// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "../precomp.hpp" #include "../usac.hpp" #ifdef HAVE_EIGEN #include #endif namespace cv { namespace usac { class HomographyMinimalSolver4ptsImpl : public HomographyMinimalSolver4pts { private: Mat points_mat; const bool use_ge; public: explicit HomographyMinimalSolver4ptsImpl (const Mat &points_, bool use_ge_) : points_mat(points_), use_ge(use_ge_) { CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous()); } int estimate (const std::vector& sample, std::vector &models) const override { const float * points = points_mat.ptr(); int m = 8, n = 9; std::vector A(72, 0); int cnt = 0; for (int i = 0; i < 4; i++) { const int smpl = 4*sample[i]; const auto x1 = points[smpl], y1 = points[smpl+1], x2 = points[smpl+2], y2 = points[smpl+3]; A[cnt++] = -x1; A[cnt++] = -y1; A[cnt++] = -1; cnt += 3; // skip zeros A[cnt++] = x2*x1; A[cnt++] = x2*y1; A[cnt++] = x2; cnt += 3; A[cnt++] = -x1; A[cnt++] = -y1; A[cnt++] = -1; A[cnt++] = y2*x1; A[cnt++] = y2*y1; A[cnt++] = y2; } if (use_ge) { if (!Math::eliminateUpperTriangular(A, m, n)) return 0; models = std::vector{ Mat_(3,3) }; auto * h = (double *) models[0].data; h[8] = 1.; // start from the last row for (int i = m-1; i >= 0; i--) { double acc = 0; for (int j = i+1; j < n; j++) acc -= A[i*n+j]*h[j]; h[i] = acc / A[i*n+i]; // due to numerical errors return 0 solutions if (std::isnan(h[i])) return 0; } } else { Mat U, Vt, D; cv::Matx A_svd(&A[0]); SVD::compute(A_svd, D, U, Vt, SVD::FULL_UV+SVD::MODIFY_A); models = std::vector { Vt.row(Vt.rows-1).reshape(0, 3) }; } return 1; } int getMaxNumberOfSolutions () const override { return 1; } int getSampleSize() const override { return 4; } }; Ptr HomographyMinimalSolver4pts::create(const Mat &points, bool use_ge) { return makePtr(points, use_ge); } class HomographyNonMinimalSolverImpl : public HomographyNonMinimalSolver { private: Mat points_mat; const bool do_norm, use_ge; Ptr normTr; Matx33d _T1, _T2; public: explicit HomographyNonMinimalSolverImpl (const Mat &norm_points_, const Matx33d &T1, const Matx33d &T2, bool use_ge_) : points_mat(norm_points_), do_norm(false), use_ge(use_ge_), _T1(T1), _T2(T2) { CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous()); } explicit HomographyNonMinimalSolverImpl (const Mat &points_, bool use_ge_) : points_mat(points_), do_norm(true), use_ge(use_ge_), normTr (NormTransform::create(points_)) { CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous()); } int estimate (const std::vector &sample, int sample_size, std::vector &models, const std::vector &weights) const override { if (sample_size < getMinimumRequiredSampleSize()) return 0; Matx33d T1, T2; Mat norm_points_; if (do_norm) normTr->getNormTransformation(norm_points_, sample, sample_size, T1, T2); const float * const npts = do_norm ? norm_points_.ptr() : points_mat.ptr(); Mat H; if (use_ge) { double a1[8] = {0, 0, -1, 0, 0, 0, 0, 0}, a2[8] = {0, 0, 0, 0, 0, -1, 0, 0}; std::vector AtAb(72, 0); // 8x9 if (weights.empty()) { for (int i = 0; i < sample_size; i++) { const int idx = do_norm ? 4*i : 4*sample[i]; const double x1 = npts[idx], y1 = npts[idx+1], x2 = npts[idx+2], y2 = npts[idx+3]; a1[0] = -x1; a1[1] = -y1; a1[6] = x2*x1; a1[7] = x2*y1; a2[3] = -x1; a2[4] = -y1; a2[6] = y2*x1; a2[7] = y2*y1; // calculate covariance for eigen for (int j = 0; j < 8; j++) { for (int z = j; z < 8; z++) AtAb[j * 9 + z] += a1[j]*a1[z] + a2[j]*a2[z]; AtAb[j * 9 + 8] += a1[j]*x2 + a2[j]*y2; } } } else { // use weights for (int i = 0; i < sample_size; i++) { const double weight = weights[i]; if (weight < FLT_EPSILON) continue; const int idx = do_norm ? 4*i : 4*sample[i]; const double x1 = npts[idx], y1 = npts[idx+1], x2 = npts[idx+2], y2 = npts[idx+3]; const double minus_weight_times_x1 = -weight * x1, minus_weight_times_y1 = -weight * y1, weight_times_x2 = weight * x2, weight_times_y2 = weight * y2; a1[0] = minus_weight_times_x1; a1[1] = minus_weight_times_y1; a1[2] = -weight; a1[6] = weight_times_x2 * x1; a1[7] = weight_times_x2 * y1; a2[3] = minus_weight_times_x1; a2[4] = minus_weight_times_y1; a2[5] = -weight; a2[6] = weight_times_y2 * x1; a2[7] = weight_times_y2 * y1; for (int j = 0; j < 8; j++) { for (int z = j; z < 8; z++) AtAb[j * 9 + z] += a1[j]*a1[z] + a2[j]*a2[z]; AtAb[j * 9 + 8] += a1[j]*weight_times_x2 + a2[j]*weight_times_y2; } } } for (int j = 1; j < 8; j++) for (int z = 0; z < j; z++) AtAb[j*9+z] = AtAb[z*9+j]; if (!Math::eliminateUpperTriangular(AtAb, 8, 9)) return 0; H = Mat_(3,3); auto * h = (double *) H.data; h[8] = 1.; const int m = 8, n = 9; // start from the last row for (int i = m-1; i >= 0; i--) { double acc = 0; for (int j = i+1; j < n; j++) acc -= AtAb[i*n+j]*h[j]; h[i] = acc / AtAb[i*n+i]; if (std::isnan(h[i])) return 0; // numerical imprecision } } else { double a1[9] = {0, 0, -1, 0, 0, 0, 0, 0, 0}, a2[9] = {0, 0, 0, 0, 0, -1, 0, 0, 0}, AtA[81] = {0}; if (weights.empty()) { for (int i = 0; i < sample_size; i++) { const int smpl = do_norm ? 4*i : 4*sample[i]; const auto x1 = npts[smpl], y1 = npts[smpl+1], x2 = npts[smpl+2], y2 = npts[smpl+3]; a1[0] = -x1; a1[1] = -y1; a1[6] = x2*x1; a1[7] = x2*y1; a1[8] = x2; a2[3] = -x1; a2[4] = -y1; a2[6] = y2*x1; a2[7] = y2*y1; a2[8] = y2; for (int j = 0; j < 9; j++) for (int z = j; z < 9; z++) AtA[j*9+z] += a1[j]*a1[z] + a2[j]*a2[z]; } } else { // use weights for (int i = 0; i < sample_size; i++) { const double weight = weights[i]; if (weight < FLT_EPSILON) continue; const int smpl = do_norm ? 4*i : 4*sample[i]; const auto x1 = npts[smpl], y1 = npts[smpl+1], x2 = npts[smpl+2], y2 = npts[smpl+3]; const double minus_weight_times_x1 = -weight * x1, minus_weight_times_y1 = -weight * y1, weight_times_x2 = weight * x2, weight_times_y2 = weight * y2; a1[0] = minus_weight_times_x1; a1[1] = minus_weight_times_y1; a1[2] = -weight; a1[6] = weight_times_x2 * x1; a1[7] = weight_times_x2 * y1; a1[8] = weight_times_x2; a2[3] = minus_weight_times_x1; a2[4] = minus_weight_times_y1; a2[5] = -weight; a2[6] = weight_times_y2 * x1; a2[7] = weight_times_y2 * y1; a2[8] = weight_times_y2; for (int j = 0; j < 9; j++) for (int z = j; z < 9; z++) AtA[j*9+z] += a1[j]*a1[z] + a2[j]*a2[z]; } } // copy symmetric part of covariance matrix for (int j = 1; j < 9; j++) for (int z = 0; z < j; z++) AtA[j*9+z] = AtA[z*9+j]; #ifdef HAVE_EIGEN H = Mat_(3,3); // extract the last null-vector Eigen::Map>((double *)H.data) = Eigen::Matrix (Eigen::HouseholderQR> ( (Eigen::Matrix (AtA))).householderQ()).col(8); #else Matx Vt; Vec D; if (! eigen(Matx(AtA), D, Vt)) return 0; H = Mat_(3, 3, Vt.val + 72/*=8*9*/); #endif } const auto * const h = (double *) H.data; const auto * const t1 = do_norm ? T1.val : _T1.val, * const t2 = do_norm ? T2.val : _T2.val; // H = T2^-1 H T1 models = std::vector{ Mat(Matx33d(t1[0]*(h[0]/t2[0] - (h[6]*t2[2])/t2[0]), t1[0]*(h[1]/t2[0] - (h[7]*t2[2])/t2[0]), h[2]/t2[0] + t1[2]*(h[0]/t2[0] - (h[6]*t2[2])/t2[0]) + t1[5]*(h[1]/t2[0] - (h[7]*t2[2])/t2[0]) - (h[8]*t2[2])/t2[0], t1[0]*(h[3]/t2[0] - (h[6]*t2[5])/t2[0]), t1[0]*(h[4]/t2[0] - (h[7]*t2[5])/t2[0]), h[5]/t2[0] + t1[2]*(h[3]/t2[0] - (h[6]*t2[5])/t2[0]) + t1[5]*(h[4]/t2[0] - (h[7]*t2[5])/t2[0]) - (h[8]*t2[5])/t2[0], t1[0]*h[6], t1[0]*h[7], h[8] + h[6]*t1[2] + h[7]*t1[5])) }; return 1; } int estimate (const std::vector &/*mask*/, std::vector &/*models*/, const std::vector &/*weights*/) override { return 0; } int getMinimumRequiredSampleSize() const override { return 4; } int getMaxNumberOfSolutions () const override { return 1; } void enforceRankConstraint (bool /*enforce*/) override {} }; Ptr HomographyNonMinimalSolver::create(const Mat &points_, bool use_ge_) { return makePtr(points_, use_ge_); } Ptr HomographyNonMinimalSolver::create(const Mat &points_, const Matx33d &T1, const Matx33d &T2, bool use_ge) { return makePtr(points_, T1, T2, use_ge); } class CovarianceHomographySolverImpl : public CovarianceHomographySolver { private: Mat norm_pts; Matx33d T1, T2; float * norm_points; std::vector mask; int points_size; double covariance[81] = {0}, * t1, * t2; public: explicit CovarianceHomographySolverImpl (const Mat &norm_points_, const Matx33d &T1_, const Matx33d &T2_) : norm_pts(norm_points_), T1(T1_), T2(T2_) { points_size = norm_points_.rows; norm_points = (float *) norm_pts.data; t1 = T1.val; t2 = T2.val; mask = std::vector(points_size, false); } explicit CovarianceHomographySolverImpl (const Mat &points_) { points_size = points_.rows; // normalize points std::vector sample(points_size); for (int i = 0; i < points_size; i++) sample[i] = i; const Ptr normTr = NormTransform::create(points_); normTr->getNormTransformation(norm_pts, sample, points_size, T1, T2); norm_points = (float *) norm_pts.data; t1 = T1.val; t2 = T2.val; mask = std::vector(points_size, false); } void reset () override { // reset covariance matrix to zero and mask to false std::fill(covariance, covariance+81, 0); std::fill(mask.begin(), mask.end(), false); } /* * Find homography using 4-point algorithm with covariance matrix and PCA */ int estimate (const std::vector &new_mask, std::vector &models, const std::vector &/*weights*/) override { double a1[9] = {0, 0, -1, 0, 0, 0, 0, 0, 0}, a2[9] = {0, 0, 0, 0, 0, -1, 0, 0, 0}; for (int i = 0; i < points_size; i++) { if (mask[i] != new_mask[i]) { const int smpl = 4*i; const double x1 = norm_points[smpl ], y1 = norm_points[smpl+1], x2 = norm_points[smpl+2], y2 = norm_points[smpl+3]; a1[0] = -x1; a1[1] = -y1; a1[6] = x2*x1; a1[7] = x2*y1; a1[8] = x2; a2[3] = -x1; a2[4] = -y1; a2[6] = y2*x1; a2[7] = y2*y1; a2[8] = y2; if (mask[i]) // if mask[i] is true then new_mask[i] must be false for (int j = 0; j < 9; j++) for (int z = j; z < 9; z++) covariance[j*9+z] +=-a1[j]*a1[z] - a2[j]*a2[z]; else for (int j = 0; j < 9; j++) for (int z = j; z < 9; z++) covariance[j*9+z] += a1[j]*a1[z] + a2[j]*a2[z]; } } mask = new_mask; // copy symmetric part of covariance matrix for (int j = 1; j < 9; j++) for (int z = 0; z < j; z++) covariance[j*9+z] = covariance[z*9+j]; #ifdef HAVE_EIGEN Mat H = Mat_(3,3); // extract the last null-vector Eigen::Map>((double *)H.data) = Eigen::Matrix (Eigen::HouseholderQR> ( (Eigen::Matrix (covariance))).householderQ()).col(8); #else Matx Vt; Vec D; if (! eigen(Matx(covariance), D, Vt)) return 0; Mat H = Mat_(3, 3, Vt.val + 72/*=8*9*/); #endif const auto * const h = (double *) H.data; // H = T2^-1 H T1 models = std::vector{ Mat(Matx33d(t1[0]*(h[0]/t2[0] - (h[6]*t2[2])/t2[0]), t1[0]*(h[1]/t2[0] - (h[7]*t2[2])/t2[0]), h[2]/t2[0] + t1[2]*(h[0]/t2[0] - (h[6]*t2[2])/t2[0]) + t1[5]*(h[1]/t2[0] - (h[7]*t2[2])/t2[0]) - (h[8]*t2[2])/t2[0], t1[0]*(h[3]/t2[0] - (h[6]*t2[5])/t2[0]), t1[0]*(h[4]/t2[0] - (h[7]*t2[5])/t2[0]), h[5]/t2[0] + t1[2]*(h[3]/t2[0] - (h[6]*t2[5])/t2[0]) + t1[5]*(h[4]/t2[0] - (h[7]*t2[5])/t2[0]) - (h[8]*t2[5])/t2[0], t1[0]*h[6], t1[0]*h[7], h[8] + h[6]*t1[2] + h[7]*t1[5])) }; return 1; } void enforceRankConstraint (bool /*enforce*/) override {} int getMinimumRequiredSampleSize() const override { return 4; } int getMaxNumberOfSolutions () const override { return 1; } }; Ptr CovarianceHomographySolver::create (const Mat &points) { return makePtr(points); } Ptr CovarianceHomographySolver::create (const Mat &points, const Matx33d &T1, const Matx33d &T2) { return makePtr(points, T1, T2); } class AffineMinimalSolverImpl : public AffineMinimalSolver { private: Mat points_mat; public: explicit AffineMinimalSolverImpl (const Mat &points_) : points_mat(points_) { CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous()); } /* Affine transformation x1 y1 1 0 0 0 a u1 0 0 0 x1 y1 1 b v1 x2 y2 1 0 0 0 c u2 0 0 0 x2 y2 1 * d = v2 x3 y3 1 0 0 0 e u3 0 0 0 x3 y3 1 f v3 */ int estimate (const std::vector &sample, std::vector &models) const override { const int smpl1 = 4*sample[0], smpl2 = 4*sample[1], smpl3 = 4*sample[2]; const float * points = points_mat.ptr(); const auto x1 = points[smpl1], y1 = points[smpl1+1], u1 = points[smpl1+2], v1 = points[smpl1+3], x2 = points[smpl2], y2 = points[smpl2+1], u2 = points[smpl2+2], v2 = points[smpl2+3], x3 = points[smpl3], y3 = points[smpl3+1], u3 = points[smpl3+2], v3 = points[smpl3+3]; // covers degeneracy test when all 3 points are collinear. // In this case denominator will be 0 double denominator = x1*y2 - x2*y1 - x1*y3 + x3*y1 + x2*y3 - x3*y2; if (fabs(denominator) < FLT_EPSILON) // check if denominator is zero return 0; denominator = 1. / denominator; double a = (u1*y2 - u2*y1 - u1*y3 + u3*y1 + u2*y3 - u3*y2) * denominator; double b = -(u1*x2 - u2*x1 - u1*x3 + u3*x1 + u2*x3 - u3*x2) * denominator; double c = u1 - a * x1 - b * y1; // ax1 + by1 + c = u1 double d = (v1*y2 - v2*y1 - v1*y3 + v3*y1 + v2*y3 - v3*y2) * denominator; double e = -(v1*x2 - v2*x1 - v1*x3 + v3*x1 + v2*x3 - v3*x2) * denominator; double f = v1 - d * x1 - e * y1; // dx1 + ey1 + f = v1 models[0] = Mat(Matx33d(a, b, c, d, e, f, 0, 0, 1)); return 1; } int getSampleSize() const override { return 3; } int getMaxNumberOfSolutions () const override { return 1; } }; Ptr AffineMinimalSolver::create(const Mat &points_) { return makePtr(points_); } class AffineNonMinimalSolverImpl : public AffineNonMinimalSolver { private: Mat points_mat; Ptr normTr; Matx33d _T1, _T2; bool do_norm; public: explicit AffineNonMinimalSolverImpl (const Mat &points_, InputArray T1, InputArray T2) : points_mat(points_) { CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous()); if (!T1.empty() && !T2.empty()) { do_norm = false; _T1 = T1.getMat(); _T2 = T2.getMat(); } else { do_norm = true; normTr = NormTransform::create(points_); } } int estimate (const std::vector &sample, int sample_size, std::vector &models, const std::vector &weights) const override { if (sample_size < getMinimumRequiredSampleSize()) return 0; Matx33d T1, T2; Mat norm_points_; if (do_norm) normTr->getNormTransformation(norm_points_, sample, sample_size, T1, T2); const float * const pts = normTr ? norm_points_.ptr() : points_mat.ptr(); // do Least Squares // Ax = b -> A^T Ax = A^T b // x = (A^T A)^-1 A^T b double AtA[36] = {0}, Ab[6] = {0}; double r1[6] = {0, 0, 1, 0, 0, 0}; // row 1 of A double r2[6] = {0, 0, 0, 0, 0, 1}; // row 2 of A if (weights.empty()) for (int p = 0; p < sample_size; p++) { const int idx = do_norm ? 4*p : 4*sample[p]; const auto x1=pts[idx], y1=pts[idx+1], x2=pts[idx+2], y2=pts[idx+3]; r1[0] = x1; r1[1] = y1; r2[3] = x1; r2[4] = y1; for (int j = 0; j < 6; j++) { for (int z = j; z < 6; z++) AtA[j * 6 + z] += r1[j] * r1[z] + r2[j] * r2[z]; Ab[j] += r1[j]*x2 + r2[j]*y2; } } else for (int p = 0; p < sample_size; p++) { const auto weight = weights[p]; if (weight < FLT_EPSILON) continue; const int idx = do_norm ? 4*p : 4*sample[p]; const double weight_times_x1 = weight * pts[idx ], weight_times_y1 = weight * pts[idx+1], weight_times_x2 = weight * pts[idx+2], weight_times_y2 = weight * pts[idx+3]; r1[0] = weight_times_x1; r1[1] = weight_times_y1; r1[2] = weight; r2[3] = weight_times_x1; r2[4] = weight_times_y1; r2[5] = weight; for (int j = 0; j < 6; j++) { for (int z = j; z < 6; z++) AtA[j * 6 + z] += r1[j] * r1[z] + r2[j] * r2[z]; Ab[j] += r1[j]*weight_times_x2 + r2[j]*weight_times_y2; } } // copy symmetric part for (int j = 1; j < 6; j++) for (int z = 0; z < j; z++) AtA[j*6+z] = AtA[z*6+j]; Vec6d aff; if (!solve(Matx66d(AtA), Vec6d(Ab), aff)) return 0; const double h[9] = {aff(0), aff(1), aff(2), aff(3), aff(4), aff(5), 0, 0, 1}; const auto * const t1 = normTr ? T1.val : _T1.val, * const t2 = normTr ? T2.val : _T2.val; // A = T2^-1 A T1 models = std::vector{ Mat(Matx33d(t1[0]*(h[0]/t2[0] - (h[6]*t2[2])/t2[0]), t1[0]*(h[1]/t2[0] - (h[7]*t2[2])/t2[0]), h[2]/t2[0] + t1[2]*(h[0]/t2[0] - (h[6]*t2[2])/t2[0]) + t1[5]*(h[1]/t2[0] - (h[7]*t2[2])/t2[0]) - (h[8]*t2[2])/t2[0], t1[0]*(h[3]/t2[0] - (h[6]*t2[5])/t2[0]), t1[0]*(h[4]/t2[0] - (h[7]*t2[5])/t2[0]), h[5]/t2[0] + t1[2]*(h[3]/t2[0] - (h[6]*t2[5])/t2[0]) + t1[5]*(h[4]/t2[0] - (h[7]*t2[5])/t2[0]) - (h[8]*t2[5])/t2[0], t1[0]*h[6], t1[0]*h[7], h[8] + h[6]*t1[2] + h[7]*t1[5])) }; return 1; } int estimate (const std::vector &/*mask*/, std::vector &/*models*/, const std::vector &/*weights*/) override { return 0; } void enforceRankConstraint (bool /*enforce*/) override {} int getMinimumRequiredSampleSize() const override { return 3; } int getMaxNumberOfSolutions () const override { return 1; } }; Ptr AffineNonMinimalSolver::create(const Mat &points_, InputArray T1, InputArray T2) { return makePtr(points_, T1, T2); } class CovarianceAffineSolverImpl : public CovarianceAffineSolver { private: Mat norm_pts; Matx33d T1, T2; float * norm_points; std::vector mask; int points_size; double covariance[36] = {0}, Ab[6] = {0}, * t1, * t2; public: explicit CovarianceAffineSolverImpl (const Mat &norm_points_, const Matx33d &T1_, const Matx33d &T2_) : norm_pts(norm_points_), T1(T1_), T2(T2_) { points_size = norm_points_.rows; norm_points = (float *) norm_pts.data; t1 = T1.val; t2 = T2.val; mask = std::vector(points_size, false); } explicit CovarianceAffineSolverImpl (const Mat &points_) { points_size = points_.rows; // normalize points std::vector sample(points_size); for (int i = 0; i < points_size; i++) sample[i] = i; const Ptr normTr = NormTransform::create(points_); normTr->getNormTransformation(norm_pts, sample, points_size, T1, T2); norm_points = (float *) norm_pts.data; t1 = T1.val; t2 = T2.val; mask = std::vector(points_size, false); } void reset () override { std::fill(covariance, covariance+36, 0); std::fill(Ab, Ab+6, 0); std::fill(mask.begin(), mask.end(), false); } /* * Find affine transformation using linear method with covariance matrix and PCA */ int estimate (const std::vector &new_mask, std::vector &models, const std::vector &) override { double r1[6] = {0, 0, 1, 0, 0, 0}; // row 1 of A double r2[6] = {0, 0, 0, 0, 0, 1}; // row 2 of A for (int i = 0; i < points_size; i++) { if (mask[i] != new_mask[i]) { const int smpl = 4*i; const double x1 = norm_points[smpl ], y1 = norm_points[smpl+1], x2 = norm_points[smpl+2], y2 = norm_points[smpl+3]; r1[0] = x1; r1[1] = y1; r2[3] = x1; r2[4] = y1; if (mask[i]) // if mask[i] is true then new_mask[i] must be false for (int j = 0; j < 6; j++) { for (int z = j; z < 6; z++) covariance[j*6+z] +=-r1[j]*r1[z] - r2[j]*r2[z]; Ab[j] +=-r1[j]*x2 - r2[j]*y2; } else for (int j = 0; j < 6; j++) { for (int z = j; z < 6; z++) covariance[j*6+z] += r1[j]*r1[z] + r2[j]*r2[z]; Ab[j] += r1[j]*x2 + r2[j]*y2; } } } mask = new_mask; // copy symmetric part of covariance matrix for (int j = 1; j < 6; j++) for (int z = 0; z < j; z++) covariance[j*6+z] = covariance[z*6+j]; Vec6d aff; if (!solve(Matx66d(covariance), Vec6d(Ab), aff)) return 0; double a[9] = { aff(0), aff(1), aff(2), aff(3), aff(4), aff(5), 0, 0, 1 }; models = std::vector{ Mat(Matx33d(t1[0]*(a[0]/t2[0] - (a[6]*t2[2])/t2[0]), t1[0]*(a[1]/t2[0] - (a[7]*t2[2])/t2[0]), a[2]/t2[0] + t1[2]*(a[0]/t2[0] - (a[6]*t2[2])/t2[0]) + t1[5]*(a[1]/t2[0] - (a[7]*t2[2])/t2[0]) - (a[8]*t2[2])/t2[0], t1[0]*(a[3]/t2[0] - (a[6]*t2[5])/t2[0]), t1[0]*(a[4]/t2[0] - (a[7]*t2[5])/t2[0]), a[5]/t2[0] + t1[2]*(a[3]/t2[0] - (a[6]*t2[5])/t2[0]) + t1[5]*(a[4]/t2[0] - (a[7]*t2[5])/t2[0]) - (a[8]*t2[5])/t2[0], t1[0]*a[6], t1[0]*a[7], a[8] + a[6]*t1[2] + a[7]*t1[5])) }; return 1; } void enforceRankConstraint (bool /*enforce*/) override {} int getMinimumRequiredSampleSize() const override { return 3; } int getMaxNumberOfSolutions () const override { return 1; } }; Ptr CovarianceAffineSolver::create (const Mat &points, const Matx33d &T1, const Matx33d &T2) { return makePtr(points, T1, T2); } Ptr CovarianceAffineSolver::create (const Mat &points) { return makePtr(points); } }}