paredeyes's picture
Add files using upload-large-folder tool
0e27b13 verified
/*
* Copyright 2008-2019 NVIDIA Corporation
* Copyright 2013 Filipe RNC Maia
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*! \file complex.h
* \brief Complex numbers
*/
#pragma once
#include <thrust/detail/config.h>
#if defined(_CCCL_IMPLICIT_SYSTEM_HEADER_GCC)
# pragma GCC system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_CLANG)
# pragma clang system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_MSVC)
# pragma system_header
#endif // no system header
#include <cmath>
#include <complex>
#include <sstream>
#include <thrust/detail/type_traits.h>
#if THRUST_CPP_DIALECT >= 2011
# define THRUST_STD_COMPLEX_REAL(z) \
reinterpret_cast< \
const typename thrust::detail::remove_reference<decltype(z)>::type::value_type (&)[2] \
>(z)[0]
# define THRUST_STD_COMPLEX_IMAG(z) \
reinterpret_cast< \
const typename thrust::detail::remove_reference<decltype(z)>::type::value_type (&)[2] \
>(z)[1]
# define THRUST_STD_COMPLEX_DEVICE __device__
#else
# define THRUST_STD_COMPLEX_REAL(z) (z).real()
# define THRUST_STD_COMPLEX_IMAG(z) (z).imag()
# define THRUST_STD_COMPLEX_DEVICE
#endif
THRUST_NAMESPACE_BEGIN
/*
* Calls to the standard math library from inside the thrust namespace
* with real arguments require explicit scope otherwise they will fail
* to resolve as it will find the equivalent complex function but then
* fail to match the template, and give up looking for other scopes.
*/
/*! \addtogroup numerics
* \{
*/
/*! \addtogroup complex_numbers Complex Numbers
* \{
*/
/*! \cond
*/
namespace detail
{
template <typename T, std::size_t Align>
struct complex_storage;
#if THRUST_CPP_DIALECT >= 2011 \
&& (THRUST_HOST_COMPILER == THRUST_HOST_COMPILER_GCC) \
&& (THRUST_GCC_VERSION >= 40800)
// C++11 implementation, excluding GCC 4.7, which doesn't have `alignas`.
template <typename T, std::size_t Align>
struct complex_storage
{
struct alignas(Align) type { T x; T y; };
};
#elif (THRUST_HOST_COMPILER == THRUST_HOST_COMPILER_MSVC) \
|| ( (THRUST_HOST_COMPILER == THRUST_HOST_COMPILER_GCC) \
&& (THRUST_GCC_VERSION < 40600))
// C++03 implementation for MSVC and GCC <= 4.5.
//
// We have to implement `aligned_type` with specializations for MSVC
// and GCC 4.2 and older because they require literals as arguments to
// their alignment attribute.
#if (THRUST_HOST_COMPILER == THRUST_HOST_COMPILER_MSVC)
// MSVC implementation.
#define THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION(X) \
template <typename T> \
struct complex_storage<T, X> \
{ \
__declspec(align(X)) struct type { T x; T y; }; \
}; \
/**/
#else
// GCC <= 4.2 implementation.
#define THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION(X) \
template <typename T> \
struct complex_storage<T, X> \
{ \
struct type { T x; T y; } __attribute__((aligned(X))); \
}; \
/**/
#endif
// The primary template is a fallback, which doesn't specify any alignment.
// It's only used when T is very large and we're using an older compilers
// which we have to fully specialize each alignment case.
template <typename T, std::size_t Align>
struct complex_storage
{
T x; T y;
};
THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION(1);
THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION(2);
THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION(4);
THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION(8);
THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION(16);
THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION(32);
THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION(64);
THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION(128);
#undef THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION
#else
// C++03 implementation for GCC > 4.5, Clang, PGI, ICPC, and xlC.
template <typename T, std::size_t Align>
struct complex_storage
{
struct type { T x; T y; } __attribute__((aligned(Align)));
};
#endif
} // end namespace detail
/*! \endcond
*/
/*! \p complex is the Thrust equivalent to <tt>std::complex</tt>. It is
* functionally identical to it, but can also be used in device code which
* <tt>std::complex</tt> currently cannot.
*
* \tparam T The type used to hold the real and imaginary parts. Should be
* <tt>float</tt> or <tt>double</tt>. Others types are not supported.
*
*/
template <typename T>
struct complex
{
public:
/*! \p value_type is the type of \p complex's real and imaginary parts.
*/
typedef T value_type;
/* --- Constructors --- */
/*! Construct a complex number with an imaginary part of 0.
*
* \param re The real part of the number.
*/
__host__ __device__
complex(const T& re);
/*! Construct a complex number from its real and imaginary parts.
*
* \param re The real part of the number.
* \param im The imaginary part of the number.
*/
__host__ __device__
complex(const T& re, const T& im);
#if THRUST_CPP_DIALECT >= 2011
/*! Default construct a complex number.
*/
complex() = default;
/*! This copy constructor copies from a \p complex with a type that is
* convertible to this \p complex's \c value_type.
*
* \param z The \p complex to copy from.
*/
complex(const complex<T>& z) = default;
#else
/*! Default construct a complex number.
*/
__host__ __device__
complex();
/*! This copy constructor copies from a \p complex with a type that is
* convertible to this \p complex's \c value_type.
*
* \param z The \p complex to copy from.
*/
__host__ __device__
complex(const complex<T>& z);
#endif
/*! This converting copy constructor copies from a \p complex with a type
* that is convertible to this \p complex's \c value_type.
*
* \param z The \p complex to copy from.
*
* \tparam U is convertible to \c value_type.
*/
template <typename U>
__host__ __device__
complex(const complex<U>& z);
/*! This converting copy constructor copies from a <tt>std::complex</tt> with
* a type that is convertible to this \p complex's \c value_type.
*
* \param z The \p complex to copy from.
*/
__host__ THRUST_STD_COMPLEX_DEVICE
complex(const std::complex<T>& z);
/*! This converting copy constructor copies from a <tt>std::complex</tt> with
* a type that is convertible to this \p complex's \c value_type.
*
* \param z The \p complex to copy from.
*
* \tparam U is convertible to \c value_type.
*/
template <typename U>
__host__ THRUST_STD_COMPLEX_DEVICE
complex(const std::complex<U>& z);
/* --- Assignment Operators --- */
/*! Assign `re` to the real part of this \p complex and set the imaginary part
* to 0.
*
* \param re The real part of the number.
*/
__host__ __device__
complex& operator=(const T& re);
#if THRUST_CPP_DIALECT >= 2011
/*! Assign `z.real()` and `z.imag()` to the real and imaginary parts of this
* \p complex respectively.
*
* \param z The \p complex to copy from.
*/
complex& operator=(const complex<T>& z) = default;
#else
/*! Assign `z.real()` and `z.imag()` to the real and imaginary parts of this
* \p complex respectively.
*
* \param z The \p complex to copy from.
*/
__host__ __device__
complex& operator=(const complex<T>& z);
#endif
/*! Assign `z.real()` and `z.imag()` to the real and imaginary parts of this
* \p complex respectively.
*
* \param z The \p complex to copy from.
*
* \tparam U is convertible to \c value_type.
*/
template <typename U>
__host__ __device__
complex& operator=(const complex<U>& z);
/*! Assign `z.real()` and `z.imag()` to the real and imaginary parts of this
* \p complex respectively.
*
* \param z The \p complex to copy from.
*/
__host__ THRUST_STD_COMPLEX_DEVICE
complex& operator=(const std::complex<T>& z);
/*! Assign `z.real()` and `z.imag()` to the real and imaginary parts of this
* \p complex respectively.
*
* \param z The \p complex to copy from.
*
* \tparam U is convertible to \c value_type.
*/
template <typename U>
__host__ THRUST_STD_COMPLEX_DEVICE
complex& operator=(const std::complex<U>& z);
/* --- Compound Assignment Operators --- */
/*! Adds a \p complex to this \p complex and assigns the result to this
* \p complex.
*
* \param z The \p complex to be added.
*
* \tparam U is convertible to \c value_type.
*/
template <typename U>
__host__ __device__
complex<T>& operator+=(const complex<U>& z);
/*! Subtracts a \p complex from this \p complex and assigns the result to
* this \p complex.
*
* \param z The \p complex to be subtracted.
*
* \tparam U is convertible to \c value_type.
*/
template <typename U>
__host__ __device__
complex<T>& operator-=(const complex<U>& z);
/*! Multiplies this \p complex by another \p complex and assigns the result
* to this \p complex.
*
* \param z The \p complex to be multiplied.
*
* \tparam U is convertible to \c value_type.
*/
template <typename U>
__host__ __device__
complex<T>& operator*=(const complex<U>& z);
/*! Divides this \p complex by another \p complex and assigns the result to
* this \p complex.
*
* \param z The \p complex to be divided.
*
* \tparam U is convertible to \c value_type.
*/
template <typename U>
__host__ __device__
complex<T>& operator/=(const complex<U>& z);
/*! Adds a scalar to this \p complex and assigns the result to this
* \p complex.
*
* \param z The \p complex to be added.
*
* \tparam U is convertible to \c value_type.
*/
template <typename U>
__host__ __device__
complex<T>& operator+=(const U& z);
/*! Subtracts a scalar from this \p complex and assigns the result to
* this \p complex.
*
* \param z The scalar to be subtracted.
*
* \tparam U is convertible to \c value_type.
*/
template <typename U>
__host__ __device__
complex<T>& operator-=(const U& z);
/*! Multiplies this \p complex by a scalar and assigns the result
* to this \p complex.
*
* \param z The scalar to be multiplied.
*
* \tparam U is convertible to \c value_type.
*/
template <typename U>
__host__ __device__
complex<T>& operator*=(const U& z);
/*! Divides this \p complex by a scalar and assigns the result to
* this \p complex.
*
* \param z The scalar to be divided.
*
* \tparam U is convertible to \c value_type.
*/
template <typename U>
__host__ __device__
complex<T>& operator/=(const U& z);
/* --- Getter functions ---
* The volatile ones are there to help for example
* with certain reductions optimizations
*/
/*! Returns the real part of this \p complex.
*/
__host__ __device__
T real() const volatile { return data.x; }
/*! Returns the imaginary part of this \p complex.
*/
__host__ __device__
T imag() const volatile { return data.y; }
/*! Returns the real part of this \p complex.
*/
__host__ __device__
T real() const { return data.x; }
/*! Returns the imaginary part of this \p complex.
*/
__host__ __device__
T imag() const { return data.y; }
/* --- Setter functions ---
* The volatile ones are there to help for example
* with certain reductions optimizations
*/
/*! Sets the real part of this \p complex.
*
* \param re The new real part of this \p complex.
*/
__host__ __device__
void real(T re) volatile { data.x = re; }
/*! Sets the imaginary part of this \p complex.
*
* \param im The new imaginary part of this \p complex.e
*/
__host__ __device__
void imag(T im) volatile { data.y = im; }
/*! Sets the real part of this \p complex.
*
* \param re The new real part of this \p complex.
*/
__host__ __device__
void real(T re) { data.x = re; }
/*! Sets the imaginary part of this \p complex.
*
* \param im The new imaginary part of this \p complex.
*/
__host__ __device__
void imag(T im) { data.y = im; }
/* --- Casting functions --- */
/*! Casts this \p complex to a <tt>std::complex</tt> of the same type.
*/
__host__
operator std::complex<T>() const { return std::complex<T>(real(), imag()); }
private:
typename detail::complex_storage<T, sizeof(T) * 2>::type data;
};
/* --- General Functions --- */
/*! Returns the magnitude (also known as absolute value) of a \p complex.
*
* \param z The \p complex from which to calculate the absolute value.
*/
template<typename T>
__host__ __device__
T abs(const complex<T>& z);
/*! Returns the phase angle (also known as argument) in radians of a \p complex.
*
* \param z The \p complex from which to calculate the phase angle.
*/
template <typename T>
__host__ __device__
T arg(const complex<T>& z);
/*! Returns the square of the magnitude of a \p complex.
*
* \param z The \p complex from which to calculate the norm.
*/
template <typename T>
__host__ __device__
T norm(const complex<T>& z);
/*! Returns the complex conjugate of a \p complex.
*
* \param z The \p complex from which to calculate the complex conjugate.
*/
template <typename T>
__host__ __device__
complex<T> conj(const complex<T>& z);
/*! Returns a \p complex with the specified magnitude and phase.
*
* \param m The magnitude of the returned \p complex.
* \param theta The phase of the returned \p complex in radians.
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
polar(const T0& m, const T1& theta = T1());
/*! Returns the projection of a \p complex on the Riemann sphere.
* For all finite \p complex it returns the argument. For \p complexs
* with a non finite part returns (INFINITY,+/-0) where the sign of
* the zero matches the sign of the imaginary part of the argument.
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> proj(const T& z);
/* --- Binary Arithmetic operators --- */
/*! Adds two \p complex numbers.
*
* The value types of the two \p complex types should be compatible and the
* type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The first \p complex.
* \param y The second \p complex.
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator+(const complex<T0>& x, const complex<T1>& y);
/*! Adds a scalar to a \p complex number.
*
* The value type of the \p complex should be compatible with the scalar and
* the type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The \p complex.
* \param y The scalar.
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator+(const complex<T0>& x, const T1& y);
/*! Adds a \p complex number to a scalar.
*
* The value type of the \p complex should be compatible with the scalar and
* the type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The scalar.
* \param y The \p complex.
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator+(const T0& x, const complex<T1>& y);
/*! Subtracts two \p complex numbers.
*
* The value types of the two \p complex types should be compatible and the
* type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The first \p complex (minuend).
* \param y The second \p complex (subtrahend).
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator-(const complex<T0>& x, const complex<T1>& y);
/*! Subtracts a scalar from a \p complex number.
*
* The value type of the \p complex should be compatible with the scalar and
* the type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The \p complex (minuend).
* \param y The scalar (subtrahend).
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator-(const complex<T0>& x, const T1& y);
/*! Subtracts a \p complex number from a scalar.
*
* The value type of the \p complex should be compatible with the scalar and
* the type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The scalar (minuend).
* \param y The \p complex (subtrahend).
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator-(const T0& x, const complex<T1>& y);
/*! Multiplies two \p complex numbers.
*
* The value types of the two \p complex types should be compatible and the
* type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The first \p complex.
* \param y The second \p complex.
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator*(const complex<T0>& x, const complex<T1>& y);
/*! Multiplies a \p complex number by a scalar.
*
* \param x The \p complex.
* \param y The scalar.
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator*(const complex<T0>& x, const T1& y);
/*! Multiplies a scalar by a \p complex number.
*
* The value type of the \p complex should be compatible with the scalar and
* the type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The scalar.
* \param y The \p complex.
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator*(const T0& x, const complex<T1>& y);
/*! Divides two \p complex numbers.
*
* The value types of the two \p complex types should be compatible and the
* type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The numerator (dividend).
* \param y The denomimator (divisor).
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator/(const complex<T0>& x, const complex<T1>& y);
/*! Divides a \p complex number by a scalar.
*
* The value type of the \p complex should be compatible with the scalar and
* the type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The complex numerator (dividend).
* \param y The scalar denomimator (divisor).
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator/(const complex<T0>& x, const T1& y);
/*! Divides a scalar by a \p complex number.
*
* The value type of the \p complex should be compatible with the scalar and
* the type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The scalar numerator (dividend).
* \param y The complex denomimator (divisor).
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator/(const T0& x, const complex<T1>& y);
/* --- Unary Arithmetic operators --- */
/*! Unary plus, returns its \p complex argument.
*
* \param y The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T>
operator+(const complex<T>& y);
/*! Unary minus, returns the additive inverse (negation) of its \p complex
* argument.
*
* \param y The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T>
operator-(const complex<T>& y);
/* --- Exponential Functions --- */
/*! Returns the complex exponential of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> exp(const complex<T>& z);
/*! Returns the complex natural logarithm of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> log(const complex<T>& z);
/*! Returns the complex base 10 logarithm of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> log10(const complex<T>& z);
/* --- Power Functions --- */
/*! Returns a \p complex number raised to another.
*
* The value types of the two \p complex types should be compatible and the
* type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The base.
* \param y The exponent.
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
pow(const complex<T0>& x, const complex<T1>& y);
/*! Returns a \p complex number raised to a scalar.
*
* The value type of the \p complex should be compatible with the scalar and
* the type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The base.
* \param y The exponent.
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
pow(const complex<T0>& x, const T1& y);
/*! Returns a scalar raised to a \p complex number.
*
* The value type of the \p complex should be compatible with the scalar and
* the type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The base.
* \param y The exponent.
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
pow(const T0& x, const complex<T1>& y);
/*! Returns the complex square root of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> sqrt(const complex<T>& z);
/* --- Trigonometric Functions --- */
/*! Returns the complex cosine of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> cos(const complex<T>& z);
/*! Returns the complex sine of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> sin(const complex<T>& z);
/*! Returns the complex tangent of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> tan(const complex<T>& z);
/* --- Hyperbolic Functions --- */
/*! Returns the complex hyperbolic cosine of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> cosh(const complex<T>& z);
/*! Returns the complex hyperbolic sine of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> sinh(const complex<T>& z);
/*! Returns the complex hyperbolic tangent of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> tanh(const complex<T>& z);
/* --- Inverse Trigonometric Functions --- */
/*! Returns the complex arc cosine of a \p complex number.
*
* The range of the real part of the result is [0, Pi] and
* the range of the imaginary part is [-inf, +inf]
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> acos(const complex<T>& z);
/*! Returns the complex arc sine of a \p complex number.
*
* The range of the real part of the result is [-Pi/2, Pi/2] and
* the range of the imaginary part is [-inf, +inf]
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> asin(const complex<T>& z);
/*! Returns the complex arc tangent of a \p complex number.
*
* The range of the real part of the result is [-Pi/2, Pi/2] and
* the range of the imaginary part is [-inf, +inf]
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> atan(const complex<T>& z);
/* --- Inverse Hyperbolic Functions --- */
/*! Returns the complex inverse hyperbolic cosine of a \p complex number.
*
* The range of the real part of the result is [0, +inf] and
* the range of the imaginary part is [-Pi, Pi]
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> acosh(const complex<T>& z);
/*! Returns the complex inverse hyperbolic sine of a \p complex number.
*
* The range of the real part of the result is [-inf, +inf] and
* the range of the imaginary part is [-Pi/2, Pi/2]
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> asinh(const complex<T>& z);
/*! Returns the complex inverse hyperbolic tangent of a \p complex number.
*
* The range of the real part of the result is [-inf, +inf] and
* the range of the imaginary part is [-Pi/2, Pi/2]
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> atanh(const complex<T>& z);
/* --- Stream Operators --- */
/*! Writes to an output stream a \p complex number in the form (real, imaginary).
*
* \param os The output stream.
* \param z The \p complex number to output.
*/
template <typename T, typename CharT, typename Traits>
std::basic_ostream<CharT, Traits>&
operator<<(std::basic_ostream<CharT, Traits>& os, const complex<T>& z);
/*! Reads a \p complex number from an input stream.
*
* The recognized formats are:
* - real
* - (real)
* - (real, imaginary)
*
* The values read must be convertible to the \p complex's \c value_type
*
* \param is The input stream.
* \param z The \p complex number to set.
*/
template <typename T, typename CharT, typename Traits>
__host__
std::basic_istream<CharT, Traits>&
operator>>(std::basic_istream<CharT, Traits>& is, complex<T>& z);
/* --- Equality Operators --- */
/*! Returns true if two \p complex numbers are equal and false otherwise.
*
* \param x The first \p complex.
* \param y The second \p complex.
*/
template <typename T0, typename T1>
__host__ __device__
bool operator==(const complex<T0>& x, const complex<T1>& y);
/*! Returns true if two \p complex numbers are equal and false otherwise.
*
* \param x The first \p complex.
* \param y The second \p complex.
*/
template <typename T0, typename T1>
__host__ THRUST_STD_COMPLEX_DEVICE
bool operator==(const complex<T0>& x, const std::complex<T1>& y);
/*! Returns true if two \p complex numbers are equal and false otherwise.
*
* \param x The first \p complex.
* \param y The second \p complex.
*/
template <typename T0, typename T1>
__host__ THRUST_STD_COMPLEX_DEVICE
bool operator==(const std::complex<T0>& x, const complex<T1>& y);
/*! Returns true if the imaginary part of the \p complex number is zero and
* the real part is equal to the scalar. Returns false otherwise.
*
* \param x The scalar.
* \param y The \p complex.
*/
template <typename T0, typename T1>
__host__ __device__
bool operator==(const T0& x, const complex<T1>& y);
/*! Returns true if the imaginary part of the \p complex number is zero and
* the real part is equal to the scalar. Returns false otherwise.
*
* \param x The \p complex.
* \param y The scalar.
*/
template <typename T0, typename T1>
__host__ __device__
bool operator==(const complex<T0>& x, const T1& y);
/*! Returns true if two \p complex numbers are different and false otherwise.
*
* \param x The first \p complex.
* \param y The second \p complex.
*/
template <typename T0, typename T1>
__host__ __device__
bool operator!=(const complex<T0>& x, const complex<T1>& y);
/*! Returns true if two \p complex numbers are different and false otherwise.
*
* \param x The first \p complex.
* \param y The second \p complex.
*/
template <typename T0, typename T1>
__host__ THRUST_STD_COMPLEX_DEVICE
bool operator!=(const complex<T0>& x, const std::complex<T1>& y);
/*! Returns true if two \p complex numbers are different and false otherwise.
*
* \param x The first \p complex.
* \param y The second \p complex.
*/
template <typename T0, typename T1>
__host__ THRUST_STD_COMPLEX_DEVICE
bool operator!=(const std::complex<T0>& x, const complex<T1>& y);
/*! Returns true if the imaginary part of the \p complex number is not zero or
* the real part is different from the scalar. Returns false otherwise.
*
* \param x The scalar.
* \param y The \p complex.
*/
template <typename T0, typename T1>
__host__ __device__
bool operator!=(const T0& x, const complex<T1>& y);
/*! Returns true if the imaginary part of the \p complex number is not zero or
* the real part is different from the scalar. Returns false otherwise.
*
* \param x The \p complex.
* \param y The scalar.
*/
template <typename T0, typename T1>
__host__ __device__
bool operator!=(const complex<T0>& x, const T1& y);
THRUST_NAMESPACE_END
#include <thrust/detail/complex/complex.inl>
#undef THRUST_STD_COMPLEX_REAL
#undef THRUST_STD_COMPLEX_IMAG
#undef THRUST_STD_COMPLEX_DEVICE
/*! \} // complex_numbers
*/
/*! \} // numerics
*/