diff --git "a/miniCUDA124/include/crt/math_functions.h" "b/miniCUDA124/include/crt/math_functions.h"
new file mode 100644--- /dev/null
+++ "b/miniCUDA124/include/crt/math_functions.h"
@@ -0,0 +1,12208 @@
+/*
+ * Copyright 1993-2023 NVIDIA Corporation. All rights reserved.
+ *
+ * NOTICE TO LICENSEE:
+ *
+ * This source code and/or documentation ("Licensed Deliverables") are
+ * subject to NVIDIA intellectual property rights under U.S. and
+ * international Copyright laws.
+ *
+ * These Licensed Deliverables contained herein is PROPRIETARY and
+ * CONFIDENTIAL to NVIDIA and is being provided under the terms and
+ * conditions of a form of NVIDIA software license agreement by and
+ * between NVIDIA and Licensee ("License Agreement") or electronically
+ * accepted by Licensee. Notwithstanding any terms or conditions to
+ * the contrary in the License Agreement, reproduction or disclosure
+ * of the Licensed Deliverables to any third party without the express
+ * written consent of NVIDIA is prohibited.
+ *
+ * NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
+ * LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
+ * SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
+ * PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
+ * NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
+ * DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
+ * NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
+ * NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
+ * LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
+ * SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
+ * DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
+ * WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
+ * ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
+ * OF THESE LICENSED DELIVERABLES.
+ *
+ * U.S. Government End Users. These Licensed Deliverables are a
+ * "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
+ * 1995), consisting of "commercial computer software" and "commercial
+ * computer software documentation" as such terms are used in 48
+ * C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
+ * only as a commercial end item. Consistent with 48 C.F.R.12.212 and
+ * 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
+ * U.S. Government End Users acquire the Licensed Deliverables with
+ * only those rights set forth herein.
+ *
+ * Any use of the Licensed Deliverables in individual and commercial
+ * software must include, in the user documentation and internal
+ * comments to the code, the above Disclaimer and U.S. Government End
+ * Users Notice.
+ */
+
+#if !defined(__CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS__)
+#if defined(_MSC_VER)
+#pragma message("crt/math_functions.h is an internal header file and must not be used directly. Please use cuda_runtime_api.h or cuda_runtime.h instead.")
+#else
+#warning "crt/math_functions.h is an internal header file and must not be used directly. Please use cuda_runtime_api.h or cuda_runtime.h instead."
+#endif
+#define __CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS__
+#define __UNDEF_CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS_MATH_FUNCTIONS_H__
+#endif
+
+#if !defined(__MATH_FUNCTIONS_H__)
+#define __MATH_FUNCTIONS_H__
+
+#if defined(__QNX__) && (__GNUC__ >= 5) && defined(__CUDACC__)
+#if __has_include(<__config>)
+#include <__config>
+#endif
+#endif
+
+/**
+ * \defgroup CUDA_MATH Mathematical Functions
+ *
+ * CUDA mathematical functions are always available in device code.
+ *
+ * Host implementations of the common mathematical functions are mapped
+ * in a platform-specific way to standard math library functions, provided
+ * by the host compiler and respective host libm where available.
+ * Some functions, not available with the host compilers, are implemented
+ * in crt/math_functions.hpp header file.
+ * For example, see ::erfinv(). Other, less common functions,
+ * like ::rhypot(), ::cyl_bessel_i0() are only available in device code.
+ *
+ * Note that many floating-point and integer functions names are
+ * overloaded for different argument types. For example, the ::log()
+ * function has the following prototypes:
+ * \code
+ * double log(double x);
+ * float log(float x);
+ * float logf(float x);
+ * \endcode
+ *
+ * Note also that due to implementation constraints, certain math functions
+ * from std:: namespace may be callable in device code even via explicitly
+ * qualified std:: names. However, such use is discouraged, since this
+ * capability is unsupported, unverified, undocumented, not portable, and
+ * may change without notice.
+ */
+
+/*******************************************************************************
+* *
+* *
+* *
+*******************************************************************************/
+
+#if defined(__cplusplus) && defined(__CUDACC__)
+
+/*******************************************************************************
+* *
+* *
+* *
+*******************************************************************************/
+
+#include "builtin_types.h"
+#include "host_defines.h"
+
+//NOTE: For NVRTC, these declarations have been moved into the compiler (to reduce compile time)
+#define EXCLUDE_FROM_RTC
+
+/*******************************************************************************
+* *
+* *
+* *
+*******************************************************************************/
+
+extern "C"
+{
+
+/* Define math function DOXYGEN toplevel groups, functions will
+ be added to these groups later.
+*/
+/**
+ * \defgroup CUDA_MATH_SINGLE Single Precision Mathematical Functions
+ * This section describes single precision mathematical functions.
+ * To use these functions you do not need to include any additional
+ * header files in your program.
+ */
+
+/**
+ * \defgroup CUDA_MATH_DOUBLE Double Precision Mathematical Functions
+ * This section describes double precision mathematical functions.
+ * To use these functions you do not need to include any additional
+ * header files in your program.
+ */
+
+/**
+ * \defgroup CUDA_MATH_INT Integer Mathematical Functions
+ * This section describes integer mathematical functions.
+ * To use these functions you do not need to include any additional
+ * header files in your program.
+ */
+
+/**
+ * \defgroup CUDA_MATH_INTRINSIC_SINGLE Single Precision Intrinsics
+ * This section describes single precision intrinsic functions that are
+ * only supported in device code.
+ * To use these functions you do not need to include any additional
+ * header files in your program.
+ */
+
+/**
+ * \defgroup CUDA_MATH_INTRINSIC_DOUBLE Double Precision Intrinsics
+ * This section describes double precision intrinsic functions that are
+ * only supported in device code.
+ * To use these functions you do not need to include any additional
+ * header files in your program.
+ */
+
+/**
+ * \defgroup CUDA_MATH_INTRINSIC_INT Integer Intrinsics
+ * This section describes integer intrinsic functions that are
+ * only supported in device code.
+ * To use these functions you do not need to include any additional
+ * header files in your program.
+ */
+
+/**
+ * \defgroup CUDA_MATH_INTRINSIC_CAST Type Casting Intrinsics
+ * This section describes type casting intrinsic functions that are
+ * only supported in device code.
+ * To use these functions you do not need to include any additional
+ * header files in your program.
+ */
+
+/**
+ *
+ * \defgroup CUDA_MATH_INTRINSIC_SIMD SIMD Intrinsics
+ * This section describes SIMD intrinsic functions that are
+ * only supported in device code.
+ * To use these functions you do not need to include any additional
+ * header files in your program.
+ */
+
+
+/**
+ * @}
+ */
+#define __DEVICE_FUNCTIONS_DECL__ __host__ __device__
+#if !defined(_MSC_VER)
+#define __CUDA_MATH_CRTIMP
+#else
+#if _MSC_VER < 1900
+#define __CUDA_MATH_CRTIMP _CRTIMP
+#else
+#define __CUDA_MATH_CRTIMP _ACRTIMP
+#endif
+#endif
+
+#if defined(__ANDROID__) && (__ANDROID_API__ <= 20) && !defined(__aarch64__)
+static __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __cudart_builtin__ int abs(int);
+static __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __cudart_builtin__ long int labs(long int);
+static __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __cudart_builtin__ long long int llabs(long long int);
+#else /* __ANDROID__ */
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+namespace std {
+#endif
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the absolute value of the input \p int argument.
+ *
+ * Calculate the absolute value of the input argument \p a.
+ *
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __cudart_builtin__ int __cdecl abs(int a) __THROW;
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the absolute value of the input \p long \p int argument.
+ *
+ * Calculate the absolute value of the input argument \p a.
+ *
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __cudart_builtin__ long int __cdecl labs(long int a) __THROW;
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the absolute value of the input \p long \p long \p int argument.
+ *
+ * Calculate the absolute value of the input argument \p a.
+ *
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __cudart_builtin__ long long int llabs(long long int a) __THROW;
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+}
+#endif
+#endif /* __ANDROID__ */
+
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+/* put all math functions in std */
+namespace std {
+#endif
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the absolute value of the input argument.
+ *
+ * Calculate the absolute value of the input argument \p x.
+ *
+ * \return
+ * Returns the absolute value of the input argument.
+ * - fabs(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ * - fabs(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns +0.
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl fabs(double x) __THROW;
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the absolute value of its argument
+ *
+ * Calculate the absolute value of the input argument \p x.
+ *
+ * \return
+ * Returns the absolute value of its argument.
+ * - fabsf(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ * - fabsf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns +0.
+ * - fabsf(NaN) returns an unspecified NaN.
+ *
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float fabsf(float x) __THROW;
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+} /* std */
+#endif
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the minimum value of the input \p int arguments.
+ *
+ * Calculate the minimum value of the arguments \p a and \p b.
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int min(const int a, const int b);
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the minimum value of the input \p unsigned \p int arguments.
+ *
+ * Calculate the minimum value of the arguments \p a and \p b.
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ unsigned int umin(const unsigned int a, const unsigned int b);
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the minimum value of the input \p long \p long \p int arguments.
+ *
+ * Calculate the minimum value of the arguments \p a and \p b.
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ long long int llmin(const long long int a, const long long int b);
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the minimum value of the input \p unsigned \p long \p long \p int arguments.
+ *
+ * Calculate the minimum value of the arguments \p a and \p b.
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ unsigned long long int ullmin(const unsigned long long int a, const unsigned long long int b);
+
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+namespace std {
+#endif
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Determine the minimum numeric value of the arguments.
+ *
+ * Determines the minimum numeric value of the arguments \p x and \p y. Treats NaN
+ * arguments as missing data. If one argument is a NaN and the other is legitimate numeric
+ * value, the numeric value is chosen.
+ *
+ * \return
+ * Returns the minimum numeric value of the arguments \p x and \p y.
+ * - If both arguments are NaN, returns NaN.
+ * - If one argument is NaN, returns the numeric argument.
+ *
+ * \note_accuracy_single
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float fminf(float x, float y) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl fminf(float x, float y);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Determine the minimum numeric value of the arguments.
+ *
+ * Determines the minimum numeric value of the arguments \p x and \p y. Treats NaN
+ * arguments as missing data. If one argument is a NaN and the other is legitimate numeric
+ * value, the numeric value is chosen.
+ *
+ * \return
+ * Returns the minimum numeric value of the arguments \p x and \p y.
+ * - If both arguments are NaN, returns NaN.
+ * - If one argument is NaN, returns the numeric argument.
+ *
+ * \note_accuracy_double
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double fmin(double x, double y) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl fmin(double x, double y);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+} /* std */
+#endif
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the maximum value of the input \p int arguments.
+ *
+ * Calculate the maximum value of the arguments \p a and \p b.
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int max(const int a, const int b);
+
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the maximum value of the input \p unsigned \p int arguments.
+ *
+ * Calculate the maximum value of the arguments \p a and \p b.
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ unsigned int umax(const unsigned int a, const unsigned int b);
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the maximum value of the input \p long \p long \p int arguments.
+ *
+ * Calculate the maximum value of the arguments \p a and \p b.
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ long long int llmax(const long long int a, const long long int b);
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the maximum value of the input \p unsigned \p long \p long \p int arguments.
+ *
+ * Calculate the maximum value of the arguments \p a and \p b.
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ unsigned long long int ullmax(const unsigned long long int a, const unsigned long long int b);
+
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+namespace std {
+#endif
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Determine the maximum numeric value of the arguments.
+ *
+ * Determines the maximum numeric value of the arguments \p x and \p y. Treats NaN
+ * arguments as missing data. If one argument is a NaN and the other is legitimate numeric
+ * value, the numeric value is chosen.
+ *
+ * \return
+ * Returns the maximum numeric values of the arguments \p x and \p y.
+ * - If both arguments are NaN, returns NaN.
+ * - If one argument is NaN, returns the numeric argument.
+ *
+ * \note_accuracy_single
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float fmaxf(float x, float y) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl fmaxf(float x, float y);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Determine the maximum numeric value of the arguments.
+ *
+ * Determines the maximum numeric value of the arguments \p x and \p y. Treats NaN
+ * arguments as missing data. If one argument is a NaN and the other is legitimate numeric
+ * value, the numeric value is chosen.
+ *
+ * \return
+ * Returns the maximum numeric values of the arguments \p x and \p y.
+ * - If both arguments are NaN, returns NaN.
+ * - If one argument is NaN, returns the numeric argument.
+ *
+ * \note_accuracy_double
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double fmax(double, double) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl fmax(double, double);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the sine of the input argument.
+ *
+ * Calculate the sine of the input argument \p x (measured in radians).
+ *
+ * \return
+ * - sin(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - sin(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns NaN.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl sin(double x) __THROW;
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the cosine of the input argument.
+ *
+ * Calculate the cosine of the input argument \p x (measured in radians).
+ *
+ * \return
+ * - cos(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns 1.
+ * - cos(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns NaN.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl cos(double x) __THROW;
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+} /* std */
+#endif
+
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the sine and cosine of the first input argument.
+ *
+ * Calculate the sine and cosine of the first input argument \p x (measured
+ * in radians). The results for sine and cosine are written into the
+ * second argument, \p sptr, and, respectively, third argument, \p cptr.
+ *
+ * \return
+ * - none
+ *
+ * \see ::sin() and ::cos().
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ void sincos(double x, double *sptr, double *cptr) __THROW;
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the sine and cosine of the first input argument.
+ *
+ * Calculate the sine and cosine of the first input argument \p x (measured
+ * in radians). The results for sine and cosine are written into the second
+ * argument, \p sptr, and, respectively, third argument, \p cptr.
+ *
+ * \return
+ * - none
+ *
+ * \see ::sinf() and ::cosf().
+ * \note_accuracy_single
+ * \note_fastmath
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ void sincosf(float x, float *sptr, float *cptr) __THROW;
+
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+namespace std {
+#endif
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the tangent of the input argument.
+ *
+ * Calculate the tangent of the input argument \p x (measured in radians).
+ *
+ * \return
+ * - tan(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - tan(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns NaN.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl tan(double x) __THROW;
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the square root of the input argument.
+ *
+ * Calculate the nonnegative square root of \p x,
+ * \latexonly $\sqrt{x}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * x
+ *
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * Returns
+ * \latexonly $\sqrt{x}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * x
+ *
+ *
+ * \endxmlonly.
+ * - sqrt(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - sqrt(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ * - sqrt(\p x) returns NaN if \p x is less than 0.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl sqrt(double x) __THROW;
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+} /* std */
+#endif
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the reciprocal of the square root of the input argument.
+ *
+ * Calculate the reciprocal of the nonnegative square root of \p x,
+ * \latexonly $1/\sqrt{x}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * 1
+ *
+ * /
+ *
+ *
+ * x
+ *
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * Returns
+ * \latexonly $1/\sqrt{x}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * 1
+ *
+ * /
+ *
+ *
+ * x
+ *
+ *
+ * \endxmlonly.
+ * - rsqrt(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns +0.
+ * - rsqrt(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ * \endxmlonly.
+ * - rsqrt(\p x) returns NaN if \p x is less than 0.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double rsqrt(double x);
+
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the reciprocal of the square root of the input argument.
+ *
+ * Calculate the reciprocal of the nonnegative square root of \p x,
+ * \latexonly $1/\sqrt{x}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * 1
+ *
+ * /
+ *
+ *
+ * x
+ *
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * Returns
+ * \latexonly $1/\sqrt{x}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * 1
+ *
+ * /
+ *
+ *
+ * x
+ *
+ *
+ * \endxmlonly.
+ * - rsqrtf(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns +0.
+ * - rsqrtf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ * \endxmlonly.
+ * - rsqrtf(\p x) returns NaN if \p x is less than 0.
+ *
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float rsqrtf(float x);
+
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+namespace std {
+#endif
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the base 2 logarithm of the input argument.
+ *
+ * Calculate the base 2 logarithm of the input argument \p x.
+ *
+ * \return
+ * - log2(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ * \endxmlonly.
+ * - log2(1) returns +0.
+ * - log2(\p x) returns NaN for \p x < 0.
+ * - log2(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_double
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double log2(double x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl log2(double x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the base 2 exponential of the input argument.
+ *
+ * Calculate
+ * \latexonly $2^x$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * 2
+ * x
+ *
+ *
+ * \endxmlonly,
+ * the base 2 exponential of the input argument \p x.
+ *
+ * \return
+ * - exp2(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns 1.
+ * - exp2(
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * -
+ * ∞
+ *
+ * \endxmlonly
+ * ) returns +0.
+ * - exp2(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_double
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double exp2(double x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl exp2(double x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the base 2 exponential of the input argument.
+ *
+ * Calculate
+ * \latexonly $2^x$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * 2
+ * x
+ *
+ *
+ * \endxmlonly,
+ * the base 2 exponential of the input argument \p x.
+ *
+ * \return
+ * - exp2f(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns 1.
+ * - exp2f(
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * -
+ * ∞
+ *
+ * \endxmlonly
+ * ) returns +0.
+ * - exp2f(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_single
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float exp2f(float x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl exp2f(float x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+} /* std */
+#endif
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the base 10 exponential of the input argument.
+ *
+ * Calculate
+ * \latexonly $10^x$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * 10
+ * x
+ *
+ *
+ * \endxmlonly,
+ * the base 10 exponential of the input argument \p x.
+ *
+ * \return
+ * - exp10(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns 1.
+ * - exp10(
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * -
+ * ∞
+ *
+ * \endxmlonly
+ * ) returns +0.
+ * - exp10(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double exp10(double x) __THROW;
+
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the base 10 exponential of the input argument.
+ *
+ * Calculate
+ * \latexonly $10^x$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * 10
+ * x
+ *
+ *
+ * \endxmlonly,
+ * the base 10 exponential of the input argument \p x.
+ *
+ * \return
+ * - exp10f(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns 1.
+ * - exp10f(
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * -
+ * ∞
+ *
+ * \endxmlonly
+ * ) returns +0.
+ * - exp10f(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_single
+ * \note_fastmath
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float exp10f(float x) __THROW;
+
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+namespace std {
+#endif
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the base
+ * \latexonly $e$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * e
+ *
+ *
+ * \endxmlonly
+ * exponential of the input argument, minus 1.
+ *
+ * Calculate
+ * \latexonly $e^x$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * e
+ * x
+ *
+ *
+ * \endxmlonly
+ * -1, the base
+ * \latexonly $e$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * e
+ *
+ *
+ * \endxmlonly
+ * exponential of the input argument \p x, minus 1.
+ *
+ * \return
+ * - expm1(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly.
+ * - expm1(
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * -
+ * ∞
+ *
+ * \endxmlonly
+ * ) returns -1.
+ * - expm1(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_double
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double expm1(double x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl expm1(double x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the base
+ * \latexonly $e$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * e
+ *
+ *
+ * \endxmlonly
+ * exponential of the input argument, minus 1.
+ *
+ * Calculate
+ * \latexonly $e^x$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * e
+ * x
+ *
+ *
+ * \endxmlonly
+ * -1, the base
+ * \latexonly $e$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * e
+ *
+ *
+ * \endxmlonly
+ * exponential of the input argument \p x, minus 1.
+ *
+ * \return
+ * - expm1f(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly.
+ * - expm1f(
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * -
+ * ∞
+ *
+ * \endxmlonly
+ * ) returns -1.
+ * - expm1f(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_single
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float expm1f(float x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl expm1f(float x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the base 2 logarithm of the input argument.
+ *
+ * Calculate the base 2 logarithm of the input argument \p x.
+ *
+ * \return
+ * - log2f(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ * \endxmlonly.
+ * - log2f(1) returns +0.
+ * - log2f(\p x) returns NaN for \p x < 0.
+ * - log2f(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_single
+ * \note_fastmath
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float log2f(float x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl log2f(float x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the base 10 logarithm of the input argument.
+ *
+ * Calculate the base 10 logarithm of the input argument \p x.
+ *
+ * \return
+ * - log10(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ * \endxmlonly.
+ * - log10(1) returns +0.
+ * - log10(\p x) returns NaN for \p x < 0.
+ * - log10(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl log10(double x) __THROW;
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the base
+ * \latexonly $e$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * e
+ *
+ *
+ * \endxmlonly
+ * logarithm of the input argument.
+ *
+ * Calculate the base
+ * \latexonly $e$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * e
+ *
+ *
+ * \endxmlonly
+ * logarithm of the input argument \p x.
+ *
+ * \return
+ * - log(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ * \endxmlonly.
+ * - log(1) returns +0.
+ * - log(\p x) returns NaN for \p x < 0.
+ * - log(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl log(double x) __THROW;
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the value of
+ * \latexonly $\log_{e}(1+x)$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * log
+ *
+ * e
+ *
+ *
+ * (
+ * 1
+ * +
+ * x
+ * )
+ *
+ * \endxmlonly.
+ *
+ * Calculate the value of
+ * \latexonly $\log_{e}(1+x)$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * log
+ *
+ * e
+ *
+ *
+ * (
+ * 1
+ * +
+ * x
+ * )
+ *
+ * \endxmlonly
+ * of the input argument \p x.
+ *
+ * \return
+ * - log1p(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly.
+ * - log1p(-1) returns
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ * \endxmlonly.
+ * - log1p(\p x) returns NaN for \p x < -1.
+ * - log1p(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_double
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double log1p(double x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl log1p(double x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the value of
+ * \latexonly $\log_{e}(1+x)$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * log
+ *
+ * e
+ *
+ *
+ * (
+ * 1
+ * +
+ * x
+ * )
+ *
+ * \endxmlonly.
+ *
+ * Calculate the value of
+ * \latexonly $\log_{e}(1+x)$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * log
+ *
+ * e
+ *
+ *
+ * (
+ * 1
+ * +
+ * x
+ * )
+ *
+ * \endxmlonly
+ * of the input argument \p x.
+ *
+ * \return
+ * - log1pf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly.
+ * - log1pf(-1) returns
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ * \endxmlonly.
+ * - log1pf(\p x) returns NaN for \p x < -1.
+ * - log1pf(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_single
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float log1pf(float x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl log1pf(float x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the largest integer less than or equal to \p x.
+ *
+ * Calculates the largest integer value which is less than or equal to \p x.
+ *
+ * \return
+ * Returns
+ * \latexonly $\lfloor x \rfloor$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ⌊
+ * x
+ * ⌋
+ *
+ *
+ * \endxmlonly
+ * expressed as a floating-point number.
+ * - floor(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ * \endxmlonly.
+ * - floor(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl floor(double x) __THROW;
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the base
+ * \latexonly $e$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * e
+ *
+ *
+ * \endxmlonly
+ * exponential of the input argument.
+ *
+ * Calculate
+ * \latexonly $e^x$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * e
+ * x
+ *
+ *
+ * \endxmlonly,
+ * the base
+ * \latexonly $e$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * e
+ *
+ *
+ * \endxmlonly
+ * exponential of the input argument \p x.
+ *
+ * \return
+ * - exp(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns 1.
+ * - exp(
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * -
+ * ∞
+ *
+ * \endxmlonly
+ * ) returns +0.
+ * - exp(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl exp(double x) __THROW;
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the hyperbolic cosine of the input argument.
+ *
+ * Calculate the hyperbolic cosine of the input argument \p x.
+ *
+ * \return
+ * - cosh(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns 1.
+ * - cosh(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl cosh(double x) __THROW;
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the hyperbolic sine of the input argument.
+ *
+ * Calculate the hyperbolic sine of the input argument \p x.
+ *
+ * \return
+ * - sinh(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - sinh(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl sinh(double x) __THROW;
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the hyperbolic tangent of the input argument.
+ *
+ * Calculate the hyperbolic tangent of the input argument \p x.
+ *
+ * \return
+ * - tanh(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - tanh(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 1$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 1
+ *
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl tanh(double x) __THROW;
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the nonnegative inverse hyperbolic cosine of the input argument.
+ *
+ * Calculate the nonnegative inverse hyperbolic cosine of the input argument \p x.
+ *
+ * \return
+ * Result will be in the interval [0,
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ].
+ * - acosh(1) returns 0.
+ * - acosh(\p x) returns NaN for \p x in the interval [
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , 1).
+ * - acosh(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_double
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double acosh(double x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl acosh(double x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the nonnegative inverse hyperbolic cosine of the input argument.
+ *
+ * Calculate the nonnegative inverse hyperbolic cosine of the input argument \p x.
+ *
+ * \return
+ * Result will be in the interval [0,
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ].
+ * - acoshf(1) returns 0.
+ * - acoshf(\p x) returns NaN for \p x in the interval [
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , 1).
+ * - acoshf(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_single
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float acoshf(float x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl acoshf(float x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the inverse hyperbolic sine of the input argument.
+ *
+ * Calculate the inverse hyperbolic sine of the input argument \p x.
+ *
+ * \return
+ * - asinh(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - asinh(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_double
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double asinh(double x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl asinh(double x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the inverse hyperbolic sine of the input argument.
+ *
+ * Calculate the inverse hyperbolic sine of the input argument \p x.
+ *
+ * \return
+ * - asinhf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - asinhf(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_single
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float asinhf(float x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl asinhf(float x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the inverse hyperbolic tangent of the input argument.
+ *
+ * Calculate the inverse hyperbolic tangent of the input argument \p x.
+ *
+ * \return
+ * - atanh(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - atanh(
+ * \latexonly $\pm 1$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 1
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ * \endxmlonly.
+ * - atanh(\p x) returns NaN for \p x outside interval [-1, 1].
+ *
+ * \note_accuracy_double
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double atanh(double x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl atanh(double x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the inverse hyperbolic tangent of the input argument.
+ *
+ * Calculate the inverse hyperbolic tangent of the input argument \p x.
+ *
+ * \return
+ * - atanhf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - atanhf(
+ * \latexonly $\pm 1$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 1
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ * \endxmlonly.
+ * - atanhf(\p x) returns NaN for \p x outside interval [-1, 1].
+ *
+ * \note_accuracy_single
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float atanhf(float x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl atanhf(float x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the value of
+ * \latexonly $x\cdot 2^{exp}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * x
+ * ⋅
+ *
+ * 2
+ *
+ * e
+ * x
+ * p
+ *
+ *
+ *
+ * \endxmlonly.
+ *
+ * Calculate the value of
+ * \latexonly $x\cdot 2^{exp}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * x
+ * ⋅
+ *
+ * 2
+ *
+ * e
+ * x
+ * p
+ *
+ *
+ *
+ *
+ * \endxmlonly
+ * of the input arguments \p x and \p exp.
+ *
+ * \return
+ * - ldexp(\p x, \p exp) is equivalent to scalbn(\p x, \p exp).
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl ldexp(double x, int exp) __THROW;
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the value of
+ * \latexonly $x\cdot 2^{exp}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * x
+ * ⋅
+ *
+ * 2
+ *
+ * e
+ * x
+ * p
+ *
+ *
+ *
+ * \endxmlonly.
+ *
+ * Calculate the value of
+ * \latexonly $x\cdot 2^{exp}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * x
+ * ⋅
+ *
+ * 2
+ *
+ * e
+ * x
+ * p
+ *
+ *
+ *
+ *
+ * \endxmlonly
+ * of the input arguments \p x and \p exp.
+ *
+ * \return
+ * - ldexpf(\p x, \p exp) is equivalent to scalbnf(\p x, \p exp).
+ *
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float ldexpf(float x, int exp) __THROW;
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the floating-point representation of the exponent of the input argument.
+ *
+ * Calculate the floating-point representation of the exponent of the input argument \p x.
+ *
+ * \return
+ * - logb(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ *
+ * \endxmlonly.
+ * - logb(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_double
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double logb(double x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl logb(double x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the floating-point representation of the exponent of the input argument.
+ *
+ * Calculate the floating-point representation of the exponent of the input argument \p x.
+ *
+ * \return
+ * - logbf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ *
+ * \endxmlonly.
+ * - logbf(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_single
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float logbf(float x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl logbf(float x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Compute the unbiased integer exponent of the argument.
+ *
+ * Calculates the unbiased integer exponent of the input argument \p x.
+ *
+ * \return
+ * - If successful, returns the unbiased exponent of the argument.
+ * - ilogb(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns INT_MIN.
+ * - ilogb(NaN) returns INT_MIN.
+ * - ilogb(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns INT_MAX.
+ * - Note: above behavior does not take into account FP_ILOGB0 nor FP_ILOGBNAN.
+ *
+ * \note_accuracy_double
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int ilogb(double x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP int __cdecl ilogb(double x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Compute the unbiased integer exponent of the argument.
+ *
+ * Calculates the unbiased integer exponent of the input argument \p x.
+ *
+ * \return
+ * - If successful, returns the unbiased exponent of the argument.
+ * - ilogbf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns INT_MIN.
+ * - ilogbf(NaN) returns INT_MIN.
+ * - ilogbf(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns INT_MAX.
+ * - Note: above behavior does not take into account FP_ILOGB0 nor FP_ILOGBNAN.
+ *
+ * \note_accuracy_single
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int ilogbf(float x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP int __cdecl ilogbf(float x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Scale floating-point input by integer power of two.
+ *
+ * Scale \p x by
+ * \latexonly $2^n$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * 2
+ * n
+ *
+ *
+ *
+ * \endxmlonly
+ * by efficient manipulation of the floating-point
+ * exponent.
+ *
+ * \return
+ * Returns \p x *
+ * \latexonly $2^n$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * 2
+ * n
+ *
+ *
+ * \endxmlonly.
+ * - scalbn(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * , \p n) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - scalbn(\p x, 0) returns \p x.
+ * - scalbn(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p n) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ * \endxmlonly.
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double scalbn(double x, int n) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl scalbn(double x, int n);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Scale floating-point input by integer power of two.
+ *
+ * Scale \p x by
+ * \latexonly $2^n$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * 2
+ * n
+ *
+ *
+ *
+ * \endxmlonly
+ * by efficient manipulation of the floating-point
+ * exponent.
+ *
+ * \return
+ * Returns \p x *
+ * \latexonly $2^n$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * 2
+ * n
+ *
+ *
+ * \endxmlonly.
+ * - scalbnf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * , \p n) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - scalbnf(\p x, 0) returns \p x.
+ * - scalbnf(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p n) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ * \endxmlonly.
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float scalbnf(float x, int n) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl scalbnf(float x, int n);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Scale floating-point input by integer power of two.
+ *
+ * Scale \p x by
+ * \latexonly $2^n$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * 2
+ * n
+ *
+ *
+ *
+ * \endxmlonly
+ * by efficient manipulation of the floating-point
+ * exponent.
+ *
+ * \return
+ * Returns \p x *
+ * \latexonly $2^n$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * 2
+ * n
+ *
+ *
+ * \endxmlonly.
+ * - scalbln(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * , \p n) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - scalbln(\p x, 0) returns \p x.
+ * - scalbln(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p n) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ * \endxmlonly.
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double scalbln(double x, long int n) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl scalbln(double x, long int n);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Scale floating-point input by integer power of two.
+ *
+ * Scale \p x by
+ * \latexonly $2^n$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * 2
+ * n
+ *
+ *
+ *
+ * \endxmlonly
+ * by efficient manipulation of the floating-point
+ * exponent.
+ *
+ * \return
+ * Returns \p x *
+ * \latexonly $2^n$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * 2
+ * n
+ *
+ *
+ * \endxmlonly.
+ * - scalblnf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * , \p n) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - scalblnf(\p x, 0) returns \p x.
+ * - scalblnf(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p n) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ * \endxmlonly.
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float scalblnf(float x, long int n) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl scalblnf(float x, long int n);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Extract mantissa and exponent of a floating-point value
+ *
+ * Decompose the floating-point value \p x into a component \p m for the
+ * normalized fraction element and another term \p n for the exponent.
+ * The absolute value of \p m will be greater than or equal to 0.5 and
+ * less than 1.0 or it will be equal to 0;
+ * \latexonly $x = m\cdot 2^n$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * x
+ * =
+ * m
+ * ⋅
+ *
+ * 2
+ * n
+ *
+ *
+ * \endxmlonly.
+ * The integer exponent \p n will be stored in the location to which \p nptr points.
+ *
+ * \return
+ * Returns the fractional component \p m.
+ * - frexp(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * , \p nptr) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * and stores zero in the location pointed to by \p nptr.
+ * - frexp(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p nptr) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * and stores an unspecified value in the
+ * location to which \p nptr points.
+ * - frexp(NaN, \p y) returns a NaN and stores an unspecified value in the location to which \p nptr points.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl frexp(double x, int *nptr) __THROW;
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Extract mantissa and exponent of a floating-point value
+ *
+ * Decomposes the floating-point value \p x into a component \p m for the
+ * normalized fraction element and another term \p n for the exponent.
+ * The absolute value of \p m will be greater than or equal to 0.5 and
+ * less than 1.0 or it will be equal to 0;
+ * \latexonly $x = m\cdot 2^n$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * x
+ * =
+ * m
+ * ⋅
+ *
+ * 2
+ * n
+ *
+ *
+ * \endxmlonly.
+ * The integer exponent \p n will be stored in the location to which \p nptr points.
+ *
+ * \return
+ * Returns the fractional component \p m.
+ * - frexpf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * , \p nptr) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * and stores zero in the location pointed to by \p nptr.
+ * - frexpf(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p nptr) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * and stores an unspecified value in the
+ * location to which \p nptr points.
+ * - frexpf(NaN, \p y) returns a NaN and stores an unspecified value in the location to which \p nptr points.
+ *
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float frexpf(float x, int *nptr) __THROW;
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Round to nearest integer value in floating-point.
+ *
+ * Round \p x to the nearest integer value in floating-point format,
+ * with halfway cases rounded away from zero.
+ *
+ * \return
+ * Returns rounded integer value.
+ * - round(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - round(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_slow_round See ::rint().
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double round(double x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl round(double x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Round to nearest integer value in floating-point.
+ *
+ * Round \p x to the nearest integer value in floating-point format,
+ * with halfway cases rounded away from zero.
+ *
+ * \return
+ * Returns rounded integer value.
+ * - roundf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - roundf(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_slow_round See ::rintf().
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float roundf(float x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl roundf(float x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Round to nearest integer value.
+ *
+ * Round \p x to the nearest integer value, with halfway cases rounded
+ * away from zero. If the result is outside the range of the return type,
+ * the behavior is undefined.
+ *
+ * \return
+ * Returns rounded integer value.
+ *
+ * \note_slow_round See ::lrint().
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ long int lround(double x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP long int __cdecl lround(double x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Round to nearest integer value.
+ *
+ * Round \p x to the nearest integer value, with halfway cases rounded
+ * away from zero. If the result is outside the range of the return type,
+ * the behavior is undefined.
+ *
+ * \return
+ * Returns rounded integer value.
+ *
+ * \note_slow_round See ::lrintf().
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ long int lroundf(float x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP long int __cdecl lroundf(float x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Round to nearest integer value.
+ *
+ * Round \p x to the nearest integer value, with halfway cases rounded
+ * away from zero. If the result is outside the range of the return type,
+ * the behavior is undefined.
+ *
+ * \return
+ * Returns rounded integer value.
+ *
+ * \note_slow_round See ::llrint().
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ long long int llround(double x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP long long int __cdecl llround(double x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Round to nearest integer value.
+ *
+ * Round \p x to the nearest integer value, with halfway cases rounded
+ * away from zero. If the result is outside the range of the return type,
+ * the behavior is undefined.
+ *
+ * \return
+ * Returns rounded integer value.
+ *
+ * \note_slow_round See ::llrintf().
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ long long int llroundf(float x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP long long int __cdecl llroundf(float x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Round to nearest integer value in floating-point.
+ *
+ * Round \p x to the nearest integer value in floating-point format,
+ * with halfway cases rounded to the nearest even integer value.
+ *
+ * \return
+ * Returns rounded integer value.
+ * - rint(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - rint(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ * \endxmlonly.
+ */
+#if defined(__CUDA_ARCH__) || defined(__DOXYGEN_ONLY__)
+/*
+ * We don't generate the declaration of rint for host compilation.
+ * This is acaully a workaround to compile the boost header file when
+ * Clang 3.8 is used as the host compiler. The boost header file has
+ * the following example code:
+ * namespace NS { extern "C" { double rint(double); }
+ * }
+ *
+ * After preprocessing, we get something like below:
+ *
+ * extern "C" { double rint(double x) throw(); }
+ * # 30 "/usr/include/math.h" 3
+ * extern "C" { double rint(double x) throw(); }
+ * namespace NS { extern "C" { double rint(double); } }
+ *
+ * Although GCC accepts this output, Clang 3.8 doesn't.
+ * Furthermore, we cannot change the boost header file by adding "throw()"
+ * to rint's declaration there. So, as a workaround, we just don't generate
+ * our re-declaration for the host compilation.
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double rint(double x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl rint(double x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+#endif /* __CUDA_ARCH__ || __DOXYGEN_ONLY__ */
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Round input to nearest integer value in floating-point.
+ *
+ * Round \p x to the nearest integer value in floating-point format,
+ * with halfway cases rounded to the nearest even integer value.
+ *
+ * \return
+ * Returns rounded integer value.
+ * - rintf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - rintf(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ * \endxmlonly.
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float rintf(float x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl rintf(float x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Round input to nearest integer value.
+ *
+ * Round \p x to the nearest integer value,
+ * with halfway cases rounded to the nearest even integer value.
+ * If the result is outside the range of the return type,
+ * the behavior is undefined.
+ *
+ * \return
+ * Returns rounded integer value.
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ long int lrint(double x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP long int __cdecl lrint(double x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Round input to nearest integer value.
+ *
+ * Round \p x to the nearest integer value,
+ * with halfway cases rounded to the nearest even integer value.
+ * If the result is outside the range of the return type,
+ * the behavior is undefined.
+ *
+ * \return
+ * Returns rounded integer value.
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ long int lrintf(float x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP long int __cdecl lrintf(float x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Round input to nearest integer value.
+ *
+ * Round \p x to the nearest integer value,
+ * with halfway cases rounded to the nearest even integer value.
+ * If the result is outside the range of the return type,
+ * the behavior is undefined.
+ *
+ * \return
+ * Returns rounded integer value.
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ long long int llrint(double x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP long long int __cdecl llrint(double x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Round input to nearest integer value.
+ *
+ * Round \p x to the nearest integer value,
+ * with halfway cases rounded to the nearest even integer value.
+ * If the result is outside the range of the return type,
+ * the behavior is undefined.
+ *
+ * \return
+ * Returns rounded integer value.
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ long long int llrintf(float x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP long long int __cdecl llrintf(float x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Round the input argument to the nearest integer.
+ *
+ * Round argument \p x to an integer value in double precision floating-point format. Uses round to nearest rounding, with ties rounding to even.
+ *
+ * \return
+ * - nearbyint(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - nearbyint(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_double
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double nearbyint(double x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl nearbyint(double x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Round the input argument to the nearest integer.
+ *
+ * Round argument \p x to an integer value in single precision floating-point format. Uses round to nearest rounding, with ties rounding to even.
+ *
+ * \return
+ * - nearbyintf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - nearbyintf(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_single
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float nearbyintf(float x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl nearbyintf(float x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate ceiling of the input argument.
+ *
+ * Compute the smallest integer value not less than \p x.
+ *
+ * \return
+ * Returns
+ * \latexonly $\lceil x \rceil$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ⌈
+ * x
+ * ⌉
+ *
+ *
+ * \endxmlonly
+ expressed as a floating-point number.
+ * - ceil(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - ceil(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ * \endxmlonly.
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl ceil(double x) __THROW;
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Truncate input argument to the integral part.
+ *
+ * Round \p x to the nearest integer value that does not exceed \p x in
+ * magnitude.
+ *
+ * \return
+ * Returns truncated integer value.
+ * - trunc(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - trunc(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ * \endxmlonly.
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double trunc(double x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl trunc(double x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Truncate input argument to the integral part.
+ *
+ * Round \p x to the nearest integer value that does not exceed \p x in
+ * magnitude.
+ *
+ * \return
+ * Returns truncated integer value.
+ * - truncf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - truncf(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ * \endxmlonly.
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float truncf(float x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl truncf(float x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Compute the positive difference between \p x and \p y.
+ *
+ * Compute the positive difference between \p x and \p y. The positive
+ * difference is \p x - \p y when \p x > \p y and +0 otherwise.
+ *
+ * \return
+ * Returns the positive difference between \p x and \p y.
+ * - fdim(\p x, \p y) returns \p x - \p y if \p x > \p y.
+ * - fdim(\p x, \p y) returns +0 if \p x
+ * \latexonly $\leq$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ≤
+ *
+ *
+ * \endxmlonly \p y.
+ * \note_accuracy_single
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double fdim(double x, double y) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl fdim(double x, double y);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Compute the positive difference between \p x and \p y.
+ *
+ * Compute the positive difference between \p x and \p y. The positive
+ * difference is \p x - \p y when \p x > \p y and +0 otherwise.
+ *
+ * \return
+ * Returns the positive difference between \p x and \p y.
+ * - fdimf(\p x, \p y) returns \p x - \p y if \p x > \p y.
+ * - fdimf(\p x, \p y) returns +0 if \p x
+ * \latexonly $\leq$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ≤
+ *
+ *
+ * \endxmlonly \p y.
+ * \note_accuracy_single
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float fdimf(float x, float y) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl fdimf(float x, float y);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the arc tangent of the ratio of first and second input arguments.
+ *
+ * Calculate the principal value of the arc tangent of the ratio of first
+ * and second input arguments \p y / \p x. The quadrant of the result is
+ * determined by the signs of inputs \p y and \p x.
+ *
+ * \return
+ * Result will be in radians, in the interval [-
+ * \latexonly $\pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * π
+ *
+ *
+ * \endxmlonly
+ * , +
+ * \latexonly $\pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * π
+ *
+ *
+ * \endxmlonly
+ * ].
+ * - atan2(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * , -0) returns
+ * \latexonly $\pm \pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * π
+ *
+ *
+ * \endxmlonly.
+ * - atan2(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * , +0) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly.
+ * - atan2(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * , \p x) returns
+ * \latexonly $\pm \pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * π
+ *
+ *
+ * \endxmlonly
+ * for \p x < 0.
+ * - atan2(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * , \p x) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * for \p x > 0.
+ * - atan2(\p y,
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $-\pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * -
+ * π
+ *
+ *
+ * \endxmlonly
+ * /2 for \p y < 0.
+ * - atan2(\p y,
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * π
+ *
+ *
+ * \endxmlonly
+ * /2 for \p y > 0.
+ * - atan2(
+ * \latexonly $\pm y$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * y
+ *
+ *
+ * \endxmlonly
+ * ,
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * -
+ * ∞
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * π
+ *
+ *
+ * \endxmlonly
+ * for finite \p y > 0.
+ * - atan2(
+ * \latexonly $\pm y$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * y
+ *
+ *
+ * \endxmlonly
+ * ,
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * for finite \p y > 0.
+ * - atan2(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p x) returns
+ * \latexonly $\pm \pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * π
+ *
+ *
+ * \endxmlonly
+ * /2 for finite \p x.
+ * - atan2(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ,
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * -
+ * ∞
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 3\pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 3
+ * π
+ *
+ *
+ * \endxmlonly
+ * /4.
+ * - atan2(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ,
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * π
+ *
+ *
+ * \endxmlonly
+ * /4.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl atan2(double y, double x) __THROW;
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the arc tangent of the input argument.
+ *
+ * Calculate the principal value of the arc tangent of the input argument \p x.
+ *
+ * \return
+ * Result will be in radians, in the interval [-
+ * \latexonly $\pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * π
+ *
+ *
+ * \endxmlonly
+ * /2, +
+ * \latexonly $\pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * π
+ *
+ *
+ * \endxmlonly
+ * /2].
+ * - atan(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly.
+ * - atan(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * π
+ *
+ *
+ * \endxmlonly
+ * /2.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl atan(double x) __THROW;
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the arc cosine of the input argument.
+ *
+ * Calculate the principal value of the arc cosine of the input argument \p x.
+ *
+ * \return
+ * Result will be in radians, in the interval [0,
+ * \latexonly $\pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * π
+ *
+ *
+ * \endxmlonly
+ * ] for \p x inside [-1, +1].
+ * - acos(1) returns +0.
+ * - acos(\p x) returns NaN for \p x outside [-1, +1].
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl acos(double x) __THROW;
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the arc sine of the input argument.
+ *
+ * Calculate the principal value of the arc sine of the input argument \p x.
+ *
+ * \return
+ * Result will be in radians, in the interval [-
+ * \latexonly $\pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * π
+ *
+ *
+ * \endxmlonly
+ * /2, +
+ * \latexonly $\pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * π
+ *
+ *
+ * \endxmlonly
+ * /2] for \p x inside [-1, +1].
+ * - asin(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly.
+ * - asin(\p x) returns NaN for \p x outside [-1, +1].
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl asin(double x) __THROW;
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the square root of the sum of squares of two arguments.
+ *
+ * Calculate the length of the hypotenuse of a right triangle whose two sides have lengths
+ * \p x and \p y without undue overflow or underflow.
+ *
+ * \return Returns the length of the hypotenuse
+ * \latexonly $\sqrt{x^2+y^2}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ *
+ * x
+ * 2
+ *
+ * +
+ *
+ * y
+ * 2
+ *
+ *
+ *
+ * \endxmlonly.
+ * - hypot(\p x,\p y), hypot(\p y,\p x), and hypot(\p x, \p -y) are equivalent.
+ * - hypot(\p x,
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) is equivalent to fabs(\p x).
+ * - hypot(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ,\p y) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly,
+ * even if \p y is a NaN.
+ *
+ * \note_accuracy_double
+ */
+#if defined(_WIN32)
+#if defined(_MSC_VER) && _MSC_VER < 1900
+static __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __CRTDECL hypot(double x, double y);
+#else
+extern _ACRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl hypot(double x, double y);
+#endif
+#else /* _WIN32 */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double hypot(double x, double y) __THROW;
+#endif /* _WIN32 */
+
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+} /* std */
+#endif
+
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate one over the square root of the sum of squares of two arguments.
+ *
+ * Calculate one over the length of the hypotenuse of a right triangle whose two sides have
+ * lengths \p x and \p y without undue overflow or underflow.
+ *
+ * \return Returns one over the length of the hypotenuse
+ * \latexonly $\frac{1}{\sqrt{x^2+y^2}}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ *
+ * 1
+ *
+ *
+ *
+ *
+ * x
+ * 2
+ *
+ * +
+ *
+ * y
+ * 2
+ *
+ *
+ *
+ *
+ *
+ * \endxmlonly.
+ * - rhypot(\p x,\p y), rhypot(\p y,\p x), and rhypot(\p x, \p -y) are equivalent.
+ * - rhypot(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ,\p y) returns +0,
+ * even if \p y is a NaN.
+ *
+ * \note_accuracy_double
+ */
+extern __device__ __device_builtin__ double rhypot(double x, double y) __THROW;
+
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+namespace std {
+#endif
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the square root of the sum of squares of two arguments.
+ *
+ * Calculates the length of the hypotenuse of a right triangle whose two sides have lengths
+ * \p x and \p y without undue overflow or underflow.
+ *
+ * \return Returns the length of the hypotenuse
+ * \latexonly $\sqrt{x^2+y^2}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ *
+ * x
+ * 2
+ *
+ * +
+ *
+ * y
+ * 2
+ *
+ *
+ *
+ * \endxmlonly.
+ * - hypotf(\p x,\p y), hypotf(\p y,\p x), and hypotf(\p x, \p -y) are equivalent.
+ * - hypotf(\p x,
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) is equivalent to fabsf(\p x).
+ * - hypotf(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ,\p y) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly,
+ * even if \p y is a NaN.
+ *
+ * \note_accuracy_single
+ */
+#if defined(_WIN32)
+static __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __CRTDECL hypotf(float x, float y);
+#else /* _WIN32 */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float hypotf(float x, float y) __THROW;
+#endif /* _WIN32 */
+
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+} /* std */
+#endif
+
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate one over the square root of the sum of squares of two arguments.
+ *
+ * Calculates one over the length of the hypotenuse of a right triangle whose two sides have
+ * lengths \p x and \p y without undue overflow or underflow.
+ *
+ * \return Returns one over the length of the hypotenuse
+ * \latexonly $\frac{1}{\sqrt{x^2+y^2}}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ *
+ * 1
+ *
+ *
+ *
+ *
+ * x
+ * 2
+ *
+ * +
+ *
+ * y
+ * 2
+ *
+ *
+ *
+ *
+ *
+ * \endxmlonly.
+ * - rhypotf(\p x,\p y), rhypotf(\p y,\p x), and rhypotf(\p x, \p -y) are equivalent.
+ * - rhypotf(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ,\p y) returns +0,
+ * even if \p y is a NaN.
+ *
+ * \note_accuracy_single
+ */
+extern __device__ __device_builtin__ float rhypotf(float x, float y) __THROW;
+
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the square root of the sum of squares of three coordinates of the argument.
+ *
+ * Calculate the length of three dimensional vector in Euclidean space without undue overflow or underflow.
+ *
+ * \return Returns the length of 3D vector
+ * \latexonly $\sqrt{a^2+b^2+c^2}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ *
+ * a
+ * 2
+ *
+ * +
+ *
+ * b
+ * 2
+ *
+ * +
+ *
+ * c
+ * 2
+ *
+ *
+ *
+ * \endxmlonly.
+ * - In the presence of an exactly infinite coordinate
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly
+ * is returned, even if there are NaNs.
+ *
+ * \note_accuracy_double
+ */
+extern __device__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl norm3d(double a, double b, double c) __THROW;
+
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate one over the square root of the sum of squares of three coordinates.
+ *
+ * Calculate one over the length of three dimensional vector in Euclidean space without undue overflow or underflow.
+ *
+ * \return Returns one over the length of the 3D vector
+ * \latexonly $\frac{1}{\sqrt{a^2+b^2+c^2}}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ *
+ * 1
+ *
+ *
+ *
+ *
+ * a
+ * 2
+ *
+ * +
+ *
+ * b
+ * 2
+ *
+ * +
+ *
+ * c
+ * 2
+ *
+ *
+ *
+ *
+ *
+ * \endxmlonly.
+ * - In the presence of an exactly infinite coordinate
+ * \latexonly $+0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * 0
+ *
+ * \endxmlonly
+ * is returned, even if there are NaNs.
+ *
+ * \note_accuracy_double
+ */
+extern __device__ __device_builtin__ double rnorm3d(double a, double b, double c) __THROW;
+
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the square root of the sum of squares of four coordinates of the argument.
+ *
+ * Calculate the length of four dimensional vector in Euclidean space without undue overflow or underflow.
+ *
+ * \return Returns the length of 4D vector
+ * \latexonly $\sqrt{a^2+b^2+c^2+d^2}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ *
+ * a
+ * 2
+ *
+ * +
+ *
+ * b
+ * 2
+ *
+ * +
+ *
+ * c
+ * 2
+ *
+ * +
+ *
+ * d
+ * 2
+ *
+ *
+ *
+ * \endxmlonly.
+ * - In the presence of an exactly infinite coordinate
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly
+ * is returned, even if there are NaNs.
+ *
+ * \note_accuracy_double
+ */
+extern __device__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl norm4d(double a, double b, double c, double d) __THROW;
+
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate one over the square root of the sum of squares of four coordinates.
+ *
+ * Calculate one over the length of four dimensional vector in Euclidean space without undue overflow or underflow.
+ *
+ * \return Returns one over the length of the 3D vector
+ * \latexonly $\frac{1}{\sqrt{a^2+b^2+c^2+d^2}}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ *
+ * 1
+ *
+ *
+ *
+ *
+ *
+ * 2
+ *
+ * +
+ *
+ * b
+ * 2
+ *
+ * +
+ *
+ * c
+ * 2
+ *
+ * +
+ *
+ * d
+ * 2
+ *
+ *
+ *
+ *
+ *
+ * \endxmlonly.
+ * - In the presence of an exactly infinite coordinate
+ * \latexonly $+0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * 0
+ *
+ * \endxmlonly
+ * is returned, even if there are NaNs.
+ *
+ * \note_accuracy_double
+ */
+extern __device__ __device_builtin__ double rnorm4d(double a, double b, double c, double d) __THROW;
+
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the square root of the sum of squares of any number of coordinates.
+ *
+ * Calculate the length of a vector p, dimension of which is passed as an argument \p without undue overflow or underflow.
+ *
+ * \return Returns the length of the dim-D vector
+ * \latexonly $\sqrt{\sum_{i=0}^{dim-1} p_i^2}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ *
+ *
+ * p
+ * 0
+ *
+ * 2
+ *
+ * +
+ *
+ *
+ * p
+ * 1
+ *
+ * 2
+ *
+ * + ... +
+ *
+ *
+ * p
+ *
+ * dim
+ * -
+ * 1
+ *
+ *
+ * 2
+ *
+ *
+ *
+ * \endxmlonly.
+ * - In the presence of an exactly infinite coordinate
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly
+ * is returned, even if there are NaNs.
+ *
+ * \note_accuracy_double
+ */
+ __device__ __device_builtin__ double norm(int dim, double const * p) __THROW;
+
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the reciprocal of square root of the sum of squares of any number of coordinates.
+ *
+ * Calculates one over the length of vector \p p, dimension of which is passed as an argument, in Euclidean space without undue overflow or underflow.
+ *
+ * \return Returns one over the length of the vector
+ * \latexonly $\frac{1}{\sqrt{\sum_{i=0}^{dim-1} p_i^2}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ *
+ * 1
+ *
+ *
+ *
+ *
+ *
+ * p
+ * 0
+ *
+ * 2
+ *
+ * +
+ *
+ *
+ * p
+ * 1
+ *
+ * 2
+ *
+ * + ... +
+ *
+ *
+ * p
+ *
+ * dim
+ * -
+ * 1
+ *
+ *
+ * 2
+ *
+ *
+ *
+ *
+ *
+ * \endxmlonly.
+ * - In the presence of an exactly infinite coordinate
+ * \latexonly $+0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * 0
+ *
+ * \endxmlonly
+ * is returned, even if there are NaNs.
+ *
+ * \note_accuracy_double
+ */
+extern __device__ __device_builtin__ double rnorm(int dim, double const * p) __THROW;
+
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the reciprocal of square root of the sum of squares of any number of coordinates.
+ *
+ * Calculates one over the length of vector \p p, dimension of which is passed as an argument, in Euclidean space without undue overflow or underflow.
+ *
+ * \return Returns one over the length of the vector
+ * \latexonly $\frac{1}{\sqrt{\sum_{i=0}^{dim-1} p_i^2}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ *
+ * 1
+ *
+ *
+ *
+ *
+ *
+ * p
+ * 0
+ *
+ * 2
+ *
+ * +
+ *
+ *
+ * p
+ * 1
+ *
+ * 2
+ *
+ * + ... +
+ *
+ *
+ * p
+ *
+ * dim
+ * -
+ * 1
+ *
+ *
+ * 2
+ *
+ *
+ *
+ *
+ *
+ * \endxmlonly.
+ * - In the presence of an exactly infinite coordinate
+ * \latexonly $+0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * 0
+ *
+ * \endxmlonly
+ * is returned, even if there are NaNs.
+ *
+ * \note_accuracy_single
+ */
+
+extern __device__ __device_builtin__ float rnormf(int dim, float const * p) __THROW;
+
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the square root of the sum of squares of any number of coordinates.
+ *
+ * Calculates the length of a vector \p p, dimension of which is passed as an argument without undue overflow or underflow.
+ *
+ * \return Returns the length of the dim-D vector
+ * \latexonly $\sqrt{\sum_{i=0}^{dim-1} p_i^2}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ *
+ *
+ * p
+ * 0
+ *
+ * 2
+ *
+ * +
+ *
+ *
+ * p
+ * 1
+ *
+ * 2
+ *
+ * + ... +
+ *
+ *
+ * p
+ *
+ * dim
+ * -
+ * 1
+ *
+ *
+ * 2
+ *
+ *
+ *
+ * \endxmlonly.
+ * - In the presence of an exactly infinite coordinate
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly
+ * is returned, even if there are NaNs.
+ *
+ * \note_accuracy_single
+ */
+ __device__ __device_builtin__ float normf(int dim, float const * p) __THROW;
+
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the square root of the sum of squares of three coordinates of the argument.
+ *
+ * Calculates the length of three dimensional vector in Euclidean space without undue overflow or underflow.
+ *
+ * \return Returns the length of the 3D vector
+ * \latexonly $\sqrt{a^2+b^2+c^2}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ *
+ * a
+ * 2
+ *
+ * +
+ *
+ * b
+ * 2
+ *
+ * +
+ *
+ * c
+ * 2
+ *
+ *
+ *
+ * \endxmlonly.
+ * - In the presence of an exactly infinite coordinate
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly
+ * is returned, even if there are NaNs.
+ *
+ * \note_accuracy_single
+ */
+
+extern __device__ __device_builtin__ float norm3df(float a, float b, float c) __THROW;
+
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate one over the square root of the sum of squares of three coordinates.
+ *
+ * Calculates one over the length of three dimension vector in Euclidean space without undue overflow or underflow.
+ *
+ * \return Returns one over the length of the 3D vector
+ * \latexonly $\frac{1}{\sqrt{a^2+b^2+c^2}}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ *
+ * 1
+ *
+ *
+ *
+ *
+ * a
+ * 2
+ *
+ * +
+ *
+ * b
+ * 2
+ *
+ * +
+ *
+ * c
+ * 2
+ *
+ *
+ *
+ *
+ *
+ * \endxmlonly.
+ * - In the presence of an exactly infinite coordinate
+ * \latexonly $+0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * 0
+ *
+ * \endxmlonly
+ * is returned, even if there are NaNs.
+ *
+ * \note_accuracy_single
+ */
+extern __device__ __device_builtin__ float rnorm3df(float a, float b, float c) __THROW;
+
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the square root of the sum of squares of four coordinates of the argument.
+ *
+ * Calculates the length of four dimensional vector in Euclidean space without undue overflow or underflow.
+ *
+ * \return Returns the length of the 4D vector
+ * \latexonly $\sqrt{a^2+b^2+c^2+d^2}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ *
+ * a
+ * 2
+ *
+ * +
+ *
+ * b
+ * 2
+ *
+ * +
+ *
+ * c
+ * 2
+ *
+ * +
+ *
+ * d
+ * 2
+ *
+ *
+ *
+ * \endxmlonly.
+ * - In the presence of an exactly infinite coordinate
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly
+ * is returned, even if there are NaNs.
+ *
+ * \note_accuracy_single
+ */
+extern __device__ __device_builtin__ float norm4df(float a, float b, float c, float d) __THROW;
+
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate one over the square root of the sum of squares of four coordinates.
+ *
+ * Calculates one over the length of four dimension vector in Euclidean space without undue overflow or underflow.
+ *
+ * \return Returns one over the length of the 3D vector
+ * \latexonly $\frac{1}{\sqrt{a^2+b^2+c^2+d^2}}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ *
+ * 1
+ *
+ *
+ *
+ *
+ * a
+ * 2
+ *
+ * +
+ *
+ * b
+ * 2
+ *
+ * +
+ *
+ * c
+ * 2
+ *
+ * +
+ *
+ * d
+ * 2
+ *
+ *
+ *
+ *
+ *
+ * \endxmlonly.
+ * - In the presence of an exactly infinite coordinate
+ * \latexonly $+0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * 0
+ *
+ * \endxmlonly
+ * is returned, even if there are NaNs.
+ *
+ * \note_accuracy_single
+ */
+extern __device__ __device_builtin__ float rnorm4df(float a, float b, float c, float d) __THROW;
+
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+namespace std {
+#endif
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the cube root of the input argument.
+ *
+ * Calculate the cube root of \p x,
+ * \latexonly $x^{1/3}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * x
+ *
+ * 1
+ *
+ * /
+ *
+ * 3
+ *
+ *
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * Returns
+ * \latexonly $x^{1/3}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * x
+ *
+ * 1
+ *
+ * /
+ *
+ * 3
+ *
+ *
+ *
+ * \endxmlonly.
+ * - cbrt(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - cbrt(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_double
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double cbrt(double x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl cbrt(double x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the cube root of the input argument.
+ *
+ * Calculate the cube root of \p x,
+ * \latexonly $x^{1/3}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * x
+ *
+ * 1
+ *
+ * /
+ *
+ * 3
+ *
+ *
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * Returns
+ * \latexonly $x^{1/3}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * x
+ *
+ * 1
+ *
+ * /
+ *
+ * 3
+ *
+ *
+ *
+ * \endxmlonly.
+ * - cbrtf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - cbrtf(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_single
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float cbrtf(float x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl cbrtf(float x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+} /* std */
+#endif
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate reciprocal cube root function.
+ *
+ * Calculate reciprocal cube root function of \p x.
+ *
+ * \return
+ * - rcbrt(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ * \endxmlonly.
+ * - rcbrt(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double rcbrt(double x);
+
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate reciprocal cube root function.
+ *
+ * Calculate reciprocal cube root function of \p x.
+ *
+ * \return
+ * - rcbrt(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ * \endxmlonly.
+ * - rcbrt(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float rcbrtf(float x);
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the sine of the input argument
+ * \latexonly $\times \pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ×
+ * π
+ *
+ * \endxmlonly.
+ *
+ * Calculate the sine of \p x
+ * \latexonly $\times \pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ×
+ * π
+ *
+ *
+ * \endxmlonly
+ * (measured in radians),
+ * where \p x is the input argument.
+ *
+ * \return
+ * - sinpi(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - sinpi(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns NaN.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double sinpi(double x);
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the sine of the input argument
+ * \latexonly $\times \pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ×
+ * π
+ *
+ * \endxmlonly.
+ *
+ * Calculate the sine of \p x
+ * \latexonly $\times \pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ×
+ * π
+ *
+ *
+ * \endxmlonly
+ * (measured in radians),
+ * where \p x is the input argument.
+ *
+ * \return
+ * - sinpif(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - sinpif(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns NaN.
+ *
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float sinpif(float x);
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the cosine of the input argument
+ * \latexonly $\times \pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ×
+ * π
+ *
+ * \endxmlonly.
+ *
+ * Calculate the cosine of \p x
+ * \latexonly $\times \pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ×
+ * π
+ *
+ *
+ * \endxmlonly
+ * (measured in radians),
+ * where \p x is the input argument.
+ *
+ * \return
+ * - cospi(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns 1.
+ * - cospi(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns NaN.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double cospi(double x);
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the cosine of the input argument
+ * \latexonly $\times \pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ×
+ * π
+ *
+ * \endxmlonly.
+ *
+ * Calculate the cosine of \p x
+ * \latexonly $\times \pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ×
+ * π
+ *
+ *
+ * \endxmlonly
+ * (measured in radians),
+ * where \p x is the input argument.
+ *
+ * \return
+ * - cospif(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns 1.
+ * - cospif(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns NaN.
+ *
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float cospif(float x);
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the sine and cosine of the first input argument
+ * \latexonly $\times \pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ×
+ * π
+ *
+ * \endxmlonly.
+ *
+ * Calculate the sine and cosine of the first input argument, \p x (measured in radians),
+ * \latexonly $\times \pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ×
+ * π
+ *
+ * \endxmlonly. The results for sine and cosine are written into the
+ * second argument, \p sptr, and, respectively, third argument, \p cptr.
+ *
+ * \return
+ * - none
+ *
+ * \see ::sinpi() and ::cospi().
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ void sincospi(double x, double *sptr, double *cptr);
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the sine and cosine of the first input argument
+ * \latexonly $\times \pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ×
+ * π
+ *
+ * \endxmlonly.
+ *
+ * Calculate the sine and cosine of the first input argument, \p x (measured in radians),
+ * \latexonly $\times \pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ×
+ * π
+ *
+ * \endxmlonly. The results for sine and cosine are written into the
+ * second argument, \p sptr, and, respectively, third argument, \p cptr.
+ *
+ * \return
+ * - none
+ *
+ * \see ::sinpif() and ::cospif().
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ void sincospif(float x, float *sptr, float *cptr);
+
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+namespace std {
+#endif
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the value of first argument to the power of second argument.
+ *
+ * Calculate the value of \p x to the power of \p y.
+ *
+ * \return
+ * - pow(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * , \p y) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * for \p y an odd integer less than 0.
+ * - pow(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * , \p y) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+* +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * for \p y less than 0 and not an odd integer.
+ * - pow(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * , \p y) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * for \p y an odd integer greater than 0.
+ * - pow(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * , \p y) returns +0 for \p y > 0 and not an odd integer.
+ * - pow(-1,
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns 1.
+ * - pow(+1, \p y) returns 1 for any \p y, even a NaN.
+ * - pow(\p x,
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns 1 for any \p x, even a NaN.
+ * - pow(\p x, \p y) returns a NaN for finite \p x < 0 and finite non-integer \p y.
+ * - pow(\p x,
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * for
+ * \latexonly $| x | < 1$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * |
+ *
+ * x
+ *
+ * |
+ *
+ * <
+ * 1
+ *
+ * \endxmlonly.
+ * - pow(\p x,
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns +0 for
+ * \latexonly $| x | > 1$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * |
+ *
+ * x
+ *
+ * |
+ *
+ * >
+ * 1
+ *
+ * \endxmlonly.
+ * - pow(\p x,
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns +0 for
+ * \latexonly $| x | < 1$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * |
+ *
+ * x
+ *
+ * |
+ *
+ * <
+ * 1
+ *
+ * \endxmlonly.
+ * - pow(\p x,
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * for
+ * \latexonly $| x | > 1$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * |
+ *
+ * x
+ *
+ * |
+ *
+ * >
+ * 1
+ *
+ * \endxmlonly.
+ * - pow(
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p y) returns -0 for \p y an odd integer less than 0.
+ * - pow(
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p y) returns +0 for \p y < 0 and not an odd integer.
+ * - pow(
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p y) returns
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * for \p y an odd integer greater than 0.
+ * - pow(
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p y) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * for \p y > 0 and not an odd integer.
+ * - pow(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p y) returns +0 for \p y < 0.
+ * - pow(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p y) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * for \p y > 0.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl pow(double x, double y) __THROW;
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Break down the input argument into fractional and integral parts.
+ *
+ * Break down the argument \p x into fractional and integral parts. The
+ * integral part is stored in the argument \p iptr.
+ * Fractional and integral parts are given the same sign as the argument \p x.
+ *
+ * \return
+ * - modf(
+ * \latexonly $\pm x$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * x
+ *
+ *
+ * \endxmlonly
+ * , \p iptr) returns a result with the same sign as \p x.
+ * - modf(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p iptr) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * and stores
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * in the object pointed to by \p iptr.
+ * - modf(NaN, \p iptr) stores a NaN in the object pointed to by \p iptr and returns a NaN.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl modf(double x, double *iptr) __THROW;
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the double-precision floating-point remainder of \p x / \p y.
+ *
+ * Calculate the double-precision floating-point remainder of \p x / \p y.
+ * The floating-point remainder of the division operation \p x / \p y calculated
+ * by this function is exactly the value x - n*y, where \p n is \p x / \p y with its fractional part truncated.
+ * The computed value will have the same sign as \p x, and its magnitude will be less than the magnitude of \p y.
+ *
+ * \return
+ * - Returns the floating-point remainder of \p x / \p y.
+ * - fmod(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * , \p y) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * if \p y is not zero.
+ * - fmod(\p x,
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns \p x if \p x is finite.
+ * - fmod(\p x, \p y) returns NaN if \p x is
+ * \latexonly $\pm\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * or \p y is zero.
+ * - If either argument is NaN, NaN is returned.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl fmod(double x, double y) __THROW;
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Compute double-precision floating-point remainder.
+ *
+ * Compute double-precision floating-point remainder \p r of dividing
+ * \p x by \p y for nonzero \p y. Thus
+ * \latexonly $ r = x - n y$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * r
+ * =
+ * x
+ * −
+ * n
+ * y
+ *
+ * \endxmlonly.
+ * The value \p n is the integer value nearest
+ * \latexonly $ \frac{x}{y} $ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * x
+ * y
+ *
+ *
+ * \endxmlonly.
+ * In the case when
+ * \latexonly $ | n -\frac{x}{y} | = \frac{1}{2} $ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * |
+ *
+ * n
+ * −
+ *
+ * x
+ * y
+ *
+ *
+ * |
+ *
+ * =
+ *
+ * 1
+ * 2
+ *
+ *
+ *
+ * \endxmlonly
+ * , the
+ * even \p n value is chosen.
+ *
+ * \return
+ * - remainder(\p x,
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns NaN.
+ * - remainder(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p y) returns NaN.
+ * - remainder(\p x,
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns \p x for finite \p x.
+ *
+ * \note_accuracy_double
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double remainder(double x, double y) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl remainder(double x, double y);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Compute single-precision floating-point remainder.
+ *
+ * Compute single-precision floating-point remainder \p r of dividing
+ * \p x by \p y for nonzero \p y. Thus
+ * \latexonly $ r = x - n y$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * r
+ * =
+ * x
+ * −
+ * n
+ * y
+ *
+ * \endxmlonly.
+ * The value \p n is the integer value nearest
+ * \latexonly $ \frac{x}{y} $ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * x
+ * y
+ *
+ *
+ * \endxmlonly.
+ * In the case when
+ * \latexonly $ | n -\frac{x}{y} | = \frac{1}{2} $ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * |
+ *
+ * n
+ * −
+ *
+ * x
+ * y
+ *
+ *
+ * |
+ *
+ * =
+ *
+ * 1
+ * 2
+ *
+ *
+ *
+ * \endxmlonly
+ * , the
+ * even \p n value is chosen.
+ *
+ * \return
+ * - remainderf(\p x,
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns NaN.
+ * - remainderf(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p y) returns NaN.
+ * - remainderf(\p x,
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns \p x for finite \p x.
+ *
+ * \note_accuracy_single
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float remainderf(float x, float y) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl remainderf(float x, float y);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Compute double-precision floating-point remainder and part of quotient.
+ *
+ * Compute a double-precision floating-point remainder in the same way as the
+ * ::remainder() function. Argument \p quo returns part of quotient upon
+ * division of \p x by \p y. Value \p quo has the same sign as
+ * \latexonly $ \frac{x}{y} $ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * x
+ * y
+ *
+ *
+ *
+ * \endxmlonly
+ * and may not be the exact quotient but agrees with the exact quotient
+ * in the low order 3 bits.
+ *
+ * \return
+ * Returns the remainder.
+ * - remquo(\p x,
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * , \p quo) returns NaN
+ * and stores an unspecified value in the
+ * location to which \p quo points.
+ * - remquo(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p y, \p quo) returns NaN
+ * and stores an unspecified value in the
+ * location to which \p quo points.
+ * - remquo(\p x, \p y, \p quo) returns NaN
+ * and stores an unspecified value in the
+ * location to which \p quo points if either of \p x or \p y is NaN.
+ * - remquo(\p x,
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p quo) returns \p x and stores zero
+ * in the location to which \p quo points for finite \p x.
+ *
+ * \note_accuracy_double
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double remquo(double x, double y, int *quo) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl remquo(double x, double y, int *quo);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Compute single-precision floating-point remainder and part of quotient.
+ *
+ * Compute a single-precision floating-point remainder in the same way as the
+ * ::remainderf() function. Argument \p quo returns part of quotient upon
+ * division of \p x by \p y. Value \p quo has the same sign as
+ * \latexonly $ \frac{x}{y} $ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * x
+ * y
+ *
+ *
+ *
+ * \endxmlonly
+ * and may not be the exact quotient but agrees with the exact quotient
+ * in the low order 3 bits.
+ *
+ * \return
+ * Returns the remainder.
+ * - remquof(\p x,
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * , \p quo) returns NaN
+ * and stores an unspecified value in the
+ * location to which \p quo points.
+ * - remquof(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p y, \p quo) returns NaN
+ * and stores an unspecified value in the
+ * location to which \p quo points.
+ * - remquof(\p x, \p y, \p quo) returns NaN
+ * and stores an unspecified value in the
+ * location to which \p quo points if either of \p x or \p y is NaN.
+ * - remquof(\p x,
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p quo) returns \p x and stores zero
+ * in the location to which \p quo points for finite \p x.
+ *
+ * \note_accuracy_single
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float remquof(float x, float y, int *quo) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl remquof(float x, float y, int *quo);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the value of the Bessel function of the first kind of order 0 for the input argument.
+ *
+ * Calculate the value of the Bessel function of the first kind of order 0 for
+ * the input argument \p x,
+ * \latexonly $J_0(x)$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * J
+ * 0
+ *
+ * (
+ * x
+ * )
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * Returns the value of the Bessel function of the first kind of order 0.
+ * - j0(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns +0.
+ * - j0(NaN) returns NaN.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl j0(double x) __THROW;
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+} /* std */
+#endif
+
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the value of the Bessel function of the first kind of order 0 for the input argument.
+ *
+ * Calculate the value of the Bessel function of the first kind of order 0 for
+ * the input argument \p x,
+ * \latexonly $J_0(x)$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * J
+ * 0
+ *
+ * (
+ * x
+ * )
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * Returns the value of the Bessel function of the first kind of order 0.
+ * - j0f(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns +0.
+ * - j0f(NaN) returns NaN.
+ *
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float j0f(float x) __THROW;
+
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+namespace std {
+#endif
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the value of the Bessel function of the first kind of order 1 for the input argument.
+ *
+ * Calculate the value of the Bessel function of the first kind of order 1 for
+ * the input argument \p x,
+ * \latexonly $J_1(x)$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * J
+ * 1
+ *
+ * (
+ * x
+ * )
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * Returns the value of the Bessel function of the first kind of order 1.
+ * - j1(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - j1(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - j1(NaN) returns NaN.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl j1(double x) __THROW;
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+} /* std */
+#endif
+
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the value of the Bessel function of the first kind of order 1 for the input argument.
+ *
+ * Calculate the value of the Bessel function of the first kind of order 1 for
+ * the input argument \p x,
+ * \latexonly $J_1(x)$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * J
+ * 1
+ *
+ * (
+ * x
+ * )
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * Returns the value of the Bessel function of the first kind of order 1.
+ * - j1f(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - j1f(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - j1f(NaN) returns NaN.
+ *
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float j1f(float x) __THROW;
+
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+namespace std {
+#endif
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the value of the Bessel function of the first kind of order n for the input argument.
+ *
+ * Calculate the value of the Bessel function of the first kind of order \p n for
+ * the input argument \p x,
+ * \latexonly $J_n(x)$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * J
+ * n
+ *
+ * (
+ * x
+ * )
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * Returns the value of the Bessel function of the first kind of order \p n.
+ * - jn(\p n, NaN) returns NaN.
+ * - jn(\p n, \p x) returns NaN for \p n < 0.
+ * - jn(\p n,
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns +0.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl jn(int n, double x) __THROW;
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+} /* std */
+#endif
+
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the value of the Bessel function of the first kind of order n for the input argument.
+ *
+ * Calculate the value of the Bessel function of the first kind of order \p n for
+ * the input argument \p x,
+ * \latexonly $J_n(x)$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * J
+ * n
+ *
+ * (
+ * x
+ * )
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * Returns the value of the Bessel function of the first kind of order \p n.
+ * - jnf(\p n, NaN) returns NaN.
+ * - jnf(\p n, \p x) returns NaN for \p n < 0.
+ * - jnf(\p n,
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns +0.
+ *
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float jnf(int n, float x) __THROW;
+
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+namespace std {
+#endif
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the value of the Bessel function of the second kind of order 0 for the input argument.
+ *
+ * Calculate the value of the Bessel function of the second kind of order 0 for
+ * the input argument \p x,
+ * \latexonly $Y_0(x)$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * Y
+ * 0
+ *
+ * (
+ * x
+ * )
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * Returns the value of the Bessel function of the second kind of order 0.
+ * - y0(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ * \endxmlonly.
+ * - y0(\p x) returns NaN for \p x < 0.
+ * - y0(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns +0.
+ * - y0(NaN) returns NaN.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl y0(double x) __THROW;
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+} /* std */
+#endif
+
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the value of the Bessel function of the second kind of order 0 for the input argument.
+ *
+ * Calculate the value of the Bessel function of the second kind of order 0 for
+ * the input argument \p x,
+ * \latexonly $Y_0(x)$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * Y
+ * 0
+ *
+ * (
+ * x
+ * )
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * Returns the value of the Bessel function of the second kind of order 0.
+ * - y0f(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ * \endxmlonly.
+ * - y0f(\p x) returns NaN for \p x < 0.
+ * - y0f(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns +0.
+ * - y0f(NaN) returns NaN.
+ *
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float y0f(float x) __THROW;
+
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+namespace std {
+#endif
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the value of the Bessel function of the second kind of order 1 for the input argument.
+ *
+ * Calculate the value of the Bessel function of the second kind of order 1 for
+ * the input argument \p x,
+ * \latexonly $Y_1(x)$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * Y
+ * 1
+ *
+ * (
+ * x
+ * )
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * Returns the value of the Bessel function of the second kind of order 1.
+ * - y1(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ * \endxmlonly.
+ * - y1(\p x) returns NaN for \p x < 0.
+ * - y1(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns +0.
+ * - y1(NaN) returns NaN.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl y1(double x) __THROW;
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+} /* std */
+#endif
+
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the value of the Bessel function of the second kind of order 1 for the input argument.
+ *
+ * Calculate the value of the Bessel function of the second kind of order 1 for
+ * the input argument \p x,
+ * \latexonly $Y_1(x)$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * Y
+ * 1
+ *
+ * (
+ * x
+ * )
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * Returns the value of the Bessel function of the second kind of order 1.
+ * - y1f(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ * \endxmlonly.
+ * - y1f(\p x) returns NaN for \p x < 0.
+ * - y1f(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns +0.
+ * - y1f(NaN) returns NaN.
+ *
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float y1f(float x) __THROW;
+
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+namespace std {
+#endif
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the value of the Bessel function of the second kind of order n for the input argument.
+ *
+ * Calculate the value of the Bessel function of the second kind of order \p n for
+ * the input argument \p x,
+ * \latexonly $Y_n(x)$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * Y
+ * n
+ *
+ * (
+ * x
+ * )
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * Returns the value of the Bessel function of the second kind of order \p n.
+ * - yn(\p n, \p x) returns NaN for \p n < 0.
+ * - yn(\p n,
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ *) returns
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ * \endxmlonly.
+ * - yn(\p n, \p x) returns NaN for \p x < 0.
+ * - yn(\p n,
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns +0.
+ * - yn(\p n, NaN) returns NaN.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl yn(int n, double x) __THROW;
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+} /* std */
+#endif
+
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the value of the Bessel function of the second kind of order n for the input argument.
+ *
+ * Calculate the value of the Bessel function of the second kind of order \p n for
+ * the input argument \p x,
+ * \latexonly $Y_n(x)$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * Y
+ * n
+ *
+ * (
+ * x
+ * )
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * Returns the value of the Bessel function of the second kind of order \p n.
+ * - ynf(\p n, \p x) returns NaN for \p n < 0.
+ * - ynf(\p n,
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ * \endxmlonly.
+ * - ynf(\p n, \p x) returns NaN for \p x < 0.
+ * - ynf(\p n,
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns +0.
+ * - ynf(\p n, NaN) returns NaN.
+ *
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float ynf(int n, float x) __THROW;
+
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the value of the regular modified cylindrical Bessel function of order 0 for the input argument.
+ *
+ * Calculate the value of the regular modified cylindrical Bessel function of order 0 for
+ * the input argument \p x,
+ * \latexonly $I_0(x)$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * I
+ * 0
+ *
+ * (
+ * x
+ * )
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * Returns the value of the regular modified cylindrical Bessel function of order 0.
+ *
+ * \note_accuracy_double
+ */
+extern __device__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl cyl_bessel_i0(double x) __THROW;
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the value of the regular modified cylindrical Bessel function of order 0 for the input argument.
+ *
+ * Calculate the value of the regular modified cylindrical Bessel function of order 0 for
+ * the input argument \p x,
+ * \latexonly $I_0(x)$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * I
+ * 0
+ *
+ * (
+ * x
+ * )
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * Returns the value of the regular modified cylindrical Bessel function of order 0.
+ *
+ * \note_accuracy_single
+ */
+extern __device__ __device_builtin__ float cyl_bessel_i0f(float x) __THROW;
+
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the value of the regular modified cylindrical Bessel function of order 1 for the input argument.
+ *
+ * Calculate the value of the regular modified cylindrical Bessel function of order 1 for
+ * the input argument \p x,
+ * \latexonly $I_1(x)$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * I
+ * 1
+ *
+ * (
+ * x
+ * )
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * Returns the value of the regular modified cylindrical Bessel function of order 1.
+ *
+ * \note_accuracy_double
+ */
+extern __device__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl cyl_bessel_i1(double x) __THROW;
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the value of the regular modified cylindrical Bessel function of order 1 for the input argument.
+ *
+ * Calculate the value of the regular modified cylindrical Bessel function of order 1 for
+ * the input argument \p x,
+ * \latexonly $I_1(x)$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * I
+ * 1
+ *
+ * (
+ * x
+ * )
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * Returns the value of the regular modified cylindrical Bessel function of order 1.
+ *
+ * \note_accuracy_single
+ */
+extern __device__ __device_builtin__ float cyl_bessel_i1f(float x) __THROW;
+
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+namespace std {
+#endif
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the error function of the input argument.
+ *
+ * Calculate the value of the error function for the input argument \p x,
+ * \latexonly $\frac{2}{\sqrt \pi} \int_0^x e^{-t^2} dt$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * 2
+ *
+ * π
+ *
+ *
+ *
+ * ∫
+ * 0
+ * x
+ *
+ *
+ * e
+ *
+ * −
+ *
+ * t
+ * 2
+ *
+ *
+ *
+ * d
+ * t
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * - erf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - erf(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 1$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 1
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_double
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double erf(double x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl erf(double x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the error function of the input argument.
+ *
+ * Calculate the value of the error function for the input argument \p x,
+ * \latexonly $\frac{2}{\sqrt \pi} \int_0^x e^{-t^2} dt$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * 2
+ *
+ * π
+ *
+ *
+ *
+ * ∫
+ * 0
+ * x
+ *
+ *
+ * e
+ *
+ * −
+ *
+ * t
+ * 2
+ *
+ *
+ *
+ * d
+ * t
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * - erff(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - erff(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 1$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 1
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_single
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float erff(float x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl erff(float x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+} /* std */
+#endif
+
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the inverse error function of the input argument.
+ *
+ * Calculate the inverse error function
+ * \latexonly $\erf^{-1}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * erf
+ *
+ * -
+ * 1
+ *
+ *
+ *
+ *
+ * \endxmlonly
+ * (\p x), of the input argument \p x in the interval [-1, 1].
+ *
+ * \return
+ * - erfinv(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly.
+ * - erfinv(1) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ * - erfinv(-1) returns
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ * \endxmlonly.
+ * - erfinv(\p x) returns NaN for \p x outside [-1, +1].
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double erfinv(double x);
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the inverse error function of the input argument.
+ *
+ * Calculate the inverse error function
+ * \latexonly $\erf^{-1}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * erf
+ *
+ * -
+ * 1
+ *
+ *
+ *
+ *
+ * \endxmlonly
+ * (\p x), of the input argument \p x in the interval [-1, 1].
+ *
+ * \return
+ * - erfinvf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly.
+ * - erfinvf(1) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ * - erfinvf(-1) returns
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ * \endxmlonly.
+ * - erfinvf(\p x) returns NaN for \p x outside [-1, +1].
+ *
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float erfinvf(float x);
+
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+namespace std {
+#endif
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the complementary error function of the input argument.
+ *
+ * Calculate the complementary error function of the input argument \p x,
+ * 1 - erf(\p x).
+ *
+ * \return
+ * - erfc(
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns 2.
+ * - erfc(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns +0.
+ *
+ * \note_accuracy_double
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double erfc(double x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl erfc(double x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the complementary error function of the input argument.
+ *
+ * Calculate the complementary error function of the input argument \p x,
+ * 1 - erf(\p x).
+ *
+ * \return
+ * - erfcf(
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns 2.
+ * - erfcf(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns +0.
+ *
+ * \note_accuracy_single
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float erfcf(float x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl erfcf(float x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the natural logarithm of the absolute value of the gamma function of the input argument.
+ *
+ * Calculate the natural logarithm of the absolute value of the gamma function of the input argument \p x, namely the value of
+ * \latexonly $\log_{e}\left|\int_{0}^{\infty} e^{-t}t^{x-1}dt\right|$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * log
+ *
+ * e
+ *
+ *
+ *
+ *
+ *
+ * ∫
+ *
+ * 0
+ *
+ *
+ * ∞
+ *
+ *
+ *
+ * e
+ *
+ * −
+ * t
+ *
+ *
+ *
+ * t
+ *
+ * x
+ * −
+ * 1
+ *
+ *
+ * d
+ * t
+ *
+ *
+ *
+ *
+ * \endxmlonly
+ *
+ * \return
+ * - lgamma(1) returns +0.
+ * - lgamma(2) returns +0.
+ * - lgamma(\p x) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * if \p x
+ * \latexonly $\leq$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ≤
+ *
+ *
+ * \endxmlonly 0 and \p x is an integer.
+ * - lgamma(
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ * - lgamma(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_double
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double lgamma(double x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl lgamma(double x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+} /* std */
+#endif
+
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the inverse complementary error function of the input argument.
+ *
+ * Calculate the inverse complementary error function
+ * \latexonly $\erfc^{-1}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * erfc
+ *
+ * -
+ * 1
+ *
+ *
+ *
+ *
+ * \endxmlonly
+ * (\p x), of the input argument \p x in the interval [0, 2].
+ *
+ * \return
+ * - erfcinv(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ * - erfcinv(2) returns
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ * \endxmlonly.
+ * - erfcinv(\p x) returns NaN for \p x outside [0, 2].
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double erfcinv(double x);
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the inverse complementary error function of the input argument.
+ *
+ * Calculate the inverse complementary error function
+ * \latexonly $\erfc^{-1}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * erfc
+ *
+ * -
+ * 1
+ *
+ *
+ *
+ *
+ * \endxmlonly
+ * (\p x), of the input argument \p x in the interval [0, 2].
+ *
+ * \return
+ * - erfcinvf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ * - erfcinvf(2) returns
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ * \endxmlonly.
+ * - erfcinvf(\p x) returns NaN for \p x outside [0, 2].
+ *
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float erfcinvf(float x);
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the inverse of the standard normal cumulative distribution function.
+ *
+ * Calculate the inverse of the standard normal cumulative distribution function for input argument \p x,
+ * \latexonly $\Phi^{-1}(x)$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * Φ
+ *
+ * −
+ * 1
+ *
+ *
+ * (
+ * x
+ * )
+ *
+ * \endxmlonly. The function is defined for input values in the interval
+ * \latexonly $(0, 1)$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * (
+ * 0
+ * ,
+ * 1
+ * )
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * - normcdfinv(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ * \endxmlonly.
+ * - normcdfinv(1) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ * - normcdfinv(\p x) returns NaN
+ * if \p x is not in the interval [0,1].
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double normcdfinv(double x);
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the inverse of the standard normal cumulative distribution function.
+ *
+ * Calculate the inverse of the standard normal cumulative distribution function for input argument \p x,
+ * \latexonly $\Phi^{-1}(x)$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * Φ
+ *
+ * −
+ * 1
+ *
+ *
+ * (
+ * x
+ * )
+ *
+ * \endxmlonly. The function is defined for input values in the interval
+ * \latexonly $(0, 1)$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * (
+ * 0
+ * ,
+ * 1
+ * )
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * - normcdfinvf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ * \endxmlonly.
+ * - normcdfinvf(1) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ * - normcdfinvf(\p x) returns NaN
+ * if \p x is not in the interval [0,1].
+ *
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float normcdfinvf(float x);
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the standard normal cumulative distribution function.
+ *
+ * Calculate the cumulative distribution function of the standard normal distribution for input argument \p x,
+ * \latexonly $\Phi(x)$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * Φ
+ * (
+ * x
+ * )
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * - normcdf(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns 1.
+ * - normcdf(
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns +0.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double normcdf(double x);
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the standard normal cumulative distribution function.
+ *
+ * Calculate the cumulative distribution function of the standard normal distribution for input argument \p x,
+ * \latexonly $\Phi(x)$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * Φ
+ * (
+ * x
+ * )
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * - normcdff(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns 1.
+ * - normcdff(
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns +0
+
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float normcdff(float x);
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the scaled complementary error function of the input argument.
+ *
+ * Calculate the scaled complementary error function of the input argument \p x,
+ * \latexonly $e^{x^2}\cdot \textrm{erfc}(x)$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * e
+ *
+ *
+ * x
+ * 2
+ *
+ *
+ *
+ * ⋅
+ *
+ * erfc
+ *
+ * (
+ * x
+ * )
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * - erfcx(
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * -
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly.
+ * - erfcx(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns +0.
+ *
+ * \note_accuracy_double
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double erfcx(double x);
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the scaled complementary error function of the input argument.
+ *
+ * Calculate the scaled complementary error function of the input argument \p x,
+ * \latexonly $e^{x^2}\cdot \textrm{erfc}(x)$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * e
+ *
+ *
+ * x
+ * 2
+ *
+ *
+ *
+ * ⋅
+ *
+ * erfc
+ *
+ * (
+ * x
+ * )
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * - erfcxf(
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * -
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly.
+ * - erfcxf(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns +0.
+ *
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float erfcxf(float x);
+
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+namespace std {
+#endif
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the natural logarithm of the absolute value of the gamma function of the input argument.
+ *
+ * Calculate the natural logarithm of the absolute value of the gamma function of the input argument \p x, namely the value of
+ * \latexonly $\log_{e}\left|\int_{0}^{\infty} e^{-t}t^{x-1}dt\right|$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * log
+ *
+ * e
+ *
+ *
+ *
+ *
+ *
+ * ∫
+ *
+ * 0
+ *
+ *
+ * ∞
+ *
+ *
+ *
+ * e
+ *
+ * −
+ * t
+ *
+ *
+ *
+ * t
+ *
+ * x
+ * −
+ * 1
+ *
+ *
+ * d
+ * t
+ *
+ *
+ *
+ *
+ * \endxmlonly
+ *
+ * \return
+ * - lgammaf(1) returns +0.
+ * - lgammaf(2) returns +0.
+ * - lgammaf(\p x) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * if \p x
+ * \latexonly $\leq$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ≤
+ *
+ *
+ * \endxmlonly
+ * 0 and \p x is an integer.
+ * - lgammaf(
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ * - lgammaf(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_single
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float lgammaf(float x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl lgammaf(float x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the gamma function of the input argument.
+ *
+ * Calculate the gamma function of the input argument \p x, namely the value of
+ * \latexonly $\int_{0}^{\infty} e^{-t}t^{x-1}dt$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * ∫
+ *
+ * 0
+ *
+ *
+ * ∞
+ *
+ *
+ *
+ * e
+ *
+ * −
+ * t
+ *
+ *
+ *
+ * t
+ *
+ * x
+ * −
+ * 1
+ *
+ *
+ * d
+ * t
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * - tgamma(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ * \endxmlonly.
+ * - tgamma(2) returns +1.
+ * - tgamma(\p x) returns NaN if \p x < 0 and \p x is an integer.
+ * - tgamma(
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns NaN.
+ * - tgamma(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_double
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double tgamma(double x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl tgamma(double x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the gamma function of the input argument.
+ *
+ * Calculate the gamma function of the input argument \p x, namely the value of
+ * \latexonly $\int_{0}^{\infty} e^{-t}t^{x-1}dt$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * ∫
+ *
+ * 0
+ *
+ *
+ * ∞
+ *
+ *
+ *
+ * e
+ *
+ * −
+ * t
+ *
+ *
+ *
+ * t
+ *
+ * x
+ * −
+ * 1
+ *
+ *
+ * d
+ * t
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * - tgammaf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ * \endxmlonly.
+ * - tgammaf(2) returns +1.
+ * - tgammaf(\p x) returns NaN if \p x < 0 and \p x is an integer.
+ * - tgammaf(
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns NaN.
+ * - tgammaf(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_single
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float tgammaf(float x) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl tgammaf(float x);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/** \ingroup CUDA_MATH_DOUBLE
+ * \brief Create value with given magnitude, copying sign of second value.
+ *
+ * Create a floating-point value with the magnitude \p x and the sign of \p y.
+ *
+ * \return
+ * Returns a value with the magnitude of \p x and the sign of \p y.
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double copysign(double x, double y) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl copysign(double x, double y);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/** \ingroup CUDA_MATH_SINGLE
+ * \brief Create value with given magnitude, copying sign of second value.
+ *
+ * Create a floating-point value with the magnitude \p x and the sign of \p y.
+ *
+ * \return
+ * Returns a value with the magnitude of \p x and the sign of \p y.
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float copysignf(float x, float y) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl copysignf(float x, float y);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Return next representable double-precision floating-point value after argument \p x in the direction of \p y.
+ *
+ * Calculate the next representable double-precision floating-point value
+ * following \p x in the direction of \p y. For example, if \p y is greater than \p x, ::nextafter()
+ * returns the smallest representable number greater than \p x
+ *
+ * \return
+ * - nextafter(\p x, \p y) = \p y if \p x equals \p y.
+ * - nextafter(\p x, \p y) = \p NaN if either \p x or \p y are \p NaN.
+ *
+ * \note_accuracy_double
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double nextafter(double x, double y) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl nextafter(double x, double y);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Return next representable single-precision floating-point value after argument \p x in the direction of \p y.
+ *
+ * Calculate the next representable single-precision floating-point value
+ * following \p x in the direction of \p y. For example, if \p y is greater than \p x, ::nextafterf()
+ * returns the smallest representable number greater than \p x
+ *
+ * \return
+ * - nextafterf(\p x, \p y) = \p y if \p x equals \p y.
+ * - nextafterf(\p x, \p y) = \p NaN if either \p x or \p y are \p NaN.
+ *
+ * \note_accuracy_single
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float nextafterf(float x, float y) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl nextafterf(float x, float y);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Returns "Not a Number" value.
+ *
+ * Return a representation of a quiet NaN. Argument \p tagp selects one of the possible representations.
+ *
+ * \return
+ * - nan(\p tagp) returns NaN.
+ *
+ * \note_accuracy_double
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double nan(const char *tagp) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl nan(const char *tagp);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Returns "Not a Number" value
+ *
+ * Return a representation of a quiet NaN. Argument \p tagp selects one of the possible representations.
+ *
+ * \return
+ * - nanf(\p tagp) returns NaN.
+ *
+ * \note_accuracy_single
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float nanf(const char *tagp) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl nanf(const char *tagp);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+} /* namespace std */
+#endif
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __isinff(float) __THROW;
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __isnanf(float) __THROW;
+
+
+#if defined(__APPLE__)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __isfinited(double) __THROW;
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __isfinitef(float) __THROW;
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __signbitd(double) __THROW;
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __isnand(double) __THROW;
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __isinfd(double) __THROW;
+#else /* __APPLE__ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __finite(double) __THROW;
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __finitef(float) __THROW;
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __signbit(double) __THROW;
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __isnan(double) __THROW;
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __isinf(double) __THROW;
+#endif /* __APPLE__ */
+
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __signbitf(float) __THROW;
+
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+namespace std {
+#endif
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Compute
+ * \latexonly $x \times y + z$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * x
+ * ×
+ * y
+ * +
+ * z
+ *
+ *
+ * \endxmlonly
+ * as a single operation.
+ *
+ * Compute the value of
+ * \latexonly $x \times y + z$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * x
+ * ×
+ * y
+ * +
+ * z
+ *
+ *
+ * \endxmlonly
+ * as a single ternary operation. After computing the value
+ * to infinite precision, the value is rounded once.
+ *
+ * \return
+ * Returns the rounded value of
+ * \latexonly $x \times y + z$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * x
+ * ×
+ * y
+ * +
+ * z
+ *
+ *
+ * \endxmlonly
+ * as a single operation.
+ * - fma(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ,
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * , \p z) returns NaN.
+ * - fma(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ,
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p z) returns NaN.
+ * - fma(\p x, \p y,
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns NaN if
+ * \latexonly $x \times y$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * x
+ * ×
+ * y
+ *
+ *
+ * \endxmlonly
+ * is an exact
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ * - fma(\p x, \p y,
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns NaN if
+ * \latexonly $x \times y$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * x
+ * ×
+ * y
+ *
+ *
+ * \endxmlonly
+ * is an exact
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_double
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double fma(double x, double y, double z) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl fma(double x, double y, double z);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Compute
+ * \latexonly $x \times y + z$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * x
+ * ×
+ * y
+ * +
+ * z
+ *
+ *
+ * \endxmlonly
+ * as a single operation.
+ *
+ * Compute the value of
+ * \latexonly $x \times y + z$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * x
+ * ×
+ * y
+ * +
+ * z
+ *
+ *
+ * \endxmlonly
+ * as a single ternary operation. After computing the value
+ * to infinite precision, the value is rounded once.
+ *
+ * \return
+ * Returns the rounded value of
+ * \latexonly $x \times y + z$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * x
+ * ×
+ * y
+ * +
+ * z
+ *
+ *
+ * \endxmlonly
+ * as a single operation.
+ * - fmaf(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ,
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * , \p z) returns NaN.
+ * - fmaf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ,
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p z) returns NaN.
+ * - fmaf(\p x, \p y,
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns NaN if
+ * \latexonly $x \times y$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * x
+ * ×
+ * y
+ *
+ *
+ * \endxmlonly
+ * is an exact
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ * - fmaf(\p x, \p y,
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns NaN if
+ * \latexonly $x \times y$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * x
+ * ×
+ * y
+ *
+ *
+ * \endxmlonly
+ * is an exact
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_single
+ */
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float fmaf(float x, float y, float z) __THROW;
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl fmaf(float x, float y, float z);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+} /* std */
+#endif
+
+
+/* these are here to avoid warnings on the call graph.
+ long double is not supported on the device */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __signbitl(long double) __THROW;
+#if defined(__APPLE__)
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __isfinite(long double) __THROW;
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __isinf(long double) __THROW;
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __isnan(long double) __THROW;
+#else /* __APPLE__ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __finitel(long double) __THROW;
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __isinfl(long double) __THROW;
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __isnanl(long double) __THROW;
+#endif /* __APPLE__ */
+
+#if defined(_WIN32) && defined(_M_AMD64)
+extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl acosf(float) __THROW;
+extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl asinf(float) __THROW;
+extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl atanf(float) __THROW;
+extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl atan2f(float, float) __THROW;
+extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl cosf(float) __THROW;
+extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl sinf(float) __THROW;
+extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl tanf(float) __THROW;
+extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl coshf(float) __THROW;
+extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl sinhf(float) __THROW;
+extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl tanhf(float) __THROW;
+extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl expf(float) __THROW;
+extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl logf(float) __THROW;
+extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl log10f(float) __THROW;
+extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl modff(float, float*) __THROW;
+extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl powf(float, float) __THROW;
+extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl sqrtf(float) __THROW;
+extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl ceilf(float) __THROW;
+extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl floorf(float) __THROW;
+extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl fmodf(float, float) __THROW;
+#else /* _WIN32 && _M_AMD64 */
+
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+namespace std {
+#endif
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the arc cosine of the input argument.
+ *
+ * Calculate the principal value of the arc cosine of the input argument \p x.
+ *
+ * \return
+ * Result will be in radians, in the interval [0,
+ * \latexonly $\pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * π
+ *
+ *
+ * \endxmlonly
+ * ] for \p x inside [-1, +1].
+ * - acosf(1) returns +0.
+ * - acosf(\p x) returns NaN for \p x outside [-1, +1].
+ *
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float acosf(float x) __THROW;
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the arc sine of the input argument.
+ *
+ * Calculate the principal value of the arc sine of the input argument \p x.
+ *
+ * \return
+ * Result will be in radians, in the interval [-
+ * \latexonly $\pi/2$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * π
+ *
+ * /
+ *
+ * 2
+ *
+ *
+ * \endxmlonly
+ * , +
+ * \latexonly $\pi/2$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * π
+ *
+ * /
+ *
+ * 2
+ *
+ *
+ * \endxmlonly
+ * ] for \p x inside [-1, +1].
+ * - asinf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly.
+ * - asinf(\p x) returns NaN for \p x outside [-1, +1].
+ *
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float asinf(float x) __THROW;
+
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the arc tangent of the input argument.
+ *
+ * Calculate the principal value of the arc tangent of the input argument \p x.
+ *
+ * \return
+ * Result will be in radians, in the interval [-
+ * \latexonly $\pi/2$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * π
+ *
+ * /
+ *
+ * 2
+ *
+ *
+ * \endxmlonly
+ * , +
+ * \latexonly $\pi/2$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * π
+ *
+ * /
+ *
+ * 2
+ *
+ *
+ * \endxmlonly
+ * ].
+ * - atanf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly.
+ * - atanf(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * π
+ *
+ *
+ * \endxmlonly
+ * /2.
+ *
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float atanf(float x) __THROW;
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the arc tangent of the ratio of first and second input arguments.
+ *
+ * Calculate the principal value of the arc tangent of the ratio of first
+ * and second input arguments \p y / \p x. The quadrant of the result is
+ * determined by the signs of inputs \p y and \p x.
+ *
+ * \return
+ * Result will be in radians, in the interval [-
+ * \latexonly $\pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * π
+ *
+ *
+ * \endxmlonly
+ * , +
+ * \latexonly $\pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * π
+ *
+ *
+ * \endxmlonly
+ * ].
+ * - atan2f(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * , -0) returns
+ * \latexonly $\pm \pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * π
+ *
+ *
+ * \endxmlonly.
+ * - atan2f(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * , +0) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly.
+ * - atan2f(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * , \p x) returns
+ * \latexonly $\pm \pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * π
+ *
+ *
+ * \endxmlonly
+ * for \p x < 0.
+ * - atan2f(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * , \p x) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * for \p x > 0.
+ * - atan2f(\p y,
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $-\pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * -
+ * π
+ *
+ *
+ * \endxmlonly
+ * /2 for \p y < 0.
+ * - atan2f(\p y,
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * π
+ *
+ *
+ * \endxmlonly
+ * /2 for \p y > 0.
+ * - atan2f(
+ * \latexonly $\pm y$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * y
+ *
+ *
+ * \endxmlonly
+ * ,
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * -
+ * ∞
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * π
+ *
+ *
+ * \endxmlonly
+ * for finite \p y > 0.
+ * - atan2f(
+ * \latexonly $\pm y$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * y
+ *
+ *
+ * \endxmlonly
+ * ,
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * for finite \p y > 0.
+ * - atan2f(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p x) returns
+ * \latexonly $\pm \pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * π
+ *
+ *
+ * \endxmlonly
+ * /2 for finite \p x.
+ * - atan2f(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ,
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * -
+ * ∞
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 3\pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 3
+ * π
+ *
+ *
+ * \endxmlonly
+ * /4.
+ * - atan2f(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ,
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \pi$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * π
+ *
+ *
+ * \endxmlonly
+ * /4.
+ *
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float atan2f(float y, float x) __THROW;
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the cosine of the input argument.
+ *
+ * Calculate the cosine of the input argument \p x (measured in radians).
+ *
+ * \return
+ * - cosf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns 1.
+ * - cosf(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns NaN.
+ *
+ * \note_accuracy_single
+ * \note_fastmath
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float cosf(float x) __THROW;
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the sine of the input argument.
+ *
+ * Calculate the sine of the input argument \p x (measured in radians).
+ *
+ * \return
+ * - sinf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - sinf(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns NaN.
+ *
+ * \note_accuracy_single
+ * \note_fastmath
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float sinf(float x) __THROW;
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the tangent of the input argument.
+ *
+ * Calculate the tangent of the input argument \p x (measured in radians).
+ *
+ * \return
+ * - tanf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - tanf(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns NaN.
+ *
+ * \note_accuracy_single
+ * \note_fastmath
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float tanf(float x) __THROW;
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the hyperbolic cosine of the input argument.
+ *
+ * Calculate the hyperbolic cosine of the input argument \p x.
+ *
+ * \return
+ * - coshf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns 1.
+ * - coshf(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float coshf(float x) __THROW;
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the hyperbolic sine of the input argument.
+ *
+ * Calculate the hyperbolic sine of the input argument \p x.
+ *
+ * \return
+ * - sinhf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - sinhf(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float sinhf(float x) __THROW;
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the hyperbolic tangent of the input argument.
+ *
+ * Calculate the hyperbolic tangent of the input argument \p x.
+ *
+ * \return
+ * - tanhf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - tanhf(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 1$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 1
+ *
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float tanhf(float x) __THROW;
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the natural logarithm of the input argument.
+ *
+ * Calculate the natural logarithm of the input argument \p x.
+ *
+ * \return
+ * - logf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ * \endxmlonly.
+ * - logf(1) returns +0.
+ * - logf(\p x) returns NaN for \p x < 0.
+ * - logf(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_single
+ * \note_fastmath
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float logf(float x) __THROW;
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the base
+ * \latexonly $e$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * e
+ *
+ *
+ * \endxmlonly
+ * exponential of the input argument.
+ *
+ * Calculate
+ * \latexonly $e^x$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * e
+ * x
+ *
+ *
+ * \endxmlonly,
+ * the base
+ * \latexonly $e$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * e
+ *
+ *
+ * \endxmlonly
+ * exponential of the input argument \p x.
+ *
+ * \return
+ * - expf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns 1.
+ * - expf(
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * -
+ * ∞
+ *
+ * \endxmlonly
+ * ) returns +0.
+ * - expf(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_single
+ * \note_fastmath
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float expf(float x) __THROW;
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the base 10 logarithm of the input argument.
+ *
+ * Calculate the base 10 logarithm of the input argument \p x.
+ *
+ * \return
+ * - log10f(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ * \endxmlonly.
+ * - log10f(1) returns +0.
+ * - log10f(\p x) returns NaN for \p x < 0.
+ * - log10f(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_single
+ * \note_fastmath
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float log10f(float x) __THROW;
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Break down the input argument into fractional and integral parts.
+ *
+ * Break down the argument \p x into fractional and integral parts. The integral part is stored in the argument \p iptr.
+ * Fractional and integral parts are given the same sign as the argument \p x.
+ *
+ * \return
+ * - modff(
+ * \latexonly $\pm x$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * x
+ *
+ *
+ * \endxmlonly
+ * , \p iptr) returns a result with the same sign as \p x.
+ * - modff(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p iptr) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * and stores
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * in the object pointed to by \p iptr.
+ * - modff(NaN, \p iptr) stores a NaN in the object pointed to by \p iptr and returns a NaN.
+ *
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float modff(float x, float *iptr) __THROW;
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the value of first argument to the power of second argument.
+ *
+ * Calculate the value of \p x to the power of \p y.
+ *
+ * \return
+ * - powf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * , \p y) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * for \p y an odd integer less than 0.
+ * - powf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * , \p y) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * for \p y less than 0 and not an odd integer.
+ * - powf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * , \p y) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * for \p y an odd integer greater than 0.
+ * - powf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * , \p y) returns +0 for \p y > 0 and not an odd integer.
+ * - powf(-1,
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns 1.
+ * - powf(+1, \p y) returns 1 for any \p y, even a NaN.
+ * - powf(\p x,
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns 1 for any \p x, even a NaN.
+ * - powf(\p x, \p y) returns a NaN for finite \p x < 0 and finite non-integer \p y.
+ * - powf(\p x,
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * for
+ * \latexonly $| x | < 1$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * |
+ *
+ * x
+ *
+ * |
+ *
+ * <
+ * 1
+ *
+ * \endxmlonly.
+ * - powf(\p x,
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns +0 for
+ * \latexonly $| x | > 1$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * |
+ *
+ * x
+ *
+ * |
+ *
+ * >
+ * 1
+ *
+ * \endxmlonly.
+ * - powf(\p x,
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns +0 for
+ * \latexonly $| x | < 1$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * |
+ *
+ * x
+ *
+ * |
+ *
+ * <
+ * 1
+ *
+ * \endxmlonly.
+ * - powf(\p x,
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * for
+ * \latexonly $| x | > 1$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * |
+ *
+ * x
+ *
+ * |
+ *
+ * >
+ * 1
+ *
+ * \endxmlonly.
+ * - powf(
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p y) returns -0 for \p y an odd integer less than 0.
+ * - powf(
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p y) returns +0 for \p y < 0 and not an odd integer.
+ * - powf(
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p y) returns
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * for \p y an odd integer greater than 0.
+ * - powf(
+ * \latexonly $-\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * −
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p y) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * for \p y > 0 and not an odd integer.
+ * - powf(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p y) returns +0 for \p y < 0.
+ * - powf(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * , \p y) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * for \p y > 0.
+ *
+ * \note_accuracy_single
+ * \note_fastmath
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float powf(float x, float y) __THROW;
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the square root of the input argument.
+ *
+ * Calculate the nonnegative square root of \p x,
+ * \latexonly $\sqrt{x}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * x
+ *
+ *
+ * \endxmlonly.
+ *
+ * \return
+ * Returns
+ * \latexonly $\sqrt{x}$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ *
+ * x
+ *
+ *
+ * \endxmlonly.
+ * - sqrtf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - sqrtf(
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $+\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * +
+ * ∞
+ *
+ * \endxmlonly.
+ * - sqrtf(\p x) returns NaN if \p x is less than 0.
+ *
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float sqrtf(float x) __THROW;
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate ceiling of the input argument.
+ *
+ * Compute the smallest integer value not less than \p x.
+ *
+ * \return
+ * Returns
+ * \latexonly $\lceil x \rceil$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ⌈
+ * x
+ * ⌉
+ *
+ *
+ * \endxmlonly
+ * expressed as a floating-point number.
+ * - ceilf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ * - ceilf(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ * \endxmlonly.
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float ceilf(float x) __THROW;
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the largest integer less than or equal to \p x.
+ *
+ * Calculate the largest integer value which is less than or equal to \p x.
+ *
+ * \return
+ * Returns
+ * \latexonly $\lfloor x \rfloor$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ⌊
+ * x
+ * ⌋
+ *
+ *
+ * \endxmlonly
+ * expressed as a floating-point number.
+ * - floorf(
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ * \endxmlonly.
+ * - floorf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * ) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ * \endxmlonly.
+ *
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float floorf(float x) __THROW;
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the floating-point remainder of \p x / \p y.
+ *
+ * Calculate the floating-point remainder of \p x / \p y.
+ * The floating-point remainder of the division operation \p x / \p y calculated
+ * by this function is exactly the value x - n*y, where \p n is \p x / \p y with its fractional part truncated.
+ * The computed value will have the same sign as \p x, and its magnitude will be less than the magnitude of \p y.
+ * \return
+ * - Returns the floating-point remainder of \p x / \p y.
+ * - fmodf(
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * , \p y) returns
+ * \latexonly $\pm 0$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * 0
+ *
+ *
+ * \endxmlonly
+ * if \p y is not zero.
+ * - fmodf(\p x,
+ * \latexonly $\pm \infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * ) returns \p x if \p x is finite.
+ * - fmodf(\p x, \p y) returns NaN if \p x is
+ * \latexonly $\pm\infty$ \endlatexonly
+ * \xmlonly
+ *
+ *
+ * ±
+ * ∞
+ *
+ *
+ * \endxmlonly
+ * or \p y is zero.
+ * - If either argument is NaN, NaN is returned.
+ *
+ * \note_accuracy_single
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float fmodf(float x, float y) __THROW;
+#if defined(__QNX__)
+/* redeclare some builtins that QNX uses */
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float _FLog(float, int);
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float _FCosh(float, float);
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float _FSinh(float, float);
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float _FSinx(float, unsigned int, int);
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int _FDsign(float);
+extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int _Dsign(double);
+#endif
+#if defined(__QNX__) && !defined(_LIBCPP_VERSION)
+} /* std */
+#endif
+#endif /* _WIN32 && _M_AMD64 */
+
+}
+
+#if !defined(__CUDACC_RTC__)
+#include
+#include
+
+#ifndef __CUDA_INTERNAL_SKIP_CPP_HEADERS__
+#include
+#include
+#endif /* __CUDA_INTERNAL_SKIP_CPP_HEADERS__ */
+#endif /* __CUDACC_RTC__ */
+
+/*******************************************************************************
+* *
+* *
+* *
+*******************************************************************************/
+
+#if defined(__CUDACC_RTC__)
+
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int signbit(float x);
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int signbit(double x);
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int signbit(long double x);
+
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isfinite(float x);
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isfinite(double x);
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isfinite(long double x);
+
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isnan(float x);
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isnan(double x);
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isnan(long double x);
+
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isinf(float x);
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isinf(double x);
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isinf(long double x);
+
+#elif defined(__GNUC__)
+
+#undef signbit
+#undef isfinite
+#undef isnan
+#undef isinf
+
+#if defined(__APPLE__)
+
+__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int signbit(float x);
+__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int signbit(double x);
+__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int signbit(long double x);
+
+__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isfinite(float x);
+__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isfinite(double x);
+__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isfinite(long double x);
+
+__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isnan(double x) throw();
+#if !defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 7000
+__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isnan(float x);
+__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isnan(long double x);
+#else /* !(!defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 7000) */
+template
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool __libcpp_isnan(T) _NOEXCEPT;
+inline _LIBCPP_INLINE_VISIBILITY __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool isnan(float x) _NOEXCEPT;
+inline _LIBCPP_INLINE_VISIBILITY __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool isnan(long double x) _NOEXCEPT;
+#endif /* !defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 7000 */
+
+__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isinf(double x) throw();
+#if !defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 7000
+__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isinf(float x);
+__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isinf(long double x);
+#else /* !(!defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 7000) */
+template
+__cudart_builtin__ __DEVICE_FUNCTIONS_DECL__ bool __libcpp_isinf(T) _NOEXCEPT;
+inline _LIBCPP_INLINE_VISIBILITY __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool isinf(float x) _NOEXCEPT;
+inline _LIBCPP_INLINE_VISIBILITY __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool isinf(long double x) _NOEXCEPT;
+#endif /* !defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 7000 */
+
+#else /* __APPLE__ */
+
+#if ((defined _GLIBCXX_MATH_H) && _GLIBCXX_MATH_H) && (__cplusplus >= 201103L)
+#if !defined(_NVHPC_CUDA)
+namespace std {
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ constexpr bool signbit(float x);
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ constexpr bool signbit(double x);
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ constexpr bool signbit(long double x);
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ constexpr bool isfinite(float x);
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ constexpr bool isfinite(double x);
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ constexpr bool isfinite(long double x);
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ constexpr bool isnan(float x);
+/* GCC 6.1 uses ::isnan(double x) for isnan(double x) if the condition is true */
+#if _GLIBCXX_HAVE_OBSOLETE_ISNAN && !_GLIBCXX_NO_OBSOLETE_ISINF_ISNAN_DYNAMIC
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isnan(double x) throw();
+#else /* !(_GLIBCXX_HAVE_OBSOLETE_ISNAN && !_GLIBCXX_NO_OBSOLETE_ISINF_ISNAN_DYNAMIC) */
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ constexpr bool isnan(double x);
+#endif /* _GLIBCXX_HAVE_OBSOLETE_ISNAN && !_GLIBCXX_NO_OBSOLETE_ISINF_ISNAN_DYNAMIC */
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ constexpr bool isnan(long double x);
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ constexpr bool isinf(float x);
+/* GCC 6.1 uses ::isinf(double x) for isinf(double x) if the condition is true. */
+#if _GLIBCXX_HAVE_OBSOLETE_ISINF && !_GLIBCXX_NO_OBSOLETE_ISINF_ISNAN_DYNAMIC
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isinf(double x) throw();
+#else /* !(_GLIBCXX_HAVE_OBSOLETE_ISINF && !_GLIBCXX_NO_OBSOLETE_ISINF_ISNAN_DYNAMIC) */
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ constexpr bool isinf(double x);
+#endif /* _GLIBCXX_HAVE_OBSOLETE_ISINF && !_GLIBCXX_NO_OBSOLETE_ISINF_ISNAN_DYNAMIC */
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ constexpr bool isinf(long double x);
+}
+#endif
+
+#else /* !(((defined _GLIBCXX_MATH_H) && _GLIBCXX_MATH_H) && (__cplusplus >= 201103L)) */
+
+#if defined(__QNX__)
+#if (__QNX__) && !defined(_LIBCPP_VERSION)
+/* QNX defines functions in std, need to declare them here */
+namespace std {
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool signbit(float x);
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool signbit(double x);
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool signbit(long double x);
+}
+#else
+static __inline__ __DEVICE_FUNCTIONS_DECL__ bool signbit(const float x);
+static __inline__ __DEVICE_FUNCTIONS_DECL__ bool signbit(const double x);
+static __inline__ __DEVICE_FUNCTIONS_DECL__ bool signbit(const long double x);
+#endif
+static __inline__ __DEVICE_FUNCTIONS_DECL__ bool isfinite(const float a);
+static __inline__ __DEVICE_FUNCTIONS_DECL__ bool isfinite(const double a);
+static __inline__ __DEVICE_FUNCTIONS_DECL__ bool isfinite(const long double a);
+static __inline__ __DEVICE_FUNCTIONS_DECL__ bool isnan(const float a);
+static __inline__ __DEVICE_FUNCTIONS_DECL__ bool isnan(const double a);
+static __inline__ __DEVICE_FUNCTIONS_DECL__ bool isnan(const long double a);
+static __inline__ __DEVICE_FUNCTIONS_DECL__ bool isinf(const float a);
+static __inline__ __DEVICE_FUNCTIONS_DECL__ bool isinf(const double a);
+static __inline__ __DEVICE_FUNCTIONS_DECL__ bool isinf(const long double a);
+#else /* ! __QNX__ */
+__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int signbit(const float x);
+#if defined(__ICC)
+__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int signbit(const double x) throw();
+#else /* !__ICC */
+__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int signbit(const double x);
+#endif /* __ICC */
+__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int signbit(const long double x);
+
+__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isfinite(const float x);
+#if defined(__ICC)
+__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isfinite(const double x) throw();
+#else /* !__ICC */
+__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isfinite(const double x);
+#endif /* __ICC */
+__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isfinite(const long double x);
+
+#if (defined(__ANDROID__) || defined(__HORIZON__)) && _LIBCPP_VERSION >= 8000
+template
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool __libcpp_isnan(T) _NOEXCEPT;
+inline _LIBCPP_INLINE_VISIBILITY __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool isnan(float x) _NOEXCEPT;
+#else /* !((defined(__ANDROID__) || defined(__HORIZON__)) && _LIBCPP_VERSION >= 8000) */
+__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isnan(float x);
+#endif /* (defined(__ANDROID__) || defined(__HORIZON__)) && _LIBCPP_VERSION >= 8000 */
+#if defined(__ANDROID__) || defined(__HORIZON__)
+#if !defined(_LIBCPP_VERSION)
+__forceinline__
+#endif /* !defined(_LIBCPP_VERSION) */
+#if _LIBCPP_VERSION >= 7000
+#ifdef _LIBCPP_PREFERRED_OVERLOAD
+_LIBCPP_INLINE_VISIBILITY _LIBCPP_PREFERRED_OVERLOAD __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool isnan(double x) _NOEXCEPT;
+#endif /* _LIBCPP_PREFERRED_OVERLOAD */
+#else /* _LIBCPP_VERSION < 7000 */
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isnan(double x);
+#endif /* _LIBCPP_VERSION >= 7000 */
+#else /* !(__ANDROID__ || __HORIZON__) */
+__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isnan(double x) throw();
+#endif /* __ANDROID__ */
+#if (defined(__ANDROID__) || defined(__HORIZON__)) && _LIBCPP_VERSION >= 8000
+inline _LIBCPP_INLINE_VISIBILITY __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool isnan(long double x) _NOEXCEPT;
+#else /* !( (defined(__ANDROID__) || defined(__HORIZON__)) && _LIBCPP_VERSION >= 8000) */
+__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isnan(long double x);
+#endif /* (defined(__ANDROID__) || defined(__HORIZON__)) && _LIBCPP_VERSION >= 8000 */
+
+#if (defined(__ANDROID__) || defined(__HORIZON__)) && _LIBCPP_VERSION >= 8000
+static __inline__ __cudart_builtin__ __DEVICE_FUNCTIONS_DECL__ unsigned __FLOAT_BITS(float __f);
+static __inline__ __cudart_builtin__ __DEVICE_FUNCTIONS_DECL__ unsigned long long __DOUBLE_BITS(double __f);
+template
+__cudart_builtin__ __DEVICE_FUNCTIONS_DECL__ bool __libcpp_isinf(T) _NOEXCEPT;
+inline _LIBCPP_INLINE_VISIBILITY __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool isinf(float x) _NOEXCEPT;
+#else /* !( (defined(__ANDROID__) || defined(__HORIZON__)) && _LIBCPP_VERSION >= 8000) */
+__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isinf(float x);
+#endif /* (defined(__ANDROID__) || defined(__HORIZON__)) && _LIBCPP_VERSION >= 8000 */
+
+#if defined(__ANDROID__) || defined(__HORIZON__)
+#if !defined(_LIBCPP_VERSION)
+__forceinline__
+#endif /* !defined(_LIBCPP_VERSION) */
+#if _LIBCPP_VERSION >= 7000
+#ifdef _LIBCPP_PREFERRED_OVERLOAD
+_LIBCPP_INLINE_VISIBILITY _LIBCPP_PREFERRED_OVERLOAD __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool isinf(double x) _NOEXCEPT;
+#endif /* _LIBCPP_PREFERRED_OVERLOAD */
+#else /* _LIBCPP_VERSION < 7000 */
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isinf(double x);
+#endif /* _LIBCPP_VERSION >= 7000 */
+#else /* ! (__ANDROID__ || __HORIZON__) */
+__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isinf(double x) throw();
+#endif /* __ANDROID__ || __HORIZON__ */
+#if (defined(__ANDROID__) || defined(__HORIZON__)) && _LIBCPP_VERSION >= 8000
+inline _LIBCPP_INLINE_VISIBILITY __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool isinf(long double x) _NOEXCEPT;
+#else /* !( (defined(__ANDROID__) || defined(__HORIZON__)) && _LIBCPP_VERSION >= 8000) */
+__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isinf(long double x);
+#endif /* (defined(__ANDROID__) || defined(__HORIZON__)) && _LIBCPP_VERSION >= 8000 */
+#endif /* __QNX__ */
+
+#endif /* ((defined _GLIBCXX_MATH_H) && _GLIBCXX_MATH_H) && (__cplusplus >= 201103L) */
+#endif /* __APPLE__ */
+
+#if !defined(_LIBCPP_VERSION)
+#if defined(__clang__)
+#if __has_include()
+#define __NV_GLIBCXX_VERSION 40800
+#endif /* __has_include() */
+#endif /* __clang__ */
+
+#if !defined(__NV_GLIBCXX_VERSION)
+#define __NV_GLIBCXX_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__)
+#endif /* !__NV_GLIBCXX_VERSION */
+#endif /* !defined(_LIBCPP_VERSION) */
+
+#if !defined(__HORIZON__) || !defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 3800
+#if defined(__arm__) && !defined(_STLPORT_VERSION) && !_GLIBCXX_USE_C99
+#if !defined(__ANDROID__) || (defined(__NV_GLIBCXX_VERSION) && __NV_GLIBCXX_VERSION < 40800)
+
+#if defined(__QNX__)
+/* QNX defines functions in std, need to declare them here */
+namespace std {
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ long long int abs (long long int a);
+}
+#elif defined(__HORIZON__)
+#if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER)
+#pragma GCC system_header
+#endif
+_LIBCPP_BEGIN_NAMESPACE_STD
+__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ long long int abs (long long int a) throw();
+_LIBCPP_END_NAMESPACE_STD
+#else
+static __inline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ long long int abs(long long int a);
+#endif /* __QNX__ || __HORIZON__*/
+
+#endif /* !__ANDROID__ || (defined(__NV_GLIBCXX_VERSION) && __NV_GLIBCXX_VERSION < 40800) */
+#endif /* __arm__ && !_STLPORT_VERSION && !_GLIBCXX_USE_C99 */
+#endif /* !defined(__HORIZON__) || !defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 3800 */
+
+#if defined(__NV_GLIBCXX_VERSION) && __NV_GLIBCXX_VERSION < 40800 && !defined(__ibmxl__)
+
+#if !defined(_STLPORT_VERSION)
+namespace __gnu_cxx
+{
+#endif /* !_STLPORT_VERSION */
+
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ long long int abs(long long int a);
+
+#if !defined(_STLPORT_VERSION)
+}
+#endif /* !_STLPORT_VERSION */
+
+#endif /* defined(__NV_GLIBCXX_VERSION) && __NV_GLIBCXX_VERSION < 40800 && !__ibmxl__ */
+
+namespace std
+{
+ template extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ T __pow_helper(T, int);
+ template extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ T __cmath_power(T, unsigned int);
+}
+
+using std::abs;
+using std::fabs;
+using std::ceil;
+using std::floor;
+using std::sqrt;
+#if !defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 3800
+using std::pow;
+#endif /* !defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 3800 */
+using std::log;
+using std::log10;
+using std::fmod;
+using std::modf;
+using std::exp;
+using std::frexp;
+using std::ldexp;
+using std::asin;
+using std::sin;
+using std::sinh;
+using std::acos;
+using std::cos;
+using std::cosh;
+using std::atan;
+using std::atan2;
+using std::tan;
+using std::tanh;
+
+#elif defined(_WIN32)
+
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ __CUDA_MATH_CRTIMP double __cdecl _hypot(double x, double y);
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ __CUDA_MATH_CRTIMP float __cdecl _hypotf(float x, float y);
+
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+static __inline__ __DEVICE_FUNCTIONS_DECL__ int signbit(long double a);
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+#if _MSC_VER >= 1900
+#define __SIGNBIT_THROW throw()
+#else
+#define __SIGNBIT_THROW
+#endif
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool signbit(long double) __SIGNBIT_THROW;
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ __device_builtin__ __CUDA_MATH_CRTIMP int _ldsign(long double);
+#undef __SIGNBIT_THROW
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+#define __RETURN_TYPE int
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ *
+ * \brief Return the sign bit of the input.
+ *
+ * Determine whether the floating-point value \p a is negative.
+ *
+ * \return
+ * Reports the sign bit of all values including infinities, zeros, and NaNs.
+ * - With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. Returns
+ * true if and only if \p a is negative.
+ * - With other host compilers: __RETURN_TYPE is 'int'. Returns a
+ * nonzero value if and only if \p a is negative.
+ */
+static __inline__ __DEVICE_FUNCTIONS_DECL__ __RETURN_TYPE signbit(double a);
+#undef __RETURN_TYPE
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+#define __RETURN_TYPE bool
+#if _MSC_VER >= 1900
+#define __SIGNBIT_THROW throw()
+#else
+#define __SIGNBIT_THROW
+#endif
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ *
+ * \brief Return the sign bit of the input.
+ *
+ * Determine whether the floating-point value \p a is negative.
+ *
+ * \return
+ * Reports the sign bit of all values including infinities, zeros, and NaNs.
+ * - With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. Returns
+ * true if and only if \p a is negative.
+ * - With other host compilers: __RETURN_TYPE is 'int'. Returns a
+ * nonzero value if and only if \p a is negative.
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ __RETURN_TYPE signbit(double) __SIGNBIT_THROW;
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ __device_builtin__ __CUDA_MATH_CRTIMP int _dsign(double);
+#undef __RETURN_TYPE
+#undef __SIGNBIT_THROW
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+#define __RETURN_TYPE int
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ *
+ * \brief Return the sign bit of the input.
+ *
+ * Determine whether the floating-point value \p a is negative.
+ *
+ * \return
+ * Reports the sign bit of all values including infinities, zeros, and NaNs.
+ * - With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. Returns
+ * true if and only if \p a is negative.
+ * - With other host compilers: __RETURN_TYPE is 'int'. Returns a nonzero value
+ * if and only if \p a is negative.
+ */
+static __inline__ __DEVICE_FUNCTIONS_DECL__ __RETURN_TYPE signbit(float a);
+#undef __RETURN_TYPE
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+#define __RETURN_TYPE bool
+#if _MSC_VER >= 1900
+#define __SIGNBIT_THROW throw()
+#else
+#define __SIGNBIT_THROW
+#endif
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ *
+ * \brief Return the sign bit of the input.
+ *
+ * Determine whether the floating-point value \p a is negative.
+ *
+ * \return
+ * Reports the sign bit of all values including infinities, zeros, and NaNs.
+ * - With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. Returns
+ * true if and only if \p a is negative.
+ * - With other host compilers: __RETURN_TYPE is 'int'. Returns a nonzero value
+ * if and only if \p a is negative.
+ */
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ __RETURN_TYPE signbit(float) __SIGNBIT_THROW;
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ __device_builtin__ __CUDA_MATH_CRTIMP int _fdsign(float);
+#undef __RETURN_TYPE
+#undef __SIGNBIT_THROW
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+static __inline__ __DEVICE_FUNCTIONS_DECL__ int isinf(long double a);
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+static __inline__ __DEVICE_FUNCTIONS_DECL__ bool isinf(long double a);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+#define __RETURN_TYPE int
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ *
+ * \brief Determine whether argument is infinite.
+ *
+ * Determine whether the floating-point value \p a is an infinite value
+ * (positive or negative).
+ * \return
+ * - With Visual Studio 2013 host compiler: Returns true if and only
+ * if \p a is an infinite value.
+ * - With other host compilers: Returns a nonzero value if and only
+ * if \p a is an infinite value.
+ */
+static __inline__ __DEVICE_FUNCTIONS_DECL__ __RETURN_TYPE isinf(double a);
+#undef __RETURN_TYPE
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+#define __RETURN_TYPE bool
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ *
+ * \brief Determine whether argument is infinite.
+ *
+ * Determine whether the floating-point value \p a is an infinite value
+ * (positive or negative).
+ * \return
+ * - With Visual Studio 2013 host compiler: Returns true if and only
+ * if \p a is an infinite value.
+ * - With other host compilers: Returns a nonzero value if and only
+ * if \p a is an infinite value.
+ */
+static __inline__ __DEVICE_FUNCTIONS_DECL__ __RETURN_TYPE isinf(double a);
+#undef __RETURN_TYPE
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+#define __RETURN_TYPE int
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ *
+ * \brief Determine whether argument is infinite.
+ *
+ * Determine whether the floating-point value \p a is an infinite value
+ * (positive or negative).
+ *
+ * \return
+ * - With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. Returns
+ * true if and only if \p a is an infinite value.
+ * - With other host compilers: __RETURN_TYPE is 'int'. Returns a nonzero
+ * value if and only if \p a is an infinite value.
+ */
+static __inline__ __DEVICE_FUNCTIONS_DECL__ __RETURN_TYPE isinf(float a);
+#undef __RETURN_TYPE
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+#define __RETURN_TYPE bool
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ *
+ * \brief Determine whether argument is infinite.
+ *
+ * Determine whether the floating-point value \p a is an infinite value
+ * (positive or negative).
+ *
+ * \return
+ * - With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. Returns
+ * true if and only if \p a is an infinite value.
+ * - With other host compilers: __RETURN_TYPE is 'int'. Returns a nonzero
+ * value if and only if \p a is an infinite value.
+ */
+static __inline__ __DEVICE_FUNCTIONS_DECL__ __RETURN_TYPE isinf(float a);
+#undef __RETURN_TYPE
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+static __inline__ __DEVICE_FUNCTIONS_DECL__ int isnan(long double a);
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+static __inline__ __DEVICE_FUNCTIONS_DECL__ bool isnan(long double a);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+#define __RETURN_TYPE int
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ *
+ * \brief Determine whether argument is a NaN.
+ *
+ * Determine whether the floating-point value \p a is a NaN.
+ * \return
+ * - With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'.
+ * Returns true if and only if \p a is a NaN value.
+ * - With other host compilers: __RETURN_TYPE is 'int'. Returns a
+ * nonzero value if and only if \p a is a NaN value.
+ */
+static __inline__ __DEVICE_FUNCTIONS_DECL__ __RETURN_TYPE isnan(double a);
+#undef __RETURN_TYPE
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+#define __RETURN_TYPE bool
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ *
+ * \brief Determine whether argument is a NaN.
+ *
+ * Determine whether the floating-point value \p a is a NaN.
+ * \return
+ * - With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'.
+ * Returns true if and only if \p a is a NaN value.
+ * - With other host compilers: __RETURN_TYPE is 'int'. Returns a
+ * nonzero value if and only if \p a is a NaN value.
+ */
+static __inline__ __DEVICE_FUNCTIONS_DECL__ __RETURN_TYPE isnan(double a);
+#undef __RETURN_TYPE
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+#define __RETURN_TYPE int
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ *
+ *
+ * \brief Determine whether argument is a NaN.
+ *
+ * Determine whether the floating-point value \p a is a NaN.
+ * \return
+ * - With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'.
+ * Returns true if and only if \p a is a NaN value.
+ * - With other host compilers: __RETURN_TYPE is 'int'. Returns a
+ * nonzero value if and only if \p a is a NaN value.
+ */
+static __inline__ __DEVICE_FUNCTIONS_DECL__ __RETURN_TYPE isnan(float a);
+#undef __RETURN_TYPE
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+#define __RETURN_TYPE bool
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ *
+ *
+ * \brief Determine whether argument is a NaN.
+ *
+ * Determine whether the floating-point value \p a is a NaN.
+ * \return
+ * - With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'.
+ * Returns true if and only if \p a is a NaN value.
+ * - With other host compilers: __RETURN_TYPE is 'int'. Returns a
+ * nonzero value if and only if \p a is a NaN value.
+ */
+static __inline__ __DEVICE_FUNCTIONS_DECL__ __RETURN_TYPE isnan(float a);
+#undef __RETURN_TYPE
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+static __inline__ __DEVICE_FUNCTIONS_DECL__ int isfinite(long double a);
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+static __inline__ __DEVICE_FUNCTIONS_DECL__ bool isfinite(long double a);
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+#define __RETURN_TYPE int
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ *
+ * \brief Determine whether argument is finite.
+ *
+ * Determine whether the floating-point value \p a is a finite value
+ * (zero, subnormal, or normal and not infinity or NaN).
+ *
+ * \return
+ * - With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. Returns
+ * true if and only if \p a is a finite value.
+ * - With other host compilers: __RETURN_TYPE is 'int'. Returns
+ * a nonzero value if and only if \p a is a finite value.
+ */
+static __inline__ __DEVICE_FUNCTIONS_DECL__ __RETURN_TYPE isfinite(double a);
+#undef __RETURN_TYPE
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+#define __RETURN_TYPE bool
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ *
+ * \brief Determine whether argument is finite.
+ *
+ * Determine whether the floating-point value \p a is a finite value
+ * (zero, subnormal, or normal and not infinity or NaN).
+ *
+ * \return
+ * - With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. Returns
+ * true if and only if \p a is a finite value.
+ * - With other host compilers: __RETURN_TYPE is 'int'. Returns
+ * a nonzero value if and only if \p a is a finite value.
+ */
+static __inline__ __DEVICE_FUNCTIONS_DECL__ __RETURN_TYPE isfinite(double a);
+#undef __RETURN_TYPE
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+#define __RETURN_TYPE int
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Determine whether argument is finite.
+ *
+ * Determine whether the floating-point value \p a is a finite value
+ * (zero, subnormal, or normal and not infinity or NaN).
+ *
+ * \return
+ * - With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. Returns
+ * true if and only if \p a is a finite value.
+ * - With other host compilers: __RETURN_TYPE is 'int'. Returns
+ * a nonzero value if and only if \p a is a finite value.
+ */
+static __inline__ __DEVICE_FUNCTIONS_DECL__ __RETURN_TYPE isfinite(float a);
+#undef __RETURN_TYPE
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+#define __RETURN_TYPE bool
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Determine whether argument is finite.
+ *
+ * Determine whether the floating-point value \p a is a finite value
+ * (zero, subnormal, or normal and not infinity or NaN).
+ *
+ * \return
+ * - With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. Returns
+ * true if and only if \p a is a finite value.
+ * - With other host compilers: __RETURN_TYPE is 'int'. Returns
+ * a nonzero value if and only if \p a is a finite value.
+ */
+static __inline__ __DEVICE_FUNCTIONS_DECL__ __RETURN_TYPE isfinite(float a);
+#undef __RETURN_TYPE
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+template extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ T _Pow_int(T, int);
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ long long int abs(long long int);
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+template extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ T _Pow_int(T, int) throw();
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ long long int abs(long long int) throw();
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+
+#endif /* __CUDACC_RTC__ */
+
+#if __cplusplus >= 201103L
+#define __NV_NOEXCEPT noexcept
+#else /* !__cplusplus >= 201103L */
+#define __NV_NOEXCEPT throw()
+#endif /* __cplusplus >= 201103L */
+
+#if defined(_LIBCPP_VERSION) && defined(_LIBCPP_BEGIN_NAMESPACE_STD) && !defined(_STLPORT_VERSION)
+#if defined(__clang__)
+#pragma clang diagnostic push
+#pragma clang diagnostic ignored "-Wc++11-extensions"
+#endif /* __clang__ */
+#if _LIBCPP_VERSION < 3800
+_LIBCPP_BEGIN_NAMESPACE_STD
+#endif /* _LIBCPP_VERSION < 3800 */
+#elif defined(__GNUC__) && !defined(_STLPORT_VERSION)
+namespace std {
+#endif /* defined(_LIBCPP_VERSION) && defined(_LIBCPP_BEGIN_NAMESPACE_STD) && !defined(_STLPORT_VERSION) ||
+ __GNUC__ && !_STLPORT_VERSION */
+
+#if defined(__CUDACC_RTC__) || defined(__GNUC__)
+
+#if defined(__CUDACC_RTC__) || \
+ (defined(__NV_GLIBCXX_VERSION) && __NV_GLIBCXX_VERSION >= 40800) || \
+ defined(__ibmxl__)
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ long long int abs(long long int);
+#endif /* __CUDACC__RTC__ ||
+ (defined(__NV_GLIBCXX_VERSION) && __NV_GLIBCXX_VERSION >= 40800) ||
+ __ibmxl__ */
+
+#endif /* __CUDACC_RTC__ || __GNUC__ */
+
+#if defined(__CUDACC_RTC__) || \
+ (!defined(_MSC_VER) || _MSC_VER < 1800) && \
+ (!defined(_LIBCPP_VERSION) || (_LIBCPP_VERSION < 1101))
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ long int __cdecl abs(long int);
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl abs(float);
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ double __cdecl abs(double);
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl fabs(float);
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl ceil(float);
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl floor(float);
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl sqrt(float);
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl pow(float, float);
+
+#if !defined(__QNX__)
+
+#if defined(__GNUC__) && __cplusplus >= 201103L && !defined(_LIBCPP_VERSION)
+template
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__
+typename __gnu_cxx::__promote_2<_Tp, _Up>::__type pow(_Tp, _Up);
+#else /* !(defined(__GNUC__) && __cplusplus >= 201103L && !defined(_LIBCPP_VERSION)) */
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl pow(float, int);
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ double __cdecl pow(double, int);
+#endif /* defined(__GNUC__) && __cplusplus >= 201103L && !defined(_LIBCPP_VERSION) */
+
+#endif /* !defined(__QNX__) */
+
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl log(float);
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl log10(float);
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl fmod(float, float);
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl modf(float, float*);
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl exp(float);
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl frexp(float, int*);
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl ldexp(float, int);
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl asin(float);
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl sin(float);
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl sinh(float);
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl acos(float);
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl cos(float);
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl cosh(float);
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl atan(float);
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl atan2(float, float);
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl tan(float);
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl tanh(float);
+#else /* __CUDACC_RTC__ ||
+ (!defined(_MSC_VER) || _MSC_VER < 1800) &&
+ (!defined(_LIBCPP_VERSION) || (_LIBCPP_VERSION < 1101)) */
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ long int __cdecl abs(long int) throw();
+#if defined(_LIBCPP_VERSION)
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ long long int __cdecl abs(long long int) throw();
+#endif /* defined(_LIBCPP_VERSION) */
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl abs(float) throw();
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ double __cdecl abs(double) throw();
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl fabs(float) throw();
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl ceil(float) throw();
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl floor(float) throw();
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl sqrt(float) throw();
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl pow(float, float) throw();
+#if defined(_LIBCPP_VERSION)
+#if (defined (__ANDROID__) || defined(__HORIZON__)) && (_LIBCPP_VERSION >= 9000)
+template
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__
+#if _LIBCPP_VERSION >= 14000
+typename std::__enable_if_t
+#else /* _LIBCPP_VERSION < 14000 */
+typename std::_EnableIf
+#endif /* _LIBCPP_VERSION >= 14000 */
+<
+ std::is_arithmetic<_A1>::value &&
+ std::is_arithmetic<_A2>::value,
+ std::__promote<_A1, _A2>
+>::type pow(_A1 __lcpp_x, _A2 __lcpp_y) __NV_NOEXCEPT;
+#elif (defined(__APPLE__) && __clang_major__ >= 7) || _LIBCPP_VERSION >= 3800 || defined(__QNX__)
+template
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__
+#if _LIBCPP_VERSION >= 13000
+typename std::enable_if <
+#else /* _LIBCPP_VERSION < 13000 */
+typename std::__lazy_enable_if <
+#endif /* _LIBCPP_VERSION >= 13000 */
+ std::is_arithmetic<_Tp>::value && std::is_arithmetic<_Up>::value,
+ std::__promote<_Tp, _Up>
+>::type pow(_Tp __x, _Up __y) __NV_NOEXCEPT;
+#else /* !((__APPLE__ && __clang_major__ >= 7) || _LIBCPP_VERSION >= 3800) */
+template
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__
+typename enable_if <
+ std::is_arithmetic<_Tp>::value && std::is_arithmetic<_Up>::value,
+ typename std::__promote<_Tp, _Up>::type
+>::type pow(_Tp __x, _Up __y) __NV_NOEXCEPT;
+#endif /* (__APPLE__ && __clang_major__ >= 7) || _LIBCPP_VERSION >= 3800 */
+#else /* !defined(_LIBCPP_VERSION) */
+#if !(defined(__GNUC__) && __cplusplus >= 201103L)
+#if (defined(_MSC_VER) && (_MSC_VER >= 1928)) && !(defined __CUDA_INTERNAL_SKIP_CPP_HEADERS__)
+template && ::std:: is_arithmetic_v<_Ty2>, int> > [[nodiscard]] __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ ::std:: _Common_float_type_t<_Ty1, _Ty2> __cdecl pow(_Ty1 _Left, _Ty2 _Right) noexcept;
+#else
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl pow(float, int) throw();
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ double __cdecl pow(double, int) throw();
+#endif /* (defined(_MSC_VER) && (_MSC_VER >= 1928)) && !(defined __CUDA_INTERNAL_SKIP_CPP_HEADERS__) */
+#endif /* !(defined(__GNUC__) && __cplusplus >= 201103L) */
+#endif /* defined(_LIBCPP_VERSION) */
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl log(float) throw();
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl log10(float) throw();
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl fmod(float, float) throw();
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl modf(float, float*) throw();
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl exp(float) throw();
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl frexp(float, int*) throw();
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl ldexp(float, int) throw();
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl asin(float) throw();
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl sin(float) throw();
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl sinh(float) throw();
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl acos(float) throw();
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl cos(float) throw();
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl cosh(float) throw();
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl atan(float) throw();
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl atan2(float, float) throw();
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl tan(float) throw();
+extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl tanh(float) throw();
+#endif /* __CUDACC_RTC__ ||
+ (!defined(_MSC_VER) || _MSC_VER < 1800) &&
+ (!defined(_LIBCPP_VERSION) || (_LIBCPP_VERSION < 1101)) */
+
+#if defined(_LIBCPP_VERSION) && defined(_LIBCPP_END_NAMESPACE_STD) && !defined(_STLPORT_VERSION)
+#if _LIBCPP_VERSION < 3800
+_LIBCPP_END_NAMESPACE_STD
+#endif /* _LIBCPP_VERSION < 3800 */
+#if defined(__clang__)
+#pragma clang diagnostic pop
+#endif /* __clang__ */
+#elif defined(__GNUC__) && !defined(_STLPORT_VERSION)
+}
+#endif /* defined(_LIBCPP_VERSION) && defined(_LIBCPP_BEGIN_NAMESPACE_STD) && !defined(_STLPORT_VERSION) ||
+ __GNUC__ && !_STLPORT_VERSION */
+
+#undef __DEVICE_FUNCTIONS_DECL__
+#undef __NV_NOEXCEPT
+
+#if defined(__CUDACC_RTC__)
+#define __MATH_FUNCTIONS_DECL__ __host__ __device__
+#define __MATH_FUNCTIONS_DEVICE_DECL__ __device__
+#else /* __CUDACC_RTC__ */
+#define __MATH_FUNCTIONS_DECL__ static inline __host__ __device__ __cudart_builtin__
+#define __MATH_FUNCTIONS_DEVICE_DECL__ static inline __device__ __cudart_builtin__
+#endif /* __CUDACC_RTC__ */
+
+#if (!defined(_MSC_VER) || _MSC_VER < 1800)
+#if defined(__QNX__) || (defined(_LIBCPP_VERSION) && _LIBCPP_VERSION >= 3800)
+#if defined(__QNX__) && (!defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 8000)
+#if defined(_LIBCPP_VERSION)
+#define __NV_NOEXCEPT _NOEXCEPT
+_LIBCPP_BEGIN_NAMESPACE_STD
+#else
+#define __NV_NOEXCEPT
+namespace std {
+__host__ __device__ __cudart_builtin__ int ilogbf(float a);
+#endif
+#else /* !(defined(__QNX__) && (!defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 8000)) */
+#define __NV_NOEXCEPT _NOEXCEPT
+#endif /* defined(__QNX__) && (!defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 8000) */
+__host__ __device__ __cudart_builtin__ float logb(float a) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ int ilogb(float a) __NV_NOEXCEPT;
+
+__host__ __device__ __cudart_builtin__ float scalbn(float a, int b) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ float scalbln(float a, long int b) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ float exp2(float a) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ float expm1(float a) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ float log2(float a) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ float log1p(float a) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ float acosh(float a) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ float asinh(float a) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ float atanh(float a) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ float hypot(float a, float b) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ float cbrt(float a) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ float erf(float a) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ float erfc(float a) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ float lgamma(float a) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ float tgamma(float a) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ float copysign(float a, float b) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ float nextafter(float a, float b) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ float remainder(float a, float b) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ float remquo(float a, float b, int *quo) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ float round(float a) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ long int lround(float a) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ long long int llround(float a) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ float trunc(float a) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ float rint(float a) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ long int lrint(float a) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ long long int llrint(float a) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ float nearbyint(float a) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ float fdim(float a, float b) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ float fma(float a, float b, float c) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ float fmax(float a, float b) __NV_NOEXCEPT;
+__host__ __device__ __cudart_builtin__ float fmin(float a, float b) __NV_NOEXCEPT;
+#if defined(__QNX__) && (!defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 8000)
+#if defined(_LIBCPP_VERSION)
+_LIBCPP_END_NAMESPACE_STD
+using _VSTD::logb;
+using _VSTD::ilogb;
+using _VSTD::scalbn;
+using _VSTD::scalbln;
+using _VSTD::exp2;
+using _VSTD::expm1;
+using _VSTD::log2;
+using _VSTD::log1p;
+using _VSTD::acosh;
+using _VSTD::asinh;
+using _VSTD::atanh;
+using _VSTD::hypot;
+using _VSTD::cbrt;
+using _VSTD::erf;
+using _VSTD::erfc;
+using _VSTD::lgamma;
+using _VSTD::tgamma;
+using _VSTD::copysign;
+using _VSTD::nextafter;
+using _VSTD::remainder;
+using _VSTD::remquo;
+using _VSTD::round;
+using _VSTD::lround;
+using _VSTD::llround;
+using _VSTD::trunc;
+using _VSTD::rint;
+using _VSTD::lrint;
+using _VSTD::llrint;
+using _VSTD::nearbyint;
+using _VSTD::fdim;
+using _VSTD::fma;
+using _VSTD::fmax;
+using _VSTD::fmin;
+#else
+}
+#endif
+#endif /* defined(__QNX__) && (!defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 8000) */
+#undef __NV_NOEXCEPT
+#else /* !(defined(__QNX__ ) || (defined(_LIBCPP_VERSION) && _LIBCPP_VERSION >= 3800)) */
+#if ((defined _GLIBCXX_MATH_H) && _GLIBCXX_MATH_H) && (__cplusplus >= 201103L)
+namespace std {
+__host__ __device__ __cudart_builtin__ constexpr float logb(float a);
+__host__ __device__ __cudart_builtin__ constexpr int ilogb(float a);
+__host__ __device__ __cudart_builtin__ constexpr float scalbn(float a, int b);
+__host__ __device__ __cudart_builtin__ constexpr float scalbln(float a, long int b);
+__host__ __device__ __cudart_builtin__ constexpr float exp2(float a);
+__host__ __device__ __cudart_builtin__ constexpr float expm1(float a);
+__host__ __device__ __cudart_builtin__ constexpr float log2(float a);
+__host__ __device__ __cudart_builtin__ constexpr float log1p(float a);
+__host__ __device__ __cudart_builtin__ constexpr float acosh(float a);
+__host__ __device__ __cudart_builtin__ constexpr float asinh(float a);
+__host__ __device__ __cudart_builtin__ constexpr float atanh(float a);
+__host__ __device__ __cudart_builtin__ constexpr float hypot(float a, float b);
+__host__ __device__ __cudart_builtin__ constexpr float cbrt(float a);
+__host__ __device__ __cudart_builtin__ constexpr float erf(float a);
+__host__ __device__ __cudart_builtin__ constexpr float erfc(float a);
+__host__ __device__ __cudart_builtin__ constexpr float lgamma(float a);
+__host__ __device__ __cudart_builtin__ constexpr float tgamma(float a);
+__host__ __device__ __cudart_builtin__ constexpr float copysign(float a, float b);
+__host__ __device__ __cudart_builtin__ constexpr float nextafter(float a, float b);
+__host__ __device__ __cudart_builtin__ constexpr float remainder(float a, float b);
+__host__ __device__ __cudart_builtin__ float remquo(float a, float b, int *quo);
+__host__ __device__ __cudart_builtin__ constexpr float round(float a);
+__host__ __device__ __cudart_builtin__ constexpr long int lround(float a);
+__host__ __device__ __cudart_builtin__ constexpr long long int llround(float a);
+__host__ __device__ __cudart_builtin__ constexpr float trunc(float a);
+__host__ __device__ __cudart_builtin__ constexpr float rint(float a);
+__host__ __device__ __cudart_builtin__ constexpr long int lrint(float a);
+__host__ __device__ __cudart_builtin__ constexpr long long int llrint(float a);
+__host__ __device__ __cudart_builtin__ constexpr float nearbyint(float a);
+__host__ __device__ __cudart_builtin__ constexpr float fdim(float a, float b);
+__host__ __device__ __cudart_builtin__ constexpr float fma(float a, float b, float c);
+__host__ __device__ __cudart_builtin__ constexpr float fmax(float a, float b);
+__host__ __device__ __cudart_builtin__ constexpr float fmin(float a, float b);
+}
+#else /* !(((defined _GLIBCXX_MATH_H) && _GLIBCXX_MATH_H) && (__cplusplus >= 201103L)) */
+__MATH_FUNCTIONS_DECL__ float logb(float a);
+
+__MATH_FUNCTIONS_DECL__ int ilogb(float a);
+
+__MATH_FUNCTIONS_DECL__ float scalbn(float a, int b);
+
+__MATH_FUNCTIONS_DECL__ float scalbln(float a, long int b);
+
+__MATH_FUNCTIONS_DECL__ float exp2(float a);
+
+__MATH_FUNCTIONS_DECL__ float expm1(float a);
+
+__MATH_FUNCTIONS_DECL__ float log2(float a);
+
+__MATH_FUNCTIONS_DECL__ float log1p(float a);
+
+__MATH_FUNCTIONS_DECL__ float acosh(float a);
+
+__MATH_FUNCTIONS_DECL__ float asinh(float a);
+
+__MATH_FUNCTIONS_DECL__ float atanh(float a);
+
+__MATH_FUNCTIONS_DECL__ float hypot(float a, float b);
+
+__MATH_FUNCTIONS_DECL__ float cbrt(float a);
+
+__MATH_FUNCTIONS_DECL__ float erf(float a);
+
+__MATH_FUNCTIONS_DECL__ float erfc(float a);
+
+__MATH_FUNCTIONS_DECL__ float lgamma(float a);
+
+__MATH_FUNCTIONS_DECL__ float tgamma(float a);
+
+__MATH_FUNCTIONS_DECL__ float copysign(float a, float b);
+
+__MATH_FUNCTIONS_DECL__ float nextafter(float a, float b);
+
+__MATH_FUNCTIONS_DECL__ float remainder(float a, float b);
+
+__MATH_FUNCTIONS_DECL__ float remquo(float a, float b, int *quo);
+
+__MATH_FUNCTIONS_DECL__ float round(float a);
+
+__MATH_FUNCTIONS_DECL__ long int lround(float a);
+
+__MATH_FUNCTIONS_DECL__ long long int llround(float a);
+
+__MATH_FUNCTIONS_DECL__ float trunc(float a);
+
+__MATH_FUNCTIONS_DECL__ float rint(float a);
+
+__MATH_FUNCTIONS_DECL__ long int lrint(float a);
+
+__MATH_FUNCTIONS_DECL__ long long int llrint(float a);
+
+__MATH_FUNCTIONS_DECL__ float nearbyint(float a);
+
+__MATH_FUNCTIONS_DECL__ float fdim(float a, float b);
+
+__MATH_FUNCTIONS_DECL__ float fma(float a, float b, float c);
+
+__MATH_FUNCTIONS_DECL__ float fmax(float a, float b);
+
+__MATH_FUNCTIONS_DECL__ float fmin(float a, float b);
+#endif /* ((defined _GLIBCXX_MATH_H) && _GLIBCXX_MATH_H) && (__cplusplus >= 201103L) */
+#endif /* defined(__QNX__) || (defined(_LIBCPP_VERSION) && _LIBCPP_VERSION >= 3800) */
+#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+extern __host__ __device__ __cudart_builtin__ float __cdecl logb(float) throw();
+extern __host__ __device__ __cudart_builtin__ int __cdecl ilogb(float) throw();
+extern __host__ __device__ __cudart_builtin__ float __cdecl scalbn(float, float) throw();
+extern __host__ __device__ __cudart_builtin__ float __cdecl scalbln(float, long int) throw();
+extern __host__ __device__ __cudart_builtin__ float __cdecl exp2(float) throw();
+extern __host__ __device__ __cudart_builtin__ float __cdecl expm1(float) throw();
+extern __host__ __device__ __cudart_builtin__ float __cdecl log2(float) throw();
+extern __host__ __device__ __cudart_builtin__ float __cdecl log1p(float) throw();
+extern __host__ __device__ __cudart_builtin__ float __cdecl acosh(float) throw();
+extern __host__ __device__ __cudart_builtin__ float __cdecl asinh(float) throw();
+extern __host__ __device__ __cudart_builtin__ float __cdecl atanh(float) throw();
+extern __host__ __device__ __cudart_builtin__ float __cdecl hypot(float, float) throw();
+extern __host__ __device__ __cudart_builtin__ float __cdecl cbrt(float) throw();
+extern __host__ __device__ __cudart_builtin__ float __cdecl erf(float) throw();
+extern __host__ __device__ __cudart_builtin__ float __cdecl erfc(float) throw();
+extern __host__ __device__ __cudart_builtin__ float __cdecl lgamma(float) throw();
+extern __host__ __device__ __cudart_builtin__ float __cdecl tgamma(float) throw();
+extern __host__ __device__ __cudart_builtin__ float __cdecl copysign(float, float) throw();
+extern __host__ __device__ __cudart_builtin__ float __cdecl nextafter(float, float) throw();
+extern __host__ __device__ __cudart_builtin__ float __cdecl remainder(float, float) throw();
+extern __host__ __device__ __cudart_builtin__ float __cdecl remquo(float, float, int *) throw();
+extern __host__ __device__ __cudart_builtin__ float __cdecl round(float) throw();
+extern __host__ __device__ __cudart_builtin__ long int __cdecl lround(float) throw();
+extern __host__ __device__ __cudart_builtin__ long long int __cdecl llround(float) throw();
+extern __host__ __device__ __cudart_builtin__ float __cdecl trunc(float) throw();
+extern __host__ __device__ __cudart_builtin__ float __cdecl rint(float) throw();
+extern __host__ __device__ __cudart_builtin__ long int __cdecl lrint(float) throw();
+extern __host__ __device__ __cudart_builtin__ long long int __cdecl llrint(float) throw();
+extern __host__ __device__ __cudart_builtin__ float __cdecl nearbyint(float) throw();
+extern __host__ __device__ __cudart_builtin__ float __cdecl fdim(float, float) throw();
+extern __host__ __device__ __cudart_builtin__ float __cdecl fma(float, float, float) throw();
+extern __host__ __device__ __cudart_builtin__ float __cdecl fmax(float, float) throw();
+extern __host__ __device__ __cudart_builtin__ float __cdecl fmin(float, float) throw();
+#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */
+
+__MATH_FUNCTIONS_DECL__ float exp10(const float a);
+
+__MATH_FUNCTIONS_DECL__ float rsqrt(const float a);
+
+__MATH_FUNCTIONS_DECL__ float rcbrt(const float a);
+
+__MATH_FUNCTIONS_DECL__ float sinpi(const float a);
+
+__MATH_FUNCTIONS_DECL__ float cospi(const float a);
+
+__MATH_FUNCTIONS_DECL__ void sincospi(const float a, float *const sptr, float *const cptr);
+
+__MATH_FUNCTIONS_DECL__ void sincos(const float a, float *const sptr, float *const cptr);
+
+__MATH_FUNCTIONS_DECL__ float j0(const float a);
+
+__MATH_FUNCTIONS_DECL__ float j1(const float a);
+
+__MATH_FUNCTIONS_DECL__ float jn(const int n, const float a);
+
+__MATH_FUNCTIONS_DECL__ float y0(const float a);
+
+__MATH_FUNCTIONS_DECL__ float y1(const float a);
+
+__MATH_FUNCTIONS_DECL__ float yn(const int n, const float a);
+
+__MATH_FUNCTIONS_DEVICE_DECL__ float cyl_bessel_i0(const float a);
+
+__MATH_FUNCTIONS_DEVICE_DECL__ float cyl_bessel_i1(const float a);
+
+__MATH_FUNCTIONS_DECL__ float erfinv(const float a);
+
+__MATH_FUNCTIONS_DECL__ float erfcinv(const float a);
+
+__MATH_FUNCTIONS_DECL__ float normcdfinv(const float a);
+
+__MATH_FUNCTIONS_DECL__ float normcdf(const float a);
+
+__MATH_FUNCTIONS_DECL__ float erfcx(const float a);
+
+__MATH_FUNCTIONS_DECL__ double copysign(const double a, const float b);
+
+__MATH_FUNCTIONS_DECL__ double copysign(const float a, const double b);
+
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the minimum value of the input \p unsigned \p int arguments.
+ *
+ * Calculate the minimum value of the arguments \p a and \p b.
+ */
+__MATH_FUNCTIONS_DECL__ unsigned int min(const unsigned int a, const unsigned int b);
+
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the minimum value of the input \p int and \p unsigned \p int arguments.
+ *
+ * Calculate the minimum value of the arguments \p a and \p b, perform integer promotion first.
+ */
+__MATH_FUNCTIONS_DECL__ unsigned int min(const int a, const unsigned int b);
+
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the minimum value of the input \p unsigned \p int and \p int arguments.
+ *
+ * Calculate the minimum value of the arguments \p a and \p b, perform integer promotion first.
+ */
+__MATH_FUNCTIONS_DECL__ unsigned int min(const unsigned int a, const int b);
+
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the minimum value of the input \p long \p int arguments.
+ *
+ * Calculate the minimum value of the arguments \p a and \p b.
+ */
+__MATH_FUNCTIONS_DECL__ long int min(const long int a, const long int b);
+
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the minimum value of the input \p unsigned \p long \p int arguments.
+ *
+ * Calculate the minimum value of the arguments \p a and \p b.
+ */
+__MATH_FUNCTIONS_DECL__ unsigned long int min(const unsigned long int a, const unsigned long int b);
+
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the minimum value of the input \p long \p int and \p unsigned \p long \p int arguments.
+ *
+ * Calculate the minimum value of the arguments \p a and \p b, perform integer promotion first.
+ */
+__MATH_FUNCTIONS_DECL__ unsigned long int min(const long int a, const unsigned long int b);
+
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the minimum value of the input \p unsigned \p long \p int and \p long \p int arguments.
+ *
+ * Calculate the minimum value of the arguments \p a and \p b, perform integer promotion first.
+ */
+__MATH_FUNCTIONS_DECL__ unsigned long int min(const unsigned long int a, const long int b);
+
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the minimum value of the input \p long \p long \p int arguments.
+ *
+ * Calculate the minimum value of the arguments \p a and \p b.
+ */
+__MATH_FUNCTIONS_DECL__ long long int min(const long long int a, const long long int b);
+
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the minimum value of the input \p unsigned \p long \p long \p int arguments.
+ *
+ * Calculate the minimum value of the arguments \p a and \p b.
+ */
+__MATH_FUNCTIONS_DECL__ unsigned long long int min(const unsigned long long int a, const unsigned long long int b);
+
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the minimum value of the input \p long \p long \p int and \p unsigned \p long \p long \p int arguments.
+ *
+ * Calculate the minimum value of the arguments \p a and \p b, perform integer promotion first.
+ */
+__MATH_FUNCTIONS_DECL__ unsigned long long int min(const long long int a, const unsigned long long int b);
+
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the minimum value of the input \p unsigned \p long \p long \p int and \p long \p long \p int arguments.
+ *
+ * Calculate the minimum value of the arguments \p a and \p b, perform integer promotion first.
+ */
+__MATH_FUNCTIONS_DECL__ unsigned long long int min(const unsigned long long int a, const long long int b);
+
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the minimum value of the input \p float arguments.
+ *
+ * Calculate the minimum value of the arguments \p a and \p b.
+ * Behavior is equivalent to ::fminf() function.
+ *
+ * Note, this is different from \p std:: specification
+ */
+__MATH_FUNCTIONS_DECL__ float min(const float a, const float b);
+
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the minimum value of the input \p float arguments.
+ *
+ * Calculate the minimum value of the arguments \p a and \p b.
+ * Behavior is equivalent to ::fmin() function.
+ *
+ * Note, this is different from \p std:: specification
+ */
+__MATH_FUNCTIONS_DECL__ double min(const double a, const double b);
+
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the minimum value of the input \p float and \p double arguments.
+ *
+ * Convert \p float argument \p a to \p double, followed by ::fmin().
+ *
+ * Note, this is different from \p std:: specification
+ */
+__MATH_FUNCTIONS_DECL__ double min(const float a, const double b);
+
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the minimum value of the input \p double and \p float arguments.
+ *
+ * Convert \p float argument \p b to \p double, followed by ::fmin().
+ *
+ * Note, this is different from \p std:: specification
+ */
+__MATH_FUNCTIONS_DECL__ double min(const double a, const float b);
+
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the maximum value of the input \p unsigned \p int arguments.
+ *
+ * Calculate the maximum value of the arguments \p a and \p b.
+ */
+__MATH_FUNCTIONS_DECL__ unsigned int max(const unsigned int a, const unsigned int b);
+
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the maximum value of the input \p int and \p unsigned \p int arguments.
+ *
+ * Calculate the maximum value of the arguments \p a and \p b, perform integer promotion first.
+ */
+__MATH_FUNCTIONS_DECL__ unsigned int max(const int a, const unsigned int b);
+
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the maximum value of the input \p unsigned \p int and \p int arguments.
+ *
+ * Calculate the maximum value of the arguments \p a and \p b, perform integer promotion first.
+ */
+__MATH_FUNCTIONS_DECL__ unsigned int max(const unsigned int a, const int b);
+
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the maximum value of the input \p long \p int arguments.
+ *
+ * Calculate the maximum value of the arguments \p a and \p b.
+ */
+__MATH_FUNCTIONS_DECL__ long int max(const long int a, const long int b);
+
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the maximum value of the input \p unsigned \p long \p int arguments.
+ *
+ * Calculate the maximum value of the arguments \p a and \p b.
+ */
+__MATH_FUNCTIONS_DECL__ unsigned long int max(const unsigned long int a, const unsigned long int b);
+
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the maximum value of the input \p long \p int and \p unsigned \p long \p int arguments.
+ *
+ * Calculate the maximum value of the arguments \p a and \p b, perform integer promotion first.
+ */
+__MATH_FUNCTIONS_DECL__ unsigned long int max(const long int a, const unsigned long int b);
+
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the maximum value of the input \p unsigned \p long \p int and \p long \p int arguments.
+ *
+ * Calculate the maximum value of the arguments \p a and \p b, perform integer promotion first.
+ */
+__MATH_FUNCTIONS_DECL__ unsigned long int max(const unsigned long int a, const long int b);
+
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the maximum value of the input \p long \p long \p int arguments.
+ *
+ * Calculate the maximum value of the arguments \p a and \p b.
+ */
+__MATH_FUNCTIONS_DECL__ long long int max(const long long int a, const long long int b);
+
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the maximum value of the input \p unsigned \p long \p long \p int arguments.
+ *
+ * Calculate the maximum value of the arguments \p a and \p b.
+ */
+__MATH_FUNCTIONS_DECL__ unsigned long long int max(const unsigned long long int a, const unsigned long long int b);
+
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the maximum value of the input \p long \p long \p int and \p unsigned \p long \p long \p int arguments.
+ *
+ * Calculate the maximum value of the arguments \p a and \p b, perform integer promotion first.
+ */
+__MATH_FUNCTIONS_DECL__ unsigned long long int max(const long long int a, const unsigned long long int b);
+
+/**
+ * \ingroup CUDA_MATH_INT
+ * \brief Calculate the maximum value of the input \p unsigned \p long \p long \p int and \p long \p long \p int arguments.
+ *
+ * Calculate the maximum value of the arguments \p a and \p b, perform integer promotion first.
+ */
+__MATH_FUNCTIONS_DECL__ unsigned long long int max(const unsigned long long int a, const long long int b);
+
+/**
+ * \ingroup CUDA_MATH_SINGLE
+ * \brief Calculate the maximum value of the input \p float arguments.
+ *
+ * Calculate the maximum value of the arguments \p a and \p b.
+ * Behavior is equivalent to ::fmaxf() function.
+ *
+ * Note, this is different from \p std:: specification
+ */
+__MATH_FUNCTIONS_DECL__ float max(const float a, const float b);
+
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the maximum value of the input \p float arguments.
+ *
+ * Calculate the maximum value of the arguments \p a and \p b.
+ * Behavior is equivalent to ::fmax() function.
+ *
+ * Note, this is different from \p std:: specification
+ */
+__MATH_FUNCTIONS_DECL__ double max(const double a, const double b);
+
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the maximum value of the input \p float and \p double arguments.
+ *
+ * Convert \p float argument \p a to \p double, followed by ::fmax().
+ *
+ * Note, this is different from \p std:: specification
+ */
+__MATH_FUNCTIONS_DECL__ double max(const float a, const double b);
+
+/**
+ * \ingroup CUDA_MATH_DOUBLE
+ * \brief Calculate the maximum value of the input \p double and \p float arguments.
+ *
+ * Convert \p float argument \p b to \p double, followed by ::fmax().
+ *
+ * Note, this is different from \p std:: specification
+ */
+__MATH_FUNCTIONS_DECL__ double max(const double a, const float b);
+
+#undef __MATH_FUNCTIONS_DECL__
+#undef __MATH_FUNCTIONS_DEVICE_DECL__
+
+/*******************************************************************************
+* *
+* *
+* *
+*******************************************************************************/
+#undef EXCLUDE_FROM_RTC
+
+extern "C"{
+inline __device__ void *__nv_aligned_device_malloc(size_t size, size_t align)
+{
+ __device__ void *__nv_aligned_device_malloc_impl(size_t, size_t);
+ return __nv_aligned_device_malloc_impl(size, align);
+}
+}
+
+#endif /* __cplusplus && __CUDACC__ */
+
+#define EXCLUDE_FROM_RTC
+
+#if !defined(__CUDACC__)
+
+/*******************************************************************************
+* *
+* ONLY FOR HOST CODE! NOT FOR DEVICE EXECUTION *
+* *
+*******************************************************************************/
+
+#include
+
+#if defined(_WIN32)
+#pragma warning (push)
+#pragma warning (disable : 4211)
+
+#endif /* _WIN32 */
+
+__func__(double rsqrt(double a));
+
+__func__(double rcbrt(double a));
+
+__func__(double sinpi(double a));
+
+__func__(double cospi(double a));
+
+__func__(void sincospi(double a, double *sptr, double *cptr));
+
+__func__(double erfinv(double a));
+
+__func__(double erfcinv(double a));
+
+__func__(double normcdfinv(double a));
+
+__func__(double normcdf(double a));
+
+__func__(double erfcx(double a));
+
+__func__(float rsqrtf(float a));
+
+__func__(float rcbrtf(float a));
+
+__func__(float sinpif(float a));
+
+__func__(float cospif(float a));
+
+__func__(void sincospif(float a, float *sptr, float *cptr));
+
+__func__(float erfinvf(float a));
+
+__func__(float erfcinvf(float a));
+
+__func__(float normcdfinvf(float a));
+
+__func__(float normcdff(float a));
+
+__func__(float erfcxf(float a));
+
+__func__(int min(int a, int b));
+
+__func__(unsigned int umin(unsigned int a, unsigned int b));
+
+__func__(long long int llmin(long long int a, long long int b));
+
+__func__(unsigned long long int ullmin(unsigned long long int a, unsigned long long int b));
+
+__func__(int max(int a, int b));
+
+__func__(unsigned int umax(unsigned int a, unsigned int b));
+
+__func__(long long int llmax(long long int a, long long int b));
+
+__func__(unsigned long long int ullmax(unsigned long long int a, unsigned long long int b));
+
+#if defined(_WIN32) || defined(__APPLE__) || defined (__ANDROID__)
+
+__func__(int __isnan(double a));
+
+#endif /* _WIN32 || __APPLE__ || __ANDROID__ */
+
+#if defined(_WIN32) || defined(__APPLE__) || defined (__QNX__)
+
+__func__(void sincos(double a, double *sptr, double *cptr));
+
+#endif /* _WIN32 || __APPLE__ || __QNX__ */
+
+#if defined(_WIN32) || defined(__APPLE__)
+
+__func__(double exp10(double a));
+
+__func__(float exp10f(float a));
+
+__func__(void sincosf(float a, float *sptr, float *cptr));
+
+__func__(int __isinf(double a));
+
+#endif /* _WIN32 || __APPLE__ */
+
+#if (defined(_WIN32) && (!defined(_MSC_VER) || _MSC_VER < 1800)) || defined (__ANDROID__)
+
+__func__(double log2(double a));
+
+#endif /* (_WIN32 && (!defined(_MSC_VER) || _MSC_VER < 1800)) || __ANDROID__ */
+
+#if defined(_WIN32)
+
+__func__(int __signbit(double a));
+
+__func__(int __finite(double a));
+
+__func__(int __signbitl(long double a));
+
+__func__(int __signbitf(float a));
+
+__func__(int __finitel(long double a));
+
+__func__(int __finitef(float a));
+
+__func__(int __isinfl(long double a));
+
+__func__(int __isinff(float a));
+
+__func__(int __isnanl(long double a));
+
+__func__(int __isnanf(float a));
+
+#endif /* _WIN32 */
+
+#if defined(_WIN32) && (!defined(_MSC_VER) || _MSC_VER < 1800)
+
+__func__(double copysign(double a, double b));
+
+__func__(double fmax(double a, double b));
+
+__func__(double fmin(double a, double b));
+
+__func__(double trunc(double a));
+
+__func__(double round(double a));
+
+__func__(long int lround(double a));
+
+__func__(long long int llround(double a));
+
+__func__(double rint(double a));
+
+__func__(double nearbyint(double a));
+
+__func__(long int lrint(double a));
+
+__func__(long long int llrint(double a));
+
+__func__(double fdim(double a, double b));
+
+__func__(double scalbn(double a, int b));
+
+__func__(double scalbln(double a, long int b));
+
+__func__(double exp2(double a));
+
+__func__(double log1p(double a));
+
+__func__(double expm1(double a));
+
+__func__(double cbrt(double a));
+
+__func__(double acosh(double a));
+
+__func__(double asinh(double a));
+
+__func__(double atanh(double a));
+
+__func__(int ilogb(double a));
+
+__func__(double logb(double a));
+
+__func__(double remquo(double a, double b, int *quo));
+
+__func__(double remainder(double a, double b));
+
+__func__(double fma (double a, double b, double c));
+
+__func__(double nextafter(double a, double b));
+
+__func__(double erf(double a));
+
+__func__(double erfc(double a));
+
+__func__(double lgamma(double a));
+
+__func__(unsigned long long int __internal_host_nan_kernel(const char *s));
+
+__func__(double nan(const char *tagp));
+
+__func__(double __host_tgamma_kernel(double a));
+
+__func__(double __host_stirling_poly(double a));
+
+__func__(double __host_tgamma_stirling(double a));
+
+__func__(double tgamma(double a));
+
+__func__(float fmaxf(float a, float b));
+
+__func__(float fminf(float a, float b));
+
+__func__(float roundf(float a));
+
+__func__(long int lroundf(float a));
+
+__func__(long long int llroundf(float a));
+
+__func__(float truncf(float a));
+
+__func__(float rintf(float a));
+
+__func__(float nearbyintf(float a));
+
+__func__(long int lrintf(float a));
+
+__func__(long long int llrintf(float a));
+
+__func__(float logbf(float a));
+
+__func__(float scalblnf(float a, long int b));
+
+__func__(float log2f(float a));
+
+__func__(float exp2f(float a));
+
+__func__(float acoshf(float a));
+
+__func__(float asinhf(float a));
+
+__func__(float atanhf(float a));
+
+__func__(float cbrtf(float a));
+
+__func__(float expm1f(float a));
+
+__func__(float fdimf(float a, float b));
+
+__func__(float log1pf(float a));
+
+__func__(float scalbnf(float a, int b));
+
+__func__(float fmaf(float a, float b, float c));
+
+__func__(int ilogbf(float a));
+
+__func__(float erff(float a));
+
+__func__(float erfcf(float a));
+
+__func__(float lgammaf(float a));
+
+__func__(float tgammaf(float a));
+
+__func__(float remquof(float a, float b, int *quo));
+
+__func__(float remainderf(float a, float b));
+
+__func__(float copysignf(float a, float b));
+
+__func__(float nextafterf(float a, float b));
+
+__func__(float nanf(const char *tagp));
+
+#endif /* _WIN32 && (!defined(_MSC_VER) || _MSC_VER < 1800) */
+
+#if defined(_WIN32)
+#pragma warning (pop)
+#endif /* _WIN32 */
+
+#endif /* !__CUDACC__ */
+
+#undef EXCLUDE_FROM_RTC
+
+#if !defined(__CUDACC_RTC__)
+
+#include "math_functions.hpp"
+
+#endif /* !__CUDACC_RTC__ */
+
+#endif /* !__MATH_FUNCTIONS_H__ */
+
+#if defined(__UNDEF_CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS_MATH_FUNCTIONS_H__)
+#undef __CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS__
+#undef __UNDEF_CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS_MATH_FUNCTIONS_H__
+#endif