert pre-training of image transformers, arXiv +preprint arXiv:2106.08254, (2021). +[5] I. Beltagy, M. E. Peters, and A. Cohan, Longformer: The long-document trans- +former, arXiv preprint arXiv:2004.05150, (2020). +[6] A. Borovykh, S. Bohte, and C. W. Oosterlee, Conditional time series forecasting +with convolutional neural networks, arXiv preprint arXiv:1703.04691, (2017). +[7] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Nee- +lakantan, P. Shyam, G. Sastry, A. Askell, et al., Language models are few-shot +learners, Advances in neural information processing systems, 33 (2020), pp. 1877– +1901. +[8] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and I. Sutskever, Gen- +erative pretraining from pixels, in International conference on machine learning, +PMLR, 2020, pp. 1691–1703. +[9] R. Child, S. Gray, A. Radford, and I. Sutskever, Generating long sequences +with sparse transformers, arXiv preprint arXiv:1904.10509, (2019). +[10] R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning, Stl: A +seasonal-trend decomposition, J. Off. Stat, 6 (1990), pp. 3–73. +[11] J. D. Cryer, Time series analysis, vol. 286, Springer, 1986. +[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, Bert: Pre-training of +deep bidirectional transformers for language understanding, arXiv preprint +arXiv:1810.04805, (2018). +[13] L. Di Persio and O. Honchar, Artificial neural networks architectures for stock +price prediction: Comparisons and applications, International journal of circuits, +systems and signal processing, 10 (2016), pp. 403–413. +[14] C. Doersch, A. Gupta, and A. A. Efros, Unsupervised visual representation +learning by context prediction, in Proceedings of the IEEE international conference +on computer vision, 2015, pp. 1422–1430. +[15] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un- +terthiner, M. Dehghani, M. Minderer, G. Heigold, and S. a. Gelly, An image +is worth 16x16 words: Transformers for image recognition at scale, in International +Conference on Learning Representations, 2021. +[16] C. Fan, Y. Zhang, Y. Pan, X. Li, C. Zhang, R. Yuan, D. Wu, W. Wang, J. Pei, and +H. Huang, Multi-horizon time series forecasting with temporal attention learning, +in Proceedings of the 25th ACM SIGKDD International conference on knowledge +discovery & data mining, 2019, pp. 2527–2535. +[17] X. Geng, H. Liu, L. Lee, D. Schuurams, S. Levine, and P. Abbeel, Multi- +modal masked autoencoders learn transferable representations, arXiv preprint +arXiv:2205.14204, (2022). +[18] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, +A. Tulloch, Y. Jia, and K. He, Accurate, large minibatch sgd: Training imagenet +in 1 hour, arXiv preprint arXiv:1706.02677, (2017). +[19] Q. Guo, X. Qiu, P. Liu, Y. Shao, X. Xue, and Z. Zhang, Star-transformer, in +Proceedings of NAACL-HLT, 2019, pp. 1315–1325. +[20] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, Masked autoencoders are +scalable vision learners, in Proceedings of the IEEE/CVF Conference on Computer +Vision and Pattern Recognition, 2022, pp. 16000–16009. +[21] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, +in Proceedings of the IEEE conference on computer vision and pattern recognition, +2016, pp. 770–778. +[22] G. E. Hinton and R. Zemel, Autoencoders, minimum description length and +helmholtz free energy, Advances in neural information processing systems, 6 +(1993). +[23] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, et al., Gradient flow +in recurrent nets: the difficulty of learning long-term dependencies, 2001. +[24] S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural computa- +tion, 9 (1997), pp. 1735–1780. +[25] R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and practice, +OTexts, 2018. +[26] I. Loshchilov and F. Hutter, Sgdr: Stochastic gradient descent with warm restarts, +in ICLR, 2017. +[27] E. T. Jaynes, Information theory and statistical mechanics, Physical review, 106 +(1957), p. 620. +[28] H. Jiang, M. Cui, D. W. K. Ng, and L. Dai, Accurate channel prediction based +on transformer: Making mobility negligible, IEEE Journal on Selected Areas in +Communications, (2022). +[29] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, in Interna- +tional Conference on Learning Representations, 2015. +[30] N. Kitaev, L. Kaiser, and A. Levskaya, Reformer: The efficient transformer, in +ICLR, 2019. +[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with +deep convolutional neural networks, Advances in neural information processing +systems, 25 (2012). +[32] G. Lai, W.-C. Chang, Y. Yang, and H. Liu, Modeling long-and short-term tem- +poral patterns with deep neural networks, in The 41st international ACM SIGIR +conference on research & development in information retrieval, 2018, pp. 95–104. +[33] S. Li, X. Jin, Y. Xuan, X. Zhou, W. Chen, Y.-X. Wang, and X. Yan, Enhancing +the locality and breaking the memory bottleneck of transformer on time series +forecasting, Advances in neural information processing systems, 32 (2019). +[34] X. Li, W. Wang, L. Yang, and J. Yang, Uniform masking: Enabling mae pre- +training for pyramid-based vision transformers with locality, arXiv preprint +arXiv:2205.10063, (2022). +[35] B. Lim, S. Ö. Arik, N. Loeff, and T. Pfister, Temporal fusion transformers +for interpretable multi-horizon time series forecasting, International Journal of +Forecasting, 37 (2021), pp. 1748–1764. +[36] B. Lim and S. Zohren, Time-series forecasting with deep learning: a survey, Philo- +sophical Transactions of the Royal Society A, 379 (2021), p. 20200209. +[37] B. Lim, S. Zohren, and S. Roberts, Recurrent neural filters: Learning indepen- +dent bayesian filtering steps for time series prediction, in 2020 International Joint +Conference on Neural Networks (IJCNN), IEEE, 2020, pp. 1–8. +[38] T. Lin, Y. Wang, X. Liu, and X. Qiu, A survey of transformers, arXiv preprint +arXiv:2106.04554, (2021). +[39] L. Liu, J. Shen, M. Zhang, Z. Wang, and J. Tang, Learning the joint representation +of heterogeneous temporal events for clinical endpoint prediction, in Proceedings of +the AAAI Conference on Artificial Intelligence, vol. 32, 2018. +[40] S. Liu, H. Yu, C. Liao, J. Li, W. Lin, A. X. Liu, and S. Dustdar, Pyraformer: Low- +complexity pyramidal attention for long-range time series modeling and forecasting, +in International Conference on Learning Representations, 2021. +[41] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, Swin +transformer: Hierarchical vision transformer using shifted windows, in Proceedings +of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 10012– +10022. +[42] I. Loshchilov and F. Hutter, Decoupled weight decay regularization, in ICLR, +2019. +[43] E. J. Mcshane, Jensen’s inequality, Bulletin of the American Mathematical Society, +43 (1937), pp. 521–527. +[44] M. Noroozi and P. Favaro, Unsupervised learning of visual representations by +solving jigsaw puzzles, in European conference on computer vision, Springer, +2016, pp. 69–84. +[45] N. Parmar, A. Vaswani, J. Uszkoreit, L. Kaiser, N. Shazeer, A. Ku, and D. Tran, +Image transformer, in International conference on machine learning, PMLR, 2018, +pp. 4055–4064. +[46] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, +Z. Lin, N. Gimelshein, L. Antiga, et al., Pytorch: An imperative style, high- +performance deep learning library, Advances in neural information processing +systems, 32 (2019). +[47] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al., Improving +language understanding by generative pre-training, (2018). +[48] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al., Language +models are unsupervised multitask learners, OpenAI blog, 1 (2019), p. 9. +[49] S. S. Rangapuram, M. W. Seeger, J. Gasthaus, L. Stella, Y. Wang, and +T. Januschowski, Deep state space models for time series forecasting, Advances in +neural information processing systems, 31 (2018). +[50] A. Roy, M. Saffar, A. Vaswani, and D. Grangier, Efficient content-based sparse +attention with routing transformers, Transactions of the Association for Compu- +tational Linguistics, 9 (2021), pp. 53–68. + +[51] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski, Deepar: Proba- +bilistic forecasting with autoregressive recurrent networks, International Journal of +Forecasting, 36 (2020), pp. 1181–1191. +[52] C. E. Shannon, A mathematical theory of communication, The Bell system tech- +nical journal, 27 (1948), pp. 379–423. +[53] P. Tang and X. Zhang, Features fusion framework for multimodal irregular time- +series events, in Pacific Rim International Conference on Artificial Intelligence, +Springer, 2022, pp. 366–379. +[54] +, Mtsmae: Masked autoencoders for multivariate time-series forecasting, +arXiv preprint arXiv:2210.02199, (2022). +[55] Y.-H. H. Tsai, S. Bai, M. Yamada, L.-P. Morency, and R. Salakhutdinov, +Transformer dissection: An unified understanding for transformer’s attention via +the lens of kernel, in Proceedings of the 2019 Conference on Empirical Methods +in Natural Language Processing and the 9th International Joint Conference on +Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 4344–4353. +[56] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, +Ł. Kaiser, and I. Polosukhin, Attention is all you need, Advances in neural +information processing systems, 30 (2017). +[57] X. Wang and A. Gupta, Unsupervised learning of visual representations using +videos, in Proceedings of the IEEE international conference on computer vision, +2015, pp. 2794–2802. +[58] H. Wu, J. Xu, J. Wang, and M. Long, Autoformer: Decomposition transformers with +auto-correlation for long-term series forecasting, Advances in Neural Information +Processing Systems, 34 (2021), pp. 22419–22430. +[59] S. Wu, X. Xiao, Q. Ding, P. Zhao, Y. Wei, and J. Huang, Adversarial sparse +transformer for time series forecasting, Advances in neural information processing +systems, 33 (2020), pp. 17105–17115. +[60] Z. Xie, Z. Zhang, Y. Cao, Y. Lin, J. Bao, Z. Yao, Q. Dai, and H. Hu, Simmim: A +simple framework for masked image modeling, in Proceedings of the IEEE/CVF +Conference on Computer Vision and Pattern Recognition, 2022, pp. 9653–9663. +[61] Z. Ye, Q. Guo, Q. Gan, X. Qiu, and Z. Zhang, Bp-transformer: Modelling long- +range context via binary partitioning, arXiv preprint arXiv:1911.04070, (2019). +[62] Y. Yin and P. Shang, Multivariate multiscale sample entropy of traffic time series, +Nonlinear Dynamics, 86 (2016), pp. 479–488. +[63] Q. Yu, Y. Xia, Y. Bai, Y. Lu, A. L. Yuille, and W. Shen, Glance-and-gaze vision +transformer, Advances in Neural Information Processing Systems, 34 (2021), +pp. 12992–13003. +[64] M. Zaheer, G. Guruganesh, K. A. Dubey, J. Ainslie, C. Alberti, S. Ontanon, +P. Pham, A. Ravula, Q. Wang, L. Yang, et al., Big bird: Transformers for longer se- +quences, Advances in Neural Information Processing Systems, 33 (2020), pp. 17283– +17297. +[65] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, In- +former: Beyond efficient transformer for long sequence time-series forecasting, in +Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, 2021, +pp. 11106–11115. + diff --git a/PNAzT4oBgHgl3EQfzv4J/content/tmp_files/load_file.txt b/PNAzT4oBgHgl3EQfzv4J/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..7fa208c2fe86d6d6de06101789036896da22ea58 --- /dev/null +++ b/PNAzT4oBgHgl3EQfzv4J/content/tmp_files/load_file.txt @@ -0,0 +1,1357 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf,len=1356 +page_content='Infomaxformer: Maximum Entropy Transformer for Long Time-Series Forecasting Problem Peiwang Tang Institute of Advanced Technology, University of Science and Technology of China Hefei 230026, China G60 STI Valley Industry & Innovation Institute, Jiaxing University Jiaxing 314001, China tpw@mail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='ustc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='cn Xianchao Zhang∗ Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province, Jiaxing University Jiaxing 314001, China Engineering Research Center of Intelligent Human Health Situation Awareness of Zhejiang Provincey, Jiaxing University Jiaxing 314001, China zhangxianchao@zjxu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='cn ABSTRACT The Transformer architecture yields state-of-the-art results in many tasks such as natural language processing (NLP) and computer vi- sion (CV), since the ability to efficiently capture the precise long- range dependency coupling between input sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' With this advanced capability, however, the quadratic time complexity and high memory usage prevents the Transformer from dealing with long time-series forecasting problem (LTFP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' To address these diffi- culties: (i) we revisit the learned attention patterns of the vanilla self- attention, redesigned the calculation method of self-attention based the Maximum Entropy Principle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' (ii) we propose a new method to sparse the self-attention, which can prevent the loss of more important self-attention scores due to random sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' (iii) We pro- pose Keys/Values Distilling method motivated that a large amount of feature in the original self-attention map is redundant, which can further reduce the time and spatial complexity and make it pos- sible to input longer time-series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Finally, we propose a method that combines the encoder-decoder architecture with seasonal-trend decomposition, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=', using the encoder-decoder architecture to cap- ture more specific seasonal parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' A large number of experiments on several large-scale datasets show that our Infomaxformer is obviously superior to the existing methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' We expect this to open up a new solution for Transformer to solve LTFP, and exploring the ability of the Transformer architecture to capture much longer temporal dependencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' KEYWORDS Maximum Entropy, Transformer, Time-Series, Forecasting ACM Reference Format: Peiwang Tang and Xianchao Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Infomaxformer: Maximum En- tropy Transformer for Long Time-Series Forecasting Problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' of the 22nd International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2023), London, United Kingdom, May 29 – June 2, 2023, IFAAMAS, 10 pages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' ∗corresponding author Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' of the 22nd International Conference on Autonomous Agents and Multiagent Sys- tems (AAMAS 2023), A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Ricci, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Yeoh, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Agmon, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' An (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' ), May 29 – June 2, 2023, London, United Kingdom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' © 2023 International Foundation for Autonomous Agents and Multiagent Systems (www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='ifaamas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='org).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' All rights reserved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='$ACM ISBN 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='$0 1 INTRODUCTION Defined as an ordered dataset formed with time change, time-series refer to a series of ordered observations acquired according to time sequence [11], which is widely used in commercial and industrial fields, such as biomedical field [39], economic and financial field [13], electric power [65] and transportation field [62].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' As an im- portant part of time-series analysis, time-series forecasting mainly analyze the trend, periodicity, volatility and other time-series pat- terns of time-series by using the time-series data observed in history and the relevant rules that have been mastered, so as to predict the situation in the future [3, 32, 58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' In practical applications, we can use a large number of past time-series to achieve long-term predic- tion for the future, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=', long time-series forecasting problem (LTFP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Recent deep prediction models have made great progress, especially Transformer based models [28, 35, 40, 54, 59].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' The Transformer [56] shows better performance than the recurrent neural network (RNN) model in modeling the long-term dependence of sequence data, and has achieved the best results in the natural language processing (NLP) [12, 47] and computer vision (CV) [15, 20] fields, since its advanced self-attention mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' However, there are still some problems in solving LTFP of exist- ing Transformer models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' First, the self-attention mechanism has high performance, but also brings high time complexity and mem- ory usage [41, 63].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Although some large-scale Transformer models have produced impressive results in the NLP and CV fields [4, 48], they often require dozens or even hundreds of GPUs during training, which limits the possibility of Transformer models to solve LTFP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Although there have been some researches on reducing the time complexity and memory usage of the self-attention mechanism, only realize a limited reduce of complexity to O(𝐿𝑙𝑜𝑔𝐿) [30, 33, 65].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Moreover, some methods for reducing the complexity only ran- domly select dot-product pairs, which will cause some performance loss and lead to the long-term dependence of the sequences that cannot be well captured by the self-attention mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Second, it is unreliable to find the time dependence directly from the time- series, because these dependencies may be masked by the entangled temporal patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' In order to better solve LTFP, our work explicitly and deeply discussed the above problems, studied the sparsity of self-attention mechanism, decomposed the time-series, and updated the network components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Finally, we have conducted extensive experiments on five different datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' The final experimental results show that our arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='01772v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='LG] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='4 Jan 2023 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Infomaxformer Encoder ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Infomaxformer Decoder ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Encoder ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Input ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Time-series ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Decomp ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Feed ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Forward ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Prediction ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Time-series ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Decomp ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Maximum Entropy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Self-attention ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Feed ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Forward ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Embedding ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Q ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='V ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Maximum Entropy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Self-attention ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Q ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='V ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Embedding ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Decoder ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Input ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Masked ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Maximum Entropy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Self-attention ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Q ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='V ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='N ╳ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='M ╳ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Trend ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Scalar ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Conv1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Feature ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Map ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Global Time ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Local Time ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Concat ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='Figure 1: Infomaxformer architecture ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='proposed Infomaxformer can significantly improve the accuracy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='of prediction,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' and is superior to other state-of-the-art models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' The contributions of this paper are summarized as follows: We review the calculation method of self-attention mecha- nism from the perspective of information entropy [52], and sparse the calculation of self-attention by using the Maxi- mum Entropy Principle [27] to reduce the time complex- ity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' In view of the data characteristic that local information of time-series is heavy spatial redundancy, we propose the Keys/Values Distilling method, which can further reduce the time and space complexity to O(𝐿), and help the model to accept longer sequence inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' In order to decompose time-series and explain complex time- series patterns, we propose a decomposition method, which is combined with self-attention mechanism, to process com- plex time-series and extract more useful features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' We have conducted extensive experiments on datasets in many different fields, and the final results show that our proposed model achieves the most advanced performance in a variety of experimental settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 2 RELATED WORK 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='1 Time-Series Forecasting The classical convolutional neural network (CNN) [31] model can extract the local information unrelated to the spatial position in the data [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' In order to allow CNN to be used in the time-series, scholars designed multi-layer causal convolutions to ensure that only past information can be used for prediction [3, 6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' For the processing of long-term dependencies, the Temporal Convolutional Network (TCN) introduces the dilated convolutions, which changes the interval of original look-back window from 1 to 𝑑𝑙, where 𝑑𝑙 is a layer-specific division rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' In traditional modeling, recurrent neural networ (RNN) is also widely used in the field of time-series prediction owing to its architecture naturally supports inputs and outputs with sequential relationships [37, 49, 51, 53].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' The main idea is to use the memory state of RNN neurons to store all past effective information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' However, RNN variants may be limited in learning the long-term dependency in the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Since all the information in the past will decay with time and the difficult for RNN to learn the long-term memory [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Long Short-Term Memory networks (LSTM) [24] introduces some different operation gates to solve this problem, but it does not solve the long-term dependency well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' To further these effort, attention mechanism is proposed to help the neural network to learn long-term memory information [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' In short, the attention mechanism of time-series is to calculate the dynamic weight, find the weighted sum of past hidden states, and predict the output value with the summed state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' In this way, the vector used for prediction can contain information that predicts a more informative time point for the current time point [16, 28, 35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='2 Sparse Attention In the standard self-attention mechanism, each token needs to pay attention to all other tokens [56].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' However, for the trained transformer, the learned attention matrix A is often very sparse across most data points [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Therefore, the computational complex- ity can be reduced by limiting the number of queries that want to participate in the query-key pairs through the incorporating structural bias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' The existing methods can be divided into two cate- gories: position-based and content-based sparse attention [38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' In position-based sparse attention, the attention matrix is limited to some predefined patterns [45, 61].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Although these spark patterns change in different ways, some of them can be decomposed into some atomic sparse patterns, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=', global attention, band attention, dilated attention, random attention, block local attention [5, 19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Many spark patterns include one or more of the above atomic sparse patterns [64].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Another work is to create a sparse graph based on the input content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' A simple method is to select keywords that may have a large similarity score with a given query.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' In order to con- struct the sparse graph effectively, the maximum inner product search problem can be repeated, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='e, the key with the maximum dot product can be found by a query without calculating all dot- product terms [33, 65].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' For example, Routing transformer [50] uses K-means clustering to cluster queries and keys on the same group of centroid vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Each query only focuses on the keys belonging 0 2000 4000 6000 8000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='6 0 2000 4000 6000 8000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='04 0 2000 4000 6000 8000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='10 (a) Softmax scores at Head1@Encoder layer 0 2000 4000 6000 8000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='050 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='075 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='125 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='150 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='175 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='200 0 2000 4000 6000 8000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='07 0 2000 4000 6000 8000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='06 (b) Softmax scores at Head7@Encoder layer Figure 2: The Softmax scores in the self-attention from canonical Transformer trained on ETTh1 dataset to the same cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Reformer [30] uses location sensitive hash- ing (LSH) to select key-value pairs for each query.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' The proposed LSH allows each token to attend only to the tokens in the same hash bucket.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' In Informer [65], based on query and key similarity sampling dot-product pairs, ProbSparse self-attention is proposed to reduce the time complexity of Transformer to O(𝐿 log 𝐿) and allows it to accept longer input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 3 METHODOLOGY The problem of long time-series forecasting is to input the past sequence X = � 𝑥1, · · · ,𝑥𝐿𝑥 |𝑥𝑖 ∈ R𝑑𝑥 � , and the output is to predict corresponding future sequence Y = � 𝑦𝐿𝑥+1, · · · ,𝑦𝐿𝑥+𝐿𝑦 |𝑦𝑖 ∈ R𝑑𝑦 � , where 𝐿𝑥 and 𝐿𝑦 are the lengths of input and output sequences respectively, and 𝑑𝑥 and 𝑑𝑦 are the feature dimensions of input X and output Y respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' The LTFP encourages a longer input’s length 𝐿𝑥 and a longer output’s length 𝐿𝑦 than previous works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Our proposed Infomaxformer holds the encoder-decoder archi- tecture and combines it with the decomposition structure to solve LTFP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Please refer to Figure 1 for an overview and the following sections for details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='1 Vanilla Self-attention Mechanism The scaled dot-product attention mechanism in original Trans- former [56] performs as: 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(Q, K, V) = 𝑆𝑜𝑓 𝑡𝑚𝑎𝑥( QK𝑇 √ 𝑑 )V (1) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=', 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 is defined as an operation of ternary matrix, where Q(𝑞𝑢𝑒𝑟𝑖𝑒𝑠) ∈ R𝐿𝑄×𝑑, K(𝑘𝑒𝑦𝑠) ∈ R𝐿𝐾 ×𝑑, V(𝑣𝑎𝑙𝑢𝑒𝑠) ∈ R𝐿𝑉 ×𝑑, and 𝑑 is the feature dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' To further discuss the self-attention mechanism, the 𝑆𝑜𝑓 𝑡𝑚𝑎𝑥 function is expanded, and use 𝑞𝑖, 𝑘𝑖 and 𝑣𝑖 to represent the 𝑖-th row in Q, K and V respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' For the time- series with input length 𝐿, 𝑖 represents the 𝑖-th data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Therefore, the original self-attention mechanism for the 𝑖-th data can be expressed as: A(𝑖) = 𝐿 ∑︁ 𝑗 𝑒 𝑞𝑖𝑘𝑇 𝑗 √ 𝑑 �𝐿 𝑙 𝑒 𝑞𝑖𝑘𝑇 𝑙 √ 𝑑 𝑣𝑗 = 𝐿 ∑︁ 𝑗 𝑘(𝑞𝑖,𝑘𝑗) �𝐿 𝑙 𝑘(𝑞𝑖,𝑘𝑙) 𝑣𝑗 (2) which 𝑘(𝑞𝑖,𝑘𝑗) = 𝑒𝑥𝑝(𝑞𝑖𝑘𝑇 𝑗 / √ 𝑑) [55].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Let 𝑝(𝑞𝑖,𝑘𝑗) = 𝑘(𝑞𝑖,𝑘𝑗)/�𝐿 𝑙 𝑘(𝑞𝑖,𝑘𝑙), 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 can be abbrevi- ated as: A(𝑖) = 𝐿 ∑︁ 𝑗 𝑝 �𝑞𝑖,𝑘𝑗 � 𝑣𝑗 (3) where 𝑝 �𝑞𝑖,𝑘𝑗 � is the probability of 𝑣𝑖, then A(𝑖) is the expec- tation of matrix V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' For the probability 𝑝(𝑞𝑖,𝑘𝑗), it requires the quadratic times dot-product computation and O(𝐿𝑄𝐿𝐾) memory usage, which is the main reason why the traditional self-attention mechanism cannot handle long time-series (it is easy to lead to out-of-memory), and also the main disadvantage that limits its prediction ability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Many previous studies have shown that the probability distribu- tion of self-attention mechanism has potential sparsity [9, 38], and a selection strategy is designed for all 𝑝(𝑞𝑖,𝑘𝑗) without significantly affecting the performance of the model [5, 19, 45, 61].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' To motivate our approach, we first revisit the learned attention patterns of the vanilla self-attention and make a qualitative evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Accord- ing to Figure 2, in the first layer of encoder, the scores follows an obvious long tail distribution, and the Softmax scores has obvious blocking phenomenon, especially in the second and third layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' So a few dot-product pairs contribute to the major attention, and others generate negligible attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Then, how to “select” them?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='2 Reformulation via the Lens of Information Entropy We now provide the intuition to reformulate Equation (3) via the lens of information entropy [52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Information entropy is a basic concept of information theory, which describes the uncertainty of possible events of information sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Its formula is as follows: 𝐻 (𝑥𝑖) = − 𝐿 ∑︁ 𝑖=1 𝑝(𝑥𝑖)𝑙𝑛𝑝(𝑥𝑖) (4) where 𝑝(𝑥𝑖) represents the probability that the random event𝑋 is𝑥𝑖.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Any information has redundancy, which is related to the occurrence probability (uncertainty) of each symbol in the information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' The probability and the amout of information generated are positively correlated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Information is used to eliminate random uncertainty, and information entropy is a measure of the amount of information needed to eliminate uncertainty, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=', the amount of information that an unknown event may contain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Maximum Entropy Principle When only some knowledge about the unknown distribution is mastered, the probability distribution with the largest entropy value should be selected [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' It is difficult to determine the probability distribution of random variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Generally, only the average values or the values under certain limited conditions can be measured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' There can be many (even infinite) distributions that meet the measured values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' The maximum entropy principle is a criterion for selecting the statistical characteristics of random variables that best meet the objective conditions, also known as the Maximum Information Principle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Based on this principle, it is effective to select a distribution with maximum entropy as the distribution of the random variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Maximum Entropy Self-attention From Equation (3), the 𝑖-th query’s attention on all the keys are defined as a probability distri- butions p𝑖 and the output is its composition with values V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Accord- ing to the maximum entropy principle, the dominant dot-product pairs encourage the corresponding entropy of p𝑖 to be maximum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' However, the traversing of all the p𝑖 still needs to calculate each dot-product pair, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=', the time complexity is O(𝐿2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Motivated by this, we propose a very simple but effective approximation method to obtain the query information entropy measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' For all probability distributions p𝑖 and p𝑗, if 𝜎𝑝𝑖 < 𝜎𝑝𝑗 , it can be considered that 𝐻 (𝑖) > 𝐻 (𝑗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' If the 𝑖-th query’s p𝑖 gains a smaller variance, its information en- tropy is larger and has a higher possibility to contain the dominate dot-product pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Variance is a measure of the degree of dispersion of a group of data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' The variance of data subject to the same distri- bution is the same, so we only need to randomly sample constant 𝑈 from K to calculate the variance of the 𝑖-th query’s probability distribution p𝑖, which only need to calculate O(𝐿𝑄) dot-product for each query-key lookup and the layer memory usage maintains O(𝐿𝑄).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Then, select sparse Top-𝑢 from Q as ¯Q to calculate the standard dot-product pair, so the time complexity and memory usage maintains O(𝑢𝐿𝐾).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' However, the rest of queries can’t be left without any calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' In the case of discrete sources, for discrete sources with L symbols, the information entropy can reach the maximum value only when they appear with equal probability, that is, the average uncertainty of sources with equal probability distribution is the maximum Based on the proposed measurement and Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='2, we have the maximum entropy self-attention, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=', MEA (the pseudo-code is in Appendix): A(𝑖) = \uf8f1\uf8f4\uf8f4\uf8f4\uf8f2 \uf8f4\uf8f4\uf8f4\uf8f3 �𝐿 𝑗 𝑝 �𝑞𝑖,𝑘𝑗 � 𝑣𝑗 , if top-u �𝐿 𝑗 𝑣𝑗/𝐿 , otherwise (5) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='3 Embedding Method Infomaxformer Encdeor Infomaxformer Decdeor Encoder Input Time-series Decomp Feed Forward Prediction Time-series Decomp Maximum Entropy Self-attention Feed Forward + Embedding Q K V + Maximum Entropy Self-attention Q K V Embedding Decoder Input Masked Maximum Entropy Self-attention Q K V + + + N ╳ M ╳ Data Mean + d Scalar Conv2d d Feature Map Global Time Local Time Stack Figure 3: The Embedding Method As shown in Figure 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' the input embedding consists of three parts,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' a scalar,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' a local position and a global time stamp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' We use scalar projection SP, local position embedding PE [56] and time embedding TE [65] to deal with the above parts respectively: 𝑆𝑃 = 𝐶𝑜𝑛𝑣1𝑑(𝑥𝑡 𝑖 ) (6) 𝑃𝐸(𝑖,2𝑗) = 𝑠𝑖𝑛 � 𝑖/100002𝑗/𝑑𝑚𝑜𝑑𝑒𝑙 � 𝑃𝐸(𝑖,2𝑗+1) = 𝑐𝑜𝑠 � 𝑖/100002𝑗/𝑑𝑚𝑜𝑑𝑒𝑙 � (7) 𝑇𝐸 = 𝐸(𝑚𝑜𝑛𝑡ℎ) + 𝐸(𝑑𝑎𝑦) + 𝐸(ℎ𝑜𝑢𝑟) + 𝐸(𝑚𝑖𝑛𝑢𝑡𝑒) (8) For the Equation (6), we project the scalar context 𝑥𝑡 𝑖 into 𝑑𝑚𝑜𝑑𝑒𝑙- dim vector with 1-D convolutional filters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' The kernel width is 3, stride is 1, the input channel is 𝑑𝑥 and the output channel is 𝑑𝑚𝑜𝑑𝑒𝑙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' For the Equation (7), 𝑖 ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' , 𝐿𝑥 }, 𝑗 ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' , ⌊𝑑𝑚𝑜𝑑𝑒𝑙/2⌋}, 𝑑𝑚𝑜𝑑𝑒𝑙 is the feature dimension after embedding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' For the Equa- tion (8), 𝐸 is a learnable stamp embeddings with limited vocab size (up to 60, namely taking minutes as the finest granularity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' For the three different features finally obtained, instead of the method of addition [58, 65], we stacked them together and reduced their dimension through a two-dimensional convolution, that is, the input channel of convolution is 3 and the output channel is 1: X = 𝐶𝑜𝑛𝑣2𝑑(𝑆𝑡𝑎𝑐𝑘(𝑆𝑃, 𝑃𝐸,𝑇𝐸)) (9) where the kernel width and stride is (1, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='4 Keys/Values Distilling In previous works, a feed-forward network with a single hidden layer is proposed to linearly project the queries, keys and values [56, 65].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' As the natural consequence of the original sequence linear project, the queries, keys and values have a lot of redundant features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' We use the distilling operation to privilege the superior keys and values with dominating features and make a focused feature map in the self-attention mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' It trims the time dimension of the input sharply, does not arbitrarily delete the feature of the input sequence, but recombines them into a new heads weights matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' L d Conv2d MaxPool2d L5/6 Conv2d MaxPool2d L4/6 Conv2d MaxPool2d K/V √ L Figure 2: The single stack in NewInformer’s encoder L Scalar L LocalTime L GlobalTime d Feature Map L L d Encoder Input Q LQ K LK V LV × Multi-Head Attention MaxPool2d Scale Attention L/2 d Encoder Output Embedding Embedding Embedding Conv1d Figure 3: The single stack in NewInformer’s encoder Figure 4: The Keys/Values Distilling As shown in Figure 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' we distilling keys/values using a three-step convolution operation: K1 = 𝑀𝑎𝑥𝑝𝑜𝑜𝑙2𝑑(𝑅𝑒𝑙𝑢(𝐶𝑜𝑛𝑣2𝑑(X))) K2 = 𝑀𝑎𝑥𝑝𝑜𝑜𝑙2𝑑(𝑅𝑒𝑙𝑢(𝐶𝑜𝑛𝑣2𝑑(K1))) K3 = 𝑀𝑎𝑥𝑝𝑜𝑜𝑙2𝑑(𝑅𝑒𝑙𝑢(𝐶𝑜𝑛𝑣2𝑑(K2))) (10) where X ∈ R𝐿𝑥×𝑑𝑚𝑜𝑑𝑒𝑙 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 𝐶𝑜𝑛𝑣2𝑑() performs an 2-D convolutional filters (kernel size=(2, 2)) with the 𝑅𝑒𝑙𝑢 activation function, the number of input channels is the number of heads, and the num- ber of output channels is ℎ times the number of input channels, so after three-step convolution, the number of output channels, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=', the number of heads, is ℎ3 (this can be modified as needed).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 𝑀𝑎𝑥𝑝𝑜𝑜𝑙2𝑑() performs an 2-D max pooling (kernel size and stride is (𝑙, h)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Therefore, after three-step convolution, K3 ∈ R 𝐿𝑋 𝑙3 × 𝑑𝑚𝑜𝑑𝑒𝑙 ℎ3 , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' K ∈ R𝐿𝐾 × 𝑑𝑚𝑜𝑑𝑒𝑙 ℎ3 , V ∈ R𝐿𝑉 × 𝑑𝑚𝑜𝑑𝑒𝑙 ℎ3 , 𝐿𝐾 and 𝐿𝑉 is 𝐿𝑋 /𝑙3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Complexity Analysis: Now we know that 𝐿𝐾 is 𝐿𝑋 /𝑙3, so the time complexity and space complexity of our MEA is O(𝑢𝐿𝑋 /𝑙3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' We set 𝑢 = 𝑐√︁𝐿𝑄, 𝑙 = 𝐿1/6 𝑋 , 𝑐 is a constant sampling factor, 𝑢 varies linearly with 𝐿𝑄, so: 𝑢𝐿𝑋 /𝑙3 = 𝑐 √︃ 𝐿𝑄𝐿𝑋 /(𝐿1/6 𝑋 )3 = 𝑐 √︃ 𝐿𝑄 √︁ 𝐿𝑋 (11) where 𝐿𝑄 = 𝐿𝑋 = 𝐿.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Consequently, our time complexity and space complexit can reach linear O(𝐿).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='5 Time-Series Decomposition In order to make long-term prediction under the input of long time- series, we use the concept of decomposition to learn complex time patterns, which can separate the time-series into trend and seasonal [10, 25, 58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' These two parts respectively represent two features including long-term development trend and seasonality of the time- series, which are different in different time-series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' To overcome such a problem, we introduce a time-series decomposition block (TSD), which can propose the development trend and seasonality of the time-series from the input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Specifically, we use the moving average to smooth out periodic fluctuations, extract long-term trends, and highlight seasonality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' For an input sequence X ∈ R𝐿×𝑑 of length 𝐿, this process can be formulated as: X𝑡 = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙(X) X𝑠 = X − X𝑡 (12) where X𝑠, X𝑡 ∈ R𝐿×𝑑 represent extracted seasonal and trend, re- spectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' We use X𝑡, X𝑠 = 𝑇𝑖𝑚𝑒𝑆𝑒𝑟𝑖𝑒𝑠𝐷𝑒𝑐𝑜𝑚𝑝(X) to summarize above equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='6 Encoder and Decoder Encoder: As shown in Figure 1, the encoder focuses on modeling of the seasonal part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Our encoder layers are composed of two sub- blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' The first is a MEA mechanism, and the second is a simple, position-wise fully connected feed-forward network (MLP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' We employ residual connections [21] around each of the sub-blocks, but unlike previous structures [15, 56], layer normalization [1] was not performed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' The input of the encoder is only the seasonal part X𝑠 of the input sequence X, and the output only contains the seasonal information of the past and will be used as cross information to help the decoder better predict the seasonal information of the future sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' X𝑡, X𝑠 = 𝑇𝑖𝑚𝑒𝑆𝑒𝑟𝑖𝑒𝑠𝐷𝑒𝑐𝑜𝑚𝑝(X) X𝑛 𝑠1 = X𝑛−1 𝑠 + 𝑀𝐸𝐴(X𝑛−1 𝑠 ) X𝑛 𝑠 = X𝑛 𝑠1 + 𝑀𝐿𝑃(X𝑛 𝑠1) (13) where 𝑛 = 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 𝑁, X0 𝑡 = X𝑡, X𝑒𝑛𝑜 = X𝑁 𝑡 , 𝑁 is the number of layers of the encoder, and MLP consists of two 1-D convolution operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Decoder: In addition to the two sub-blocks in each encoder layer, the decoder in classic Transformer also inserts a third sub-block in the two sub-blocks, which performs self-attention on the output of the encoder layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' On this basis, we insert the fourth sub-block in the decoder, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=', the time-series decomposition block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Similar to the encoder, we employ residual connections around each of the sub-blocks, but did not perform layer normalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' We input the following vectors to the decoder: X𝑑𝑒𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡(X𝑙𝑎𝑏𝑒𝑙, X0) ∈ R(𝐿𝑙𝑎𝑏𝑒𝑙+𝐿𝑦)×𝑑𝑚𝑜𝑑𝑒𝑙 (14) where X𝑙𝑎𝑏𝑒𝑙 ∈ R𝐿𝑙𝑎𝑏𝑒𝑙×𝑑𝑚𝑜𝑑𝑒𝑙 is start token, 𝐿𝑙𝑎𝑏𝑒𝑙 is the label length, X0 ∈ R𝐿𝑦×𝑑𝑚𝑜𝑑𝑒𝑙 is a placeholder for the target sequence (set the scalar to 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' By setting masked dot-products to negative infinity, masked multi-head attention is applied to the MEA calculation (MMEA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' This masking ensures that the prediction of position 𝑖 can only rely on the known outputs of positions less than 𝑖, which avoids auto-regressive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' A fully connected layer acquires the final output, and its outsize is 𝑑𝑦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' For the time-series, the trend changes are not obvious, but the specific seasonal is different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' We use the decoder to predict the seasonal of future data, and use the average of input data to approximate the trend part of future data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' X𝑛 1 = X𝑛−1 + 𝑀𝐸𝐴(X𝑛−1) X𝑛 𝑡 , X𝑛 𝑠 = 𝑇𝑖𝑚𝑒𝑆𝑒𝑟𝑖𝑒𝑠𝐷𝑒𝑐𝑜𝑚𝑝(X𝑛 1 ) X𝑛 𝑠1 = X𝑛 𝑠 + 𝑀𝑀𝐸𝐴(X𝑛 𝑠 , X𝑒𝑛𝑜) X𝑛 = X𝑛 𝑠1 + 𝑀𝐿𝑃(X𝑛 𝑠1) + X𝑛 𝑡 Y = 𝑀𝑒𝑎𝑛(X𝑡) + X𝑀 (15) where 𝑛 = 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 𝑀, X0 = X𝑑𝑒𝑖, 𝑀 is the number of layers of the decoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Loss Function: Our loss function is calculated by the mean square error (MSE) between the model output data 𝑦𝑜 and the real Table 1: Multivariate long time-series forecasting results on five cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' A lower MSE or MAE indicates a better prediction, and we use black numbers to indicate the best performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Due to the limitation of memory, the batch size of some models is changed to 16, which is indicated by underlined numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' The ‘-’ indicates that there is still not enough memory after the batch size is changed to 16 Methods Infomaxformer Autoformer Informer Reformer LogTrans Transformer LSTM Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE ECL 24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='190 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='305 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='195 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='312 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='310 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='400 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='280 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='381 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='231 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='338 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='244 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='350 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='338 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='419 48 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='209 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='321 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='221 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='332 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='357 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='425 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='273 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='370 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='287 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='373 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='260 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='359 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='334 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='412 96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='218 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='328 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='230 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='340 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='367 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='434 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='291 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='381 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='292 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='377 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='278 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='373 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='330 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='409 192 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='239 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='346 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='280 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='347 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='362 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='434 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='344 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='420 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='295 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='385 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='286 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='377 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='327 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='407 384 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='278 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='377 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='450 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='483 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='327 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='404 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='323 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='397 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='290 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='378 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='320 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='403 ETTh1 24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='478 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='489 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='499 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='516 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='130 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='871 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='624 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='578 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='505 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='513 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='882 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='723 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='232 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='839 48 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='552 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='528 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='562 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='552 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='231 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='905 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='727 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='638 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='568 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='544 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='311 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='954 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='261 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='873 96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='564 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='543 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='611 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='579 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='345 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='953 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='930 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='743 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='714 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='629 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='957 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='199 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='268 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='873 192 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='556 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='544 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='724 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='625 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='643 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='061 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='124 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='821 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='865 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='717 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='758 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='136 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='266 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='871 384 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='597 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='570 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='499 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='004 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='270 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='862 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='952 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='749 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='405 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='981 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='273 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='873 ETTh2 24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='436 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='476 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='437 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='493 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='048 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='173 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='975 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='787 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='621 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='617 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='016 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='814 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='291 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='385 48 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='629 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='544 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='658 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='643 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='047 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='471 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='652 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='027 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='168 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='985 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='199 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='242 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='378 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='408 96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='593 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='533 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='686 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='646 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='882 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='258 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='301 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='427 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='279 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='265 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='862 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='052 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='488 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='432 192 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='703 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='607 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='792 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='671 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='070 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='885 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='774 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='617 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='207 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='776 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='045 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='675 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='489 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='434 384 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='575 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='557 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='080 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='669 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='363 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='465 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='032 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='526 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='549 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='516 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='486 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='430 ETTm1 24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='330 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='397 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='414 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='438 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='354 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='401 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='430 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='453 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='882 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='666 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='355 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='403 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='121 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='791 48 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='418 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='454 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='537 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='505 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='533 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='521 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='578 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='544 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='951 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='707 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='514 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='526 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='130 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='799 96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='494 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='502 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='545 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='517 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='592 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='571 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='710 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='612 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='558 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='540 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='740 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='657 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='141 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='805 192 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='558 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='531 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='605 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='534 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='768 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='682 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='896 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='702 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='591 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='565 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='700 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='641 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='141 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='806 384 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='611 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='561 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='938 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='765 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='072 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='781 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='767 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='650 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='838 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='719 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='153 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='810 Weather 24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='307 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='357 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='455 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='489 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='348 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='401 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='370 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='426 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='385 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='326 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='378 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='492 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='500 48 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='381 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='422 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='544 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='542 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='488 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='505 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='443 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='475 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='498 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='505 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='447 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='664 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='497 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='504 96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='456 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='481 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='554 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='546 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='603 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='574 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='511 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='520 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='562 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='550 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='548 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='532 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='506 192 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='508 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='517 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='585 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='560 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='700 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='632 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='537 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='541 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='591 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='570 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='620 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='575 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='503 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='517 384 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='511 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='514 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='681 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='621 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='536 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='535 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='622 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='585 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='630 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='579 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='513 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='524 data 𝑦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' and the loss is propagated back from the decoder’s outputs across the entire model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Table 2: Complexity analysis of different forecasting models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' The ★ denotes applying generative style decoder [65].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Methods Training Forecasting Time Memory Steps Infomaxformer O(𝐿) O(𝐿) 1 Autoformer O(𝐿 log 𝐿) O(𝐿 log 𝐿) 1 Informer O(𝐿 log 𝐿) O(𝐿 log 𝐿) 1 Transformer O(𝐿2) O(𝐿2) 𝐿 LogTrans O(𝐿 log 𝐿) O(𝐿2) 1★ Reformer O(𝐿 log 𝐿) O(𝐿 log 𝐿) 𝐿 LSTM O(𝐿) O(𝐿) 𝐿 4 EXPERIMENT 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='1 Datasets ETT(Electricity Transformer Temperature):1 The ETT is a key indicator for long-term deployment of the electric power, which collects data from two counties in China from July 2016 to July 2018 for a total of two years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' ECL (Electricity Consuming Load):2 It collects the electricity consumption (Kwh) of 321 customers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Due to the lack of data [33], we follow the settings in Informer [65] to convert the dataset to hourly consumption for 2 years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Weather:3 This dataset contains the local climatologicale data of nearly 1600 locations in the United States.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' The data are collected by once an hour from 2010 to 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 1ETT dataset was acquired at [65].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 2ECL dataset was acquired at https://archive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='ics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='uci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='edu/ml/datasets/ ElectricityLoadDiagrams20112014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 3Weather dataset was acquired at https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='ncei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='noaa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='gov/data/local- climatological-data/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Table 3: Different input lengths for two prediction lengths in ETTh1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' The ‘-’ indicates failure for the out-of-memory Predicition length 336 480 Encoder’s input 336 480 720 960 1200 1440 480 720 960 1200 1440 Informer MSE 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='474 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='576 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='644 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='607 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='580 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='766 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='441 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='531 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='508 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='428 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='520 MAE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='999 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='024 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='045 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='043 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='037 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='124 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='971 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='998 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='997 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='967 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='017 Reformer MSE 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='000 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='043 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='200 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='159 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='148 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='259 MAE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='766 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='790 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='842 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='829 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='827 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='870 Transformer MSE 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='085 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='161 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='630 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='922 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='083 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='410 MAE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='830 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='858 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='065 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='159 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='836 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='969 LogTrans MSE 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='136 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='127 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='059 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='075 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='060 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='067 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='888 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='940 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='892 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='885 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='914 MAE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='851 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='849 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='817 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='823 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='818 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='816 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='733 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='764 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='736 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='732 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='745 Autoformer MSE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='581 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='560 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='748 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='573 MAE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='547 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='547 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='650 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='558 Infomaxformer MSE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='567 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='556 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='544 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='566 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='568 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='624 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='537 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='583 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='597 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='599 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='709 MAE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='545 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='547 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='543 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='563 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='564 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='602 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='551 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='581 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='587 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='585 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='653 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='2 Experimental Details Baselines: We selected six methods as comparison, including Trans- former [56], four latest state-of-the-art Transformer-based mod- els: Reformer [30], LogTrans [33], Informer [65], Autoformer [58], and one RNN-based models: LSTM (Long Short-Term Memory net- works) [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Experiment setting: Our experiment was implemented in Py- toch [46], and all the experiments are conducted on a single Nvidia RTX 3090 GPU (24GB memory).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' The input of each dataset is zero- mean normalized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' We use two evaluation metrics, including mean square error (MSE): 𝑀𝑆𝐸 = 1 𝑛 �𝑛 𝑖=1 �𝑑 𝑗=1 (𝑦− ˆ𝑦)2 𝑑 and mean absolute error (MAE): 𝑀𝐴𝐸 = 1 𝑛 �𝑛 𝑖=1 �𝑑 𝑗=1 |𝑦− ˆ𝑦| 𝑑 , where 𝑛 is the length of the sequence and 𝑑 is the dimension of data at each time point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' We use these two evaluation metrics on each prediction window to calculate the average of forecasts and roll the whole set with 𝑠𝑡𝑟𝑖𝑑𝑒 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Our implementation details follows common practice of Informer [65] training, and all experiments are repeated five times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' We use Adam [29] optimizer for optimization with a learning rate starts from 1𝑒−4, decaying two times smaller every epoch, and the batch size is 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' The number of encoder layers is 3 and the number of decoder layers is 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' There is no limit to the total number of epochs, with appropriate early stopping, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=', when the loss of the validation set does not decrease on three epochs, the training will be stopped.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' More detailed settings can be found in Appendix 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='3 Multivariate Time-series Forecasting To compare the performance of different prediction lengths, we fixed the input length 𝐿𝑥 to 784 and gradually extended the predic- tion length 𝐿𝑦, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=', {24, 48, 96, 192, 384}, representing {6h, 12h, 24h, 48h, 96h} in ETTm, {1d, 2d, 4d, 8d, 16d} in {ETTh, ECL, Weather}, and we set the length of the label to double 𝐿𝑦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' As shown in Table 1, our proposed Infomaxformer model achieves the best performance in all benchmarks and all predicted length settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Although the performance of Autoformer is closest to our model, it can only set the batch size to 32 when the prediction length is 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' When the prediction length is 384, the batch size to 16 will also lead to out-of-memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' This shows that our proposed Infomaxformer model can increase the prediction ability, while greatly reducing the use of memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' In addition, we also found that with the increase of prediction length, the prediction performance of Infomaxformer is more stable, and there is no sudden drop in performance, which means that Infomaxformer maintains good long-term robustness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Low memory usage, good robustness, high- performance prediction, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=', which is very meaningful for practical applications, and our model has the above advantages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='4 Parameter Sensitivity We perform the sensitivity analysis of the proposed Infomaxformer model on ETTh1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Input Length: As shown in the Table 3, we gradually extended the size of the input sequence 𝐿𝑥, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=', {336, 480, 720, 960, 1200, 1440}, while keeping the predicted length 𝐿𝑦 unchanged, and the length 𝐿𝑙𝑎𝑏𝑒𝑙 of the label sequence is consistent with 𝐿𝑦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Our 𝐿𝑦 selected two values, 336 and 480.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' In Table 3, it can be seen that increasing the input length will lead to the decrease of MSE and MAE, because long input will bring repeated short-term patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' However, as the input sequence increases, there may be more dependencies between the inputs, and the influence of noise in the input data will also increase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Some models can not effectively eliminate the influence of these noises and can not better grasp the dependence of long time-series, so MSE and MAE may increase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' In this experiment, the batch size of Autoformer is set to 16, because too large batch size 1 2 3 4 5 6 7 8 9 Different Sampling Factor c 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='70 MSE 24 48 96 192 1 2 3 4 5 6 7 8 9 Different Sampling Factor c 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='65 MAE 24 48 96 192 (a) Sampling Factor 𝑐 5 10 15 20 25 30 35 40 Different Sampling Factor U 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='65 MSE 24 48 96 192 5 10 15 20 25 30 35 40 Different Sampling Factor U 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='65 MAE 24 48 96 192 (b) Sampling Factor 𝑈 Figure 5: The parameter sensitivity of two components in Infomaxformer will directly lead to out-of-memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' In Table 2, we make statistics on the time complexity and memory usage of various models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' It can be seen that there is still a certain gap between the memory usage of many model theories and the actual application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' It seems that the Autoformer with memory usage of O(𝐿 log 𝐿) is not better than the original Transformer with memory usage of O(𝐿2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Sampling Factor 𝑐: The sampling factor 𝑐 controls the infor- mation bandwidth of MEA in Equation (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' We start with small factors (=1) and gradually increase to large factors (=9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' As can be seen in Figure 5(a), the performance of our Infomaxformer does not change much, and it is not similar to the case that the performance of Informer is slightly improved with the change of sampling factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' This is because our initial sampling is √ 𝐿, not log 𝐿 in Informer [65], so enough dominant queries is selected to calculate the dot-product to prevent the loss of important features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Sampling Factor 𝑈 : The sampling factor 𝑈 controls how many keys are selected to calculate the variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Although the variance of data subject to the same distribution is the same, too few data samples will cause the calculated variance to be not the actual variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' It can be seen from Figure 5(b) that when 𝑈 is too low, the performance of the Infomaxformer model will indeed be af- fected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' However, when 𝑈 gradually increases, the performance of the model tends to be stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Table 4: Ablation study of the Infomaxformer Encoder’s input 720 960 1200 1440 Infomaxformer MSE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='566 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='588 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='633 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='573 MAE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='579 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='585 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='617 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='585 Infomaxformer1 MSE 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='326 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='237 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='880 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='290 MAE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='911 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='891 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='736 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='882 Infomaxformer2 MSE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='906 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='681 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='839 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='831 MAE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='763 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='638 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='727 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='720 Infomaxformer3 MSE 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='074 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='018 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='964 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='121 MAE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='822 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='823 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='789 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='846 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='5 Ablation Study We also performed some additional experiments for ablation analy- sis on ETTh1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Infomaxformer1 indicates that Keys/Values Distilling is replaced with the original projection operation, Infomaxformer2 indicates that MEA is replaced with the canonical self-attention mechanism, and Infomaxformer3 indicates that we have not taken our proposed Time-Series Decomposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' In this experiment, we set the predicted length 𝐿𝑦 to 720 and select four ultra long input lengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' As shown in the Table 4, without any part of the Info- maxformer model, the performance will be degraded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Only the complete Infomaxformer can achieve the best performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' The impact of MEA mechanism on the performance of Infomaxformer is not as obvious as the other two, because the mechanism focuses on sparing self-attention and reducing time complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Table 5: Comparative experiment of different Decomposi- tion Block in Infomaxformer and Autoformer Predicition length 96 192 384 720 TSD+MEA MSE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='554 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='496 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='567 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='551 MAE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='540 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='513 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='555 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='559 SDB+MEA MSE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='709 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='770 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='683 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='677 MAE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='624 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='662 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='626 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='626 TSD+AC MSE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='706 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='677 MAE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='627 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='605 SDB+AC MSE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='623 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='699 MAE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='577 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='619 Different Time-Series Decomposition: In order to better com- pare the TSD proposed by us with the Series decomposition block (SDB) proposed by Autoformer [58], we freely combined MEA, Auto-Correlation (AC) [58] with TSD, SDB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' As shown in the Table 5, we found an interesting phenomenon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' No matter Infomaxformer (TSD+MEA) or Autoformer (SDB+AC), only the complete state model has the best performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Our TSD is inferior to SDB in short sequence prediction (𝐿𝑦 = 96), but superior to SDB in long sequence prediction (𝐿𝑦 = 192).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' The sparsity of MEA results in the model being able to output longer sequences, but it is precisely because of this sparsity that the performance of MEA is inferior to AC when memory allows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' However, the perfect combination of TSD and MEA proposed by us can output longer sequences and maintain better prediction performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 5 CONCLUSION In this paper, we studied the long time-series forecasting prob- lem (LTFP) and proposed Infomaxformer to predict time-series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Specifically, we designed the Maximum Enterprise Self-attention mechanism and Keys/Values Distilling operation to deal with the challenges of quadratic time complexity and quadratic memory us- age in vanilla Transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Finally, we reduce the time complexity and memory usage to O(𝐿).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' In addition, the well-designed time- series decomposition and the perfect combination with Transformer architecture can effectively deal with the complex time-series pat- terns of time-series, thus alleviating the limitations of the traditional decomposition architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' The experiments on real-word data have proved the effectiveness of Infomaxformer in improving the prediction ability of LTFP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' REFERENCES [1] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Ba, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Kiros, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Hinton, Layer normalization, arXiv preprint arXiv:1607.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='06450, (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [2] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Bahdanau, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Cho, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Bengio, Neural machine translation by jointly learning to align and translate, arXiv preprint arXiv:1409.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='0473, (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [3] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Bai, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Kolter, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Koltun, An empirical evaluation of generic convolutional and recurrent networks for sequence modeling, arXiv preprint arXiv:1803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='01271, (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [4] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Bao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Dong, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Wei, Beit: Bert pre-training of image transformers, arXiv preprint arXiv:2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='08254, (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [5] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Beltagy, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Peters, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Cohan, Longformer: The long-document trans- former, arXiv preprint arXiv:2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='05150, (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [6] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Borovykh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Bohte, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Oosterlee, Conditional time series forecasting with convolutional neural networks, arXiv preprint arXiv:1703.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='04691, (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [7] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Brown, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Mann, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Ryder, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Subbiah, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Kaplan, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Dhariwal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Nee- lakantan, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Shyam, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Sastry, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Askell, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=', Language models are few-shot learners, Advances in neural information processing systems, 33 (2020), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 1877– 1901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [8] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Chen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Radford, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Child, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Wu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Jun, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Luan, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Sutskever, Gen- erative pretraining from pixels, in International conference on machine learning, PMLR, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 1691–1703.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [9] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Child, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Gray, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Radford, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Sutskever, Generating long sequences with sparse transformers, arXiv preprint arXiv:1904.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='10509, (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [10] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Cleveland, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Cleveland, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' McRae, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Terpenning, Stl: A seasonal-trend decomposition, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Off.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Stat, 6 (1990), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 3–73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [11] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Cryer, Time series analysis, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 286, Springer, 1986.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [12] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Devlin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Chang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Lee, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Toutanova, Bert: Pre-training of deep bidirectional transformers for language understanding, arXiv preprint arXiv:1810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='04805, (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [13] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Di Persio and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Honchar, Artificial neural networks architectures for stock price prediction: Comparisons and applications, International journal of circuits, systems and signal processing, 10 (2016), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 403–413.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [14] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Doersch, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Gupta, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Efros, Unsupervised visual representation learning by context prediction, in Proceedings of the IEEE international conference on computer vision, 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 1422–1430.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [15] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Dosovitskiy, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Beyer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Kolesnikov, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Weissenborn, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Zhai, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Un- terthiner, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Dehghani, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Minderer, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Heigold, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Gelly, An image is worth 16x16 words: Transformers for image recognition at scale, in International Conference on Learning Representations, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [16] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Fan, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Pan, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Li, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Zhang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Yuan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Wu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Pei, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Huang, Multi-horizon time series forecasting with temporal attention learning, in Proceedings of the 25th ACM SIGKDD International conference on knowledge discovery & data mining, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 2527–2535.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [17] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Geng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Liu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Lee, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Schuurams, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Levine, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Abbeel, Multi- modal masked autoencoders learn transferable representations, arXiv preprint arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='14204, (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [18] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Goyal, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Dollár, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Girshick, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Noordhuis, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Wesolowski, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Kyrola, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Tulloch, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Jia, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' He, Accurate, large minibatch sgd: Training imagenet in 1 hour, arXiv preprint arXiv:1706.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='02677, (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [19] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Guo, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Qiu, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Shao, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Xue, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Zhang, Star-transformer, in Proceedings of NAACL-HLT, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 1315–1325.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [20] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' He, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Chen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Xie, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Li, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Dollár, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Girshick, Masked autoencoders are scalable vision learners, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 16000–16009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [21] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' He, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Zhang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Ren, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Sun, Deep residual learning for image recognition, in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 770–778.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [22] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Hinton and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Zemel, Autoencoders, minimum description length and helmholtz free energy, Advances in neural information processing systems, 6 (1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [23] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Hochreiter, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Bengio, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Frasconi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Schmidhuber, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=', Gradient flow in recurrent nets: the difficulty of learning long-term dependencies, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [24] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Hochreiter and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Schmidhuber, Long short-term memory, Neural computa- tion, 9 (1997), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 1735–1780.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [25] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Hyndman and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Athanasopoulos, Forecasting: principles and practice, OTexts, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [26] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Loshchilov and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Hutter, Sgdr: Stochastic gradient descent with warm restarts, in ICLR, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [27] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Jaynes, Information theory and statistical mechanics, Physical review, 106 (1957), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 620.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [28] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Jiang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Cui, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Ng, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Dai, Accurate channel prediction based on transformer: Making mobility negligible, IEEE Journal on Selected Areas in Communications, (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [29] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Kingma and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Ba, Adam: A method for stochastic optimization, in Interna- tional Conference on Learning Representations, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [30] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Kitaev, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Kaiser, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Levskaya, Reformer: The efficient transformer, in ICLR, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [31] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Krizhevsky, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Sutskever, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Hinton, Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems, 25 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [32] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Lai, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Chang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Yang, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Liu, Modeling long-and short-term tem- poral patterns with deep neural networks, in The 41st international ACM SIGIR conference on research & development in information retrieval, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 95–104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [33] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Jin, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Xuan, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Zhou, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Chen, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Wang, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Yan, Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting, Advances in neural information processing systems, 32 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [34] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Li, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Wang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Yang, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Yang, Uniform masking: Enabling mae pre- training for pyramid-based vision transformers with locality, arXiv preprint arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='10063, (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [35] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Lim, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Ö.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Arik, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Loeff, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Pfister, Temporal fusion transformers for interpretable multi-horizon time series forecasting, International Journal of Forecasting, 37 (2021), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 1748–1764.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [36] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Lim and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Zohren, Time-series forecasting with deep learning: a survey, Philo- sophical Transactions of the Royal Society A, 379 (2021), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 20200209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [37] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Lim, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Zohren, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Roberts, Recurrent neural filters: Learning indepen- dent bayesian filtering steps for time series prediction, in 2020 International Joint Conference on Neural Networks (IJCNN), IEEE, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 1–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [38] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Lin, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Liu, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Qiu, A survey of transformers, arXiv preprint arXiv:2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='04554, (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [39] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Liu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Shen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Zhang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Wang, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Tang, Learning the joint representation of heterogeneous temporal events for clinical endpoint prediction, in Proceedings of the AAAI Conference on Artificial Intelligence, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 32, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [40] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Liu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Yu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Liao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Li, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Lin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Liu, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Dustdar, Pyraformer: Low- complexity pyramidal attention for long-range time series modeling and forecasting, in International Conference on Learning Representations, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [41] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Lin, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Cao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Hu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Wei, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Zhang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Lin, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Guo, Swin transformer: Hierarchical vision transformer using shifted windows, in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 10012– 10022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [42] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Loshchilov and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Hutter, Decoupled weight decay regularization, in ICLR, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [43] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Mcshane, Jensen’s inequality, Bulletin of the American Mathematical Society, 43 (1937), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 521–527.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [44] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Noroozi and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Favaro, Unsupervised learning of visual representations by solving jigsaw puzzles, in European conference on computer vision, Springer, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 69–84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [45] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Parmar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Vaswani, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Uszkoreit, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Kaiser, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Shazeer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Ku, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Tran, Image transformer, in International conference on machine learning, PMLR, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 4055–4064.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [46] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Paszke, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Gross, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Massa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Lerer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Bradbury, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Chanan, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Killeen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Lin, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Gimelshein, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Antiga, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=', Pytorch: An imperative style, high- performance deep learning library, Advances in neural information processing systems, 32 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [47] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Radford, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Narasimhan, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Salimans, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Sutskever, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=', Improving language understanding by generative pre-training, (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [48] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Radford, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Wu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Child, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Luan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Amodei, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Sutskever, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=', Language models are unsupervised multitask learners, OpenAI blog, 1 (2019), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [49] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Rangapuram, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Seeger, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Gasthaus, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Stella, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Wang, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Januschowski, Deep state space models for time series forecasting, Advances in neural information processing systems, 31 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [50] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Roy, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Saffar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Vaswani, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Grangier, Efficient content-based sparse attention with routing transformers, Transactions of the Association for Compu- tational Linguistics, 9 (2021), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 53–68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [51] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Salinas, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Flunkert, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Gasthaus, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Januschowski, Deepar: Proba- bilistic forecasting with autoregressive recurrent networks, International Journal of Forecasting, 36 (2020), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 1181–1191.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [52] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Shannon, A mathematical theory of communication, The Bell system tech- nical journal, 27 (1948), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 379–423.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [53] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Tang and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Zhang, Features fusion framework for multimodal irregular time- series events, in Pacific Rim International Conference on Artificial Intelligence, Springer, 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 366–379.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [54] , Mtsmae: Masked autoencoders for multivariate time-series forecasting, arXiv preprint arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='02199, (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [55] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Tsai, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Bai, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Yamada, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Morency, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Salakhutdinov, Transformer dissection: An unified understanding for transformer’s attention via the lens of kernel, in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 4344–4353.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [56] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Vaswani, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Shazeer, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Parmar, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Uszkoreit, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Jones, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Gomez, Ł.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Kaiser, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Polosukhin, Attention is all you need, Advances in neural information processing systems, 30 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [57] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Wang and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Gupta, Unsupervised learning of visual representations using videos, in Proceedings of the IEEE international conference on computer vision, 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 2794–2802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [58] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Wu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Xu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Wang, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Long, Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting, Advances in Neural Information Processing Systems, 34 (2021), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 22419–22430.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [59] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Wu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Xiao, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Ding, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Zhao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Wei, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Huang, Adversarial sparse transformer for time series forecasting, Advances in neural information processing systems, 33 (2020), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 17105–17115.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [60] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Xie, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Cao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Lin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Bao, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Yao, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Dai, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Hu, Simmim: A simple framework for masked image modeling, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 9653–9663.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [61] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Ye, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Guo, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Gan, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Qiu, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Zhang, Bp-transformer: Modelling long- range context via binary partitioning, arXiv preprint arXiv:1911.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content='04070, (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [62] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Yin and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Shang, Multivariate multiscale sample entropy of traffic time series, Nonlinear Dynamics, 86 (2016), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 479–488.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [63] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Yu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Xia, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Bai, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Lu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Yuille, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Shen, Glance-and-gaze vision transformer, Advances in Neural Information Processing Systems, 34 (2021), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 12992–13003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [64] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Zaheer, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Guruganesh, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Dubey, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Ainslie, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Alberti, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Ontanon, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Pham, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Ravula, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Wang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Yang, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=', Big bird: Transformers for longer se- quences, Advances in Neural Information Processing Systems, 33 (2020), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 17283– 17297.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' [65] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Zhou, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Zhang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Peng, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Zhang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Li, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Xiong, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' Zhang, In- former: Beyond efficient transformer for long sequence time-series forecasting, in Proceedings of the AAAI Conference on Artificial Intelligence, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 35, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} +page_content=' 11106–11115.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNAzT4oBgHgl3EQfzv4J/content/2301.01772v1.pdf'} diff --git a/RdFJT4oBgHgl3EQfKixq/content/tmp_files/2301.11465v1.pdf.txt b/RdFJT4oBgHgl3EQfKixq/content/tmp_files/2301.11465v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..c20e50068740de747973d633ff8dccf022ccbb97 --- /dev/null +++ b/RdFJT4oBgHgl3EQfKixq/content/tmp_files/2301.11465v1.pdf.txt @@ -0,0 +1,1192 @@ +arXiv:2301.11465v1 [math.RT] 26 Jan 2023 +STEINBERG QUOTIENTS, WEYL CHARACTERS, AND +KAZHDAN-LUSZTIG POLYNOMIALS +PAUL SOBAJE +Abstract. Let G be a reductive group over a field of prime characteristic. An indecom- +posable tilting module for G whose highest weight lies above the Steinberg weight has +a character that is divisible by the Steinberg character. The resulting “Steinberg quo- +tient” carries important information about G-modules, and in previous work we studied +patterns in the weight multiplicities of these characters. In this paper we broaden our +scope to include quantum Steinberg quotients, and show how the multiplicities in these +characters relate to algebraic Steinberg quotients, Weyl characters, and evaluations of +Kazhdan-Lusztig polynomials. We give an explicit algorithm for computing minimal char- +acters that possess a key attribute of Steinberg quotients. We provide computations which +show that these minimal characters are not always equal to quantum Steinberg quotients, +but are close in several nontrivial cases. +1. Introduction +1.1. Overview. This is a sequel to [S1] in which we investigated characters of certain +tilting modules. In short, if G is a reductive group in prime characteristic p > 0, then an +indecomposable tilting module for G of the form T((p − 1)ρ + λ), where λ is a p-restricted +dominant weight, has a character that is divisible by the Steinberg character χ((p − 1)ρ). +The resulting “Steinberg quotient” t(λ) is a nonnegative linear combination of W-orbit +sums. Thanks to the linkage principle, we can list which orbit sums might appear in t(λ). +In previous work we proved that all such orbit sums do appear, and that their coefficients +are weakly increasing in size as one moves down from the highest weight under the ↑ partial +ordering. +In this paper we enlarge our investigation to consider t(λ) for all dominant weights λ, +as well as quantum Steinberg quotients tζ(λ), defined in the analogous way for tilting +modules of a quantum group at a p-th root of unity. +In addition to the above pattern +holding more generally, the wider scope makes clearer the connections between Steinberg +quotients and more commonly studied quantities such as Weyl characters and Kazhdan- +Lusztig combinatorics. We will detail all of this below. +1.2. Relationship to other tilting formulas. Before stating our main results, let us +comment briefly on the overlap between the topic of this paper and some existing results +in the literature. +Thanks to formulations by Soergel for quantum groups [Soe], and by +Riche-Williamson for algebraic groups (stated in [RW1], and proved or re-proved in various +contexts in [AMRW] [RW2] [RW3] [BR]), combinatorial algorithms for tilting characters are +Date: January 30, 2023. +2010 Mathematics Subject Classification. Primary 20G05. +1 + +2 +PAUL SOBAJE +already known. Moreover, in the case of quantum groups, the Steinberg quotients tζ(λ) +are governed by the simple characters, and when p > h the latter are given by Lusztig’s +Character Formula (LCF) from [L] (see [Jan, II.H.12] for an account of this). In the algebraic +setting, the analogous statement is not always true as it requires Donkin’s tilting module +conjecture to hold (it does not in general [BNPS1] [BNPS3]), we do not know precisely when +the LCF describes the simple characters ([AJS], [Fie2] [W]), and in any case it would not +apply to most λ that are not p-restricted. +The main thrust of this work is to provide a complementary approach to computing +tilting characters that applies only to special tilting modules, and exploits all of the unique +properties that these modules possess. The hope is that this can help answer questions that +have not yet been answered by existing methods, such as an explanation as to when and +why the characters t(λ) and tζ(λ) differ. Influences on the approach begun in [S1] were +Donkin’s use of Brauer’s formula in [HTT, Proposition 5.5], along with work by Ye [Ye] and +Doty-Sullivan [DS]. In this sequel, we push the limits of these methods, while benefiting +from the information and direction that the tilting character formulas mentioned above +provide. +1.3. Results and Organization. Let X denote the character group of a maximal torus T +of G, and Z[X]W be the ring of W-invariants, where W is the Weyl group of G. The fact +that the orbit sums in t(λ) appear with weakly increasing multiplicity (when moving from +the top orbit down) is due entirely to the fact that for all dominant weights µ, the character +product +χ((p − 1)ρ + pµ)t(λ) +(1.3.1) +has nonnegative coefficients when expressed in the Weyl character basis. +Though this +argument is present in [S1], its importance is more explicitly isolated here in Theorem +3.3.1, where we give a broader statement that highlights the similarity between the orbit- +sum multiplicities in Steinberg quotients and those in Weyl characters (a further parallel +will be noted shortly). +With this theorem in hand, the extension of the main result from [S1] to the Steinberg +quotients t(λ) and tζ(λ), for any dominant λ, follows from well-known facts about tilting +modules. We also record other features of these characters that, though easy to prove, give +interesting perspective. For example, we obtain a natural framework in which Steinberg +quotients become an enlargement of sorts to the set of Weyl characters. That is, for λ +dominant, the quotient tζ(pλ) = χ(λ)F , where F is the Frobenius twist on a character. +In Section 4 we give direct comparisons between algebraic and quantum Steinberg quo- +tients. From what is already known about the relationship between tilting modules in the +respective categories, it follows that the characters t(λ) can be written as nonnegative sums +of the various tζ(µ). By using base-changing results from [Lin], [PS], and [And2], we give +more precise statements on this relationship. One interesting consequence is that for the +Steinberg quotients q(λ) of the G1T-indecomposable modules, we can show (under a mi- +nor condition on p) that all possible orbits appear with positive multiplicity, even when +q(λ) ̸= t(λ). This could be viewed as an analog in this setting to the Premet-Suprunenko +theorem on the weight sets of the p-restricted simple G-modules [Pr] [Su]. +Suppose now that p ≥ h, where h is the Coxeter number of the underlying root system, +and assume that λ−ρ is a p-regular weight. Applying work by Kato [K], we show in Section + +STEINBERG QUOTIENTS, WEYL CHARACTERS, AND KAZHDAN-LUSZTIG POLYNOMIALS +3 +5 that when the LCF describes the simple characters (in the respective settings), then the +orbit multiplicities in tζ(λ) are given by evaluations of Kazhdan-Lusztig polynomials, and +the same is true for q(λ) when λ is p-restricted. The hypothesis does hold in the quantum +setting when p > h, but will not hold in general in the algebraic setting unless p ≫ h. +We should also point out that when this condition holds in both settings, then there is an +agreement tζ(λ) = q(λ) for all p-restricted weights λ (i.e. including the p-singular ones). +Of course we also have tζ(λ) = t(λ) provided that q(λ) = t(λ) (this last equality always +holding when p ≥ 2h − 4). In making the connection to Kazhdan-Lusztig polynomials, the +heavy lifting is done by Kato’s paper along with Fiebig’s detailed account of it [Fie]. +Our ultimate goal is to find character formulas for Steinberg quotients that can, at +minimum, differentiate between tζ(λ) and t(λ), and that will lend themselves to reasonable +dimension formulas (akin to p-versions of Weyl’s dimension formula). In order to achieve +this, it is necessary to find the defining properties of Steinberg quotients. We initiate this +investigation in Section 6. +In view of the results in Section 3, we begin by defining the character Mp(λ) to be the +smallest element in Z[X]W that satisfies (1.3.1) and has λ as its highest weight. In Theorem +6.3.1 we prove that this property can be checked by multiplying against a finite number of +characters of the form χ((p−1)ρ+pµ), though in general checking against χ((p−1)ρ) alone +will not be sufficient. We then give an explicit a process for computing Mp(λ) in Algorithm +6.3.1. +Since the tζ(λ) are lower bounds on the t(λ), and can be computed by ordinary Kazhdan- +Lusztig polynomials when p > h, it is both natural and possible to check to see how close +these are to the Mp(λ). Surprisingly, in all of the computations that we were able to make, +they were very close. They were equal for all restricted λ with λ − ρ a p-regular weight for +root systems A1, A2, A3 (the first two being trivial), and for almost all such weights in type +A4, and for many large weights in type A5. The cases of character equality are nontrivial, +with orbit multiplicities as large as 23 occurring, and in the few cases we found in which +they were not equal, it was by the smallest margin possible (a multiplicity difference of 1 on +the lowest orbits). In many of these cases we can also compute the characters t(λ), thanks +to knowing that t(λ) = q(λ) from [BNPS2] and [BNPS4], and that the LCF describes the +p-restricted simple characters from [Jan, II.8.22] and [Sc]. +1.4. Acknowledgements. We thank Frank L¨ubeck for generously sharing the extensive +computations of Kazhdan-Lusztig polynomials made by the algorithms described in [Lu]. +2. Notation and Recollections +2.1. Weyl groups, Roots, and Weights. We give a brief overview on our notation. For +the most part it follows [Jan], and any notation not explicitly mentioned may be assumed +to be consistent with that. +Let k be an algebraically closed field of characteristic p > 0. By standard arguments we +may consider G to be a simple and simply connected group, the results for which can be +generalized to any G connected reductive. +Fix a maximal torus T inside a Borel subgroup B of G. The root system is denoted +Φ, and we fix a set of simple roots S = {α1, α2, . . . , αn}, where n is the rank of T. This +determines a set of positive roots Φ+ ⊆ Φ. Denote by X the character group of T (also + +4 +PAUL SOBAJE +called the set of weights). Each α ∈ Φ+ has a corresponding coroot α∨. The highest short +root is α0, and α∨ +0 is the highest coroot. For each λ ∈ X and coroot α∨ we denote the +natural pairing by ⟨λ, α∨⟩. The set of dominant weights is X+, and it generated over Z≥0 +by the fundamental dominant weights {̟1, ̟2, . . . , ̟n}, which are defined by the property +that ⟨̟i, α∨ +j ⟩ = δij. For each m ≥ 0, we define +Xm = {a1̟1 + · · · an̟n | 0 ≤ ai < m} ⊆ X+. +Thus Xp denotes the p-restricted dominant weights (we note that we have often just used +Xp for this set in the past, but require the finer notation in this paper). +The root lattice is ZΦ ⊆ X. The element ρ is the half-sum of the positive roots, or +equivalently is the sum of the fundamental dominant weights. The Weyl group is W, and +w0 is its longest element. For any λ ∈ X, we let Wλ denote the stabilizer of λ, while Wλ is +the W-orbit of λ. +The standard partial order on X is denoted as ≤. The affine Weyl group is +Wp ∼= W ⋉ pZΦ, +and it acts on X. It can be shown that the image of Wp in the group of affine transformtions +of E = R ⊗Z X is generated by affine reflections of the form +sα,np(λ) = λ − (⟨λ, α∨⟩ − np)α +for all α ∈ Φ+ and n ∈ Z. For each w ∈ Wp and λ ∈ E, we denote the action of w on λ by +juxtaposition, as wλ. We will primary by interested in the “dot action” of Wp, where +w • λ = w(λ + ρ) − ρ. +For each α ∈ Φ+, n ∈ Z, there is a hyperplane in E defined by +Hα,np = {λ ∈ E | ⟨λ + ρ, α∨⟩ = np}. +The affine reflection of E about Hα,np is precisely the dot action of sα,np on E. The partial +ordering ↑ on X is the minimal such ordering with the property that +(sα,np • λ) ↑ λ +if +(sα,np • λ) ≤ λ, +and +λ ↑ (sα,np • λ) +if +λ ≤ (sα,np • λ). +More generally, λ ↑ µ if there are affine reflections s1, . . . , sm such that +λ ≤ s1 • λ ≤ s2 • s1 • λ ≤ · · · ≤ sm • · · · • s1λ = µ. +(2.1.1) +Properties of this ordering are noted in [Jan, II.6.4]. +The hyperplanes Hα,np divide E up into a system of alcoves and facets. The alcoves +contain points from X if and only if p ≥ h. The elements in the alcoves are called p-regular +weights. They are those weights λ such that +⟨λ + ρ, α∨⟩ ̸∈ pZ +for all α ∈ Φ+. +Let C denote the set of all alcoves of E. The lowest dominant alcove C0 is the alcove +C0 = {λ ∈ E | 0 < ⟨λ + ρ, α∨⟩ < p}. + +STEINBERG QUOTIENTS, WEYL CHARACTERS, AND KAZHDAN-LUSZTIG POLYNOMIALS +5 +The action of Wp on C is simply transitive, hence for any alcove C ∈ C there is a unique +element w ∈ Wp such that w.C0 = C. +An alcove C is called dominant if 0 < ⟨λ + ρ, α∨ +i ⟩ for all i, and an alcove is p-restricted +if 0 < ⟨λ + ρ, α∨ +i ⟩ < p for all i. +The group Wp is a Coxeter group with generators {s0, s1, . . . , sn}, where for 1 ≤ i ≤ n +we have si = sαi,0, and s0 = sα0,p. These generators are just the affine reflections about the +hyperplanes that extend the n + 1 walls of the fundamental alcove. +2.2. Characters. The Grothendieck ring of the category of finite dimensional T-modules is +isomorphic to the group algebra Z[X]. For each µ ∈ X, we denote by e(µ) the corresponding +basis element in Z[X]. Since Z[X] is the group algebra of a free abelian group of rank n, it +is isomorphic to the ring of Laurent polynomials over Z in n indeterminants. In particular, +Z[X] is an integral domain, so the cancellation property for ring multiplication holds. +We denote by s(µ) the sum of the weights in the W-orbit of µ. These elements form a +basis of Z[X]W. +Recall that for σ = � aµe(µ) ∈ Z[X], is “dual” and “Frobenius twist” are +σ∗ = +� +aµe(−µ), +and +σF = +� +aµe(pµ) +respectively. If σ = ch(M) for a T-module M, then σ∗ = ch(M∗), and σF = ch(M(1)). +2.3. G-modules and G1T-modules. For each λ ∈ X+ there is a simple G-module L(λ), +a costandard module ∇(λ) = indG +B λ, a standard module ∆(λ) = (indG +B −w0λ)∗, and an +indecomposable tilting module T(λ). +The modules ∆(λ) and ∇(λ) each have character +given by the Euler characteristic +χ(λ) = +� +i≥0 +(−1)i(ch Ri indG +B λ). +By the strong linkage principle [Jan, II.6.13], [∇(λ) : L(µ)] > 0 implies that µ ↑ λ. In +a similar way, write (T(λ) : χ(µ)) for the multiplicity of ∇(µ) in a good filtration of T(λ) +(equal to the multiplicity of ∆(µ) in a Weyl filtration of T(λ). If (T(λ) : χ(µ)) > 0, then +again µ ↑ λ [Jan, II.E.3]. +For each λ ∈ X there is a simple G1T-module �L1(λ), a projective indecomposable G1T- +module �Q1(λ), and “baby Verma modules” +�Z1(λ) = coindG1T +B+ +1 T λ, +�Z′ +1(λ) = indG1T +B1T λ. +Fix a Frobenius endomorphism F : G → G. For any G-module M, we denote by M(1) +its twist under F. +2.4. Quantum Groups. Let v be an indeterminate, and Q(v) the fraction field of Q[v]. +The quantum group Uv is the Q(v)-algebra with generators Eα, Fα, K±1 +α , for α ∈ Π, satis- +fying the quantum Serre relations of [Jan, H.2]. Over the subring A = Z[v, v−1], we denote +by UA Lusztig’s divided power integral form for Uv. The algebra UA is free as an A-module, +and the multiplication map UA ⊗A Q(v) → Uv is an isomorphism of rings. + +6 +PAUL SOBAJE +For any commutative A-algebra B one obtains the quantum group UB = UA ⊗A B. Let +ζ be a complex primitive p-th root of unity. Specializing v = ζ makes C into an A-algebra. +We now denote by Uζ the resulting quantum group UA ⊗A C. +The category of finite dimensional Uζ-modules, denoted Uζ-mod, has many similarities to +that of G-mod. First, it is known that the category breaks into a direct sum of subcategories +based on central characters, and we restrict our attention only to the subcategory of type 1 +Uζ-modules. In this subcategory, for each λ ∈ X+ there is a simple module Lζ(λ), a standard +module ∆ζ(λ), a costandard module ∇ζ(λ), and an indecomposable tilting module Tζ(λ). +As we are considering only type 1 modules, we will regard the quantum Frobenius mor- +phism as a surjective homomorphism F : Uζ → U(gC) (note then that the image of F as +defined here is the quotient of the image of the more commonly defined quantum Frobenius +morphism). Let LC(λ) denote the irreducible gC-module of highest weight λ. The pullback +under F will be denoted LC(λ)F . If λ = λ0 + pλ1 with λ0 ∈ Xp and λ1 ∈ X+, then there is +an isomorphism of Uζ-modules +Lζ(λ) ∼= Lζ(λ0) ⊗ LC(λ1)F. +The character of a type 1 finite dimensional Uζ-module is also an element in Z[X]W . We +have +χ(λ) = ch(∆ζ(λ)) = ch(∇ζ(λ)). +The small quantum group is denoted uζ. +3. Steinberg Quotients +3.1. +In [S1] we defined, for each λ ∈ Xp, the Steinberg quotients +t(λ) = T((p − 1)ρ + λ)/χ((p − 1)ρ) +and +q(λ) = �Q1((p − 1)ρ + w0λ)/χ((p − 1)ρ). +For p ≥ 2h − 4 these two characters are the same [BNPS4], though in general they can +differ (see also [BNPS1], [BNPS2], and [BNPS3]). We note that [BNPS4] actually utilizes +the language of Steinberg quotients, and establishes nice properties about their restrictions +to Levi subgroups. +There are non-negative integers aµ,λ and bµ,λ 1 such that +q(λ) = +� +aµ,λs(µ) +and +t(λ) = +� +bµ,λs(µ). +Computing Steinberg quotients then amounts to determining these orbit multiplicities, and +the Steinberg quotients in turn give the characters of the relevant modules upon multiplying +by χ((p − 1)ρ). +Some preliminary properties that can be established for these coefficients is that for all +λ ∈ Xp and µ ∈ X+: +(1) aλ,λ = bλ,λ = 1 +1In [S1] we denoted the double index aµ,λ as aλ +µ, and bµ,λ as bλ +µ. + +STEINBERG QUOTIENTS, WEYL CHARACTERS, AND KAZHDAN-LUSZTIG POLYNOMIALS +7 +(2) aµ,λ ≤ bµ,λ +(3) aµ,λ ̸= 0 implies (µ − ρ) ↑ (λ − ρ). +(4) aµ,λ = bµ,λ +if +p ≥ 2h − 4 +The main result proved in [S1] was a multiplicity pattern in the coefficients bµ,λ. +Theorem 3.1.1. [S1, Theorem 3.2.2] Let λ ∈ X+, and let bµ,λ be non-negative integers +such that +t(λ) = +� +µ∈X+ +bµ,λs(µ). +For dominant weights µ, µ′, +if +(µ − ρ) ↑ (µ′ − ρ), +then +bµ,λ ≥ bµ′,λ. +We will generalize this result in Theorem 3.3.1, which distills the essential character +arguments. The original proof, and therefore this generalized one also, was inspired by +ideas due to Ye [Ye], Doty and Sullivan [DS], and Donkin [HTT, Proposition 5.5]. +The statement give in Theorem 3.3.1 will be about formal characters, but applies to +Steinberg quotients thanks to the following fundamental results that hold in the category +of G-modules. +• For every w ∈ W, +χ(w • λ) = (−1)ℓ(w)χ(λ). +• Brauer’s formula: for all λ, µ ∈ X+, +χ(λ)s(µ) = +� +w∈W/Wµ +χ(λ + wµ). +• The Andersen-Haboush Theorem: for all µ ∈ X+, +∇((p − 1)ρ + pµ) ∼= St ⊗∇(µ)(1). +• For all λ, µ ∈ X+, the module +T((p − 1)ρ + λ) ⊗ ∇(µ)(1) +has a good filtration. +The last result follows from the Andersen-Haboush Theorem together with the fact that +the tensor product of good filtration modules has a good filtration (proved for certain p by +Wang, most p by Donkin, and all p by Mathieu). One then observes that T((p − 1)ρ + λ) ⊗ +∇(µ)(1) is a direct summand of +St ⊗T(λ) ⊗ ∇(µ)(1) ∼= ∇((p − 1)ρ + pµ) ⊗ T(λ). + +8 +PAUL SOBAJE +3.2. +In this subsection we collect a number of lemmas that will simplify proofs both in this +section, and then later on in the paper. +Lemma 3.2.1. For all w ∈ W and λ, µ ∈ X, +w • (λ + µ) = w • λ + wµ. +Proof. We have +w • (λ + µ) = w(λ + µ + ρ) − ρ += w(λ + ρ) − ρ + wµ += w • λ + wµ. +□ +Lemma 3.2.2. Let λ ∈ X, and γ ∈ X+. If for some α ∈ Φ+, +⟨λ + γ + ρ, α∨⟩ < 0, +then +sα • (λ + γ) − γ +lies strictly between λ and sαλ. In particular, this weight is in the interior of conv(Wλ). +Proof. In this case, since +⟨γ + ρ, α∨⟩ > 0, +we must have that +0 > ⟨λ + γ + ρ, α∨⟩ > ⟨λ, α∨⟩. +Therefore +sα • (λ + γ) − γ = sα(λ + γ + ρ) − ρ − γ += λ − ⟨λ + γ + ρ, α∨⟩α +< λ − ⟨λ, α∨⟩α += sαλ. +□ +Lemma 3.2.3. Let λ, γ ∈ X+. Let J ⊂ Π be the set of all simple roots αi such that +⟨γ + ρ, α∨ +i ⟩ ≤ ⟨λ, α∨ +0 ⟩. +Then for any w0λ ≤ µ ≤ λ, there is a w ∈ WJ such that +w • (γ + µ) ∈ X+ − ρ. +Proof. For all αi ∈ Π, the bounding on µ implies that +⟨w0λ, α∨ +0 ⟩ ≤ ⟨µ, α∨ +i ⟩ ≤ ⟨λ, α∨ +0 ⟩. +Therefore, if +0 > ⟨(γ + µ) + ρ, α∨ +i ⟩ += ⟨γ + ρ, α∨ +i ⟩ + ⟨µ, α∨ +i ⟩ +≥ ⟨γ + ρ, α∨ +i ⟩ − ⟨λ, α∨ +0 ⟩, + +STEINBERG QUOTIENTS, WEYL CHARACTERS, AND KAZHDAN-LUSZTIG POLYNOMIALS +9 +then it follows that αi ∈ J. We may replace γ + µ with si • (γ + µ), which is on the positive +side of the hyperplane Hαi,0. It follows by the previous lemma, and our assumption on µ, +that +si • (γ + µ) = γ + µ′, +with woλ ≤ µ′ ≤ λ. We may now repeat the process above with γ + µ′, and will eventually +wind up with a weight in X+ − ρ having only used reflections from WJ. +□ +3.3. +Recall that Weyl characters refer to those Euler characteristics χ(λ) for which λ ∈ +X+. The Weyl characters form a Z-basis for Z[X]W . A nonzero element in Z[X]W having +nonnegative coefficients in the Weyl basis will be called a good filtration character. +Theorem 3.3.1. Let η ∈ Z[X]W, where η = � +µ∈X+ cµs(µ). +(1) Suppose that for every λ ∈ X+, the product χ(λ)η is a good filtration character. +Then cµ ≥ cµ′ whenever µ ≤ µ′. +(2) Suppose that for every λ ∈ X+, the product χ((p − 1)ρ + pλ)η is a good filtration +character. Then cµ ≥ cµ′ whenever µ − ρ ↑ µ′ − ρ. +Proof. (1) It suffices to prove the result in the case µ′ is a minimal dominant weight such +that µ′ > µ. Under this assumption, [St, Theorem 2.6] shows that there is a positive root +α ∈ Φ+ such that µ + α = µ′. Set +n = ⟨µ, α∨⟩. +We then have that ⟨µ′, α∨⟩ = n + 2, and since µ is dominant, that n ≥ 0. There is a simple +root αi and an element w ∈ W such that wα = −αi. From this it follows that +wµ′ = w(µ + α) = wµ − αi. +We also have +⟨wµ, α∨ +i ⟩ = −n, +and +⟨wµ′, α∨ +i ⟩ = −(n + 2). +Set +γ = +� +mj̟j ∈ X+ +where mi = n, and for j ̸= i, +mj > ⟨σ, α∨ +0 ⟩, +for all weights σ appearing in η (note that such a choice is possible as there are only finitely +many such σ). By Brauer’s formula, +χ(γ)η = +� +λ∈X+ +� +σ∈W λ +cλχ(γ + σ). +(3.3.1) +Among the terms of this sum are cµχ(γ + wµ) and cµ′χ(γ + wµ′). For any σ that is a +weight in η, it follows from Lemma 3.2.3 that the choice of γ guarantees that either +σ + γ ∈ X+ − ρ, +or else +si • (σ + γ) ∈ X+ − ρ. + +10 +PAUL SOBAJE +We see in particular that γ + wµ ∈ X+ − ρ, and in fact is in X+, and that +si • (γ + wµ′) = si(γ + wµ′ + ρ) − ρ += γ + wµ′ + ρ − ⟨γ + wµ′ + ρ, α∨ +i ⟩αi − ρ += γ + wµ′ + ρ + αi − ρ += γ + wµ. +It then follows that when the sum in (3.3.1) is rewritten as a sum of Weyl characters, the +coefficient on χ(γ + wµ) is cµ − cµ′. By hypothesis, this coefficient is nonnegative, proving +that cµ ≥ cµ′. +(2) This case follows a similar logic, though there are a few modifications that need to +be spelled out. First, we assume that the relation µ − ρ ↑ µ′ − ρ is minimal, so that there +is some α ∈ Φ+ and some n ≥ 1 such that +sα,np • (µ − ρ) = µ′ − ρ. +This implies that +⟨µ − ρ + ρ, α∨⟩ < np < ⟨µ′ − ρ + ρ, α∨⟩. +Equivalently, +⟨µ, α∨⟩ < np < ⟨µ′, α∨⟩ +Again there is a simple root αi and an element w ∈ W such that wα = −αi. We then have +that +⟨wµ, α∨ +i ⟩ < −np < ⟨wµ′, α∨ +i ⟩. +We now set +γ = +� +mj̟j ∈ X+ +where mi = n − 1, and for j ̸= i, +p(mj + 1) > ⟨σ, α∨ +0 ⟩. +The proof now follows similar concluding logic as in proof of (1). The character +χ((p − 1)ρ + pγ)η +has by assumption nonnegative coefficients when expressed in the Weyl basis, and one can +verify that +cµ − cµ′ +is one of these coefficients. +□ +Remark 3.3.2. In the first statement of this theorem, the fact that χ(0)η is a good filtration +character means that η is a good filtration character. In this case the theorem is simply +giving a statement about orbit sums in Weyl characters, and this property is already known. +We put these together so that Weyl characters and Steinberg quotients can be seen as +parallel in a certain sense. + +STEINBERG QUOTIENTS, WEYL CHARACTERS, AND KAZHDAN-LUSZTIG POLYNOMIALS +11 +3.4. +In [S1], the quotients t(λ) and q(λ) were defined only for λ ∈ Xp. While there is +not much point in extending the definition of the q(λ) to include more weights (one could +make sense of such a definition, but we effectively obtain nothing new as follows from [Jan, +II.11.3(2)]), extending the definition of t(λ) turns out to be quite useful. That is, for λ ∈ X+ +we define (as before) +t(λ) = ch(T((p − 1)ρ + λ))/χ((p − 1)ρ). +The facts recalled in Section 3.1 are true of T((p − 1)ρ + λ) for all dominant λ. Therefore +we may apply Theorem 3.3.1(2) to t(λ), showing that the statement in Theorem 3.1.1 holds +in this setting also. +By extending this definition, we can calculate precisely a number of the t(λ). This next +result follows immediately from Donkin’s tensor product theorem [Don2, Proposition 2.1]. +Proposition 3.4.1. Let λ ∈ Xp. If t(λ) = q(λ), then +t(λ + pµ) = t(λ)ch(T(µ))F . +3.5. +The quantum Steinberg module is Stζ = Lζ((p − 1)ρ). Let µ ∈ X+. The character +equality +χ((p − 1)ρ + pµ) = χ((p − 1)ρ)χ(µ)F +reflects the module isomorphism +∇ζ((p − 1)ρ + pµ) ∼= Stζ ⊗LC(µ)F . +The module ∇ζ((p − 1)ρ + pµ) is simultaneously simple, standard, costandard, and tilting. +For each λ ∈ X+, the tilting module Tζ((p−1)ρ+λ) is an injective and projective Uζ-module, +and every an indecomposable injective Uζ-module is of this form. Writing λ = λ0 + pλ1, +with λ0 ∈ Xp and λ1 ∈ X+, we have +Tζ((p − 1)ρ + λ) ∼= Tζ((p − 1)ρ + λ0) ⊗ LC(λ1)F . +Let λ ∈ X+. We define the quantum Steinberg quotient tζ(λ) by +tζ(λ) = ch(Tζ((p − 1)ρ + λ))/χ((p − 1)ρ). +Since ch(Tζ((p − 1)ρ + λ)) is W-invariant, there are non-negative integers cµ,λ such that +tζ(λ) = +� +cµ,λs(µ). +Theorem 3.5.1. The statement of Theorem 3.1.1 for the coefficients bµ,λ holds also for the +coefficients cµ,λ. +Again, we may apply Theorem 3.3.1(2) to see that the statement of Theorem 3.1.1 for +the coefficients bµ,λ holds also for the cµ,λ. +Proposition 3.5.2. For each λ ∈ Xp and µ ∈ X+ we have +tζ(λ + pµ) = tζ(λ)χ(µ)F . + +12 +PAUL SOBAJE +4. Comparison between algebraic and quantum Steinberg quotients +4.1. +We will primarily follow the p-modular setup of [PS], but also refer the interested +reader to [Lin], where some of the modules below were first studied. +Recall that A = +Z[v, v−1]. As above, ζ denotes a fixed complex primitive p-th root of unity. Let O denote +the local ring Z[ζ](1−ζ). The assignment v �→ ζ defines a ring homomorphism A → O. Set +UO = UA ⊗A O. +Then UO is also a kind of integral form for Uζ. Since O has residue field Fp, we have +Uk ∼= UO ⊗O k. There is a surjective map of algebras φk : Uk ։ Dist(G). The elements in +the kernel of φk act as 0 on any finite dimensional type 1 module for Uk. Such a module +is therefore a finite dimensional Dist(G)-module, and by [Jan, II.1.20], is also a rational +G-module. +A UO-module MO will be called a UO-lattice if it is free of finite rank as an O-module. +One obtains a Uζ-module +Mζ = MO ⊗O C. +By the discussion above, if MO is a type 1 module, then one obtains a Dist(G)-module +M = MO ⊗O k. +Let λ ∈ X+. Let V be a finite-dimensional Uζ-module of highest weight λ that is generated +by a weight vector vλ. Such a module will be a quotient of ∆ζ(λ), and the particular case +of interest for us is when V is Lζ(λ). One can always find a particular UO-lattice inside +of Lζ(λ) by taking the submodule UO.vλ. Such a construction is referred to as a minimal +lattice, as it is necessarily contained in any other UO-lattice of Lζ(λ). By duality there also +exists a maximal UO-lattice inside of Lζ(λ). The resulting G-modules obtained from the +minimal and maximal lattices are denoted as +∆red(λ) +and +∇red(λ) +respectively. These are indecomposable modules for G, and both have formal characters +equal to that of Lζ(λ). The symbols denoting each module point to their similarities with the +standard and costandard G-modules of highest weight λ (each of which can be constructed +by minimal and maximal lattices respectively of finite dimensional gC-modules). Specifically, +we can place these modules in a chain of homomorphisms +∆(λ) ։ ∆red(λ) ։ L(λ) +and +L(λ) ֒→ ∇red(λ) ֒→ ∇(λ). +The modules L(λ) and ∆red(λ) have the same character if and only if +∆red(λ) ∼= ∇red(λ). +Another way to obtain a UO-lattice is to start with an indecomposable tilting module +T(λ) for G. +Andersen showed [And2, §4.2] that this tilting module can be lifted to an +indecomposable tilting module TO(λ) over Dist(GO) [Jan, II.E.20]. This pulls back to a +type 1 tilting module for UO. In this way, one obtains a tilting Uζ-module +TO(λ) ⊗O C. + +STEINBERG QUOTIENTS, WEYL CHARACTERS, AND KAZHDAN-LUSZTIG POLYNOMIALS +13 +This module has the same character as T(λ). There are non-negative integers nλ,µ such +that +TO(λ) ⊗O C ∼= Tζ(λ) ⊕ +� +µ<λ +Tζ(µ)⊕nλ,µ. +(4.1.1) +4.2. +The characters of finite dimensional G-modules and the characters of finite dimen- +sional type 1 Uζ-modules are elements in the ring Z[X]W . Define the left action of the +commutative ring Z[X]W on itself by +η.σ = σηF , +for all η, σ ∈ Z[X]W . This action makes Z[X]W into a free left Z[X]W -module, and following +Donkin [Don1] we call a basis for this action a “p-basis for Z[X]W .” One p-basis is given by +the set of orbit sums +{s(λ) | λ ∈ Xp}. +More generally we obtain a p-basis from any collection of elements +{f(λ) | λ ∈ Xp}, +where each f(λ) is of the form +f(λ) = s(λ) + +� +µ∈Xp,µ 2, and p > 3 if G has a root system of type G2, then aµ,λ ≥ cµ,λ +for all λ ∈ Xp and µ ≤ λ. In particular, if λ ∈ Xp and µ ∈ X+ with (µ − ρ) ↑ (λ − ρ), then +aµ,λ ≥ 1. +4.4. +We also obtain useful facts about the characters t(λ). Andersen conjectured in [And1] +that for all λ ∈ X+ such that +⟨λ + ρ, α∨ +0 ⟩ < p2, +it should hold that +TO(λ) ⊗O C ∼= Tζ(λ). +In other words, for such weights the algebraic and quantum tilting modules should agree. +When p ≥ 2h − 2, this conjecture implies Lusztig’s conjecture, therefore it does not hold in +general. +Nonetheless, it is an interesting question to consider. As it pertains to Steinberg quo- +tients, we note that +⟨(p − 1)ρ + λ + ρ, α∨ +0 ⟩ = p(h − 1) + ⟨λ, α∨ +0 ⟩. +Thus if +⟨λ, α∨ +0 ⟩ < p(p − h + 1), +Andersen’s conjecture would imply that +t(λ) = tζ(λ). +It follows from (4.1.1) and Theorem 3.1.1 that for all λ ∈ X+, we have +t(λ) = tζ(λ) + +� +(µ−ρ)↑(λ−ρ) +n′ +µ,λtζ(µ), +where n′ +µ,λ = n(p−1)ρ+µ,(p−1)ρ+λ from (4.1.1). The next result follows directly from this +observation. +Proposition 4.4.1. Let λ ∈ Xp. +(1) If for some µ we have bµ,λ > cµ,λ, then bγ,λ > cγ,λ for all (γ − ρ) ↑ (µ − ρ). +(2) Let γ be the minimal dominant weight such that (γ −ρ) ↑ (λ−ρ). Then t(λ) = tζ(λ) +if and only if bγ,λ = cγ,λ. + +16 +PAUL SOBAJE +5. Steinberg quotients and Kazhdan-Lusztig polynomials +5.1. +Let λ ∈ Xp. For all µ ∈ X+ there are integers dµ,λ such that +ch(L(λ)) = +� +dµ,λ χ(µ). +(5.1.1) +We can compare these coefficients to the aµ,λ thanks to a key result due to Kato [K, Theorem +3.5]. Our proof follows Fiebig [Fie]. +Theorem 5.1.1. Suppose that ch(L(λ − ρ)) is given by Lusztig’s character formula for all +λ ∈ Xp such that λ − ρ is p-regular. Then for all λ ∈ Xp and µ ∈ X+ we have +aµ,λ = |dµ−ρ,λ−ρ|. +Proof. Applying the translation principle, we may assume that λ − ρ is strongly linked to +0. Therefore let w ∈ Wp and x ∈ Wp be such that +w • 0 = λ − ρ, +x • 0 = µ − ρ. +Looking at both Corollary 3.4 and the proof of Theorem 3.5 from [Fie], we see that +[ �Z1(w0x • 0) : �L1(w0w • 0)] = |dx • 0,w • 0|. +We then have +[ �Z1(w0x • 0) : �L1(w0w • 0)] = [ �Z1(pρ + w0x • 0) : �L1(pρ + w0w • 0)] += [ �Z1((p − 1)ρ + (w0x • 0 + ρ)) : �L1((p − 1)ρ + (w0w • 0 + ρ))] += ( �Q1((p − 1)ρ + (w0w • 0 + ρ)) : �Z1((p − 1)ρ + (w0x • 0 + ρ))), +The first equality above follows from the fact that for all µ, σ, γ ∈ X we have +[ �Z1(µ) : �L1(σ)] = [ �Z1(µ + pγ) : �L1(σ + pγ)]. +We note that because the dot action of Wp is a group action, we have for any y ∈ Wp that +w0y • 0 = w0 • (y • 0). Thus the highest weight of +�Q1((p − 1)ρ + (w0w • 0 + ρ)) +is +2(p − 1)ρ + w0((p − 1)ρ + (w0w • 0 + ρ)) = 2(p − 1)ρ + w0(p − 1)ρ + w0(w0 • w • 0 + ρ) += 2(p − 1)ρ − (p − 1)ρ + w0(w0(w • 0 + ρ) − ρ + ρ) += (p − 1)ρ + w • 0 + ρ += (p − 1)ρ + λ. +We also have that the dominant weight in the W-orbit of w0x • 0 + ρ is +w0(w0 • x • 0 + ρ) = w0(w0(x • 0 + ρ) − ρ + ρ) += w0(w0(x • 0) + ρ)) += x • 0 + ρ += µ. +This shows that s(µ) occurs in q(λ) with multiplicity |dµ−ρ,λ−ρ|. +□ + +STEINBERG QUOTIENTS, WEYL CHARACTERS, AND KAZHDAN-LUSZTIG POLYNOMIALS +17 +5.2. +The result in the previous section was in terms of the algebraic group, but the same +holds for the quantum group in view of the facts recalled in Section 4. In this case, we +indeed do have the hypothesis as holding, at least when p > h (see [Jan, II.H.12]). +We further note that in the case of the quantum group, if λ − ρ is p-regular, then the +orbit multiplicities in tζ(λ) are given by evaluations of Kazhdan-Lusztig polynomials for all +λ ∈ X+. This follows from Proposition 3.5.2 and [K, Corollary 4.10]. +6. Lower bounds on Steinberg Quotients +6.1. +In this section we consider the primary problem of computing t(λ) and tζ(λ) in some +reasonable way. Specifically, we seek to find properties that completely determine these +characters. Using Weyl characters as a guide, we will define an approximation for tζ(λ) by +keying in on one of its properties. These approximations will be lower bounds on Stein- +berg quotients, and are computable by a straightforward algorithm. We will then provide +computational evidence that suggests that these approximations are reasonably close to the +tζ(λ) (or at least are so in some nontrivial examples). +6.2. +Donkin gave alternate proof of Weyl’s formula in [Don3], also recounted in [Jan, Propo- +sition II.5.10]. Boiling it down to its essence, we see that Weyl characters are a subset of +Euler characteristics, and Euler characteristics can be shown to satisfy the following prop- +erties: +• For every λ ∈ X+ and w ∈ W, +χ(w • λ) = (−1)ℓ(w)χ(λ). +• For all λ ∈ X+, +s(λ) = +� +w∈W/Wλ +χ(wλ). +• For all λ ∈ X, +χ(λ) ∈ Z[X]W. +Once we know that for λ ∈ X+, the highest weight of χ(λ) is λ, occuring once, then these +properties completely determine χ(λ). Together they provide a recursive way to compute +the orbit sums that appear in χ(λ), starting with the outer orbit. This recursive process +can be expressed succinctly as a division between signed W-orbit sums in Z[X]. +6.3. +For each λ ∈ X+, let I(λ) denote the “smallest” element in Z[X]W of highest weight +λ having the property that, for all µ ∈ X+, +I(λ)χ(µ) +has the character of a good filtration module. It is then trivially true that I(λ) = χ(λ). +This is because I(λ)χ(0) = I(λ), so if I(λ) satisfies the condition above then I(λ) is itself +a nonnegative sum of Weyl characters which has highest weight λ. Thus χ(λ) appears at +least once in this sum. Since I(λ) is meant to be minimal with respect to this property, we +must have that I(λ) = χ(λ). +Motivated by this observation, and looking at Theorem 3.3.1, we make the following +definition. We say that an element η ∈ Z[X]W has a good Steinberg multiplication if +ηχ((p − 1)ρ + pγ) +is a good filtration character +∀γ ∈ X+. +(6.3.1) + +18 +PAUL SOBAJE +We then define, for each λ ∈ X+, the character Mp(λ) to be the smallest element in Z[X]W +having highest weight λ and satisfying the good Steinberg multiplication property. +We will make precise what we mean by “smallest” by way of an algorithm for computing +Mp(λ) (this algorithm will evidently make a minimal choice at each stage). We will then +prove that this algorithm always produces a well-defined element that has the good Steinberg +multiplication property. +Before proceeding, we show that the good Steinberg multiplcation property, which a priori +involves checking an infinite number of character multiplications, can in fact be checked by +multiplying by a finite number of characters. At the same time, it turns out to be too +optimistic to hope that this property can simply be checked by multiplication against the +Steinberg character itself. +Theorem 6.3.1. Let η ∈ Z[X]W . Let m be an integer such that pm > ⟨σ, α∨ +0 ⟩ as σ ranges +over the weights in η. Then the following hold. +(1) η satisfies the good Steinberg multiplication property if and only if +ηχ((p − 1)ρ + pγ) +is a good filtration character +∀γ ∈ Xm. +(2) If η is equal to the character of a G-module, then η satisfies the good Steinberg +multiplication property if and only if +ηχ((p − 1)ρ) +is a good filtration character. +(3) If η is not the character of a G-module, then in general the previous condition fails. +Proof. (1) The only thing to prove is that it suffices to check the property on this finite +set. To do so, we show that for any γ ̸∈ Xm, there exists an element γm ∈ Xm such that +ηχ((p − 1)ρ + pγ) is a good filtration character if and only if ηχ((p − 1)ρ + pγ′) is a good +filtration character. +Let J ⊂ Π be the set of all simple roots αi such that +⟨γ, α∨ +i ⟩ < m. +Define +γ1 = +� +αi∈J +⟨γ, α∨ +i ⟩̟i. +That is, in terms of the basis of fundamental dominant weights, γ1 agrees with γ on those +coefficients that are less than m, and is 0 on the others. Now define +γ2 = +� +αi∈Π\J +m̟i, +and set +γ′ = γ1 + γ2. +We have that +γ = γ1 + (γ − γ1), +and the coefficients of γ − γ1 are greater than or equal to those of γ2. Suppose now that σ +is a weight in η. Then by Lemma 3.2.3 there is some w ∈ WJ such that +w • ((p − 1)ρ + pγ + σ) + +STEINBERG QUOTIENTS, WEYL CHARACTERS, AND KAZHDAN-LUSZTIG POLYNOMIALS +19 +is in X+ − ρ. Note that w(γ − γ1) = γ − γ1 for any such w, as this weight pairs to 0 with +all α∨ +i for αi ∈ J. Applying Lemma 3.2.1, we then have +w • ((p − 1)ρ + pγ + σ) = w • ((p − 1)ρ + pγ1 + σ) + w(p(γ − γ1)) += w • ((p − 1)ρ + pγ1 + σ) + p(γ − γ1). +The reasoning above also implies for this same w that the weight +w • ((p − 1)ρ + pγ′ + σ) = w • ((p − 1)ρ + pγ1 + σ) + w(pγ2) += w • ((p − 1)ρ + pγ1 + σ) + pγ2 +is in X+ − ρ. It therefore follows that in the basis of Weyl characters, ηχ((p − 1)ρ + pγ) +equals +� +µ∈X +cµχ(µ + p(γ − γ1)), +if and only if in this basis ηχ((p − 1)ρ + pγ′) equals +� +µ∈X +cµχ(µ + pγ2). +(Note that µ need not be dominant in these expressions, but must be after adding p(γ −γ1) +or pγ2.) This finishes the proof of (1). +(2) This is shown in Section 2 of [And3]. +(3) A counter-example is given in Section 7.2. +□ +We can now present our algorithm for determining Mp(λ). +Algorithm 6.3.1. Input: a weight λ ∈ X+. +Output: the character Mp(λ). +Preliminary Steps: +(1) Set Ψ+(Mp(λ)) to be the set of all γ ∈ X+ such that (γ − ρ) ↑ (λ − ρ). +(2) Let m be the minimal integer such that ⟨λ, α∨ +0 ⟩ < pm. Recall that Xm ⊆ X+ denotes +the set of m-restricted weights. +(3) Initialize Mp(λ) = s(λ). +Iterative Steps: +(1) Let µ ∈ Ψ+(Mp(λ)) be a maximal weight, under the ≤ ordering, such that the +multiplicity of s(µ) in Mp(λ) is 0. If no such µ exists, then the process is ended. +Otherwise, proceed to Step (2). +(2) For each γ ∈ Xm, write the character +χ((p − 1)ρ + pγ)Mp(λ) +in the basis of Weyl characters. +(3) Let xµ be the least integer appearing on as a coefficient on a term of the form +χ((p − 1)ρ + pγ + wµ) +in the previous step, for all w ∈ W and for all γ ∈ Xm. + +20 +PAUL SOBAJE +(4) Add −xµs(µ) to Mp(λ) and repeat Step (1). +Claim: This algorithm terminates after a finite number of computations and returns the +same element regardless of any choices made at any stage. The element it returns satisfies +the good Steinberg multiplication property. +Proof. Regarding the termination of the algorithm, because the set Xm is finite, it is clear +that the computations made at every stage are finite. Also, after each loop the coefficient +on the relevant s(µ) becomes positive, so the loop never returns to a previously settled case. +To see this, suppose that µ′ is minimal such that (µ − ρ) ↑ (µ′ − ρ). If µ is (at this stage) a +maximal weight such that the coefficient of s(µ) is 0, then it must be true that s(µ′) > 0. +Now, applying the argument in the proof of Theorem 3.3.1(2), it will follow that after this +loop the coefficient of s(µ) is at least as big as the coefficient of s(µ′). +Next, we will show that at Step (1) in the iterative process, if there are two or more +maximal weights satisfying the condition (necessarily incomparable to each other), the +the order in which they are chosen does not matter. Suppose then that µ1 and µ2 are +two such weights, and that when adding in the orbit sums s(µ1), we impact the number +of s(µ2) needed later. This would mean that there are elements w1, w2 ∈ W such that +(p − 1)ρ + pγ + w2µ2 ∈ X+ − ρ, and +χ((p − 1)ρ + pγ + w1µ1) = ±χ((p − 1)ρ + pγ + w2µ2). +If +(p − 1)ρ + pγ + w1µ1 = (p − 1)ρ + pγ + w2µ2, +then we would have w1µ1 = w2µ2 for w1 and w2 elements in the finite Weyl group. But this +cannot happen since µ1 and µ2 are distinct dominant weights. The only other case then is +that for some nontrivial w ∈ W, +w • ((p − 1)ρ + pγ + w1µ1) = (p − 1)ρ + pγ + w2µ2. +However, applying Lemma 3.2.2, it would follow that w2µ2 lies in the convex hull of W(wµ1), +so that µ2 lies in the convex hull of Wµ1. But this is well known to imply that µ2 ≤ µ1, +which contradicts our assumption that these weights are not comparable. +Finally, by Theorem 6.3.1 we know that the final value for Mp(λ) has the good Steinberg +multiplication property. +□ +6.4. +We wish to compare the multiplicities between tζ(λ) and Mp(λ). As some explicit +computations indicate, these characters will in general differ, so that tζ(λ) is defined by +more than just having the good Steinberg multiplication property. Nonethelss, in a very +special case we do always have equality. +Proposition 6.4.1. For all λ ∈ X+, +Mp(pλ) = χ(λ)F . +In particular, Mp(pλ) = tζ(pλ). +Proof. The only orbit sums that are needed to appear in Mp(pλ) are those s(µ) such that +(µ − ρ) ↑ (pλ − ρ). + +STEINBERG QUOTIENTS, WEYL CHARACTERS, AND KAZHDAN-LUSZTIG POLYNOMIALS +21 +But such µ are necessarily in pX. +It follows that there are distinct dominants weights +µ1, µ2, . . . , µm which are less than λ, and coefficients ci ∈ Z, such that +Mp(pλ) = χ(λ)F + +� +ciχ(µi)F . +From the definition of Mp(pλ), it is necessary that +χ((p − 1)ρ)Mp(pλ) = χ((p − 1)ρ) +� +χ(λ)F + +� +ciχ(µi)F � += χ((p − 1)ρ + pλ) + +� +ciχ((p − 1)ρ + pµi) +is a good filtration character. The Weyl characters appearing in this last expression are +all distinct, therefore the coefficients ci are nonnegative. Since χ(λ)F itself has the good +Steinberg multiplication property, it follows by the minimality of Mp(λ) that all ci = 0, so +that Mp(pλ) = χ(λ)F . +The last part follows from Proposition 3.5.2. +□ +7. Computations in Type A +7.1. +For An, the fundamental dominant weights are ̟1, ̟2, . . . ̟n. We write +(a1, a2, . . . , an) = a1̟1 + a2̟2 + · · · + an̟n. +7.2. A3. We will work here explicitly with p = 5. Lusztig’s conjecture is known to hold for +the algebraic group for all p ≥ 5, and a detailed listing of the characters can be found in +[Jan, II.8.20]. We also know, by [BNPS2], that q(λ) = t(λ) for all λ ∈ Xp for all p. +Applying the general formula given in [Jan, II.8.20], we have that +L(3, 2, 3) = χ(3, 2, 3)−χ(2, 2, 2)−χ(5, 0, 1)−χ(1, 0, 5)+χ(1, 1, 3)+χ(3, 1, 1)−2χ(2, 0, 2)+3χ(0, 0, 0). +Because Lusztig’s theorem holds here in both cases, we are able by Theorem 5.1.1 to +immediately read off the (equal) characters q(4, 4, 4) and tζ(4, 4, 4). +By the comments +above, these also equal t(4, 4, 4). We have +t(4, 4, 4) = s(4, 4, 4)+s(2, 4, 2)+s(7, 1, 1)+s(1, 1, 7)+s(3, 3, 1)+s(1, 3, 3)+2s(2, 2, 2)+3s(1, 2, 1). +A computer calculation further reveals that these are the minimal orbit multiplicities +needed to satisfy the good Steinberg multiplication property, so that this character is also +equal to Mp(4, 4, 4). At the same time, our algorithm found that +χ((p − 1)ρ)(t(4, 4, 4) − s(2, 4, 2)) +is a good filtration character. Thus the orbit s(2, 4, 2) is not needed to obtain a good filtra- +tion character when multiplying by the Steinberg weight. This gives an example proving +claim (3) in 6.3.1. + +22 +PAUL SOBAJE +7.3. A4. Computer calculations by Scott [Sc] have shown that Lusztig’s conjecture holds for +the algebraic group for p = 5, 7. Applying [BNPS4], we also have for p = 7 that q(λ) = t(λ). +We will therefore look at p = 7, where it follows then that tζ(λ) = t(λ). There are 52 +dominant weights appearing in t(6, 6, 6, 6) (this corresponds to the number of dominant +alcoves that are less than the top restricted alcove under the ↑ ordering). For brevity, we +list only the orbit sums appearing with the greatest multiplicities, which are 9, 13, and 21. +Orbit Sum +Multiplicity in tζ(6, 6, 6, 6) +Multiplicity in Mp(6, 6, 6, 6) +s(4, 2, 2, 4) +9 +9 +s(1, 5, 5, 1) +9 +9 +s(3, 1, 2, 6) +9 +9 +s(6, 2, 1, 3) +9 +9 +s(5, 1, 2, 3) +13 +13 +s(3, 2, 1, 5) +13 +13 +s(4, 1, 1, 4) +21 +20 +s(1, 1, 1, 1) +21 +20 +From this computation we find the interesting fact that the Mp(λ) are not always equal +to the tζ(λ). +7.4. A5. Here we do not know of any small primes in which Lusztig’s conjecture holds for +the algebraic group, but we do know that it holds for p > 6 in the quantum setting. Using +the Kazhdan-Lusztig polynomials computed by Frank L¨ubeck, all the computations that +we were able to make showed complete agreement between tζ(λ) and Mp(λ). The largest +example for which we were able to compute Mp(λ) was for the weight (3, 6, 2, 4, 4). +We found that the characters tζ(3, 6, 2, 4, 4) and Mp(3, 6, 2, 4, 4) were equal. In these +characters there are 79 different orbit sums appearing. The lowest orbit sum, s(1, 1, 1, 1, 1), +occurs with the greatest multiplicity, which is 23. +7.5. Larger ranks. L¨ubeck shared complete computations of the relevant Kazhdan-Lusztig +polynomials for type A up through rank 7. Unfortunately, our own code for computing the +characters Mp(λ) has not been able to keep up! Our first attempt was an ad hoc script +written in MATLAB that replaced by-hand computations. Subsequent versions have been +modifications of this, but a more serious design is needed (we did not expect the Mp(λ) to +be as close to the tζ(λ) as we have found them to be). Ideally we would like to find more +compact formulas for computing the characters Mp(λ), possibly one that is patterned after +Freudenthal’s formula for computing χ(λ). +We should also say at this point that the data grows dramatically we move up in rank, +so it will be illuminating to study the characters side-by-side for larger n. For example, in +type A5, p = 7, the Steinberg quotient t(6, 6, 6, 6, 6) contains 478 distinct orbits, and the +biggest orbit multiplicity is 646. Moving into larger ranks, and stating everything now in +terms of a general prime p > h, we find for type A6 that the Steinberg quotient t((p − 1)ρ) +has 5706 distinct orbits, with the greatest orbit sum multiplicity being 65199. For A7, the +corresponding character has 83824 distinct orbits, and the largest multiplicity is more than +34 million. + +STEINBERG QUOTIENTS, WEYL CHARACTERS, AND KAZHDAN-LUSZTIG POLYNOMIALS +23 +These numbers all come from the Kazhdan-Lusztig polynomial computations made by +L¨ubeck, though we had independently computed the numbers of distinct orbits in the +characters just listed. +8. Concluding Remarks +We find the characters Mp(λ) to be quite interesting. Although they are not in complete +agreement with the tζ(λ), which when p > h are computable by evaluating Kazhdan-Lusztig +polynomials if λ − ρ is p-regular, they are nonetheless close in the examples we have seen. +Finding further insights into this relationship will be the focus of future work. +It is worth observing also that the algorithm for computing Mp(λ) does not require λ−ρ +to be p-regular. In fact, intuitively it seems reasonable that the more p-singular the weight +λ − ρ is, the closer Mp(λ) will be to tζ(λ) (in terms of relative difference). See Proposition +6.4.1. +In a similar vein, some calculations in the case of A4 indicate that the behavior under +translation is not the same for Mp(λ) as it is for tζ(λ), and this likely accounts for the +descrepency detailed in Section 7.3. This will also be explored further. +References +[AJS] +H. H. Andersen, J. C. Jantzen, W. Soergel, Representations of quantum groups at a pth root of +unity and of semisimple groups in characteristic p: independence of p, Ast´erisque 220 (1994). +[AMRW] +P. Achar, S. Makisumi, S. Riche, G. Williamson, Koszul duality for Kac-Moody groups and +characters of tilting modules, J. Amer. Math. Soc. 32 (2019), 261-310. +[And1] +H.H. Andersen, Filtrations and tilting modules, Ann. Sci. Ecole Norm. Sup. 30 (1997) 353-366. +[And2] +H. H. Andersen, A sum formula for tilting modules, Journal of Pure and Applied Algegra 152 +(2000), no. 1-3, 17-40. +[And3] +H.H. Andersen, p-Filtrations and the Steinberg module, J. Algebra 244 (2001), 664-683. +[BNPS1] +C. P. Bendel, D. K. Nakano, C. Pillen, P. Sobaje, Counterexamples to the tilting and (p,r)- +filtration conjectures, J. Reine Angew. Math. 767 (2020), 193-202. +[BNPS2] +C. P. Bendel, D. K. Nakano, C. Pillen, P. Sobaje, On Donkin’s tilting module conjecture I: +Lowering the prime, Represent. Theory 26 (2022), 455-497. +[BNPS3] +C. P. Bendel, D. K. Nakano, C. Pillen, P. Sobaje, On Donkin’s tilting module conjecture II: +Counterexamples, https://arxiv.org/abs/2107.11615 +[BNPS4] +C. P. Bendel, D. K. Nakano, C. Pillen, P. Sobaje, On Donkin’s tilting module conjecture III: +New generic lower bounds, https://arxiv.org/abs/2209.04675 +[BR] +R. Bezrukavnikov, S. Riche, Hecke action on the principal block, Compos. Math. 158 (2022), +no. 5, 953-1019. +[Don1] +S. Donkin, A note on the characters of the cohomology of induced vector bundles on G/B in +characteristic p, J. Algebra 258 (2002), 255-274. +[Don2] +S. Donkin, On tilting modules for algebraic groups, Math. Z. 212 (1993), no. 1, 39-60. +[Don3] +S. Donkin, Rational representations of algebraic groups. Tensor products and filtration. Lecture +Notes in Mathematics, 1140. Springer-Verlag, Berlin, 1985. +[DS] +S. Doty, J. Sullivan, Filtration patterns for representations of algebraic groups and their Frobe- +nius kernels, Math. Z. 195 (1987), no. 3, 391-407. +[Fie] +P. Fiebig, Lusztig’s conjecture as a moment graph problem, Bull. Lond. Math. Soc. 42 (2010), +no. 6, 957-972. +[Fie2] +P. Fiebig, An upper bound on the exceptional characteristics for Lusztig’s character formula, +J. Reine Angew. Math. 673 (2012), 1-31. + +24 +PAUL SOBAJE +[HTT] +S. Donkin, Tilting modules for algebraic groups and finite dimensional algebras. Handbook of +tilting theory, 215-257, London Math. Soc. Lecture Note Ser., 332, Cambridge Univ. Press, +Cambridge, 2007. +[H] +J. Humphreys, Modular representations of classical Lie algebras and semisimple groups, J. +Algebra 19 (1971), 51-79. +[Jan] +J. C. Jantzen, Representations of Algebraic Groups, Second Edition, Mathematical Surveys and +Monographs, Vol. 107, American Mathematical Society, Providence RI, 2003. +[K] +S. Kato, On the Kazhdan-Lusztig polynomials for affine Weyl groups, Adv. in Math. 55 (1985), +no. 2, 103-130. +[L] +G. Lusztig, Some problems in the representation theory of finite Chevalley groups. In The Santa +Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), volume 37 of +Proc. Sympos. Pure Math., pages 313-317. Amer. Math. Soc., Providence, R.I., 1980. +[Lin] +Z. Lin, Highest weight modules for algebraic groups arising from quantum gorups, J. Algebra +208 (1998), 276-303. +[Lu] +F. L¨ubeck, Computation of Kazhdan-Lusztig polynomials and some applications to finite +groups, Trans. Amer. Math. Soc. 373 (2020), no. 4, 2331-2347. +[PS] +B. Parshall, L. Scott, On p-filtrations of Weyl modules, J. Lond. Math. Soc. (2) 91 (2015), no. +1, 127-158. +[Pr] +A. A. Premet, Weights of infinitesimally irreducible representations of Chevalley groups over a +field of prime characteristics, Math. USSR Sbornik 61 (1988), 167-183. +[RW1] +S. Riche, G. Williamson, Tilting modules and the p-canonical basis, Ast´erisque 2018, no. 397, +ix+184 pp. +[RW2] +S. Riche, G. Williamson, A simple character formula, Ann. H. Lebesgue 4 (2021), 503-535. +[RW3] +S. Riche, G. Williamson, Smith-Treumann theory and the linkage principle, Publ. Math. Inst. +Hautes ´Etudes Sci. 136 (2022), 225-292. +[Sc] +L. L. Scott, Some new examples in 1-cohomology, Special issue celebrating the 80th birthday +of Robert Steinberg J. Algebra 260 (2003), no. 1, 416-425. +[S1] +P. Sobaje, The Steinberg quotient of a tilting character, Math. Z. 297 (2021), no. 3-4, 1733-1747. +[Soe] +W. Soergel, Kazhdan-Lusztig polynomials and a combinatoric[s] for tilting modules. Represent. +Theory 1 (1997), 83-114. +[St] +J. Stembridge, The partial order on dominant weights, Adv. Math. 136 (1998), no. 2, 340-364. +[Su] +I. D. Suprunenko, The invariance of the set of weights of irreducible representations of algebraic +groups and Lie algebras of type A with restricted highest weight under reduction modulo p, +Vestsi Akad. Navuk BSSR, Ser. Fiz.-Mat. sf 2 (1983) 18-22 (Russian). +[W] +G. Williamson, Schubert calculus and torsion explosion, J. Amer. Math. Soc. 30 (2017), 1023- +1046. +[Ye] +J.-C. Ye, Filtrations of principal indecomposable modules of Frobenius kernels of reductive +groups, Math. Z. 189 (1985), 515-527. +Department of Mathematics, Georgia Southern University +Email address: psobaje@georgiasouthern.edu + diff --git a/RdFJT4oBgHgl3EQfKixq/content/tmp_files/load_file.txt b/RdFJT4oBgHgl3EQfKixq/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..293ba6f47711681b4968ce05173496e2257e2917 --- /dev/null +++ b/RdFJT4oBgHgl3EQfKixq/content/tmp_files/load_file.txt @@ -0,0 +1,943 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf,len=942 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='11465v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='RT] 26 Jan 2023 STEINBERG QUOTIENTS, WEYL CHARACTERS, AND KAZHDAN-LUSZTIG POLYNOMIALS PAUL SOBAJE Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Let G be a reductive group over a field of prime characteristic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' An indecom- posable tilting module for G whose highest weight lies above the Steinberg weight has a character that is divisible by the Steinberg character.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The resulting “Steinberg quo- tient” carries important information about G-modules, and in previous work we studied patterns in the weight multiplicities of these characters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' In this paper we broaden our scope to include quantum Steinberg quotients, and show how the multiplicities in these characters relate to algebraic Steinberg quotients, Weyl characters, and evaluations of Kazhdan-Lusztig polynomials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' We give an explicit algorithm for computing minimal char- acters that possess a key attribute of Steinberg quotients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' We provide computations which show that these minimal characters are not always equal to quantum Steinberg quotients, but are close in several nontrivial cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Introduction 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Overview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' This is a sequel to [S1] in which we investigated characters of certain tilting modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' In short, if G is a reductive group in prime characteristic p > 0, then an indecomposable tilting module for G of the form T((p − 1)ρ + λ), where λ is a p-restricted dominant weight, has a character that is divisible by the Steinberg character χ((p − 1)ρ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The resulting “Steinberg quotient” t(λ) is a nonnegative linear combination of W-orbit sums.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Thanks to the linkage principle, we can list which orbit sums might appear in t(λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' In previous work we proved that all such orbit sums do appear, and that their coefficients are weakly increasing in size as one moves down from the highest weight under the ↑ partial ordering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' In this paper we enlarge our investigation to consider t(λ) for all dominant weights λ, as well as quantum Steinberg quotients tζ(λ), defined in the analogous way for tilting modules of a quantum group at a p-th root of unity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' In addition to the above pattern holding more generally, the wider scope makes clearer the connections between Steinberg quotients and more commonly studied quantities such as Weyl characters and Kazhdan- Lusztig combinatorics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' We will detail all of this below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Relationship to other tilting formulas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Before stating our main results, let us comment briefly on the overlap between the topic of this paper and some existing results in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Thanks to formulations by Soergel for quantum groups [Soe], and by Riche-Williamson for algebraic groups (stated in [RW1], and proved or re-proved in various contexts in [AMRW] [RW2] [RW3] [BR]), combinatorial algorithms for tilting characters are Date: January 30, 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' 2010 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Primary 20G05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' 1 2 PAUL SOBAJE already known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Moreover, in the case of quantum groups, the Steinberg quotients tζ(λ) are governed by the simple characters, and when p > h the latter are given by Lusztig’s Character Formula (LCF) from [L] (see [Jan, II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='12] for an account of this).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' In the algebraic setting, the analogous statement is not always true as it requires Donkin’s tilting module conjecture to hold (it does not in general [BNPS1] [BNPS3]), we do not know precisely when the LCF describes the simple characters ([AJS], [Fie2] [W]), and in any case it would not apply to most λ that are not p-restricted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The main thrust of this work is to provide a complementary approach to computing tilting characters that applies only to special tilting modules, and exploits all of the unique properties that these modules possess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The hope is that this can help answer questions that have not yet been answered by existing methods, such as an explanation as to when and why the characters t(λ) and tζ(λ) differ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Influences on the approach begun in [S1] were Donkin’s use of Brauer’s formula in [HTT, Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='5], along with work by Ye [Ye] and Doty-Sullivan [DS].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' In this sequel, we push the limits of these methods, while benefiting from the information and direction that the tilting character formulas mentioned above provide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Results and Organization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Let X denote the character group of a maximal torus T of G, and Z[X]W be the ring of W-invariants, where W is the Weyl group of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The fact that the orbit sums in t(λ) appear with weakly increasing multiplicity (when moving from the top orbit down) is due entirely to the fact that for all dominant weights µ, the character product χ((p − 1)ρ + pµ)t(λ) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1) has nonnegative coefficients when expressed in the Weyl character basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Though this argument is present in [S1], its importance is more explicitly isolated here in Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1, where we give a broader statement that highlights the similarity between the orbit- sum multiplicities in Steinberg quotients and those in Weyl characters (a further parallel will be noted shortly).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' With this theorem in hand, the extension of the main result from [S1] to the Steinberg quotients t(λ) and tζ(λ), for any dominant λ, follows from well-known facts about tilting modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' We also record other features of these characters that, though easy to prove, give interesting perspective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' For example, we obtain a natural framework in which Steinberg quotients become an enlargement of sorts to the set of Weyl characters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' That is, for λ dominant, the quotient tζ(pλ) = χ(λ)F , where F is the Frobenius twist on a character.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' In Section 4 we give direct comparisons between algebraic and quantum Steinberg quo- tients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' From what is already known about the relationship between tilting modules in the respective categories, it follows that the characters t(λ) can be written as nonnegative sums of the various tζ(µ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' By using base-changing results from [Lin], [PS], and [And2], we give more precise statements on this relationship.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' One interesting consequence is that for the Steinberg quotients q(λ) of the G1T-indecomposable modules, we can show (under a mi- nor condition on p) that all possible orbits appear with positive multiplicity, even when q(λ) ̸= t(λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' This could be viewed as an analog in this setting to the Premet-Suprunenko theorem on the weight sets of the p-restricted simple G-modules [Pr] [Su].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Suppose now that p ≥ h, where h is the Coxeter number of the underlying root system, and assume that λ−ρ is a p-regular weight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Applying work by Kato [K], we show in Section STEINBERG QUOTIENTS, WEYL CHARACTERS, AND KAZHDAN-LUSZTIG POLYNOMIALS 3 5 that when the LCF describes the simple characters (in the respective settings), then the orbit multiplicities in tζ(λ) are given by evaluations of Kazhdan-Lusztig polynomials, and the same is true for q(λ) when λ is p-restricted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The hypothesis does hold in the quantum setting when p > h, but will not hold in general in the algebraic setting unless p ≫ h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' We should also point out that when this condition holds in both settings, then there is an agreement tζ(λ) = q(λ) for all p-restricted weights λ (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' including the p-singular ones).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Of course we also have tζ(λ) = t(λ) provided that q(λ) = t(λ) (this last equality always holding when p ≥ 2h − 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' In making the connection to Kazhdan-Lusztig polynomials, the heavy lifting is done by Kato’s paper along with Fiebig’s detailed account of it [Fie].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Our ultimate goal is to find character formulas for Steinberg quotients that can, at minimum, differentiate between tζ(λ) and t(λ), and that will lend themselves to reasonable dimension formulas (akin to p-versions of Weyl’s dimension formula).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' In order to achieve this, it is necessary to find the defining properties of Steinberg quotients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' We initiate this investigation in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' In view of the results in Section 3, we begin by defining the character Mp(λ) to be the smallest element in Z[X]W that satisfies (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1) and has λ as its highest weight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' In Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1 we prove that this property can be checked by multiplying against a finite number of characters of the form χ((p−1)ρ+pµ), though in general checking against χ((p−1)ρ) alone will not be sufficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' We then give an explicit a process for computing Mp(λ) in Algorithm 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Since the tζ(λ) are lower bounds on the t(λ), and can be computed by ordinary Kazhdan- Lusztig polynomials when p > h, it is both natural and possible to check to see how close these are to the Mp(λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Surprisingly, in all of the computations that we were able to make, they were very close.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' They were equal for all restricted λ with λ − ρ a p-regular weight for root systems A1, A2, A3 (the first two being trivial), and for almost all such weights in type A4, and for many large weights in type A5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The cases of character equality are nontrivial, with orbit multiplicities as large as 23 occurring, and in the few cases we found in which they were not equal, it was by the smallest margin possible (a multiplicity difference of 1 on the lowest orbits).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' In many of these cases we can also compute the characters t(λ), thanks to knowing that t(λ) = q(λ) from [BNPS2] and [BNPS4], and that the LCF describes the p-restricted simple characters from [Jan, II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='22] and [Sc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Acknowledgements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' We thank Frank L¨ubeck for generously sharing the extensive computations of Kazhdan-Lusztig polynomials made by the algorithms described in [Lu].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Notation and Recollections 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Weyl groups, Roots, and Weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' We give a brief overview on our notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' For the most part it follows [Jan], and any notation not explicitly mentioned may be assumed to be consistent with that.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Let k be an algebraically closed field of characteristic p > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' By standard arguments we may consider G to be a simple and simply connected group, the results for which can be generalized to any G connected reductive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Fix a maximal torus T inside a Borel subgroup B of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The root system is denoted Φ, and we fix a set of simple roots S = {α1, α2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' , αn}, where n is the rank of T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' This determines a set of positive roots Φ+ ⊆ Φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Denote by X the character group of T (also 4 PAUL SOBAJE called the set of weights).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Each α ∈ Φ+ has a corresponding coroot α∨.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The highest short root is α0, and α∨ 0 is the highest coroot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' For each λ ∈ X and coroot α∨ we denote the natural pairing by ⟨λ, α∨⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The set of dominant weights is X+, and it generated over Z≥0 by the fundamental dominant weights {̟1, ̟2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' , ̟n}, which are defined by the property that ⟨̟i, α∨ j ⟩ = δij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' For each m ≥ 0, we define Xm = {a1̟1 + · · · an̟n | 0 ≤ ai < m} ⊆ X+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Thus Xp denotes the p-restricted dominant weights (we note that we have often just used Xp for this set in the past, but require the finer notation in this paper).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The root lattice is ZΦ ⊆ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The element ρ is the half-sum of the positive roots, or equivalently is the sum of the fundamental dominant weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The Weyl group is W, and w0 is its longest element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' For any λ ∈ X, we let Wλ denote the stabilizer of λ, while Wλ is the W-orbit of λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The standard partial order on X is denoted as ≤.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The affine Weyl group is Wp ∼= W ⋉ pZΦ, and it acts on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' It can be shown that the image of Wp in the group of affine transformtions of E = R ⊗Z X is generated by affine reflections of the form sα,np(λ) = λ − (⟨λ, α∨⟩ − np)α for all α ∈ Φ+ and n ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' For each w ∈ Wp and λ ∈ E, we denote the action of w on λ by juxtaposition, as wλ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' We will primary by interested in the “dot action” of Wp, where w • λ = w(λ + ρ) − ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' For each α ∈ Φ+, n ∈ Z, there is a hyperplane in E defined by Hα,np = {λ ∈ E | ⟨λ + ρ, α∨⟩ = np}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The affine reflection of E about Hα,np is precisely the dot action of sα,np on E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The partial ordering ↑ on X is the minimal such ordering with the property that (sα,np • λ) ↑ λ if (sα,np • λ) ≤ λ, and λ ↑ (sα,np • λ) if λ ≤ (sα,np • λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' More generally, λ ↑ µ if there are affine reflections s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' , sm such that λ ≤ s1 • λ ≤ s2 • s1 • λ ≤ · · · ≤ sm • · · · • s1λ = µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1) Properties of this ordering are noted in [Jan, II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The hyperplanes Hα,np divide E up into a system of alcoves and facets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The alcoves contain points from X if and only if p ≥ h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The elements in the alcoves are called p-regular weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' They are those weights λ such that ⟨λ + ρ, α∨⟩ ̸∈ pZ for all α ∈ Φ+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Let C denote the set of all alcoves of E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The lowest dominant alcove C0 is the alcove C0 = {λ ∈ E | 0 < ⟨λ + ρ, α∨⟩ < p}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' STEINBERG QUOTIENTS, WEYL CHARACTERS, AND KAZHDAN-LUSZTIG POLYNOMIALS 5 The action of Wp on C is simply transitive, hence for any alcove C ∈ C there is a unique element w ∈ Wp such that w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='C0 = C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' An alcove C is called dominant if 0 < ⟨λ + ρ, α∨ i ⟩ for all i, and an alcove is p-restricted if 0 < ⟨λ + ρ, α∨ i ⟩ < p for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The group Wp is a Coxeter group with generators {s0, s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' , sn}, where for 1 ≤ i ≤ n we have si = sαi,0, and s0 = sα0,p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' These generators are just the affine reflections about the hyperplanes that extend the n + 1 walls of the fundamental alcove.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Characters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The Grothendieck ring of the category of finite dimensional T-modules is isomorphic to the group algebra Z[X].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' For each µ ∈ X, we denote by e(µ) the corresponding basis element in Z[X].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Since Z[X] is the group algebra of a free abelian group of rank n, it is isomorphic to the ring of Laurent polynomials over Z in n indeterminants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' In particular, Z[X] is an integral domain, so the cancellation property for ring multiplication holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' We denote by s(µ) the sum of the weights in the W-orbit of µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' These elements form a basis of Z[X]W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Recall that for σ = � aµe(µ) ∈ Z[X], is “dual” and “Frobenius twist” are σ∗ = � aµe(−µ), and σF = � aµe(pµ) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' If σ = ch(M) for a T-module M, then σ∗ = ch(M∗), and σF = ch(M(1)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' G-modules and G1T-modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' For each λ ∈ X+ there is a simple G-module L(λ), a costandard module ∇(λ) = indG B λ, a standard module ∆(λ) = (indG B −w0λ)∗, and an indecomposable tilting module T(λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The modules ∆(λ) and ∇(λ) each have character given by the Euler characteristic χ(λ) = � i≥0 (−1)i(ch Ri indG B λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' By the strong linkage principle [Jan, II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='13], [∇(λ) : L(µ)] > 0 implies that µ ↑ λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' In a similar way, write (T(λ) : χ(µ)) for the multiplicity of ∇(µ) in a good filtration of T(λ) (equal to the multiplicity of ∆(µ) in a Weyl filtration of T(λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' If (T(λ) : χ(µ)) > 0, then again µ ↑ λ [Jan, II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' For each λ ∈ X there is a simple G1T-module �L1(λ), a projective indecomposable G1T- module �Q1(λ), and “baby Verma modules” �Z1(λ) = coindG1T B+ 1 T λ, �Z′ 1(λ) = indG1T B1T λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Fix a Frobenius endomorphism F : G → G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' For any G-module M, we denote by M(1) its twist under F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Quantum Groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Let v be an indeterminate, and Q(v) the fraction field of Q[v].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The quantum group Uv is the Q(v)-algebra with generators Eα, Fα, K±1 α , for α ∈ Π, satis- fying the quantum Serre relations of [Jan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Over the subring A = Z[v, v−1], we denote by UA Lusztig’s divided power integral form for Uv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The algebra UA is free as an A-module, and the multiplication map UA ⊗A Q(v) → Uv is an isomorphism of rings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' 6 PAUL SOBAJE For any commutative A-algebra B one obtains the quantum group UB = UA ⊗A B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Let ζ be a complex primitive p-th root of unity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Specializing v = ζ makes C into an A-algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' We now denote by Uζ the resulting quantum group UA ⊗A C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The category of finite dimensional Uζ-modules, denoted Uζ-mod, has many similarities to that of G-mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' First, it is known that the category breaks into a direct sum of subcategories based on central characters, and we restrict our attention only to the subcategory of type 1 Uζ-modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' In this subcategory, for each λ ∈ X+ there is a simple module Lζ(λ), a standard module ∆ζ(λ), a costandard module ∇ζ(λ), and an indecomposable tilting module Tζ(λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' As we are considering only type 1 modules, we will regard the quantum Frobenius mor- phism as a surjective homomorphism F : Uζ → U(gC) (note then that the image of F as defined here is the quotient of the image of the more commonly defined quantum Frobenius morphism).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Let LC(λ) denote the irreducible gC-module of highest weight λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The pullback under F will be denoted LC(λ)F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' If λ = λ0 + pλ1 with λ0 ∈ Xp and λ1 ∈ X+, then there is an isomorphism of Uζ-modules Lζ(λ) ∼= Lζ(λ0) ⊗ LC(λ1)F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The character of a type 1 finite dimensional Uζ-module is also an element in Z[X]W .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' We have χ(λ) = ch(∆ζ(λ)) = ch(∇ζ(λ)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The small quantum group is denoted uζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Steinberg Quotients 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' In [S1] we defined, for each λ ∈ Xp, the Steinberg quotients t(λ) = T((p − 1)ρ + λ)/χ((p − 1)ρ) and q(λ) = �Q1((p − 1)ρ + w0λ)/χ((p − 1)ρ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' For p ≥ 2h − 4 these two characters are the same [BNPS4], though in general they can differ (see also [BNPS1], [BNPS2], and [BNPS3]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' We note that [BNPS4] actually utilizes the language of Steinberg quotients, and establishes nice properties about their restrictions to Levi subgroups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' There are non-negative integers aµ,λ and bµ,λ 1 such that q(λ) = � aµ,λs(µ) and t(λ) = � bµ,λs(µ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Computing Steinberg quotients then amounts to determining these orbit multiplicities, and the Steinberg quotients in turn give the characters of the relevant modules upon multiplying by χ((p − 1)ρ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Some preliminary properties that can be established for these coefficients is that for all λ ∈ Xp and µ ∈ X+: (1) aλ,λ = bλ,λ = 1 1In [S1] we denoted the double index aµ,λ as aλ µ, and bµ,λ as bλ µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' STEINBERG QUOTIENTS, WEYL CHARACTERS, AND KAZHDAN-LUSZTIG POLYNOMIALS 7 (2) aµ,λ ≤ bµ,λ (3) aµ,λ ̸= 0 implies (µ − ρ) ↑ (λ − ρ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' (4) aµ,λ = bµ,λ if p ≥ 2h − 4 The main result proved in [S1] was a multiplicity pattern in the coefficients bµ,λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' [S1, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='2] Let λ ∈ X+, and let bµ,λ be non-negative integers such that t(λ) = � µ∈X+ bµ,λs(µ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' For dominant weights µ, µ′, if (µ − ρ) ↑ (µ′ − ρ), then bµ,λ ≥ bµ′,λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' We will generalize this result in Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1, which distills the essential character arguments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The original proof, and therefore this generalized one also, was inspired by ideas due to Ye [Ye], Doty and Sullivan [DS], and Donkin [HTT, Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The statement give in Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1 will be about formal characters, but applies to Steinberg quotients thanks to the following fundamental results that hold in the category of G-modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' For every w ∈ W, χ(w • λ) = (−1)ℓ(w)χ(λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Brauer’s formula: for all λ, µ ∈ X+, χ(λ)s(µ) = � w∈W/Wµ χ(λ + wµ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The Andersen-Haboush Theorem: for all µ ∈ X+, ∇((p − 1)ρ + pµ) ∼= St ⊗∇(µ)(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' For all λ, µ ∈ X+, the module T((p − 1)ρ + λ) ⊗ ∇(µ)(1) has a good filtration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The last result follows from the Andersen-Haboush Theorem together with the fact that the tensor product of good filtration modules has a good filtration (proved for certain p by Wang, most p by Donkin, and all p by Mathieu).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' One then observes that T((p − 1)ρ + λ) ⊗ ∇(µ)(1) is a direct summand of St ⊗T(λ) ⊗ ∇(µ)(1) ∼= ∇((p − 1)ρ + pµ) ⊗ T(λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' 8 PAUL SOBAJE 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' In this subsection we collect a number of lemmas that will simplify proofs both in this section, and then later on in the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' For all w ∈ W and λ, µ ∈ X, w • (λ + µ) = w • λ + wµ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' We have w • (λ + µ) = w(λ + µ + ρ) − ρ = w(λ + ρ) − ρ + wµ = w • λ + wµ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' □ Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Let λ ∈ X, and γ ∈ X+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' If for some α ∈ Φ+, ⟨λ + γ + ρ, α∨⟩ < 0, then sα • (λ + γ) − γ lies strictly between λ and sαλ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' In particular, this weight is in the interior of conv(Wλ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' In this case, since ⟨γ + ρ, α∨⟩ > 0, we must have that 0 > ⟨λ + γ + ρ, α∨⟩ > ⟨λ, α∨⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Therefore sα • (λ + γ) − γ = sα(λ + γ + ρ) − ρ − γ = λ − ⟨λ + γ + ρ, α∨⟩α < λ − ⟨λ, α∨⟩α = sαλ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' □ Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Let λ, γ ∈ X+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Let J ⊂ Π be the set of all simple roots αi such that ⟨γ + ρ, α∨ i ⟩ ≤ ⟨λ, α∨ 0 ⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Then for any w0λ ≤ µ ≤ λ, there is a w ∈ WJ such that w • (γ + µ) ∈ X+ − ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' For all αi ∈ Π, the bounding on µ implies that ⟨w0λ, α∨ 0 ⟩ ≤ ⟨µ, α∨ i ⟩ ≤ ⟨λ, α∨ 0 ⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Therefore, if 0 > ⟨(γ + µ) + ρ, α∨ i ⟩ = ⟨γ + ρ, α∨ i ⟩ + ⟨µ, α∨ i ⟩ ≥ ⟨γ + ρ, α∨ i ⟩ − ⟨λ, α∨ 0 ⟩, STEINBERG QUOTIENTS, WEYL CHARACTERS, AND KAZHDAN-LUSZTIG POLYNOMIALS 9 then it follows that αi ∈ J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' We may replace γ + µ with si • (γ + µ), which is on the positive side of the hyperplane Hαi,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' It follows by the previous lemma, and our assumption on µ, that si • (γ + µ) = γ + µ′, with woλ ≤ µ′ ≤ λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' We may now repeat the process above with γ + µ′, and will eventually wind up with a weight in X+ − ρ having only used reflections from WJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' □ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Recall that Weyl characters refer to those Euler characteristics χ(λ) for which λ ∈ X+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The Weyl characters form a Z-basis for Z[X]W .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' A nonzero element in Z[X]W having nonnegative coefficients in the Weyl basis will be called a good filtration character.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Let η ∈ Z[X]W, where η = � µ∈X+ cµs(µ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' (1) Suppose that for every λ ∈ X+, the product χ(λ)η is a good filtration character.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Then cµ ≥ cµ′ whenever µ ≤ µ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' (2) Suppose that for every λ ∈ X+, the product χ((p − 1)ρ + pλ)η is a good filtration character.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Then cµ ≥ cµ′ whenever µ − ρ ↑ µ′ − ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' (1) It suffices to prove the result in the case µ′ is a minimal dominant weight such that µ′ > µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Under this assumption, [St, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='6] shows that there is a positive root α ∈ Φ+ such that µ + α = µ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Set n = ⟨µ, α∨⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' We then have that ⟨µ′, α∨⟩ = n + 2, and since µ is dominant, that n ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' There is a simple root αi and an element w ∈ W such that wα = −αi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' From this it follows that wµ′ = w(µ + α) = wµ − αi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' We also have ⟨wµ, α∨ i ⟩ = −n, and ⟨wµ′, α∨ i ⟩ = −(n + 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Set γ = � mj̟j ∈ X+ where mi = n, and for j ̸= i, mj > ⟨σ, α∨ 0 ⟩, for all weights σ appearing in η (note that such a choice is possible as there are only finitely many such σ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' By Brauer’s formula, χ(γ)η = � λ∈X+ � σ∈W λ cλχ(γ + σ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1) Among the terms of this sum are cµχ(γ + wµ) and cµ′χ(γ + wµ′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' For any σ that is a weight in η, it follows from Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='3 that the choice of γ guarantees that either σ + γ ∈ X+ − ρ, or else si • (σ + γ) ∈ X+ − ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' 10 PAUL SOBAJE We see in particular that γ + wµ ∈ X+ − ρ, and in fact is in X+, and that si • (γ + wµ′) = si(γ + wµ′ + ρ) − ρ = γ + wµ′ + ρ − ⟨γ + wµ′ + ρ, α∨ i ⟩αi − ρ = γ + wµ′ + ρ + αi − ρ = γ + wµ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' It then follows that when the sum in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1) is rewritten as a sum of Weyl characters, the coefficient on χ(γ + wµ) is cµ − cµ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' By hypothesis, this coefficient is nonnegative, proving that cµ ≥ cµ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' (2) This case follows a similar logic, though there are a few modifications that need to be spelled out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' First, we assume that the relation µ − ρ ↑ µ′ − ρ is minimal, so that there is some α ∈ Φ+ and some n ≥ 1 such that sα,np • (µ − ρ) = µ′ − ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' This implies that ⟨µ − ρ + ρ, α∨⟩ < np < ⟨µ′ − ρ + ρ, α∨⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Equivalently, ⟨µ, α∨⟩ < np < ⟨µ′, α∨⟩ Again there is a simple root αi and an element w ∈ W such that wα = −αi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' We then have that ⟨wµ, α∨ i ⟩ < −np < ⟨wµ′, α∨ i ⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' We now set γ = � mj̟j ∈ X+ where mi = n − 1, and for j ̸= i, p(mj + 1) > ⟨σ, α∨ 0 ⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The proof now follows similar concluding logic as in proof of (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The character χ((p − 1)ρ + pγ)η has by assumption nonnegative coefficients when expressed in the Weyl basis, and one can verify that cµ − cµ′ is one of these coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' □ Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' In the first statement of this theorem, the fact that χ(0)η is a good filtration character means that η is a good filtration character.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' In this case the theorem is simply giving a statement about orbit sums in Weyl characters, and this property is already known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' We put these together so that Weyl characters and Steinberg quotients can be seen as parallel in a certain sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' STEINBERG QUOTIENTS, WEYL CHARACTERS, AND KAZHDAN-LUSZTIG POLYNOMIALS 11 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' In [S1], the quotients t(λ) and q(λ) were defined only for λ ∈ Xp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' While there is not much point in extending the definition of the q(λ) to include more weights (one could make sense of such a definition, but we effectively obtain nothing new as follows from [Jan, II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='3(2)]), extending the definition of t(λ) turns out to be quite useful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' That is, for λ ∈ X+ we define (as before) t(λ) = ch(T((p − 1)ρ + λ))/χ((p − 1)ρ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The facts recalled in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1 are true of T((p − 1)ρ + λ) for all dominant λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Therefore we may apply Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1(2) to t(λ), showing that the statement in Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1 holds in this setting also.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' By extending this definition, we can calculate precisely a number of the t(λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' This next result follows immediately from Donkin’s tensor product theorem [Don2, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Let λ ∈ Xp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' If t(λ) = q(λ), then t(λ + pµ) = t(λ)ch(T(µ))F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The quantum Steinberg module is Stζ = Lζ((p − 1)ρ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Let µ ∈ X+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The character equality χ((p − 1)ρ + pµ) = χ((p − 1)ρ)χ(µ)F reflects the module isomorphism ∇ζ((p − 1)ρ + pµ) ∼= Stζ ⊗LC(µ)F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The module ∇ζ((p − 1)ρ + pµ) is simultaneously simple, standard, costandard, and tilting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' For each λ ∈ X+, the tilting module Tζ((p−1)ρ+λ) is an injective and projective Uζ-module, and every an indecomposable injective Uζ-module is of this form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Writing λ = λ0 + pλ1, with λ0 ∈ Xp and λ1 ∈ X+, we have Tζ((p − 1)ρ + λ) ∼= Tζ((p − 1)ρ + λ0) ⊗ LC(λ1)F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Let λ ∈ X+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' We define the quantum Steinberg quotient tζ(λ) by tζ(λ) = ch(Tζ((p − 1)ρ + λ))/χ((p − 1)ρ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Since ch(Tζ((p − 1)ρ + λ)) is W-invariant, there are non-negative integers cµ,λ such that tζ(λ) = � cµ,λs(µ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The statement of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1 for the coefficients bµ,λ holds also for the coefficients cµ,λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Again, we may apply Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1(2) to see that the statement of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1 for the coefficients bµ,λ holds also for the cµ,λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' For each λ ∈ Xp and µ ∈ X+ we have tζ(λ + pµ) = tζ(λ)χ(µ)F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' 12 PAUL SOBAJE 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Comparison between algebraic and quantum Steinberg quotients 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' We will primarily follow the p-modular setup of [PS], but also refer the interested reader to [Lin], where some of the modules below were first studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Recall that A = Z[v, v−1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' As above, ζ denotes a fixed complex primitive p-th root of unity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Let O denote the local ring Z[ζ](1−ζ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The assignment v �→ ζ defines a ring homomorphism A → O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Set UO = UA ⊗A O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Then UO is also a kind of integral form for Uζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Since O has residue field Fp, we have Uk ∼= UO ⊗O k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' There is a surjective map of algebras φk : Uk ։ Dist(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The elements in the kernel of φk act as 0 on any finite dimensional type 1 module for Uk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Such a module is therefore a finite dimensional Dist(G)-module, and by [Jan, II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='20], is also a rational G-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' A UO-module MO will be called a UO-lattice if it is free of finite rank as an O-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' One obtains a Uζ-module Mζ = MO ⊗O C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' By the discussion above, if MO is a type 1 module, then one obtains a Dist(G)-module M = MO ⊗O k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Let λ ∈ X+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Let V be a finite-dimensional Uζ-module of highest weight λ that is generated by a weight vector vλ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Such a module will be a quotient of ∆ζ(λ), and the particular case of interest for us is when V is Lζ(λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' One can always find a particular UO-lattice inside of Lζ(λ) by taking the submodule UO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='vλ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Such a construction is referred to as a minimal lattice, as it is necessarily contained in any other UO-lattice of Lζ(λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' By duality there also exists a maximal UO-lattice inside of Lζ(λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The resulting G-modules obtained from the minimal and maximal lattices are denoted as ∆red(λ) and ∇red(λ) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' These are indecomposable modules for G, and both have formal characters equal to that of Lζ(λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The symbols denoting each module point to their similarities with the standard and costandard G-modules of highest weight λ (each of which can be constructed by minimal and maximal lattices respectively of finite dimensional gC-modules).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Specifically, we can place these modules in a chain of homomorphisms ∆(λ) ։ ∆red(λ) ։ L(λ) and L(λ) ֒→ ∇red(λ) ֒→ ∇(λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The modules L(λ) and ∆red(λ) have the same character if and only if ∆red(λ) ∼= ∇red(λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Another way to obtain a UO-lattice is to start with an indecomposable tilting module T(λ) for G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Andersen showed [And2, §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='2] that this tilting module can be lifted to an indecomposable tilting module TO(λ) over Dist(GO) [Jan, II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' This pulls back to a type 1 tilting module for UO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' In this way, one obtains a tilting Uζ-module TO(λ) ⊗O C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' STEINBERG QUOTIENTS, WEYL CHARACTERS, AND KAZHDAN-LUSZTIG POLYNOMIALS 13 This module has the same character as T(λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' There are non-negative integers nλ,µ such that TO(λ) ⊗O C ∼= Tζ(λ) ⊕ � µ<λ Tζ(µ)⊕nλ,µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='1) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' The characters of finite dimensional G-modules and the characters of finite dimen- sional type 1 Uζ-modules are elements in the ring Z[X]W .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' Define the left action of the commutative ring Z[X]W on itself by η.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content='σ = σηF , for all η, σ ∈ Z[X]W .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' This action makes Z[X]W into a free left Z[X]W -module, and following Donkin [Don1] we call a basis for this action a “p-basis for Z[X]W .” One p-basis is given by the set of orbit sums {s(λ) | λ ∈ Xp}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFJT4oBgHgl3EQfKixq/content/2301.11465v1.pdf'} +page_content=' More generally we obtain a p-basis from any collection of elements {f(λ) | λ ∈ Xp}, where each f(λ) is of the form f(λ) = s(λ) + � µ∈Xp,µ