File size: 6,561 Bytes
be94e5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
//=============================================================================
//
// fed.cpp
// Authors: Pablo F. Alcantarilla (1), Jesus Nuevo (2)
// Institutions: Georgia Institute of Technology (1)
// TrueVision Solutions (2)
// Date: 15/09/2013
// Email: pablofdezalc@gmail.com
//
// AKAZE Features Copyright 2013, Pablo F. Alcantarilla, Jesus Nuevo
// All Rights Reserved
// See LICENSE for the license information
//=============================================================================
/**
* @file fed.cpp
* @brief Functions for performing Fast Explicit Diffusion and building the
* nonlinear scale space
* @date Sep 15, 2013
* @author Pablo F. Alcantarilla, Jesus Nuevo
* @note This code is derived from FED/FJ library from Grewenig et al.,
* The FED/FJ library allows solving more advanced problems
* Please look at the following papers for more information about FED:
* [1] S. Grewenig, J. Weickert, C. Schroers, A. Bruhn. Cyclic Schemes for
* PDE-Based Image Analysis. Technical Report No. 327, Department of Mathematics,
* Saarland University, Saarbrücken, Germany, March 2013
* [2] S. Grewenig, J. Weickert, A. Bruhn. From box filtering to fast explicit diffusion.
* DAGM, 2010
*
*/
#include "../precomp.hpp"
#include "fed.h"
using namespace std;
//*************************************************************************************
//*************************************************************************************
/**
* @brief This function allocates an array of the least number of time steps such
* that a certain stopping time for the whole process can be obtained and fills
* it with the respective FED time step sizes for one cycle
* The function returns the number of time steps per cycle or 0 on failure
* @param T Desired process stopping time
* @param M Desired number of cycles
* @param tau_max Stability limit for the explicit scheme
* @param reordering Reordering flag
* @param tau The vector with the dynamic step sizes
*/
int fed_tau_by_process_time(const float& T, const int& M, const float& tau_max,
const bool& reordering, std::vector<float>& tau) {
// All cycles have the same fraction of the stopping time
return fed_tau_by_cycle_time(T/(float)M,tau_max,reordering,tau);
}
//*************************************************************************************
//*************************************************************************************
/**
* @brief This function allocates an array of the least number of time steps such
* that a certain stopping time for the whole process can be obtained and fills it
* it with the respective FED time step sizes for one cycle
* The function returns the number of time steps per cycle or 0 on failure
* @param t Desired cycle stopping time
* @param tau_max Stability limit for the explicit scheme
* @param reordering Reordering flag
* @param tau The vector with the dynamic step sizes
*/
int fed_tau_by_cycle_time(const float& t, const float& tau_max,
const bool& reordering, std::vector<float> &tau) {
int n = 0; // Number of time steps
float scale = 0.0; // Ratio of t we search to maximal t
// Compute necessary number of time steps
n = cvCeil(sqrtf(3.0f*t/tau_max+0.25f)-0.5f-1.0e-8f);
scale = 3.0f*t/(tau_max*(float)(n*(n+1)));
// Call internal FED time step creation routine
return fed_tau_internal(n,scale,tau_max,reordering,tau);
}
//*************************************************************************************
//*************************************************************************************
/**
* @brief This function allocates an array of time steps and fills it with FED
* time step sizes
* The function returns the number of time steps per cycle or 0 on failure
* @param n Number of internal steps
* @param scale Ratio of t we search to maximal t
* @param tau_max Stability limit for the explicit scheme
* @param reordering Reordering flag
* @param tau The vector with the dynamic step sizes
*/
int fed_tau_internal(const int& n, const float& scale, const float& tau_max,
const bool& reordering, std::vector<float> &tau) {
float c = 0.0, d = 0.0; // Time savers
vector<float> tauh; // Helper vector for unsorted taus
if (n <= 0) {
return 0;
}
// Allocate memory for the time step size
tau = vector<float>(n);
if (reordering) {
tauh = vector<float>(n);
}
// Compute time saver
c = 1.0f / (4.0f * (float)n + 2.0f);
d = scale * tau_max / 2.0f;
// Set up originally ordered tau vector
for (int k = 0; k < n; ++k) {
float h = cosf((float)CV_PI * (2.0f * (float)k + 1.0f) * c);
if (reordering) {
tauh[k] = d / (h * h);
}
else {
tau[k] = d / (h * h);
}
}
// Permute list of time steps according to chosen reordering function
int kappa = 0, prime = 0;
if (reordering == true) {
// Choose kappa cycle with k = n/2
// This is a heuristic. We can use Leja ordering instead!!
kappa = n / 2;
// Get modulus for permutation
prime = n + 1;
while (!fed_is_prime_internal(prime)) {
prime++;
}
// Perform permutation
for (int k = 0, l = 0; l < n; ++k, ++l) {
int index = 0;
while ((index = ((k+1)*kappa) % prime - 1) >= n) {
k++;
}
tau[l] = tauh[index];
}
}
return n;
}
//*************************************************************************************
//*************************************************************************************
/**
* @brief This function checks if a number is prime or not
* @param number Number to check if it is prime or not
* @return true if the number is prime
*/
bool fed_is_prime_internal(const int& number) {
bool is_prime = false;
if (number <= 1) {
return false;
}
else if (number == 1 || number == 2 || number == 3 || number == 5 || number == 7) {
return true;
}
else if ((number % 2) == 0 || (number % 3) == 0 || (number % 5) == 0 || (number % 7) == 0) {
return false;
}
else {
is_prime = true;
int upperLimit = (int)sqrt(1.0f + number);
int divisor = 11;
while (divisor <= upperLimit ) {
if (number % divisor == 0)
{
is_prime = false;
}
divisor +=2;
}
return is_prime;
}
}
|