File size: 27,439 Bytes
39b4c8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 |
# -*- coding: utf-8 -*-
import numpy as np
import scipy as sp
import scipy.stats as st
import itertools as it
def binomial_sign_test(*args):
"""
Performs a binomial sign test for two dependent samples.
Tests the hypothesis that the two dependent samples represent two different populations.
Parameters
----------
sample1, sample2: array_like
The sample measurements for each group.
Returns
-------
B-value : float
The computed B-value of the test.
p-value : float
The associated p-value from the B-distribution.
References
----------
D.J. Sheskin, Handbook of parametric and nonparametric statistical procedures. crc Press, 2003, Test 19: The Binomial Sign Test for Two Dependent Samples
"""
k = len(args)
if k != 2: raise ValueError('The test needs two samples')
n = len(args[0])
d_plus = 0
d_minus = 0
for i in range(n):
# Zero differences are eliminated
if args[0][i] < args[1][i]:
d_plus = d_plus+1
elif args[0][i] > args[1][i]:
d_minus = d_minus+1
x = max(d_plus, d_minus)
n = d_plus + d_minus
p_value = 2*(1 - st.binom.cdf(x, n, 0.5)) # Two-tailed of the smallest p-value
return x, p_value
def friedman_test(*args):
"""
Performs a Friedman ranking test.
Tests the hypothesis that in a set of k dependent samples groups (where k >= 2)
at least two of the groups represent populations with different median values.
Parameters
----------
sample1, sample2, ... : array_like
The sample measurements for each group.
Returns
-------
F-value : float
The computed F-value of the test.
p-value : float
The associated p-value from the F-distribution.
rankings : array_like
The ranking for each group.
pivots : array_like
The pivotal quantities for each group.
References
----------
M. Friedman, The use of ranks to avoid the assumption of normality implicit in the
analysis of variance, Journal of the American Statistical Association 32 (1937) 674β701.
D.J. Sheskin, Handbook of parametric and nonparametric statistical procedures.
crc Press, 2003, Test 25: The Friedman Two-Way Analysis of Variance by Ranks
"""
k = len(args)
if k < 2: raise ValueError('Less than 2 levels')
n = len(args[0])
if len(set([len(v) for v in args])) != 1: raise ValueError('Unequal number of samples')
rankings = []
for i in range(n):
row = [col[i] for col in args]
row_sort = sorted(row)
rankings.append([row_sort.index(v) + 1 + (row_sort.count(v)-1)/2. for v in row])
rankings_avg = [sp.mean([case[j] for case in rankings]) for j in range(k)]
rankings_cmp = [r/sp.sqrt(k*(k+1)/(6.*n)) for r in rankings_avg]
chi2 = ((12*n)/float((k*(k+1))))*((sp.sum(r**2 for r in rankings_avg))-((k*(k+1)**2)/float(4)))
iman_davenport = ((n-1)*chi2)/float((n*(k-1)-chi2))
p_value = 1 - st.f.cdf(iman_davenport, k-1, (k-1)*(n-1))
return iman_davenport, p_value, rankings_avg, rankings_cmp
def friedman_aligned_ranks_test(*args):
"""
Performs a Friedman aligned ranks ranking test.
Tests the hypothesis that in a set of k dependent samples groups
(where k >= 2) at least two of the groups represent populations
with different median values.
The difference with a friedman test is that it uses the median of
each group to construct the ranking, which is useful when the number
of samples is low.
Parameters
----------
sample1, sample2, ... : array_like
The sample measurements for each group.
Returns
-------
Chi2-value : float
The computed Chi2-value of the test.
p-value : float
The associated p-value from the Chi2-distribution.
rankings : array_like
The ranking for each group.
pivots : array_like
The pivotal quantities for each group.
References
----------
J.L. Hodges, E.L. Lehmann, Ranks methods for combination of independent
experiments in analysis of variance, Annals of Mathematical Statistics 33 (1962) 482β497.
"""
k = len(args)
if k < 2: raise ValueError('Less than 2 levels')
n = len(args[0])
if len(set([len(v) for v in args])) != 1: raise ValueError('Unequal number of samples')
aligned_observations = []
for i in range(n):
loc = sp.mean([col[i] for col in args])
aligned_observations.extend([col[i] - loc for col in args])
aligned_observations_sort = sorted(aligned_observations)
aligned_ranks = []
for i in range(n):
row = []
for j in range(k):
v = aligned_observations[i*k+j]
row.append(aligned_observations_sort.index(v) + 1 + (aligned_observations_sort.count(v)-1)/2.)
aligned_ranks.append(row)
rankings_avg = [sp.mean([case[j] for case in aligned_ranks]) for j in range(k)]
rankings_cmp = [r/sp.sqrt(k*(n*k+1)/6.) for r in rankings_avg]
r_i = [np.sum(case) for case in aligned_ranks]
r_j = [np.sum([case[j] for case in aligned_ranks]) for j in range(k)]
T = (k-1) * (sp.sum(v**2 for v in r_j) - (k*n**2/4.) * (k*n+1)**2) / float(((k*n*(k*n+1)*(2*k*n+1))/6.) - (1./float(k))*sp.sum(v**2 for v in r_i))
p_value = 1 - st.chi2.cdf(T, k-1)
return T, p_value, rankings_avg, rankings_cmp
def quade_test(*args):
"""
Performs a Quade ranking test.
Tests the hypothesis that in a set of k dependent samples groups (where k >= 2) at least two of the groups represent populations with different median values.
The difference with a friedman test is that it uses the median for each sample to wiehgt the ranking.
Parameters
----------
sample1, sample2, ... : array_like
The sample measurements for each group.
Returns
-------
F-value : float
The computed F-value of the test.
p-value : float
The associated p-value from the F-distribution.
rankings : array_like
The ranking for each group.
pivots : array_like
The pivotal quantities for each group.
References
----------
D. Quade, Using weighted rankings in the analysis of complete blocks with additive block effects, Journal of the American Statistical Association 74 (1979) 680β683.
"""
k = len(args)
if k < 2: raise ValueError('Less than 2 levels')
n = len(args[0])
if len(set([len(v) for v in args])) != 1: raise ValueError('Unequal number of samples')
rankings = []
ranges = []
for i in range(n):
row = [col[i] for col in args]
ranges.append(max(row) - min(row))
row_sort = sorted(row)
rankings.append([row_sort.index(v) + 1 + (row_sort.count(v)-1)/2. for v in row])
ranges_sort = sorted(ranges)
ranking_cases = [ranges_sort.index(v) + 1 + (ranges_sort.count(v)-1)/2. for v in ranges]
S = []
W = []
for i in range(n):
S.append([ranking_cases[i] * (r - (k + 1)/2.) for r in rankings[i]])
W.append([ranking_cases[i] * r for r in rankings[i]])
Sj = [np.sum(row[j] for row in S) for j in range(k)]
Wj = [np.sum(row[j] for row in W) for j in range(k)]
rankings_avg = [w / (n*(n+1)/2.) for w in Wj]
rankings_cmp = [r/sp.sqrt(k*(k+1)*(2*n+1)*(k-1)/(18.*n*(n+1))) for r in rankings_avg]
A = sp.sum(S[i][j]**2 for i in range(n) for j in range(k))
B = sp.sum(s**2 for s in Sj)/float(n)
F = (n-1)*B/(A-B)
p_value = 1 - st.f.cdf(F, k-1, (k-1)*(n-1))
return F, p_value, rankings_avg, rankings_cmp
def bonferroni_dunn_test(ranks, control=None):
"""
Performs a Bonferroni-Dunn post-hoc test using the pivot quantities obtained by a ranking test.
Tests the hypothesis that the ranking of the control method is different to each of the other methods.
Parameters
----------
pivots : dictionary_like
A dictionary with format 'groupname':'pivotal quantity'
control : string optional
The name of the control method (one vs all), default None (all vs all)
Returns
----------
Comparions : array-like
Strings identifier of each comparison with format 'group_i vs group_j'
Z-values : array-like
The computed Z-value statistic for each comparison.
p-values : array-like
The associated p-value from the Z-distribution wich depends on the index of the comparison
Adjusted p-values : array-like
The associated adjusted p-values wich can be compared with a significance level
References
----------
O.J. Dunn, Multiple comparisons among means, Journal of the American Statistical Association 56 (1961) 52β64.
"""
k = len(ranks)
values = ranks.values()
keys = ranks.keys()
if not control :
control_i = values.index(min(values))
else:
control_i = keys.index(control)
comparisons = [keys[control_i] + " vs " + keys[i] for i in range(k) if i != control_i]
z_values = [abs(values[control_i] - values[i]) for i in range(k) if i != control_i]
p_values = [2*(1-st.norm.cdf(abs(z))) for z in z_values]
# Sort values by p_value so that p_0 < p_1
p_values, z_values, comparisons = map(list, zip(*sorted(zip(p_values, z_values, comparisons), key=lambda t: t[0])))
adj_p_values = [min((k-1)*p_value,1) for p_value in p_values]
return comparisons, z_values, p_values, adj_p_values
def holm_test(ranks, control=None):
"""
Performs a Holm post-hoc test using the pivot quantities obtained by a ranking test.
Tests the hypothesis that the ranking of the control method is different to each of the other methods.
Parameters
----------
pivots : dictionary_like
A dictionary with format 'groupname':'pivotal quantity'
control : string optional
The name of the control method (one vs all), default None (all vs all)
Returns
----------
Comparions : array-like
Strings identifier of each comparison with format 'group_i vs group_j'
Z-values : array-like
The computed Z-value statistic for each comparison.
p-values : array-like
The associated p-value from the Z-distribution wich depends on the index of the comparison
Adjusted p-values : array-like
The associated adjusted p-values wich can be compared with a significance level
References
----------
O.J. S. Holm, A simple sequentially rejective multiple test procedure, Scandinavian Journal of Statistics 6 (1979) 65β70.
"""
k = len(ranks)
values = ranks.values()
keys = ranks.keys()
if not control :
control_i = values.index(min(values))
else:
control_i = keys.index(control)
comparisons = [keys[control_i] + " vs " + keys[i] for i in range(k) if i != control_i]
z_values = [abs(values[control_i] - values[i]) for i in range(k) if i != control_i]
p_values = [2*(1-st.norm.cdf(abs(z))) for z in z_values]
# Sort values by p_value so that p_0 < p_1
p_values, z_values, comparisons = map(list, zip(*sorted(zip(p_values, z_values, comparisons), key=lambda t: t[0])))
adj_p_values = [min(max((k-(j+1))*p_values[j] for j in range(i+1)), 1) for i in range(k-1)]
return comparisons, z_values, p_values, adj_p_values
def hochberg_test(ranks, control=None):
"""
Performs a Hochberg post-hoc test using the pivot quantities obtained by a ranking test.
Tests the hypothesis that the ranking of the control method is different to each of the other methods.
Parameters
----------
pivots : dictionary_like
A dictionary with format 'groupname':'pivotal quantity'
control : string optional
The name of the control method, default the group with minimum ranking
Returns
----------
Comparions : array-like
Strings identifier of each comparison with format 'group_i vs group_j'
Z-values : array-like
The computed Z-value statistic for each comparison.
p-values : array-like
The associated p-value from the Z-distribution wich depends on the index of the comparison
Adjusted p-values : array-like
The associated adjusted p-values wich can be compared with a significance level
References
----------
Y. Hochberg, A sharper Bonferroni procedure for multiple tests of significance, Biometrika 75 (1988) 800β803.
"""
k = len(ranks)
values = ranks.values()
keys = ranks.keys()
if not control :
control_i = values.index(min(values))
else:
control_i = keys.index(control)
comparisons = [keys[control_i] + " vs " + keys[i] for i in range(k) if i != control_i]
z_values = [abs(values[control_i] - values[i]) for i in range(k) if i != control_i]
p_values = [2*(1-st.norm.cdf(abs(z))) for z in z_values]
# Sort values by p_value so that p_0 < p_1
p_values, z_values, comparisons = map(list, zip(*sorted(zip(p_values, z_values, comparisons), key=lambda t: t[0])))
adj_p_values = [min(max((k-j)*p_values[j-1] for j in range(k-1, i, -1)), 1) for i in range(k-1)]
return comparisons, z_values, p_values, adj_p_values
def li_test(ranks, control=None):
"""
Performs a Li post-hoc test using the pivot quantities obtained by a ranking test.
Tests the hypothesis that the ranking of the control method is different to each of the other methods.
Parameters
----------
pivots : dictionary_like
A dictionary with format 'groupname':'pivotal quantity'
control : string optional
The name of the control method, default the group with minimum ranking
Returns
----------
Comparions : array-like
Strings identifier of each comparison with format 'group_i vs group_j'
Z-values : array-like
The computed Z-value statistic for each comparison.
p-values : array-like
The associated p-value from the Z-distribution wich depends on the index of the comparison
Adjusted p-values : array-like
The associated adjusted p-values wich can be compared with a significance level
References
----------
J. Li, A two-step rejection procedure for testing multiple hypotheses, Journal of Statistical Planning and Inference 138 (2008) 1521β1527.
"""
k = len(ranks)
values = ranks.values()
keys = ranks.keys()
if not control :
control_i = values.index(min(values))
else:
control_i = keys.index(control)
comparisons = [keys[control_i] + " vs " + keys[i] for i in range(k) if i != control_i]
z_values = [abs(values[control_i] - values[i]) for i in range(k) if i != control_i]
p_values = [2*(1-st.norm.cdf(abs(z))) for z in z_values]
# Sort values by p_value so that p_0 < p_1
p_values, z_values, comparisons = map(list, zip(*sorted(zip(p_values, z_values, comparisons), key=lambda t: t[0])))
adj_p_values = [p_values[i]/(p_values[i]+1-p_values[-1]) for i in range(k-1)]
return comparisons, z_values, p_values, adj_p_values
def finner_test(ranks, control=None):
"""
Performs a Finner post-hoc test using the pivot quantities obtained by a ranking test.
Tests the hypothesis that the ranking of the control method is different to each of the other methods.
Parameters
----------
pivots : dictionary_like
A dictionary with format 'groupname':'pivotal quantity'
control : string optional
The name of the control method, default the group with minimum ranking
Returns
----------
Comparions : array-like
Strings identifier of each comparison with format 'group_i vs group_j'
Z-values : array-like
The computed Z-value statistic for each comparison.
p-values : array-like
The associated p-value from the Z-distribution wich depends on the index of the comparison
Adjusted p-values : array-like
The associated adjusted p-values wich can be compared with a significance level
References
----------
H. Finner, On a monotonicity problem in step-down multiple test procedures, Journal of the American Statistical Association 88 (1993) 920β923.
"""
k = len(ranks)
values = ranks.values()
keys = ranks.keys()
if not control :
control_i = values.index(min(values))
else:
control_i = keys.index(control)
comparisons = [keys[control_i] + " vs " + keys[i] for i in range(k) if i != control_i]
z_values = [abs(values[control_i] - values[i]) for i in range(k) if i != control_i]
p_values = [2*(1-st.norm.cdf(abs(z))) for z in z_values]
# Sort values by p_value so that p_0 < p_1
p_values, z_values, comparisons = map(list, zip(*sorted(zip(p_values, z_values, comparisons), key=lambda t: t[0])))
adj_p_values = [min(max(1-(1-p_values[j])**((k-1)/float(j+1)) for j in range(i+1)), 1) for i in range(k-1)]
return comparisons, z_values, p_values, adj_p_values
def nemenyi_multitest(ranks):
"""
Performs a Nemenyi post-hoc test using the pivot quantities obtained by a ranking test.
Tests the hypothesis that the ranking of each pair of groups are different.
Parameters
----------
pivots : dictionary_like
A dictionary with format 'groupname':'pivotal quantity'
Returns
----------
Comparions : array-like
Strings identifier of each comparison with format 'group_i vs group_j'
Z-values : array-like
The computed Z-value statistic for each comparison.
p-values : array-like
The associated p-value from the Z-distribution wich depends on the index of the comparison
Adjusted p-values : array-like
The associated adjusted p-values wich can be compared with a significance level
References
----------
Bonferroni-Dunn: O.J. Dunn, Multiple comparisons among means, Journal of the American Statistical Association 56 (1961) 52β64.
"""
k = len(ranks)
values = ranks.values()
keys = ranks.keys()
versus = list(it.combinations(range(k), 2))
comparisons = [keys[vs[0]] + " vs " + keys[vs[1]] for vs in versus]
z_values = [abs(values[vs[0]] - values[vs[1]]) for vs in versus]
p_values = [2*(1-st.norm.cdf(abs(z))) for z in z_values]
# Sort values by p_value so that p_0 < p_1
p_values, z_values, comparisons = map(list, zip(*sorted(zip(p_values, z_values, comparisons), key=lambda t: t[0])))
m = int(k*(k-1)/2.)
adj_p_values = [min(m*p_value,1) for p_value in p_values]
return comparisons, z_values, p_values, adj_p_values
def holm_multitest(ranks):
"""
Performs a Holm post-hoc test using the pivot quantities obtained by a ranking test.
Tests the hypothesis that the ranking of each pair of groups are different.
Parameters
----------
pivots : dictionary_like
A dictionary with format 'groupname':'pivotal quantity'
Returns
----------
Comparions : array-like
Strings identifier of each comparison with format 'group_i vs group_j'
Z-values : array-like
The computed Z-value statistic for each comparison.
p-values : array-like
The associated p-value from the Z-distribution wich depends on the index of the comparison
Adjusted p-values : array-like
The associated adjusted p-values wich can be compared with a significance level
References
----------
O.J. S. Holm, A simple sequentially rejective multiple test procedure, Scandinavian Journal of Statistics 6 (1979) 65β70.
"""
k = len(ranks)
values = ranks.values()
keys = ranks.keys()
versus = list(it.combinations(range(k), 2))
comparisons = [keys[vs[0]] + " vs " + keys[vs[1]] for vs in versus]
z_values = [abs(values[vs[0]] - values[vs[1]]) for vs in versus]
p_values = [2*(1-st.norm.cdf(abs(z))) for z in z_values]
# Sort values by p_value so that p_0 < p_1
p_values, z_values, comparisons = map(list, zip(*sorted(zip(p_values, z_values, comparisons), key=lambda t: t[0])))
m = int(k*(k-1)/2.)
adj_p_values = [min(max((m-j)*p_values[j] for j in range(i+1)), 1) for i in range(m)]
return comparisons, z_values, p_values, adj_p_values
def hochberg_multitest(ranks):
"""
Performs a Hochberg post-hoc test using the pivot quantities obtained by a ranking test.
Tests the hypothesis that the ranking of each pair of groups are different.
Parameters
----------
pivots : dictionary_like
A dictionary with format 'groupname':'pivotal quantity'
Returns
----------
Comparions : array-like
Strings identifier of each comparison with format 'group_i vs group_j'
Z-values : array-like
The computed Z-value statistic for each comparison.
p-values : array-like
The associated p-value from the Z-distribution wich depends on the index of the comparison
Adjusted p-values : array-like
The associated adjusted p-values wich can be compared with a significance level
References
----------
Y. Hochberg, A sharper Bonferroni procedure for multiple tests of significance, Biometrika 75 (1988) 800β803.
"""
k = len(ranks)
values = ranks.values()
keys = ranks.keys()
versus = list(it.combinations(range(k), 2))
comparisons = [keys[vs[0]] + " vs " + keys[vs[1]] for vs in versus]
z_values = [abs(values[vs[0]] - values[vs[1]]) for vs in versus]
p_values = [2*(1-st.norm.cdf(abs(z))) for z in z_values]
# Sort values by p_value so that p_0 < p_1
p_values, z_values, comparisons = map(list, zip(*sorted(zip(p_values, z_values, comparisons), key=lambda t: t[0])))
m = int(k*(k-1)/2.)
adj_p_values = [max((m+1-j)*p_values[j-1] for j in range(m, i, -1))for i in range(m)]
return comparisons, z_values, p_values, adj_p_values
def finner_multitest(ranks):
"""
Performs a Finner post-hoc test using the pivot quantities obtained by a ranking test.
Tests the hypothesis that the ranking of each pair of groups are different.
Parameters
----------
pivots : dictionary_like
A dictionary with format 'groupname':'pivotal quantity'
Returns
----------
Comparions : array-like
Strings identifier of each comparison with format 'group_i vs group_j'
Z-values : array-like
The computed Z-value statistic for each comparison.
p-values : array-like
The associated p-value from the Z-distribution wich depends on the index of the comparison
Adjusted p-values : array-like
The associated adjusted p-values wich can be compared with a significance level
References
----------
H. Finner, On a monotonicity problem in step-down multiple test procedures, Journal of the American Statistical Association 88 (1993) 920β923.
"""
k = len(ranks)
values = ranks.values()
keys = ranks.keys()
versus = list(it.combinations(range(k), 2))
comparisons = [keys[vs[0]] + " vs " + keys[vs[1]] for vs in versus]
z_values = [abs(values[vs[0]] - values[vs[1]]) for vs in versus]
p_values = [2*(1-st.norm.cdf(abs(z))) for z in z_values]
# Sort values by p_value so that p_0 < p_1
p_values, z_values, comparisons = map(list, zip(*sorted(zip(p_values, z_values, comparisons), key=lambda t: t[0])))
m = int(k*(k-1)/2.)
adj_p_values = [min(max(1-(1-p_values[j])**(m/float(j+1)) for j in range(i+1)), 1) for i in range(m)]
return comparisons, z_values, p_values, adj_p_values
def _S(k):
"""
Helper function for the Shaffer test.
It obtains the number of independent test hypotheses when using an All vs All strategy using the number of groups to be compared.
"""
if k == 0 or k == 1:
return {0}
else:
result = set()
for j in reversed(range(1, k+1)):
tmp = S(k - j)
for s in tmp:
result = result.union({sp.special.binom(j, 2) + s})
return list(result)
def shaffer_multitest(ranks):
"""
Performs a Shaffer post-hoc test using the pivot quantities obtained by a ranking test.
Tests the hypothesis that the ranking of each pair of groups are different.
Parameters
----------
pivots : dictionary_like
A dictionary with format 'groupname':'pivotal quantity'
Returns
----------
Comparions : array-like
Strings identifier of each comparison with format 'group_i vs group_j'
Z-values : array-like
The computed Z-value statistic for each comparison.
p-values : array-like
The associated p-value from the Z-distribution wich depends on the index of the comparison
Adjusted p-values : array-like
The associated adjusted p-values wich can be compared with a significance level
References
----------
J. Li, A two-step rejection procedure for testing multiple hypotheses, Journal of Statistical Planning and Inference 138 (2008) 1521β1527.
"""
k = len(ranks)
values = ranks.values()
keys = ranks.keys()
versus = list(it.combinations(range(k), 2))
m = int(k*(k-1)/2.)
A = _S(int((1 + sp.sqrt(1+4*m*2))/2))
t = [max([a for a in A if a <= m-i]) for i in range(m)]
comparisons = [keys[vs[0]] + " vs " + keys[vs[1]] for vs in versus]
z_values = [abs(values[vs[0]] - values[vs[1]]) for vs in versus]
p_values = [2*(1-st.norm.cdf(abs(z))) for z in z_values]
# Sort values by p_value so that p_0 < p_1
p_values, z_values, comparisons = map(list, zip(*sorted(zip(p_values, z_values, comparisons), key=lambda t: t[0])))
adj_p_values = [min(max(t[j]*p_values[j] for j in range(i+1)), 1) for i in range(m)]
return comparisons, z_values, p_values, adj_p_values |