|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include "../precomp.hpp"
|
|
|
#include "../usac.hpp"
|
|
|
#if defined(HAVE_EIGEN)
|
|
|
#include <Eigen/Eigen>
|
|
|
#elif defined(HAVE_LAPACK)
|
|
|
#include "opencv_lapack.h"
|
|
|
#endif
|
|
|
|
|
|
namespace cv { namespace usac {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class EssentialMinimalSolver5ptsImpl : public EssentialMinimalSolver5pts {
|
|
|
private:
|
|
|
|
|
|
const Mat points_mat;
|
|
|
const bool use_svd, is_nister;
|
|
|
public:
|
|
|
explicit EssentialMinimalSolver5ptsImpl (const Mat &points_, bool use_svd_=false, bool is_nister_=false) :
|
|
|
points_mat(points_), use_svd(use_svd_), is_nister(is_nister_)
|
|
|
{
|
|
|
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
|
|
|
}
|
|
|
|
|
|
int estimate (const std::vector<int> &sample, std::vector<Mat> &models) const override {
|
|
|
const float * pts = points_mat.ptr<float>();
|
|
|
|
|
|
std::vector<double> coefficients(45);
|
|
|
auto *coefficients_ = &coefficients[0];
|
|
|
for (int i = 0; i < 5; i++) {
|
|
|
const int smpl = 4 * sample[i];
|
|
|
const auto x1 = pts[smpl], y1 = pts[smpl+1], x2 = pts[smpl+2], y2 = pts[smpl+3];
|
|
|
(*coefficients_++) = x2 * x1;
|
|
|
(*coefficients_++) = x2 * y1;
|
|
|
(*coefficients_++) = x2;
|
|
|
(*coefficients_++) = y2 * x1;
|
|
|
(*coefficients_++) = y2 * y1;
|
|
|
(*coefficients_++) = y2;
|
|
|
(*coefficients_++) = x1;
|
|
|
(*coefficients_++) = y1;
|
|
|
(*coefficients_++) = 1;
|
|
|
}
|
|
|
|
|
|
const int num_cols = 9, num_e_mat = 4;
|
|
|
double ee[36];
|
|
|
if (use_svd) {
|
|
|
Matx<double, 5, 9> coeffs (&coefficients[0]);
|
|
|
Mat D, U, Vt;
|
|
|
SVDecomp(coeffs, D, U, Vt, SVD::FULL_UV + SVD::MODIFY_A);
|
|
|
const auto * const vt = (double *) Vt.data;
|
|
|
for (int i = 0; i < num_e_mat; i++)
|
|
|
for (int j = 0; j < num_cols; j++)
|
|
|
ee[i * num_cols + j] = vt[(8-i)*num_cols+j];
|
|
|
} else {
|
|
|
|
|
|
if (!Math::eliminateUpperTriangular(coefficients, 5, num_cols))
|
|
|
return 0;
|
|
|
for (int i = 0; i < num_e_mat; i++)
|
|
|
for (int j = 5; j < num_cols; j++)
|
|
|
ee[num_cols * i + j] = (i + 5 == j) ? 1 : 0;
|
|
|
|
|
|
for (int e = 0; e < num_e_mat; e++) {
|
|
|
const int curr_e = num_cols * e;
|
|
|
|
|
|
for (int i = 4; i >= 0; i--) {
|
|
|
const int row_i = i * num_cols;
|
|
|
double acc = 0;
|
|
|
for (int j = i + 1; j < num_cols; j++)
|
|
|
acc -= coefficients[row_i + j] * ee[curr_e + j];
|
|
|
ee[curr_e + i] = acc / coefficients[row_i + i];
|
|
|
|
|
|
if (std::isnan(ee[curr_e + i]))
|
|
|
return 0;
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
const Matx<double, 4, 9> null_space(ee);
|
|
|
const Matx<double, 4, 1> null_space_mat[3][3] = {
|
|
|
{null_space.col(0), null_space.col(3), null_space.col(6)},
|
|
|
{null_space.col(1), null_space.col(4), null_space.col(7)},
|
|
|
{null_space.col(2), null_space.col(5), null_space.col(8)}};
|
|
|
Mat_<double> constraint_mat(10, 20);
|
|
|
Matx<double, 1, 10> eet[3][3];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (is_nister) {
|
|
|
for (int i = 0; i < 3; i++)
|
|
|
for (int j = 0; j < 3; j++)
|
|
|
|
|
|
|
|
|
eet[i][j] = multPolysDegOne(null_space_mat[i][0].val, null_space_mat[j][0].val) +
|
|
|
multPolysDegOne(null_space_mat[i][1].val, null_space_mat[j][1].val) +
|
|
|
multPolysDegOne(null_space_mat[i][2].val, null_space_mat[j][2].val);
|
|
|
|
|
|
const Matx<double, 1, 10> trace = 0.5*(eet[0][0] + eet[1][1] + eet[2][2]);
|
|
|
|
|
|
for (int i = 0; i < 3; i++)
|
|
|
for (int j = 0; j < 3; j++)
|
|
|
Mat(multPolysDegOneAndTwoNister(i == 0 ? (eet[i][0] - trace).val : eet[i][0].val, null_space_mat[0][j].val) +
|
|
|
multPolysDegOneAndTwoNister(i == 1 ? (eet[i][1] - trace).val : eet[i][1].val, null_space_mat[1][j].val) +
|
|
|
multPolysDegOneAndTwoNister(i == 2 ? (eet[i][2] - trace).val : eet[i][2].val, null_space_mat[2][j].val)).copyTo(constraint_mat.row(1+3 * j + i));
|
|
|
|
|
|
|
|
|
Mat(multPolysDegOneAndTwoNister(
|
|
|
(multPolysDegOne(null_space_mat[0][1].val, null_space_mat[1][2].val) -
|
|
|
multPolysDegOne(null_space_mat[0][2].val, null_space_mat[1][1].val)).val,
|
|
|
null_space_mat[2][0].val) +
|
|
|
multPolysDegOneAndTwoNister(
|
|
|
(multPolysDegOne(null_space_mat[0][2].val, null_space_mat[1][0].val) -
|
|
|
multPolysDegOne(null_space_mat[0][0].val, null_space_mat[1][2].val)).val,
|
|
|
null_space_mat[2][1].val) +
|
|
|
multPolysDegOneAndTwoNister(
|
|
|
(multPolysDegOne(null_space_mat[0][0].val, null_space_mat[1][1].val) -
|
|
|
multPolysDegOne(null_space_mat[0][1].val, null_space_mat[1][0].val)).val,
|
|
|
null_space_mat[2][2].val)).copyTo(constraint_mat.row(0));
|
|
|
|
|
|
Matx<double, 10, 10> Acoef = constraint_mat.colRange(0, 10),
|
|
|
Bcoef = constraint_mat.colRange(10, 20), A_;
|
|
|
|
|
|
if (!solve(Acoef, Bcoef, A_, DECOMP_LU)) return 0;
|
|
|
|
|
|
double b[3 * 13];
|
|
|
const auto * const a = A_.val;
|
|
|
for (int i = 0; i < 3; i++) {
|
|
|
const int r1_idx = i * 2 + 4, r2_idx = i * 2 + 5;
|
|
|
for (int j = 0, r1_j = 0, r2_j = 0; j < 13; j++)
|
|
|
b[i*13+j] = ((j == 0 || j == 4 || j == 8) ? 0 : a[r1_idx*A_.cols+r1_j++]) - ((j == 3 || j == 7 || j == 12) ? 0 : a[r2_idx*A_.cols+r2_j++]);
|
|
|
}
|
|
|
|
|
|
std::vector<double> c(11), rs;
|
|
|
|
|
|
|
|
|
|
|
|
c[10] = (b[0]*b[17]*b[34]+b[26]*b[4]*b[21]-b[26]*b[17]*b[8]-b[13]*b[4]*b[34]-b[0]*b[21]*b[30]+b[13]*b[30]*b[8]);
|
|
|
c[9] = (b[26]*b[4]*b[22]+b[14]*b[30]*b[8]+b[13]*b[31]*b[8]+b[1]*b[17]*b[34]-b[13]*b[5]*b[34]+b[26]*b[5]*b[21]-b[0]*b[21]*b[31]-b[26]*b[17]*b[9]-b[1]*b[21]*b[30]+b[27]*b[4]*b[21]+b[0]*b[17]*b[35]-b[0]*b[22]*b[30]+b[13]*b[30]*b[9]+b[0]*b[18]*b[34]-b[27]*b[17]*b[8]-b[14]*b[4]*b[34]-b[13]*b[4]*b[35]-b[26]*b[18]*b[8]);
|
|
|
c[8] = (b[14]*b[30]*b[9]+b[14]*b[31]*b[8]+b[13]*b[31]*b[9]-b[13]*b[4]*b[36]-b[13]*b[5]*b[35]+b[15]*b[30]*b[8]-b[13]*b[6]*b[34]+b[13]*b[30]*b[10]+b[13]*b[32]*b[8]-b[14]*b[4]*b[35]-b[14]*b[5]*b[34]+b[26]*b[4]*b[23]+b[26]*b[5]*b[22]+b[26]*b[6]*b[21]-b[26]*b[17]*b[10]-b[15]*b[4]*b[34]-b[26]*b[18]*b[9]-b[26]*b[19]*b[8]+b[27]*b[4]*b[22]+b[27]*b[5]*b[21]-b[27]*b[17]*b[9]-b[27]*b[18]*b[8]-b[1]*b[21]*b[31]-b[0]*b[23]*b[30]-b[0]*b[21]*b[32]+b[28]*b[4]*b[21]-b[28]*b[17]*b[8]+b[2]*b[17]*b[34]+b[0]*b[18]*b[35]-b[0]*b[22]*b[31]+b[0]*b[17]*b[36]+b[0]*b[19]*b[34]-b[1]*b[22]*b[30]+b[1]*b[18]*b[34]+b[1]*b[17]*b[35]-b[2]*b[21]*b[30]);
|
|
|
c[7] = (b[14]*b[30]*b[10]+b[14]*b[32]*b[8]-b[3]*b[21]*b[30]+b[3]*b[17]*b[34]+b[13]*b[32]*b[9]+b[13]*b[33]*b[8]-b[13]*b[4]*b[37]-b[13]*b[5]*b[36]+b[15]*b[30]*b[9]+b[15]*b[31]*b[8]-b[16]*b[4]*b[34]-b[13]*b[6]*b[35]-b[13]*b[7]*b[34]+b[13]*b[30]*b[11]+b[13]*b[31]*b[10]+b[14]*b[31]*b[9]-b[14]*b[4]*b[36]-b[14]*b[5]*b[35]-b[14]*b[6]*b[34]+b[16]*b[30]*b[8]-b[26]*b[20]*b[8]+b[26]*b[4]*b[24]+b[26]*b[5]*b[23]+b[26]*b[6]*b[22]+b[26]*b[7]*b[21]-b[26]*b[17]*b[11]-b[15]*b[4]*b[35]-b[15]*b[5]*b[34]-b[26]*b[18]*b[10]-b[26]*b[19]*b[9]+b[27]*b[4]*b[23]+b[27]*b[5]*b[22]+b[27]*b[6]*b[21]-b[27]*b[17]*b[10]-b[27]*b[18]*b[9]-b[27]*b[19]*b[8]+b[0]*b[17]*b[37]-b[0]*b[23]*b[31]-b[0]*b[24]*b[30]-b[0]*b[21]*b[33]-b[29]*b[17]*b[8]+b[28]*b[4]*b[22]+b[28]*b[5]*b[21]-b[28]*b[17]*b[9]-b[28]*b[18]*b[8]+b[29]*b[4]*b[21]+b[1]*b[19]*b[34]-b[2]*b[21]*b[31]+b[0]*b[20]*b[34]+b[0]*b[19]*b[35]+b[0]*b[18]*b[36]-b[0]*b[22]*b[32]-b[1]*b[23]*b[30]-b[1]*b[21]*b[32]+b[1]*b[18]*b[35]-b[1]*b[22]*b[31]-b[2]*b[22]*b[30]+b[2]*b[17]*b[35]+b[1]*b[17]*b[36]+b[2]*b[18]*b[34]);
|
|
|
c[6] = (-b[14]*b[6]*b[35]-b[14]*b[7]*b[34]-b[3]*b[22]*b[30]-b[3]*b[21]*b[31]+b[3]*b[17]*b[35]+b[3]*b[18]*b[34]+b[13]*b[32]*b[10]+b[13]*b[33]*b[9]-b[13]*b[4]*b[38]-b[13]*b[5]*b[37]-b[15]*b[6]*b[34]+b[15]*b[30]*b[10]+b[15]*b[32]*b[8]-b[16]*b[4]*b[35]-b[13]*b[6]*b[36]-b[13]*b[7]*b[35]+b[13]*b[31]*b[11]+b[13]*b[30]*b[12]+b[14]*b[32]*b[9]+b[14]*b[33]*b[8]-b[14]*b[4]*b[37]-b[14]*b[5]*b[36]+b[16]*b[30]*b[9]+b[16]*b[31]*b[8]-b[26]*b[20]*b[9]+b[26]*b[4]*b[25]+b[26]*b[5]*b[24]+b[26]*b[6]*b[23]+b[26]*b[7]*b[22]-b[26]*b[17]*b[12]+b[14]*b[30]*b[11]+b[14]*b[31]*b[10]+b[15]*b[31]*b[9]-b[15]*b[4]*b[36]-b[15]*b[5]*b[35]-b[26]*b[18]*b[11]-b[26]*b[19]*b[10]-b[27]*b[20]*b[8]+b[27]*b[4]*b[24]+b[27]*b[5]*b[23]+b[27]*b[6]*b[22]+b[27]*b[7]*b[21]-b[27]*b[17]*b[11]-b[27]*b[18]*b[10]-b[27]*b[19]*b[9]-b[16]*b[5]*b[34]-b[29]*b[17]*b[9]-b[29]*b[18]*b[8]+b[28]*b[4]*b[23]+b[28]*b[5]*b[22]+b[28]*b[6]*b[21]-b[28]*b[17]*b[10]-b[28]*b[18]*b[9]-b[28]*b[19]*b[8]+b[29]*b[4]*b[22]+b[29]*b[5]*b[21]-b[2]*b[23]*b[30]+b[2]*b[18]*b[35]-b[1]*b[22]*b[32]-b[2]*b[21]*b[32]+b[2]*b[19]*b[34]+b[0]*b[19]*b[36]-b[0]*b[22]*b[33]+b[0]*b[20]*b[35]-b[0]*b[23]*b[32]-b[0]*b[25]*b[30]+b[0]*b[17]*b[38]+b[0]*b[18]*b[37]-b[0]*b[24]*b[31]+b[1]*b[17]*b[37]-b[1]*b[23]*b[31]-b[1]*b[24]*b[30]-b[1]*b[21]*b[33]+b[1]*b[20]*b[34]+b[1]*b[19]*b[35]+b[1]*b[18]*b[36]+b[2]*b[17]*b[36]-b[2]*b[22]*b[31]);
|
|
|
c[5] = (-b[14]*b[6]*b[36]-b[14]*b[7]*b[35]+b[14]*b[31]*b[11]-b[3]*b[23]*b[30]-b[3]*b[21]*b[32]+b[3]*b[18]*b[35]-b[3]*b[22]*b[31]+b[3]*b[17]*b[36]+b[3]*b[19]*b[34]+b[13]*b[32]*b[11]+b[13]*b[33]*b[10]-b[13]*b[5]*b[38]-b[15]*b[6]*b[35]-b[15]*b[7]*b[34]+b[15]*b[30]*b[11]+b[15]*b[31]*b[10]+b[16]*b[31]*b[9]-b[13]*b[6]*b[37]-b[13]*b[7]*b[36]+b[13]*b[31]*b[12]+b[14]*b[32]*b[10]+b[14]*b[33]*b[9]-b[14]*b[4]*b[38]-b[14]*b[5]*b[37]-b[16]*b[6]*b[34]+b[16]*b[30]*b[10]+b[16]*b[32]*b[8]-b[26]*b[20]*b[10]+b[26]*b[5]*b[25]+b[26]*b[6]*b[24]+b[26]*b[7]*b[23]+b[14]*b[30]*b[12]+b[15]*b[32]*b[9]+b[15]*b[33]*b[8]-b[15]*b[4]*b[37]-b[15]*b[5]*b[36]+b[29]*b[5]*b[22]+b[29]*b[6]*b[21]-b[26]*b[18]*b[12]-b[26]*b[19]*b[11]-b[27]*b[20]*b[9]+b[27]*b[4]*b[25]+b[27]*b[5]*b[24]+b[27]*b[6]*b[23]+b[27]*b[7]*b[22]-b[27]*b[17]*b[12]-b[27]*b[18]*b[11]-b[27]*b[19]*b[10]-b[28]*b[20]*b[8]-b[16]*b[4]*b[36]-b[16]*b[5]*b[35]-b[29]*b[17]*b[10]-b[29]*b[18]*b[9]-b[29]*b[19]*b[8]+b[28]*b[4]*b[24]+b[28]*b[5]*b[23]+b[28]*b[6]*b[22]+b[28]*b[7]*b[21]-b[28]*b[17]*b[11]-b[28]*b[18]*b[10]-b[28]*b[19]*b[9]+b[29]*b[4]*b[23]-b[2]*b[22]*b[32]-b[2]*b[21]*b[33]-b[1]*b[24]*b[31]+b[0]*b[18]*b[38]-b[0]*b[24]*b[32]+b[0]*b[19]*b[37]+b[0]*b[20]*b[36]-b[0]*b[25]*b[31]-b[0]*b[23]*b[33]+b[1]*b[19]*b[36]-b[1]*b[22]*b[33]+b[1]*b[20]*b[35]+b[2]*b[19]*b[35]-b[2]*b[24]*b[30]-b[2]*b[23]*b[31]+b[2]*b[20]*b[34]+b[2]*b[17]*b[37]-b[1]*b[25]*b[30]+b[1]*b[18]*b[37]+b[1]*b[17]*b[38]-b[1]*b[23]*b[32]+b[2]*b[18]*b[36]);
|
|
|
c[4] = (-b[14]*b[6]*b[37]-b[14]*b[7]*b[36]+b[14]*b[31]*b[12]+b[3]*b[17]*b[37]-b[3]*b[23]*b[31]-b[3]*b[24]*b[30]-b[3]*b[21]*b[33]+b[3]*b[20]*b[34]+b[3]*b[19]*b[35]+b[3]*b[18]*b[36]-b[3]*b[22]*b[32]+b[13]*b[32]*b[12]+b[13]*b[33]*b[11]-b[15]*b[6]*b[36]-b[15]*b[7]*b[35]+b[15]*b[31]*b[11]+b[15]*b[30]*b[12]+b[16]*b[32]*b[9]+b[16]*b[33]*b[8]-b[13]*b[6]*b[38]-b[13]*b[7]*b[37]+b[14]*b[32]*b[11]+b[14]*b[33]*b[10]-b[14]*b[5]*b[38]-b[16]*b[6]*b[35]-b[16]*b[7]*b[34]+b[16]*b[30]*b[11]+b[16]*b[31]*b[10]-b[26]*b[19]*b[12]-b[26]*b[20]*b[11]+b[26]*b[6]*b[25]+b[26]*b[7]*b[24]+b[15]*b[32]*b[10]+b[15]*b[33]*b[9]-b[15]*b[4]*b[38]-b[15]*b[5]*b[37]+b[29]*b[5]*b[23]+b[29]*b[6]*b[22]+b[29]*b[7]*b[21]-b[27]*b[20]*b[10]+b[27]*b[5]*b[25]+b[27]*b[6]*b[24]+b[27]*b[7]*b[23]-b[27]*b[18]*b[12]-b[27]*b[19]*b[11]-b[28]*b[20]*b[9]-b[16]*b[4]*b[37]-b[16]*b[5]*b[36]+b[0]*b[19]*b[38]-b[0]*b[24]*b[33]+b[0]*b[20]*b[37]-b[29]*b[17]*b[11]-b[29]*b[18]*b[10]-b[29]*b[19]*b[9]+b[28]*b[4]*b[25]+b[28]*b[5]*b[24]+b[28]*b[6]*b[23]+b[28]*b[7]*b[22]-b[28]*b[17]*b[12]-b[28]*b[18]*b[11]-b[28]*b[19]*b[10]-b[29]*b[20]*b[8]+b[29]*b[4]*b[24]+b[2]*b[18]*b[37]-b[0]*b[25]*b[32]+b[1]*b[18]*b[38]-b[1]*b[24]*b[32]+b[1]*b[19]*b[37]+b[1]*b[20]*b[36]-b[1]*b[25]*b[31]+b[2]*b[17]*b[38]+b[2]*b[19]*b[36]-b[2]*b[24]*b[31]-b[2]*b[22]*b[33]-b[2]*b[23]*b[32]+b[2]*b[20]*b[35]-b[1]*b[23]*b[33]-b[2]*b[25]*b[30]);
|
|
|
c[3] = (-b[14]*b[6]*b[38]-b[14]*b[7]*b[37]+b[3]*b[19]*b[36]-b[3]*b[22]*b[33]+b[3]*b[20]*b[35]-b[3]*b[23]*b[32]-b[3]*b[25]*b[30]+b[3]*b[17]*b[38]+b[3]*b[18]*b[37]-b[3]*b[24]*b[31]-b[15]*b[6]*b[37]-b[15]*b[7]*b[36]+b[15]*b[31]*b[12]+b[16]*b[32]*b[10]+b[16]*b[33]*b[9]+b[13]*b[33]*b[12]-b[13]*b[7]*b[38]+b[14]*b[32]*b[12]+b[14]*b[33]*b[11]-b[16]*b[6]*b[36]-b[16]*b[7]*b[35]+b[16]*b[31]*b[11]+b[16]*b[30]*b[12]+b[15]*b[32]*b[11]+b[15]*b[33]*b[10]-b[15]*b[5]*b[38]+b[29]*b[5]*b[24]+b[29]*b[6]*b[23]-b[26]*b[20]*b[12]+b[26]*b[7]*b[25]-b[27]*b[19]*b[12]-b[27]*b[20]*b[11]+b[27]*b[6]*b[25]+b[27]*b[7]*b[24]-b[28]*b[20]*b[10]-b[16]*b[4]*b[38]-b[16]*b[5]*b[37]+b[29]*b[7]*b[22]-b[29]*b[17]*b[12]-b[29]*b[18]*b[11]-b[29]*b[19]*b[10]+b[28]*b[5]*b[25]+b[28]*b[6]*b[24]+b[28]*b[7]*b[23]-b[28]*b[18]*b[12]-b[28]*b[19]*b[11]-b[29]*b[20]*b[9]+b[29]*b[4]*b[25]-b[2]*b[24]*b[32]+b[0]*b[20]*b[38]-b[0]*b[25]*b[33]+b[1]*b[19]*b[38]-b[1]*b[24]*b[33]+b[1]*b[20]*b[37]-b[2]*b[25]*b[31]+b[2]*b[20]*b[36]-b[1]*b[25]*b[32]+b[2]*b[19]*b[37]+b[2]*b[18]*b[38]-b[2]*b[23]*b[33]);
|
|
|
c[2] = (b[3]*b[18]*b[38]-b[3]*b[24]*b[32]+b[3]*b[19]*b[37]+b[3]*b[20]*b[36]-b[3]*b[25]*b[31]-b[3]*b[23]*b[33]-b[15]*b[6]*b[38]-b[15]*b[7]*b[37]+b[16]*b[32]*b[11]+b[16]*b[33]*b[10]-b[16]*b[5]*b[38]-b[16]*b[6]*b[37]-b[16]*b[7]*b[36]+b[16]*b[31]*b[12]+b[14]*b[33]*b[12]-b[14]*b[7]*b[38]+b[15]*b[32]*b[12]+b[15]*b[33]*b[11]+b[29]*b[5]*b[25]+b[29]*b[6]*b[24]-b[27]*b[20]*b[12]+b[27]*b[7]*b[25]-b[28]*b[19]*b[12]-b[28]*b[20]*b[11]+b[29]*b[7]*b[23]-b[29]*b[18]*b[12]-b[29]*b[19]*b[11]+b[28]*b[6]*b[25]+b[28]*b[7]*b[24]-b[29]*b[20]*b[10]+b[2]*b[19]*b[38]-b[1]*b[25]*b[33]+b[2]*b[20]*b[37]-b[2]*b[24]*b[33]-b[2]*b[25]*b[32]+b[1]*b[20]*b[38]);
|
|
|
c[1] = (b[29]*b[7]*b[24]-b[29]*b[20]*b[11]+b[2]*b[20]*b[38]-b[2]*b[25]*b[33]-b[28]*b[20]*b[12]+b[28]*b[7]*b[25]-b[29]*b[19]*b[12]-b[3]*b[24]*b[33]+b[15]*b[33]*b[12]+b[3]*b[19]*b[38]-b[16]*b[6]*b[38]+b[3]*b[20]*b[37]+b[16]*b[32]*b[12]+b[29]*b[6]*b[25]-b[16]*b[7]*b[37]-b[3]*b[25]*b[32]-b[15]*b[7]*b[38]+b[16]*b[33]*b[11]);
|
|
|
c[0] = -b[29]*b[20]*b[12]+b[29]*b[7]*b[25]+b[16]*b[33]*b[12]-b[16]*b[7]*b[38]+b[3]*b[20]*b[38]-b[3]*b[25]*b[33];
|
|
|
|
|
|
const auto poly_solver = SolverPoly::create();
|
|
|
const int num_roots = poly_solver->getRealRoots(c, rs);
|
|
|
|
|
|
models = std::vector<Mat>(); models.reserve(num_roots);
|
|
|
for (int i = 0; i < num_roots; i++) {
|
|
|
const double z1 = rs[i], z2 = z1*z1, z3 = z2*z1, z4 = z3*z1;
|
|
|
double bz[9], norm_bz = 0;
|
|
|
for (int j = 0; j < 3; j++) {
|
|
|
double * const br = b + j * 13, * Bz = bz + 3*j;
|
|
|
Bz[0] = br[0] * z3 + br[1] * z2 + br[2] * z1 + br[3];
|
|
|
Bz[1] = br[4] * z3 + br[5] * z2 + br[6] * z1 + br[7];
|
|
|
Bz[2] = br[8] * z4 + br[9] * z3 + br[10] * z2 + br[11] * z1 + br[12];
|
|
|
norm_bz += Bz[0]*Bz[0] + Bz[1]*Bz[1] + Bz[2]*Bz[2];
|
|
|
}
|
|
|
|
|
|
Matx33d Bz(bz);
|
|
|
|
|
|
Vec3d xy1 = Utils::getRightEpipole(Mat(Bz * (1/sqrt(norm_bz))));
|
|
|
const double one_over_xy1_norm = 1 / sqrt(xy1[0] * xy1[0] + xy1[1] * xy1[1] + xy1[2] * xy1[2]);
|
|
|
xy1 *= one_over_xy1_norm;
|
|
|
|
|
|
if (fabs(xy1(2)) < 1e-10) continue;
|
|
|
Mat_<double> E(3,3);
|
|
|
double * e_arr = (double *)E.data, x = xy1(0) / xy1(2), y = xy1(1) / xy1(2);
|
|
|
for (int e_i = 0; e_i < 9; e_i++)
|
|
|
e_arr[e_i] = ee[e_i] * x + ee[9+e_i] * y + ee[18+e_i]*z1 + ee[27+e_i];
|
|
|
models.emplace_back(E);
|
|
|
}
|
|
|
} else {
|
|
|
#if defined(HAVE_EIGEN) || defined(HAVE_LAPACK)
|
|
|
for (int i = 0; i < 3; i++)
|
|
|
for (int j = 0; j < 3; j++)
|
|
|
|
|
|
|
|
|
eet[i][j] = 2 * (multPolysDegOne(null_space_mat[i][0].val, null_space_mat[j][0].val) +
|
|
|
multPolysDegOne(null_space_mat[i][1].val, null_space_mat[j][1].val) +
|
|
|
multPolysDegOne(null_space_mat[i][2].val, null_space_mat[j][2].val));
|
|
|
|
|
|
const Matx<double, 1, 10> trace = eet[0][0] + eet[1][1] + eet[2][2];
|
|
|
|
|
|
for (int i = 0; i < 3; i++)
|
|
|
for (int j = 0; j < 3; j++)
|
|
|
Mat(multPolysDegOneAndTwo(eet[i][0].val, null_space_mat[0][j].val) +
|
|
|
multPolysDegOneAndTwo(eet[i][1].val, null_space_mat[1][j].val) +
|
|
|
multPolysDegOneAndTwo(eet[i][2].val, null_space_mat[2][j].val) -
|
|
|
0.5 * multPolysDegOneAndTwo(trace.val, null_space_mat[i][j].val))
|
|
|
.copyTo(constraint_mat.row(3 * i + j));
|
|
|
|
|
|
|
|
|
Mat(multPolysDegOneAndTwo(
|
|
|
(multPolysDegOne(null_space_mat[0][1].val, null_space_mat[1][2].val) -
|
|
|
multPolysDegOne(null_space_mat[0][2].val, null_space_mat[1][1].val)).val,
|
|
|
null_space_mat[2][0].val) +
|
|
|
multPolysDegOneAndTwo(
|
|
|
(multPolysDegOne(null_space_mat[0][2].val, null_space_mat[1][0].val) -
|
|
|
multPolysDegOne(null_space_mat[0][0].val, null_space_mat[1][2].val)).val,
|
|
|
null_space_mat[2][1].val) +
|
|
|
multPolysDegOneAndTwo(
|
|
|
(multPolysDegOne(null_space_mat[0][0].val, null_space_mat[1][1].val) -
|
|
|
multPolysDegOne(null_space_mat[0][1].val, null_space_mat[1][0].val)).val,
|
|
|
null_space_mat[2][2].val)).copyTo(constraint_mat.row(9));
|
|
|
|
|
|
#ifdef HAVE_EIGEN
|
|
|
const Eigen::Matrix<double, 10, 20, Eigen::RowMajor> constraint_mat_eig((double *) constraint_mat.data);
|
|
|
|
|
|
|
|
|
const Eigen::Matrix<double, 10, 10> eliminated_mat_eig = constraint_mat_eig.block<10, 10>(0, 0)
|
|
|
.fullPivLu().solve(constraint_mat_eig.block<10, 10>(0, 10));
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Eigen::Matrix<double, 10, 10> action_mat_eig = Eigen::Matrix<double, 10, 10>::Zero();
|
|
|
action_mat_eig.block<3, 10>(0, 0) = eliminated_mat_eig.block<3, 10>(0, 0);
|
|
|
action_mat_eig.block<2, 10>(3, 0) = eliminated_mat_eig.block<2, 10>(4, 0);
|
|
|
action_mat_eig.row(5) = eliminated_mat_eig.row(7);
|
|
|
action_mat_eig(6, 0) = -1.0;
|
|
|
action_mat_eig(7, 1) = -1.0;
|
|
|
action_mat_eig(8, 3) = -1.0;
|
|
|
action_mat_eig(9, 6) = -1.0;
|
|
|
|
|
|
|
|
|
Eigen::EigenSolver<Eigen::Matrix<double, 10, 10>> eigensolver(action_mat_eig);
|
|
|
const Eigen::VectorXcd &eigenvalues = eigensolver.eigenvalues();
|
|
|
const Eigen::MatrixXcd eigenvectors = eigensolver.eigenvectors();
|
|
|
const auto * const eig_vecs_ = (double *) eigenvectors.data();
|
|
|
#else
|
|
|
Matx<double, 10, 10> A = constraint_mat.colRange(0, 10),
|
|
|
B = constraint_mat.colRange(10, 20), eliminated_mat;
|
|
|
if (!solve(A, B, eliminated_mat, DECOMP_LU)) return 0;
|
|
|
|
|
|
Mat eliminated_mat_dyn = Mat(eliminated_mat);
|
|
|
Mat action_mat = Mat_<double>::zeros(10, 10);
|
|
|
eliminated_mat_dyn.rowRange(0,3).copyTo(action_mat.rowRange(0,3));
|
|
|
eliminated_mat_dyn.rowRange(4,6).copyTo(action_mat.rowRange(3,5));
|
|
|
eliminated_mat_dyn.row(7).copyTo(action_mat.row(5));
|
|
|
auto * action_mat_data = (double *) action_mat.data;
|
|
|
action_mat_data[60] = -1.0;
|
|
|
action_mat_data[71] = -1.0;
|
|
|
action_mat_data[83] = -1.0;
|
|
|
action_mat_data[96] = -1.0;
|
|
|
|
|
|
#if defined (ACCELERATE_NEW_LAPACK) && defined (ACCELERATE_LAPACK_ILP64)
|
|
|
long mat_order = 10, info, lda = 10, ldvl = 10, ldvr = 1, lwork = 100;
|
|
|
#else
|
|
|
int mat_order = 10, info, lda = 10, ldvl = 10, ldvr = 1, lwork = 100;
|
|
|
#endif
|
|
|
double wr[10], wi[10] = {0}, eig_vecs[100], work[100];
|
|
|
char jobvl = 'V', jobvr = 'N';
|
|
|
OCV_LAPACK_FUNC(dgeev)(&jobvl, &jobvr, &mat_order, action_mat_data, &lda, wr, wi, eig_vecs, &ldvl,
|
|
|
nullptr, &ldvr, work, &lwork, &info);
|
|
|
if (info != 0) return 0;
|
|
|
#endif
|
|
|
models = std::vector<Mat>(); models.reserve(10);
|
|
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < 10; i++)
|
|
|
|
|
|
#ifdef HAVE_EIGEN
|
|
|
if (eigenvalues(i).imag() == 0) {
|
|
|
Mat_<double> model(3, 3);
|
|
|
auto * model_data = (double *) model.data;
|
|
|
const int eig_i = 20 * i + 12;
|
|
|
for (int j = 0; j < 9; j++)
|
|
|
model_data[j] = ee[j ] * eig_vecs_[eig_i ] + ee[j+9 ] * eig_vecs_[eig_i+2] +
|
|
|
ee[j+18] * eig_vecs_[eig_i+4] + ee[j+27] * eig_vecs_[eig_i+6];
|
|
|
#else
|
|
|
if (wi[i] == 0) {
|
|
|
Mat_<double> model (3,3);
|
|
|
auto * model_data = (double *) model.data;
|
|
|
const int eig_i = 10 * i + 6;
|
|
|
for (int j = 0; j < 9; j++)
|
|
|
model_data[j] = ee[j ]*eig_vecs[eig_i ] + ee[j+9 ]*eig_vecs[eig_i+1] +
|
|
|
ee[j+18]*eig_vecs[eig_i+2] + ee[j+27]*eig_vecs[eig_i+3];
|
|
|
#endif
|
|
|
models.emplace_back(model);
|
|
|
}
|
|
|
#else
|
|
|
CV_Error(cv::Error::StsNotImplemented, "To run essential matrix estimation of Stewenius method you need to have either Eigen or LAPACK installed! Or switch to Nister algorithm");
|
|
|
return 0;
|
|
|
#endif
|
|
|
}
|
|
|
return static_cast<int>(models.size());
|
|
|
}
|
|
|
|
|
|
|
|
|
int getMaxNumberOfSolutions () const override { return 10; }
|
|
|
int getSampleSize() const override { return 5; }
|
|
|
private:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static inline Matx<double,1,10> multPolysDegOne(const double * const p,
|
|
|
const double * const q) {
|
|
|
return
|
|
|
{p[0]*q[0], p[0]*q[1]+p[1]*q[0], p[1]*q[1], p[0]*q[2]+p[2]*q[0], p[1]*q[2]+p[2]*q[1],
|
|
|
p[2]*q[2], p[0]*q[3]+p[3]*q[0], p[1]*q[3]+p[3]*q[1], p[2]*q[3]+p[3]*q[2], p[3]*q[3]};
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static inline Matx<double, 1, 20> multPolysDegOneAndTwo(const double * const p,
|
|
|
const double * const q) {
|
|
|
return Matx<double, 1, 20>
|
|
|
({p[0]*q[0], p[0]*q[1]+p[1]*q[0], p[1]*q[1]+p[2]*q[0], p[2]*q[1], p[0]*q[2]+p[3]*q[0],
|
|
|
p[1]*q[2]+p[3]*q[1]+p[4]*q[0], p[2]*q[2]+p[4]*q[1], p[3]*q[2]+p[5]*q[0],
|
|
|
p[4]*q[2]+p[5]*q[1], p[5]*q[2], p[0]*q[3]+p[6]*q[0], p[1]*q[3]+p[6]*q[1]+p[7]*q[0],
|
|
|
p[2]*q[3]+p[7]*q[1], p[3]*q[3]+p[6]*q[2]+p[8]*q[0], p[4]*q[3]+p[7]*q[2]+p[8]*q[1],
|
|
|
p[5]*q[3]+p[8]*q[2], p[6]*q[3]+p[9]*q[0], p[7]*q[3]+p[9]*q[1], p[8]*q[3]+p[9]*q[2],
|
|
|
p[9]*q[3]});
|
|
|
}
|
|
|
static inline Matx<double, 1, 20> multPolysDegOneAndTwoNister(const double * const p,
|
|
|
const double * const q) {
|
|
|
|
|
|
return Matx<double, 1, 20>
|
|
|
({p[0]*q[0], p[2]*q[1], p[0]*q[1]+p[1]*q[0], p[1]*q[1]+p[2]*q[0], p[0]*q[2]+p[3]*q[0],
|
|
|
p[0]*q[3]+p[6]*q[0], p[2]*q[2]+p[4]*q[1], p[2]*q[3]+p[7]*q[1], p[1]*q[2]+p[3]*q[1]+p[4]*q[0],
|
|
|
p[1]*q[3]+p[6]*q[1]+p[7]*q[0], p[3]*q[2]+p[5]*q[0], p[3]*q[3]+p[6]*q[2]+p[8]*q[0],
|
|
|
p[6]*q[3]+p[9]*q[0], p[4]*q[2]+p[5]*q[1], p[4]*q[3]+p[7]*q[2]+p[8]*q[1], p[7]*q[3]+p[9]*q[1],
|
|
|
p[5]*q[2], p[5]*q[3]+p[8]*q[2], p[8]*q[3]+p[9]*q[2], p[9]*q[3]});
|
|
|
}
|
|
|
};
|
|
|
Ptr<EssentialMinimalSolver5pts> EssentialMinimalSolver5pts::create
|
|
|
(const Mat &points_, bool use_svd, bool is_nister) {
|
|
|
return makePtr<EssentialMinimalSolver5ptsImpl>(points_, use_svd, is_nister);
|
|
|
}
|
|
|
}}
|
|
|
|