File size: 30,757 Bytes
48e124a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 |
# Copyright (C) Dnspython Contributors, see LICENSE for text of ISC license
"""
A BTree in the style of Cormen, Leiserson, and Rivest's "Algorithms" book, with
copy-on-write node updates, cursors, and optional space optimization for mostly-in-order
insertion.
"""
from collections.abc import MutableMapping, MutableSet
from typing import Any, Callable, Generic, Optional, Tuple, TypeVar, cast
DEFAULT_T = 127
KT = TypeVar("KT") # the type of a key in Element
class Element(Generic[KT]):
"""All items stored in the BTree are Elements."""
def key(self) -> KT:
"""The key for this element; the returned type must implement comparison."""
raise NotImplementedError # pragma: no cover
ET = TypeVar("ET", bound=Element) # the type of a value in a _KV
def _MIN(t: int) -> int:
"""The minimum number of keys in a non-root node for a BTree with the specified
``t``
"""
return t - 1
def _MAX(t: int) -> int:
"""The maximum number of keys in node for a BTree with the specified ``t``"""
return 2 * t - 1
class _Creator:
"""A _Creator class instance is used as a unique id for the BTree which created
a node.
We use a dedicated creator rather than just a BTree reference to avoid circularity
that would complicate GC.
"""
def __str__(self): # pragma: no cover
return f"{id(self):x}"
class _Node(Generic[KT, ET]):
"""A Node in the BTree.
A Node (leaf or internal) of the BTree.
"""
__slots__ = ["t", "creator", "is_leaf", "elts", "children"]
def __init__(self, t: int, creator: _Creator, is_leaf: bool):
assert t >= 3
self.t = t
self.creator = creator
self.is_leaf = is_leaf
self.elts: list[ET] = []
self.children: list[_Node[KT, ET]] = []
def is_maximal(self) -> bool:
"""Does this node have the maximal number of keys?"""
assert len(self.elts) <= _MAX(self.t)
return len(self.elts) == _MAX(self.t)
def is_minimal(self) -> bool:
"""Does this node have the minimal number of keys?"""
assert len(self.elts) >= _MIN(self.t)
return len(self.elts) == _MIN(self.t)
def search_in_node(self, key: KT) -> tuple[int, bool]:
"""Get the index of the ``Element`` matching ``key`` or the index of its
least successor.
Returns a tuple of the index and an ``equal`` boolean that is ``True`` iff.
the key was found.
"""
l = len(self.elts)
if l > 0 and key > self.elts[l - 1].key():
# This is optimizing near in-order insertion.
return l, False
l = 0
i = len(self.elts)
r = i - 1
equal = False
while l <= r:
m = (l + r) // 2
k = self.elts[m].key()
if key == k:
i = m
equal = True
break
elif key < k:
i = m
r = m - 1
else:
l = m + 1
return i, equal
def maybe_cow_child(self, index: int) -> "_Node[KT, ET]":
assert not self.is_leaf
child = self.children[index]
cloned = child.maybe_cow(self.creator)
if cloned:
self.children[index] = cloned
return cloned
else:
return child
def _get_node(self, key: KT) -> Tuple[Optional["_Node[KT, ET]"], int]:
"""Get the node associated with key and its index, doing
copy-on-write if we have to descend.
Returns a tuple of the node and the index, or the tuple ``(None, 0)``
if the key was not found.
"""
i, equal = self.search_in_node(key)
if equal:
return (self, i)
elif self.is_leaf:
return (None, 0)
else:
child = self.maybe_cow_child(i)
return child._get_node(key)
def get(self, key: KT) -> ET | None:
"""Get the element associated with *key* or return ``None``"""
i, equal = self.search_in_node(key)
if equal:
return self.elts[i]
elif self.is_leaf:
return None
else:
return self.children[i].get(key)
def optimize_in_order_insertion(self, index: int) -> None:
"""Try to minimize the number of Nodes in a BTree where the insertion
is done in-order or close to it, by stealing as much as we can from our
right sibling.
If we don't do this, then an in-order insertion will produce a BTree
where most of the nodes are minimal.
"""
if index == 0:
return
left = self.children[index - 1]
if len(left.elts) == _MAX(self.t):
return
left = self.maybe_cow_child(index - 1)
while len(left.elts) < _MAX(self.t):
if not left.try_right_steal(self, index - 1):
break
def insert_nonfull(self, element: ET, in_order: bool) -> ET | None:
assert not self.is_maximal()
while True:
key = element.key()
i, equal = self.search_in_node(key)
if equal:
# replace
old = self.elts[i]
self.elts[i] = element
return old
elif self.is_leaf:
self.elts.insert(i, element)
return None
else:
child = self.maybe_cow_child(i)
if child.is_maximal():
self.adopt(*child.split())
# Splitting might result in our target moving to us, so
# search again.
continue
oelt = child.insert_nonfull(element, in_order)
if in_order:
self.optimize_in_order_insertion(i)
return oelt
def split(self) -> tuple["_Node[KT, ET]", ET, "_Node[KT, ET]"]:
"""Split a maximal node into two minimal ones and a central element."""
assert self.is_maximal()
right = self.__class__(self.t, self.creator, self.is_leaf)
right.elts = list(self.elts[_MIN(self.t) + 1 :])
middle = self.elts[_MIN(self.t)]
self.elts = list(self.elts[: _MIN(self.t)])
if not self.is_leaf:
right.children = list(self.children[_MIN(self.t) + 1 :])
self.children = list(self.children[: _MIN(self.t) + 1])
return self, middle, right
def try_left_steal(self, parent: "_Node[KT, ET]", index: int) -> bool:
"""Try to steal from this Node's left sibling for balancing purposes.
Returns ``True`` if the theft was successful, or ``False`` if not.
"""
if index != 0:
left = parent.children[index - 1]
if not left.is_minimal():
left = parent.maybe_cow_child(index - 1)
elt = parent.elts[index - 1]
parent.elts[index - 1] = left.elts.pop()
self.elts.insert(0, elt)
if not left.is_leaf:
assert not self.is_leaf
child = left.children.pop()
self.children.insert(0, child)
return True
return False
def try_right_steal(self, parent: "_Node[KT, ET]", index: int) -> bool:
"""Try to steal from this Node's right sibling for balancing purposes.
Returns ``True`` if the theft was successful, or ``False`` if not.
"""
if index + 1 < len(parent.children):
right = parent.children[index + 1]
if not right.is_minimal():
right = parent.maybe_cow_child(index + 1)
elt = parent.elts[index]
parent.elts[index] = right.elts.pop(0)
self.elts.append(elt)
if not right.is_leaf:
assert not self.is_leaf
child = right.children.pop(0)
self.children.append(child)
return True
return False
def adopt(self, left: "_Node[KT, ET]", middle: ET, right: "_Node[KT, ET]") -> None:
"""Adopt left, middle, and right into our Node (which must not be maximal,
and which must not be a leaf). In the case were we are not the new root,
then the left child must already be in the Node."""
assert not self.is_maximal()
assert not self.is_leaf
key = middle.key()
i, equal = self.search_in_node(key)
assert not equal
self.elts.insert(i, middle)
if len(self.children) == 0:
# We are the new root
self.children = [left, right]
else:
assert self.children[i] == left
self.children.insert(i + 1, right)
def merge(self, parent: "_Node[KT, ET]", index: int) -> None:
"""Merge this node's parent and its right sibling into this node."""
right = parent.children.pop(index + 1)
self.elts.append(parent.elts.pop(index))
self.elts.extend(right.elts)
if not self.is_leaf:
self.children.extend(right.children)
def minimum(self) -> ET:
"""The least element in this subtree."""
if self.is_leaf:
return self.elts[0]
else:
return self.children[0].minimum()
def maximum(self) -> ET:
"""The greatest element in this subtree."""
if self.is_leaf:
return self.elts[-1]
else:
return self.children[-1].maximum()
def balance(self, parent: "_Node[KT, ET]", index: int) -> None:
"""This Node is minimal, and we want to make it non-minimal so we can delete.
We try to steal from our siblings, and if that doesn't work we will merge
with one of them."""
assert not parent.is_leaf
if self.try_left_steal(parent, index):
return
if self.try_right_steal(parent, index):
return
# Stealing didn't work, so both siblings must be minimal.
if index == 0:
# We are the left-most node so merge with our right sibling.
self.merge(parent, index)
else:
# Have our left sibling merge with us. This lets us only have "merge right"
# code.
left = parent.maybe_cow_child(index - 1)
left.merge(parent, index - 1)
def delete(
self, key: KT, parent: Optional["_Node[KT, ET]"], exact: ET | None
) -> ET | None:
"""Delete an element matching *key* if it exists. If *exact* is not ``None``
then it must be an exact match with that element. The Node must not be
minimal unless it is the root."""
assert parent is None or not self.is_minimal()
i, equal = self.search_in_node(key)
original_key = None
if equal:
# Note we use "is" here as we meant "exactly this object".
if exact is not None and self.elts[i] is not exact:
raise ValueError("exact delete did not match existing elt")
if self.is_leaf:
return self.elts.pop(i)
# Note we need to ensure exact is None going forward as we've
# already checked exactness and are about to change our target key
# to the least successor.
exact = None
original_key = key
least_successor = self.children[i + 1].minimum()
key = least_successor.key()
i = i + 1
if self.is_leaf:
# No match
if exact is not None:
raise ValueError("exact delete had no match")
return None
# recursively delete in the appropriate child
child = self.maybe_cow_child(i)
if child.is_minimal():
child.balance(self, i)
# Things may have moved.
i, equal = self.search_in_node(key)
assert not equal
child = self.children[i]
assert not child.is_minimal()
elt = child.delete(key, self, exact)
if original_key is not None:
node, i = self._get_node(original_key)
assert node is not None
assert elt is not None
oelt = node.elts[i]
node.elts[i] = elt
elt = oelt
return elt
def visit_in_order(self, visit: Callable[[ET], None]) -> None:
"""Call *visit* on all of the elements in order."""
for i, elt in enumerate(self.elts):
if not self.is_leaf:
self.children[i].visit_in_order(visit)
visit(elt)
if not self.is_leaf:
self.children[-1].visit_in_order(visit)
def _visit_preorder_by_node(self, visit: Callable[["_Node[KT, ET]"], None]) -> None:
"""Visit nodes in preorder. This method is only used for testing."""
visit(self)
if not self.is_leaf:
for child in self.children:
child._visit_preorder_by_node(visit)
def maybe_cow(self, creator: _Creator) -> Optional["_Node[KT, ET]"]:
"""Return a clone of this Node if it was not created by *creator*, or ``None``
otherwise (i.e. copy for copy-on-write if we haven't already copied it)."""
if self.creator is not creator:
return self.clone(creator)
else:
return None
def clone(self, creator: _Creator) -> "_Node[KT, ET]":
"""Make a shallow-copy duplicate of this node."""
cloned = self.__class__(self.t, creator, self.is_leaf)
cloned.elts.extend(self.elts)
if not self.is_leaf:
cloned.children.extend(self.children)
return cloned
def __str__(self): # pragma: no cover
if not self.is_leaf:
children = " " + " ".join([f"{id(c):x}" for c in self.children])
else:
children = ""
return f"{id(self):x} {self.creator} {self.elts}{children}"
class Cursor(Generic[KT, ET]):
"""A seekable cursor for a BTree.
If you are going to use a cursor on a mutable BTree, you should use it
in a ``with`` block so that any mutations of the BTree automatically park
the cursor.
"""
def __init__(self, btree: "BTree[KT, ET]"):
self.btree = btree
self.current_node: _Node | None = None
# The current index is the element index within the current node, or
# if there is no current node then it is 0 on the left boundary and 1
# on the right boundary.
self.current_index: int = 0
self.recurse = False
self.increasing = True
self.parents: list[tuple[_Node, int]] = []
self.parked = False
self.parking_key: KT | None = None
self.parking_key_read = False
def _seek_least(self) -> None:
# seek to the least value in the subtree beneath the current index of the
# current node
assert self.current_node is not None
while not self.current_node.is_leaf:
self.parents.append((self.current_node, self.current_index))
self.current_node = self.current_node.children[self.current_index]
assert self.current_node is not None
self.current_index = 0
def _seek_greatest(self) -> None:
# seek to the greatest value in the subtree beneath the current index of the
# current node
assert self.current_node is not None
while not self.current_node.is_leaf:
self.parents.append((self.current_node, self.current_index))
self.current_node = self.current_node.children[self.current_index]
assert self.current_node is not None
self.current_index = len(self.current_node.elts)
def park(self):
"""Park the cursor.
A cursor must be "parked" before mutating the BTree to avoid undefined behavior.
Cursors created in a ``with`` block register with their BTree and will park
automatically. Note that a parked cursor may not observe some changes made when
it is parked; for example a cursor being iterated with next() will not see items
inserted before its current position.
"""
if not self.parked:
self.parked = True
def _maybe_unpark(self):
if self.parked:
if self.parking_key is not None:
# remember our increasing hint, as seeking might change it
increasing = self.increasing
if self.parking_key_read:
# We've already returned the parking key, so we want to be before it
# if decreasing and after it if increasing.
before = not self.increasing
else:
# We haven't returned the parking key, so we've parked right
# after seeking or are on a boundary. Either way, the before
# hint we want is the value of self.increasing.
before = self.increasing
self.seek(self.parking_key, before)
self.increasing = increasing # might have been altered by seek()
self.parked = False
self.parking_key = None
def prev(self) -> ET | None:
"""Get the previous element, or return None if on the left boundary."""
self._maybe_unpark()
self.parking_key = None
if self.current_node is None:
# on a boundary
if self.current_index == 0:
# left boundary, there is no prev
return None
else:
assert self.current_index == 1
# right boundary; seek to the actual boundary
# so we can do a prev()
self.current_node = self.btree.root
self.current_index = len(self.btree.root.elts)
self._seek_greatest()
while True:
if self.recurse:
if not self.increasing:
# We only want to recurse if we are continuing in the decreasing
# direction.
self._seek_greatest()
self.recurse = False
self.increasing = False
self.current_index -= 1
if self.current_index >= 0:
elt = self.current_node.elts[self.current_index]
if not self.current_node.is_leaf:
self.recurse = True
self.parking_key = elt.key()
self.parking_key_read = True
return elt
else:
if len(self.parents) > 0:
self.current_node, self.current_index = self.parents.pop()
else:
self.current_node = None
self.current_index = 0
return None
def next(self) -> ET | None:
"""Get the next element, or return None if on the right boundary."""
self._maybe_unpark()
self.parking_key = None
if self.current_node is None:
# on a boundary
if self.current_index == 1:
# right boundary, there is no next
return None
else:
assert self.current_index == 0
# left boundary; seek to the actual boundary
# so we can do a next()
self.current_node = self.btree.root
self.current_index = 0
self._seek_least()
while True:
if self.recurse:
if self.increasing:
# We only want to recurse if we are continuing in the increasing
# direction.
self._seek_least()
self.recurse = False
self.increasing = True
if self.current_index < len(self.current_node.elts):
elt = self.current_node.elts[self.current_index]
self.current_index += 1
if not self.current_node.is_leaf:
self.recurse = True
self.parking_key = elt.key()
self.parking_key_read = True
return elt
else:
if len(self.parents) > 0:
self.current_node, self.current_index = self.parents.pop()
else:
self.current_node = None
self.current_index = 1
return None
def _adjust_for_before(self, before: bool, i: int) -> None:
if before:
self.current_index = i
else:
self.current_index = i + 1
def seek(self, key: KT, before: bool = True) -> None:
"""Seek to the specified key.
If *before* is ``True`` (the default) then the cursor is positioned just
before *key* if it exists, or before its least successor if it doesn't. A
subsequent next() will retrieve this value. If *before* is ``False``, then
the cursor is positioned just after *key* if it exists, or its greatest
precessessor if it doesn't. A subsequent prev() will return this value.
"""
self.current_node = self.btree.root
assert self.current_node is not None
self.recurse = False
self.parents = []
self.increasing = before
self.parked = False
self.parking_key = key
self.parking_key_read = False
while not self.current_node.is_leaf:
i, equal = self.current_node.search_in_node(key)
if equal:
self._adjust_for_before(before, i)
if before:
self._seek_greatest()
else:
self._seek_least()
return
self.parents.append((self.current_node, i))
self.current_node = self.current_node.children[i]
assert self.current_node is not None
i, equal = self.current_node.search_in_node(key)
if equal:
self._adjust_for_before(before, i)
else:
self.current_index = i
def seek_first(self) -> None:
"""Seek to the left boundary (i.e. just before the least element).
A subsequent next() will return the least element if the BTree isn't empty."""
self.current_node = None
self.current_index = 0
self.recurse = False
self.increasing = True
self.parents = []
self.parked = False
self.parking_key = None
def seek_last(self) -> None:
"""Seek to the right boundary (i.e. just after the greatest element).
A subsequent prev() will return the greatest element if the BTree isn't empty.
"""
self.current_node = None
self.current_index = 1
self.recurse = False
self.increasing = False
self.parents = []
self.parked = False
self.parking_key = None
def __enter__(self):
self.btree.register_cursor(self)
return self
def __exit__(self, exc_type, exc_value, traceback):
self.btree.deregister_cursor(self)
return False
class Immutable(Exception):
"""The BTree is immutable."""
class BTree(Generic[KT, ET]):
"""An in-memory BTree with copy-on-write and cursors."""
def __init__(self, *, t: int = DEFAULT_T, original: Optional["BTree"] = None):
"""Create a BTree.
If *original* is not ``None``, then the BTree is shallow-cloned from
*original* using copy-on-write. Otherwise a new BTree with the specified
*t* value is created.
The BTree is not thread-safe.
"""
# We don't use a reference to ourselves as a creator as we don't want
# to prevent GC of old btrees.
self.creator = _Creator()
self._immutable = False
self.t: int
self.root: _Node
self.size: int
self.cursors: set[Cursor] = set()
if original is not None:
if not original._immutable:
raise ValueError("original BTree is not immutable")
self.t = original.t
self.root = original.root
self.size = original.size
else:
if t < 3:
raise ValueError("t must be >= 3")
self.t = t
self.root = _Node(self.t, self.creator, True)
self.size = 0
def make_immutable(self):
"""Make the BTree immutable.
Attempts to alter the BTree after making it immutable will raise an
Immutable exception. This operation cannot be undone.
"""
if not self._immutable:
self._immutable = True
def _check_mutable_and_park(self) -> None:
if self._immutable:
raise Immutable
for cursor in self.cursors:
cursor.park()
# Note that we don't use insert() and delete() but rather insert_element() and
# delete_key() so that BTreeDict can be a proper MutableMapping and supply the
# rest of the standard mapping API.
def insert_element(self, elt: ET, in_order: bool = False) -> ET | None:
"""Insert the element into the BTree.
If *in_order* is ``True``, then extra work will be done to make left siblings
full, which optimizes storage space when the the elements are inserted in-order
or close to it.
Returns the previously existing element at the element's key or ``None``.
"""
self._check_mutable_and_park()
cloned = self.root.maybe_cow(self.creator)
if cloned:
self.root = cloned
if self.root.is_maximal():
old_root = self.root
self.root = _Node(self.t, self.creator, False)
self.root.adopt(*old_root.split())
oelt = self.root.insert_nonfull(elt, in_order)
if oelt is None:
# We did not replace, so something was added.
self.size += 1
return oelt
def get_element(self, key: KT) -> ET | None:
"""Get the element matching *key* from the BTree, or return ``None`` if it
does not exist.
"""
return self.root.get(key)
def _delete(self, key: KT, exact: ET | None) -> ET | None:
self._check_mutable_and_park()
cloned = self.root.maybe_cow(self.creator)
if cloned:
self.root = cloned
elt = self.root.delete(key, None, exact)
if elt is not None:
# We deleted something
self.size -= 1
if len(self.root.elts) == 0:
# The root is now empty. If there is a child, then collapse this root
# level and make the child the new root.
if not self.root.is_leaf:
assert len(self.root.children) == 1
self.root = self.root.children[0]
return elt
def delete_key(self, key: KT) -> ET | None:
"""Delete the element matching *key* from the BTree.
Returns the matching element or ``None`` if it does not exist.
"""
return self._delete(key, None)
def delete_exact(self, element: ET) -> ET | None:
"""Delete *element* from the BTree.
Returns the matching element or ``None`` if it was not in the BTree.
"""
delt = self._delete(element.key(), element)
assert delt is element
return delt
def __len__(self):
return self.size
def visit_in_order(self, visit: Callable[[ET], None]) -> None:
"""Call *visit*(element) on all elements in the tree in sorted order."""
self.root.visit_in_order(visit)
def _visit_preorder_by_node(self, visit: Callable[[_Node], None]) -> None:
self.root._visit_preorder_by_node(visit)
def cursor(self) -> Cursor[KT, ET]:
"""Create a cursor."""
return Cursor(self)
def register_cursor(self, cursor: Cursor) -> None:
"""Register a cursor for the automatic parking service."""
self.cursors.add(cursor)
def deregister_cursor(self, cursor: Cursor) -> None:
"""Deregister a cursor from the automatic parking service."""
self.cursors.discard(cursor)
def __copy__(self):
return self.__class__(original=self)
def __iter__(self):
with self.cursor() as cursor:
while True:
elt = cursor.next()
if elt is None:
break
yield elt.key()
VT = TypeVar("VT") # the type of a value in a BTreeDict
class KV(Element, Generic[KT, VT]):
"""The BTree element type used in a ``BTreeDict``."""
def __init__(self, key: KT, value: VT):
self._key = key
self._value = value
def key(self) -> KT:
return self._key
def value(self) -> VT:
return self._value
def __str__(self): # pragma: no cover
return f"KV({self._key}, {self._value})"
def __repr__(self): # pragma: no cover
return f"KV({self._key}, {self._value})"
class BTreeDict(Generic[KT, VT], BTree[KT, KV[KT, VT]], MutableMapping[KT, VT]):
"""A MutableMapping implemented with a BTree.
Unlike a normal Python dict, the BTreeDict may be mutated while iterating.
"""
def __init__(
self,
*,
t: int = DEFAULT_T,
original: BTree | None = None,
in_order: bool = False,
):
super().__init__(t=t, original=original)
self.in_order = in_order
def __getitem__(self, key: KT) -> VT:
elt = self.get_element(key)
if elt is None:
raise KeyError
else:
return cast(KV, elt).value()
def __setitem__(self, key: KT, value: VT) -> None:
elt = KV(key, value)
self.insert_element(elt, self.in_order)
def __delitem__(self, key: KT) -> None:
if self.delete_key(key) is None:
raise KeyError
class Member(Element, Generic[KT]):
"""The BTree element type used in a ``BTreeSet``."""
def __init__(self, key: KT):
self._key = key
def key(self) -> KT:
return self._key
class BTreeSet(BTree, Generic[KT], MutableSet[KT]):
"""A MutableSet implemented with a BTree.
Unlike a normal Python set, the BTreeSet may be mutated while iterating.
"""
def __init__(
self,
*,
t: int = DEFAULT_T,
original: BTree | None = None,
in_order: bool = False,
):
super().__init__(t=t, original=original)
self.in_order = in_order
def __contains__(self, key: Any) -> bool:
return self.get_element(key) is not None
def add(self, value: KT) -> None:
elt = Member(value)
self.insert_element(elt, self.in_order)
def discard(self, value: KT) -> None:
self.delete_key(value)
|