% The Hurst exponent %-------------------------------------------------------------------------- % This function does dispersional analysis on a data series, then does a % Matlab polyfit to a log-log plot to estimate the Hurst exponent of the % series. % % This algorithm is far faster than a full-blown implementation of Hurst's % algorithm. I got the idea from a 2000 PhD dissertation by Hendrik J % Blok, and I make no guarantees whatsoever about the rigor of this approach % or the accuracy of results. Use it at your own risk. % % Bill Davidson % 21 Oct 2003 function [hurst] = hurst_exponent(data0) % data set data=data0; % make a local copy [M,npoints]=size(data0); yvals=zeros(1,npoints); xvals=zeros(1,npoints); data2=zeros(1,npoints); index=0; binsize=1; while npoints>4 y=std(data); index=index+1; xvals(index)=binsize; yvals(index)=binsize*y; npoints=fix(npoints/2); binsize=binsize*2; for ipoints=1:npoints % average adjacent points in pairs data2(ipoints)=(data(2*ipoints)+data((2*ipoints)-1))*0.5; end data=data2(1:npoints); end % while xvals=xvals(1:index); yvals=yvals(1:index); logx=log(xvals); logy=log(yvals); p2=polyfit(logx,logy,1); hurst=p2(1); % Hurst exponent is the slope of the linear fit of log-log plot return;