File size: 28,249 Bytes
be94e5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 |
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../precomp.hpp"
#include "../usac.hpp"
#ifdef HAVE_EIGEN
#include <Eigen/Eigen>
#endif
namespace cv { namespace usac {
class HomographyMinimalSolver4ptsImpl : public HomographyMinimalSolver4pts {
private:
Mat points_mat;
const bool use_ge;
public:
explicit HomographyMinimalSolver4ptsImpl (const Mat &points_, bool use_ge_) :
points_mat(points_), use_ge(use_ge_)
{
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
int estimate (const std::vector<int>& sample, std::vector<Mat> &models) const override {
const float * points = points_mat.ptr<float>();
int m = 8, n = 9;
std::vector<double> A(72, 0);
int cnt = 0;
for (int i = 0; i < 4; i++) {
const int smpl = 4*sample[i];
const auto x1 = points[smpl], y1 = points[smpl+1], x2 = points[smpl+2], y2 = points[smpl+3];
A[cnt++] = -x1;
A[cnt++] = -y1;
A[cnt++] = -1;
cnt += 3; // skip zeros
A[cnt++] = x2*x1;
A[cnt++] = x2*y1;
A[cnt++] = x2;
cnt += 3;
A[cnt++] = -x1;
A[cnt++] = -y1;
A[cnt++] = -1;
A[cnt++] = y2*x1;
A[cnt++] = y2*y1;
A[cnt++] = y2;
}
if (use_ge) {
if (!Math::eliminateUpperTriangular(A, m, n))
return 0;
models = std::vector<Mat>{ Mat_<double>(3,3) };
auto * h = (double *) models[0].data;
h[8] = 1.;
// start from the last row
for (int i = m-1; i >= 0; i--) {
double acc = 0;
for (int j = i+1; j < n; j++)
acc -= A[i*n+j]*h[j];
h[i] = acc / A[i*n+i];
// due to numerical errors return 0 solutions
if (std::isnan(h[i]))
return 0;
}
} else {
Mat U, Vt, D;
cv::Matx<double, 8, 9> A_svd(&A[0]);
SVD::compute(A_svd, D, U, Vt, SVD::FULL_UV+SVD::MODIFY_A);
models = std::vector<Mat> { Vt.row(Vt.rows-1).reshape(0, 3) };
}
return 1;
}
int getMaxNumberOfSolutions () const override { return 1; }
int getSampleSize() const override { return 4; }
};
Ptr<HomographyMinimalSolver4pts> HomographyMinimalSolver4pts::create(const Mat &points, bool use_ge) {
return makePtr<HomographyMinimalSolver4ptsImpl>(points, use_ge);
}
class HomographyNonMinimalSolverImpl : public HomographyNonMinimalSolver {
private:
Mat points_mat;
const bool do_norm, use_ge;
Ptr<NormTransform> normTr;
Matx33d _T1, _T2;
public:
explicit HomographyNonMinimalSolverImpl (const Mat &norm_points_, const Matx33d &T1, const Matx33d &T2, bool use_ge_) :
points_mat(norm_points_), do_norm(false), use_ge(use_ge_), _T1(T1), _T2(T2)
{
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
explicit HomographyNonMinimalSolverImpl (const Mat &points_, bool use_ge_) :
points_mat(points_), do_norm(true), use_ge(use_ge_), normTr (NormTransform::create(points_))
{
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
int estimate (const std::vector<int> &sample, int sample_size, std::vector<Mat> &models,
const std::vector<double> &weights) const override {
if (sample_size < getMinimumRequiredSampleSize())
return 0;
Matx33d T1, T2;
Mat norm_points_;
if (do_norm)
normTr->getNormTransformation(norm_points_, sample, sample_size, T1, T2);
const float * const npts = do_norm ? norm_points_.ptr<float>() : points_mat.ptr<float>();
Mat H;
if (use_ge) {
double a1[8] = {0, 0, -1, 0, 0, 0, 0, 0},
a2[8] = {0, 0, 0, 0, 0, -1, 0, 0};
std::vector<double> AtAb(72, 0); // 8x9
if (weights.empty()) {
for (int i = 0; i < sample_size; i++) {
const int idx = do_norm ? 4*i : 4*sample[i];
const double x1 = npts[idx], y1 = npts[idx+1], x2 = npts[idx+2], y2 = npts[idx+3];
a1[0] = -x1;
a1[1] = -y1;
a1[6] = x2*x1;
a1[7] = x2*y1;
a2[3] = -x1;
a2[4] = -y1;
a2[6] = y2*x1;
a2[7] = y2*y1;
// calculate covariance for eigen
for (int j = 0; j < 8; j++) {
for (int z = j; z < 8; z++)
AtAb[j * 9 + z] += a1[j]*a1[z] + a2[j]*a2[z];
AtAb[j * 9 + 8] += a1[j]*x2 + a2[j]*y2;
}
}
} else { // use weights
for (int i = 0; i < sample_size; i++) {
const double weight = weights[i];
if (weight < FLT_EPSILON) continue;
const int idx = do_norm ? 4*i : 4*sample[i];
const double x1 = npts[idx], y1 = npts[idx+1], x2 = npts[idx+2], y2 = npts[idx+3];
const double minus_weight_times_x1 = -weight * x1,
minus_weight_times_y1 = -weight * y1,
weight_times_x2 = weight * x2,
weight_times_y2 = weight * y2;
a1[0] = minus_weight_times_x1;
a1[1] = minus_weight_times_y1;
a1[2] = -weight;
a1[6] = weight_times_x2 * x1;
a1[7] = weight_times_x2 * y1;
a2[3] = minus_weight_times_x1;
a2[4] = minus_weight_times_y1;
a2[5] = -weight;
a2[6] = weight_times_y2 * x1;
a2[7] = weight_times_y2 * y1;
for (int j = 0; j < 8; j++) {
for (int z = j; z < 8; z++)
AtAb[j * 9 + z] += a1[j]*a1[z] + a2[j]*a2[z];
AtAb[j * 9 + 8] += a1[j]*weight_times_x2 + a2[j]*weight_times_y2;
}
}
}
for (int j = 1; j < 8; j++)
for (int z = 0; z < j; z++)
AtAb[j*9+z] = AtAb[z*9+j];
if (!Math::eliminateUpperTriangular(AtAb, 8, 9))
return 0;
H = Mat_<double>(3,3);
auto * h = (double *) H.data;
h[8] = 1.;
const int m = 8, n = 9;
// start from the last row
for (int i = m-1; i >= 0; i--) {
double acc = 0;
for (int j = i+1; j < n; j++)
acc -= AtAb[i*n+j]*h[j];
h[i] = acc / AtAb[i*n+i];
if (std::isnan(h[i]))
return 0; // numerical imprecision
}
} else {
double a1[9] = {0, 0, -1, 0, 0, 0, 0, 0, 0},
a2[9] = {0, 0, 0, 0, 0, -1, 0, 0, 0}, AtA[81] = {0};
if (weights.empty()) {
for (int i = 0; i < sample_size; i++) {
const int smpl = do_norm ? 4*i : 4*sample[i];
const auto x1 = npts[smpl], y1 = npts[smpl+1], x2 = npts[smpl+2], y2 = npts[smpl+3];
a1[0] = -x1;
a1[1] = -y1;
a1[6] = x2*x1;
a1[7] = x2*y1;
a1[8] = x2;
a2[3] = -x1;
a2[4] = -y1;
a2[6] = y2*x1;
a2[7] = y2*y1;
a2[8] = y2;
for (int j = 0; j < 9; j++)
for (int z = j; z < 9; z++)
AtA[j*9+z] += a1[j]*a1[z] + a2[j]*a2[z];
}
} else { // use weights
for (int i = 0; i < sample_size; i++) {
const double weight = weights[i];
if (weight < FLT_EPSILON) continue;
const int smpl = do_norm ? 4*i : 4*sample[i];
const auto x1 = npts[smpl], y1 = npts[smpl+1], x2 = npts[smpl+2], y2 = npts[smpl+3];
const double minus_weight_times_x1 = -weight * x1,
minus_weight_times_y1 = -weight * y1,
weight_times_x2 = weight * x2,
weight_times_y2 = weight * y2;
a1[0] = minus_weight_times_x1;
a1[1] = minus_weight_times_y1;
a1[2] = -weight;
a1[6] = weight_times_x2 * x1;
a1[7] = weight_times_x2 * y1;
a1[8] = weight_times_x2;
a2[3] = minus_weight_times_x1;
a2[4] = minus_weight_times_y1;
a2[5] = -weight;
a2[6] = weight_times_y2 * x1;
a2[7] = weight_times_y2 * y1;
a2[8] = weight_times_y2;
for (int j = 0; j < 9; j++)
for (int z = j; z < 9; z++)
AtA[j*9+z] += a1[j]*a1[z] + a2[j]*a2[z];
}
}
// copy symmetric part of covariance matrix
for (int j = 1; j < 9; j++)
for (int z = 0; z < j; z++)
AtA[j*9+z] = AtA[z*9+j];
#ifdef HAVE_EIGEN
H = Mat_<double>(3,3);
// extract the last null-vector
Eigen::Map<Eigen::Matrix<double, 9, 1>>((double *)H.data) = Eigen::Matrix<double, 9, 9>
(Eigen::HouseholderQR<Eigen::Matrix<double, 9, 9>> (
(Eigen::Matrix<double, 9, 9> (AtA))).householderQ()).col(8);
#else
Matx<double, 9, 9> Vt;
Vec<double, 9> D;
if (! eigen(Matx<double, 9, 9>(AtA), D, Vt)) return 0;
H = Mat_<double>(3, 3, Vt.val + 72/*=8*9*/);
#endif
}
const auto * const h = (double *) H.data;
const auto * const t1 = do_norm ? T1.val : _T1.val, * const t2 = do_norm ? T2.val : _T2.val;
// H = T2^-1 H T1
models = std::vector<Mat>{ Mat(Matx33d(t1[0]*(h[0]/t2[0] - (h[6]*t2[2])/t2[0]),
t1[0]*(h[1]/t2[0] - (h[7]*t2[2])/t2[0]), h[2]/t2[0] + t1[2]*(h[0]/t2[0] -
(h[6]*t2[2])/t2[0]) + t1[5]*(h[1]/t2[0] - (h[7]*t2[2])/t2[0]) - (h[8]*t2[2])/t2[0],
t1[0]*(h[3]/t2[0] - (h[6]*t2[5])/t2[0]), t1[0]*(h[4]/t2[0] - (h[7]*t2[5])/t2[0]),
h[5]/t2[0] + t1[2]*(h[3]/t2[0] - (h[6]*t2[5])/t2[0]) + t1[5]*(h[4]/t2[0] -
(h[7]*t2[5])/t2[0]) - (h[8]*t2[5])/t2[0], t1[0]*h[6], t1[0]*h[7],
h[8] + h[6]*t1[2] + h[7]*t1[5])) };
return 1;
}
int estimate (const std::vector<bool> &/*mask*/, std::vector<Mat> &/*models*/,
const std::vector<double> &/*weights*/) override {
return 0;
}
int getMinimumRequiredSampleSize() const override { return 4; }
int getMaxNumberOfSolutions () const override { return 1; }
void enforceRankConstraint (bool /*enforce*/) override {}
};
Ptr<HomographyNonMinimalSolver> HomographyNonMinimalSolver::create(const Mat &points_, bool use_ge_) {
return makePtr<HomographyNonMinimalSolverImpl>(points_, use_ge_);
}
Ptr<HomographyNonMinimalSolver> HomographyNonMinimalSolver::create(const Mat &points_, const Matx33d &T1, const Matx33d &T2, bool use_ge) {
return makePtr<HomographyNonMinimalSolverImpl>(points_, T1, T2, use_ge);
}
class CovarianceHomographySolverImpl : public CovarianceHomographySolver {
private:
Mat norm_pts;
Matx33d T1, T2;
float * norm_points;
std::vector<bool> mask;
int points_size;
double covariance[81] = {0}, * t1, * t2;
public:
explicit CovarianceHomographySolverImpl (const Mat &norm_points_, const Matx33d &T1_, const Matx33d &T2_)
: norm_pts(norm_points_), T1(T1_), T2(T2_) {
points_size = norm_points_.rows;
norm_points = (float *) norm_pts.data;
t1 = T1.val; t2 = T2.val;
mask = std::vector<bool>(points_size, false);
}
explicit CovarianceHomographySolverImpl (const Mat &points_) {
points_size = points_.rows;
// normalize points
std::vector<int> sample(points_size);
for (int i = 0; i < points_size; i++) sample[i] = i;
const Ptr<NormTransform> normTr = NormTransform::create(points_);
normTr->getNormTransformation(norm_pts, sample, points_size, T1, T2);
norm_points = (float *) norm_pts.data;
t1 = T1.val; t2 = T2.val;
mask = std::vector<bool>(points_size, false);
}
void reset () override {
// reset covariance matrix to zero and mask to false
std::fill(covariance, covariance+81, 0);
std::fill(mask.begin(), mask.end(), false);
}
/*
* Find homography using 4-point algorithm with covariance matrix and PCA
*/
int estimate (const std::vector<bool> &new_mask, std::vector<Mat> &models,
const std::vector<double> &/*weights*/) override {
double a1[9] = {0, 0, -1, 0, 0, 0, 0, 0, 0},
a2[9] = {0, 0, 0, 0, 0, -1, 0, 0, 0};
for (int i = 0; i < points_size; i++) {
if (mask[i] != new_mask[i]) {
const int smpl = 4*i;
const double x1 = norm_points[smpl ], y1 = norm_points[smpl+1],
x2 = norm_points[smpl+2], y2 = norm_points[smpl+3];
a1[0] = -x1;
a1[1] = -y1;
a1[6] = x2*x1;
a1[7] = x2*y1;
a1[8] = x2;
a2[3] = -x1;
a2[4] = -y1;
a2[6] = y2*x1;
a2[7] = y2*y1;
a2[8] = y2;
if (mask[i]) // if mask[i] is true then new_mask[i] must be false
for (int j = 0; j < 9; j++)
for (int z = j; z < 9; z++)
covariance[j*9+z] +=-a1[j]*a1[z] - a2[j]*a2[z];
else
for (int j = 0; j < 9; j++)
for (int z = j; z < 9; z++)
covariance[j*9+z] += a1[j]*a1[z] + a2[j]*a2[z];
}
}
mask = new_mask;
// copy symmetric part of covariance matrix
for (int j = 1; j < 9; j++)
for (int z = 0; z < j; z++)
covariance[j*9+z] = covariance[z*9+j];
#ifdef HAVE_EIGEN
Mat H = Mat_<double>(3,3);
// extract the last null-vector
Eigen::Map<Eigen::Matrix<double, 9, 1>>((double *)H.data) = Eigen::Matrix<double, 9, 9>
(Eigen::HouseholderQR<Eigen::Matrix<double, 9, 9>> (
(Eigen::Matrix<double, 9, 9> (covariance))).householderQ()).col(8);
#else
Matx<double, 9, 9> Vt;
Vec<double, 9> D;
if (! eigen(Matx<double, 9, 9>(covariance), D, Vt)) return 0;
Mat H = Mat_<double>(3, 3, Vt.val + 72/*=8*9*/);
#endif
const auto * const h = (double *) H.data;
// H = T2^-1 H T1
models = std::vector<Mat>{ Mat(Matx33d(t1[0]*(h[0]/t2[0] - (h[6]*t2[2])/t2[0]),
t1[0]*(h[1]/t2[0] - (h[7]*t2[2])/t2[0]), h[2]/t2[0] + t1[2]*(h[0]/t2[0] -
(h[6]*t2[2])/t2[0]) + t1[5]*(h[1]/t2[0] - (h[7]*t2[2])/t2[0]) - (h[8]*t2[2])/t2[0],
t1[0]*(h[3]/t2[0] - (h[6]*t2[5])/t2[0]), t1[0]*(h[4]/t2[0] - (h[7]*t2[5])/t2[0]),
h[5]/t2[0] + t1[2]*(h[3]/t2[0] - (h[6]*t2[5])/t2[0]) + t1[5]*(h[4]/t2[0] -
(h[7]*t2[5])/t2[0]) - (h[8]*t2[5])/t2[0], t1[0]*h[6], t1[0]*h[7],
h[8] + h[6]*t1[2] + h[7]*t1[5])) };
return 1;
}
void enforceRankConstraint (bool /*enforce*/) override {}
int getMinimumRequiredSampleSize() const override { return 4; }
int getMaxNumberOfSolutions () const override { return 1; }
};
Ptr<CovarianceHomographySolver> CovarianceHomographySolver::create (const Mat &points) {
return makePtr<CovarianceHomographySolverImpl>(points);
}
Ptr<CovarianceHomographySolver> CovarianceHomographySolver::create (const Mat &points, const Matx33d &T1, const Matx33d &T2) {
return makePtr<CovarianceHomographySolverImpl>(points, T1, T2);
}
class AffineMinimalSolverImpl : public AffineMinimalSolver {
private:
Mat points_mat;
public:
explicit AffineMinimalSolverImpl (const Mat &points_) :
points_mat(points_)
{
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
/*
Affine transformation
x1 y1 1 0 0 0 a u1
0 0 0 x1 y1 1 b v1
x2 y2 1 0 0 0 c u2
0 0 0 x2 y2 1 * d = v2
x3 y3 1 0 0 0 e u3
0 0 0 x3 y3 1 f v3
*/
int estimate (const std::vector<int> &sample, std::vector<Mat> &models) const override {
const int smpl1 = 4*sample[0], smpl2 = 4*sample[1], smpl3 = 4*sample[2];
const float * points = points_mat.ptr<float>();
const auto
x1 = points[smpl1], y1 = points[smpl1+1], u1 = points[smpl1+2], v1 = points[smpl1+3],
x2 = points[smpl2], y2 = points[smpl2+1], u2 = points[smpl2+2], v2 = points[smpl2+3],
x3 = points[smpl3], y3 = points[smpl3+1], u3 = points[smpl3+2], v3 = points[smpl3+3];
// covers degeneracy test when all 3 points are collinear.
// In this case denominator will be 0
double denominator = x1*y2 - x2*y1 - x1*y3 + x3*y1 + x2*y3 - x3*y2;
if (fabs(denominator) < FLT_EPSILON) // check if denominator is zero
return 0;
denominator = 1. / denominator;
double a = (u1*y2 - u2*y1 - u1*y3 + u3*y1 + u2*y3 - u3*y2) * denominator;
double b = -(u1*x2 - u2*x1 - u1*x3 + u3*x1 + u2*x3 - u3*x2) * denominator;
double c = u1 - a * x1 - b * y1; // ax1 + by1 + c = u1
double d = (v1*y2 - v2*y1 - v1*y3 + v3*y1 + v2*y3 - v3*y2) * denominator;
double e = -(v1*x2 - v2*x1 - v1*x3 + v3*x1 + v2*x3 - v3*x2) * denominator;
double f = v1 - d * x1 - e * y1; // dx1 + ey1 + f = v1
models[0] = Mat(Matx33d(a, b, c, d, e, f, 0, 0, 1));
return 1;
}
int getSampleSize() const override { return 3; }
int getMaxNumberOfSolutions () const override { return 1; }
};
Ptr<AffineMinimalSolver> AffineMinimalSolver::create(const Mat &points_) {
return makePtr<AffineMinimalSolverImpl>(points_);
}
class AffineNonMinimalSolverImpl : public AffineNonMinimalSolver {
private:
Mat points_mat;
Ptr<NormTransform> normTr;
Matx33d _T1, _T2;
bool do_norm;
public:
explicit AffineNonMinimalSolverImpl (const Mat &points_, InputArray T1, InputArray T2) :
points_mat(points_) {
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
if (!T1.empty() && !T2.empty()) {
do_norm = false;
_T1 = T1.getMat();
_T2 = T2.getMat();
} else {
do_norm = true;
normTr = NormTransform::create(points_);
}
}
int estimate (const std::vector<int> &sample, int sample_size, std::vector<Mat> &models,
const std::vector<double> &weights) const override {
if (sample_size < getMinimumRequiredSampleSize())
return 0;
Matx33d T1, T2;
Mat norm_points_;
if (do_norm)
normTr->getNormTransformation(norm_points_, sample, sample_size, T1, T2);
const float * const pts = normTr ? norm_points_.ptr<float>() : points_mat.ptr<float>();
// do Least Squares
// Ax = b -> A^T Ax = A^T b
// x = (A^T A)^-1 A^T b
double AtA[36] = {0}, Ab[6] = {0};
double r1[6] = {0, 0, 1, 0, 0, 0}; // row 1 of A
double r2[6] = {0, 0, 0, 0, 0, 1}; // row 2 of A
if (weights.empty())
for (int p = 0; p < sample_size; p++) {
const int idx = do_norm ? 4*p : 4*sample[p];
const auto x1=pts[idx], y1=pts[idx+1], x2=pts[idx+2], y2=pts[idx+3];
r1[0] = x1;
r1[1] = y1;
r2[3] = x1;
r2[4] = y1;
for (int j = 0; j < 6; j++) {
for (int z = j; z < 6; z++)
AtA[j * 6 + z] += r1[j] * r1[z] + r2[j] * r2[z];
Ab[j] += r1[j]*x2 + r2[j]*y2;
}
}
else
for (int p = 0; p < sample_size; p++) {
const auto weight = weights[p];
if (weight < FLT_EPSILON) continue;
const int idx = do_norm ? 4*p : 4*sample[p];
const double weight_times_x1 = weight * pts[idx ],
weight_times_y1 = weight * pts[idx+1],
weight_times_x2 = weight * pts[idx+2],
weight_times_y2 = weight * pts[idx+3];
r1[0] = weight_times_x1;
r1[1] = weight_times_y1;
r1[2] = weight;
r2[3] = weight_times_x1;
r2[4] = weight_times_y1;
r2[5] = weight;
for (int j = 0; j < 6; j++) {
for (int z = j; z < 6; z++)
AtA[j * 6 + z] += r1[j] * r1[z] + r2[j] * r2[z];
Ab[j] += r1[j]*weight_times_x2 + r2[j]*weight_times_y2;
}
}
// copy symmetric part
for (int j = 1; j < 6; j++)
for (int z = 0; z < j; z++)
AtA[j*6+z] = AtA[z*6+j];
Vec6d aff;
if (!solve(Matx66d(AtA), Vec6d(Ab), aff))
return 0;
const double h[9] = {aff(0), aff(1), aff(2),
aff(3), aff(4), aff(5),
0, 0, 1};
const auto * const t1 = normTr ? T1.val : _T1.val, * const t2 = normTr ? T2.val : _T2.val;
// A = T2^-1 A T1
models = std::vector<Mat>{ Mat(Matx33d(t1[0]*(h[0]/t2[0] - (h[6]*t2[2])/t2[0]),
t1[0]*(h[1]/t2[0] - (h[7]*t2[2])/t2[0]), h[2]/t2[0] + t1[2]*(h[0]/t2[0] -
(h[6]*t2[2])/t2[0]) + t1[5]*(h[1]/t2[0] - (h[7]*t2[2])/t2[0]) - (h[8]*t2[2])/t2[0],
t1[0]*(h[3]/t2[0] - (h[6]*t2[5])/t2[0]), t1[0]*(h[4]/t2[0] - (h[7]*t2[5])/t2[0]),
h[5]/t2[0] + t1[2]*(h[3]/t2[0] - (h[6]*t2[5])/t2[0]) + t1[5]*(h[4]/t2[0] -
(h[7]*t2[5])/t2[0]) - (h[8]*t2[5])/t2[0], t1[0]*h[6], t1[0]*h[7],
h[8] + h[6]*t1[2] + h[7]*t1[5])) };
return 1;
}
int estimate (const std::vector<bool> &/*mask*/, std::vector<Mat> &/*models*/,
const std::vector<double> &/*weights*/) override {
return 0;
}
void enforceRankConstraint (bool /*enforce*/) override {}
int getMinimumRequiredSampleSize() const override { return 3; }
int getMaxNumberOfSolutions () const override { return 1; }
};
Ptr<AffineNonMinimalSolver> AffineNonMinimalSolver::create(const Mat &points_, InputArray T1, InputArray T2) {
return makePtr<AffineNonMinimalSolverImpl>(points_, T1, T2);
}
class CovarianceAffineSolverImpl : public CovarianceAffineSolver {
private:
Mat norm_pts;
Matx33d T1, T2;
float * norm_points;
std::vector<bool> mask;
int points_size;
double covariance[36] = {0}, Ab[6] = {0}, * t1, * t2;
public:
explicit CovarianceAffineSolverImpl (const Mat &norm_points_, const Matx33d &T1_, const Matx33d &T2_)
: norm_pts(norm_points_), T1(T1_), T2(T2_) {
points_size = norm_points_.rows;
norm_points = (float *) norm_pts.data;
t1 = T1.val; t2 = T2.val;
mask = std::vector<bool>(points_size, false);
}
explicit CovarianceAffineSolverImpl (const Mat &points_) {
points_size = points_.rows;
// normalize points
std::vector<int> sample(points_size);
for (int i = 0; i < points_size; i++) sample[i] = i;
const Ptr<NormTransform> normTr = NormTransform::create(points_);
normTr->getNormTransformation(norm_pts, sample, points_size, T1, T2);
norm_points = (float *) norm_pts.data;
t1 = T1.val; t2 = T2.val;
mask = std::vector<bool>(points_size, false);
}
void reset () override {
std::fill(covariance, covariance+36, 0);
std::fill(Ab, Ab+6, 0);
std::fill(mask.begin(), mask.end(), false);
}
/*
* Find affine transformation using linear method with covariance matrix and PCA
*/
int estimate (const std::vector<bool> &new_mask, std::vector<Mat> &models,
const std::vector<double> &) override {
double r1[6] = {0, 0, 1, 0, 0, 0}; // row 1 of A
double r2[6] = {0, 0, 0, 0, 0, 1}; // row 2 of A
for (int i = 0; i < points_size; i++) {
if (mask[i] != new_mask[i]) {
const int smpl = 4*i;
const double x1 = norm_points[smpl ], y1 = norm_points[smpl+1],
x2 = norm_points[smpl+2], y2 = norm_points[smpl+3];
r1[0] = x1;
r1[1] = y1;
r2[3] = x1;
r2[4] = y1;
if (mask[i]) // if mask[i] is true then new_mask[i] must be false
for (int j = 0; j < 6; j++) {
for (int z = j; z < 6; z++)
covariance[j*6+z] +=-r1[j]*r1[z] - r2[j]*r2[z];
Ab[j] +=-r1[j]*x2 - r2[j]*y2;
}
else
for (int j = 0; j < 6; j++) {
for (int z = j; z < 6; z++)
covariance[j*6+z] += r1[j]*r1[z] + r2[j]*r2[z];
Ab[j] += r1[j]*x2 + r2[j]*y2;
}
}
}
mask = new_mask;
// copy symmetric part of covariance matrix
for (int j = 1; j < 6; j++)
for (int z = 0; z < j; z++)
covariance[j*6+z] = covariance[z*6+j];
Vec6d aff;
if (!solve(Matx66d(covariance), Vec6d(Ab), aff))
return 0;
double a[9] = { aff(0), aff(1), aff(2), aff(3), aff(4), aff(5), 0, 0, 1 };
models = std::vector<Mat>{ Mat(Matx33d(t1[0]*(a[0]/t2[0] - (a[6]*t2[2])/t2[0]),
t1[0]*(a[1]/t2[0] - (a[7]*t2[2])/t2[0]), a[2]/t2[0] + t1[2]*(a[0]/t2[0] -
(a[6]*t2[2])/t2[0]) + t1[5]*(a[1]/t2[0] - (a[7]*t2[2])/t2[0]) - (a[8]*t2[2])/t2[0],
t1[0]*(a[3]/t2[0] - (a[6]*t2[5])/t2[0]), t1[0]*(a[4]/t2[0] - (a[7]*t2[5])/t2[0]),
a[5]/t2[0] + t1[2]*(a[3]/t2[0] - (a[6]*t2[5])/t2[0]) + t1[5]*(a[4]/t2[0] -
(a[7]*t2[5])/t2[0]) - (a[8]*t2[5])/t2[0], t1[0]*a[6], t1[0]*a[7],
a[8] + a[6]*t1[2] + a[7]*t1[5])) };
return 1;
}
void enforceRankConstraint (bool /*enforce*/) override {}
int getMinimumRequiredSampleSize() const override { return 3; }
int getMaxNumberOfSolutions () const override { return 1; }
};
Ptr<CovarianceAffineSolver> CovarianceAffineSolver::create (const Mat &points, const Matx33d &T1, const Matx33d &T2) {
return makePtr<CovarianceAffineSolverImpl>(points, T1, T2);
}
Ptr<CovarianceAffineSolver> CovarianceAffineSolver::create (const Mat &points) {
return makePtr<CovarianceAffineSolverImpl>(points);
}
}}
|