File size: 13,454 Bytes
be94e5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
// Copyright (c) 2020, Viktor Larsson
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * Neither the name of the copyright holder nor the
// names of its contributors may be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "../precomp.hpp"
#include "../usac.hpp"
namespace cv { namespace usac {
class MlesacLoss {
public:
MlesacLoss(double threshold) : squared_thr(threshold * threshold), norm_thr(squared_thr*3), one_over_thr(1/norm_thr), inv_sq_thr(1/squared_thr) {}
double loss(double r2) const {
return r2 < norm_thr ? r2 * one_over_thr - 1 : 0;
}
double weight(double r2) const {
// use Cauchly weight
return 1.0 / (1.0 + r2 * inv_sq_thr);
}
const double squared_thr;
private:
const double norm_thr, one_over_thr, inv_sq_thr;
};
class RelativePoseJacobianAccumulator {
private:
const Mat* correspondences;
const std::vector<int> &sample;
const int sample_size;
const MlesacLoss &loss_fn;
const double *weights;
public:
RelativePoseJacobianAccumulator(
const Mat& correspondences_,
const std::vector<int> &sample_,
const int sample_size_,
const MlesacLoss &l,
const double *w = nullptr) :
correspondences(&correspondences_),
sample(sample_),
sample_size(sample_size_),
loss_fn(l),
weights(w) {}
Matx33d essential_from_motion(const CameraPose &pose) const {
return Matx33d(0.0, -pose.t(2), pose.t(1),
pose.t(2), 0.0, -pose.t(0),
-pose.t(1), pose.t(0), 0.0) * pose.R;
}
double residual(const CameraPose &pose) const {
const Matx33d E = essential_from_motion(pose);
const float m11=static_cast<float>(E(0,0)), m12=static_cast<float>(E(0,1)), m13=static_cast<float>(E(0,2));
const float m21=static_cast<float>(E(1,0)), m22=static_cast<float>(E(1,1)), m23=static_cast<float>(E(1,2));
const float m31=static_cast<float>(E(2,0)), m32=static_cast<float>(E(2,1)), m33=static_cast<float>(E(2,2));
const auto * const pts = (float *) correspondences->data;
double cost = 0.0;
for (int k = 0; k < sample_size; ++k) {
const int idx = 4*sample[k];
const float x1=pts[idx], y1=pts[idx+1], x2=pts[idx+2], y2=pts[idx+3];
const float F_pt1_x = m11 * x1 + m12 * y1 + m13,
F_pt1_y = m21 * x1 + m22 * y1 + m23;
const float pt2_F_x = x2 * m11 + y2 * m21 + m31,
pt2_F_y = x2 * m12 + y2 * m22 + m32;
const float pt2_F_pt1 = x2 * F_pt1_x + y2 * F_pt1_y + m31 * x1 + m32 * y1 + m33;
const float r2 = pt2_F_pt1 * pt2_F_pt1 / (F_pt1_x * F_pt1_x + F_pt1_y * F_pt1_y +
pt2_F_x * pt2_F_x + pt2_F_y * pt2_F_y);
if (weights == nullptr)
cost += loss_fn.loss(r2);
else cost += weights[k] * loss_fn.loss(r2);
}
return cost;
}
void accumulate(const CameraPose &pose, Matx<double, 5, 5> &JtJ, Matx<double, 5, 1> &Jtr, Matx<double, 3, 2> &tangent_basis) const {
const auto * const pts = (float *) correspondences->data;
// We start by setting up a basis for the updates in the translation (orthogonal to t)
// We find the minimum element of t and cross product with the corresponding basis vector.
// (this ensures that the first cross product is not close to the zero vector)
Vec3d tangent_basis_col0;
if (std::abs(pose.t(0)) < std::abs(pose.t(1))) {
// x < y
if (std::abs(pose.t(0)) < std::abs(pose.t(2))) {
tangent_basis_col0 = pose.t.cross(Vec3d(1,0,0));
} else {
tangent_basis_col0 = pose.t.cross(Vec3d(0,0,1));
}
} else {
// x > y
if (std::abs(pose.t(1)) < std::abs(pose.t(2))) {
tangent_basis_col0 = pose.t.cross(Vec3d(0,1,0));
} else {
tangent_basis_col0 = pose.t.cross(Vec3d(0,0,1));
}
}
tangent_basis_col0 /= norm(tangent_basis_col0);
Vec3d tangent_basis_col1 = pose.t.cross(tangent_basis_col0);
tangent_basis_col1 /= norm(tangent_basis_col1);
for (int i = 0; i < 3; i++) {
tangent_basis(i,0) = tangent_basis_col0(i);
tangent_basis(i,1) = tangent_basis_col1(i);
}
const Matx33d E = essential_from_motion(pose);
// Matrices contain the jacobians of E w.r.t. the rotation and translation parameters
// Each column is vec(E*skew(e_k)) where e_k is k:th basis vector
const Matx<double, 9, 3> dR = {0., -E(0,2), E(0,1),
0., -E(1,2), E(1,1),
0., -E(2,2), E(2,1),
E(0,2), 0., -E(0,0),
E(1,2), 0., -E(1,0),
E(2,2), 0., -E(2,0),
-E(0,1), E(0,0), 0.,
-E(1,1), E(1,0), 0.,
-E(2,1), E(2,0), 0.};
Matx<double, 9, 2> dt;
// Each column is vec(skew(tangent_basis[k])*R)
for (int i = 0; i <= 2; i+=1) {
const Vec3d r_i(pose.R(0,i), pose.R(1,i), pose.R(2,i));
for (int j = 0; j <= 1; j+= 1) {
const Vec3d v = (j == 0 ? tangent_basis_col0 : tangent_basis_col1).cross(r_i);
for (int k = 0; k < 3; k++) {
dt(3*i+k,j) = v[k];
}
}
}
for (int k = 0; k < sample_size; ++k) {
const auto point_idx = 4*sample[k];
const Vec3d pt1 (pts[point_idx], pts[point_idx+1], 1), pt2 (pts[point_idx+2], pts[point_idx+3], 1);
const double C = pt2.dot(E * pt1);
// J_C is the Jacobian of the epipolar constraint w.r.t. the image points
const Vec4d J_C ((E.col(0).t() * pt2)[0], (E.col(1).t() * pt2)[0], (E.row(0) * pt1)[0], (E.row(1) * pt1)[0]);
const double nJ_C = norm(J_C);
const double inv_nJ_C = 1.0 / nJ_C;
const double r = C * inv_nJ_C;
if (r*r > loss_fn.squared_thr) continue;
// Compute weight from robust loss function (used in the IRLS)
double weight = loss_fn.weight(r * r) / sample_size;
if (weights != nullptr)
weight = weights[k] * weight;
if(weight < DBL_EPSILON)
continue;
// Compute Jacobian of Sampson error w.r.t the fundamental/essential matrix (3x3)
Matx<double, 1, 9> dF (pt1(0) * pt2(0), pt1(0) * pt2(1), pt1(0), pt1(1) * pt2(0), pt1(1) * pt2(1), pt1(1), pt2(0), pt2(1), 1.0);
const double s = C * inv_nJ_C * inv_nJ_C;
dF(0) -= s * (J_C(2) * pt1(0) + J_C(0) * pt2(0));
dF(1) -= s * (J_C(3) * pt1(0) + J_C(0) * pt2(1));
dF(2) -= s * (J_C(0));
dF(3) -= s * (J_C(2) * pt1(1) + J_C(1) * pt2(0));
dF(4) -= s * (J_C(3) * pt1(1) + J_C(1) * pt2(1));
dF(5) -= s * (J_C(1));
dF(6) -= s * (J_C(2));
dF(7) -= s * (J_C(3));
dF *= inv_nJ_C;
// and then w.r.t. the pose parameters (rotation + tangent basis for translation)
const Matx13d dFdR = dF * dR;
const Matx12d dFdt = dF * dt;
const Matx<double, 1, 5> J (dFdR(0), dFdR(1), dFdR(2), dFdt(0), dFdt(1));
// Accumulate into JtJ and Jtr
Jtr += weight * C * inv_nJ_C * J.t();
JtJ(0, 0) += weight * (J(0) * J(0));
JtJ(1, 0) += weight * (J(1) * J(0));
JtJ(1, 1) += weight * (J(1) * J(1));
JtJ(2, 0) += weight * (J(2) * J(0));
JtJ(2, 1) += weight * (J(2) * J(1));
JtJ(2, 2) += weight * (J(2) * J(2));
JtJ(3, 0) += weight * (J(3) * J(0));
JtJ(3, 1) += weight * (J(3) * J(1));
JtJ(3, 2) += weight * (J(3) * J(2));
JtJ(3, 3) += weight * (J(3) * J(3));
JtJ(4, 0) += weight * (J(4) * J(0));
JtJ(4, 1) += weight * (J(4) * J(1));
JtJ(4, 2) += weight * (J(4) * J(2));
JtJ(4, 3) += weight * (J(4) * J(3));
JtJ(4, 4) += weight * (J(4) * J(4));
}
}
};
bool satisfyCheirality (const Matx33d& R, const Vec3d &t, const Vec3d &x1, const Vec3d &x2) {
// This code assumes that x1 and x2 are unit vectors
const auto Rx1 = R * x1;
// lambda_2 * x2 = R * ( lambda_1 * x1 ) + t
// [1 a; a 1] * [lambda1; lambda2] = [b1; b2]
// [lambda1; lambda2] = [1 -a; -a 1] * [b1; b2] / (1 - a*a)
const double a = -Rx1.dot(x2), b1 = -Rx1.dot(t), b2 = x2.dot(t);
// Note that we drop the factor 1.0/(1-a*a) since it is always positive.
return (b1 - a * b2 > 0) && (-a * b1 + b2 > 0);
}
int refine_relpose(const Mat &correspondences_,
const std::vector<int> &sample_,
const int sample_size_,
CameraPose *pose,
const BundleOptions &opt,
const double* weights) {
MlesacLoss loss_fn(opt.loss_scale);
RelativePoseJacobianAccumulator accum(correspondences_, sample_, sample_size_, loss_fn, weights);
// return lm_5dof_impl(accum, pose, opt);
Matx<double, 5, 5> JtJ;
Matx<double, 5, 1> Jtr;
Matx<double, 3, 2> tangent_basis;
Matx33d sw = Matx33d::zeros();
double lambda = opt.initial_lambda;
// Compute initial cost
double cost = accum.residual(*pose);
bool recompute_jac = true;
int iter;
for (iter = 0; iter < opt.max_iterations; ++iter) {
// We only recompute jacobian and residual vector if last step was successful
if (recompute_jac) {
std::fill(JtJ.val, JtJ.val+25, 0);
std::fill(Jtr.val, Jtr.val +5, 0);
accum.accumulate(*pose, JtJ, Jtr, tangent_basis);
if (norm(Jtr) < opt.gradient_tol)
break;
}
// Add dampening
JtJ(0, 0) += lambda;
JtJ(1, 1) += lambda;
JtJ(2, 2) += lambda;
JtJ(3, 3) += lambda;
JtJ(4, 4) += lambda;
Matx<double, 5, 1> sol;
Matx<double, 5, 5> JtJ_symm = JtJ;
for (int i = 0; i < 5; i++)
for (int j = i+1; j < 5; j++)
JtJ_symm(i,j) = JtJ(j,i);
const bool success = solve(-JtJ_symm, Jtr, sol);
if (!success || norm(sol) < opt.step_tol)
break;
Vec3d w (sol(0,0), sol(1,0), sol(2,0));
const double theta = norm(w);
w /= theta;
const double a = std::sin(theta);
const double b = std::cos(theta);
sw(0, 1) = -w(2);
sw(0, 2) = w(1);
sw(1, 2) = -w(0);
sw(1, 0) = w(2);
sw(2, 0) = -w(1);
sw(2, 1) = w(0);
CameraPose pose_new;
pose_new.R = pose->R + pose->R * (a * sw + (1 - b) * sw * sw);
// In contrast to the 6dof case, we don't apply R here
// (since this can already be added into tangent_basis)
pose_new.t = pose->t + Vec3d(Mat(tangent_basis * Matx21d(sol(3,0), sol(4,0))));
double cost_new = accum.residual(pose_new);
if (cost_new < cost) {
*pose = pose_new;
lambda /= 10;
cost = cost_new;
recompute_jac = true;
} else {
JtJ(0, 0) -= lambda;
JtJ(1, 1) -= lambda;
JtJ(2, 2) -= lambda;
JtJ(3, 3) -= lambda;
JtJ(4, 4) -= lambda;
lambda *= 10;
recompute_jac = false;
}
}
return iter;
}
}} |