File size: 14,872 Bytes
be94e5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
#include "precomp.hpp"
#include "ap3p.h"
#include "polynom_solver.h"

#include <cmath>
#include <complex>
#if defined (_MSC_VER) && (_MSC_VER <= 1700)
static inline double cbrt(double x) { return (double)cv::cubeRoot((float)x); };
#endif

namespace {
void polishQuarticRoots(const double *coeffs, double *roots, int nb_roots) {
    const int iterations = 2;
    for (int i = 0; i < iterations; ++i) {
        for (int j = 0; j < nb_roots; ++j) {
            double error =
                    (((coeffs[0] * roots[j] + coeffs[1]) * roots[j] + coeffs[2]) * roots[j] + coeffs[3]) * roots[j] +
                    coeffs[4];
            double
                    derivative =
                    ((4 * coeffs[0] * roots[j] + 3 * coeffs[1]) * roots[j] + 2 * coeffs[2]) * roots[j] + coeffs[3];
            roots[j] -= error / derivative;
        }
    }
}

inline void vect_cross(const double *a, const double *b, double *result) {
    result[0] = a[1] * b[2] - a[2] * b[1];
    result[1] = -(a[0] * b[2] - a[2] * b[0]);
    result[2] = a[0] * b[1] - a[1] * b[0];
}

inline double vect_dot(const double *a, const double *b) {
    return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}

inline double vect_norm(const double *a) {
    return sqrt(a[0] * a[0] + a[1] * a[1] + a[2] * a[2]);
}

inline void vect_scale(const double s, const double *a, double *result) {
    result[0] = a[0] * s;
    result[1] = a[1] * s;
    result[2] = a[2] * s;
}

inline void vect_sub(const double *a, const double *b, double *result) {
    result[0] = a[0] - b[0];
    result[1] = a[1] - b[1];
    result[2] = a[2] - b[2];
}

inline void vect_divide(const double *a, const double d, double *result) {
    result[0] = a[0] / d;
    result[1] = a[1] / d;
    result[2] = a[2] / d;
}

inline void mat_mult(const double a[3][3], const double b[3][3], double result[3][3]) {
    result[0][0] = a[0][0] * b[0][0] + a[0][1] * b[1][0] + a[0][2] * b[2][0];
    result[0][1] = a[0][0] * b[0][1] + a[0][1] * b[1][1] + a[0][2] * b[2][1];
    result[0][2] = a[0][0] * b[0][2] + a[0][1] * b[1][2] + a[0][2] * b[2][2];

    result[1][0] = a[1][0] * b[0][0] + a[1][1] * b[1][0] + a[1][2] * b[2][0];
    result[1][1] = a[1][0] * b[0][1] + a[1][1] * b[1][1] + a[1][2] * b[2][1];
    result[1][2] = a[1][0] * b[0][2] + a[1][1] * b[1][2] + a[1][2] * b[2][2];

    result[2][0] = a[2][0] * b[0][0] + a[2][1] * b[1][0] + a[2][2] * b[2][0];
    result[2][1] = a[2][0] * b[0][1] + a[2][1] * b[1][1] + a[2][2] * b[2][1];
    result[2][2] = a[2][0] * b[0][2] + a[2][1] * b[1][2] + a[2][2] * b[2][2];
}
}

namespace cv {
void ap3p::init_inverse_parameters() {
    inv_fx = 1. / fx;
    inv_fy = 1. / fy;
    cx_fx = cx / fx;
    cy_fy = cy / fy;
}

ap3p::ap3p(cv::Mat cameraMatrix) {
    if (cameraMatrix.depth() == CV_32F)
        init_camera_parameters<float>(cameraMatrix);
    else
        init_camera_parameters<double>(cameraMatrix);
    init_inverse_parameters();
}

ap3p::ap3p(double _fx, double _fy, double _cx, double _cy) {
    fx = _fx;
    fy = _fy;
    cx = _cx;
    cy = _cy;
    init_inverse_parameters();
}

// This algorithm is from "Tong Ke, Stergios Roumeliotis, An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (Accepted by CVPR 2017)
// See https://arxiv.org/pdf/1701.08237.pdf
// featureVectors: The 3 bearing measurements (normalized) stored as column vectors
// worldPoints: The positions of the 3 feature points stored as column vectors
// solutionsR: 4 possible solutions of rotation matrix of the world w.r.t the camera frame
// solutionsT: 4 possible solutions of translation of the world origin w.r.t the camera frame
int ap3p::computePoses(const double featureVectors[3][4],

                       const double worldPoints[3][4],

                       double solutionsR[4][3][3],

                       double solutionsT[4][3],

                       bool p4p) {

    //world point vectors
    double w1[3] = {worldPoints[0][0], worldPoints[1][0], worldPoints[2][0]};
    double w2[3] = {worldPoints[0][1], worldPoints[1][1], worldPoints[2][1]};
    double w3[3] = {worldPoints[0][2], worldPoints[1][2], worldPoints[2][2]};
    // k1
    double u0[3];
    vect_sub(w1, w2, u0);

    double nu0 = vect_norm(u0);
    double k1[3];
    vect_divide(u0, nu0, k1);
    // bi
    double b1[3] = {featureVectors[0][0], featureVectors[1][0], featureVectors[2][0]};
    double b2[3] = {featureVectors[0][1], featureVectors[1][1], featureVectors[2][1]};
    double b3[3] = {featureVectors[0][2], featureVectors[1][2], featureVectors[2][2]};
    // k3,tz
    double k3[3];
    vect_cross(b1, b2, k3);
    double nk3 = vect_norm(k3);
    vect_divide(k3, nk3, k3);

    double tz[3];
    vect_cross(b1, k3, tz);
    // ui,vi
    double v1[3];
    vect_cross(b1, b3, v1);
    double v2[3];
    vect_cross(b2, b3, v2);

    double u1[3];
    vect_sub(w1, w3, u1);
    // coefficients related terms
    double u1k1 = vect_dot(u1, k1);
    double k3b3 = vect_dot(k3, b3);
    // f1i
    double f11 = k3b3;
    double f13 = vect_dot(k3, v1);
    double f15 = -u1k1 * f11;
    //delta
    double nl[3];
    vect_cross(u1, k1, nl);
    double delta = vect_norm(nl);
    vect_divide(nl, delta, nl);
    f11 *= delta;
    f13 *= delta;
    // f2i
    double u2k1 = u1k1 - nu0;
    double f21 = vect_dot(tz, v2);
    double f22 = nk3 * k3b3;
    double f23 = vect_dot(k3, v2);
    double f24 = u2k1 * f22;
    double f25 = -u2k1 * f21;
    f21 *= delta;
    f22 *= delta;
    f23 *= delta;
    double g1 = f13 * f22;
    double g2 = f13 * f25 - f15 * f23;
    double g3 = f11 * f23 - f13 * f21;
    double g4 = -f13 * f24;
    double g5 = f11 * f22;
    double g6 = f11 * f25 - f15 * f21;
    double g7 = -f15 * f24;
    double coeffs[5] = {g5 * g5 + g1 * g1 + g3 * g3,
                        2 * (g5 * g6 + g1 * g2 + g3 * g4),
                        g6 * g6 + 2 * g5 * g7 + g2 * g2 + g4 * g4 - g1 * g1 - g3 * g3,
                        2 * (g6 * g7 - g1 * g2 - g3 * g4),
                        g7 * g7 - g2 * g2 - g4 * g4};
    double s[4];
    int nb_roots = solve_deg4(coeffs[0], coeffs[1], coeffs[2], coeffs[3], coeffs[4],
                              s[0], s[1], s[2], s[3]);
    polishQuarticRoots(coeffs, s, nb_roots);

    double temp[3];
    vect_cross(k1, nl, temp);

    double Ck1nl[3][3] =
            {{k1[0], nl[0], temp[0]},
             {k1[1], nl[1], temp[1]},
             {k1[2], nl[2], temp[2]}};

    double Cb1k3tzT[3][3] =
            {{b1[0], b1[1], b1[2]},
             {k3[0], k3[1], k3[2]},
             {tz[0], tz[1], tz[2]}};

    double b3p[3];
    vect_scale((delta / k3b3), b3, b3p);

    double X3 = worldPoints[0][3];
    double Y3 = worldPoints[1][3];
    double Z3 = worldPoints[2][3];
    double mu3 = featureVectors[0][3];
    double mv3 = featureVectors[1][3];
    double reproj_errors[4];

    int nb_solutions = 0;
    for (int i = 0; i < nb_roots; ++i) {
        double ctheta1p = s[i];
        if (abs(ctheta1p) > 1)
            continue;
        double stheta1p = sqrt(1 - ctheta1p * ctheta1p);
        stheta1p = (k3b3 > 0) ? stheta1p : -stheta1p;
        double ctheta3 = g1 * ctheta1p + g2;
        double stheta3 = g3 * ctheta1p + g4;
        double ntheta3 = stheta1p / ((g5 * ctheta1p + g6) * ctheta1p + g7);
        ctheta3 *= ntheta3;
        stheta3 *= ntheta3;

        double C13[3][3] =
                {{ctheta3,            0,         -stheta3},
                 {stheta1p * stheta3, ctheta1p,  stheta1p * ctheta3},
                 {ctheta1p * stheta3, -stheta1p, ctheta1p * ctheta3}};

        double temp_matrix[3][3];
        double R[3][3];
        mat_mult(Ck1nl, C13, temp_matrix);
        mat_mult(temp_matrix, Cb1k3tzT, R);

        // R' * p3
        double rp3[3] =
                {w3[0] * R[0][0] + w3[1] * R[1][0] + w3[2] * R[2][0],
                 w3[0] * R[0][1] + w3[1] * R[1][1] + w3[2] * R[2][1],
                 w3[0] * R[0][2] + w3[1] * R[1][2] + w3[2] * R[2][2]};

        double pxstheta1p[3];
        vect_scale(stheta1p, b3p, pxstheta1p);

        vect_sub(pxstheta1p, rp3, solutionsT[nb_solutions]);

        solutionsR[nb_solutions][0][0] = R[0][0];
        solutionsR[nb_solutions][1][0] = R[0][1];
        solutionsR[nb_solutions][2][0] = R[0][2];
        solutionsR[nb_solutions][0][1] = R[1][0];
        solutionsR[nb_solutions][1][1] = R[1][1];
        solutionsR[nb_solutions][2][1] = R[1][2];
        solutionsR[nb_solutions][0][2] = R[2][0];
        solutionsR[nb_solutions][1][2] = R[2][1];
        solutionsR[nb_solutions][2][2] = R[2][2];

        if (p4p) {
            double X3p = solutionsR[nb_solutions][0][0] * X3 + solutionsR[nb_solutions][0][1] * Y3 + solutionsR[nb_solutions][0][2] * Z3 + solutionsT[nb_solutions][0];
            double Y3p = solutionsR[nb_solutions][1][0] * X3 + solutionsR[nb_solutions][1][1] * Y3 + solutionsR[nb_solutions][1][2] * Z3 + solutionsT[nb_solutions][1];
            double Z3p = solutionsR[nb_solutions][2][0] * X3 + solutionsR[nb_solutions][2][1] * Y3 + solutionsR[nb_solutions][2][2] * Z3 + solutionsT[nb_solutions][2];
            double mu3p = X3p / Z3p;
            double mv3p = Y3p / Z3p;
            reproj_errors[nb_solutions] = (mu3p - mu3) * (mu3p - mu3) + (mv3p - mv3) * (mv3p - mv3);
        }

        nb_solutions++;
    }

    //sort the solutions
    if (p4p) {
        for (int i = 1; i < nb_solutions; i++) {
            for (int j = i; j > 0 && reproj_errors[j-1] > reproj_errors[j]; j--) {
                std::swap(reproj_errors[j], reproj_errors[j-1]);
                std::swap(solutionsR[j], solutionsR[j-1]);
                std::swap(solutionsT[j], solutionsT[j-1]);
            }
        }
    }

    return nb_solutions;
}

bool ap3p::solve(cv::Mat &R, cv::Mat &tvec, const cv::Mat &opoints, const cv::Mat &ipoints) {
    CV_INSTRUMENT_REGION();

    double rotation_matrix[3][3] = {}, translation[3] = {};
    std::vector<double> points;
    if (opoints.depth() == ipoints.depth()) {
        if (opoints.depth() == CV_32F)
            extract_points<cv::Point3f, cv::Point2f>(opoints, ipoints, points);
        else
            extract_points<cv::Point3d, cv::Point2d>(opoints, ipoints, points);
    } else if (opoints.depth() == CV_32F)
        extract_points<cv::Point3f, cv::Point2d>(opoints, ipoints, points);
    else
        extract_points<cv::Point3d, cv::Point2f>(opoints, ipoints, points);

    bool result = solve(rotation_matrix, translation,
                        points[0], points[1], points[2], points[3], points[4],
                        points[5], points[6], points[7], points[8], points[9],
                        points[10], points[11], points[12], points[13],points[14],
                        points[15], points[16], points[17], points[18], points[19]);
    cv::Mat(3, 1, CV_64F, translation).copyTo(tvec);
    cv::Mat(3, 3, CV_64F, rotation_matrix).copyTo(R);
    return result;
}

int ap3p::solve(std::vector<cv::Mat> &Rs, std::vector<cv::Mat> &tvecs, const cv::Mat &opoints, const cv::Mat &ipoints) {
    CV_INSTRUMENT_REGION();

    double rotation_matrix[4][3][3] = {}, translation[4][3] = {};
    std::vector<double> points;
    if (opoints.depth() == ipoints.depth()) {
        if (opoints.depth() == CV_32F)
            extract_points<cv::Point3f, cv::Point2f>(opoints, ipoints, points);
        else
            extract_points<cv::Point3d, cv::Point2d>(opoints, ipoints, points);
    } else if (opoints.depth() == CV_32F)
        extract_points<cv::Point3f, cv::Point2d>(opoints, ipoints, points);
    else
        extract_points<cv::Point3d, cv::Point2f>(opoints, ipoints, points);

    const bool p4p = std::max(opoints.checkVector(3, CV_32F), opoints.checkVector(3, CV_64F)) == 4;
    int solutions = solve(rotation_matrix, translation,
                          points[0], points[1], points[2], points[3], points[4],
                          points[5], points[6], points[7], points[8], points[9],
                          points[10], points[11], points[12], points[13], points[14],
                          points[15], points[16], points[17], points[18], points[19],
                          p4p);

    for (int i = 0; i < solutions; i++) {
        cv::Mat R, tvec;
        cv::Mat(3, 1, CV_64F, translation[i]).copyTo(tvec);
        cv::Mat(3, 3, CV_64F, rotation_matrix[i]).copyTo(R);

        Rs.push_back(R);
        tvecs.push_back(tvec);
    }

    return solutions;
}

bool

ap3p::solve(double R[3][3], double t[3],

            double mu0, double mv0, double X0, double Y0, double Z0,

            double mu1, double mv1, double X1, double Y1, double Z1,

            double mu2, double mv2, double X2, double Y2, double Z2,

            double mu3, double mv3, double X3, double Y3, double Z3) {
    double Rs[4][3][3] = {}, ts[4][3] = {};

    const bool p4p = true;
    int n = solve(Rs, ts, mu0, mv0, X0, Y0, Z0, mu1, mv1, X1, Y1, Z1, mu2, mv2, X2, Y2, Z2, mu3, mv3, X3, Y3, Z3, p4p);
    if (n == 0)
        return false;

    for (int i = 0; i < 3; i++) {
        for (int j = 0; j < 3; j++)
            R[i][j] = Rs[0][i][j];
        t[i] = ts[0][i];
    }

    return true;
}

int ap3p::solve(double R[4][3][3], double t[4][3],

                double mu0, double mv0, double X0, double Y0, double Z0,

                double mu1, double mv1, double X1, double Y1, double Z1,

                double mu2, double mv2, double X2, double Y2, double Z2,

                double mu3, double mv3, double X3, double Y3, double Z3,

                bool p4p) {
    double mk0, mk1, mk2;
    double norm;

    mu0 = inv_fx * mu0 - cx_fx;
    mv0 = inv_fy * mv0 - cy_fy;
    norm = sqrt(mu0 * mu0 + mv0 * mv0 + 1);
    mk0 = 1. / norm;
    mu0 *= mk0;
    mv0 *= mk0;

    mu1 = inv_fx * mu1 - cx_fx;
    mv1 = inv_fy * mv1 - cy_fy;
    norm = sqrt(mu1 * mu1 + mv1 * mv1 + 1);
    mk1 = 1. / norm;
    mu1 *= mk1;
    mv1 *= mk1;

    mu2 = inv_fx * mu2 - cx_fx;
    mv2 = inv_fy * mv2 - cy_fy;
    norm = sqrt(mu2 * mu2 + mv2 * mv2 + 1);
    mk2 = 1. / norm;
    mu2 *= mk2;
    mv2 *= mk2;

    mu3 = inv_fx * mu3 - cx_fx;
    mv3 = inv_fy * mv3 - cy_fy;
    double mk3 = 1; //not used

    double featureVectors[3][4] = {{mu0, mu1, mu2, mu3},
                                   {mv0, mv1, mv2, mv3},
                                   {mk0, mk1, mk2, mk3}};
    double worldPoints[3][4] = {{X0, X1, X2, X3},
                                {Y0, Y1, Y2, Y3},
                                {Z0, Z1, Z2, Z3}};

    return computePoses(featureVectors, worldPoints, R, t, p4p);
}
}