| /* | |
| * Copyright 2008-2019 NVIDIA Corporation | |
| * Copyright 2013 Filipe RNC Maia | |
| * | |
| * Licensed under the Apache License, Version 2.0 (the "License"); | |
| * you may not use this file except in compliance with the License. | |
| * You may obtain a copy of the License at | |
| * | |
| * http://www.apache.org/licenses/LICENSE-2.0 | |
| * | |
| * Unless required by applicable law or agreed to in writing, software | |
| * distributed under the License is distributed on an "AS IS" BASIS, | |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| * See the License for the specific language governing permissions and | |
| * limitations under the License. | |
| */ | |
| /*! \file complex.h | |
| * \brief Complex numbers | |
| */ | |
| THRUST_NAMESPACE_BEGIN | |
| /* | |
| * Calls to the standard math library from inside the thrust namespace | |
| * with real arguments require explicit scope otherwise they will fail | |
| * to resolve as it will find the equivalent complex function but then | |
| * fail to match the template, and give up looking for other scopes. | |
| */ | |
| /*! \addtogroup numerics | |
| * \{ | |
| */ | |
| /*! \addtogroup complex_numbers Complex Numbers | |
| * \{ | |
| */ | |
| /*! \cond | |
| */ | |
| namespace detail | |
| { | |
| template <typename T, std::size_t Align> | |
| struct complex_storage; | |
| // C++11 implementation, excluding GCC 4.7, which doesn't have `alignas`. | |
| template <typename T, std::size_t Align> | |
| struct complex_storage | |
| { | |
| struct alignas(Align) type { T x; T y; }; | |
| }; | |
| // C++03 implementation for MSVC and GCC <= 4.5. | |
| // | |
| // We have to implement `aligned_type` with specializations for MSVC | |
| // and GCC 4.2 and older because they require literals as arguments to | |
| // their alignment attribute. | |
| // MSVC implementation. | |
| // GCC <= 4.2 implementation. | |
| // The primary template is a fallback, which doesn't specify any alignment. | |
| // It's only used when T is very large and we're using an older compilers | |
| // which we have to fully specialize each alignment case. | |
| template <typename T, std::size_t Align> | |
| struct complex_storage | |
| { | |
| T x; T y; | |
| }; | |
| THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION(1); | |
| THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION(2); | |
| THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION(4); | |
| THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION(8); | |
| THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION(16); | |
| THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION(32); | |
| THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION(64); | |
| THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION(128); | |
| // C++03 implementation for GCC > 4.5, Clang, PGI, ICPC, and xlC. | |
| template <typename T, std::size_t Align> | |
| struct complex_storage | |
| { | |
| struct type { T x; T y; } __attribute__((aligned(Align))); | |
| }; | |
| } // end namespace detail | |
| /*! \endcond | |
| */ | |
| /*! \p complex is the Thrust equivalent to <tt>std::complex</tt>. It is | |
| * functionally identical to it, but can also be used in device code which | |
| * <tt>std::complex</tt> currently cannot. | |
| * | |
| * \tparam T The type used to hold the real and imaginary parts. Should be | |
| * <tt>float</tt> or <tt>double</tt>. Others types are not supported. | |
| * | |
| */ | |
| template <typename T> | |
| struct complex | |
| { | |
| public: | |
| /*! \p value_type is the type of \p complex's real and imaginary parts. | |
| */ | |
| typedef T value_type; | |
| /* --- Constructors --- */ | |
| /*! Construct a complex number with an imaginary part of 0. | |
| * | |
| * \param re The real part of the number. | |
| */ | |
| __host__ __device__ | |
| complex(const T& re); | |
| /*! Construct a complex number from its real and imaginary parts. | |
| * | |
| * \param re The real part of the number. | |
| * \param im The imaginary part of the number. | |
| */ | |
| __host__ __device__ | |
| complex(const T& re, const T& im); | |
| /*! Default construct a complex number. | |
| */ | |
| complex() = default; | |
| /*! This copy constructor copies from a \p complex with a type that is | |
| * convertible to this \p complex's \c value_type. | |
| * | |
| * \param z The \p complex to copy from. | |
| */ | |
| complex(const complex<T>& z) = default; | |
| /*! Default construct a complex number. | |
| */ | |
| __host__ __device__ | |
| complex(); | |
| /*! This copy constructor copies from a \p complex with a type that is | |
| * convertible to this \p complex's \c value_type. | |
| * | |
| * \param z The \p complex to copy from. | |
| */ | |
| __host__ __device__ | |
| complex(const complex<T>& z); | |
| /*! This converting copy constructor copies from a \p complex with a type | |
| * that is convertible to this \p complex's \c value_type. | |
| * | |
| * \param z The \p complex to copy from. | |
| * | |
| * \tparam U is convertible to \c value_type. | |
| */ | |
| template <typename U> | |
| __host__ __device__ | |
| complex(const complex<U>& z); | |
| /*! This converting copy constructor copies from a <tt>std::complex</tt> with | |
| * a type that is convertible to this \p complex's \c value_type. | |
| * | |
| * \param z The \p complex to copy from. | |
| */ | |
| __host__ THRUST_STD_COMPLEX_DEVICE | |
| complex(const std::complex<T>& z); | |
| /*! This converting copy constructor copies from a <tt>std::complex</tt> with | |
| * a type that is convertible to this \p complex's \c value_type. | |
| * | |
| * \param z The \p complex to copy from. | |
| * | |
| * \tparam U is convertible to \c value_type. | |
| */ | |
| template <typename U> | |
| __host__ THRUST_STD_COMPLEX_DEVICE | |
| complex(const std::complex<U>& z); | |
| /* --- Assignment Operators --- */ | |
| /*! Assign `re` to the real part of this \p complex and set the imaginary part | |
| * to 0. | |
| * | |
| * \param re The real part of the number. | |
| */ | |
| __host__ __device__ | |
| complex& operator=(const T& re); | |
| /*! Assign `z.real()` and `z.imag()` to the real and imaginary parts of this | |
| * \p complex respectively. | |
| * | |
| * \param z The \p complex to copy from. | |
| */ | |
| complex& operator=(const complex<T>& z) = default; | |
| /*! Assign `z.real()` and `z.imag()` to the real and imaginary parts of this | |
| * \p complex respectively. | |
| * | |
| * \param z The \p complex to copy from. | |
| */ | |
| __host__ __device__ | |
| complex& operator=(const complex<T>& z); | |
| /*! Assign `z.real()` and `z.imag()` to the real and imaginary parts of this | |
| * \p complex respectively. | |
| * | |
| * \param z The \p complex to copy from. | |
| * | |
| * \tparam U is convertible to \c value_type. | |
| */ | |
| template <typename U> | |
| __host__ __device__ | |
| complex& operator=(const complex<U>& z); | |
| /*! Assign `z.real()` and `z.imag()` to the real and imaginary parts of this | |
| * \p complex respectively. | |
| * | |
| * \param z The \p complex to copy from. | |
| */ | |
| __host__ THRUST_STD_COMPLEX_DEVICE | |
| complex& operator=(const std::complex<T>& z); | |
| /*! Assign `z.real()` and `z.imag()` to the real and imaginary parts of this | |
| * \p complex respectively. | |
| * | |
| * \param z The \p complex to copy from. | |
| * | |
| * \tparam U is convertible to \c value_type. | |
| */ | |
| template <typename U> | |
| __host__ THRUST_STD_COMPLEX_DEVICE | |
| complex& operator=(const std::complex<U>& z); | |
| /* --- Compound Assignment Operators --- */ | |
| /*! Adds a \p complex to this \p complex and assigns the result to this | |
| * \p complex. | |
| * | |
| * \param z The \p complex to be added. | |
| * | |
| * \tparam U is convertible to \c value_type. | |
| */ | |
| template <typename U> | |
| __host__ __device__ | |
| complex<T>& operator+=(const complex<U>& z); | |
| /*! Subtracts a \p complex from this \p complex and assigns the result to | |
| * this \p complex. | |
| * | |
| * \param z The \p complex to be subtracted. | |
| * | |
| * \tparam U is convertible to \c value_type. | |
| */ | |
| template <typename U> | |
| __host__ __device__ | |
| complex<T>& operator-=(const complex<U>& z); | |
| /*! Multiplies this \p complex by another \p complex and assigns the result | |
| * to this \p complex. | |
| * | |
| * \param z The \p complex to be multiplied. | |
| * | |
| * \tparam U is convertible to \c value_type. | |
| */ | |
| template <typename U> | |
| __host__ __device__ | |
| complex<T>& operator*=(const complex<U>& z); | |
| /*! Divides this \p complex by another \p complex and assigns the result to | |
| * this \p complex. | |
| * | |
| * \param z The \p complex to be divided. | |
| * | |
| * \tparam U is convertible to \c value_type. | |
| */ | |
| template <typename U> | |
| __host__ __device__ | |
| complex<T>& operator/=(const complex<U>& z); | |
| /*! Adds a scalar to this \p complex and assigns the result to this | |
| * \p complex. | |
| * | |
| * \param z The \p complex to be added. | |
| * | |
| * \tparam U is convertible to \c value_type. | |
| */ | |
| template <typename U> | |
| __host__ __device__ | |
| complex<T>& operator+=(const U& z); | |
| /*! Subtracts a scalar from this \p complex and assigns the result to | |
| * this \p complex. | |
| * | |
| * \param z The scalar to be subtracted. | |
| * | |
| * \tparam U is convertible to \c value_type. | |
| */ | |
| template <typename U> | |
| __host__ __device__ | |
| complex<T>& operator-=(const U& z); | |
| /*! Multiplies this \p complex by a scalar and assigns the result | |
| * to this \p complex. | |
| * | |
| * \param z The scalar to be multiplied. | |
| * | |
| * \tparam U is convertible to \c value_type. | |
| */ | |
| template <typename U> | |
| __host__ __device__ | |
| complex<T>& operator*=(const U& z); | |
| /*! Divides this \p complex by a scalar and assigns the result to | |
| * this \p complex. | |
| * | |
| * \param z The scalar to be divided. | |
| * | |
| * \tparam U is convertible to \c value_type. | |
| */ | |
| template <typename U> | |
| __host__ __device__ | |
| complex<T>& operator/=(const U& z); | |
| /* --- Getter functions --- | |
| * The volatile ones are there to help for example | |
| * with certain reductions optimizations | |
| */ | |
| /*! Returns the real part of this \p complex. | |
| */ | |
| __host__ __device__ | |
| T real() const volatile { return data.x; } | |
| /*! Returns the imaginary part of this \p complex. | |
| */ | |
| __host__ __device__ | |
| T imag() const volatile { return data.y; } | |
| /*! Returns the real part of this \p complex. | |
| */ | |
| __host__ __device__ | |
| T real() const { return data.x; } | |
| /*! Returns the imaginary part of this \p complex. | |
| */ | |
| __host__ __device__ | |
| T imag() const { return data.y; } | |
| /* --- Setter functions --- | |
| * The volatile ones are there to help for example | |
| * with certain reductions optimizations | |
| */ | |
| /*! Sets the real part of this \p complex. | |
| * | |
| * \param re The new real part of this \p complex. | |
| */ | |
| __host__ __device__ | |
| void real(T re) volatile { data.x = re; } | |
| /*! Sets the imaginary part of this \p complex. | |
| * | |
| * \param im The new imaginary part of this \p complex.e | |
| */ | |
| __host__ __device__ | |
| void imag(T im) volatile { data.y = im; } | |
| /*! Sets the real part of this \p complex. | |
| * | |
| * \param re The new real part of this \p complex. | |
| */ | |
| __host__ __device__ | |
| void real(T re) { data.x = re; } | |
| /*! Sets the imaginary part of this \p complex. | |
| * | |
| * \param im The new imaginary part of this \p complex. | |
| */ | |
| __host__ __device__ | |
| void imag(T im) { data.y = im; } | |
| /* --- Casting functions --- */ | |
| /*! Casts this \p complex to a <tt>std::complex</tt> of the same type. | |
| */ | |
| __host__ | |
| operator std::complex<T>() const { return std::complex<T>(real(), imag()); } | |
| private: | |
| typename detail::complex_storage<T, sizeof(T) * 2>::type data; | |
| }; | |
| /* --- General Functions --- */ | |
| /*! Returns the magnitude (also known as absolute value) of a \p complex. | |
| * | |
| * \param z The \p complex from which to calculate the absolute value. | |
| */ | |
| template<typename T> | |
| __host__ __device__ | |
| T abs(const complex<T>& z); | |
| /*! Returns the phase angle (also known as argument) in radians of a \p complex. | |
| * | |
| * \param z The \p complex from which to calculate the phase angle. | |
| */ | |
| template <typename T> | |
| __host__ __device__ | |
| T arg(const complex<T>& z); | |
| /*! Returns the square of the magnitude of a \p complex. | |
| * | |
| * \param z The \p complex from which to calculate the norm. | |
| */ | |
| template <typename T> | |
| __host__ __device__ | |
| T norm(const complex<T>& z); | |
| /*! Returns the complex conjugate of a \p complex. | |
| * | |
| * \param z The \p complex from which to calculate the complex conjugate. | |
| */ | |
| template <typename T> | |
| __host__ __device__ | |
| complex<T> conj(const complex<T>& z); | |
| /*! Returns a \p complex with the specified magnitude and phase. | |
| * | |
| * \param m The magnitude of the returned \p complex. | |
| * \param theta The phase of the returned \p complex in radians. | |
| */ | |
| template <typename T0, typename T1> | |
| __host__ __device__ | |
| complex<typename detail::promoted_numerical_type<T0, T1>::type> | |
| polar(const T0& m, const T1& theta = T1()); | |
| /*! Returns the projection of a \p complex on the Riemann sphere. | |
| * For all finite \p complex it returns the argument. For \p complexs | |
| * with a non finite part returns (INFINITY,+/-0) where the sign of | |
| * the zero matches the sign of the imaginary part of the argument. | |
| * | |
| * \param z The \p complex argument. | |
| */ | |
| template <typename T> | |
| __host__ __device__ | |
| complex<T> proj(const T& z); | |
| /* --- Binary Arithmetic operators --- */ | |
| /*! Adds two \p complex numbers. | |
| * | |
| * The value types of the two \p complex types should be compatible and the | |
| * type of the returned \p complex is the promoted type of the two arguments. | |
| * | |
| * \param x The first \p complex. | |
| * \param y The second \p complex. | |
| */ | |
| template <typename T0, typename T1> | |
| __host__ __device__ | |
| complex<typename detail::promoted_numerical_type<T0, T1>::type> | |
| operator+(const complex<T0>& x, const complex<T1>& y); | |
| /*! Adds a scalar to a \p complex number. | |
| * | |
| * The value type of the \p complex should be compatible with the scalar and | |
| * the type of the returned \p complex is the promoted type of the two arguments. | |
| * | |
| * \param x The \p complex. | |
| * \param y The scalar. | |
| */ | |
| template <typename T0, typename T1> | |
| __host__ __device__ | |
| complex<typename detail::promoted_numerical_type<T0, T1>::type> | |
| operator+(const complex<T0>& x, const T1& y); | |
| /*! Adds a \p complex number to a scalar. | |
| * | |
| * The value type of the \p complex should be compatible with the scalar and | |
| * the type of the returned \p complex is the promoted type of the two arguments. | |
| * | |
| * \param x The scalar. | |
| * \param y The \p complex. | |
| */ | |
| template <typename T0, typename T1> | |
| __host__ __device__ | |
| complex<typename detail::promoted_numerical_type<T0, T1>::type> | |
| operator+(const T0& x, const complex<T1>& y); | |
| /*! Subtracts two \p complex numbers. | |
| * | |
| * The value types of the two \p complex types should be compatible and the | |
| * type of the returned \p complex is the promoted type of the two arguments. | |
| * | |
| * \param x The first \p complex (minuend). | |
| * \param y The second \p complex (subtrahend). | |
| */ | |
| template <typename T0, typename T1> | |
| __host__ __device__ | |
| complex<typename detail::promoted_numerical_type<T0, T1>::type> | |
| operator-(const complex<T0>& x, const complex<T1>& y); | |
| /*! Subtracts a scalar from a \p complex number. | |
| * | |
| * The value type of the \p complex should be compatible with the scalar and | |
| * the type of the returned \p complex is the promoted type of the two arguments. | |
| * | |
| * \param x The \p complex (minuend). | |
| * \param y The scalar (subtrahend). | |
| */ | |
| template <typename T0, typename T1> | |
| __host__ __device__ | |
| complex<typename detail::promoted_numerical_type<T0, T1>::type> | |
| operator-(const complex<T0>& x, const T1& y); | |
| /*! Subtracts a \p complex number from a scalar. | |
| * | |
| * The value type of the \p complex should be compatible with the scalar and | |
| * the type of the returned \p complex is the promoted type of the two arguments. | |
| * | |
| * \param x The scalar (minuend). | |
| * \param y The \p complex (subtrahend). | |
| */ | |
| template <typename T0, typename T1> | |
| __host__ __device__ | |
| complex<typename detail::promoted_numerical_type<T0, T1>::type> | |
| operator-(const T0& x, const complex<T1>& y); | |
| /*! Multiplies two \p complex numbers. | |
| * | |
| * The value types of the two \p complex types should be compatible and the | |
| * type of the returned \p complex is the promoted type of the two arguments. | |
| * | |
| * \param x The first \p complex. | |
| * \param y The second \p complex. | |
| */ | |
| template <typename T0, typename T1> | |
| __host__ __device__ | |
| complex<typename detail::promoted_numerical_type<T0, T1>::type> | |
| operator*(const complex<T0>& x, const complex<T1>& y); | |
| /*! Multiplies a \p complex number by a scalar. | |
| * | |
| * \param x The \p complex. | |
| * \param y The scalar. | |
| */ | |
| template <typename T0, typename T1> | |
| __host__ __device__ | |
| complex<typename detail::promoted_numerical_type<T0, T1>::type> | |
| operator*(const complex<T0>& x, const T1& y); | |
| /*! Multiplies a scalar by a \p complex number. | |
| * | |
| * The value type of the \p complex should be compatible with the scalar and | |
| * the type of the returned \p complex is the promoted type of the two arguments. | |
| * | |
| * \param x The scalar. | |
| * \param y The \p complex. | |
| */ | |
| template <typename T0, typename T1> | |
| __host__ __device__ | |
| complex<typename detail::promoted_numerical_type<T0, T1>::type> | |
| operator*(const T0& x, const complex<T1>& y); | |
| /*! Divides two \p complex numbers. | |
| * | |
| * The value types of the two \p complex types should be compatible and the | |
| * type of the returned \p complex is the promoted type of the two arguments. | |
| * | |
| * \param x The numerator (dividend). | |
| * \param y The denomimator (divisor). | |
| */ | |
| template <typename T0, typename T1> | |
| __host__ __device__ | |
| complex<typename detail::promoted_numerical_type<T0, T1>::type> | |
| operator/(const complex<T0>& x, const complex<T1>& y); | |
| /*! Divides a \p complex number by a scalar. | |
| * | |
| * The value type of the \p complex should be compatible with the scalar and | |
| * the type of the returned \p complex is the promoted type of the two arguments. | |
| * | |
| * \param x The complex numerator (dividend). | |
| * \param y The scalar denomimator (divisor). | |
| */ | |
| template <typename T0, typename T1> | |
| __host__ __device__ | |
| complex<typename detail::promoted_numerical_type<T0, T1>::type> | |
| operator/(const complex<T0>& x, const T1& y); | |
| /*! Divides a scalar by a \p complex number. | |
| * | |
| * The value type of the \p complex should be compatible with the scalar and | |
| * the type of the returned \p complex is the promoted type of the two arguments. | |
| * | |
| * \param x The scalar numerator (dividend). | |
| * \param y The complex denomimator (divisor). | |
| */ | |
| template <typename T0, typename T1> | |
| __host__ __device__ | |
| complex<typename detail::promoted_numerical_type<T0, T1>::type> | |
| operator/(const T0& x, const complex<T1>& y); | |
| /* --- Unary Arithmetic operators --- */ | |
| /*! Unary plus, returns its \p complex argument. | |
| * | |
| * \param y The \p complex argument. | |
| */ | |
| template <typename T> | |
| __host__ __device__ | |
| complex<T> | |
| operator+(const complex<T>& y); | |
| /*! Unary minus, returns the additive inverse (negation) of its \p complex | |
| * argument. | |
| * | |
| * \param y The \p complex argument. | |
| */ | |
| template <typename T> | |
| __host__ __device__ | |
| complex<T> | |
| operator-(const complex<T>& y); | |
| /* --- Exponential Functions --- */ | |
| /*! Returns the complex exponential of a \p complex number. | |
| * | |
| * \param z The \p complex argument. | |
| */ | |
| template <typename T> | |
| __host__ __device__ | |
| complex<T> exp(const complex<T>& z); | |
| /*! Returns the complex natural logarithm of a \p complex number. | |
| * | |
| * \param z The \p complex argument. | |
| */ | |
| template <typename T> | |
| __host__ __device__ | |
| complex<T> log(const complex<T>& z); | |
| /*! Returns the complex base 10 logarithm of a \p complex number. | |
| * | |
| * \param z The \p complex argument. | |
| */ | |
| template <typename T> | |
| __host__ __device__ | |
| complex<T> log10(const complex<T>& z); | |
| /* --- Power Functions --- */ | |
| /*! Returns a \p complex number raised to another. | |
| * | |
| * The value types of the two \p complex types should be compatible and the | |
| * type of the returned \p complex is the promoted type of the two arguments. | |
| * | |
| * \param x The base. | |
| * \param y The exponent. | |
| */ | |
| template <typename T0, typename T1> | |
| __host__ __device__ | |
| complex<typename detail::promoted_numerical_type<T0, T1>::type> | |
| pow(const complex<T0>& x, const complex<T1>& y); | |
| /*! Returns a \p complex number raised to a scalar. | |
| * | |
| * The value type of the \p complex should be compatible with the scalar and | |
| * the type of the returned \p complex is the promoted type of the two arguments. | |
| * | |
| * \param x The base. | |
| * \param y The exponent. | |
| */ | |
| template <typename T0, typename T1> | |
| __host__ __device__ | |
| complex<typename detail::promoted_numerical_type<T0, T1>::type> | |
| pow(const complex<T0>& x, const T1& y); | |
| /*! Returns a scalar raised to a \p complex number. | |
| * | |
| * The value type of the \p complex should be compatible with the scalar and | |
| * the type of the returned \p complex is the promoted type of the two arguments. | |
| * | |
| * \param x The base. | |
| * \param y The exponent. | |
| */ | |
| template <typename T0, typename T1> | |
| __host__ __device__ | |
| complex<typename detail::promoted_numerical_type<T0, T1>::type> | |
| pow(const T0& x, const complex<T1>& y); | |
| /*! Returns the complex square root of a \p complex number. | |
| * | |
| * \param z The \p complex argument. | |
| */ | |
| template <typename T> | |
| __host__ __device__ | |
| complex<T> sqrt(const complex<T>& z); | |
| /* --- Trigonometric Functions --- */ | |
| /*! Returns the complex cosine of a \p complex number. | |
| * | |
| * \param z The \p complex argument. | |
| */ | |
| template <typename T> | |
| __host__ __device__ | |
| complex<T> cos(const complex<T>& z); | |
| /*! Returns the complex sine of a \p complex number. | |
| * | |
| * \param z The \p complex argument. | |
| */ | |
| template <typename T> | |
| __host__ __device__ | |
| complex<T> sin(const complex<T>& z); | |
| /*! Returns the complex tangent of a \p complex number. | |
| * | |
| * \param z The \p complex argument. | |
| */ | |
| template <typename T> | |
| __host__ __device__ | |
| complex<T> tan(const complex<T>& z); | |
| /* --- Hyperbolic Functions --- */ | |
| /*! Returns the complex hyperbolic cosine of a \p complex number. | |
| * | |
| * \param z The \p complex argument. | |
| */ | |
| template <typename T> | |
| __host__ __device__ | |
| complex<T> cosh(const complex<T>& z); | |
| /*! Returns the complex hyperbolic sine of a \p complex number. | |
| * | |
| * \param z The \p complex argument. | |
| */ | |
| template <typename T> | |
| __host__ __device__ | |
| complex<T> sinh(const complex<T>& z); | |
| /*! Returns the complex hyperbolic tangent of a \p complex number. | |
| * | |
| * \param z The \p complex argument. | |
| */ | |
| template <typename T> | |
| __host__ __device__ | |
| complex<T> tanh(const complex<T>& z); | |
| /* --- Inverse Trigonometric Functions --- */ | |
| /*! Returns the complex arc cosine of a \p complex number. | |
| * | |
| * The range of the real part of the result is [0, Pi] and | |
| * the range of the imaginary part is [-inf, +inf] | |
| * | |
| * \param z The \p complex argument. | |
| */ | |
| template <typename T> | |
| __host__ __device__ | |
| complex<T> acos(const complex<T>& z); | |
| /*! Returns the complex arc sine of a \p complex number. | |
| * | |
| * The range of the real part of the result is [-Pi/2, Pi/2] and | |
| * the range of the imaginary part is [-inf, +inf] | |
| * | |
| * \param z The \p complex argument. | |
| */ | |
| template <typename T> | |
| __host__ __device__ | |
| complex<T> asin(const complex<T>& z); | |
| /*! Returns the complex arc tangent of a \p complex number. | |
| * | |
| * The range of the real part of the result is [-Pi/2, Pi/2] and | |
| * the range of the imaginary part is [-inf, +inf] | |
| * | |
| * \param z The \p complex argument. | |
| */ | |
| template <typename T> | |
| __host__ __device__ | |
| complex<T> atan(const complex<T>& z); | |
| /* --- Inverse Hyperbolic Functions --- */ | |
| /*! Returns the complex inverse hyperbolic cosine of a \p complex number. | |
| * | |
| * The range of the real part of the result is [0, +inf] and | |
| * the range of the imaginary part is [-Pi, Pi] | |
| * | |
| * \param z The \p complex argument. | |
| */ | |
| template <typename T> | |
| __host__ __device__ | |
| complex<T> acosh(const complex<T>& z); | |
| /*! Returns the complex inverse hyperbolic sine of a \p complex number. | |
| * | |
| * The range of the real part of the result is [-inf, +inf] and | |
| * the range of the imaginary part is [-Pi/2, Pi/2] | |
| * | |
| * \param z The \p complex argument. | |
| */ | |
| template <typename T> | |
| __host__ __device__ | |
| complex<T> asinh(const complex<T>& z); | |
| /*! Returns the complex inverse hyperbolic tangent of a \p complex number. | |
| * | |
| * The range of the real part of the result is [-inf, +inf] and | |
| * the range of the imaginary part is [-Pi/2, Pi/2] | |
| * | |
| * \param z The \p complex argument. | |
| */ | |
| template <typename T> | |
| __host__ __device__ | |
| complex<T> atanh(const complex<T>& z); | |
| /* --- Stream Operators --- */ | |
| /*! Writes to an output stream a \p complex number in the form (real, imaginary). | |
| * | |
| * \param os The output stream. | |
| * \param z The \p complex number to output. | |
| */ | |
| template <typename T, typename CharT, typename Traits> | |
| std::basic_ostream<CharT, Traits>& | |
| operator<<(std::basic_ostream<CharT, Traits>& os, const complex<T>& z); | |
| /*! Reads a \p complex number from an input stream. | |
| * | |
| * The recognized formats are: | |
| * - real | |
| * - (real) | |
| * - (real, imaginary) | |
| * | |
| * The values read must be convertible to the \p complex's \c value_type | |
| * | |
| * \param is The input stream. | |
| * \param z The \p complex number to set. | |
| */ | |
| template <typename T, typename CharT, typename Traits> | |
| __host__ | |
| std::basic_istream<CharT, Traits>& | |
| operator>>(std::basic_istream<CharT, Traits>& is, complex<T>& z); | |
| /* --- Equality Operators --- */ | |
| /*! Returns true if two \p complex numbers are equal and false otherwise. | |
| * | |
| * \param x The first \p complex. | |
| * \param y The second \p complex. | |
| */ | |
| template <typename T0, typename T1> | |
| __host__ __device__ | |
| bool operator==(const complex<T0>& x, const complex<T1>& y); | |
| /*! Returns true if two \p complex numbers are equal and false otherwise. | |
| * | |
| * \param x The first \p complex. | |
| * \param y The second \p complex. | |
| */ | |
| template <typename T0, typename T1> | |
| __host__ THRUST_STD_COMPLEX_DEVICE | |
| bool operator==(const complex<T0>& x, const std::complex<T1>& y); | |
| /*! Returns true if two \p complex numbers are equal and false otherwise. | |
| * | |
| * \param x The first \p complex. | |
| * \param y The second \p complex. | |
| */ | |
| template <typename T0, typename T1> | |
| __host__ THRUST_STD_COMPLEX_DEVICE | |
| bool operator==(const std::complex<T0>& x, const complex<T1>& y); | |
| /*! Returns true if the imaginary part of the \p complex number is zero and | |
| * the real part is equal to the scalar. Returns false otherwise. | |
| * | |
| * \param x The scalar. | |
| * \param y The \p complex. | |
| */ | |
| template <typename T0, typename T1> | |
| __host__ __device__ | |
| bool operator==(const T0& x, const complex<T1>& y); | |
| /*! Returns true if the imaginary part of the \p complex number is zero and | |
| * the real part is equal to the scalar. Returns false otherwise. | |
| * | |
| * \param x The \p complex. | |
| * \param y The scalar. | |
| */ | |
| template <typename T0, typename T1> | |
| __host__ __device__ | |
| bool operator==(const complex<T0>& x, const T1& y); | |
| /*! Returns true if two \p complex numbers are different and false otherwise. | |
| * | |
| * \param x The first \p complex. | |
| * \param y The second \p complex. | |
| */ | |
| template <typename T0, typename T1> | |
| __host__ __device__ | |
| bool operator!=(const complex<T0>& x, const complex<T1>& y); | |
| /*! Returns true if two \p complex numbers are different and false otherwise. | |
| * | |
| * \param x The first \p complex. | |
| * \param y The second \p complex. | |
| */ | |
| template <typename T0, typename T1> | |
| __host__ THRUST_STD_COMPLEX_DEVICE | |
| bool operator!=(const complex<T0>& x, const std::complex<T1>& y); | |
| /*! Returns true if two \p complex numbers are different and false otherwise. | |
| * | |
| * \param x The first \p complex. | |
| * \param y The second \p complex. | |
| */ | |
| template <typename T0, typename T1> | |
| __host__ THRUST_STD_COMPLEX_DEVICE | |
| bool operator!=(const std::complex<T0>& x, const complex<T1>& y); | |
| /*! Returns true if the imaginary part of the \p complex number is not zero or | |
| * the real part is different from the scalar. Returns false otherwise. | |
| * | |
| * \param x The scalar. | |
| * \param y The \p complex. | |
| */ | |
| template <typename T0, typename T1> | |
| __host__ __device__ | |
| bool operator!=(const T0& x, const complex<T1>& y); | |
| /*! Returns true if the imaginary part of the \p complex number is not zero or | |
| * the real part is different from the scalar. Returns false otherwise. | |
| * | |
| * \param x The \p complex. | |
| * \param y The scalar. | |
| */ | |
| template <typename T0, typename T1> | |
| __host__ __device__ | |
| bool operator!=(const complex<T0>& x, const T1& y); | |
| THRUST_NAMESPACE_END | |
| /*! \} // complex_numbers | |
| */ | |
| /*! \} // numerics | |
| */ | |