// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "../precomp.hpp" #include "../usac.hpp" #include "opencv2/flann/miniflann.hpp" #include namespace cv { namespace usac { /* SolvePoly is used to find only real roots of N-degree polynomial using Sturm sequence. It recursively finds interval where a root lies, and the actual root is found using Regula-Falsi method. */ class SolvePoly : public SolverPoly { private: static int sgn(double val) { return (double(0) < val) - (val < double(0)); } class Poly { public: Poly () = default; Poly (const std::vector &coef_) { coef = coef_; checkDegree(); } Poly (const Poly &p) { coef = p.coef; } // a_n x^n + a_n-1 x^(n-1) + ... + a_1 x + a_0 // coef[i] = a_i std::vector coef = {0}; inline int degree() const { return (int)coef.size()-1; } void multiplyScalar (double s) { // multiplies polynom by scalar if (fabs(s) < DBL_EPSILON) { // check if scalar is 0 coef = {0}; return; } for (double &c : coef) c *= s; } void checkDegree() { int deg = degree(); // approximate degree // check if coefficients of the highest power is non-zero while (fabs(coef[deg]) < DBL_EPSILON) { coef.pop_back(); // remove last zero element if (--deg == 0) break; } } double eval (double x) const { // Horner method a0 + x (a1 + x (a2 + x (a3 + ... + x (an-1 + x an)))) const int d = degree(); double y = coef[d]; for (int i = d; i >= 1; i--) y = coef[i-1] + x * y; return y; } // at +inf and -inf std::pair signsAtInf () const { // lim x->+-inf p(x) = lim x->+-inf a_n x^n const int d = degree(); const int s = sgn(coef[d]); // sign of the highest coefficient // compare even and odd degree return std::make_pair(s, d % 2 == 0 ? s : -s); } Poly derivative () const { Poly deriv; if (degree() == 0) return deriv; // derive.degree = poly.degree-1; deriv.coef = std::vector(coef.size()-1); for (int i = degree(); i > 0; i--) // (a_n * x^n)' = n * a_n * x^(n-1) deriv.coef[i-1] = i * coef[i]; return deriv; } void copyFrom (const Poly &p) { coef = p.coef; } }; // return remainder static void dividePoly (const Poly &p1, const Poly &p2, /*Poly "ient,*/ Poly &remainder) { remainder.copyFrom(p1); int p2_degree = p2.degree(), remainder_degree = remainder.degree(); if (p1.degree() < p2_degree) return; if (p2_degree == 0) { // special case for dividing polynomial by constant remainder.multiplyScalar(1/p2.coef[0]); // quotient.coef[0] = p2.coef[0]; return; } // quotient.coef = std::vector(p1.degree() - p2_degree + 1, 0); const double p2_term = 1/p2.coef[p2_degree]; while (remainder_degree >= p2_degree) { const double temp = remainder.coef[remainder_degree] * p2_term; // quotient.coef[remainder_degree-p2_degree] = temp; // polynoms now have the same degree, but p2 is shorter than remainder for (int i = p2_degree, j = remainder_degree; i >= 0; i--, j--) remainder.coef[j] -= temp * p2.coef[i]; remainder.checkDegree(); remainder_degree = remainder.degree(); } } constexpr static int REGULA_FALSI_MAX_ITERS = 500, MAX_POWER = 10, MAX_LEVEL = 200; constexpr static double TOLERANCE = 1e-10, DIFF_TOLERANCE = 1e-7; static bool findRootRegulaFalsi (const Poly &poly, double min, double max, double &root) { double f_min = poly.eval(min), f_max = poly.eval(max); if (f_min * f_max > 0 || min > max) {// conditions are not fulfilled return false; } int sign = 0, iter = 0; for (; iter < REGULA_FALSI_MAX_ITERS; iter++) { root = (f_min * max - f_max * min) / (f_min - f_max); const double f_root = poly.eval(root); if (fabs(f_root) < TOLERANCE || fabs(min - max) < DIFF_TOLERANCE) { return true; // root is found } if (f_root * f_max > 0) { max = root; f_max = f_root; if (sign == -1) f_min *= 0.5; sign = -1; } else if (f_min * f_root > 0) { min = root; f_min = f_root; if (sign == 1) f_max *= 0.5; sign = 1; } } return false; } static int numberOfSignChanges (const std::vector &sturm, double x) { int prev_sign = 0, sign_changes = 0; for (const auto &poly : sturm) { const int s = sgn(poly.eval(x)); if (s != 0 && prev_sign != 0 && s != prev_sign) sign_changes++; prev_sign = s; } return sign_changes; } static void findRootsRecursive (const Poly &poly, const std::vector &sturm, double min, double max, int sign_changes_at_min, int sign_changes_at_max, std::vector &roots, int level) { const int num_roots = sign_changes_at_min - sign_changes_at_max; if (level == MAX_LEVEL) { // roots are too close const double mid = (min + max) * 0.5; if (fabs(poly.eval(mid)) < DBL_EPSILON) { roots.emplace_back(mid); } } else if (num_roots == 1) { double root; if (findRootRegulaFalsi(poly, min, max, root)) { roots.emplace_back(root); } } else if (num_roots > 1) { // at least 2 roots const double mid = (min + max) * 0.5; const int sign_changes_at_mid = numberOfSignChanges(sturm, mid); // try to split interval equally for the roots if (sign_changes_at_min - sign_changes_at_mid > 0) findRootsRecursive(poly, sturm, min, mid, sign_changes_at_min, sign_changes_at_mid, roots, level+1); if (sign_changes_at_mid - sign_changes_at_max > 0) findRootsRecursive(poly, sturm, mid, max, sign_changes_at_mid, sign_changes_at_max, roots, level+1); } } public: int getRealRoots (const std::vector &coeffs, std::vector &real_roots) override { if (coeffs.empty()) return 0; for (auto c : coeffs) if (cvIsNaN(c) || cvIsInf(c)) return 0; Poly input(coeffs); if (input.degree() < 1) return 0; // derivative of input polynomial const Poly input_der = input.derivative(); /////////// build Sturm sequence ////////// Poly p (input), q (input_der), remainder; std::vector> signs_at_inf; signs_at_inf.reserve(p.degree()); // +inf, -inf pair signs_at_inf.emplace_back(p.signsAtInf()); signs_at_inf.emplace_back(q.signsAtInf()); std::vector sturm_sequence; sturm_sequence.reserve(input.degree()); sturm_sequence.emplace_back(input); sturm_sequence.emplace_back(input_der); while (q.degree() > 0) { dividePoly(p, q, remainder); remainder.multiplyScalar(-1); p.copyFrom(q); q.copyFrom(remainder); sturm_sequence.emplace_back(remainder); signs_at_inf.emplace_back(remainder.signsAtInf()); } ////////// find changes in signs of Sturm sequence ///////// int num_sign_changes_at_pos_inf = 0, num_sign_changes_at_neg_inf = 0; int prev_sign_pos_inf = signs_at_inf[0].first, prev_sign_neg_inf = signs_at_inf[0].second; for (int i = 1; i < (int)signs_at_inf.size(); i++) { const auto s_pos_inf = signs_at_inf[i].first, s_neg_inf = signs_at_inf[i].second; // zeros must be ignored if (s_pos_inf != 0) { if (prev_sign_pos_inf != 0 && prev_sign_pos_inf != s_pos_inf) num_sign_changes_at_pos_inf++; prev_sign_pos_inf = s_pos_inf; } if (s_neg_inf != 0) { if (prev_sign_neg_inf != 0 && prev_sign_neg_inf != s_neg_inf) num_sign_changes_at_neg_inf++; prev_sign_neg_inf = s_neg_inf; } } ////////// find roots' bounds for numerical method for roots finding ///////// double root_neg_bound = -0.01, root_pos_bound = 0.01; int num_sign_changes_min_x = -1, num_sign_changes_pos_x = -1; // -1 = unknown, trigger next if condition for (int i = 0; i < MAX_POWER; i++) { if (num_sign_changes_min_x != num_sign_changes_at_neg_inf) { root_neg_bound *= 10; num_sign_changes_min_x = numberOfSignChanges(sturm_sequence, root_neg_bound); } if (num_sign_changes_pos_x != num_sign_changes_at_pos_inf) { root_pos_bound *= 10; num_sign_changes_pos_x = numberOfSignChanges(sturm_sequence, root_pos_bound); } } /////////// get real roots ////////// real_roots.clear(); findRootsRecursive(input, sturm_sequence, root_neg_bound, root_pos_bound, num_sign_changes_min_x, num_sign_changes_pos_x, real_roots, 0 /*level*/); /////////////////////////////// if ((int)real_roots.size() > input.degree()) real_roots.resize(input.degree()); // must not happen, unless some roots repeat return (int) real_roots.size(); } }; Ptr SolverPoly::create() { return makePtr(); } double Utils::getCalibratedThreshold (double threshold, const Mat &K1, const Mat &K2) { const auto * const k1 = (double *) K1.data, * const k2 = (double *) K2.data; return threshold / ((k1[0] + k1[4] + k2[0] + k2[4]) / 4.0); } /* * K1, K2 are 3x3 intrinsics matrices * points is matrix of size |N| x 4 * Assume K = [k11 k12 k13 * 0 k22 k23 * 0 0 1] */ void Utils::calibratePoints (const Mat &K1, const Mat &K2, const Mat &points, Mat &calib_points) { const auto * const points_ = (float *) points.data; const auto * const k1 = (double *) K1.data; const auto inv1_k11 = float(1 / k1[0]); // 1 / k11 const auto inv1_k12 = float(-k1[1] / (k1[0]*k1[4])); // -k12 / (k11*k22) // (-k13*k22 + k12*k23) / (k11*k22) const auto inv1_k13 = float((-k1[2]*k1[4] + k1[1]*k1[5]) / (k1[0]*k1[4])); const auto inv1_k22 = float(1 / k1[4]); // 1 / k22 const auto inv1_k23 = float(-k1[5] / k1[4]); // -k23 / k22 const auto * const k2 = (double *) K2.data; const auto inv2_k11 = float(1 / k2[0]); const auto inv2_k12 = float(-k2[1] / (k2[0]*k2[4])); const auto inv2_k13 = float((-k2[2]*k2[4] + k2[1]*k2[5]) / (k2[0]*k2[4])); const auto inv2_k22 = float(1 / k2[4]); const auto inv2_k23 = float(-k2[5] / k2[4]); calib_points = Mat ( points.rows, 4, points.type()); auto * calib_points_ = (float *) calib_points.data; for (int i = 0; i < points.rows; i++) { const int idx = 4*i; (*calib_points_++) = inv1_k11 * points_[idx ] + inv1_k12 * points_[idx+1] + inv1_k13; (*calib_points_++) = inv1_k22 * points_[idx+1] + inv1_k23; (*calib_points_++) = inv2_k11 * points_[idx+2] + inv2_k12 * points_[idx+3] + inv2_k13; (*calib_points_++) = inv2_k22 * points_[idx+3] + inv2_k23; } } /* * K is 3x3 intrinsic matrix * points is matrix of size |N| x 5, first two columns are image points [u_i, v_i] * calib_norm_pts are K^-1 [u v 1]^T / ||K^-1 [u v 1]^T|| */ void Utils::calibrateAndNormalizePointsPnP (const Mat &K, const Mat &pts, Mat &calib_norm_pts) { const auto * const points = (float *) pts.data; const auto * const k = (double *) K.data; const auto inv_k11 = float(1 / k[0]); const auto inv_k12 = float(-k[1] / (k[0]*k[4])); const auto inv_k13 = float((-k[2]*k[4] + k[1]*k[5]) / (k[0]*k[4])); const auto inv_k22 = float(1 / k[4]); const auto inv_k23 = float(-k[5] / k[4]); calib_norm_pts = Mat (pts.rows, 3, pts.type()); auto * calib_norm_pts_ = (float *) calib_norm_pts.data; for (int i = 0; i < pts.rows; i++) { const int idx = 5 * i; const float k_inv_u = inv_k11 * points[idx] + inv_k12 * points[idx+1] + inv_k13; const float k_inv_v = inv_k22 * points[idx+1] + inv_k23; const float norm = 1.f / sqrtf(k_inv_u*k_inv_u + k_inv_v*k_inv_v + 1); (*calib_norm_pts_++) = k_inv_u * norm; (*calib_norm_pts_++) = k_inv_v * norm; (*calib_norm_pts_++) = norm; } } void Utils::normalizeAndDecalibPointsPnP (const Mat &K_, Mat &pts, Mat &calib_norm_pts) { const auto * const K = (double *) K_.data; const auto k11 = (float)K[0], k12 = (float)K[1], k13 = (float)K[2], k22 = (float)K[4], k23 = (float)K[5]; calib_norm_pts = Mat (pts.rows, 3, pts.type()); auto * points = (float *) pts.data; auto * calib_norm_pts_ = (float *) calib_norm_pts.data; for (int i = 0; i < pts.rows; i++) { const int idx = 5 * i; const float k_inv_u = points[idx ]; const float k_inv_v = points[idx+1]; const float norm = 1.f / sqrtf(k_inv_u*k_inv_u + k_inv_v*k_inv_v + 1); (*calib_norm_pts_++) = k_inv_u * norm; (*calib_norm_pts_++) = k_inv_v * norm; (*calib_norm_pts_++) = norm; points[idx ] = k11 * k_inv_u + k12 * k_inv_v + k13; points[idx+1] = k22 * k_inv_v + k23; } } /* * decompose Projection Matrix to calibration, rotation and translation * Assume K = [fx 0 tx * 0 fy ty * 0 0 1] */ void Utils::decomposeProjection (const Mat &P, Matx33d &K, Matx33d &R, Vec3d &t, bool same_focal) { const Matx33d M = P.colRange(0,3); double scale = norm(M.row(2)); scale *= scale; K = Matx33d::eye(); K(1,2) = M.row(1).dot(M.row(2)) / scale; K(0,2) = M.row(0).dot(M.row(2)) / scale; K(1,1) = sqrt(M.row(1).dot(M.row(1)) / scale - K(1,2)*K(1,2)); K(0,0) = sqrt(M.row(0).dot(M.row(0)) / scale - K(0,2)*K(0,2)); if (same_focal) K(0,0) = K(1,1) = (K(0,0) + K(1,1)) / 2; R = K.inv() * M / sqrt(scale); if (determinant(M) < 0) R *= -1; t = R * M.inv() * Vec3d(P.col(3)); } double Utils::getPoissonCDF (double lambda, int inliers) { double exp_lambda = exp(-lambda), cdf = exp_lambda, lambda_i_div_fact_i = 1; for (int i = 1; i <= inliers; i++) { lambda_i_div_fact_i *= (lambda / i); cdf += exp_lambda * lambda_i_div_fact_i; if (fabs(cdf - 1) < DBL_EPSILON) // cdf is almost 1 break; } return cdf; } // since F(E) has rank 2 we use cross product to compute epipole, // since the third column / row is linearly dependent on two first // this is faster than SVD // It is recommended to normalize F, such that ||F|| = 1 Vec3d Utils::getLeftEpipole (const Mat &F/*E*/) { Vec3d _e = F.col(0).cross(F.col(2)); // F^T e' = 0; e'^T F = 0 const auto * const e = _e.val; if (e[0] <= DBL_EPSILON && e[0] > -DBL_EPSILON && e[1] <= DBL_EPSILON && e[1] > -DBL_EPSILON && e[2] <= DBL_EPSILON && e[2] > -DBL_EPSILON) _e = Vec3d(Mat(F.col(1))).cross(F.col(2)); // if e' is zero return _e; // e' } Vec3d Utils::getRightEpipole (const Mat &F/*E*/) { Vec3d _e = F.row(0).cross(F.row(2)); // Fe = 0 const auto * const e = _e.val; if (e[0] <= DBL_EPSILON && e[0] > -DBL_EPSILON && e[1] <= DBL_EPSILON && e[1] > -DBL_EPSILON && e[2] <= DBL_EPSILON && e[2] > -DBL_EPSILON) _e = F.row(1).cross(F.row(2)); // if e is zero return _e; } void Utils::densitySort (const Mat &points, int knn, Mat &sorted_points, std::vector &sorted_mask) { // mask of sorted points (array of indexes) const int points_size = points.rows, dim = points.cols; sorted_mask = std::vector(points_size); for (int i = 0; i < points_size; i++) sorted_mask[i] = i; // get neighbors FlannNeighborhoodGraph &graph = *FlannNeighborhoodGraph::create(points, points_size, knn, true /*get distances */, 6, 1); std::vector sum_knn_distances (points_size, 0); for (int p = 0; p < points_size; p++) { const std::vector &dists = graph.getNeighborsDistances(p); for (int k = 0; k < knn; k++) sum_knn_distances[p] += dists[k]; } // compare by sum of distances to k nearest neighbors. std::sort(sorted_mask.begin(), sorted_mask.end(), [&](int a, int b) { return sum_knn_distances[a] < sum_knn_distances[b]; }); // copy array of points to array with sorted points // using @sorted_idx mask of sorted points indexes sorted_points = Mat(points_size, dim, points.type()); const auto * const points_ptr = (float *) points.data; auto * spoints_ptr = (float *) sorted_points.data; for (int i = 0; i < points_size; i++) { const int pt2 = sorted_mask[i] * dim; for (int j = 0; j < dim; j++) (*spoints_ptr++) = points_ptr[pt2+j]; } } Matx33d Math::getSkewSymmetric(const Vec3d &v) { return {0, -v[2], v[1], v[2], 0, -v[0], -v[1], v[0], 0}; } Matx33d Math::rotVec2RotMat (const Vec3d &v) { const double phi = sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]); const double x = v[0] / phi, y = v[1] / phi, z = v[2] / phi; const double a = sin(phi), b = cos(phi); // R = I + sin(phi) * skew(v) + (1 - cos(phi) * skew(v)^2 return {(b - 1)*y*y + (b - 1)*z*z + 1, -a*z - x*y*(b - 1), a*y - x*z*(b - 1), a*z - x*y*(b - 1), (b - 1)*x*x + (b - 1)*z*z + 1, -a*x - y*z*(b - 1), -a*y - x*z*(b - 1), a*x - y*z*(b - 1), (b - 1)*x*x + (b - 1)*y*y + 1}; } Vec3d Math::rotMat2RotVec (const Matx33d &R) { // https://math.stackexchange.com/questions/83874/efficient-and-accurate-numerical-implementation-of-the-inverse-rodrigues-rotatio?rq=1 Vec3d rot_vec; const double trace = R(0,0)+R(1,1)+R(2,2); if (trace >= 3 - FLT_EPSILON) { rot_vec = (0.5 * (trace-3)/12)*Vec3d(R(2,1)-R(1,2), R(0,2)-R(2,0), R(1,0)-R(0,1)); } else if (3 - FLT_EPSILON > trace && trace > -1 + FLT_EPSILON) { double theta = acos((trace - 1) / 2); rot_vec = (theta / (2 * sin(theta))) * Vec3d(R(2,1)-R(1,2), R(0,2)-R(2,0), R(1,0)-R(0,1)); } else { int a; if (R(0,0) > R(1,1)) a = R(0,0) > R(2,2) ? 0 : 2; else a = R(1,1) > R(2,2) ? 1 : 2; Vec3d v; int b = (a + 1) % 3, c = (a + 2) % 3; double s = sqrt(R(a,a) - R(b,b) - R(c,c) + 1); v[a] = s / 2; v[b] = (R(b,a) + R(a,b)) / (2 * s); v[c] = (R(c,a) + R(a,c)) / (2 * s); rot_vec = M_PI * v / norm(v); } return rot_vec; } /* * Eliminate matrix of m rows and n columns to be upper triangular. */ bool Math::eliminateUpperTriangular (std::vector &a, int m, int n) { for (int r = 0; r < m; r++){ double pivot = a[r*n+r]; int row_with_pivot = r; // find the maximum pivot value among r-th column for (int k = r+1; k < m; k++) if (fabs(pivot) < fabs(a[k*n+r])) { pivot = a[k*n+r]; row_with_pivot = k; } // if pivot value is 0 continue if (fabs(pivot) < DBL_EPSILON) continue; // swap row with maximum pivot value with current row for (int c = r; c < n; c++) std::swap(a[row_with_pivot*n+c], a[r*n+c]); // eliminate other rows for (int j = r+1; j < m; j++){ const int row_idx1 = j*n, row_idx2 = r*n; const auto fac = a[row_idx1+r] / pivot; a[row_idx1+r] = 0; // zero eliminated element for (int c = r+1; c < n; c++) a[row_idx1+c] -= fac * a[row_idx2+c]; } } return true; } double Utils::intersectionOverUnion (const std::vector &a, const std::vector &b) { int intersects = 0, unions = 0; for (int i = 0; i < (int)a.size(); i++) if (a[i] || b[i]) { unions++; // one value is true if (a[i] && b[i]) intersects++; // a[i] == b[i] and if they both true } if (unions == 0) return 0.0; return (double) intersects / unions; } //////////////////////////////////////// RANDOM GENERATOR ///////////////////////////// class UniformRandomGeneratorImpl : public UniformRandomGenerator { private: int subset_size = 0, max_range = 0; std::vector subset; RNG rng; public: explicit UniformRandomGeneratorImpl (int state) : rng(state) {} // interval is <0; max_range); UniformRandomGeneratorImpl (int state, int max_range_, int subset_size_) : rng(state) { subset_size = subset_size_; max_range = max_range_; subset = std::vector(subset_size_); } int getRandomNumber () override { return rng.uniform(0, max_range); } int getRandomNumber (int max_rng) override { return rng.uniform(0, max_rng); } // closed range void resetGenerator (int max_range_) override { CV_CheckGE(0, max_range_, "max range must be greater than 0"); max_range = max_range_; } void generateUniqueRandomSet (std::vector& sample) override { CV_CheckLE(subset_size, max_range, "RandomGenerator. Subset size must be LE than range!"); int j, num; sample[0] = rng.uniform(0, max_range); for (int i = 1; i < subset_size;) { num = rng.uniform(0, max_range); // check if value is in array for (j = i - 1; j >= 0; j--) if (num == sample[j]) // if so, generate again break; // success, value is not in array, so it is unique, add to sample. if (j == -1) sample[i++] = num; } } // interval is <0; max_range) void generateUniqueRandomSet (std::vector& sample, int max_range_) override { /* * if subset size is bigger than range then array cannot be unique, * so function has infinite loop. */ CV_CheckLE(subset_size, max_range_, "RandomGenerator. Subset size must be LE than range!"); int num, j; sample[0] = rng.uniform(0, max_range_); for (int i = 1; i < subset_size;) { num = rng.uniform(0, max_range_); for (j = i - 1; j >= 0; j--) if (num == sample[j]) break; if (j == -1) sample[i++] = num; } } // interval is <0, max_range) void generateUniqueRandomSet (std::vector& sample, int subset_size_, int max_range_) override { CV_CheckLE(subset_size_, max_range_, "RandomGenerator. Subset size must be LE than range!"); int num, j; sample[0] = rng.uniform(0, max_range_); for (int i = 1; i < subset_size_;) { num = rng.uniform(0, max_range_); for (j = i - 1; j >= 0; j--) if (num == sample[j]) break; if (j == -1) sample[i++] = num; } } const std::vector &generateUniqueRandomSubset (std::vector &array1, int size1) override { CV_CheckLE(subset_size, size1, "RandomGenerator. Subset size must be LE than range!"); int temp_size1 = size1; for (int i = 0; i < subset_size; i++) { const int idx1 = rng.uniform(0, temp_size1); subset[i] = array1[idx1]; std::swap(array1[idx1], array1[--temp_size1]); } return subset; } void setSubsetSize (int subset_size_) override { if (subset_size < subset_size_) subset.resize(subset_size_); subset_size = subset_size_; } int getSubsetSize () const override { return subset_size; } }; Ptr UniformRandomGenerator::create (int state) { return makePtr(state); } Ptr UniformRandomGenerator::create (int state, int max_range, int subset_size_) { return makePtr(state, max_range, subset_size_); } // @k_minth - desired k-th minimal element. For median is half of array // closed working interval of array <@left; @right> float quicksort_median (std::vector &array, int k_minth, int left, int right); float quicksort_median (std::vector &array, int k_minth, int left, int right) { // length is 0, return single value if (right - left == 0) return array[left]; // get pivot, the rightest value in array const auto pivot = array[right]; int right_ = right - 1; // -1, not including pivot // counter of values smaller equal than pivot int j = left, values_less_eq_pivot = 1; // 1, inludes pivot already for (; j <= right_;) { if (array[j] <= pivot) { j++; values_less_eq_pivot++; } else // value is bigger than pivot, swap with right_ value // swap values in array and decrease interval std::swap(array[j], array[right_--]); } if (values_less_eq_pivot == k_minth) return pivot; if (k_minth > values_less_eq_pivot) return quicksort_median(array, k_minth - values_less_eq_pivot, j, right-1); else return quicksort_median(array, k_minth, left, j-1); } // find median using quicksort with complexity O(log n) // Note, function changes order of values in array float Utils::findMedian (std::vector &array) { const int length = static_cast(array.size()); if (length % 2) { // odd number of values return quicksort_median (array, length/2+1, 0, length-1); } else { // even: return average return (quicksort_median(array, length/2 , 0, length-1) + quicksort_median(array, length/2+1, 0, length-1))*.5f; } } ///////////////////////////////// Radius Search Graph ///////////////////////////////////////////// class RadiusSearchNeighborhoodGraphImpl : public RadiusSearchNeighborhoodGraph { private: std::vector> graph; public: RadiusSearchNeighborhoodGraphImpl (const Mat &container_, int points_size, double radius, int flann_search_params, int num_kd_trees) { // Radius search OpenCV works only with float data CV_Assert(container_.type() == CV_32F); FlannBasedMatcher flann(makePtr(num_kd_trees), makePtr(flann_search_params)); std::vector> neighbours; flann.radiusMatch(container_, container_, neighbours, (float)radius); // allocate graph graph = std::vector> (points_size); int pt = 0; for (const auto &n : neighbours) { if (n.size() <= 1) continue; auto &graph_row = graph[pt]; graph_row = std::vector(n.size()-1); int j = 0; for (const auto &idx : n) // skip neighbor which has the same index as requested point if (idx.trainIdx != pt) graph_row[j++] = idx.trainIdx; pt++; } } const std::vector> &getGraph () const override { return graph; } inline const std::vector &getNeighbors(int point_idx) const override { return graph[point_idx]; } }; Ptr RadiusSearchNeighborhoodGraph::create (const Mat &points, int points_size, double radius_, int flann_search_params, int num_kd_trees) { return makePtr (points, points_size, radius_, flann_search_params, num_kd_trees); } ///////////////////////////////// FLANN Graph ///////////////////////////////////////////// class FlannNeighborhoodGraphImpl : public FlannNeighborhoodGraph { private: std::vector> graph; std::vector> distances; public: FlannNeighborhoodGraphImpl (const Mat &container_, int points_size, int k_nearest_neighbors, bool get_distances, int flann_search_params_, int num_kd_trees) { CV_Assert(k_nearest_neighbors <= points_size); // FLANN works only with float data CV_Assert(container_.type() == CV_32F); flann::Index flannIndex (container_.reshape(1), flann::KDTreeIndexParams(num_kd_trees)); Mat dists, nearest_neighbors; flannIndex.knnSearch(container_, nearest_neighbors, dists, k_nearest_neighbors+1, flann::SearchParams(flann_search_params_)); // first nearest neighbor of point is this point itself. // remove this first column nearest_neighbors.colRange(1, k_nearest_neighbors+1).copyTo (nearest_neighbors); graph = std::vector>(points_size, std::vector(k_nearest_neighbors)); const auto * const nn = (int *) nearest_neighbors.data; const auto * const dists_ptr = (float *) dists.data; if (get_distances) distances = std::vector>(points_size, std::vector(k_nearest_neighbors)); for (int pt = 0; pt < points_size; pt++) { std::copy(nn + k_nearest_neighbors*pt, nn + k_nearest_neighbors*pt + k_nearest_neighbors, &graph[pt][0]); if (get_distances) std::copy(dists_ptr + k_nearest_neighbors*pt, dists_ptr + k_nearest_neighbors*pt + k_nearest_neighbors, &distances[pt][0]); } } const std::vector& getNeighborsDistances (int idx) const override { return distances[idx]; } const std::vector> &getGraph () const override { return graph; } inline const std::vector &getNeighbors(int point_idx) const override { // CV_Assert(point_idx_ < num_vertices); return graph[point_idx]; } }; Ptr FlannNeighborhoodGraph::create(const Mat &points, int points_size, int k_nearest_neighbors_, bool get_distances, int flann_search_params_, int num_kd_trees) { return makePtr(points, points_size, k_nearest_neighbors_, get_distances, flann_search_params_, num_kd_trees); } ///////////////////////////////// Grid Neighborhood Graph ///////////////////////////////////////// class GridNeighborhoodGraphImpl : public GridNeighborhoodGraph { private: // This struct is used for the nearest neighbors search by griding two images. struct CellCoord { int c1x, c1y, c2x, c2y; CellCoord (int c1x_, int c1y_, int c2x_, int c2y_) { c1x = c1x_; c1y = c1y_; c2x = c2x_; c2y = c2y_; } bool operator==(const CellCoord &o) const { return c1x == o.c1x && c1y == o.c1y && c2x == o.c2x && c2y == o.c2y; } bool operator<(const CellCoord &o) const { if (c1x < o.c1x) return true; if (c1x == o.c1x && c1y < o.c1y) return true; if (c1x == o.c1x && c1y == o.c1y && c2x < o.c2x) return true; return c1x == o.c1x && c1y == o.c1y && c2x == o.c2x && c2y < o.c2y; } }; std::vector> graph; public: GridNeighborhoodGraphImpl (const Mat &container_, int points_size, int cell_size_x_img1, int cell_size_y_img1, int cell_size_x_img2, int cell_size_y_img2, int max_neighbors) { std::map> neighbors_map; const auto * const container = (float *) container_.data; // -> {neighbors set} // Key is cell position. The value is indexes of neighbors. const float cell_sz_x1 = 1.f / (float) cell_size_x_img1, cell_sz_y1 = 1.f / (float) cell_size_y_img1, cell_sz_x2 = 1.f / (float) cell_size_x_img2, cell_sz_y2 = 1.f / (float) cell_size_y_img2; const int dimension = container_.cols; for (int i = 0; i < points_size; i++) { const int idx = dimension * i; neighbors_map[CellCoord((int)(container[idx ] * cell_sz_x1), (int)(container[idx+1] * cell_sz_y1), (int)(container[idx+2] * cell_sz_x2), (int)(container[idx+3] * cell_sz_y2))].emplace_back(i); } //--------- create a graph ---------- graph = std::vector>(points_size); // store neighbors cells into graph (2D vector) for (const auto &cell : neighbors_map) { const int neighbors_in_cell = static_cast(cell.second.size()); // only one point in cell -> no neighbors if (neighbors_in_cell < 2) continue; const std::vector &neighbors = cell.second; // ---------- fill graph ----- for (int v_in_cell : neighbors) { // there is always at least one neighbor auto &graph_row = graph[v_in_cell]; graph_row = std::vector(std::min(max_neighbors, neighbors_in_cell-1)); int j = 0; for (int n : neighbors) if (n != v_in_cell){ graph_row[j++] = n; if (j >= max_neighbors) break; } } } } const std::vector> &getGraph () const override { return graph; } inline const std::vector &getNeighbors(int point_idx) const override { // Note, neighbors vector also includes point_idx! // return neighbors_map[vertices_to_cells[point_idx]]; return graph[point_idx]; } }; Ptr GridNeighborhoodGraph::create(const Mat &points, int points_size, int cell_size_x_img1_, int cell_size_y_img1_, int cell_size_x_img2_, int cell_size_y_img2_, int max_neighbors) { return makePtr(points, points_size, cell_size_x_img1_, cell_size_y_img1_, cell_size_x_img2_, cell_size_y_img2_, max_neighbors); } }}