File size: 17,899 Bytes
be94e5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../precomp.hpp"
#include "../usac.hpp"
namespace cv { namespace usac {
////////////////////////////////// STANDARD TERMINATION ///////////////////////////////////////////
class StandardTerminationCriteriaImpl : public StandardTerminationCriteria {
private:
const double log_confidence;
const int points_size, sample_size, MAX_ITERATIONS;
public:
StandardTerminationCriteriaImpl (double confidence, int points_size_,
int sample_size_, int max_iterations_) :
log_confidence(log(1 - confidence)), points_size (points_size_),
sample_size (sample_size_), MAX_ITERATIONS(max_iterations_) {}
/*
* Get upper bound iterations for any sample number
* n is points size, w is inlier ratio, p is desired probability, k is expected number of iterations.
* 1 - p = (1 - w^n)^k,
* k = log_(1-w^n) (1-p)
* k = ln (1-p) / ln (1-w^n)
*
* w^n is probability that all N points are inliers.
* (1 - w^n) is probability that at least one point of N is outlier.
* 1 - p = (1-w^n)^k is probability that in K steps of getting at least one outlier is 1% (5%).
*/
int update (const Mat &model, int inlier_number) const override {
CV_UNUSED(model);
const double predicted_iters = log_confidence / log(1 - std::pow
(static_cast<double>(inlier_number) / points_size, sample_size));
// if inlier_prob == 1 then log(0) = -inf, predicted_iters == -0
// if inlier_prob == 0 then log(1) = 0 , predicted_iters == (+-) inf
if (! std::isinf(predicted_iters) && predicted_iters < MAX_ITERATIONS)
return static_cast<int>(predicted_iters);
return MAX_ITERATIONS;
}
static int getMaxIterations (int inlier_number, int sample_size, int points_size, double conf) {
const double pred_iters = log(1 - conf) / log(1 - pow(static_cast<double>(inlier_number)/points_size, sample_size));
if (std::isinf(pred_iters))
return INT_MAX;
return (int) pred_iters + 1;
}
};
Ptr<StandardTerminationCriteria> StandardTerminationCriteria::create(double confidence,
int points_size_, int sample_size_, int max_iterations_) {
return makePtr<StandardTerminationCriteriaImpl>(confidence, points_size_,
sample_size_, max_iterations_);
}
/////////////////////////////////////// SPRT TERMINATION //////////////////////////////////////////
class SPRTTerminationImpl : public SPRTTermination {
private:
const Ptr<AdaptiveSPRT> sprt;
const double log_eta_0;
const int points_size, sample_size, MAX_ITERATIONS;
public:
SPRTTerminationImpl (const Ptr<AdaptiveSPRT> &sprt_, double confidence,
int points_size_, int sample_size_, int max_iterations_)
: sprt (sprt_), log_eta_0(log(1-confidence)),
points_size (points_size_), sample_size (sample_size_),MAX_ITERATIONS(max_iterations_){}
/*
* Termination criterion:
* l is number of tests
* n(l) = Product from i = 0 to l ( 1 - P_g (1 - A(i)^(-h(i)))^k(i) )
* log n(l) = sum from i = 0 to l k(i) * ( 1 - P_g (1 - A(i)^(-h(i))) )
*
* log (n0) - log (n(l-1))
* k(l) = ----------------------- (9)
* log (1 - P_g*A(l)^-1)
*
* A is decision threshold
* P_g is probability of good model.
* k(i) is number of samples verified by i-th sprt.
* n0 is typically set to 0.05
* this equation does not have to be evaluated before nR < n0
* nR = (1 - P_g)^k
*/
int update (const Mat &model, int inlier_size) const override {
CV_UNUSED(model);
const auto &sprt_histories = sprt->getSPRTvector();
if (sprt_histories.size() <= 1)
return getStandardUpperBound(inlier_size);
const double epsilon = static_cast<double>(inlier_size) / points_size; // inlier probability
const double P_g = pow (epsilon, sample_size); // probability of good sample
double log_eta_lmin1 = 0;
int total_number_of_tested_samples = 0;
// compute log n(l-1), l is number of tests
for (const auto &test : sprt_histories) {
if (test.tested_samples == 0) continue;
log_eta_lmin1 += log (1 - P_g * (1 - pow (test.A,
-computeExponentH(test.epsilon, epsilon,test.delta)))) * test.tested_samples;
total_number_of_tested_samples += test.tested_samples;
}
// Implementation note: since η > ηR the equation (9) does not have to be evaluated
// before ηR < η0 is satisfied.
if (std::pow(1 - P_g, total_number_of_tested_samples) < log_eta_0)
return getStandardUpperBound(inlier_size);
// use decision threshold A for last test (l-th)
const double predicted_iters_sprt = total_number_of_tested_samples + (log_eta_0 - log_eta_lmin1) /
log (1 - P_g * (1 - 1 / sprt_histories.back().A)); // last A
if (std::isnan(predicted_iters_sprt) || std::isinf(predicted_iters_sprt))
return getStandardUpperBound(inlier_size);
if (predicted_iters_sprt < 0) return 0;
// compare with standard upper bound
if (predicted_iters_sprt < MAX_ITERATIONS)
return std::min(static_cast<int>(predicted_iters_sprt),
getStandardUpperBound(inlier_size));
return getStandardUpperBound(inlier_size);
}
private:
inline int getStandardUpperBound(int inlier_size) const {
const double predicted_iters = log_eta_0 / log(1 - std::pow
(static_cast<double>(inlier_size) / points_size, sample_size));
return (! std::isinf(predicted_iters) && predicted_iters < MAX_ITERATIONS) ?
static_cast<int>(predicted_iters) : MAX_ITERATIONS;
}
/*
* h(i) must hold
*
* δ(i) 1 - δ(i)
* ε (-----)^h(i) + (1 - ε) (--------)^h(i) = 1
* ε(i) 1 - ε(i)
*
* ε * a^h + (1 - ε) * b^h = 1
* Has numerical solution.
*/
static double computeExponentH (double epsilon, double epsilon_new, double delta) {
const double a = log (delta / epsilon); // log likelihood ratio
const double b = log ((1 - delta) / (1 - epsilon));
const double x0 = log (1 / (1 - epsilon_new)) / b;
const double v0 = epsilon_new * exp (x0 * a);
const double x1 = log ((1 - 2*v0) / (1 - epsilon_new)) / b;
const double v1 = epsilon_new * exp (x1 * a) + (1 - epsilon_new) * exp(x1 * b);
const double h = x0 - (x0 - x1) / (1 + v0 - v1) * v0;
if (std::isnan(h))
// The equation always has solution for h = 0
// ε * a^0 + (1 - ε) * b^0 = 1
// ε + 1 - ε = 1 -> 1 = 1
return 0;
return h;
}
};
Ptr<SPRTTermination> SPRTTermination::create(const Ptr<AdaptiveSPRT> &sprt_,
double confidence, int points_size_, int sample_size_, int max_iterations_) {
return makePtr<SPRTTerminationImpl>(sprt_, confidence, points_size_, sample_size_,
max_iterations_);
}
///////////////////////////// PROGRESSIVE-NAPSAC-SPRT TERMINATION /////////////////////////////////
class SPRTPNapsacTerminationImpl : public SPRTPNapsacTermination {
private:
SPRTTerminationImpl sprt_termination;
const double relax_coef, log_confidence;
const int points_size, sample_size, MAX_ITERS;
public:
SPRTPNapsacTerminationImpl (const Ptr<AdaptiveSPRT> &sprt,
double confidence, int points_size_, int sample_size_,
int max_iterations_, double relax_coef_)
: sprt_termination (sprt, confidence, points_size_, sample_size_,
max_iterations_),
relax_coef (relax_coef_), log_confidence(log(1-confidence)),
points_size (points_size_), sample_size (sample_size_),
MAX_ITERS (max_iterations_) {}
int update (const Mat &model, int inlier_number) const override {
int predicted_iterations = sprt_termination.update(model, inlier_number);
const double inlier_prob = static_cast<double>(inlier_number) / points_size + relax_coef;
if (inlier_prob >= 1)
return 0;
const double predicted_iters = log_confidence / log(1 - std::pow(inlier_prob, sample_size));
if (! std::isinf(predicted_iters) && predicted_iters < predicted_iterations)
return static_cast<int>(predicted_iters);
return std::min(MAX_ITERS, predicted_iterations);
}
};
Ptr<SPRTPNapsacTermination> SPRTPNapsacTermination::create(const Ptr<AdaptiveSPRT> &
sprt, double confidence, int points_size_, int sample_size_,
int max_iterations_, double relax_coef_) {
return makePtr<SPRTPNapsacTerminationImpl>(sprt, confidence, points_size_,
sample_size_, max_iterations_, relax_coef_);
}
////////////////////////////////////// PROSAC TERMINATION /////////////////////////////////////////
class ProsacTerminationCriteriaImpl : public ProsacTerminationCriteria {
private:
const double log_conf, beta, non_randomness_phi, inlier_threshold;
const int MAX_ITERATIONS, points_size, min_termination_length, sample_size;
const Ptr<ProsacSampler> sampler;
std::vector<int> non_random_inliers;
const Ptr<Error> error;
public:
ProsacTerminationCriteriaImpl (const Ptr<ProsacSampler> &sampler_,const Ptr<Error> &error_,
int points_size_, int sample_size_, double confidence, int max_iterations,
int min_termination_length_, double beta_, double non_randomness_phi_,
double inlier_threshold_, const std::vector<int> &non_rand_inliers) : log_conf(log(1-confidence)), beta(beta_),
non_randomness_phi(non_randomness_phi_), inlier_threshold(inlier_threshold_),
MAX_ITERATIONS(max_iterations), points_size (points_size_),
min_termination_length (min_termination_length_), sample_size(sample_size_),
sampler(sampler_), error (error_) {
CV_Assert(min_termination_length_ <= points_size_ && min_termination_length_ >= 0);
if (non_rand_inliers.empty())
init();
else non_random_inliers = non_rand_inliers;
}
void init () {
// m is sample_size, N is points_size
// non-randomness constraint
// The non-randomness requirement prevents PROSAC
// from selecting a solution supported by outliers that are
// by chance consistent with it. The constraint is typically
// checked ex-post in standard approaches [1]. The distribution
// of the cardinalities of sets of random ‘inliers’ is binomial
// i-th entry - inlier counts for termination up to i-th point (term length = i+1)
// initialize the data structures that determine stopping
// see probabilities description below.
non_random_inliers = std::vector<int>(points_size, 0);
std::vector<double> pn_i_arr(points_size, 0);
const double beta2compl_beta = beta / (1-beta);
const int step_n = 50, max_n = std::min(points_size, 1200);
for (int n = sample_size; n < points_size; n+=step_n) {
if (n > max_n) break; // skip expensive calculation
// P^R_n(i) = β^(i−m) (1−β)^(n−i+m) (n−m i−m). (7) i = m,...,N
// initial value for i = m = sample_size
// P^R_n(i=m) = β^(0) (1−β)^(n) (n-m 0) = (1-β)^(n)
// P^R_n(i=m+1) = β^(1) (1−β)^(n−1) (n−m 1) = P^R_n(i=m) * β / (1-β) * (n-m) / 1
// P^R_n(i=m+2) = β^(2) (1−β)^(n−2) (n−m 2) = P^R_n(i=m) * β^2 / (1-β)^2 * (n-m-1)(n-m) / 2
// So, for each i=m+1.., P^R_n(i+1) must be calculated as P^R_n(i) * β / (1-β) * (n-i+1) / (i-m)
pn_i_arr[sample_size-1] = std::pow(1-beta, n);
double pn_i = pn_i_arr[sample_size-1]; // prob of random inlier set of size i for subset size n
for (int i = sample_size+1; i <= n; i++) {
// use recurrent relation to fulfill remaining values
pn_i *= beta2compl_beta * static_cast<double>(n-i+1) / (i-sample_size);
// update
pn_i_arr[i-1] = pn_i;
}
// find minimum number of inliers satisfying the non-randomness constraint
// Imin n = min{j : n∑i=j P^R_n(i) < Ψ }. (8)
double acc = 0;
int i_min = sample_size; // there is always sample_size inliers
for (int i = n; i >= sample_size; i--) {
acc += pn_i_arr[i-1];
if (acc < non_randomness_phi) i_min = i;
else break;
}
non_random_inliers[n-1] = i_min;
}
// approximate values of binomial distribution using linear interpolation
for (int n = sample_size; n <= points_size; n+=step_n) {
if (n-1+step_n >= max_n) {
// copy rest of the values
std::fill(&non_random_inliers[0]+n-1, &non_random_inliers[0]+points_size, non_random_inliers[n-1]);
break;
}
const int non_rand_n = non_random_inliers[n-1];
const double step = (double)(non_random_inliers[n-1+step_n] - non_rand_n) / (double)step_n;
for (int i = 0; i < step_n-1; i++)
non_random_inliers[n+i] = (int)(non_rand_n + (i+1)*step);
}
}
const std::vector<int> &getNonRandomInliers () const override { return non_random_inliers; }
/*
* The PROSAC algorithm terminates if the number of inliers I_n*
* within the set U_n* satisfies the following conditions:
*
* non-randomness – the probability that I_n* out of n* (termination_length)
* data points are by chance inliers to an arbitrary incorrect model
* is smaller than Sigma (typically set to 5%)
*
* maximality – the probability that a solution with more than
* In* inliers in U_n* exists and was not found after k
* samples is smaller than eta_0 (typically set to 5%).
*/
int update (const Mat &model, int inliers_size) const override {
int t; return updateTerminationLength(model, inliers_size, t);
}
int updateTerminationLength (const Mat &model, int inliers_size, int &found_termination_length) const override {
found_termination_length = points_size;
int predicted_iterations = MAX_ITERATIONS;
/*
* The termination length n* is chosen to minimize k_n*(η0) subject to I_n* ≥ I_min n*;
* k_n*(η0) >= log(η0) / log(1 - (I_n* / n*)^m)
* g(k) <= n, I_n is number of inliers under termination length n.
*/
const auto &errors = error->getErrors(model);
// find number of inliers under g(k)
int num_inliers_under_termination_len = 0;
for (int pt = 0; pt < min_termination_length; pt++)
if (errors[pt] < inlier_threshold)
num_inliers_under_termination_len++;
for (int termination_len = min_termination_length; termination_len < points_size;termination_len++){
if (errors[termination_len /* = point*/] < inlier_threshold) {
num_inliers_under_termination_len++;
// non-random constraint must satisfy I_n* ≥ I_min n*.
if (num_inliers_under_termination_len < non_random_inliers[termination_len] || (double) num_inliers_under_termination_len/(points_size) < 0.2)
continue;
// add 1 to termination length since num_inliers_under_termination_len is updated
const double new_max_samples = log_conf/log(1-pow(static_cast<double>(num_inliers_under_termination_len)
/ (termination_len+1), sample_size));
if (! std::isinf(new_max_samples) && predicted_iterations > new_max_samples) {
predicted_iterations = static_cast<int>(new_max_samples);
if (predicted_iterations == 0) break;
found_termination_length = termination_len;
if (sampler != nullptr)
sampler->setTerminationLength(termination_len);
}
}
}
// compare also when termination length = points_size,
// so inliers under termination length is total number of inliers:
const double predicted_iters = log_conf / log(1 - std::pow
(static_cast<double>(inliers_size) / points_size, sample_size));
if (! std::isinf(predicted_iters) && predicted_iters < predicted_iterations)
return static_cast<int>(predicted_iters);
return predicted_iterations;
}
};
Ptr<ProsacTerminationCriteria>
ProsacTerminationCriteria::create(const Ptr<ProsacSampler> &sampler, const Ptr<Error> &error,
int points_size_, int sample_size_, double confidence, int max_iterations,
int min_termination_length_, double beta, double non_randomness_phi, double inlier_thresh,
const std::vector<int> &non_rand_inliers) {
return makePtr<ProsacTerminationCriteriaImpl> (sampler, error, points_size_, sample_size_,
confidence, max_iterations, min_termination_length_,
beta, non_randomness_phi, inlier_thresh, non_rand_inliers);
}
}}
|