File size: 13,454 Bytes
be94e5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
// Copyright (c) 2020, Viktor Larsson
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//
//     * Redistributions in binary form must reproduce the above copyright
//       notice, this list of conditions and the following disclaimer in the
//       documentation and/or other materials provided with the distribution.
//
//     * Neither the name of the copyright holder nor the
//       names of its contributors may be used to endorse or promote products
//       derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "../precomp.hpp"
#include "../usac.hpp"

namespace cv { namespace usac {
class MlesacLoss {
  public:
    MlesacLoss(double threshold) : squared_thr(threshold * threshold), norm_thr(squared_thr*3), one_over_thr(1/norm_thr), inv_sq_thr(1/squared_thr) {}
    double loss(double r2) const {
        return r2 < norm_thr ? r2 * one_over_thr - 1 : 0;
    }
    double weight(double r2) const {
        // use Cauchly weight
        return 1.0 / (1.0 + r2 * inv_sq_thr);
    }
    const double squared_thr;
    private:
    const double norm_thr, one_over_thr, inv_sq_thr;
};

class RelativePoseJacobianAccumulator {
private:
    const Mat* correspondences;
    const std::vector<int> &sample;
    const int sample_size;
    const MlesacLoss &loss_fn;
    const double *weights;

public:
    RelativePoseJacobianAccumulator(
        const Mat& correspondences_,
        const std::vector<int> &sample_,
        const int sample_size_,
        const MlesacLoss &l,
        const double *w = nullptr) :
            correspondences(&correspondences_),
            sample(sample_),
            sample_size(sample_size_),
            loss_fn(l),
            weights(w) {}

    Matx33d essential_from_motion(const CameraPose &pose) const {
        return Matx33d(0.0, -pose.t(2), pose.t(1),
            pose.t(2), 0.0, -pose.t(0),
            -pose.t(1), pose.t(0), 0.0) * pose.R;
    }

    double residual(const CameraPose &pose) const {
        const Matx33d E = essential_from_motion(pose);
        const float m11=static_cast<float>(E(0,0)), m12=static_cast<float>(E(0,1)), m13=static_cast<float>(E(0,2));
        const float m21=static_cast<float>(E(1,0)), m22=static_cast<float>(E(1,1)), m23=static_cast<float>(E(1,2));
        const float m31=static_cast<float>(E(2,0)), m32=static_cast<float>(E(2,1)), m33=static_cast<float>(E(2,2));
        const auto * const pts = (float *) correspondences->data;
        double cost = 0.0;
        for (int k = 0; k < sample_size; ++k) {
            const int idx = 4*sample[k];
            const float x1=pts[idx], y1=pts[idx+1], x2=pts[idx+2], y2=pts[idx+3];
            const float F_pt1_x = m11 * x1 + m12 * y1 + m13,
                        F_pt1_y = m21 * x1 + m22 * y1 + m23;
            const float pt2_F_x = x2 * m11 + y2 * m21 + m31,
                        pt2_F_y = x2 * m12 + y2 * m22 + m32;
            const float pt2_F_pt1 = x2 * F_pt1_x + y2 * F_pt1_y + m31 * x1 + m32 * y1 + m33;
            const float r2 = pt2_F_pt1 * pt2_F_pt1 / (F_pt1_x * F_pt1_x + F_pt1_y * F_pt1_y +
                                                      pt2_F_x * pt2_F_x + pt2_F_y * pt2_F_y);
            if (weights == nullptr)
                 cost += loss_fn.loss(r2);
            else cost += weights[k] * loss_fn.loss(r2);
        }
        return cost;
    }

    void accumulate(const CameraPose &pose, Matx<double, 5, 5> &JtJ, Matx<double, 5, 1> &Jtr, Matx<double, 3, 2> &tangent_basis) const {
        const auto * const pts = (float *) correspondences->data;
        // We start by setting up a basis for the updates in the translation (orthogonal to t)
        // We find the minimum element of t and cross product with the corresponding basis vector.
        // (this ensures that the first cross product is not close to the zero vector)
        Vec3d tangent_basis_col0;
        if (std::abs(pose.t(0)) < std::abs(pose.t(1))) {
            // x < y
            if (std::abs(pose.t(0)) < std::abs(pose.t(2))) {
                tangent_basis_col0 = pose.t.cross(Vec3d(1,0,0));
            } else {
                tangent_basis_col0 = pose.t.cross(Vec3d(0,0,1));
            }
        } else {
            // x > y
            if (std::abs(pose.t(1)) < std::abs(pose.t(2))) {
                tangent_basis_col0 = pose.t.cross(Vec3d(0,1,0));
            } else {
                tangent_basis_col0 = pose.t.cross(Vec3d(0,0,1));
            }
        }
        tangent_basis_col0 /= norm(tangent_basis_col0);
        Vec3d tangent_basis_col1 = pose.t.cross(tangent_basis_col0);
        tangent_basis_col1 /= norm(tangent_basis_col1);
        for (int i = 0; i < 3; i++) {
            tangent_basis(i,0) = tangent_basis_col0(i);
            tangent_basis(i,1) = tangent_basis_col1(i);
        }

        const Matx33d E = essential_from_motion(pose);

        // Matrices contain the jacobians of E w.r.t. the rotation and translation parameters
        // Each column is vec(E*skew(e_k)) where e_k is k:th basis vector
        const Matx<double, 9, 3> dR = {0., -E(0,2), E(0,1),
                                       0., -E(1,2), E(1,1),
                                       0., -E(2,2), E(2,1),
                                       E(0,2), 0., -E(0,0),
                                       E(1,2), 0., -E(1,0),
                                       E(2,2), 0., -E(2,0),
                                       -E(0,1), E(0,0), 0.,
                                       -E(1,1), E(1,0), 0.,
                                       -E(2,1), E(2,0), 0.};

        Matx<double, 9, 2> dt;
        // Each column is vec(skew(tangent_basis[k])*R)
        for (int i = 0; i <= 2; i+=1) {
            const Vec3d r_i(pose.R(0,i), pose.R(1,i), pose.R(2,i));
            for (int j = 0; j <= 1; j+= 1) {
                const Vec3d v = (j == 0 ? tangent_basis_col0 : tangent_basis_col1).cross(r_i);
                for (int k = 0; k < 3; k++) {
                    dt(3*i+k,j) = v[k];
                }
            }
        }

        for (int k = 0; k < sample_size; ++k) {
            const auto point_idx = 4*sample[k];
            const Vec3d pt1 (pts[point_idx], pts[point_idx+1], 1), pt2 (pts[point_idx+2], pts[point_idx+3], 1);
            const double C = pt2.dot(E * pt1);

            // J_C is the Jacobian of the epipolar constraint w.r.t. the image points
            const Vec4d J_C ((E.col(0).t() * pt2)[0], (E.col(1).t() * pt2)[0], (E.row(0) * pt1)[0], (E.row(1) * pt1)[0]);
            const double nJ_C = norm(J_C);
            const double inv_nJ_C = 1.0 / nJ_C;
            const double r = C * inv_nJ_C;

            if (r*r > loss_fn.squared_thr) continue;

            // Compute weight from robust loss function (used in the IRLS)
            double weight = loss_fn.weight(r * r) / sample_size;
            if (weights != nullptr)
                weight = weights[k] * weight;

            if(weight < DBL_EPSILON)
                continue;

            // Compute Jacobian of Sampson error w.r.t the fundamental/essential matrix (3x3)
            Matx<double, 1, 9> dF (pt1(0) * pt2(0), pt1(0) * pt2(1), pt1(0), pt1(1) * pt2(0), pt1(1) * pt2(1), pt1(1), pt2(0), pt2(1), 1.0);
            const double s = C * inv_nJ_C * inv_nJ_C;
            dF(0) -= s * (J_C(2) * pt1(0) + J_C(0) * pt2(0));
            dF(1) -= s * (J_C(3) * pt1(0) + J_C(0) * pt2(1));
            dF(2) -= s * (J_C(0));
            dF(3) -= s * (J_C(2) * pt1(1) + J_C(1) * pt2(0));
            dF(4) -= s * (J_C(3) * pt1(1) + J_C(1) * pt2(1));
            dF(5) -= s * (J_C(1));
            dF(6) -= s * (J_C(2));
            dF(7) -= s * (J_C(3));
            dF *= inv_nJ_C;

            // and then w.r.t. the pose parameters (rotation + tangent basis for translation)
            const Matx13d dFdR = dF * dR;
            const Matx12d dFdt = dF * dt;
            const Matx<double, 1, 5> J (dFdR(0), dFdR(1), dFdR(2), dFdt(0), dFdt(1));

            // Accumulate into JtJ and Jtr
            Jtr += weight * C * inv_nJ_C * J.t();
            JtJ(0, 0) += weight * (J(0) * J(0));
            JtJ(1, 0) += weight * (J(1) * J(0));
            JtJ(1, 1) += weight * (J(1) * J(1));
            JtJ(2, 0) += weight * (J(2) * J(0));
            JtJ(2, 1) += weight * (J(2) * J(1));
            JtJ(2, 2) += weight * (J(2) * J(2));
            JtJ(3, 0) += weight * (J(3) * J(0));
            JtJ(3, 1) += weight * (J(3) * J(1));
            JtJ(3, 2) += weight * (J(3) * J(2));
            JtJ(3, 3) += weight * (J(3) * J(3));
            JtJ(4, 0) += weight * (J(4) * J(0));
            JtJ(4, 1) += weight * (J(4) * J(1));
            JtJ(4, 2) += weight * (J(4) * J(2));
            JtJ(4, 3) += weight * (J(4) * J(3));
            JtJ(4, 4) += weight * (J(4) * J(4));
        }
    }
};

bool satisfyCheirality (const Matx33d& R, const Vec3d &t, const Vec3d &x1, const Vec3d &x2) {
    // This code assumes that x1 and x2 are unit vectors
     const auto Rx1 = R * x1;
    // lambda_2 * x2 = R * ( lambda_1 * x1 ) + t
    // [1 a; a 1] * [lambda1; lambda2] = [b1; b2]
    // [lambda1; lambda2] = [1 -a; -a 1] * [b1; b2] / (1 - a*a)
    const double a = -Rx1.dot(x2), b1 = -Rx1.dot(t), b2 = x2.dot(t);
    // Note that we drop the factor 1.0/(1-a*a) since it is always positive.
    return (b1 - a * b2 > 0) && (-a * b1 + b2 > 0);
}

int refine_relpose(const Mat &correspondences_,

                    const std::vector<int> &sample_,

                    const int sample_size_,

                    CameraPose *pose,

                    const BundleOptions &opt,

                    const double* weights) {
    MlesacLoss loss_fn(opt.loss_scale);
    RelativePoseJacobianAccumulator accum(correspondences_, sample_, sample_size_, loss_fn, weights);
    // return lm_5dof_impl(accum, pose, opt);

    Matx<double, 5, 5> JtJ;
    Matx<double, 5, 1> Jtr;
    Matx<double, 3, 2> tangent_basis;
    Matx33d sw = Matx33d::zeros();
    double lambda = opt.initial_lambda;

    // Compute initial cost
    double cost = accum.residual(*pose);
    bool recompute_jac = true;
    int iter;
    for (iter = 0; iter < opt.max_iterations; ++iter) {
        // We only recompute jacobian and residual vector if last step was successful
        if (recompute_jac) {
            std::fill(JtJ.val, JtJ.val+25, 0);
            std::fill(Jtr.val, Jtr.val +5, 0);
            accum.accumulate(*pose, JtJ, Jtr, tangent_basis);
            if (norm(Jtr) < opt.gradient_tol)
                break;
        }

        // Add dampening
        JtJ(0, 0) += lambda;
        JtJ(1, 1) += lambda;
        JtJ(2, 2) += lambda;
        JtJ(3, 3) += lambda;
        JtJ(4, 4) += lambda;

        Matx<double, 5, 1> sol;
        Matx<double, 5, 5> JtJ_symm = JtJ;
        for (int i = 0; i < 5; i++)
            for (int j = i+1; j < 5; j++)
                JtJ_symm(i,j) = JtJ(j,i);

        const bool success = solve(-JtJ_symm, Jtr, sol);
        if (!success || norm(sol) < opt.step_tol)
            break;

        Vec3d w (sol(0,0), sol(1,0), sol(2,0));
        const double theta = norm(w);
        w /= theta;
        const double a = std::sin(theta);
        const double b = std::cos(theta);
        sw(0, 1) = -w(2);
        sw(0, 2) = w(1);
        sw(1, 2) = -w(0);
        sw(1, 0) = w(2);
        sw(2, 0) = -w(1);
        sw(2, 1) = w(0);

        CameraPose pose_new;
        pose_new.R = pose->R + pose->R * (a * sw + (1 - b) * sw * sw);
        // In contrast to the 6dof case, we don't apply R here
        // (since this can already be added into tangent_basis)
        pose_new.t = pose->t + Vec3d(Mat(tangent_basis * Matx21d(sol(3,0), sol(4,0))));
        double cost_new = accum.residual(pose_new);

        if (cost_new < cost) {
            *pose = pose_new;
            lambda /= 10;
            cost = cost_new;
            recompute_jac = true;
        } else {
            JtJ(0, 0) -= lambda;
            JtJ(1, 1) -= lambda;
            JtJ(2, 2) -= lambda;
            JtJ(3, 3) -= lambda;
            JtJ(4, 4) -= lambda;
            lambda *= 10;
            recompute_jac = false;
        }
    }
    return iter;
}
}}