File size: 17,175 Bytes
be94e5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../precomp.hpp"
#include "../usac.hpp"
#include "../polynom_solver.h"
#if defined(HAVE_EIGEN)
#include <Eigen/Eigen>
#include <Eigen/QR>
#elif defined(HAVE_LAPACK)
#include "opencv_lapack.h"
#endif
namespace cv { namespace usac {
class PnPMinimalSolver6PtsImpl : public PnPMinimalSolver6Pts {
private:
Mat points_mat;
public:
// linear 6 points required (11 equations)
int getSampleSize() const override { return 6; }
int getMaxNumberOfSolutions () const override { return 1; }
explicit PnPMinimalSolver6PtsImpl (const Mat &points_) :
points_mat(points_)
{
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
/*
DLT:
d x = P X, x = (u, v, 1), X = (X, Y, Z, 1), P = K[R t]
is 3x4 projection matrix with rows p1, p2, p3. d is depth
u = p1^T X / p3^T X
v = p2^T X / p3^T X
(p1^T - u p3^T) X = 0
(p2^T - v p3^T) X = 0
(p11 - u p31) X + (p12 - u p32) Y + (p13 - u p33) Z + (p14 - u p34) = 0
(p12 - v p31) X + (p22 - v p32) Y + (p23 - v p33) Z + (p24 - v p34) = 0
[X, Y, Z, 1, 0, 0, 0, 0, -u X, -u Y, -u Z, -u] [p11] [0]
[0, 0, 0, 0, X, Y, Z, 1, -v X, -v Y, -v Z, -v] [p12] [0]
. = [0]
.
. [p34] [0]
minimum 11 equations, each point gives 2 equation, so at least 6 points are required.
@points is array Nx5
u1 v1 X1 Y1 Z1
...
uN vN XN YN ZN
@P is output projection matrix
A1 =
[X1, Y1, Z1, 1, 0, 0, 0, 0, -u1 X1, -u1 Y1, -u1 Z1, -u1] [p11] [0]
[X2, Y2, Z2, 1, 0, 0, 0, 0, -u2 X2, -u2 Y2, -u2 Z2, -u2] [p12] [0]
[X3, Y3, Z3, 1, 0, 0, 0, 0, -u3 X3, -u3 Y3, -u3 Z3, -u3] [p13] [0]
[X4, Y4, Z4, 1, 0, 0, 0, 0, -u4 X4, -u4 Y4, -u4 Z4, -u4] [p14] [0]
[X5, Y5, Z5, 1, 0, 0, 0, 0, -u5 X5, -u5 Y5, -u5 Z5, -u5] [p21] [0]
[p22]
A2 = (without first 4 columns)
[0, 0, 0, 0, X1, Y1, Z1, 1, -v1 X1, -v1 Y1, -v1 Z1, -v1] [p23] = [0]
[0, 0, 0, 0, X2, Y2, Z2, 1, -v2 X2, -v2 Y2, -v2 Z2, -v2] [p24] [0]
[0, 0, 0, 0, X3, Y3, Z3, 1, -v3 X3, -v3 Y3, -v3 Z3, -v3] [p31] [0]
[0, 0, 0, 0, X4, Y4, Z4, 1, -v4 X4, -v4 Y4, -v4 Z4, -v4] [p32] [0]
[0, 0, 0, 0, X5, Y5, Z5, 1, -v5 X5, -v5 Y5, -v5 Z5, -v5] [p33] [0]
[0, 0, 0, 0, X6, Y6, Z6, 1, -v6 X6, -v6 Y6, -v6 Z6, -v6] [p34=1] [0]
P = null A; dim null A = n - rank(A) = 12 - 11 = 1
*/
int estimate (const std::vector<int> &sample, std::vector<Mat> &models) const override {
std::vector<double> A1 (60, 0), A2(56, 0); // 5x12, 7x8
const float * points = points_mat.ptr<float>();
// std::vector<double> A_all(11*12, 0);
// int cnt3 = 0;
int cnt1 = 0, cnt2 = 0;
for (int i = 0; i < 6; i++) {
const int smpl = 5 * sample[i];
const double u = points[smpl ], v = points[smpl + 1];
const double X = points[smpl + 2], Y = points[smpl + 3], Z = points[smpl + 4];
if (i != 5) {
A1[cnt1++] = X;
A1[cnt1++] = Y;
A1[cnt1++] = Z;
A1[cnt1++] = 1;
cnt1 += 4; // skip zeros
A1[cnt1++] = -u * X;
A1[cnt1++] = -u * Y;
A1[cnt1++] = -u * Z;
A1[cnt1++] = -u;
}
A2[cnt2++] = X;
A2[cnt2++] = Y;
A2[cnt2++] = Z;
A2[cnt2++] = 1;
A2[cnt2++] = -v * X;
A2[cnt2++] = -v * Y;
A2[cnt2++] = -v * Z;
A2[cnt2++] = -v;
}
Math::eliminateUpperTriangular(A1, 5, 12);
int offset = 4*12;
// add last eliminated row of A1
for (int i = 0; i < 8; i++)
A2[cnt2++] = A1[offset + i + 4/* skip 4 first cols*/];
// must be full-rank
if (!Math::eliminateUpperTriangular(A2, 7, 8))
return 0;
// fixed scale to 1. In general the projection matrix is up-to-scale.
// P = alpha * P^, alpha = 1 / P^_[3,4]
Mat P = Mat_<double>(3,4);
auto * p = (double *) P.data;
p[11] = 1;
// start from the last row
for (int i = 6; i >= 0; i--) {
double acc = 0;
for (int j = i+1; j < 8; j++)
acc -= A2[i*8+j]*p[j+4];
p[i+4] = acc / A2[i*8+i];
// due to numerical errors return 0 solutions
if (std::isnan(p[i+4]))
return 0;
}
for (int i = 3; i >= 0; i--) {
double acc = 0;
for (int j = i+1; j < 12; j++)
acc -= A1[i*12+j]*p[j];
p[i] = acc / A1[i*12+i];
if (std::isnan(p[i]))
return 0;
}
models = std::vector<Mat>{P};
return 1;
}
};
Ptr<PnPMinimalSolver6Pts> PnPMinimalSolver6Pts::create(const Mat &points_) {
return makePtr<PnPMinimalSolver6PtsImpl>(points_);
}
class PnPNonMinimalSolverImpl : public PnPNonMinimalSolver {
private:
Mat points_mat;
public:
explicit PnPNonMinimalSolverImpl (const Mat &points_) :
points_mat(points_)
{
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
int estimate (const std::vector<int> &sample, int sample_size,
std::vector<Mat> &models, const std::vector<double> &weights) const override {
const float * points = points_mat.ptr<float>();
if (sample_size < 6)
return 0;
double AtA [144] = {0}; // 12x12
double a1[12] = {0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0},
a2[12] = {0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0};
if (weights.empty())
for (int i = 0; i < sample_size; i++) {
const int smpl = 5 * sample[i];
const double u = points[smpl], v = points[smpl + 1];
const double X = points[smpl + 2], Y = points[smpl + 3], Z = points[smpl + 4];
a1[0 ] = -X;
a1[1 ] = -Y;
a1[2 ] = -Z;
a1[8 ] = u * X;
a1[9 ] = u * Y;
a1[10] = u * Z;
a1[11] = u;
a2[4 ] = -X;
a2[5 ] = -Y;
a2[6 ] = -Z;
a2[8 ] = v * X;
a2[9 ] = v * Y;
a2[10] = v * Z;
a2[11] = v;
// fill covariance matrix
for (int j = 0; j < 12; j++)
for (int z = j; z < 12; z++)
AtA[j * 12 + z] += a1[j] * a1[z] + a2[j] * a2[z];
}
else
for (int i = 0; i < sample_size; i++) {
const int smpl = 5 * sample[i];
const double weight = weights[i], u = points[smpl], v = points[smpl + 1];
const double weight_X = weight * points[smpl + 2],
weight_Y = weight * points[smpl + 3],
weight_Z = weight * points[smpl + 4];
a1[0 ] = -weight_X;
a1[1 ] = -weight_Y;
a1[2 ] = -weight_Z;
a1[3 ] = -weight;
a1[8 ] = u * weight_X;
a1[9 ] = u * weight_Y;
a1[10] = u * weight_Z;
a1[11] = u * weight;
a2[4 ] = -weight_X;
a2[5 ] = -weight_Y;
a2[6 ] = -weight_Z;
a2[7 ] = -weight;
a2[8 ] = v * weight_X;
a2[9 ] = v * weight_Y;
a2[10] = v * weight_Z;
a2[11] = v * weight;
// fill covariance matrix
for (int j = 0; j < 12; j++)
for (int z = j; z < 12; z++)
AtA[j * 12 + z] += a1[j] * a1[z] + a2[j] * a2[z];
}
// copy symmetric part of covariance matrix
for (int j = 1; j < 12; j++)
for (int z = 0; z < j; z++)
AtA[j*12+z] = AtA[z*12+j];
#ifdef HAVE_EIGEN
models = std::vector<Mat>{ Mat_<double>(3,4) };
Eigen::HouseholderQR<Eigen::Matrix<double, 12, 12>> qr((Eigen::Matrix<double, 12, 12>(AtA)));
const Eigen::Matrix<double, 12, 12> &Q = qr.householderQ();
// extract the last null-vector
Eigen::Map<Eigen::Matrix<double, 12, 1>>((double *)models[0].data) = Q.col(11);
#else
Matx<double, 12, 12> Vt;
Vec<double, 12> D;
if (! eigen(Matx<double, 12, 12>(AtA), D, Vt)) return 0;
models = std::vector<Mat>{ Mat(Vt.row(11).reshape<3,4>()) };
#endif
return 1;
}
int estimate (const std::vector<bool> &/*mask*/, std::vector<Mat> &/*models*/,
const std::vector<double> &/*weights*/) override {
return 0;
}
void enforceRankConstraint (bool /*enforce*/) override {}
int getMinimumRequiredSampleSize() const override { return 6; }
int getMaxNumberOfSolutions () const override { return 1; }
};
Ptr<PnPNonMinimalSolver> PnPNonMinimalSolver::create(const Mat &points) {
return makePtr<PnPNonMinimalSolverImpl>(points);
}
class PnPSVDSolverImpl : public PnPSVDSolver {
private:
std::vector<double> w;
Ptr<PnPNonMinimalSolver> pnp_solver;
public:
int getSampleSize() const override { return 6; }
int getMaxNumberOfSolutions () const override { return 1; }
explicit PnPSVDSolverImpl (const Mat &points_) {
pnp_solver = PnPNonMinimalSolver::create(points_);
}
int estimate (const std::vector<int> &sample, std::vector<Mat> &models) const override {
return pnp_solver->estimate(sample, 6, models, w);
}
};
Ptr<PnPSVDSolver> PnPSVDSolver::create(const Mat &points_) {
return makePtr<PnPSVDSolverImpl>(points_);
}
class P3PSolverImpl : public P3PSolver {
private:
/*
* calibrated normalized points
* K^-1 [u v 1]^T / ||K^-1 [u v 1]^T||
*/
const Mat points_mat, calib_norm_points_mat;
const Matx33d K;
const double VAL_THR = 1e-4;
public:
/*
* @points_ is matrix N x 5
* u v x y z. (u,v) is image point, (x y z) is world point
*/
P3PSolverImpl (const Mat &points_, const Mat &calib_norm_points_, const Mat &K_) :
points_mat(points_), calib_norm_points_mat(calib_norm_points_), K(K_)
{
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
CV_DbgAssert(!calib_norm_points_mat.empty() && calib_norm_points_mat.isContinuous());
}
int estimate (const std::vector<int> &sample, std::vector<Mat> &models) const override {
/*
* The description of this solution can be found here:
* http://cmp.felk.cvut.cz/~pajdla/gvg/GVG-2016-Lecture.pdf
* pages: 51-59
*/
const float * points = points_mat.ptr<float>();
const float * calib_norm_points = calib_norm_points_mat.ptr<float>();
const int idx1 = 5*sample[0], idx2 = 5*sample[1], idx3 = 5*sample[2];
const Vec3d X1 (points[idx1+2], points[idx1+3], points[idx1+4]);
const Vec3d X2 (points[idx2+2], points[idx2+3], points[idx2+4]);
const Vec3d X3 (points[idx3+2], points[idx3+3], points[idx3+4]);
// find distance between world points d_ij = ||Xi - Xj||
const double d12 = norm(X1 - X2);
const double d23 = norm(X2 - X3);
const double d31 = norm(X3 - X1);
if (d12 < VAL_THR || d23 < VAL_THR || d31 < VAL_THR)
return 0;
const int c_idx1 = 3*sample[0], c_idx2 = 3*sample[1], c_idx3 = 3*sample[2];
const Vec3d cx1 (calib_norm_points[c_idx1], calib_norm_points[c_idx1+1], calib_norm_points[c_idx1+2]);
const Vec3d cx2 (calib_norm_points[c_idx2], calib_norm_points[c_idx2+1], calib_norm_points[c_idx2+2]);
const Vec3d cx3 (calib_norm_points[c_idx3], calib_norm_points[c_idx3+1], calib_norm_points[c_idx3+2]);
// find cosine angles, cos(x1,x2) = K^-1 x1.dot(K^-1 x2) / (||K^-1 x1|| * ||K^-1 x2||)
// calib_norm_points are already K^-1 x / ||K^-1 x||, so we perform only dot product
const double c12 = cx1(0)*cx2(0) + cx1(1)*cx2(1) + cx1(2)*cx2(2);
const double c23 = cx2(0)*cx3(0) + cx2(1)*cx3(1) + cx2(2)*cx3(2);
const double c31 = cx3(0)*cx1(0) + cx3(1)*cx1(1) + cx3(2)*cx1(2);
Matx33d Z, Zw;
auto * z = Z.val, * zw = Zw.val;
// find coefficients of polynomial a4 x^4 + ... + a0 = 0
const double c12_p2 = c12*c12, c23_p2 = c23*c23, c31_p2 = c31*c31;
const double d12_p2 = d12*d12, d12_p4 = d12_p2*d12_p2;
const double d23_p2 = d23*d23, d23_p4 = d23_p2*d23_p2, d23_p6 = d23_p2*d23_p4, d23_p8 = d23_p4*d23_p4;
const double d31_p2 = d31*d31, d31_p4 = d31_p2*d31_p2;
const double a4 = -4*d23_p4*d12_p2*d31_p2*c23_p2+d23_p8-2*d23_p6*d12_p2-2*d23_p6*d31_p2+d23_p4*d12_p4+2*d23_p4*d12_p2*d31_p2+d23_p4*d31_p4;
const double a3 = 8*d23_p4*d12_p2*d31_p2*c12*c23_p2+4*d23_p6*d12_p2*c31*c23-4*d23_p4*d12_p4*c31*c23+4*d23_p4*d12_p2*d31_p2*c31*c23-4*d23_p8*c12+4*d23_p6*d12_p2*c12+8*d23_p6*d31_p2*c12-4*d23_p4*d12_p2*d31_p2*c12-4*d23_p4*d31_p4*c12;
const double a2 = -8*d23_p6*d12_p2*c31*c12*c23-8*d23_p4*d12_p2*d31_p2*c31*c12*c23+4*d23_p8*c12_p2-4*d23_p6*d12_p2*c31_p2-8*d23_p6*d31_p2*c12_p2+4*d23_p4*d12_p4*c31_p2+4*d23_p4*d12_p4*c23_p2-4*d23_p4*d12_p2*d31_p2*c23_p2+4*d23_p4*d31_p4*c12_p2+2*d23_p8-4*d23_p6*d31_p2-2*d23_p4*d12_p4+2*d23_p4*d31_p4;
const double a1 = 8*d23_p6*d12_p2*c31_p2*c12+4*d23_p6*d12_p2*c31*c23-4*d23_p4*d12_p4*c31*c23+4*d23_p4*d12_p2*d31_p2*c31*c23-4*d23_p8*c12-4*d23_p6*d12_p2*c12+8*d23_p6*d31_p2*c12+4*d23_p4*d12_p2*d31_p2*c12-4*d23_p4*d31_p4*c12;
const double a0 = -4*d23_p6*d12_p2*c31_p2+d23_p8-2*d23_p4*d12_p2*d31_p2+2*d23_p6*d12_p2+d23_p4*d31_p4+d23_p4*d12_p4-2*d23_p6*d31_p2;
double roots[4] = {0};
int num_roots = solve_deg4(a4, a3, a2, a1, a0, roots[0], roots[1], roots[2], roots[3]);
models = std::vector<Mat>(); models.reserve(num_roots);
for (double root : roots) {
if (root <= 0) continue;
const double n12 = root, n12_p2 = n12 * n12;
const double n13 = (d12_p2*(d23_p2-d31_p2*n12_p2)+(d23_p2-d31_p2)*(d23_p2*(1+n12_p2-2*n12*c12)-d12_p2*n12_p2))
/ (2*d12_p2*(d23_p2*c31 - d31_p2*c23*n12) + 2*(d31_p2-d23_p2)*d12_p2*c23*n12);
const double n1 = d12 / sqrt(1 + n12_p2 - 2*n12*c12); // 1+n12^2-2n12c12 is always > 0
const double n2 = n1 * n12;
const double n3 = n1 * n13;
if (n1 <= 0 || n2 <= 0 || n3 <= 0)
continue;
// compute and check errors
if (fabs((sqrt(n1*n1 + n2*n2 - 2*n1*n2*c12) - d12) / d12) > VAL_THR ||
fabs((sqrt(n2*n2 + n3*n3 - 2*n2*n3*c23) - d23) / d23) > VAL_THR ||
fabs((sqrt(n3*n3 + n1*n1 - 2*n3*n1*c31) - d31) / d31) > VAL_THR)
continue;
const Vec3d nX1 = n1 * cx1;
Vec3d Z2 = n2 * cx2 - nX1; Z2 /= norm(Z2);
Vec3d Z3 = n3 * cx3 - nX1; Z3 /= norm(Z3);
Vec3d Z1 = Z2.cross(Z3); Z1 /= norm(Z1);
const Vec3d Z3crZ1 = Z3.cross(Z1);
z[0] = Z1(0); z[3] = Z1(1); z[6] = Z1(2);
z[1] = Z2(0); z[4] = Z2(1); z[7] = Z2(2);
z[2] = Z3crZ1(0); z[5] = Z3crZ1(1); z[8] = Z3crZ1(2);
Vec3d Zw2 = (X2 - X1) / d12;
Vec3d Zw3 = (X3 - X1) / d31;
Vec3d Zw1 = Zw2.cross(Zw3); Zw1 /= norm(Zw1);
const Vec3d Z3crZ1w = Zw3.cross(Zw1);
zw[0] = Zw1(0); zw[3] = Zw1(1); zw[6] = Zw1(2);
zw[1] = Zw2(0); zw[4] = Zw2(1); zw[7] = Zw2(2);
zw[2] = Z3crZ1w(0); zw[5] = Z3crZ1w(1); zw[8] = Z3crZ1w(2);
const Matx33d R = Math::rotVec2RotMat(Math::rotMat2RotVec(Z * Zw.inv()));
Matx33d KR = K * R;
Matx34d P;
hconcat(KR, -KR * (X1 - R.t() * nX1), P);
models.emplace_back(P);
}
return static_cast<int>(models.size());
}
int getSampleSize() const override { return 3; }
int getMaxNumberOfSolutions () const override { return 4; }
};
Ptr<P3PSolver> P3PSolver::create(const Mat &points_, const Mat &calib_norm_pts, const Mat &K) {
return makePtr<P3PSolverImpl>(points_, calib_norm_pts, K);
}
}}
|