// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "../precomp.hpp" #include "../usac.hpp" #include "../polynom_solver.h" #ifdef HAVE_EIGEN #include #endif namespace cv { namespace usac { class FundamentalMinimalSolver7ptsImpl: public FundamentalMinimalSolver7pts { private: Mat points_mat; const bool use_ge; public: explicit FundamentalMinimalSolver7ptsImpl (const Mat &points_, bool use_ge_) : points_mat (points_), use_ge(use_ge_) { CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous()); } int estimate (const std::vector &sample, std::vector &models) const override { const int m = 7, n = 9; // rows, cols std::vector a(63); // m*n auto * a_ = &a[0]; const float * points = points_mat.ptr(); for (int i = 0; i < m; i++ ) { const int smpl = 4*sample[i]; const auto x1 = points[smpl ], y1 = points[smpl+1], x2 = points[smpl+2], y2 = points[smpl+3]; (*a_++) = x2*x1; (*a_++) = x2*y1; (*a_++) = x2; (*a_++) = y2*x1; (*a_++) = y2*y1; (*a_++) = y2; (*a_++) = x1; (*a_++) = y1; (*a_++) = 1; } double f1[9], f2[9]; if (use_ge) { if (!Math::eliminateUpperTriangular(a, m, n)) return 0; /* [a11 a12 a13 a14 a15 a16 a17 a18 a19] [ 0 a22 a23 a24 a25 a26 a27 a28 a29] [ 0 0 a33 a34 a35 a36 a37 a38 a39] [ 0 0 0 a44 a45 a46 a47 a48 a49] [ 0 0 0 0 a55 a56 a57 a58 a59] [ 0 0 0 0 0 a66 a67 a68 a69] [ 0 0 0 0 0 0 a77 a78 a79] */ f1[8] = 1.; f1[7] = 0.; f1[6] = -a[6*n+8] / a[6*n+6]; f2[8] = 0.; f2[7] = -a[6*n+6] / a[6*n+7]; f2[6] = 1; // start from the last row for (int i = m-2; i >= 0; i--) { const int row_i = i*n; double acc1 = 0, acc2 = 0; for (int j = i+1; j < n; j++) { acc1 -= a[row_i + j] * f1[j]; acc2 -= a[row_i + j] * f2[j]; } f1[i] = acc1 / a[row_i + i]; f2[i] = acc2 / a[row_i + i]; if (std::isnan(f1[i]) || std::isnan(f2[i])) return 0; // due to numerical errors return 0 solutions } } else { Mat U, Vt, D; cv::Matx A(&a[0]); SVD::compute(A, D, U, Vt, SVD::FULL_UV+SVD::MODIFY_A); const auto * const vt = (double *) Vt.data; int i1 = 8*9, i2 = 7*9; for (int i = 0; i < 9; i++) { f1[i] = vt[i1+i]; f2[i] = vt[i2+i]; } } // OpenCV: double c[4] = { 0 }, r[3] = { 0 }; double t0 = 0, t1 = 0, t2 = 0; for (int i = 0; i < 9; i++) f1[i] -= f2[i]; t0 = f2[4]*f2[8] - f2[5]*f2[7]; t1 = f2[3]*f2[8] - f2[5]*f2[6]; t2 = f2[3]*f2[7] - f2[4]*f2[6]; c[3] = f2[0]*t0 - f2[1]*t1 + f2[2]*t2; c[2] = f1[0]*t0 - f1[1]*t1 + f1[2]*t2 - f1[3]*(f2[1]*f2[8] - f2[2]*f2[7]) + f1[4]*(f2[0]*f2[8] - f2[2]*f2[6]) - f1[5]*(f2[0]*f2[7] - f2[1]*f2[6]) + f1[6]*(f2[1]*f2[5] - f2[2]*f2[4]) - f1[7]*(f2[0]*f2[5] - f2[2]*f2[3]) + f1[8]*(f2[0]*f2[4] - f2[1]*f2[3]); t0 = f1[4]*f1[8] - f1[5]*f1[7]; t1 = f1[3]*f1[8] - f1[5]*f1[6]; t2 = f1[3]*f1[7] - f1[4]*f1[6]; c[1] = f2[0]*t0 - f2[1]*t1 + f2[2]*t2 - f2[3]*(f1[1]*f1[8] - f1[2]*f1[7]) + f2[4]*(f1[0]*f1[8] - f1[2]*f1[6]) - f2[5]*(f1[0]*f1[7] - f1[1]*f1[6]) + f2[6]*(f1[1]*f1[5] - f1[2]*f1[4]) - f2[7]*(f1[0]*f1[5] - f1[2]*f1[3]) + f2[8]*(f1[0]*f1[4] - f1[1]*f1[3]); c[0] = f1[0]*t0 - f1[1]*t1 + f1[2]*t2; // solve the cubic equation; there can be 1 to 3 roots ... const int nroots = solve_deg3(c[0], c[1], c[2], c[3], r[0], r[1], r[2]); if (nroots < 1) return 0; models = std::vector(nroots); for (int k = 0; k < nroots; k++) { models[k] = Mat_(3,3); auto * F_ptr = (double *) models[k].data; // for each root form the fundamental matrix double lambda = r[k], mu = 1; double s = f1[8]*lambda + f2[8]; // normalize each matrix, so that F(3,3) (~F[8]) == 1 if (fabs(s) > FLT_EPSILON) { mu = 1/s; lambda *= mu; F_ptr[8] = 1; } else F_ptr[8] = 0; for (int i = 0; i < 8; i++) F_ptr[i] = f1[i] * lambda + f2[i] * mu; } return nroots; } int getMaxNumberOfSolutions () const override { return 3; } int getSampleSize() const override { return 7; } }; Ptr FundamentalMinimalSolver7pts::create(const Mat &points, bool use_ge) { return makePtr(points, use_ge); } class FundamentalMinimalSolver8ptsImpl : public FundamentalMinimalSolver8pts { private: Mat points_mat; public: explicit FundamentalMinimalSolver8ptsImpl (const Mat &points_) : points_mat (points_) { CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous()); } int estimate (const std::vector &sample, std::vector &models) const override { const int m = 8, n = 9; // rows, cols std::vector a(72); // m*n auto * a_ = &a[0]; const float * points = points_mat.ptr(); for (int i = 0; i < m; i++ ) { const int smpl = 4*sample[i]; const auto x1 = points[smpl ], y1 = points[smpl+1], x2 = points[smpl+2], y2 = points[smpl+3]; (*a_++) = x2*x1; (*a_++) = x2*y1; (*a_++) = x2; (*a_++) = y2*x1; (*a_++) = y2*y1; (*a_++) = y2; (*a_++) = x1; (*a_++) = y1; (*a_++) = 1; } if (!Math::eliminateUpperTriangular(a, m, n)) return 0; /* [a11 a12 a13 a14 a15 a16 a17 a18 a19] [ 0 a22 a23 a24 a25 a26 a27 a28 a29] [ 0 0 a33 a34 a35 a36 a37 a38 a39] [ 0 0 0 a44 a45 a46 a47 a48 a49] [ 0 0 0 0 a55 a56 a57 a58 a59] [ 0 0 0 0 0 a66 a67 a68 a69] [ 0 0 0 0 0 0 a77 a78 a79] [ 0 0 0 0 0 0 0 a88 a89] f9 = 1 f8 = (-a89*f9) / a88 f7 = (-a79*f9 - a78*f8) / a77 f6 = (-a69*f9 - a68*f8 - a69*f9) / a66 ... */ models = std::vector{ Mat_(3,3) }; auto * f = (double *) models[0].data; f[8] = 1.; // start from the last row for (int i = m-1; i >= 0; i--) { double acc = 0; for (int j = i+1; j < n; j++) acc -= a[i*n+j]*f[j]; f[i] = acc / a[i*n+i]; // due to numerical errors return 0 solutions if (std::isnan(f[i])) return 0; } return 1; } int getMaxNumberOfSolutions () const override { return 1; } int getSampleSize() const override { return 8; } }; Ptr FundamentalMinimalSolver8pts::create(const Mat &points_) { return makePtr(points_); } class EpipolarNonMinimalSolverImpl : public EpipolarNonMinimalSolver { private: Mat points_mat; const bool do_norm; Matx33d _T1, _T2; Ptr normTr = nullptr; bool enforce_rank = true, is_fundamental, use_ge; public: explicit EpipolarNonMinimalSolverImpl (const Mat &points_, const Matx33d &T1, const Matx33d &T2, bool use_ge_) : points_mat(points_), do_norm(false), _T1(T1), _T2(T2), is_fundamental(true), use_ge(use_ge_) { CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous()); } explicit EpipolarNonMinimalSolverImpl (const Mat &points_, bool is_fundamental_) : points_mat(points_), do_norm(is_fundamental_), use_ge(false) { CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous()); is_fundamental = is_fundamental_; if (is_fundamental) normTr = NormTransform::create(points_); } void enforceRankConstraint (bool enforce) override { enforce_rank = enforce; } int estimate (const std::vector &sample, int sample_size, std::vector &models, const std::vector &weights) const override { if (sample_size < getMinimumRequiredSampleSize()) return 0; Matx33d T1, T2; Mat norm_points; if (do_norm) normTr->getNormTransformation(norm_points, sample, sample_size, T1, T2); const float * const norm_pts = do_norm ? norm_points.ptr() : points_mat.ptr(); if (use_ge) { double a[8]; std::vector AtAb(72, 0); // 8x9 if (weights.empty()) { for (int i = 0; i < sample_size; i++) { const int idx = do_norm ? 4*i : 4*sample[i]; const double x1 = norm_pts[idx], y1 = norm_pts[idx+1], x2 = norm_pts[idx+2], y2 = norm_pts[idx+3]; a[0] = x2*x1; a[1] = x2*y1; a[2] = x2; a[3] = y2*x1; a[4] = y2*y1; a[5] = y2; a[6] = x1; a[7] = y1; // calculate covariance for eigen for (int row = 0; row < 8; row++) { for (int col = row; col < 8; col++) AtAb[row * 9 + col] += a[row] * a[col]; AtAb[row * 9 + 8] += a[row]; } } } else { // use weights for (int i = 0; i < sample_size; i++) { const auto weight = weights[i]; if (weight < FLT_EPSILON) continue; const int idx = do_norm ? 4*i : 4*sample[i]; const double x1 = norm_pts[idx], y1 = norm_pts[idx+1], x2 = norm_pts[idx+2], y2 = norm_pts[idx+3]; const double weight_times_x2 = weight * x2, weight_times_y2 = weight * y2; a[0] = weight_times_x2 * x1; a[1] = weight_times_x2 * y1; a[2] = weight_times_x2; a[3] = weight_times_y2 * x1; a[4] = weight_times_y2 * y1; a[5] = weight_times_y2; a[6] = weight * x1; a[7] = weight * y1; // calculate covariance for eigen for (int row = 0; row < 8; row++) { for (int col = row; col < 8; col++) AtAb[row * 9 + col] += a[row] * a[col]; AtAb[row * 9 + 8] += a[row]; } } } // copy symmetric part of covariance matrix for (int j = 1; j < 8; j++) for (int z = 0; z < j; z++) AtAb[j*9+z] = AtAb[z*9+j]; Math::eliminateUpperTriangular(AtAb, 8, 9); models = std::vector{ Mat_(3,3) }; auto * f = (double *) models[0].data; f[8] = 1.; const int m = 8, n = 9; // start from the last row for (int i = m-1; i >= 0; i--) { double acc = 0; for (int j = i+1; j < n; j++) acc -= AtAb[i*n+j]*f[j]; f[i] = acc / AtAb[i*n+i]; // due to numerical errors return 0 solutions if (std::isnan(f[i])) return 0; } } else { // ------- 8 points algorithm with Eigen and covariance matrix -------------- double a[9] = {0, 0, 0, 0, 0, 0, 0, 0, 1}, AtA[81] = {0}; // 9x9 if (weights.empty()) { for (int i = 0; i < sample_size; i++) { const int idx = do_norm ? 4*i : 4*sample[i]; const auto x1 = norm_pts[idx], y1 = norm_pts[idx+1], x2 = norm_pts[idx+2], y2 = norm_pts[idx+3]; a[0] = x2*x1; a[1] = x2*y1; a[2] = x2; a[3] = y2*x1; a[4] = y2*y1; a[5] = y2; a[6] = x1; a[7] = y1; // calculate covariance matrix for (int row = 0; row < 9; row++) for (int col = row; col < 9; col++) AtA[row*9+col] += a[row]*a[col]; } } else { // use weights for (int i = 0; i < sample_size; i++) { const auto weight = weights[i]; if (weight < FLT_EPSILON) continue; const int smpl = do_norm ? 4*i : 4*sample[i]; const auto x1 = norm_pts[smpl], y1 = norm_pts[smpl+1], x2 = norm_pts[smpl+2], y2 = norm_pts[smpl+3]; const double weight_times_x2 = weight * x2, weight_times_y2 = weight * y2; a[0] = weight_times_x2 * x1; a[1] = weight_times_x2 * y1; a[2] = weight_times_x2; a[3] = weight_times_y2 * x1; a[4] = weight_times_y2 * y1; a[5] = weight_times_y2; a[6] = weight * x1; a[7] = weight * y1; a[8] = weight; for (int row = 0; row < 9; row++) for (int col = row; col < 9; col++) AtA[row*9+col] += a[row]*a[col]; } } for (int j = 1; j < 9; j++) for (int z = 0; z < j; z++) AtA[j*9+z] = AtA[z*9+j]; #ifdef HAVE_EIGEN models = std::vector{ Mat_(3,3) }; // extract the last null-vector Eigen::Map>((double *)models[0].data) = Eigen::JacobiSVD > ((Eigen::Matrix(AtA)), Eigen::ComputeFullV).matrixV().col(8); #else Matx AtA_(AtA), U, Vt; Vec W; SVD::compute(AtA_, W, U, Vt, SVD::FULL_UV + SVD::MODIFY_A); models = std::vector { Mat_(3, 3, Vt.val + 72 /*=8*9*/) }; #endif } if (enforce_rank) FundamentalDegeneracy::recoverRank(models[0], is_fundamental); if (is_fundamental) { const auto * const f = (double *) models[0].data; const auto * const t1 = do_norm ? T1.val : _T1.val, * t2 = do_norm ? T2.val : _T2.val; // F = T2^T F T1 models[0] = Mat(Matx33d(t1[0]*t2[0]*f[0],t1[0]*t2[0]*f[1], t2[0]*f[2] + t2[0]*f[0]*t1[2] + t2[0]*f[1]*t1[5], t1[0]*t2[0]*f[3],t1[0]*t2[0]*f[4], t2[0]*f[5] + t2[0]*f[3]*t1[2] + t2[0]*f[4]*t1[5], t1[0]*(f[6] + f[0]*t2[2] + f[3]*t2[5]), t1[0]*(f[7] + f[1]*t2[2] + f[4]*t2[5]), f[8] + t1[2]*(f[6] + f[0]*t2[2] + f[3]*t2[5]) + t1[5]*(f[7] + f[1]*t2[2] + f[4]*t2[5]) + f[2]*t2[2] + f[5]*t2[5])); } return 1; } int estimate (const std::vector &/*mask*/, std::vector &/*models*/, const std::vector &/*weights*/) override { return 0; } int getMinimumRequiredSampleSize() const override { return 8; } int getMaxNumberOfSolutions () const override { return 1; } }; Ptr EpipolarNonMinimalSolver::create(const Mat &points_, bool is_fundamental) { return makePtr(points_, is_fundamental); } Ptr EpipolarNonMinimalSolver::create(const Mat &points_, const Matx33d &T1, const Matx33d &T2, bool use_ge) { return makePtr(points_, T1, T2, use_ge); } class CovarianceEpipolarSolverImpl : public CovarianceEpipolarSolver { private: Mat norm_pts; Matx33d T1, T2; float * norm_points; std::vector mask; int points_size; double covariance[81] = {0}, * t1, * t2; bool is_fundamental, enforce_rank = true; public: explicit CovarianceEpipolarSolverImpl (const Mat &norm_points_, const Matx33d &T1_, const Matx33d &T2_) : norm_pts(norm_points_), T1(T1_), T2(T2_) { points_size = norm_points_.rows; norm_points = (float *) norm_pts.data; t1 = T1.val; t2 = T2.val; mask = std::vector(points_size, false); is_fundamental = true; } explicit CovarianceEpipolarSolverImpl (const Mat &points_, bool is_fundamental_) { points_size = points_.rows; is_fundamental = is_fundamental_; if (is_fundamental) { // normalize image points only for fundamental matrix std::vector sample(points_size); for (int i = 0; i < points_size; i++) sample[i] = i; const Ptr normTr = NormTransform::create(points_); normTr->getNormTransformation(norm_pts, sample, points_size, T1, T2); t1 = T1.val; t2 = T2.val; } else norm_pts = points_; // otherwise points are normalized by intrinsics norm_points = (float *)norm_pts.data; mask = std::vector(points_size, false); } void enforceRankConstraint (bool enforce_) override { enforce_rank = enforce_; } void reset () override { std::fill(covariance, covariance+81, 0); std::fill(mask.begin(), mask.end(), false); } /* * Find fundamental matrix using 8-point algorithm with covariance matrix and PCA */ int estimate (const std::vector &new_mask, std::vector &models, const std::vector &/*weights*/) override { double a[9] = {0, 0, 0, 0, 0, 0, 0, 0, 1}; for (int i = 0; i < points_size; i++) { if (mask[i] != new_mask[i]) { const int smpl = 4*i; const double x1 = norm_points[smpl ], y1 = norm_points[smpl+1], x2 = norm_points[smpl+2], y2 = norm_points[smpl+3]; a[0] = x2*x1; a[1] = x2*y1; a[2] = x2; a[3] = y2*x1; a[4] = y2*y1; a[5] = y2; a[6] = x1; a[7] = y1; if (mask[i]) // if mask[i] is true then new_mask[i] must be false for (int j = 0; j < 9; j++) for (int z = j; z < 9; z++) covariance[j*9+z] -= a[j]*a[z]; else for (int j = 0; j < 9; j++) for (int z = j; z < 9; z++) covariance[j*9+z] += a[j]*a[z]; } } mask = new_mask; // copy symmetric part of covariance matrix for (int j = 1; j < 9; j++) for (int z = 0; z < j; z++) covariance[j*9+z] = covariance[z*9+j]; #ifdef HAVE_EIGEN models = std::vector{ Mat_(3,3) }; // extract the last null-vector Eigen::Map>((double *)models[0].data) = Eigen::JacobiSVD > ((Eigen::Matrix(covariance)), Eigen::ComputeFullV).matrixV().col(8); #else Matx AtA_(covariance), U, Vt; Vec W; SVD::compute(AtA_, W, U, Vt, SVD::FULL_UV + SVD::MODIFY_A); models = std::vector { Mat_(3, 3, Vt.val + 72 /*=8*9*/) }; #endif if (enforce_rank) FundamentalDegeneracy::recoverRank(models[0], is_fundamental); if (is_fundamental) { const auto * const f = (double *) models[0].data; // F = T2^T F T1 models[0] = Mat(Matx33d(t1[0]*t2[0]*f[0],t1[0]*t2[0]*f[1], t2[0]*f[2] + t2[0]*f[0]*t1[2] + t2[0]*f[1]*t1[5], t1[0]*t2[0]*f[3],t1[0]*t2[0]*f[4], t2[0]*f[5] + t2[0]*f[3]*t1[2] + t2[0]*f[4]*t1[5], t1[0]*(f[6] + f[0]*t2[2] + f[3]*t2[5]), t1[0]*(f[7] + f[1]*t2[2] + f[4]*t2[5]), f[8] + t1[2]*(f[6] + f[0]*t2[2] + f[3]*t2[5]) + t1[5]*(f[7] + f[1]*t2[2] + f[4]*t2[5]) + f[2]*t2[2] + f[5]*t2[5])); } return 1; } int getMinimumRequiredSampleSize() const override { return 8; } int getMaxNumberOfSolutions () const override { return 1; } }; Ptr CovarianceEpipolarSolver::create (const Mat &points, bool is_fundamental) { return makePtr(points, is_fundamental); } Ptr CovarianceEpipolarSolver::create (const Mat &points, const Matx33d &T1, const Matx33d &T2) { return makePtr(points, T1, T2); } class LarssonOptimizerImpl : public LarssonOptimizer { private: const Mat &calib_points; Matx33d K1, K2, K2_t, K1_inv, K2_inv_t; bool is_fundamental; BundleOptions opt; public: LarssonOptimizerImpl (const Mat &calib_points_, const Matx33d &K1_, const Matx33d &K2_, int max_iters_, bool is_fundamental_) : calib_points(calib_points_), K1(K1_), K2(K2_){ is_fundamental = is_fundamental_; opt.max_iterations = max_iters_; opt.loss_scale = Utils::getCalibratedThreshold(std::max(1.5, opt.loss_scale), Mat(K1), Mat(K2)); if (is_fundamental) { K1_inv = K1.inv(); K2_t = K2.t(); K2_inv_t = K2_t.inv(); } } int estimate (const Mat &model, const std::vector &sample, int sample_size, std::vector &models, const std::vector &weights) const override { if (sample_size < 5) return 0; const Matx33d E = is_fundamental ? K2_t * Matx33d(model) * K1 : model; RNG rng (sample_size); cv::Matx33d R1, R2; cv::Vec3d t; cv::decomposeEssentialMat(E, R1, R2, t); int positive_depth[4] = {0}; const auto * const pts_ = (float *) calib_points.data; // a few point are enough to test // actually due to Sampson error minimization, the input R,t do not really matter // for a correct pair there is a slightly faster convergence for (int i = 0; i < 3; i++) { // could be 1 point const int rand_inl = 4 * sample[rng.uniform(0, sample_size)]; Vec3d p1 (pts_[rand_inl], pts_[rand_inl+1], 1), p2(pts_[rand_inl+2], pts_[rand_inl+3], 1); p1 /= norm(p1); p2 /= norm(p2); if (satisfyCheirality(R1, t, p1, p2)) positive_depth[0]++; if (satisfyCheirality(R1, -t, p1, p2)) positive_depth[1]++; if (satisfyCheirality(R2, t, p1, p2)) positive_depth[2]++; if (satisfyCheirality(R2, -t, p1, p2)) positive_depth[3]++; } int corr_idx = 0, max_good_pts = positive_depth[0]; for (int i = 1; i < 4; i++) { if (max_good_pts < positive_depth[i]) { max_good_pts = positive_depth[i]; corr_idx = i; } } CameraPose pose; pose.R = corr_idx < 2 ? R1 : R2; pose.t = corr_idx % 2 == 1 ? -t : t; refine_relpose(calib_points, sample, sample_size, &pose, opt, &weights[0]); Matx33d model_new = Math::getSkewSymmetric(pose.t) * pose.R; if (is_fundamental) model_new = K2_inv_t * model_new * K1_inv; models = std::vector { Mat(model_new) }; return 1; } int estimate (const std::vector&, int, std::vector&, const std::vector&) const override { return 0; } int estimate (const std::vector &/*mask*/, std::vector &/*models*/, const std::vector &/*weights*/) override { return 0; } void enforceRankConstraint (bool /*enforce*/) override {} int getMinimumRequiredSampleSize() const override { return 5; } int getMaxNumberOfSolutions () const override { return 1; } }; Ptr LarssonOptimizer::create(const Mat &calib_points_, const Matx33d &K1, const Matx33d &K2, int max_iters_, bool is_fundamental) { return makePtr(calib_points_, K1, K2, max_iters_, is_fundamental); } }}