| /* | |
| IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. | |
| By downloading, copying, installing or using the software you agree to this license. | |
| If you do not agree to this license, do not download, install, | |
| copy or use the software. | |
| BSD 3-Clause License | |
| Copyright (C) 2014, Olexa Bilaniuk, Hamid Bazargani & Robert Laganiere, all rights reserved. | |
| Redistribution and use in source and binary forms, with or without modification, | |
| are permitted provided that the following conditions are met: | |
| * Redistribution's of source code must retain the above copyright notice, | |
| this list of conditions and the following disclaimer. | |
| * Redistribution's in binary form must reproduce the above copyright notice, | |
| this list of conditions and the following disclaimer in the documentation | |
| and/or other materials provided with the distribution. | |
| * The name of the copyright holders may not be used to endorse or promote products | |
| derived from this software without specific prior written permission. | |
| This software is provided by the copyright holders and contributors "as is" and | |
| any express or implied warranties, including, but not limited to, the implied | |
| warranties of merchantability and fitness for a particular purpose are disclaimed. | |
| In no event shall the Intel Corporation or contributors be liable for any direct, | |
| indirect, incidental, special, exemplary, or consequential damages | |
| (including, but not limited to, procurement of substitute goods or services; | |
| loss of use, data, or profits; or business interruption) however caused | |
| and on any theory of liability, whether in contract, strict liability, | |
| or tort (including negligence or otherwise) arising in any way out of | |
| the use of this software, even if advised of the possibility of such damage. | |
| */ | |
| /** | |
| * Bilaniuk, Olexa, Hamid Bazargani, and Robert Laganiere. "Fast Target | |
| * Recognition on Mobile Devices: Revisiting Gaussian Elimination for the | |
| * Estimation of Planar Homographies." In Computer Vision and Pattern | |
| * Recognition Workshops (CVPRW), 2014 IEEE Conference on, pp. 119-125. | |
| * IEEE, 2014. | |
| */ | |
| /* Includes */ | |
| /* For the sake of cv:: namespace ONLY: */ | |
| namespace cv{/* For C support, replace with extern "C" { */ | |
| /* Constants */ | |
| const size_t HSIZE = (3*3*sizeof(float)); | |
| const double MIN_DELTA_CHNG = 0.1; | |
| // const double CHI_STAT = 2.706; | |
| const double CHI_SQ = 1.645; | |
| // const double RLO = 0.25; | |
| // const double RHI = 0.75; | |
| const int MAXLEVMARQITERS = 100; | |
| const int SMPL_SIZE = 4; /* 4 points required per model */ | |
| const int SPRT_T_M = 25; /* Guessing 25 match evlauations / 1 model generation */ | |
| const int SPRT_M_S = 1; /* 1 model per sample */ | |
| const double SPRT_EPSILON = 0.1; /* No explanation */ | |
| const double SPRT_DELTA = 0.01; /* No explanation */ | |
| const double LM_GAIN_LO = 0.25; /* See sacLMGain(). */ | |
| const double LM_GAIN_HI = 0.75; /* See sacLMGain(). */ | |
| /* Data Structures */ | |
| /** | |
| * Base Struct for RHO algorithm. | |
| * | |
| * A RHO estimator has initialization, finalization, capacity, seeding and | |
| * homography-estimation APIs that must be implemented. | |
| */ | |
| struct RHO_HEST{ | |
| /* This is a virtual base class; It should have a virtual destructor. */ | |
| virtual ~RHO_HEST(){} | |
| /* External Interface Methods */ | |
| /** | |
| * Initialization work. | |
| * | |
| * @return 0 if initialization is unsuccessful; non-zero otherwise. | |
| */ | |
| virtual inline int initialize(void){return 1;} | |
| /** | |
| * Finalization work. | |
| */ | |
| virtual inline void finalize(void){} | |
| /** | |
| * Ensure that the estimator context's internal table for the non-randomness | |
| * criterion is at least of the given size, and uses the given beta. The table | |
| * should be larger than the maximum number of matches fed into the estimator. | |
| * | |
| * A value of N of 0 requests deallocation of the table. | |
| * | |
| * @param [in] N If 0, deallocate internal table. If > 0, ensure that the | |
| * internal table is of at least this size, reallocating if | |
| * necessary. | |
| * @param [in] beta The beta-factor to use within the table. | |
| * @return 0 if unsuccessful; non-zero otherwise. | |
| */ | |
| virtual inline int ensureCapacity(unsigned N, double beta){ | |
| CV_UNUSED(N); | |
| CV_UNUSED(beta); | |
| return 1; | |
| } | |
| /** | |
| * Generates a random double uniformly distributed in the range [0, 1). | |
| * | |
| * The default implementation uses the xorshift128+ algorithm from | |
| * Sebastiano Vigna. Further scramblings of Marsaglia's xorshift generators. | |
| * CoRR, abs/1402.6246, 2014. | |
| * http://vigna.di.unimi.it/ftp/papers/xorshiftplus.pdf | |
| * | |
| * Source roughly as given in | |
| * http://en.wikipedia.org/wiki/Xorshift#Xorshift.2B | |
| */ | |
| virtual inline double fastRandom(void){ | |
| uint64_t x = prng.s[0]; | |
| uint64_t y = prng.s[1]; | |
| x ^= x << 23; // a | |
| x ^= x >> 17; // b | |
| x ^= y ^ (y >> 26); // c | |
| prng.s[0] = y; | |
| prng.s[1] = x; | |
| uint64_t s = x + y; | |
| return s * 5.421010862427522e-20;/* 2^-64 */ | |
| } | |
| /** | |
| * Seeds the context's PRNG. | |
| * | |
| * @param [in] seed A 64-bit unsigned integer seed. | |
| */ | |
| virtual inline void fastSeed(uint64_t seed){ | |
| int i; | |
| prng.s[0] = seed; | |
| prng.s[1] = ~seed;/* Guarantees one of the elements will be non-zero. */ | |
| /** | |
| * Escape from zero-land (see xorshift128+ paper). Approximately 20 | |
| * iterations required according to the graph. | |
| */ | |
| for(i=0;i<20;i++){ | |
| fastRandom(); | |
| } | |
| } | |
| /** | |
| * Estimates the homography using the given context, matches and parameters to | |
| * PROSAC. | |
| * | |
| * @param [in] src The pointer to the source points of the matches. | |
| * Cannot be NULL. | |
| * @param [in] dst The pointer to the destination points of the matches. | |
| * Cannot be NULL. | |
| * @param [out] inl The pointer to the output mask of inlier matches. | |
| * May be NULL. | |
| * @param [in] N The number of matches. | |
| * @param [in] maxD The maximum distance. | |
| * @param [in] maxI The maximum number of PROSAC iterations. | |
| * @param [in] rConvg The RANSAC convergence parameter. | |
| * @param [in] cfd The required confidence in the solution. | |
| * @param [in] minInl The minimum required number of inliers. | |
| * @param [in] beta The beta-parameter for the non-randomness criterion. | |
| * @param [in] flags A union of flags to control the estimation. | |
| * @param [in] guessH An extrinsic guess at the solution H, or NULL if | |
| * none provided. | |
| * @param [out] finalH The final estimation of H, or the zero matrix if | |
| * the minimum number of inliers was not met. | |
| * Cannot be NULL. | |
| * @return The number of inliers if the minimum number of | |
| * inliers for acceptance was reached; 0 otherwise. | |
| */ | |
| virtual unsigned rhoHest(const float* src, /* Source points */ | |
| const float* dst, /* Destination points */ | |
| char* inl, /* Inlier mask */ | |
| unsigned N, /* = src.length = dst.length = inl.length */ | |
| float maxD, /* Works: 3.0 */ | |
| unsigned maxI, /* Works: 2000 */ | |
| unsigned rConvg, /* Works: 2000 */ | |
| double cfd, /* Works: 0.995 */ | |
| unsigned minInl, /* Minimum: 4 */ | |
| double beta, /* Works: 0.35 */ | |
| unsigned flags, /* Works: 0 */ | |
| const float* guessH, /* Extrinsic guess, NULL if none provided */ | |
| float* finalH) = 0; /* Final result. */ | |
| /* PRNG XORshift128+ */ | |
| struct{ | |
| uint64_t s[2]; /* PRNG state */ | |
| } prng; | |
| }; | |
| /** | |
| * Generic C implementation of RHO algorithm. | |
| */ | |
| struct RHO_HEST_REFC : RHO_HEST{ | |
| /** | |
| * Virtual Arguments. | |
| * | |
| * Exactly the same as at function call, except: | |
| * - minInl is enforced to be >= 4. | |
| */ | |
| struct{ | |
| const float* src; | |
| const float* dst; | |
| char* inl; | |
| unsigned N; | |
| float maxD; | |
| unsigned maxI; | |
| unsigned rConvg; | |
| double cfd; | |
| unsigned minInl; | |
| double beta; | |
| unsigned flags; | |
| const float* guessH; | |
| float* finalH; | |
| } arg; | |
| /* PROSAC Control */ | |
| struct{ | |
| unsigned i; /* Iteration Number */ | |
| unsigned phNum; /* Phase Number */ | |
| unsigned phEndI; /* Phase End Iteration */ | |
| double phEndFpI; /* Phase floating-point End Iteration */ | |
| unsigned phMax; /* Termination phase number */ | |
| unsigned phNumInl; /* Number of inliers for termination phase */ | |
| unsigned numModels; /* Number of models tested */ | |
| unsigned* smpl; /* Sample of match indexes */ | |
| } ctrl; | |
| /* Current model being tested */ | |
| struct{ | |
| float* pkdPts; /* Packed points */ | |
| float* H; /* Homography */ | |
| char* inl; /* Mask of inliers */ | |
| unsigned numInl; /* Number of inliers */ | |
| } curr; | |
| /* Best model (so far) */ | |
| struct{ | |
| float* H; /* Homography */ | |
| char* inl; /* Mask of inliers */ | |
| unsigned numInl; /* Number of inliers */ | |
| } best; | |
| /* Non-randomness criterion */ | |
| struct{ | |
| std::vector<unsigned> tbl; /* Non-Randomness: Table */ | |
| unsigned size; /* Non-Randomness: Size */ | |
| double beta; /* Non-Randomness: Beta */ | |
| } nr; | |
| /* SPRT Evaluator */ | |
| struct{ | |
| double t_M; /* t_M */ | |
| double m_S; /* m_S */ | |
| double epsilon; /* Epsilon */ | |
| double delta; /* delta */ | |
| double A; /* SPRT Threshold */ | |
| unsigned Ntested; /* Number of points tested */ | |
| unsigned Ntestedtotal; /* Number of points tested in total */ | |
| int good; /* Good/bad flag */ | |
| double lambdaAccept; /* Accept multiplier */ | |
| double lambdaReject; /* Reject multiplier */ | |
| } eval; | |
| /* Levenberg-Marquardt Refinement */ | |
| struct{ | |
| float* JtJ; /* JtJ matrix */ | |
| float* tmp1; /* Temporary 1 */ | |
| float* Jte; /* Jte vector */ | |
| } lm; | |
| /* Memory Management */ | |
| utils::BufferArea runArea; | |
| utils::BufferArea objArea; | |
| /* Initialized? */ | |
| int initialized; | |
| /* Empty constructors and destructors */ | |
| public: | |
| RHO_HEST_REFC(); | |
| private: /* Forbid copying. */ | |
| RHO_HEST_REFC(const RHO_HEST_REFC&); | |
| public: | |
| ~RHO_HEST_REFC(); | |
| /* Methods to implement external interface */ | |
| inline int initialize(void) CV_OVERRIDE; | |
| inline void finalize(void) CV_OVERRIDE; | |
| inline int ensureCapacity(unsigned N, double beta) CV_OVERRIDE; | |
| unsigned rhoHest(const float* src, /* Source points */ | |
| const float* dst, /* Destination points */ | |
| char* inl, /* Inlier mask */ | |
| unsigned N, /* = src.length = dst.length = inl.length */ | |
| float maxD, /* Works: 3.0 */ | |
| unsigned maxI, /* Works: 2000 */ | |
| unsigned rConvg, /* Works: 2000 */ | |
| double cfd, /* Works: 0.995 */ | |
| unsigned minInl, /* Minimum: 4 */ | |
| double beta, /* Works: 0.35 */ | |
| unsigned flags, /* Works: 0 */ | |
| const float* guessH, /* Extrinsic guess, NULL if none provided */ | |
| float* finalH /* Final result. */ | |
| ) CV_OVERRIDE; | |
| /* Methods to implement internals */ | |
| inline void allocatePerObj(void); | |
| inline void allocatePerRun(void); | |
| inline void deallocatePerRun(void); | |
| inline void deallocatePerObj(void); | |
| inline int initRun(void); | |
| inline void finiRun(void); | |
| inline int haveExtrinsicGuess(void); | |
| inline int hypothesize(void); | |
| inline int verify(void); | |
| inline int isNREnabled(void); | |
| inline int isRefineEnabled(void); | |
| inline int isFinalRefineEnabled(void); | |
| inline int PROSACPhaseEndReached(void); | |
| inline void PROSACGoToNextPhase(void); | |
| inline void getPROSACSample(void); | |
| inline void rndSmpl(unsigned sampleSize, | |
| unsigned* currentSample, | |
| unsigned dataSetSize); | |
| inline int isSampleDegenerate(void); | |
| inline void generateModel(void); | |
| inline int isModelDegenerate(void); | |
| inline void evaluateModelSPRT(void); | |
| inline void updateSPRT(void); | |
| inline void designSPRTTest(void); | |
| inline int isBestModel(void); | |
| inline int isBestModelGoodEnough(void); | |
| inline void saveBestModel(void); | |
| inline void nStarOptimize(void); | |
| inline void updateBounds(void); | |
| inline void outputModel(void); | |
| inline void outputZeroH(void); | |
| inline int canRefine(void); | |
| inline void refine(void); | |
| }; | |
| /** | |
| * Prototypes for purely-computational code. | |
| */ | |
| static inline void sacInitNonRand (double beta, | |
| unsigned start, | |
| unsigned N, | |
| unsigned* nonRandMinInl); | |
| static inline double sacInitPEndFpI (const unsigned ransacConvg, | |
| const unsigned n, | |
| const unsigned s); | |
| static inline unsigned sacCalcIterBound (double confidence, | |
| double inlierRate, | |
| unsigned sampleSize, | |
| unsigned maxIterBound); | |
| static inline void hFuncRefC (float* packedPoints, float* H); | |
| static inline void sacCalcJacobianErrors(const float* H, | |
| const float* src, | |
| const float* dst, | |
| const char* inl, | |
| unsigned N, | |
| float (* JtJ)[8], | |
| float* Jte, | |
| float* Sp); | |
| static inline float sacLMGain (const float* dH, | |
| const float* Jte, | |
| const float S, | |
| const float newS, | |
| const float lambda); | |
| static inline int sacChol8x8Damped (const float (*A)[8], | |
| float lambda, | |
| float (*L)[8]); | |
| static inline void sacTRInv8x8 (const float (*L)[8], | |
| float (*M)[8]); | |
| static inline void sacTRISolve8x8 (const float (*L)[8], | |
| const float* Jte, | |
| float* dH); | |
| static inline void sacSub8x1 (float* Hout, | |
| const float* H, | |
| const float* dH); | |
| /* Functions */ | |
| /** | |
| * External access to context constructor. | |
| * | |
| * @return A pointer to the context if successful; NULL if an error occurred. | |
| */ | |
| Ptr<RHO_HEST> rhoInit(void){ | |
| /* Select an optimized implementation of RHO here. */ | |
| /** | |
| * For now, only the generic C implementation is available. In the future, | |
| * SSE2/AVX/AVX2/FMA/NEON versions may be added, and they will be selected | |
| * depending on cv::checkHardwareSupport()'s return values. | |
| */ | |
| Ptr<RHO_HEST> p = Ptr<RHO_HEST>(new RHO_HEST_REFC); | |
| /* Initialize it. */ | |
| if(p){ | |
| if(!p->initialize()){ | |
| p.release(); | |
| } | |
| } | |
| /* Return it. */ | |
| return p; | |
| } | |
| /** | |
| * External access to non-randomness table resize. | |
| */ | |
| int rhoEnsureCapacity(Ptr<RHO_HEST> p, unsigned N, double beta){ | |
| return p->ensureCapacity(N, beta); | |
| } | |
| /** | |
| * Seeds the internal PRNG with the given seed. | |
| */ | |
| void rhoSeed(Ptr<RHO_HEST> p, uint64_t seed){ | |
| p->fastSeed(seed); | |
| } | |
| /** | |
| * Estimates the homography using the given context, matches and parameters to | |
| * PROSAC. | |
| * | |
| * @param [in,out] p The context to use for homography estimation. Must | |
| * be already initialized. Cannot be NULL. | |
| * @param [in] src The pointer to the source points of the matches. | |
| * Must be aligned to 4 bytes. Cannot be NULL. | |
| * @param [in] dst The pointer to the destination points of the matches. | |
| * Must be aligned to 16 bytes. Cannot be NULL. | |
| * @param [out] inl The pointer to the output mask of inlier matches. | |
| * Must be aligned to 16 bytes. May be NULL. | |
| * @param [in] N The number of matches. | |
| * @param [in] maxD The maximum distance. | |
| * @param [in] maxI The maximum number of PROSAC iterations. | |
| * @param [in] rConvg The RANSAC convergence parameter. | |
| * @param [in] cfd The required confidence in the solution. | |
| * @param [in] minInl The minimum required number of inliers. | |
| * @param [in] beta The beta-parameter for the non-randomness criterion. | |
| * @param [in] flags A union of flags to control the estimation. | |
| * @param [in] guessH An extrinsic guess at the solution H, or NULL if | |
| * none provided. | |
| * @param [out] finalH The final estimation of H, or the zero matrix if | |
| * the minimum number of inliers was not met. | |
| * Cannot be NULL. | |
| * @return The number of inliers if the minimum number of | |
| * inliers for acceptance was reached; 0 otherwise. | |
| */ | |
| unsigned rhoHest(Ptr<RHO_HEST> p, /* Homography estimation context. */ | |
| const float* src, /* Source points */ | |
| const float* dst, /* Destination points */ | |
| char* inl, /* Inlier mask */ | |
| unsigned N, /* = src.length = dst.length = inl.length */ | |
| float maxD, /* Works: 3.0 */ | |
| unsigned maxI, /* Works: 2000 */ | |
| unsigned rConvg, /* Works: 2000 */ | |
| double cfd, /* Works: 0.995 */ | |
| unsigned minInl, /* Minimum: 4 */ | |
| double beta, /* Works: 0.35 */ | |
| unsigned flags, /* Works: 0 */ | |
| const float* guessH, /* Extrinsic guess, NULL if none provided */ | |
| float* finalH){ /* Final result. */ | |
| return p->rhoHest(src, dst, inl, N, maxD, maxI, rConvg, cfd, minInl, beta, | |
| flags, guessH, finalH); | |
| } | |
| /*********************** RHO_HEST_REFC implementation **********************/ | |
| /** | |
| * Constructor for RHO_HEST_REFC. | |
| * | |
| * Does nothing. True initialization is done by initialize(). | |
| */ | |
| RHO_HEST_REFC::RHO_HEST_REFC() : initialized(0){ | |
| arg.src = 0; | |
| arg.dst = 0; | |
| arg.inl = 0; | |
| arg.N = 0; | |
| arg.maxD = 0; | |
| arg.maxI = 0; | |
| arg.rConvg = 0; | |
| arg.cfd = 0; | |
| arg.minInl = 0; | |
| arg.beta = 0; | |
| arg.flags = 0; | |
| arg.guessH = 0; | |
| arg.finalH = 0; | |
| ctrl.i = 0; | |
| ctrl.phNum = 0; | |
| ctrl.phEndI = 0; | |
| ctrl.phEndFpI = 0; | |
| ctrl.phMax = 0; | |
| ctrl.phNumInl = 0; | |
| ctrl.numModels = 0; | |
| ctrl.smpl = 0; | |
| curr.pkdPts = 0; | |
| curr.H = 0; | |
| curr.inl = 0; | |
| curr.numInl = 0; | |
| best.H = 0; | |
| best.inl = 0; | |
| best.numInl = 0; | |
| nr.size = 0; | |
| nr.beta = 0; | |
| eval.t_M = 0; | |
| eval.m_S = 0; | |
| eval.epsilon = 0; | |
| eval.delta = 0; | |
| eval.A = 0; | |
| eval.Ntested = 0; | |
| eval.Ntestedtotal = 0; | |
| eval.good = 0; | |
| eval.lambdaAccept = 0; | |
| eval.lambdaReject = 0; | |
| lm.JtJ = 0; | |
| lm.tmp1 = 0; | |
| lm.Jte = 0; | |
| } | |
| /** | |
| * Private copy constructor for RHO_HEST_REFC. Disabled. | |
| */ | |
| RHO_HEST_REFC::RHO_HEST_REFC(const RHO_HEST_REFC&) : initialized(0){ | |
| } | |
| /** | |
| * Destructor for RHO_HEST_REFC. | |
| */ | |
| RHO_HEST_REFC::~RHO_HEST_REFC(){ | |
| if(initialized){ | |
| finalize(); | |
| } | |
| } | |
| /** | |
| * Initialize the estimator context, by allocating the aligned buffers | |
| * internally needed. | |
| * | |
| * Currently there are 5 per-estimator buffers: | |
| * - The buffer of m indexes representing a sample | |
| * - The buffer of 16 floats representing m matches (x,y) -> (X,Y). | |
| * - The buffer for the current homography | |
| * - The buffer for the best-so-far homography | |
| * - Optionally, the non-randomness criterion table | |
| * | |
| * Returns 0 if unsuccessful and non-0 otherwise. | |
| */ | |
| inline int RHO_HEST_REFC::initialize(void){ | |
| initialized = 0; | |
| allocatePerObj(); | |
| curr.inl = NULL; | |
| curr.numInl = 0; | |
| best.inl = NULL; | |
| best.numInl = 0; | |
| nr.size = 0; | |
| nr.beta = 0.0; | |
| fastSeed((uint64_t)~0); | |
| initialized = 1; | |
| return true; | |
| } | |
| /** | |
| * Finalize. | |
| * | |
| * Finalize the estimator context, by freeing the aligned buffers used | |
| * internally. | |
| */ | |
| inline void RHO_HEST_REFC::finalize(void){ | |
| if(initialized){ | |
| deallocatePerObj(); | |
| initialized = 0; | |
| } | |
| } | |
| /** | |
| * Ensure that the estimator context's internal table for non-randomness | |
| * criterion is at least of the given size, and uses the given beta. The table | |
| * should be larger than the maximum number of matches fed into the estimator. | |
| * | |
| * A value of N of 0 requests deallocation of the table. | |
| * | |
| * @param [in] N If 0, deallocate internal table. If > 0, ensure that the | |
| * internal table is of at least this size, reallocating if | |
| * necessary. | |
| * @param [in] beta The beta-factor to use within the table. | |
| * @return 0 if unsuccessful; non-zero otherwise. | |
| * | |
| * Reads: nr.* | |
| * Writes: nr.* | |
| */ | |
| inline int RHO_HEST_REFC::ensureCapacity(unsigned N, double beta){ | |
| if(N == 0){ | |
| /* Clear. */ | |
| nr.tbl.clear(); | |
| nr.size = 0; | |
| }else if(nr.beta != beta){ | |
| /* Beta changed. Redo all the work. */ | |
| nr.tbl.resize(N); | |
| nr.beta = beta; | |
| sacInitNonRand(nr.beta, 0, N, &nr.tbl[0]); | |
| nr.size = N; | |
| }else if(N > nr.size){ | |
| /* Work is partially done. Do rest of it. */ | |
| nr.tbl.resize(N); | |
| sacInitNonRand(nr.beta, nr.size, N, &nr.tbl[nr.size]); | |
| nr.size = N; | |
| }else{ | |
| /* Work is already done. Do nothing. */ | |
| } | |
| return 1; | |
| } | |
| /** | |
| * Estimates the homography using the given context, matches and parameters to | |
| * PROSAC. | |
| * | |
| * @param [in] src The pointer to the source points of the matches. | |
| * Must be aligned to 4 bytes. Cannot be NULL. | |
| * @param [in] dst The pointer to the destination points of the matches. | |
| * Must be aligned to 4 bytes. Cannot be NULL. | |
| * @param [out] inl The pointer to the output mask of inlier matches. | |
| * Must be aligned to 4 bytes. May be NULL. | |
| * @param [in] N The number of matches. | |
| * @param [in] maxD The maximum distance. | |
| * @param [in] maxI The maximum number of PROSAC iterations. | |
| * @param [in] rConvg The RANSAC convergence parameter. | |
| * @param [in] cfd The required confidence in the solution. | |
| * @param [in] minInl The minimum required number of inliers. | |
| * @param [in] beta The beta-parameter for the non-randomness criterion. | |
| * @param [in] flags A union of flags to control the estimation. | |
| * @param [in] guessH An extrinsic guess at the solution H, or NULL if | |
| * none provided. | |
| * @param [out] finalH The final estimation of H, or the zero matrix if | |
| * the minimum number of inliers was not met. | |
| * Cannot be NULL. | |
| * @return The number of inliers if the minimum number of | |
| * inliers for acceptance was reached; 0 otherwise. | |
| */ | |
| unsigned RHO_HEST_REFC::rhoHest(const float* src, /* Source points */ | |
| const float* dst, /* Destination points */ | |
| char* inl, /* Inlier mask */ | |
| unsigned N, /* = src.length = dst.length = inl.length */ | |
| float maxD, /* Works: 3.0 */ | |
| unsigned maxI, /* Works: 2000 */ | |
| unsigned rConvg, /* Works: 2000 */ | |
| double cfd, /* Works: 0.995 */ | |
| unsigned minInl, /* Minimum: 4 */ | |
| double beta, /* Works: 0.35 */ | |
| unsigned flags, /* Works: 0 */ | |
| const float* guessH, /* Extrinsic guess, NULL if none provided */ | |
| float* finalH){ /* Final result. */ | |
| /** | |
| * Setup | |
| */ | |
| arg.src = src; | |
| arg.dst = dst; | |
| arg.inl = inl; | |
| arg.N = N; | |
| arg.maxD = maxD; | |
| arg.maxI = maxI; | |
| arg.rConvg = rConvg; | |
| arg.cfd = cfd; | |
| arg.minInl = minInl; | |
| arg.beta = beta; | |
| arg.flags = flags; | |
| arg.guessH = guessH; | |
| arg.finalH = finalH; | |
| if(!initRun()){ | |
| outputZeroH(); | |
| finiRun(); | |
| return 0; | |
| } | |
| /** | |
| * Extrinsic Guess | |
| */ | |
| if(haveExtrinsicGuess()){ | |
| verify(); | |
| } | |
| /** | |
| * PROSAC Loop | |
| */ | |
| for(ctrl.i=0; ctrl.i < arg.maxI || ctrl.i < 100; ctrl.i++){ | |
| hypothesize() && verify(); | |
| } | |
| /** | |
| * Teardown | |
| */ | |
| if(isFinalRefineEnabled() && canRefine()){ | |
| refine(); | |
| } | |
| outputModel(); | |
| finiRun(); | |
| return isBestModelGoodEnough() ? best.numInl : 0; | |
| } | |
| /** | |
| * Allocate per-object dynamic storage. | |
| * | |
| * This includes aligned, fixed-size internal buffers, but excludes any buffers | |
| * whose size cannot be determined ahead-of-time (before the number of matches | |
| * is known). | |
| * | |
| * All buffer memory is allocated in one single shot, and all pointers are | |
| * initialized. | |
| */ | |
| inline void RHO_HEST_REFC::allocatePerObj(void){ | |
| objArea.allocate(ctrl.smpl, SMPL_SIZE); | |
| objArea.allocate(curr.pkdPts, SMPL_SIZE*2*2); | |
| objArea.allocate(curr.H, HSIZE); | |
| objArea.allocate(best.H, HSIZE); | |
| objArea.allocate(lm.JtJ, 8*8); | |
| objArea.allocate(lm.tmp1, 8*8); | |
| objArea.allocate(lm.Jte, 1*8); | |
| objArea.commit(); | |
| } | |
| /** | |
| * Allocate per-run dynamic storage. | |
| * | |
| * This includes storage that is proportional to the number of points, such as | |
| * the inlier mask. | |
| */ | |
| inline void RHO_HEST_REFC::allocatePerRun(void){ | |
| runArea.allocate(best.inl, arg.N); | |
| runArea.allocate(curr.inl, arg.N); | |
| runArea.commit(); | |
| } | |
| /** | |
| * Deallocate per-run dynamic storage. | |
| * | |
| * Undoes the work by allocatePerRun(). | |
| */ | |
| inline void RHO_HEST_REFC::deallocatePerRun(void){ | |
| runArea.release(); | |
| } | |
| /** | |
| * Deallocate per-object dynamic storage. | |
| * | |
| * Undoes the work by allocatePerObj(). | |
| */ | |
| inline void RHO_HEST_REFC::deallocatePerObj(void){ | |
| objArea.release(); | |
| } | |
| /** | |
| * Initialize SAC for a run given its arguments. | |
| * | |
| * Performs sanity-checks and memory allocations. Also initializes the state. | |
| * | |
| * @returns 0 if per-run initialization failed at any point; non-zero | |
| * otherwise. | |
| * | |
| * Reads: arg.*, nr.* | |
| * Writes: curr.*, best.*, ctrl.*, eval.* | |
| */ | |
| inline int RHO_HEST_REFC::initRun(void){ | |
| /** | |
| * Sanitize arguments. | |
| * | |
| * Runs zeroth because these are easy-to-check errors and unambiguously | |
| * mean something or other. | |
| */ | |
| if(!arg.src || !arg.dst){ | |
| /* Arguments src or dst are insane, must be != NULL */ | |
| return 0; | |
| } | |
| if(arg.N < (unsigned)SMPL_SIZE){ | |
| /* Argument N is insane, must be >= 4. */ | |
| return 0; | |
| } | |
| if(arg.maxD < 0){ | |
| /* Argument maxD is insane, must be >= 0. */ | |
| return 0; | |
| } | |
| if(arg.cfd < 0 || arg.cfd > 1){ | |
| /* Argument cfd is insane, must be in [0, 1]. */ | |
| return 0; | |
| } | |
| /* Clamp minInl to 4 or higher. */ | |
| arg.minInl = arg.minInl < (unsigned)SMPL_SIZE ? SMPL_SIZE : arg.minInl; | |
| if(isNREnabled() && (arg.beta <= 0 || arg.beta >= 1)){ | |
| /* Argument beta is insane, must be in (0, 1). */ | |
| return 0; | |
| } | |
| if(!arg.finalH){ | |
| /* Argument finalH is insane, must be != NULL */ | |
| return 0; | |
| } | |
| /** | |
| * Optional NR setup. | |
| * | |
| * Runs first because it is decoupled from most other things (*) and if it | |
| * fails, it is easy to recover from. | |
| * | |
| * (*) The only things this code depends on is the flags argument, the nr.* | |
| * substruct and the sanity-checked N and beta arguments from above. | |
| */ | |
| if(isNREnabled() && !ensureCapacity(arg.N, arg.beta)){ | |
| return 0; | |
| } | |
| /** | |
| * Inlier mask alloc. | |
| * | |
| * Runs second because we want to quit as fast as possible if we can't even | |
| * allocate the two masks. | |
| */ | |
| allocatePerRun(); | |
| memset(best.inl, 0, arg.N); | |
| memset(curr.inl, 0, arg.N); | |
| /** | |
| * Reset scalar per-run state. | |
| * | |
| * Runs third because there's no point in resetting/calculating a large | |
| * number of fields if something in the above junk failed. | |
| */ | |
| ctrl.i = 0; | |
| ctrl.phNum = SMPL_SIZE; | |
| ctrl.phEndI = 1; | |
| ctrl.phEndFpI = sacInitPEndFpI(arg.rConvg, arg.N, SMPL_SIZE); | |
| ctrl.phMax = arg.N; | |
| ctrl.phNumInl = 0; | |
| ctrl.numModels = 0; | |
| if(haveExtrinsicGuess()){ | |
| memcpy(curr.H, arg.guessH, HSIZE); | |
| }else{ | |
| memset(curr.H, 0, HSIZE); | |
| } | |
| curr.numInl = 0; | |
| memset(best.H, 0, HSIZE); | |
| best.numInl = 0; | |
| eval.Ntested = 0; | |
| eval.Ntestedtotal = 0; | |
| eval.good = 1; | |
| eval.t_M = SPRT_T_M; | |
| eval.m_S = SPRT_M_S; | |
| eval.epsilon = SPRT_EPSILON; | |
| eval.delta = SPRT_DELTA; | |
| designSPRTTest(); | |
| return 1; | |
| } | |
| /** | |
| * Finalize SAC run. | |
| * | |
| * Deallocates per-run allocatable resources. Currently this consists only of | |
| * the best and current inlier masks, which are equal in size to p->arg.N | |
| * bytes. | |
| * | |
| * Reads: arg.bestInl, curr.inl, best.inl | |
| * Writes: curr.inl, best.inl | |
| */ | |
| inline void RHO_HEST_REFC::finiRun(void){ | |
| deallocatePerRun(); | |
| } | |
| /** | |
| * Hypothesize a model. | |
| * | |
| * Selects randomly a sample (within the rules of PROSAC) and generates a | |
| * new current model, and applies degeneracy tests to it. | |
| * | |
| * @returns 0 if hypothesized model could be rejected early as degenerate, and | |
| * non-zero otherwise. | |
| */ | |
| inline int RHO_HEST_REFC::hypothesize(void){ | |
| if(PROSACPhaseEndReached()){ | |
| PROSACGoToNextPhase(); | |
| } | |
| getPROSACSample(); | |
| if(isSampleDegenerate()){ | |
| return 0; | |
| } | |
| generateModel(); | |
| if(isModelDegenerate()){ | |
| return 0; | |
| } | |
| return 1; | |
| } | |
| /** | |
| * Verify the hypothesized model. | |
| * | |
| * Given the current model, evaluate its quality. If it is better than | |
| * everything before, save as new best model (and possibly refine it). | |
| * | |
| * Returns 1. | |
| */ | |
| inline int RHO_HEST_REFC::verify(void){ | |
| evaluateModelSPRT(); | |
| updateSPRT(); | |
| if(isBestModel()){ | |
| saveBestModel(); | |
| if(isRefineEnabled() && canRefine()){ | |
| refine(); | |
| } | |
| updateBounds(); | |
| if(isNREnabled()){ | |
| nStarOptimize(); | |
| } | |
| } | |
| return 1; | |
| } | |
| /** | |
| * Check whether extrinsic guess was provided or not. | |
| * | |
| * @return Zero if no extrinsic guess was provided; non-zero otherwiseEE. | |
| */ | |
| inline int RHO_HEST_REFC::haveExtrinsicGuess(void){ | |
| return !!arg.guessH; | |
| } | |
| /** | |
| * Check whether non-randomness criterion is enabled. | |
| * | |
| * @return Zero if non-randomness criterion disabled; non-zero if not. | |
| */ | |
| inline int RHO_HEST_REFC::isNREnabled(void){ | |
| return arg.flags & RHO_FLAG_ENABLE_NR; | |
| } | |
| /** | |
| * Check whether best-model-so-far refinement is enabled. | |
| * | |
| * @return Zero if best-model-so-far refinement disabled; non-zero if not. | |
| */ | |
| inline int RHO_HEST_REFC::isRefineEnabled(void){ | |
| return arg.flags & RHO_FLAG_ENABLE_REFINEMENT; | |
| } | |
| /** | |
| * Check whether final-model refinement is enabled. | |
| * | |
| * @return Zero if final-model refinement disabled; non-zero if not. | |
| */ | |
| inline int RHO_HEST_REFC::isFinalRefineEnabled(void){ | |
| return arg.flags & RHO_FLAG_ENABLE_FINAL_REFINEMENT; | |
| } | |
| /** | |
| * Computes whether the end of the current PROSAC phase has been reached. At | |
| * PROSAC phase phNum, only matches [0, phNum) are sampled from. | |
| * | |
| * Reads (direct): ctrl.i, ctrl.phEndI, ctrl.phNum, ctrl.phMax | |
| * Reads (callees): None. | |
| * Writes (direct): None. | |
| * Writes (callees): None. | |
| */ | |
| inline int RHO_HEST_REFC::PROSACPhaseEndReached(void){ | |
| return ctrl.i >= ctrl.phEndI && ctrl.phNum < ctrl.phMax; | |
| } | |
| /** | |
| * Updates unconditionally the necessary fields to move to the next PROSAC | |
| * stage. | |
| * | |
| * Not idempotent. | |
| * | |
| * Reads (direct): ctrl.phNum, ctrl.phEndFpI, ctrl.phEndI | |
| * Reads (callees): None. | |
| * Writes (direct): ctrl.phNum, ctrl.phEndFpI, ctrl.phEndI | |
| * Writes (callees): None. | |
| */ | |
| inline void RHO_HEST_REFC::PROSACGoToNextPhase(void){ | |
| double next; | |
| ctrl.phNum++; | |
| next = (ctrl.phEndFpI * ctrl.phNum)/(ctrl.phNum - SMPL_SIZE); | |
| ctrl.phEndI += (unsigned)ceil(next - ctrl.phEndFpI); | |
| ctrl.phEndFpI = next; | |
| } | |
| /** | |
| * Get a sample according to PROSAC rules. Namely: | |
| * - If we're past the phase end interaction, select randomly 4 out of the first | |
| * phNum matches. | |
| * - Otherwise, select match phNum-1 and select randomly the 3 others out of | |
| * the first phNum-1 matches. | |
| * | |
| * Reads (direct): ctrl.i, ctrl.phEndI, ctrl.phNum | |
| * Reads (callees): prng.s | |
| * Writes (direct): ctrl.smpl | |
| * Writes (callees): prng.s | |
| */ | |
| inline void RHO_HEST_REFC::getPROSACSample(void){ | |
| if(ctrl.i > ctrl.phEndI){ | |
| /* FIXME: Dubious. Review. */ | |
| rndSmpl(4, ctrl.smpl, ctrl.phNum);/* Used to be phMax */ | |
| }else{ | |
| rndSmpl(3, ctrl.smpl, ctrl.phNum-1); | |
| ctrl.smpl[3] = ctrl.phNum-1; | |
| } | |
| } | |
| /** | |
| * Choose, without repetition, sampleSize integers in the range [0, numDataPoints). | |
| * | |
| * Reads (direct): None. | |
| * Reads (callees): prng.s | |
| * Writes (direct): None. | |
| * Writes (callees): prng.s | |
| */ | |
| inline void RHO_HEST_REFC::rndSmpl(unsigned sampleSize, | |
| unsigned* currentSample, | |
| unsigned dataSetSize){ | |
| /** | |
| * If sampleSize is very close to dataSetSize, we use selection sampling. | |
| * Otherwise we use the naive sampling technique wherein we select random | |
| * indexes until sampleSize of them are distinct. | |
| */ | |
| if(sampleSize*2>dataSetSize){ | |
| /** | |
| * Selection Sampling: | |
| * | |
| * Algorithm S (Selection sampling technique). To select n records at random from a set of N, where 0 < n <= N. | |
| * S1. [Initialize.] Set t = 0, m = 0. (During this algorithm, m represents the number of records selected so far, | |
| * and t is the total number of input records that we have dealt with.) | |
| * S2. [Generate U.] Generate a random number U, uniformly distributed between zero and one. | |
| * S3. [Test.] If (N - t)U >= n - m, go to step S5. | |
| * S4. [Select.] Select the next record for the sample, and increase m and t by 1. If m < n, go to step S2; | |
| * otherwise the sample is complete and the algorithm terminates. | |
| * S5. [Skip.] Skip the next record (do not include it in the sample), increase t by 1, and go back to step S2. | |
| * | |
| * Replaced m with i and t with j in the below code. | |
| */ | |
| unsigned i=0,j=0; | |
| for(i=0;i<sampleSize;j++){ | |
| double U=fastRandom(); | |
| if((dataSetSize-j)*U < (sampleSize-i)){ | |
| currentSample[i++]=j; | |
| } | |
| } | |
| }else{ | |
| /** | |
| * Naive sampling technique. Generate indexes until sampleSize of them are distinct. | |
| */ | |
| unsigned i, j; | |
| for(i=0;i<sampleSize;i++){ | |
| int inList; | |
| do{ | |
| currentSample[i] = (unsigned)(dataSetSize*fastRandom()); | |
| inList=0; | |
| for(j=0;j<i;j++){ | |
| if(currentSample[i] == currentSample[j]){ | |
| inList=1; | |
| break; | |
| } | |
| } | |
| }while(inList); | |
| } | |
| } | |
| } | |
| /** | |
| * Checks whether the *sample* is degenerate prior to model generation. | |
| * - First, the extremely cheap numerical degeneracy test is run, which weeds | |
| * out bad samples to the optimized GE implementation. | |
| * - Second, the geometrical degeneracy test is run, which weeds out most other | |
| * bad samples. | |
| * | |
| * Reads (direct): ctrl.smpl, arg.src, arg.dst | |
| * Reads (callees): None. | |
| * Writes (direct): curr.pkdPts | |
| * Writes (callees): None. | |
| */ | |
| inline int RHO_HEST_REFC::isSampleDegenerate(void){ | |
| unsigned i0 = ctrl.smpl[0], i1 = ctrl.smpl[1], i2 = ctrl.smpl[2], i3 = ctrl.smpl[3]; | |
| typedef struct{float x,y;} MyPt2f; | |
| MyPt2f* pkdPts = (MyPt2f*)curr.pkdPts, *src = (MyPt2f*)arg.src, *dst = (MyPt2f*)arg.dst; | |
| /** | |
| * Pack the matches selected by the SAC algorithm. | |
| * Must be packed points[0:7] = {srcx0, srcy0, srcx1, srcy1, srcx2, srcy2, srcx3, srcy3} | |
| * points[8:15] = {dstx0, dsty0, dstx1, dsty1, dstx2, dsty2, dstx3, dsty3} | |
| * Gather 4 points into the vector | |
| */ | |
| pkdPts[0] = src[i0]; | |
| pkdPts[1] = src[i1]; | |
| pkdPts[2] = src[i2]; | |
| pkdPts[3] = src[i3]; | |
| pkdPts[4] = dst[i0]; | |
| pkdPts[5] = dst[i1]; | |
| pkdPts[6] = dst[i2]; | |
| pkdPts[7] = dst[i3]; | |
| /** | |
| * If the matches' source points have common x and y coordinates, abort. | |
| */ | |
| if(pkdPts[0].x == pkdPts[1].x || pkdPts[1].x == pkdPts[2].x || | |
| pkdPts[2].x == pkdPts[3].x || pkdPts[0].x == pkdPts[2].x || | |
| pkdPts[1].x == pkdPts[3].x || pkdPts[0].x == pkdPts[3].x || | |
| pkdPts[0].y == pkdPts[1].y || pkdPts[1].y == pkdPts[2].y || | |
| pkdPts[2].y == pkdPts[3].y || pkdPts[0].y == pkdPts[2].y || | |
| pkdPts[1].y == pkdPts[3].y || pkdPts[0].y == pkdPts[3].y){ | |
| return 1; | |
| } | |
| /* If the matches do not satisfy the strong geometric constraint, abort. */ | |
| /* (0 x 1) * 2 */ | |
| float cross0s0 = pkdPts[0].y-pkdPts[1].y; | |
| float cross0s1 = pkdPts[1].x-pkdPts[0].x; | |
| float cross0s2 = pkdPts[0].x*pkdPts[1].y-pkdPts[0].y*pkdPts[1].x; | |
| float dots0 = cross0s0*pkdPts[2].x + cross0s1*pkdPts[2].y + cross0s2; | |
| float cross0d0 = pkdPts[4].y-pkdPts[5].y; | |
| float cross0d1 = pkdPts[5].x-pkdPts[4].x; | |
| float cross0d2 = pkdPts[4].x*pkdPts[5].y-pkdPts[4].y*pkdPts[5].x; | |
| float dotd0 = cross0d0*pkdPts[6].x + cross0d1*pkdPts[6].y + cross0d2; | |
| if(((int)dots0^(int)dotd0) < 0){ | |
| return 1; | |
| } | |
| /* (0 x 1) * 3 */ | |
| float cross1s0 = cross0s0; | |
| float cross1s1 = cross0s1; | |
| float cross1s2 = cross0s2; | |
| float dots1 = cross1s0*pkdPts[3].x + cross1s1*pkdPts[3].y + cross1s2; | |
| float cross1d0 = cross0d0; | |
| float cross1d1 = cross0d1; | |
| float cross1d2 = cross0d2; | |
| float dotd1 = cross1d0*pkdPts[7].x + cross1d1*pkdPts[7].y + cross1d2; | |
| if(((int)dots1^(int)dotd1) < 0){ | |
| return 1; | |
| } | |
| /* (2 x 3) * 0 */ | |
| float cross2s0 = pkdPts[2].y-pkdPts[3].y; | |
| float cross2s1 = pkdPts[3].x-pkdPts[2].x; | |
| float cross2s2 = pkdPts[2].x*pkdPts[3].y-pkdPts[2].y*pkdPts[3].x; | |
| float dots2 = cross2s0*pkdPts[0].x + cross2s1*pkdPts[0].y + cross2s2; | |
| float cross2d0 = pkdPts[6].y-pkdPts[7].y; | |
| float cross2d1 = pkdPts[7].x-pkdPts[6].x; | |
| float cross2d2 = pkdPts[6].x*pkdPts[7].y-pkdPts[6].y*pkdPts[7].x; | |
| float dotd2 = cross2d0*pkdPts[4].x + cross2d1*pkdPts[4].y + cross2d2; | |
| if(((int)dots2^(int)dotd2) < 0){ | |
| return 1; | |
| } | |
| /* (2 x 3) * 1 */ | |
| float cross3s0 = cross2s0; | |
| float cross3s1 = cross2s1; | |
| float cross3s2 = cross2s2; | |
| float dots3 = cross3s0*pkdPts[1].x + cross3s1*pkdPts[1].y + cross3s2; | |
| float cross3d0 = cross2d0; | |
| float cross3d1 = cross2d1; | |
| float cross3d2 = cross2d2; | |
| float dotd3 = cross3d0*pkdPts[5].x + cross3d1*pkdPts[5].y + cross3d2; | |
| if(((int)dots3^(int)dotd3) < 0){ | |
| return 1; | |
| } | |
| /* Otherwise, accept */ | |
| return 0; | |
| } | |
| /** | |
| * Compute homography of matches in gathered, packed sample and output the | |
| * current homography. | |
| * | |
| * Reads (direct): None. | |
| * Reads (callees): curr.pkdPts | |
| * Writes (direct): None. | |
| * Writes (callees): curr.H | |
| */ | |
| inline void RHO_HEST_REFC::generateModel(void){ | |
| hFuncRefC(curr.pkdPts, curr.H); | |
| } | |
| /** | |
| * Checks whether the model is itself degenerate. | |
| * - One test: All elements of the homography are added, and if the result is | |
| * NaN the homography is rejected. | |
| * | |
| * Reads (direct): curr.H | |
| * Reads (callees): None. | |
| * Writes (direct): None. | |
| * Writes (callees): None. | |
| */ | |
| inline int RHO_HEST_REFC::isModelDegenerate(void){ | |
| int degenerate; | |
| float* H = curr.H; | |
| float f=H[0]+H[1]+H[2]+H[3]+H[4]+H[5]+H[6]+H[7]; | |
| /* degenerate = isnan(f); */ | |
| /* degenerate = f!=f;// Only NaN is not equal to itself. */ | |
| degenerate = cvIsNaN(f); | |
| /* degenerate = 0; */ | |
| return degenerate; | |
| } | |
| /** | |
| * Evaluates the current model using SPRT for early exiting. | |
| * | |
| * Reads (direct): arg.maxD, arg.src, arg.dst, arg.N, curr.inl, curr.H, | |
| * ctrl.numModels, eval.Ntestedtotal, eval.lambdaAccept, | |
| * eval.lambdaReject, eval.A | |
| * Reads (callees): None. | |
| * Writes (direct): ctrl.numModels, curr.numInl, eval.Ntested, eval.good, | |
| * eval.Ntestedtotal | |
| * Writes (callees): None. | |
| */ | |
| inline void RHO_HEST_REFC::evaluateModelSPRT(void){ | |
| unsigned i; | |
| unsigned isInlier; | |
| double lambda = 1.0; | |
| float distSq = arg.maxD*arg.maxD; | |
| const float* src = arg.src; | |
| const float* dst = arg.dst; | |
| char* inl = curr.inl; | |
| const float* H = curr.H; | |
| ctrl.numModels++; | |
| curr.numInl = 0; | |
| eval.Ntested = 0; | |
| eval.good = 1; | |
| /* SCALAR */ | |
| for(i=0;i<arg.N && eval.good;i++){ | |
| /* Backproject */ | |
| float x=src[i*2],y=src[i*2+1]; | |
| float X=dst[i*2],Y=dst[i*2+1]; | |
| float reprojX=H[0]*x+H[1]*y+H[2]; /* ( X_1 ) ( H_11 H_12 H_13 ) (x_1) */ | |
| float reprojY=H[3]*x+H[4]*y+H[5]; /* ( X_2 ) = ( H_21 H_22 H_23 ) (x_2) */ | |
| float reprojZ=H[6]*x+H[7]*y+1.0f; /* ( X_3 ) ( H_31 H_32 H_33=1.0 ) (x_3 = 1.0) */ | |
| /* reproj is in homogeneous coordinates. To bring back to "regular" coordinates, divide by Z. */ | |
| reprojX/=reprojZ; | |
| reprojY/=reprojZ; | |
| /* Compute distance */ | |
| reprojX-=X; | |
| reprojY-=Y; | |
| reprojX*=reprojX; | |
| reprojY*=reprojY; | |
| float reprojDist = reprojX+reprojY; | |
| /* ... */ | |
| isInlier = reprojDist <= distSq; | |
| curr.numInl += isInlier; | |
| *inl++ = (char)isInlier; | |
| /* SPRT */ | |
| lambda *= isInlier ? eval.lambdaAccept : eval.lambdaReject; | |
| eval.good = lambda <= eval.A; | |
| /* If !good, the threshold A was exceeded, so we're rejecting */ | |
| } | |
| eval.Ntested = i; | |
| eval.Ntestedtotal += i; | |
| } | |
| /** | |
| * Update either the delta or epsilon SPRT parameters, depending on the events | |
| * that transpired in the previous evaluation. | |
| * | |
| * Reads (direct): eval.good, curr.numInl, arg.N, eval.Ntested, eval.delta | |
| * Reads (callees): eval.delta, eval.epsilon, eval.t_M, eval.m_S | |
| * Writes (direct): eval.epsilon, eval.delta | |
| * Writes (callees): eval.A, eval.lambdaReject, eval.lambdaAccept | |
| */ | |
| inline void RHO_HEST_REFC::updateSPRT(void){ | |
| if(eval.good){ | |
| if(isBestModel()){ | |
| eval.epsilon = (double)curr.numInl/arg.N; | |
| designSPRTTest(); | |
| } | |
| }else{ | |
| double newDelta = (double)curr.numInl/eval.Ntested; | |
| if(newDelta > 0){ | |
| double relChange = fabs(eval.delta - newDelta)/ eval.delta; | |
| if(relChange > MIN_DELTA_CHNG){ | |
| eval.delta = newDelta; | |
| designSPRTTest(); | |
| } | |
| } | |
| } | |
| } | |
| /** | |
| * Numerically compute threshold A from the estimated delta, epsilon, t_M and | |
| * m_S values. | |
| * | |
| * Epsilon: Denotes the probability that a randomly chosen data point is | |
| * consistent with a good model. | |
| * Delta: Denotes the probability that a randomly chosen data point is | |
| * consistent with a bad model. | |
| * t_M: Time needed to instantiate a model hypotheses given a sample. | |
| * (Computing model parameters from a sample takes the same time | |
| * as verification of t_M data points) | |
| * m_S: The number of models that are verified per sample. | |
| */ | |
| static inline double sacDesignSPRTTest(double delta, double epsilon, double t_M, double m_S){ | |
| double An, C, K, prevAn; | |
| unsigned i; | |
| /** | |
| * Randomized RANSAC with Sequential Probability Ratio Test, ICCV 2005 | |
| * Eq (2) | |
| */ | |
| C = (1-delta) * log((1-delta)/(1-epsilon)) + | |
| delta * log( delta / epsilon ); | |
| /** | |
| * Randomized RANSAC with Sequential Probability Ratio Test, ICCV 2005 | |
| * Eq (6) | |
| * K = K_1/K_2 + 1 = (t_M*C)/m_S + 1 | |
| */ | |
| K = t_M*C/m_S + 1; | |
| /** | |
| * Randomized RANSAC with Sequential Probability Ratio Test, ICCV 2005 | |
| * Paragraph below Eq (6) | |
| * | |
| * A* = lim_{n -> infty} A_n, where | |
| * A_0 = K1/K2 + 1 and | |
| * A_{n+1} = K1/K2 + 1 + log(A_n) | |
| * The series converges fast, typically within four iterations. | |
| */ | |
| An = K; | |
| i = 0; | |
| do{ | |
| prevAn = An; | |
| An = K + log(An); | |
| }while((An-prevAn > 1.5e-8) && (++i < 10)); | |
| /** | |
| * Return A = An_stopping, with n_stopping < 10 | |
| */ | |
| return An; | |
| } | |
| /** | |
| * Design the SPRT test. Shorthand for | |
| * A = sprt(delta, epsilon, t_M, m_S); | |
| * | |
| * Idempotent. | |
| * | |
| * Reads (direct): eval.delta, eval.epsilon, eval.t_M, eval.m_S | |
| * Reads (callees): None. | |
| * Writes (direct): eval.A, eval.lambdaReject, eval.lambdaAccept. | |
| * Writes (callees): None. | |
| */ | |
| inline void RHO_HEST_REFC::designSPRTTest(void){ | |
| eval.A = sacDesignSPRTTest(eval.delta, eval.epsilon, eval.t_M, eval.m_S); | |
| eval.lambdaReject = ((1.0 - eval.delta) / (1.0 - eval.epsilon)); | |
| eval.lambdaAccept = (( eval.delta ) / ( eval.epsilon )); | |
| } | |
| /** | |
| * Return whether the current model is the best model so far. | |
| * | |
| * @return Non-zero if this is the model with the most inliers seen so far; | |
| * 0 otherwise. | |
| * | |
| * Reads (direct): curr.numInl, best.numInl | |
| * Reads (callees): None. | |
| * Writes (direct): None. | |
| * Writes (callees): None. | |
| */ | |
| inline int RHO_HEST_REFC::isBestModel(void){ | |
| return curr.numInl > best.numInl; | |
| } | |
| /** | |
| * Returns whether the current-best model is good enough to be an | |
| * acceptable best model, by checking whether it meets the minimum | |
| * number of inliers. | |
| * | |
| * @return Non-zero if the current model is "good enough" to save; | |
| * 0 otherwise. | |
| * | |
| * Reads (direct): best.numInl, arg.minInl | |
| * Reads (callees): None. | |
| * Writes (direct): None. | |
| * Writes (callees): None. | |
| */ | |
| inline int RHO_HEST_REFC::isBestModelGoodEnough(void){ | |
| return best.numInl >= arg.minInl; | |
| } | |
| /** | |
| * Make current model new best model by swapping the homography, inlier mask | |
| * and count of inliers between the current and best models. | |
| * | |
| * Reads (direct): curr.H, curr.inl, curr.numInl, | |
| * best.H, best.inl, best.numInl | |
| * Reads (callees): None. | |
| * Writes (direct): curr.H, curr.inl, curr.numInl, | |
| * best.H, best.inl, best.numInl | |
| * Writes (callees): None. | |
| */ | |
| inline void RHO_HEST_REFC::saveBestModel(void){ | |
| float* H = curr.H; | |
| char* inl = curr.inl; | |
| unsigned numInl = curr.numInl; | |
| curr.H = best.H; | |
| curr.inl = best.inl; | |
| curr.numInl = best.numInl; | |
| best.H = H; | |
| best.inl = inl; | |
| best.numInl = numInl; | |
| } | |
| /** | |
| * Compute NR table entries [start, N) for given beta. | |
| */ | |
| static inline void sacInitNonRand(double beta, | |
| unsigned start, | |
| unsigned N, | |
| unsigned* nonRandMinInl){ | |
| unsigned n = SMPL_SIZE+1 > start ? SMPL_SIZE+1 : start; | |
| double beta_beta1_sq_chi = sqrt(beta*(1.0-beta)) * CHI_SQ; | |
| for(; n < N; n++){ | |
| double mu = n * beta; | |
| double sigma = sqrt((double)n)* beta_beta1_sq_chi; | |
| unsigned i_min = (unsigned)ceil(SMPL_SIZE + mu + sigma); | |
| nonRandMinInl[n] = i_min; | |
| } | |
| } | |
| /** | |
| * Optimize the stopping criterion to account for the non-randomness criterion | |
| * of PROSAC. | |
| * | |
| * Reads (direct): arg.N, best.numInl, nr.tbl, arg.inl, ctrl.phMax, | |
| * ctrl.phNumInl, arg.cfd, arg.maxI | |
| * Reads (callees): None. | |
| * Writes (direct): arg.maxI, ctrl.phMax, ctrl.phNumInl | |
| * Writes (callees): None. | |
| */ | |
| inline void RHO_HEST_REFC::nStarOptimize(void){ | |
| unsigned min_sample_length = 10*2; /*(N * INLIERS_RATIO) */ | |
| unsigned best_n = arg.N; | |
| unsigned test_n = best_n; | |
| unsigned bestNumInl = best.numInl; | |
| unsigned testNumInl = bestNumInl; | |
| for(;test_n > min_sample_length && testNumInl;test_n--){ | |
| if(testNumInl*best_n > bestNumInl*test_n){ | |
| if(testNumInl < nr.tbl[test_n]){ | |
| break; | |
| } | |
| best_n = test_n; | |
| bestNumInl = testNumInl; | |
| } | |
| testNumInl -= !!best.inl[test_n-1]; | |
| } | |
| if(bestNumInl*ctrl.phMax > ctrl.phNumInl*best_n){ | |
| ctrl.phMax = best_n; | |
| ctrl.phNumInl = bestNumInl; | |
| arg.maxI = sacCalcIterBound(arg.cfd, | |
| (double)ctrl.phNumInl/ctrl.phMax, | |
| SMPL_SIZE, | |
| arg.maxI); | |
| } | |
| } | |
| /** | |
| * Classic RANSAC iteration bound based on largest # of inliers. | |
| * | |
| * Reads (direct): arg.maxI, arg.cfd, best.numInl, arg.N | |
| * Reads (callees): None. | |
| * Writes (direct): arg.maxI | |
| * Writes (callees): None. | |
| */ | |
| inline void RHO_HEST_REFC::updateBounds(void){ | |
| arg.maxI = sacCalcIterBound(arg.cfd, | |
| (double)best.numInl/arg.N, | |
| SMPL_SIZE, | |
| arg.maxI); | |
| } | |
| /** | |
| * Output the best model so far to the output argument. | |
| * | |
| * Reads (direct): arg.finalH, best.H, arg.inl, best.inl, arg.N | |
| * Reads (callees): arg.finalH, arg.inl, arg.N | |
| * Writes (direct): arg.finalH, arg.inl | |
| * Writes (callees): arg.finalH, arg.inl | |
| */ | |
| inline void RHO_HEST_REFC::outputModel(void){ | |
| if(isBestModelGoodEnough()){ | |
| memcpy(arg.finalH, best.H, HSIZE); | |
| if(arg.inl){ | |
| memcpy(arg.inl, best.inl, arg.N); | |
| } | |
| }else{ | |
| outputZeroH(); | |
| } | |
| } | |
| /** | |
| * Output a zeroed H to the output argument. | |
| * | |
| * Reads (direct): arg.finalH, arg.inl, arg.N | |
| * Reads (callees): None. | |
| * Writes (direct): arg.finalH, arg.inl | |
| * Writes (callees): None. | |
| */ | |
| inline void RHO_HEST_REFC::outputZeroH(void){ | |
| if(arg.finalH){ | |
| memset(arg.finalH, 0, HSIZE); | |
| } | |
| if(arg.inl){ | |
| memset(arg.inl, 0, arg.N); | |
| } | |
| } | |
| /** | |
| * Compute the real-valued number of samples per phase, given the RANSAC convergence speed, | |
| * data set size and sample size. | |
| */ | |
| static inline double sacInitPEndFpI(const unsigned ransacConvg, | |
| const unsigned n, | |
| const unsigned s){ | |
| double numer=1, denom=1; | |
| unsigned i; | |
| for(i=0;i<s;i++){ | |
| numer *= s-i; | |
| denom *= n-i; | |
| } | |
| return ransacConvg*numer/denom; | |
| } | |
| /** | |
| * Estimate the number of iterations required based on the requested confidence, | |
| * proportion of inliers in the best model so far and sample size. | |
| * | |
| * Clamp return value at maxIterationBound. | |
| */ | |
| static inline unsigned sacCalcIterBound(double confidence, | |
| double inlierRate, | |
| unsigned sampleSize, | |
| unsigned maxIterBound){ | |
| unsigned retVal; | |
| /** | |
| * Formula chosen from http://en.wikipedia.org/wiki/RANSAC#The_parameters : | |
| * | |
| * \[ k = \frac{\log{(1-confidence)}}{\log{(1-inlierRate**sampleSize)}} \] | |
| */ | |
| double atLeastOneOutlierProbability = 1.-pow(inlierRate, (double)sampleSize); | |
| /** | |
| * There are two special cases: When argument to log() is 0 and when it is 1. | |
| * Each has a special meaning. | |
| */ | |
| if(atLeastOneOutlierProbability>=1.){ | |
| /** | |
| * A certainty of picking at least one outlier means that we will need | |
| * an infinite amount of iterations in order to find a correct solution. | |
| */ | |
| retVal = maxIterBound; | |
| }else if(atLeastOneOutlierProbability<=0.){ | |
| /** | |
| * The certainty of NOT picking an outlier means that only 1 iteration | |
| * is needed to find a solution. | |
| */ | |
| retVal = 1; | |
| }else{ | |
| /** | |
| * Since 1-confidence (the probability of the model being based on at | |
| * least one outlier in the data) is equal to | |
| * (1-inlierRate**sampleSize)**numIterations (the probability of picking | |
| * at least one outlier in numIterations samples), we can isolate | |
| * numIterations (the return value) into | |
| */ | |
| retVal = (unsigned)ceil(log(1.-confidence)/log(atLeastOneOutlierProbability)); | |
| } | |
| /** | |
| * Clamp to maxIterationBound. | |
| */ | |
| return retVal <= maxIterBound ? retVal : maxIterBound; | |
| } | |
| /** | |
| * Given 4 matches, computes the homography that relates them using Gaussian | |
| * Elimination. The row operations are as given in the paper. | |
| * | |
| * TODO: Clean this up. The code is hideous, and might even conceal sign bugs | |
| * (specifically relating to whether the last column should be negated, | |
| * or not). | |
| */ | |
| static void hFuncRefC(float* packedPoints,/* Source (four x,y float coordinates) points followed by | |
| destination (four x,y float coordinates) points, aligned by 32 bytes */ | |
| float* H){ /* Homography (three 16-byte aligned rows of 3 floats) */ | |
| float x0=*packedPoints++; | |
| float y0=*packedPoints++; | |
| float x1=*packedPoints++; | |
| float y1=*packedPoints++; | |
| float x2=*packedPoints++; | |
| float y2=*packedPoints++; | |
| float x3=*packedPoints++; | |
| float y3=*packedPoints++; | |
| float X0=*packedPoints++; | |
| float Y0=*packedPoints++; | |
| float X1=*packedPoints++; | |
| float Y1=*packedPoints++; | |
| float X2=*packedPoints++; | |
| float Y2=*packedPoints++; | |
| float X3=*packedPoints++; | |
| float Y3=*packedPoints++; | |
| float x0X0=x0*X0, x1X1=x1*X1, x2X2=x2*X2, x3X3=x3*X3; | |
| float x0Y0=x0*Y0, x1Y1=x1*Y1, x2Y2=x2*Y2, x3Y3=x3*Y3; | |
| float y0X0=y0*X0, y1X1=y1*X1, y2X2=y2*X2, y3X3=y3*X3; | |
| float y0Y0=y0*Y0, y1Y1=y1*Y1, y2Y2=y2*Y2, y3Y3=y3*Y3; | |
| /** | |
| * [0] [1] Hidden Prec | |
| * x0 y0 1 x1 | |
| * x1 y1 1 x1 | |
| * x2 y2 1 x1 | |
| * x3 y3 1 x1 | |
| * | |
| * Eliminate ones in column 2 and 5. | |
| * R(0)-=R(2) | |
| * R(1)-=R(2) | |
| * R(3)-=R(2) | |
| * | |
| * [0] [1] Hidden Prec | |
| * x0-x2 y0-y2 0 x1+1 | |
| * x1-x2 y1-y2 0 x1+1 | |
| * x2 y2 1 x1 | |
| * x3-x2 y3-y2 0 x1+1 | |
| * | |
| * Eliminate column 0 of rows 1 and 3 | |
| * R(1)=(x0-x2)*R(1)-(x1-x2)*R(0), y1'=(y1-y2)(x0-x2)-(x1-x2)(y0-y2) | |
| * R(3)=(x0-x2)*R(3)-(x3-x2)*R(0), y3'=(y3-y2)(x0-x2)-(x3-x2)(y0-y2) | |
| * | |
| * [0] [1] Hidden Prec | |
| * x0-x2 y0-y2 0 x1+1 | |
| * 0 y1' 0 x2+3 | |
| * x2 y2 1 x1 | |
| * 0 y3' 0 x2+3 | |
| * | |
| * Eliminate column 1 of rows 0 and 3 | |
| * R(3)=y1'*R(3)-y3'*R(1) | |
| * R(0)=y1'*R(0)-(y0-y2)*R(1) | |
| * | |
| * [0] [1] Hidden Prec | |
| * x0' 0 0 x3+5 | |
| * 0 y1' 0 x2+3 | |
| * x2 y2 1 x1 | |
| * 0 0 0 x4+7 | |
| * | |
| * Eliminate columns 0 and 1 of row 2 | |
| * R(0)/=x0' | |
| * R(1)/=y1' | |
| * R(2)-= (x2*R(0) + y2*R(1)) | |
| * | |
| * [0] [1] Hidden Prec | |
| * 1 0 0 x6+10 | |
| * 0 1 0 x4+6 | |
| * 0 0 1 x4+7 | |
| * 0 0 0 x4+7 | |
| */ | |
| /** | |
| * Eliminate ones in column 2 and 5. | |
| * R(0)-=R(2) | |
| * R(1)-=R(2) | |
| * R(3)-=R(2) | |
| */ | |
| /*float minor[4][2] = {{x0-x2,y0-y2}, | |
| {x1-x2,y1-y2}, | |
| {x2 ,y2 }, | |
| {x3-x2,y3-y2}};*/ | |
| /*float major[8][3] = {{x2X2-x0X0,y2X2-y0X0,(X0-X2)}, | |
| {x2X2-x1X1,y2X2-y1X1,(X1-X2)}, | |
| {-x2X2 ,-y2X2 ,(X2 )}, | |
| {x2X2-x3X3,y2X2-y3X3,(X3-X2)}, | |
| {x2Y2-x0Y0,y2Y2-y0Y0,(Y0-Y2)}, | |
| {x2Y2-x1Y1,y2Y2-y1Y1,(Y1-Y2)}, | |
| {-x2Y2 ,-y2Y2 ,(Y2 )}, | |
| {x2Y2-x3Y3,y2Y2-y3Y3,(Y3-Y2)}};*/ | |
| float minor[2][4] = {{x0-x2,x1-x2,x2 ,x3-x2}, | |
| {y0-y2,y1-y2,y2 ,y3-y2}}; | |
| float major[3][8] = {{x2X2-x0X0,x2X2-x1X1,-x2X2 ,x2X2-x3X3,x2Y2-x0Y0,x2Y2-x1Y1,-x2Y2 ,x2Y2-x3Y3}, | |
| {y2X2-y0X0,y2X2-y1X1,-y2X2 ,y2X2-y3X3,y2Y2-y0Y0,y2Y2-y1Y1,-y2Y2 ,y2Y2-y3Y3}, | |
| { (X0-X2) , (X1-X2) , (X2 ) , (X3-X2) , (Y0-Y2) , (Y1-Y2) , (Y2 ) , (Y3-Y2) }}; | |
| /** | |
| * int i; | |
| * for(i=0;i<8;i++) major[2][i]=-major[2][i]; | |
| * Eliminate column 0 of rows 1 and 3 | |
| * R(1)=(x0-x2)*R(1)-(x1-x2)*R(0), y1'=(y1-y2)(x0-x2)-(x1-x2)(y0-y2) | |
| * R(3)=(x0-x2)*R(3)-(x3-x2)*R(0), y3'=(y3-y2)(x0-x2)-(x3-x2)(y0-y2) | |
| */ | |
| float scalar1=minor[0][0], scalar2=minor[0][1]; | |
| minor[1][1]=minor[1][1]*scalar1-minor[1][0]*scalar2; | |
| major[0][1]=major[0][1]*scalar1-major[0][0]*scalar2; | |
| major[1][1]=major[1][1]*scalar1-major[1][0]*scalar2; | |
| major[2][1]=major[2][1]*scalar1-major[2][0]*scalar2; | |
| major[0][5]=major[0][5]*scalar1-major[0][4]*scalar2; | |
| major[1][5]=major[1][5]*scalar1-major[1][4]*scalar2; | |
| major[2][5]=major[2][5]*scalar1-major[2][4]*scalar2; | |
| scalar2=minor[0][3]; | |
| minor[1][3]=minor[1][3]*scalar1-minor[1][0]*scalar2; | |
| major[0][3]=major[0][3]*scalar1-major[0][0]*scalar2; | |
| major[1][3]=major[1][3]*scalar1-major[1][0]*scalar2; | |
| major[2][3]=major[2][3]*scalar1-major[2][0]*scalar2; | |
| major[0][7]=major[0][7]*scalar1-major[0][4]*scalar2; | |
| major[1][7]=major[1][7]*scalar1-major[1][4]*scalar2; | |
| major[2][7]=major[2][7]*scalar1-major[2][4]*scalar2; | |
| /** | |
| * Eliminate column 1 of rows 0 and 3 | |
| * R(3)=y1'*R(3)-y3'*R(1) | |
| * R(0)=y1'*R(0)-(y0-y2)*R(1) | |
| */ | |
| scalar1=minor[1][1];scalar2=minor[1][3]; | |
| major[0][3]=major[0][3]*scalar1-major[0][1]*scalar2; | |
| major[1][3]=major[1][3]*scalar1-major[1][1]*scalar2; | |
| major[2][3]=major[2][3]*scalar1-major[2][1]*scalar2; | |
| major[0][7]=major[0][7]*scalar1-major[0][5]*scalar2; | |
| major[1][7]=major[1][7]*scalar1-major[1][5]*scalar2; | |
| major[2][7]=major[2][7]*scalar1-major[2][5]*scalar2; | |
| scalar2=minor[1][0]; | |
| minor[0][0]=minor[0][0]*scalar1-minor[0][1]*scalar2; | |
| major[0][0]=major[0][0]*scalar1-major[0][1]*scalar2; | |
| major[1][0]=major[1][0]*scalar1-major[1][1]*scalar2; | |
| major[2][0]=major[2][0]*scalar1-major[2][1]*scalar2; | |
| major[0][4]=major[0][4]*scalar1-major[0][5]*scalar2; | |
| major[1][4]=major[1][4]*scalar1-major[1][5]*scalar2; | |
| major[2][4]=major[2][4]*scalar1-major[2][5]*scalar2; | |
| /** | |
| * Eliminate columns 0 and 1 of row 2 | |
| * R(0)/=x0' | |
| * R(1)/=y1' | |
| * R(2)-= (x2*R(0) + y2*R(1)) | |
| */ | |
| scalar1=1.0f/minor[0][0]; | |
| major[0][0]*=scalar1; | |
| major[1][0]*=scalar1; | |
| major[2][0]*=scalar1; | |
| major[0][4]*=scalar1; | |
| major[1][4]*=scalar1; | |
| major[2][4]*=scalar1; | |
| scalar1=1.0f/minor[1][1]; | |
| major[0][1]*=scalar1; | |
| major[1][1]*=scalar1; | |
| major[2][1]*=scalar1; | |
| major[0][5]*=scalar1; | |
| major[1][5]*=scalar1; | |
| major[2][5]*=scalar1; | |
| scalar1=minor[0][2];scalar2=minor[1][2]; | |
| major[0][2]-=major[0][0]*scalar1+major[0][1]*scalar2; | |
| major[1][2]-=major[1][0]*scalar1+major[1][1]*scalar2; | |
| major[2][2]-=major[2][0]*scalar1+major[2][1]*scalar2; | |
| major[0][6]-=major[0][4]*scalar1+major[0][5]*scalar2; | |
| major[1][6]-=major[1][4]*scalar1+major[1][5]*scalar2; | |
| major[2][6]-=major[2][4]*scalar1+major[2][5]*scalar2; | |
| /* Only major matters now. R(3) and R(7) correspond to the hollowed-out rows. */ | |
| scalar1=major[0][7]; | |
| major[1][7]/=scalar1; | |
| major[2][7]/=scalar1; | |
| scalar1=major[0][0];major[1][0]-=scalar1*major[1][7];major[2][0]-=scalar1*major[2][7]; | |
| scalar1=major[0][1];major[1][1]-=scalar1*major[1][7];major[2][1]-=scalar1*major[2][7]; | |
| scalar1=major[0][2];major[1][2]-=scalar1*major[1][7];major[2][2]-=scalar1*major[2][7]; | |
| scalar1=major[0][3];major[1][3]-=scalar1*major[1][7];major[2][3]-=scalar1*major[2][7]; | |
| scalar1=major[0][4];major[1][4]-=scalar1*major[1][7];major[2][4]-=scalar1*major[2][7]; | |
| scalar1=major[0][5];major[1][5]-=scalar1*major[1][7];major[2][5]-=scalar1*major[2][7]; | |
| scalar1=major[0][6];major[1][6]-=scalar1*major[1][7];major[2][6]-=scalar1*major[2][7]; | |
| /* One column left (Two in fact, but the last one is the homography) */ | |
| scalar1=major[1][3]; | |
| major[2][3]/=scalar1; | |
| scalar1=major[1][0];major[2][0]-=scalar1*major[2][3]; | |
| scalar1=major[1][1];major[2][1]-=scalar1*major[2][3]; | |
| scalar1=major[1][2];major[2][2]-=scalar1*major[2][3]; | |
| scalar1=major[1][4];major[2][4]-=scalar1*major[2][3]; | |
| scalar1=major[1][5];major[2][5]-=scalar1*major[2][3]; | |
| scalar1=major[1][6];major[2][6]-=scalar1*major[2][3]; | |
| scalar1=major[1][7];major[2][7]-=scalar1*major[2][3]; | |
| /* Homography is done. */ | |
| H[0]=major[2][0]; | |
| H[1]=major[2][1]; | |
| H[2]=major[2][2]; | |
| H[3]=major[2][4]; | |
| H[4]=major[2][5]; | |
| H[5]=major[2][6]; | |
| H[6]=major[2][7]; | |
| H[7]=major[2][3]; | |
| H[8]=1.0; | |
| } | |
| /** | |
| * Returns whether refinement is possible. | |
| * | |
| * NB This is separate from whether it is *enabled*. | |
| * | |
| * @return 0 if refinement isn't possible, non-zero otherwise. | |
| * | |
| * Reads (direct): best.numInl | |
| * Reads (callees): None. | |
| * Writes (direct): None. | |
| * Writes (callees): None. | |
| */ | |
| inline int RHO_HEST_REFC::canRefine(void){ | |
| /** | |
| * If we only have 4 matches, GE's result is already optimal and cannot | |
| * be refined any further. | |
| */ | |
| return best.numInl > (unsigned)SMPL_SIZE; | |
| } | |
| /** | |
| * Refines the best-so-far homography (p->best.H). | |
| * | |
| * Reads (direct): best.H, arg.src, arg.dst, best.inl, arg.N, lm.JtJ, | |
| * lm.Jte, lm.tmp1 | |
| * Reads (callees): None. | |
| * Writes (direct): best.H, lm.JtJ, lm.Jte, lm.tmp1 | |
| * Writes (callees): None. | |
| */ | |
| inline void RHO_HEST_REFC::refine(void){ | |
| int i; | |
| float S, newS; /* Sum of squared errors */ | |
| float gain; /* Gain-parameter. */ | |
| float L = 100.0f;/* Lambda of LevMarq */ | |
| float dH[8], newH[8]; | |
| /** | |
| * Iteratively refine the homography. | |
| */ | |
| /* Find initial conditions */ | |
| sacCalcJacobianErrors(best.H, arg.src, arg.dst, best.inl, arg.N, | |
| (float(*)[8])lm.JtJ, lm.Jte, &S); | |
| /*Levenberg-Marquardt Loop.*/ | |
| for(i=0;i<MAXLEVMARQITERS;i++){ | |
| /** | |
| * Attempt a step given current state | |
| * - Jacobian-x-Jacobian (JtJ) | |
| * - Jacobian-x-error (Jte) | |
| * - Sum of squared errors (S) | |
| * and current parameter | |
| * - Lambda (L) | |
| * . | |
| * | |
| * This is done by solving the system of equations | |
| * Ax = b | |
| * where A (JtJ) and b (Jte) are sourced from our current state, and | |
| * the solution x becomes a step (dH) that is applied to best.H in | |
| * order to compute a candidate homography (newH). | |
| * | |
| * The system above is solved by Cholesky decomposition of a | |
| * sufficiently-damped JtJ into a lower-triangular matrix (and its | |
| * transpose), whose inverse is then computed. This inverse (and its | |
| * transpose) then multiply Jte in order to find dH. | |
| */ | |
| while(!sacChol8x8Damped((float(*)[8])lm.JtJ, L, (float(*)[8])lm.tmp1)){ | |
| L *= 2.0f; | |
| } | |
| sacTRInv8x8 ((float(*)[8])lm.tmp1, (float(*)[8])lm.tmp1); | |
| sacTRISolve8x8((float(*)[8])lm.tmp1, lm.Jte, dH); | |
| sacSub8x1 (newH, best.H, dH); | |
| sacCalcJacobianErrors(newH, arg.src, arg.dst, best.inl, arg.N, | |
| NULL, NULL, &newS); | |
| gain = sacLMGain(dH, lm.Jte, S, newS, L); | |
| /*printf("Lambda: %12.6f S: %12.6f newS: %12.6f Gain: %12.6f\n", | |
| L, S, newS, gain);*/ | |
| /** | |
| * If the gain is positive (i.e., the new Sum of Square Errors (newS) | |
| * corresponding to newH is lower than the previous one (S) ), save | |
| * the current state and accept the new step dH. | |
| * | |
| * If the gain is below LM_GAIN_LO, damp more (increase L), even if the | |
| * gain was positive. If the gain is above LM_GAIN_HI, damp less | |
| * (decrease L). Otherwise the gain is left unchanged. | |
| */ | |
| if(gain < LM_GAIN_LO){ | |
| L *= 8; | |
| if(L>1000.0f/FLT_EPSILON){ | |
| break;/* FIXME: Most naive termination criterion imaginable. */ | |
| } | |
| }else if(gain > LM_GAIN_HI){ | |
| L *= 0.5; | |
| } | |
| if(gain > 0){ | |
| S = newS; | |
| memcpy(best.H, newH, sizeof(newH)); | |
| sacCalcJacobianErrors(best.H, arg.src, arg.dst, best.inl, arg.N, | |
| (float(*)[8])lm.JtJ, lm.Jte, &S); | |
| } | |
| } | |
| } | |
| /** | |
| * Compute directly the JtJ, Jte and sum-of-squared-error for a given | |
| * homography and set of inliers. | |
| * | |
| * This is possible because the product of J and its transpose as well as with | |
| * the error and the sum-of-squared-error can all be computed additively | |
| * (match-by-match), as one would intuitively expect; All matches make | |
| * contributions to the error independently of each other. | |
| * | |
| * What this allows is a constant-space implementation of Lev-Marq that can | |
| * nevertheless be vectorized if need be. | |
| */ | |
| static inline void sacCalcJacobianErrors(const float* H, | |
| const float* src, | |
| const float* dst, | |
| const char* inl, | |
| unsigned N, | |
| float (* JtJ)[8], | |
| float* Jte, | |
| float* Sp){ | |
| unsigned i; | |
| float S; | |
| /* Zero out JtJ, Jte and S */ | |
| if(JtJ){memset(JtJ, 0, 8*8*sizeof(float));} | |
| if(Jte){memset(Jte, 0, 8*1*sizeof(float));} | |
| S = 0.0f; | |
| /* Additively compute JtJ and Jte */ | |
| for(i=0;i<N;i++){ | |
| /* Skip outliers */ | |
| if(!inl[i]){ | |
| continue; | |
| } | |
| /** | |
| * Otherwise, compute additively the upper triangular matrix JtJ and | |
| * the Jtd vector within the following formula: | |
| * | |
| * LaTeX: | |
| * (J^{T}J + \lambda \diag( J^{T}J )) \beta = J^{T}[ y - f(\Beta) ] | |
| * Simplified ASCII: | |
| * (JtJ + L*diag(JtJ)) beta = Jt e, where e (error) is y-f(Beta). | |
| * | |
| * For this we need to calculate | |
| * 1) The 2D error (e) of the homography on the current point i | |
| * using the current parameters Beta. | |
| * 2) The derivatives (J) of the error on the current point i under | |
| * perturbations of the current parameters Beta. | |
| * Accumulate products of the error times the derivative to Jte, and | |
| * products of the derivatives to JtJ. | |
| */ | |
| /* Compute Squared Error */ | |
| float x = src[2*i+0]; | |
| float y = src[2*i+1]; | |
| float X = dst[2*i+0]; | |
| float Y = dst[2*i+1]; | |
| float W = (H[6]*x + H[7]*y + 1.0f); | |
| float iW = fabs(W) > FLT_EPSILON ? 1.0f/W : 0; | |
| float reprojX = (H[0]*x + H[1]*y + H[2]) * iW; | |
| float reprojY = (H[3]*x + H[4]*y + H[5]) * iW; | |
| float eX = reprojX - X; | |
| float eY = reprojY - Y; | |
| float e = eX*eX + eY*eY; | |
| S += e; | |
| /* Compute Jacobian */ | |
| if(JtJ || Jte){ | |
| float dxh11 = x * iW; | |
| float dxh12 = y * iW; | |
| float dxh13 = iW; | |
| /*float dxh21 = 0.0f;*/ | |
| /*float dxh22 = 0.0f;*/ | |
| /*float dxh23 = 0.0f;*/ | |
| float dxh31 = -reprojX*x * iW; | |
| float dxh32 = -reprojX*y * iW; | |
| /*float dyh11 = 0.0f;*/ | |
| /*float dyh12 = 0.0f;*/ | |
| /*float dyh13 = 0.0f;*/ | |
| float dyh21 = x * iW; | |
| float dyh22 = y * iW; | |
| float dyh23 = iW; | |
| float dyh31 = -reprojY*x * iW; | |
| float dyh32 = -reprojY*y * iW; | |
| /* Update Jte: X Y */ | |
| if(Jte){ | |
| Jte[0] += eX *dxh11 ;/* +0 */ | |
| Jte[1] += eX *dxh12 ;/* +0 */ | |
| Jte[2] += eX *dxh13 ;/* +0 */ | |
| Jte[3] += eY *dyh21;/* 0+ */ | |
| Jte[4] += eY *dyh22;/* 0+ */ | |
| Jte[5] += eY *dyh23;/* 0+ */ | |
| Jte[6] += eX *dxh31 + eY *dyh31;/* + */ | |
| Jte[7] += eX *dxh32 + eY *dyh32;/* + */ | |
| } | |
| /* Update JtJ: X Y */ | |
| if(JtJ){ | |
| JtJ[0][0] += dxh11*dxh11 ;/* +0 */ | |
| JtJ[1][0] += dxh11*dxh12 ;/* +0 */ | |
| JtJ[1][1] += dxh12*dxh12 ;/* +0 */ | |
| JtJ[2][0] += dxh11*dxh13 ;/* +0 */ | |
| JtJ[2][1] += dxh12*dxh13 ;/* +0 */ | |
| JtJ[2][2] += dxh13*dxh13 ;/* +0 */ | |
| /*JtJ[3][0] += ; 0+0 */ | |
| /*JtJ[3][1] += ; 0+0 */ | |
| /*JtJ[3][2] += ; 0+0 */ | |
| JtJ[3][3] += dyh21*dyh21;/* 0+ */ | |
| /*JtJ[4][0] += ; 0+0 */ | |
| /*JtJ[4][1] += ; 0+0 */ | |
| /*JtJ[4][2] += ; 0+0 */ | |
| JtJ[4][3] += dyh21*dyh22;/* 0+ */ | |
| JtJ[4][4] += dyh22*dyh22;/* 0+ */ | |
| /*JtJ[5][0] += ; 0+0 */ | |
| /*JtJ[5][1] += ; 0+0 */ | |
| /*JtJ[5][2] += ; 0+0 */ | |
| JtJ[5][3] += dyh21*dyh23;/* 0+ */ | |
| JtJ[5][4] += dyh22*dyh23;/* 0+ */ | |
| JtJ[5][5] += dyh23*dyh23;/* 0+ */ | |
| JtJ[6][0] += dxh11*dxh31 ;/* +0 */ | |
| JtJ[6][1] += dxh12*dxh31 ;/* +0 */ | |
| JtJ[6][2] += dxh13*dxh31 ;/* +0 */ | |
| JtJ[6][3] += dyh21*dyh31;/* 0+ */ | |
| JtJ[6][4] += dyh22*dyh31;/* 0+ */ | |
| JtJ[6][5] += dyh23*dyh31;/* 0+ */ | |
| JtJ[6][6] += dxh31*dxh31 + dyh31*dyh31;/* + */ | |
| JtJ[7][0] += dxh11*dxh32 ;/* +0 */ | |
| JtJ[7][1] += dxh12*dxh32 ;/* +0 */ | |
| JtJ[7][2] += dxh13*dxh32 ;/* +0 */ | |
| JtJ[7][3] += dyh21*dyh32;/* 0+ */ | |
| JtJ[7][4] += dyh22*dyh32;/* 0+ */ | |
| JtJ[7][5] += dyh23*dyh32;/* 0+ */ | |
| JtJ[7][6] += dxh31*dxh32 + dyh31*dyh32;/* + */ | |
| JtJ[7][7] += dxh32*dxh32 + dyh32*dyh32;/* + */ | |
| } | |
| } | |
| } | |
| if(Sp){*Sp = S;} | |
| } | |
| /** | |
| * Compute the Levenberg-Marquardt "gain" obtained by the given step dH. | |
| * | |
| * Drawn from http://www2.imm.dtu.dk/documents/ftp/tr99/tr05_99.pdf. | |
| */ | |
| static inline float sacLMGain(const float* dH, | |
| const float* Jte, | |
| const float S, | |
| const float newS, | |
| const float lambda){ | |
| float dS = S-newS; | |
| float dL = 0; | |
| int i; | |
| /* Compute h^t h... */ | |
| for(i=0;i<8;i++){ | |
| dL += dH[i]*dH[i]; | |
| } | |
| /* Compute mu * h^t h... */ | |
| dL *= lambda; | |
| /* Subtract h^t F'... */ | |
| for(i=0;i<8;i++){ | |
| dL += dH[i]*Jte[i];/* += as opposed to -=, since dH we compute is | |
| opposite sign. */ | |
| } | |
| /* Multiply by 1/2... */ | |
| dL *= 0.5; | |
| /* Return gain as S-newS / L0 - LH. */ | |
| return fabs(dL) < FLT_EPSILON ? dS : dS / dL; | |
| } | |
| /** | |
| * Cholesky decomposition on 8x8 real positive-definite matrix defined by its | |
| * lower-triangular half. Outputs L, the lower triangular part of the | |
| * decomposition. | |
| * | |
| * A and L can overlap fully (in-place) or not at all, but may not partially | |
| * overlap. | |
| * | |
| * For damping, the diagonal elements are scaled by 1.0 + lambda. | |
| * | |
| * Returns zero if decomposition unsuccessful, and non-zero otherwise. | |
| * | |
| * Source: http://en.wikipedia.org/wiki/Cholesky_decomposition# | |
| * The_Cholesky.E2.80.93Banachiewicz_and_Cholesky.E2.80.93Crout_algorithms | |
| */ | |
| static inline int sacChol8x8Damped(const float (*A)[8], | |
| float lambda, | |
| float (*L)[8]){ | |
| const int N = 8; | |
| int i, j, k; | |
| float lambdap1 = lambda + 1.0f; | |
| float x; | |
| for(i=0;i<N;i++){/* Row */ | |
| /* Pre-diagonal elements */ | |
| for(j=0;j<i;j++){ | |
| x = A[i][j]; /* Aij */ | |
| for(k=0;k<j;k++){ | |
| x -= L[i][k] * L[j][k];/* - Sum_{k=0..j-1} Lik*Ljk */ | |
| } | |
| L[i][j] = x / L[j][j]; /* Lij = ... / Ljj */ | |
| } | |
| /* Diagonal element */ | |
| {j = i; | |
| x = A[j][j] * lambdap1; /* Ajj */ | |
| for(k=0;k<j;k++){ | |
| x -= L[j][k] * L[j][k];/* - Sum_{k=0..j-1} Ljk^2 */ | |
| } | |
| if(x<0){ | |
| return 0; | |
| } | |
| L[j][j] = sqrtf(x); /* Ljj = sqrt( ... ) */ | |
| } | |
| } | |
| return 1; | |
| } | |
| /** | |
| * Invert lower-triangular 8x8 matrix L into lower-triangular matrix M. | |
| * | |
| * L and M can overlap fully (in-place) or not at all, but may not partially | |
| * overlap. | |
| * | |
| * Uses formulation from | |
| * http://www.cs.berkeley.edu/~knight/knight_math221_poster.pdf | |
| * , adjusted for the fact that A^T^-1 = A^-1^T. Thus: | |
| * | |
| * U11 U12 U11^-1 -U11^-1*U12*U22^-1 | |
| * -> | |
| * 0 U22 0 U22^-1 | |
| * | |
| * Becomes | |
| * | |
| * L11 0 L11^-1 0 | |
| * -> | |
| * L21 L22 -L22^-1*L21*L11^-1 L22^-1 | |
| * | |
| * Since | |
| * | |
| * ( -L11^T^-1*L21^T*L22^T^-1 )^T = -L22^T^-1^T*L21^T^T*L11^T^-1^T | |
| * = -L22^T^T^-1*L21^T^T*L11^T^T^-1 | |
| * = -L22^-1*L21*L11^-1 | |
| */ | |
| static inline void sacTRInv8x8(const float (*L)[8], | |
| float (*M)[8]){ | |
| float s[2][2], t[2][2]; | |
| float u[4][4], v[4][4]; | |
| /* | |
| L00 0 0 0 0 0 0 0 | |
| L10 L11 0 0 0 0 0 0 | |
| L20 L21 L22 0 0 0 0 0 | |
| L30 L31 L32 L33 0 0 0 0 | |
| L40 L41 L42 L43 L44 0 0 0 | |
| L50 L51 L52 L53 L54 L55 0 0 | |
| L60 L61 L62 L63 L64 L65 L66 0 | |
| L70 L71 L72 L73 L74 L75 L76 L77 | |
| */ | |
| /* Invert 4*2 1x1 matrices; Starts recursion. */ | |
| M[0][0] = 1.0f/L[0][0]; | |
| M[1][1] = 1.0f/L[1][1]; | |
| M[2][2] = 1.0f/L[2][2]; | |
| M[3][3] = 1.0f/L[3][3]; | |
| M[4][4] = 1.0f/L[4][4]; | |
| M[5][5] = 1.0f/L[5][5]; | |
| M[6][6] = 1.0f/L[6][6]; | |
| M[7][7] = 1.0f/L[7][7]; | |
| /* | |
| M00 0 0 0 0 0 0 0 | |
| L10 M11 0 0 0 0 0 0 | |
| L20 L21 M22 0 0 0 0 0 | |
| L30 L31 L32 M33 0 0 0 0 | |
| L40 L41 L42 L43 M44 0 0 0 | |
| L50 L51 L52 L53 L54 M55 0 0 | |
| L60 L61 L62 L63 L64 L65 M66 0 | |
| L70 L71 L72 L73 L74 L75 L76 M77 | |
| */ | |
| /* 4*2 Matrix products of 1x1 matrices */ | |
| M[1][0] = -M[1][1]*L[1][0]*M[0][0]; | |
| M[3][2] = -M[3][3]*L[3][2]*M[2][2]; | |
| M[5][4] = -M[5][5]*L[5][4]*M[4][4]; | |
| M[7][6] = -M[7][7]*L[7][6]*M[6][6]; | |
| /* | |
| M00 0 0 0 0 0 0 0 | |
| M10 M11 0 0 0 0 0 0 | |
| L20 L21 M22 0 0 0 0 0 | |
| L30 L31 M32 M33 0 0 0 0 | |
| L40 L41 L42 L43 M44 0 0 0 | |
| L50 L51 L52 L53 M54 M55 0 0 | |
| L60 L61 L62 L63 L64 L65 M66 0 | |
| L70 L71 L72 L73 L74 L75 M76 M77 | |
| */ | |
| /* 2*2 Matrix products of 2x2 matrices */ | |
| /* | |
| (M22 0 ) (L20 L21) (M00 0 ) | |
| - (M32 M33) x (L30 L31) x (M10 M11) | |
| */ | |
| s[0][0] = M[2][2]*L[2][0]; | |
| s[0][1] = M[2][2]*L[2][1]; | |
| s[1][0] = M[3][2]*L[2][0]+M[3][3]*L[3][0]; | |
| s[1][1] = M[3][2]*L[2][1]+M[3][3]*L[3][1]; | |
| t[0][0] = s[0][0]*M[0][0]+s[0][1]*M[1][0]; | |
| t[0][1] = s[0][1]*M[1][1]; | |
| t[1][0] = s[1][0]*M[0][0]+s[1][1]*M[1][0]; | |
| t[1][1] = s[1][1]*M[1][1]; | |
| M[2][0] = -t[0][0]; | |
| M[2][1] = -t[0][1]; | |
| M[3][0] = -t[1][0]; | |
| M[3][1] = -t[1][1]; | |
| /* | |
| (M66 0 ) (L64 L65) (M44 0 ) | |
| - (L76 M77) x (L74 L75) x (M54 M55) | |
| */ | |
| s[0][0] = M[6][6]*L[6][4]; | |
| s[0][1] = M[6][6]*L[6][5]; | |
| s[1][0] = M[7][6]*L[6][4]+M[7][7]*L[7][4]; | |
| s[1][1] = M[7][6]*L[6][5]+M[7][7]*L[7][5]; | |
| t[0][0] = s[0][0]*M[4][4]+s[0][1]*M[5][4]; | |
| t[0][1] = s[0][1]*M[5][5]; | |
| t[1][0] = s[1][0]*M[4][4]+s[1][1]*M[5][4]; | |
| t[1][1] = s[1][1]*M[5][5]; | |
| M[6][4] = -t[0][0]; | |
| M[6][5] = -t[0][1]; | |
| M[7][4] = -t[1][0]; | |
| M[7][5] = -t[1][1]; | |
| /* | |
| M00 0 0 0 0 0 0 0 | |
| M10 M11 0 0 0 0 0 0 | |
| M20 M21 M22 0 0 0 0 0 | |
| M30 M31 M32 M33 0 0 0 0 | |
| L40 L41 L42 L43 M44 0 0 0 | |
| L50 L51 L52 L53 M54 M55 0 0 | |
| L60 L61 L62 L63 M64 M65 M66 0 | |
| L70 L71 L72 L73 M74 M75 M76 M77 | |
| */ | |
| /* 1*2 Matrix products of 4x4 matrices */ | |
| /* | |
| (M44 0 0 0 ) (L40 L41 L42 L43) (M00 0 0 0 ) | |
| (M54 M55 0 0 ) (L50 L51 L52 L53) (M10 M11 0 0 ) | |
| (M64 M65 M66 0 ) (L60 L61 L62 L63) (M20 M21 M22 0 ) | |
| - (M74 M75 M76 M77) x (L70 L71 L72 L73) x (M30 M31 M32 M33) | |
| */ | |
| u[0][0] = M[4][4]*L[4][0]; | |
| u[0][1] = M[4][4]*L[4][1]; | |
| u[0][2] = M[4][4]*L[4][2]; | |
| u[0][3] = M[4][4]*L[4][3]; | |
| u[1][0] = M[5][4]*L[4][0]+M[5][5]*L[5][0]; | |
| u[1][1] = M[5][4]*L[4][1]+M[5][5]*L[5][1]; | |
| u[1][2] = M[5][4]*L[4][2]+M[5][5]*L[5][2]; | |
| u[1][3] = M[5][4]*L[4][3]+M[5][5]*L[5][3]; | |
| u[2][0] = M[6][4]*L[4][0]+M[6][5]*L[5][0]+M[6][6]*L[6][0]; | |
| u[2][1] = M[6][4]*L[4][1]+M[6][5]*L[5][1]+M[6][6]*L[6][1]; | |
| u[2][2] = M[6][4]*L[4][2]+M[6][5]*L[5][2]+M[6][6]*L[6][2]; | |
| u[2][3] = M[6][4]*L[4][3]+M[6][5]*L[5][3]+M[6][6]*L[6][3]; | |
| u[3][0] = M[7][4]*L[4][0]+M[7][5]*L[5][0]+M[7][6]*L[6][0]+M[7][7]*L[7][0]; | |
| u[3][1] = M[7][4]*L[4][1]+M[7][5]*L[5][1]+M[7][6]*L[6][1]+M[7][7]*L[7][1]; | |
| u[3][2] = M[7][4]*L[4][2]+M[7][5]*L[5][2]+M[7][6]*L[6][2]+M[7][7]*L[7][2]; | |
| u[3][3] = M[7][4]*L[4][3]+M[7][5]*L[5][3]+M[7][6]*L[6][3]+M[7][7]*L[7][3]; | |
| v[0][0] = u[0][0]*M[0][0]+u[0][1]*M[1][0]+u[0][2]*M[2][0]+u[0][3]*M[3][0]; | |
| v[0][1] = u[0][1]*M[1][1]+u[0][2]*M[2][1]+u[0][3]*M[3][1]; | |
| v[0][2] = u[0][2]*M[2][2]+u[0][3]*M[3][2]; | |
| v[0][3] = u[0][3]*M[3][3]; | |
| v[1][0] = u[1][0]*M[0][0]+u[1][1]*M[1][0]+u[1][2]*M[2][0]+u[1][3]*M[3][0]; | |
| v[1][1] = u[1][1]*M[1][1]+u[1][2]*M[2][1]+u[1][3]*M[3][1]; | |
| v[1][2] = u[1][2]*M[2][2]+u[1][3]*M[3][2]; | |
| v[1][3] = u[1][3]*M[3][3]; | |
| v[2][0] = u[2][0]*M[0][0]+u[2][1]*M[1][0]+u[2][2]*M[2][0]+u[2][3]*M[3][0]; | |
| v[2][1] = u[2][1]*M[1][1]+u[2][2]*M[2][1]+u[2][3]*M[3][1]; | |
| v[2][2] = u[2][2]*M[2][2]+u[2][3]*M[3][2]; | |
| v[2][3] = u[2][3]*M[3][3]; | |
| v[3][0] = u[3][0]*M[0][0]+u[3][1]*M[1][0]+u[3][2]*M[2][0]+u[3][3]*M[3][0]; | |
| v[3][1] = u[3][1]*M[1][1]+u[3][2]*M[2][1]+u[3][3]*M[3][1]; | |
| v[3][2] = u[3][2]*M[2][2]+u[3][3]*M[3][2]; | |
| v[3][3] = u[3][3]*M[3][3]; | |
| M[4][0] = -v[0][0]; | |
| M[4][1] = -v[0][1]; | |
| M[4][2] = -v[0][2]; | |
| M[4][3] = -v[0][3]; | |
| M[5][0] = -v[1][0]; | |
| M[5][1] = -v[1][1]; | |
| M[5][2] = -v[1][2]; | |
| M[5][3] = -v[1][3]; | |
| M[6][0] = -v[2][0]; | |
| M[6][1] = -v[2][1]; | |
| M[6][2] = -v[2][2]; | |
| M[6][3] = -v[2][3]; | |
| M[7][0] = -v[3][0]; | |
| M[7][1] = -v[3][1]; | |
| M[7][2] = -v[3][2]; | |
| M[7][3] = -v[3][3]; | |
| /* | |
| M00 0 0 0 0 0 0 0 | |
| M10 M11 0 0 0 0 0 0 | |
| M20 M21 M22 0 0 0 0 0 | |
| M30 M31 M32 M33 0 0 0 0 | |
| M40 M41 M42 M43 M44 0 0 0 | |
| M50 M51 M52 M53 M54 M55 0 0 | |
| M60 M61 M62 M63 M64 M65 M66 0 | |
| M70 M71 M72 M73 M74 M75 M76 M77 | |
| */ | |
| } | |
| /** | |
| * Solves dH = inv(JtJ) Jte. The argument lower-triangular matrix is the | |
| * inverse of L as produced by the Cholesky decomposition LL^T of the matrix | |
| * JtJ; Thus the operation performed here is a left-multiplication of a vector | |
| * by two triangular matrices. The math is below: | |
| * | |
| * JtJ = LL^T | |
| * Linv = L^-1 | |
| * (JtJ)^-1 = (LL^T)^-1 | |
| * = (L^T^-1)(Linv) | |
| * = (Linv^T)(Linv) | |
| * dH = ((JtJ)^-1) (Jte) | |
| * = (Linv^T)(Linv) (Jte) | |
| * | |
| * where J is nx8, Jt is 8xn, JtJ is 8x8 PD, e is nx1, Jte is 8x1, L is lower | |
| * triangular 8x8 and dH is 8x1. | |
| */ | |
| static inline void sacTRISolve8x8(const float (*L)[8], | |
| const float* Jte, | |
| float* dH){ | |
| float t[8]; | |
| t[0] = L[0][0]*Jte[0]; | |
| t[1] = L[1][0]*Jte[0]+L[1][1]*Jte[1]; | |
| t[2] = L[2][0]*Jte[0]+L[2][1]*Jte[1]+L[2][2]*Jte[2]; | |
| t[3] = L[3][0]*Jte[0]+L[3][1]*Jte[1]+L[3][2]*Jte[2]+L[3][3]*Jte[3]; | |
| t[4] = L[4][0]*Jte[0]+L[4][1]*Jte[1]+L[4][2]*Jte[2]+L[4][3]*Jte[3]+L[4][4]*Jte[4]; | |
| t[5] = L[5][0]*Jte[0]+L[5][1]*Jte[1]+L[5][2]*Jte[2]+L[5][3]*Jte[3]+L[5][4]*Jte[4]+L[5][5]*Jte[5]; | |
| t[6] = L[6][0]*Jte[0]+L[6][1]*Jte[1]+L[6][2]*Jte[2]+L[6][3]*Jte[3]+L[6][4]*Jte[4]+L[6][5]*Jte[5]+L[6][6]*Jte[6]; | |
| t[7] = L[7][0]*Jte[0]+L[7][1]*Jte[1]+L[7][2]*Jte[2]+L[7][3]*Jte[3]+L[7][4]*Jte[4]+L[7][5]*Jte[5]+L[7][6]*Jte[6]+L[7][7]*Jte[7]; | |
| dH[0] = L[0][0]*t[0]+L[1][0]*t[1]+L[2][0]*t[2]+L[3][0]*t[3]+L[4][0]*t[4]+L[5][0]*t[5]+L[6][0]*t[6]+L[7][0]*t[7]; | |
| dH[1] = L[1][1]*t[1]+L[2][1]*t[2]+L[3][1]*t[3]+L[4][1]*t[4]+L[5][1]*t[5]+L[6][1]*t[6]+L[7][1]*t[7]; | |
| dH[2] = L[2][2]*t[2]+L[3][2]*t[3]+L[4][2]*t[4]+L[5][2]*t[5]+L[6][2]*t[6]+L[7][2]*t[7]; | |
| dH[3] = L[3][3]*t[3]+L[4][3]*t[4]+L[5][3]*t[5]+L[6][3]*t[6]+L[7][3]*t[7]; | |
| dH[4] = L[4][4]*t[4]+L[5][4]*t[5]+L[6][4]*t[6]+L[7][4]*t[7]; | |
| dH[5] = L[5][5]*t[5]+L[6][5]*t[6]+L[7][5]*t[7]; | |
| dH[6] = L[6][6]*t[6]+L[7][6]*t[7]; | |
| dH[7] = L[7][7]*t[7]; | |
| } | |
| /** | |
| * Subtract dH from H. | |
| */ | |
| static inline void sacSub8x1(float* Hout, const float* H, const float* dH){ | |
| Hout[0] = H[0] - dH[0]; | |
| Hout[1] = H[1] - dH[1]; | |
| Hout[2] = H[2] - dH[2]; | |
| Hout[3] = H[3] - dH[3]; | |
| Hout[4] = H[4] - dH[4]; | |
| Hout[5] = H[5] - dH[5]; | |
| Hout[6] = H[6] - dH[6]; | |
| Hout[7] = H[7] - dH[7]; | |
| } | |
| /* End namespace cv */ | |
| } | |