// Copyright (c) 2020, Viktor Larsson // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // * Neither the name of the copyright holder nor the // names of its contributors may be used to endorse or promote products // derived from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL BE LIABLE FOR ANY // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "../precomp.hpp" #include "../usac.hpp" namespace cv { namespace usac { class MlesacLoss { public: MlesacLoss(double threshold) : squared_thr(threshold * threshold), norm_thr(squared_thr*3), one_over_thr(1/norm_thr), inv_sq_thr(1/squared_thr) {} double loss(double r2) const { return r2 < norm_thr ? r2 * one_over_thr - 1 : 0; } double weight(double r2) const { // use Cauchly weight return 1.0 / (1.0 + r2 * inv_sq_thr); } const double squared_thr; private: const double norm_thr, one_over_thr, inv_sq_thr; }; class RelativePoseJacobianAccumulator { private: const Mat* correspondences; const std::vector &sample; const int sample_size; const MlesacLoss &loss_fn; const double *weights; public: RelativePoseJacobianAccumulator( const Mat& correspondences_, const std::vector &sample_, const int sample_size_, const MlesacLoss &l, const double *w = nullptr) : correspondences(&correspondences_), sample(sample_), sample_size(sample_size_), loss_fn(l), weights(w) {} Matx33d essential_from_motion(const CameraPose &pose) const { return Matx33d(0.0, -pose.t(2), pose.t(1), pose.t(2), 0.0, -pose.t(0), -pose.t(1), pose.t(0), 0.0) * pose.R; } double residual(const CameraPose &pose) const { const Matx33d E = essential_from_motion(pose); const float m11=static_cast(E(0,0)), m12=static_cast(E(0,1)), m13=static_cast(E(0,2)); const float m21=static_cast(E(1,0)), m22=static_cast(E(1,1)), m23=static_cast(E(1,2)); const float m31=static_cast(E(2,0)), m32=static_cast(E(2,1)), m33=static_cast(E(2,2)); const auto * const pts = (float *) correspondences->data; double cost = 0.0; for (int k = 0; k < sample_size; ++k) { const int idx = 4*sample[k]; const float x1=pts[idx], y1=pts[idx+1], x2=pts[idx+2], y2=pts[idx+3]; const float F_pt1_x = m11 * x1 + m12 * y1 + m13, F_pt1_y = m21 * x1 + m22 * y1 + m23; const float pt2_F_x = x2 * m11 + y2 * m21 + m31, pt2_F_y = x2 * m12 + y2 * m22 + m32; const float pt2_F_pt1 = x2 * F_pt1_x + y2 * F_pt1_y + m31 * x1 + m32 * y1 + m33; const float r2 = pt2_F_pt1 * pt2_F_pt1 / (F_pt1_x * F_pt1_x + F_pt1_y * F_pt1_y + pt2_F_x * pt2_F_x + pt2_F_y * pt2_F_y); if (weights == nullptr) cost += loss_fn.loss(r2); else cost += weights[k] * loss_fn.loss(r2); } return cost; } void accumulate(const CameraPose &pose, Matx &JtJ, Matx &Jtr, Matx &tangent_basis) const { const auto * const pts = (float *) correspondences->data; // We start by setting up a basis for the updates in the translation (orthogonal to t) // We find the minimum element of t and cross product with the corresponding basis vector. // (this ensures that the first cross product is not close to the zero vector) Vec3d tangent_basis_col0; if (std::abs(pose.t(0)) < std::abs(pose.t(1))) { // x < y if (std::abs(pose.t(0)) < std::abs(pose.t(2))) { tangent_basis_col0 = pose.t.cross(Vec3d(1,0,0)); } else { tangent_basis_col0 = pose.t.cross(Vec3d(0,0,1)); } } else { // x > y if (std::abs(pose.t(1)) < std::abs(pose.t(2))) { tangent_basis_col0 = pose.t.cross(Vec3d(0,1,0)); } else { tangent_basis_col0 = pose.t.cross(Vec3d(0,0,1)); } } tangent_basis_col0 /= norm(tangent_basis_col0); Vec3d tangent_basis_col1 = pose.t.cross(tangent_basis_col0); tangent_basis_col1 /= norm(tangent_basis_col1); for (int i = 0; i < 3; i++) { tangent_basis(i,0) = tangent_basis_col0(i); tangent_basis(i,1) = tangent_basis_col1(i); } const Matx33d E = essential_from_motion(pose); // Matrices contain the jacobians of E w.r.t. the rotation and translation parameters // Each column is vec(E*skew(e_k)) where e_k is k:th basis vector const Matx dR = {0., -E(0,2), E(0,1), 0., -E(1,2), E(1,1), 0., -E(2,2), E(2,1), E(0,2), 0., -E(0,0), E(1,2), 0., -E(1,0), E(2,2), 0., -E(2,0), -E(0,1), E(0,0), 0., -E(1,1), E(1,0), 0., -E(2,1), E(2,0), 0.}; Matx dt; // Each column is vec(skew(tangent_basis[k])*R) for (int i = 0; i <= 2; i+=1) { const Vec3d r_i(pose.R(0,i), pose.R(1,i), pose.R(2,i)); for (int j = 0; j <= 1; j+= 1) { const Vec3d v = (j == 0 ? tangent_basis_col0 : tangent_basis_col1).cross(r_i); for (int k = 0; k < 3; k++) { dt(3*i+k,j) = v[k]; } } } for (int k = 0; k < sample_size; ++k) { const auto point_idx = 4*sample[k]; const Vec3d pt1 (pts[point_idx], pts[point_idx+1], 1), pt2 (pts[point_idx+2], pts[point_idx+3], 1); const double C = pt2.dot(E * pt1); // J_C is the Jacobian of the epipolar constraint w.r.t. the image points const Vec4d J_C ((E.col(0).t() * pt2)[0], (E.col(1).t() * pt2)[0], (E.row(0) * pt1)[0], (E.row(1) * pt1)[0]); const double nJ_C = norm(J_C); const double inv_nJ_C = 1.0 / nJ_C; const double r = C * inv_nJ_C; if (r*r > loss_fn.squared_thr) continue; // Compute weight from robust loss function (used in the IRLS) double weight = loss_fn.weight(r * r) / sample_size; if (weights != nullptr) weight = weights[k] * weight; if(weight < DBL_EPSILON) continue; // Compute Jacobian of Sampson error w.r.t the fundamental/essential matrix (3x3) Matx dF (pt1(0) * pt2(0), pt1(0) * pt2(1), pt1(0), pt1(1) * pt2(0), pt1(1) * pt2(1), pt1(1), pt2(0), pt2(1), 1.0); const double s = C * inv_nJ_C * inv_nJ_C; dF(0) -= s * (J_C(2) * pt1(0) + J_C(0) * pt2(0)); dF(1) -= s * (J_C(3) * pt1(0) + J_C(0) * pt2(1)); dF(2) -= s * (J_C(0)); dF(3) -= s * (J_C(2) * pt1(1) + J_C(1) * pt2(0)); dF(4) -= s * (J_C(3) * pt1(1) + J_C(1) * pt2(1)); dF(5) -= s * (J_C(1)); dF(6) -= s * (J_C(2)); dF(7) -= s * (J_C(3)); dF *= inv_nJ_C; // and then w.r.t. the pose parameters (rotation + tangent basis for translation) const Matx13d dFdR = dF * dR; const Matx12d dFdt = dF * dt; const Matx J (dFdR(0), dFdR(1), dFdR(2), dFdt(0), dFdt(1)); // Accumulate into JtJ and Jtr Jtr += weight * C * inv_nJ_C * J.t(); JtJ(0, 0) += weight * (J(0) * J(0)); JtJ(1, 0) += weight * (J(1) * J(0)); JtJ(1, 1) += weight * (J(1) * J(1)); JtJ(2, 0) += weight * (J(2) * J(0)); JtJ(2, 1) += weight * (J(2) * J(1)); JtJ(2, 2) += weight * (J(2) * J(2)); JtJ(3, 0) += weight * (J(3) * J(0)); JtJ(3, 1) += weight * (J(3) * J(1)); JtJ(3, 2) += weight * (J(3) * J(2)); JtJ(3, 3) += weight * (J(3) * J(3)); JtJ(4, 0) += weight * (J(4) * J(0)); JtJ(4, 1) += weight * (J(4) * J(1)); JtJ(4, 2) += weight * (J(4) * J(2)); JtJ(4, 3) += weight * (J(4) * J(3)); JtJ(4, 4) += weight * (J(4) * J(4)); } } }; bool satisfyCheirality (const Matx33d& R, const Vec3d &t, const Vec3d &x1, const Vec3d &x2) { // This code assumes that x1 and x2 are unit vectors const auto Rx1 = R * x1; // lambda_2 * x2 = R * ( lambda_1 * x1 ) + t // [1 a; a 1] * [lambda1; lambda2] = [b1; b2] // [lambda1; lambda2] = [1 -a; -a 1] * [b1; b2] / (1 - a*a) const double a = -Rx1.dot(x2), b1 = -Rx1.dot(t), b2 = x2.dot(t); // Note that we drop the factor 1.0/(1-a*a) since it is always positive. return (b1 - a * b2 > 0) && (-a * b1 + b2 > 0); } int refine_relpose(const Mat &correspondences_, const std::vector &sample_, const int sample_size_, CameraPose *pose, const BundleOptions &opt, const double* weights) { MlesacLoss loss_fn(opt.loss_scale); RelativePoseJacobianAccumulator accum(correspondences_, sample_, sample_size_, loss_fn, weights); // return lm_5dof_impl(accum, pose, opt); Matx JtJ; Matx Jtr; Matx tangent_basis; Matx33d sw = Matx33d::zeros(); double lambda = opt.initial_lambda; // Compute initial cost double cost = accum.residual(*pose); bool recompute_jac = true; int iter; for (iter = 0; iter < opt.max_iterations; ++iter) { // We only recompute jacobian and residual vector if last step was successful if (recompute_jac) { std::fill(JtJ.val, JtJ.val+25, 0); std::fill(Jtr.val, Jtr.val +5, 0); accum.accumulate(*pose, JtJ, Jtr, tangent_basis); if (norm(Jtr) < opt.gradient_tol) break; } // Add dampening JtJ(0, 0) += lambda; JtJ(1, 1) += lambda; JtJ(2, 2) += lambda; JtJ(3, 3) += lambda; JtJ(4, 4) += lambda; Matx sol; Matx JtJ_symm = JtJ; for (int i = 0; i < 5; i++) for (int j = i+1; j < 5; j++) JtJ_symm(i,j) = JtJ(j,i); const bool success = solve(-JtJ_symm, Jtr, sol); if (!success || norm(sol) < opt.step_tol) break; Vec3d w (sol(0,0), sol(1,0), sol(2,0)); const double theta = norm(w); w /= theta; const double a = std::sin(theta); const double b = std::cos(theta); sw(0, 1) = -w(2); sw(0, 2) = w(1); sw(1, 2) = -w(0); sw(1, 0) = w(2); sw(2, 0) = -w(1); sw(2, 1) = w(0); CameraPose pose_new; pose_new.R = pose->R + pose->R * (a * sw + (1 - b) * sw * sw); // In contrast to the 6dof case, we don't apply R here // (since this can already be added into tangent_basis) pose_new.t = pose->t + Vec3d(Mat(tangent_basis * Matx21d(sol(3,0), sol(4,0)))); double cost_new = accum.residual(pose_new); if (cost_new < cost) { *pose = pose_new; lambda /= 10; cost = cost_new; recompute_jac = true; } else { JtJ(0, 0) -= lambda; JtJ(1, 1) -= lambda; JtJ(2, 2) -= lambda; JtJ(3, 3) -= lambda; JtJ(4, 4) -= lambda; lambda *= 10; recompute_jac = false; } } return iter; } }}