File size: 36,024 Bytes
be94e5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.

#include "../precomp.hpp"
#include "../usac.hpp"
#include "opencv2/flann/miniflann.hpp"
#include <map>

namespace cv { namespace usac {
/*

SolvePoly is used to find only real roots of N-degree polynomial using Sturm sequence.

It recursively finds interval where a root lies, and the actual root is found using Regula-Falsi method.

*/
class SolvePoly : public SolverPoly {
private:
    static int sgn(double val) {
        return (double(0) < val) - (val < double(0));
    }
    class Poly {
    public:
        Poly () = default;
        Poly (const std::vector<double> &coef_) {
            coef = coef_;
            checkDegree();
        }
        Poly (const Poly &p) { coef = p.coef; }
        // a_n x^n + a_n-1 x^(n-1) + ... + a_1 x + a_0
        // coef[i] = a_i
        std::vector<double> coef = {0};
        inline int degree() const { return (int)coef.size()-1; }
        void multiplyScalar (double s) {
            // multiplies polynom by scalar
            if (fabs(s) < DBL_EPSILON) { // check if scalar is 0
                coef = {0};
                return;
            }
            for (double &c : coef) c *= s;
        }
        void checkDegree() {
            int deg = degree(); // approximate degree
            // check if coefficients of the highest power is non-zero
            while (fabs(coef[deg]) < DBL_EPSILON) {
                coef.pop_back(); // remove last zero element
                if (--deg == 0)
                    break;
            }
        }
        double eval (double x) const {
            // Horner method a0 + x (a1 + x (a2 + x (a3 + ... + x (an-1 + x an))))
            const int d = degree();
            double y = coef[d];
            for (int i = d; i >= 1; i--)
                y = coef[i-1] + x * y;
            return y;
        }
        // at +inf and -inf
        std::pair<int,int> signsAtInf () const {
            // lim x->+-inf p(x) = lim x->+-inf a_n x^n
            const int d = degree();
            const int s = sgn(coef[d]); // sign of the highest coefficient
            // compare even and odd degree
            return std::make_pair(s, d % 2 == 0 ? s : -s);
        }
        Poly derivative () const {
            Poly deriv;
            if (degree() == 0)
                return deriv;
            // derive.degree = poly.degree-1;
            deriv.coef = std::vector<double>(coef.size()-1);
            for (int i = degree(); i > 0; i--)
                // (a_n * x^n)' =  n * a_n * x^(n-1)
                deriv.coef[i-1] = i * coef[i];
            return deriv;
        }
        void copyFrom (const Poly &p) { coef = p.coef; }
    };
    // return remainder
    static void dividePoly (const Poly &p1, const Poly &p2, /*Poly &quotient,*/ Poly &remainder) {
        remainder.copyFrom(p1);
        int p2_degree = p2.degree(), remainder_degree = remainder.degree();
        if (p1.degree() < p2_degree)
            return;
        if (p2_degree == 0) { // special case for dividing polynomial by constant
            remainder.multiplyScalar(1/p2.coef[0]);
            // quotient.coef[0] = p2.coef[0];
            return;
        }
        // quotient.coef = std::vector<double>(p1.degree() - p2_degree + 1, 0);
        const double p2_term = 1/p2.coef[p2_degree];
        while (remainder_degree >= p2_degree) {
            const double temp = remainder.coef[remainder_degree] * p2_term;
            // quotient.coef[remainder_degree-p2_degree] = temp;
            // polynoms now have the same degree, but p2 is shorter than remainder
            for (int i = p2_degree, j = remainder_degree; i >= 0; i--, j--)
                remainder.coef[j] -= temp * p2.coef[i];
            remainder.checkDegree();
            remainder_degree = remainder.degree();
        }
    }

    constexpr static int REGULA_FALSI_MAX_ITERS = 500, MAX_POWER = 10, MAX_LEVEL = 200;
    constexpr static double TOLERANCE = 1e-10, DIFF_TOLERANCE = 1e-7;

    static bool findRootRegulaFalsi (const Poly &poly, double min, double max, double &root) {
        double f_min = poly.eval(min), f_max = poly.eval(max);
        if (f_min * f_max > 0 || min > max) {// conditions are not fulfilled
            return false;
        }
        int sign = 0, iter = 0;
        for (; iter < REGULA_FALSI_MAX_ITERS; iter++) {
            root = (f_min * max - f_max * min) / (f_min - f_max);
            const double f_root = poly.eval(root);
            if (fabs(f_root) < TOLERANCE || fabs(min - max) < DIFF_TOLERANCE) {
                return true; // root is found
            }

            if (f_root * f_max > 0) {
                max = root; f_max = f_root;
                if (sign == -1)
                    f_min *= 0.5;
                sign = -1;
            } else if (f_min * f_root > 0) {
                min = root; f_min = f_root;
                if (sign ==  1)
                    f_max *= 0.5;
                sign =  1;
            }
        }
        return false;
    }

    static int numberOfSignChanges (const std::vector<Poly> &sturm, double x) {
        int prev_sign = 0, sign_changes = 0;
        for (const auto &poly : sturm) {
            const int s = sgn(poly.eval(x));
            if (s != 0 && prev_sign != 0 && s != prev_sign)
                sign_changes++;
            prev_sign = s;
        }
        return sign_changes;
    }

    static void findRootsRecursive (const Poly &poly, const std::vector<Poly> &sturm, double min, double max,

            int sign_changes_at_min, int sign_changes_at_max, std::vector<double> &roots, int level) {
        const int num_roots = sign_changes_at_min - sign_changes_at_max;
        if (level == MAX_LEVEL) {
            // roots are too close
            const double mid = (min + max) * 0.5;
            if (fabs(poly.eval(mid)) < DBL_EPSILON) {
                roots.emplace_back(mid);
            }
        } else if (num_roots == 1) {
            double root;
            if (findRootRegulaFalsi(poly, min, max, root)) {
                roots.emplace_back(root);
            }
        } else if (num_roots > 1) { // at least 2 roots
            const double mid = (min + max) * 0.5;
            const int sign_changes_at_mid = numberOfSignChanges(sturm, mid);
            // try to split interval equally for the roots
            if (sign_changes_at_min - sign_changes_at_mid > 0)
                findRootsRecursive(poly, sturm, min, mid, sign_changes_at_min, sign_changes_at_mid, roots, level+1);
            if (sign_changes_at_mid - sign_changes_at_max > 0)
                findRootsRecursive(poly, sturm, mid, max, sign_changes_at_mid, sign_changes_at_max, roots, level+1);
        }
    }
public:
    int getRealRoots (const std::vector<double> &coeffs, std::vector<double> &real_roots) override {
        if (coeffs.empty())
            return 0;
        for (auto c : coeffs)
            if (cvIsNaN(c) || cvIsInf(c))
                return 0;
        Poly input(coeffs);
        if (input.degree() < 1)
            return 0;
        // derivative of input polynomial
        const Poly input_der = input.derivative();
        /////////// build Sturm sequence //////////
        Poly p (input), q (input_der), remainder;
        std::vector<std::pair<int,int>> signs_at_inf; signs_at_inf.reserve(p.degree()); // +inf, -inf pair
        signs_at_inf.emplace_back(p.signsAtInf());
        signs_at_inf.emplace_back(q.signsAtInf());
        std::vector<Poly> sturm_sequence; sturm_sequence.reserve(input.degree());
        sturm_sequence.emplace_back(input);
        sturm_sequence.emplace_back(input_der);
         while (q.degree() > 0) {
            dividePoly(p, q, remainder);
            remainder.multiplyScalar(-1);
            p.copyFrom(q);
            q.copyFrom(remainder);
            sturm_sequence.emplace_back(remainder);
            signs_at_inf.emplace_back(remainder.signsAtInf());
        }
        ////////// find changes in signs of Sturm sequence /////////
        int num_sign_changes_at_pos_inf = 0, num_sign_changes_at_neg_inf = 0;
        int prev_sign_pos_inf = signs_at_inf[0].first, prev_sign_neg_inf = signs_at_inf[0].second;
        for (int i = 1; i < (int)signs_at_inf.size(); i++) {
            const auto s_pos_inf = signs_at_inf[i].first, s_neg_inf = signs_at_inf[i].second;
            // zeros must be ignored
            if (s_pos_inf != 0) {
                if (prev_sign_pos_inf != 0 && prev_sign_pos_inf != s_pos_inf)
                    num_sign_changes_at_pos_inf++;
                prev_sign_pos_inf = s_pos_inf;
            }
            if (s_neg_inf != 0) {
                if (prev_sign_neg_inf != 0 && prev_sign_neg_inf != s_neg_inf)
                    num_sign_changes_at_neg_inf++;
                prev_sign_neg_inf = s_neg_inf;
            }
        }
        ////////// find roots' bounds for numerical method for roots finding /////////
        double root_neg_bound = -0.01, root_pos_bound = 0.01;
        int num_sign_changes_min_x = -1, num_sign_changes_pos_x = -1; // -1 = unknown, trigger next if condition
        for (int i = 0; i < MAX_POWER; i++) {
            if (num_sign_changes_min_x != num_sign_changes_at_neg_inf) {
                root_neg_bound *= 10;
                num_sign_changes_min_x = numberOfSignChanges(sturm_sequence, root_neg_bound);
            }
            if (num_sign_changes_pos_x != num_sign_changes_at_pos_inf) {
                root_pos_bound *= 10;
                num_sign_changes_pos_x = numberOfSignChanges(sturm_sequence, root_pos_bound);
            }
        }
        /////////// get real roots //////////
        real_roots.clear();
        findRootsRecursive(input, sturm_sequence, root_neg_bound, root_pos_bound, num_sign_changes_min_x, num_sign_changes_pos_x, real_roots, 0 /*level*/);
        ///////////////////////////////
        if ((int)real_roots.size() > input.degree())
            real_roots.resize(input.degree()); // must not happen, unless some roots repeat
        return (int) real_roots.size();
    }
};
Ptr<SolverPoly> SolverPoly::create() {
    return makePtr<SolvePoly>();
}

double Utils::getCalibratedThreshold (double threshold, const Mat &K1, const Mat &K2) {
    const auto * const k1 = (double *) K1.data, * const k2 = (double *) K2.data;
    return threshold / ((k1[0] + k1[4] + k2[0] + k2[4]) / 4.0);
}

/*

 * K1, K2 are 3x3 intrinsics matrices

 * points is matrix of size |N| x 4

 * Assume K = [k11 k12 k13

 *              0  k22 k23

 *              0   0   1]

 */
void Utils::calibratePoints (const Mat &K1, const Mat &K2, const Mat &points, Mat &calib_points) {
    const auto * const points_ = (float *) points.data;
    const auto * const k1 = (double *) K1.data;
    const auto inv1_k11 = float(1 / k1[0]); // 1 / k11
    const auto inv1_k12 = float(-k1[1] / (k1[0]*k1[4])); // -k12 / (k11*k22)
    // (-k13*k22 + k12*k23) / (k11*k22)
    const auto inv1_k13 = float((-k1[2]*k1[4] + k1[1]*k1[5]) / (k1[0]*k1[4]));
    const auto inv1_k22 = float(1 / k1[4]); // 1 / k22
    const auto inv1_k23 = float(-k1[5] / k1[4]); // -k23 / k22

    const auto * const k2 = (double *) K2.data;
    const auto inv2_k11 = float(1 / k2[0]);
    const auto inv2_k12 = float(-k2[1] / (k2[0]*k2[4]));
    const auto inv2_k13 = float((-k2[2]*k2[4] + k2[1]*k2[5]) / (k2[0]*k2[4]));
    const auto inv2_k22 = float(1 / k2[4]);
    const auto inv2_k23 = float(-k2[5] / k2[4]);

    calib_points = Mat ( points.rows, 4, points.type());
    auto * calib_points_ = (float *) calib_points.data;

    for (int i = 0; i <  points.rows; i++) {
        const int idx = 4*i;
        (*calib_points_++) = inv1_k11 * points_[idx  ] + inv1_k12 * points_[idx+1] + inv1_k13;
        (*calib_points_++) =                             inv1_k22 * points_[idx+1] + inv1_k23;
        (*calib_points_++) = inv2_k11 * points_[idx+2] + inv2_k12 * points_[idx+3] + inv2_k13;
        (*calib_points_++) =                             inv2_k22 * points_[idx+3] + inv2_k23;
    }
}

/*

 * K is 3x3 intrinsic matrix

 * points is matrix of size |N| x 5, first two columns are image points [u_i, v_i]

 * calib_norm_pts are  K^-1 [u v 1]^T / ||K^-1 [u v 1]^T||

 */
void Utils::calibrateAndNormalizePointsPnP (const Mat &K, const Mat &pts, Mat &calib_norm_pts) {
    const auto * const points = (float *) pts.data;
    const auto * const k = (double *) K.data;
    const auto inv_k11 = float(1 / k[0]);
    const auto inv_k12 = float(-k[1] / (k[0]*k[4]));
    const auto inv_k13 = float((-k[2]*k[4] + k[1]*k[5]) / (k[0]*k[4]));
    const auto inv_k22 = float(1 / k[4]);
    const auto inv_k23 = float(-k[5] / k[4]);

    calib_norm_pts = Mat (pts.rows, 3, pts.type());
    auto * calib_norm_pts_ = (float *) calib_norm_pts.data;

    for (int i = 0; i < pts.rows; i++) {
        const int idx = 5 * i;
        const float k_inv_u = inv_k11 * points[idx] + inv_k12 * points[idx+1] + inv_k13;
        const float k_inv_v =                         inv_k22 * points[idx+1] + inv_k23;
        const float norm = 1.f / sqrtf(k_inv_u*k_inv_u + k_inv_v*k_inv_v + 1);
        (*calib_norm_pts_++) = k_inv_u * norm;
        (*calib_norm_pts_++) = k_inv_v * norm;
        (*calib_norm_pts_++) =           norm;
    }
}

void Utils::normalizeAndDecalibPointsPnP (const Mat &K_, Mat &pts, Mat &calib_norm_pts) {
    const auto * const K = (double *) K_.data;
    const auto k11 = (float)K[0], k12 = (float)K[1], k13 = (float)K[2],
               k22 = (float)K[4], k23 = (float)K[5];
    calib_norm_pts = Mat (pts.rows, 3, pts.type());
    auto * points = (float *) pts.data;
    auto * calib_norm_pts_ = (float *) calib_norm_pts.data;

    for (int i = 0; i < pts.rows; i++) {
        const int idx = 5 * i;
        const float k_inv_u = points[idx  ];
        const float k_inv_v = points[idx+1];
        const float norm = 1.f / sqrtf(k_inv_u*k_inv_u + k_inv_v*k_inv_v + 1);
        (*calib_norm_pts_++) = k_inv_u * norm;
        (*calib_norm_pts_++) = k_inv_v * norm;
        (*calib_norm_pts_++) =           norm;
        points[idx  ] = k11 * k_inv_u + k12 * k_inv_v + k13;
        points[idx+1] =                 k22 * k_inv_v + k23;
    }
}
/*

 * decompose Projection Matrix to calibration, rotation and translation

 * Assume K = [fx  0   tx

 *             0   fy  ty

 *             0   0   1]

 */
void Utils::decomposeProjection (const Mat &P, Matx33d &K, Matx33d &R, Vec3d &t, bool same_focal) {
    const Matx33d M = P.colRange(0,3);
    double scale = norm(M.row(2)); scale *= scale;
    K = Matx33d::eye();
    K(1,2) = M.row(1).dot(M.row(2)) / scale;
    K(0,2) = M.row(0).dot(M.row(2)) / scale;
    K(1,1) = sqrt(M.row(1).dot(M.row(1)) / scale - K(1,2)*K(1,2));
    K(0,0) = sqrt(M.row(0).dot(M.row(0)) / scale - K(0,2)*K(0,2));
    if (same_focal)
        K(0,0) = K(1,1) = (K(0,0) + K(1,1)) / 2;
    R = K.inv() * M / sqrt(scale);
    if (determinant(M) < 0) R *= -1;
    t = R * M.inv() * Vec3d(P.col(3));
}

double Utils::getPoissonCDF (double lambda, int inliers) {
    double exp_lambda = exp(-lambda), cdf = exp_lambda, lambda_i_div_fact_i = 1;
    for (int i = 1; i <= inliers; i++) {
        lambda_i_div_fact_i *= (lambda / i);
        cdf += exp_lambda * lambda_i_div_fact_i;
        if (fabs(cdf - 1) < DBL_EPSILON) // cdf is almost 1
            break;
    }
    return cdf;
}

// since F(E) has rank 2 we use cross product to compute epipole,
// since the third column / row is linearly dependent on two first
// this is faster than SVD
// It is recommended to normalize F, such that ||F|| = 1
Vec3d Utils::getLeftEpipole (const Mat &F/*E*/) {
    Vec3d _e = F.col(0).cross(F.col(2)); // F^T e' = 0; e'^T F = 0
    const auto * const e = _e.val;
    if (e[0] <= DBL_EPSILON && e[0] > -DBL_EPSILON &&
        e[1] <= DBL_EPSILON && e[1] > -DBL_EPSILON &&
        e[2] <= DBL_EPSILON && e[2] > -DBL_EPSILON)
        _e = Vec3d(Mat(F.col(1))).cross(F.col(2));  // if e' is zero
    return _e; // e'
}
Vec3d Utils::getRightEpipole (const Mat &F/*E*/) {
    Vec3d _e = F.row(0).cross(F.row(2)); // Fe = 0
    const auto * const e = _e.val;
    if (e[0] <= DBL_EPSILON && e[0] > -DBL_EPSILON &&
        e[1] <= DBL_EPSILON && e[1] > -DBL_EPSILON &&
        e[2] <= DBL_EPSILON && e[2] > -DBL_EPSILON)
        _e = F.row(1).cross(F.row(2));  // if e is zero
    return _e;
}

void Utils::densitySort (const Mat &points, int knn, Mat &sorted_points, std::vector<int> &sorted_mask) {
    // mask of sorted points (array of indexes)
    const int points_size = points.rows, dim = points.cols;
    sorted_mask = std::vector<int >(points_size);
    for (int i = 0; i < points_size; i++)
        sorted_mask[i] = i;

    // get neighbors
    FlannNeighborhoodGraph &graph = *FlannNeighborhoodGraph::create(points, points_size, knn,
            true /*get distances */, 6, 1);

    std::vector<double> sum_knn_distances (points_size, 0);
    for (int p = 0; p < points_size; p++) {
        const std::vector<double> &dists = graph.getNeighborsDistances(p);
        for (int k = 0; k < knn; k++)
            sum_knn_distances[p] += dists[k];
    }

    // compare by sum of distances to k nearest neighbors.
    std::sort(sorted_mask.begin(), sorted_mask.end(), [&](int a, int b) {
        return sum_knn_distances[a] < sum_knn_distances[b];
    });

    // copy array of points to array with sorted points
    // using @sorted_idx mask of sorted points indexes

    sorted_points = Mat(points_size, dim, points.type());
    const auto * const points_ptr = (float *) points.data;
    auto * spoints_ptr = (float *) sorted_points.data;
    for (int i = 0; i < points_size; i++) {
        const int pt2 = sorted_mask[i] * dim;
        for (int j = 0; j < dim; j++)
            (*spoints_ptr++) =  points_ptr[pt2+j];
    }
}

Matx33d Math::getSkewSymmetric(const Vec3d &v) {
     return {0,    -v[2], v[1],
             v[2],  0,   -v[0],
            -v[1],  v[0], 0};
}

Matx33d Math::rotVec2RotMat (const Vec3d &v) {
    const double phi = sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]);
    const double x = v[0] / phi, y = v[1] / phi, z = v[2] / phi;
    const double a = sin(phi), b = cos(phi);
    // R = I + sin(phi) * skew(v) + (1 - cos(phi) * skew(v)^2
    return {(b - 1)*y*y + (b - 1)*z*z + 1, -a*z - x*y*(b - 1), a*y - x*z*(b - 1),
     a*z - x*y*(b - 1), (b - 1)*x*x + (b - 1)*z*z + 1, -a*x - y*z*(b - 1),
    -a*y - x*z*(b - 1), a*x - y*z*(b - 1), (b - 1)*x*x + (b - 1)*y*y + 1};
}

Vec3d Math::rotMat2RotVec (const Matx33d &R) {
    // https://math.stackexchange.com/questions/83874/efficient-and-accurate-numerical-implementation-of-the-inverse-rodrigues-rotatio?rq=1
    Vec3d rot_vec;
    const double trace = R(0,0)+R(1,1)+R(2,2);
    if (trace >= 3 - FLT_EPSILON) {
        rot_vec = (0.5 * (trace-3)/12)*Vec3d(R(2,1)-R(1,2),
                                             R(0,2)-R(2,0),
                                             R(1,0)-R(0,1));
    } else if (3 - FLT_EPSILON > trace && trace > -1 + FLT_EPSILON) {
        double theta = acos((trace - 1) / 2);
        rot_vec = (theta / (2 * sin(theta))) * Vec3d(R(2,1)-R(1,2),
                                                     R(0,2)-R(2,0),
                                                     R(1,0)-R(0,1));
    } else {
        int a;
        if (R(0,0) > R(1,1))
            a = R(0,0) > R(2,2) ? 0 : 2;
        else
            a = R(1,1) > R(2,2) ? 1 : 2;
        Vec3d v;
        int b = (a + 1) % 3, c = (a + 2) % 3;
        double s = sqrt(R(a,a) - R(b,b) - R(c,c) + 1);
        v[a] = s / 2;
        v[b] = (R(b,a) + R(a,b)) / (2 * s);
        v[c] = (R(c,a) + R(a,c)) / (2 * s);
        rot_vec = M_PI * v / norm(v);
    }
    return rot_vec;
}

/*

 * Eliminate matrix of m rows and n columns to be upper triangular.

 */
bool Math::eliminateUpperTriangular (std::vector<double> &a, int m, int n) {
    for (int r = 0; r < m; r++){
        double pivot = a[r*n+r];
        int row_with_pivot = r;

        // find the maximum pivot value among r-th column
        for (int k = r+1; k < m; k++)
            if (fabs(pivot) < fabs(a[k*n+r])) {
                pivot = a[k*n+r];
                row_with_pivot = k;
            }

        // if pivot value is 0 continue
        if (fabs(pivot) < DBL_EPSILON)
            continue;

        // swap row with maximum pivot value with current row
        for (int c = r; c < n; c++)
            std::swap(a[row_with_pivot*n+c], a[r*n+c]);

        // eliminate other rows
        for (int j = r+1; j < m; j++){
            const int row_idx1 = j*n, row_idx2 = r*n;
            const auto fac = a[row_idx1+r] / pivot;
            a[row_idx1+r] = 0; // zero eliminated element
            for (int c = r+1; c < n; c++)
                a[row_idx1+c] -= fac * a[row_idx2+c];
        }
    }
    return true;
}

double Utils::intersectionOverUnion (const std::vector<bool> &a, const std::vector<bool> &b) {
    int intersects = 0, unions = 0;
    for (int i = 0; i < (int)a.size(); i++)
        if (a[i] || b[i]) {
            unions++; // one value is true
            if (a[i] && b[i])
                intersects++; // a[i] == b[i] and if they both true
        }
    if (unions == 0) return 0.0;
    return (double) intersects / unions;
}

//////////////////////////////////////// RANDOM GENERATOR /////////////////////////////
class UniformRandomGeneratorImpl : public UniformRandomGenerator {
private:
    int subset_size = 0, max_range = 0;
    std::vector<int> subset;
    RNG rng;
public:
    explicit UniformRandomGeneratorImpl (int state) : rng(state) {}

    // interval is <0; max_range);
    UniformRandomGeneratorImpl (int state, int max_range_, int subset_size_) : rng(state) {
        subset_size = subset_size_;
        max_range = max_range_;
        subset = std::vector<int>(subset_size_);
    }
    int getRandomNumber () override {
        return rng.uniform(0, max_range);
    }
    int getRandomNumber (int max_rng) override {
        return rng.uniform(0, max_rng);
    }
    // closed range
    void resetGenerator (int max_range_) override {
        CV_CheckGE(0, max_range_, "max range must be greater than 0");
        max_range = max_range_;
    }

    void generateUniqueRandomSet (std::vector<int>& sample) override {
        CV_CheckLE(subset_size, max_range, "RandomGenerator. Subset size must be LE than range!");
        int j, num;
        sample[0] = rng.uniform(0, max_range);
        for (int i = 1; i < subset_size;) {
            num = rng.uniform(0, max_range);
            // check if value is in array
            for (j = i - 1; j >= 0; j--)
                if (num == sample[j])
                    // if so, generate again
                    break;
            // success, value is not in array, so it is unique, add to sample.
            if (j == -1) sample[i++] = num;
        }
    }

    // interval is <0; max_range)
    void generateUniqueRandomSet (std::vector<int>& sample, int max_range_) override {
        /*

         * if subset size is bigger than range then array cannot be unique,

         * so function has infinite loop.

         */
        CV_CheckLE(subset_size, max_range_, "RandomGenerator. Subset size must be LE than range!");
        int num, j;
        sample[0] = rng.uniform(0, max_range_);
        for (int i = 1; i < subset_size;) {
            num = rng.uniform(0, max_range_);
            for (j = i - 1; j >= 0; j--)
                if (num == sample[j])
                    break;
            if (j == -1) sample[i++] = num;
        }
    }

    // interval is <0, max_range)
    void generateUniqueRandomSet (std::vector<int>& sample, int subset_size_, int max_range_) override {
        CV_CheckLE(subset_size_, max_range_, "RandomGenerator. Subset size must be LE than range!");
        int num, j;
        sample[0] = rng.uniform(0, max_range_);
        for (int i = 1; i < subset_size_;) {
            num = rng.uniform(0, max_range_);
            for (j = i - 1; j >= 0; j--)
                if (num == sample[j])
                    break;
            if (j == -1) sample[i++] = num;
        }
    }
    const std::vector<int> &generateUniqueRandomSubset (std::vector<int> &array1, int size1) override {
        CV_CheckLE(subset_size, size1, "RandomGenerator. Subset size must be LE than range!");
        int temp_size1 = size1;
        for (int i = 0; i < subset_size; i++) {
            const int idx1 = rng.uniform(0, temp_size1);
            subset[i] = array1[idx1];
            std::swap(array1[idx1], array1[--temp_size1]);
        }
        return subset;
    }
    void setSubsetSize (int subset_size_) override {
        if (subset_size < subset_size_)
            subset.resize(subset_size_);
        subset_size = subset_size_;
    }
    int getSubsetSize () const override { return subset_size; }
};

Ptr<UniformRandomGenerator> UniformRandomGenerator::create (int state) {
    return makePtr<UniformRandomGeneratorImpl>(state);
}
Ptr<UniformRandomGenerator> UniformRandomGenerator::create

        (int state, int max_range, int subset_size_) {
    return makePtr<UniformRandomGeneratorImpl>(state, max_range, subset_size_);
}

// @k_minth - desired k-th minimal element. For median is half of array
// closed working interval of array <@left; @right>
float quicksort_median (std::vector<float> &array, int k_minth, int left, int right);
float quicksort_median (std::vector<float> &array, int k_minth, int left, int right) {
    // length is 0, return single value
    if (right - left == 0) return array[left];

    // get pivot, the rightest value in array
    const auto pivot = array[right];
    int right_ = right - 1; // -1, not including pivot
    // counter of values smaller equal than pivot
    int j = left, values_less_eq_pivot = 1; // 1, inludes pivot already
    for (; j <= right_;) {
        if (array[j] <= pivot) {
            j++;
            values_less_eq_pivot++;
        } else
            // value is bigger than pivot, swap with right_ value
            // swap values in array and decrease interval
            std::swap(array[j], array[right_--]);
    }
    if (values_less_eq_pivot == k_minth) return pivot;
    if (k_minth > values_less_eq_pivot)
        return quicksort_median(array, k_minth - values_less_eq_pivot, j, right-1);
    else
        return quicksort_median(array, k_minth, left, j-1);
}

// find median using quicksort with complexity O(log n)
// Note, function changes order of values in array
float Utils::findMedian (std::vector<float> &array) {
    const int length = static_cast<int>(array.size());
    if (length % 2) {
        // odd number of values
        return quicksort_median (array, length/2+1, 0, length-1);
    } else {
        // even: return average
        return (quicksort_median(array, length/2  , 0, length-1) +
                quicksort_median(array, length/2+1, 0, length-1))*.5f;
    }
}

///////////////////////////////// Radius Search Graph /////////////////////////////////////////////
class RadiusSearchNeighborhoodGraphImpl : public RadiusSearchNeighborhoodGraph {
private:
    std::vector<std::vector<int>> graph;
public:
    RadiusSearchNeighborhoodGraphImpl (const Mat &container_, int points_size,
               double radius, int flann_search_params, int num_kd_trees) {
        // Radius search OpenCV works only with float data
        CV_Assert(container_.type() == CV_32F);

        FlannBasedMatcher flann(makePtr<flann::KDTreeIndexParams>(num_kd_trees), makePtr<flann::SearchParams>(flann_search_params));
        std::vector<std::vector<DMatch>> neighbours;
        flann.radiusMatch(container_, container_, neighbours, (float)radius);

        // allocate graph
        graph = std::vector<std::vector<int>> (points_size);

        int pt = 0;
        for (const auto &n : neighbours) {
            if (n.size() <= 1)
                continue;
            auto &graph_row = graph[pt];
            graph_row = std::vector<int>(n.size()-1);
            int j = 0;
            for (const auto &idx : n)
                // skip neighbor which has the same index as requested point
                if (idx.trainIdx != pt)
                    graph_row[j++] = idx.trainIdx;
            pt++;
        }
    }
    const std::vector<std::vector<int>> &getGraph () const override { return graph; }
    inline const std::vector<int> &getNeighbors(int point_idx) const override {
        return graph[point_idx];
    }
};
Ptr<RadiusSearchNeighborhoodGraph> RadiusSearchNeighborhoodGraph::create (const Mat &points,

        int points_size, double radius_, int flann_search_params, int num_kd_trees) {
    return makePtr<RadiusSearchNeighborhoodGraphImpl> (points, points_size, radius_,
            flann_search_params, num_kd_trees);
}

///////////////////////////////// FLANN Graph /////////////////////////////////////////////
class FlannNeighborhoodGraphImpl : public FlannNeighborhoodGraph {
private:
    std::vector<std::vector<int>> graph;
    std::vector<std::vector<double>> distances;
public:
    FlannNeighborhoodGraphImpl (const Mat &container_, int points_size, int k_nearest_neighbors,
            bool get_distances, int flann_search_params_, int num_kd_trees) {
        CV_Assert(k_nearest_neighbors <= points_size);
        // FLANN works only with float data
        CV_Assert(container_.type() == CV_32F);

        flann::Index flannIndex (container_.reshape(1), flann::KDTreeIndexParams(num_kd_trees));
        Mat dists, nearest_neighbors;

        flannIndex.knnSearch(container_, nearest_neighbors, dists, k_nearest_neighbors+1,
                flann::SearchParams(flann_search_params_));

        // first nearest neighbor of point is this point itself.
        // remove this first column
        nearest_neighbors.colRange(1, k_nearest_neighbors+1).copyTo (nearest_neighbors);

        graph = std::vector<std::vector<int>>(points_size, std::vector<int>(k_nearest_neighbors));
        const auto * const nn = (int *) nearest_neighbors.data;
        const auto * const dists_ptr = (float *) dists.data;

        if (get_distances)
            distances = std::vector<std::vector<double>>(points_size, std::vector<double>(k_nearest_neighbors));

        for (int pt = 0; pt < points_size; pt++) {
            std::copy(nn + k_nearest_neighbors*pt, nn + k_nearest_neighbors*pt + k_nearest_neighbors, &graph[pt][0]);
            if (get_distances)
                std::copy(dists_ptr + k_nearest_neighbors*pt, dists_ptr + k_nearest_neighbors*pt + k_nearest_neighbors,
                          &distances[pt][0]);
        }
    }
    const std::vector<double>& getNeighborsDistances (int idx) const override {
        return distances[idx];
    }
    const std::vector<std::vector<int>> &getGraph () const override { return graph; }
    inline const std::vector<int> &getNeighbors(int point_idx) const override {
        // CV_Assert(point_idx_ < num_vertices);
        return graph[point_idx];
    }
};

Ptr<FlannNeighborhoodGraph> FlannNeighborhoodGraph::create(const Mat &points,

           int points_size, int k_nearest_neighbors_, bool get_distances,

           int flann_search_params_, int num_kd_trees) {
    return makePtr<FlannNeighborhoodGraphImpl>(points, points_size,
        k_nearest_neighbors_, get_distances, flann_search_params_, num_kd_trees);
}

///////////////////////////////// Grid Neighborhood Graph /////////////////////////////////////////
class GridNeighborhoodGraphImpl : public GridNeighborhoodGraph {
private:
    // This struct is used for the nearest neighbors search by griding two images.
    struct CellCoord {
        int c1x, c1y, c2x, c2y;
        CellCoord (int c1x_, int c1y_, int c2x_, int c2y_) {
            c1x = c1x_; c1y = c1y_; c2x = c2x_; c2y = c2y_;
        }
        bool operator==(const CellCoord &o) const {
            return c1x == o.c1x && c1y == o.c1y && c2x == o.c2x && c2y == o.c2y;
        }
        bool operator<(const CellCoord &o) const {
            if (c1x < o.c1x) return true;
            if (c1x == o.c1x && c1y < o.c1y) return true;
            if (c1x == o.c1x && c1y == o.c1y && c2x < o.c2x) return true;
            return c1x == o.c1x && c1y == o.c1y && c2x == o.c2x && c2y < o.c2y;
        }
    };

    std::vector<std::vector<int>> graph;
public:
    GridNeighborhoodGraphImpl (const Mat &container_, int points_size,
          int cell_size_x_img1, int cell_size_y_img1, int cell_size_x_img2, int cell_size_y_img2,
          int max_neighbors) {

        std::map<CellCoord, std::vector<int >> neighbors_map;
        const auto * const container = (float *) container_.data;
        // <int, int, int, int> -> {neighbors set}
        // Key is cell position. The value is indexes of neighbors.

        const float cell_sz_x1 = 1.f / (float) cell_size_x_img1,
                    cell_sz_y1 = 1.f / (float) cell_size_y_img1,
                    cell_sz_x2 = 1.f / (float) cell_size_x_img2,
                    cell_sz_y2 = 1.f / (float) cell_size_y_img2;
        const int dimension = container_.cols;
        for (int i = 0; i < points_size; i++) {
            const int idx = dimension * i;
            neighbors_map[CellCoord((int)(container[idx  ] * cell_sz_x1),
                                    (int)(container[idx+1] * cell_sz_y1),
                                    (int)(container[idx+2] * cell_sz_x2),
                                    (int)(container[idx+3] * cell_sz_y2))].emplace_back(i);
        }

        //--------- create a graph ----------
        graph = std::vector<std::vector<int>>(points_size);

        // store neighbors cells into graph (2D vector)
        for (const auto &cell : neighbors_map) {
            const int neighbors_in_cell = static_cast<int>(cell.second.size());
            // only one point in cell -> no neighbors
            if (neighbors_in_cell < 2) continue;

            const std::vector<int> &neighbors = cell.second;
            // ---------- fill graph -----
            for (int v_in_cell : neighbors) {
                // there is always at least one neighbor
                auto &graph_row = graph[v_in_cell];
                graph_row = std::vector<int>(std::min(max_neighbors, neighbors_in_cell-1));
                int j = 0;
                for (int n : neighbors)
                    if (n != v_in_cell){
                        graph_row[j++] = n;
                        if (j >= max_neighbors)
                            break;
                    }
            }
        }
    }
    const std::vector<std::vector<int>> &getGraph () const override { return graph; }
    inline const std::vector<int> &getNeighbors(int point_idx) const override {
        // Note, neighbors vector also includes point_idx!
        // return neighbors_map[vertices_to_cells[point_idx]];
        return graph[point_idx];
    }
};

Ptr<GridNeighborhoodGraph> GridNeighborhoodGraph::create(const Mat &points,

     int points_size, int cell_size_x_img1_, int cell_size_y_img1_,

     int cell_size_x_img2_, int cell_size_y_img2_, int max_neighbors) {
    return makePtr<GridNeighborhoodGraphImpl>(points, points_size,
      cell_size_x_img1_, cell_size_y_img1_, cell_size_x_img2_, cell_size_y_img2_, max_neighbors);
}
}}