diff --git "a/miniCUDA124/include/crt/math_functions.h" "b/miniCUDA124/include/crt/math_functions.h" new file mode 100644--- /dev/null +++ "b/miniCUDA124/include/crt/math_functions.h" @@ -0,0 +1,12208 @@ +/* + * Copyright 1993-2023 NVIDIA Corporation. All rights reserved. + * + * NOTICE TO LICENSEE: + * + * This source code and/or documentation ("Licensed Deliverables") are + * subject to NVIDIA intellectual property rights under U.S. and + * international Copyright laws. + * + * These Licensed Deliverables contained herein is PROPRIETARY and + * CONFIDENTIAL to NVIDIA and is being provided under the terms and + * conditions of a form of NVIDIA software license agreement by and + * between NVIDIA and Licensee ("License Agreement") or electronically + * accepted by Licensee. Notwithstanding any terms or conditions to + * the contrary in the License Agreement, reproduction or disclosure + * of the Licensed Deliverables to any third party without the express + * written consent of NVIDIA is prohibited. + * + * NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE + * LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE + * SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS + * PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND. + * NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED + * DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY, + * NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE. + * NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE + * LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY + * SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY + * DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, + * WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS + * ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE + * OF THESE LICENSED DELIVERABLES. + * + * U.S. Government End Users. These Licensed Deliverables are a + * "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT + * 1995), consisting of "commercial computer software" and "commercial + * computer software documentation" as such terms are used in 48 + * C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government + * only as a commercial end item. Consistent with 48 C.F.R.12.212 and + * 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all + * U.S. Government End Users acquire the Licensed Deliverables with + * only those rights set forth herein. + * + * Any use of the Licensed Deliverables in individual and commercial + * software must include, in the user documentation and internal + * comments to the code, the above Disclaimer and U.S. Government End + * Users Notice. + */ + +#if !defined(__CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS__) +#if defined(_MSC_VER) +#pragma message("crt/math_functions.h is an internal header file and must not be used directly. Please use cuda_runtime_api.h or cuda_runtime.h instead.") +#else +#warning "crt/math_functions.h is an internal header file and must not be used directly. Please use cuda_runtime_api.h or cuda_runtime.h instead." +#endif +#define __CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS__ +#define __UNDEF_CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS_MATH_FUNCTIONS_H__ +#endif + +#if !defined(__MATH_FUNCTIONS_H__) +#define __MATH_FUNCTIONS_H__ + +#if defined(__QNX__) && (__GNUC__ >= 5) && defined(__CUDACC__) +#if __has_include(<__config>) +#include <__config> +#endif +#endif + +/** + * \defgroup CUDA_MATH Mathematical Functions + * + * CUDA mathematical functions are always available in device code. + * + * Host implementations of the common mathematical functions are mapped + * in a platform-specific way to standard math library functions, provided + * by the host compiler and respective host libm where available. + * Some functions, not available with the host compilers, are implemented + * in crt/math_functions.hpp header file. + * For example, see ::erfinv(). Other, less common functions, + * like ::rhypot(), ::cyl_bessel_i0() are only available in device code. + * + * Note that many floating-point and integer functions names are + * overloaded for different argument types. For example, the ::log() + * function has the following prototypes: + * \code + * double log(double x); + * float log(float x); + * float logf(float x); + * \endcode + * + * Note also that due to implementation constraints, certain math functions + * from std:: namespace may be callable in device code even via explicitly + * qualified std:: names. However, such use is discouraged, since this + * capability is unsupported, unverified, undocumented, not portable, and + * may change without notice. + */ + +/******************************************************************************* +* * +* * +* * +*******************************************************************************/ + +#if defined(__cplusplus) && defined(__CUDACC__) + +/******************************************************************************* +* * +* * +* * +*******************************************************************************/ + +#include "builtin_types.h" +#include "host_defines.h" + +//NOTE: For NVRTC, these declarations have been moved into the compiler (to reduce compile time) +#define EXCLUDE_FROM_RTC + +/******************************************************************************* +* * +* * +* * +*******************************************************************************/ + +extern "C" +{ + +/* Define math function DOXYGEN toplevel groups, functions will + be added to these groups later. +*/ +/** + * \defgroup CUDA_MATH_SINGLE Single Precision Mathematical Functions + * This section describes single precision mathematical functions. + * To use these functions you do not need to include any additional + * header files in your program. + */ + +/** + * \defgroup CUDA_MATH_DOUBLE Double Precision Mathematical Functions + * This section describes double precision mathematical functions. + * To use these functions you do not need to include any additional + * header files in your program. + */ + +/** + * \defgroup CUDA_MATH_INT Integer Mathematical Functions + * This section describes integer mathematical functions. + * To use these functions you do not need to include any additional + * header files in your program. + */ + +/** + * \defgroup CUDA_MATH_INTRINSIC_SINGLE Single Precision Intrinsics + * This section describes single precision intrinsic functions that are + * only supported in device code. + * To use these functions you do not need to include any additional + * header files in your program. + */ + +/** + * \defgroup CUDA_MATH_INTRINSIC_DOUBLE Double Precision Intrinsics + * This section describes double precision intrinsic functions that are + * only supported in device code. + * To use these functions you do not need to include any additional + * header files in your program. + */ + +/** + * \defgroup CUDA_MATH_INTRINSIC_INT Integer Intrinsics + * This section describes integer intrinsic functions that are + * only supported in device code. + * To use these functions you do not need to include any additional + * header files in your program. + */ + +/** + * \defgroup CUDA_MATH_INTRINSIC_CAST Type Casting Intrinsics + * This section describes type casting intrinsic functions that are + * only supported in device code. + * To use these functions you do not need to include any additional + * header files in your program. + */ + +/** + * + * \defgroup CUDA_MATH_INTRINSIC_SIMD SIMD Intrinsics + * This section describes SIMD intrinsic functions that are + * only supported in device code. + * To use these functions you do not need to include any additional + * header files in your program. + */ + + +/** + * @} + */ +#define __DEVICE_FUNCTIONS_DECL__ __host__ __device__ +#if !defined(_MSC_VER) +#define __CUDA_MATH_CRTIMP +#else +#if _MSC_VER < 1900 +#define __CUDA_MATH_CRTIMP _CRTIMP +#else +#define __CUDA_MATH_CRTIMP _ACRTIMP +#endif +#endif + +#if defined(__ANDROID__) && (__ANDROID_API__ <= 20) && !defined(__aarch64__) +static __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __cudart_builtin__ int abs(int); +static __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __cudart_builtin__ long int labs(long int); +static __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __cudart_builtin__ long long int llabs(long long int); +#else /* __ANDROID__ */ +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +namespace std { +#endif +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the absolute value of the input \p int argument. + * + * Calculate the absolute value of the input argument \p a. + * + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __cudart_builtin__ int __cdecl abs(int a) __THROW; +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the absolute value of the input \p long \p int argument. + * + * Calculate the absolute value of the input argument \p a. + * + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __cudart_builtin__ long int __cdecl labs(long int a) __THROW; +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the absolute value of the input \p long \p long \p int argument. + * + * Calculate the absolute value of the input argument \p a. + * + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __cudart_builtin__ long long int llabs(long long int a) __THROW; +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +} +#endif +#endif /* __ANDROID__ */ + +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +/* put all math functions in std */ +namespace std { +#endif +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the absolute value of the input argument. + * + * Calculate the absolute value of the input argument \p x. + * + * \return + * Returns the absolute value of the input argument. + * - fabs( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * - fabs( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns +0. + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl fabs(double x) __THROW; +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the absolute value of its argument + * + * Calculate the absolute value of the input argument \p x. + * + * \return + * Returns the absolute value of its argument. + * - fabsf( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * - fabsf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns +0. + * - fabsf(NaN) returns an unspecified NaN. + * + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float fabsf(float x) __THROW; +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +} /* std */ +#endif +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the minimum value of the input \p int arguments. + * + * Calculate the minimum value of the arguments \p a and \p b. + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int min(const int a, const int b); +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the minimum value of the input \p unsigned \p int arguments. + * + * Calculate the minimum value of the arguments \p a and \p b. + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ unsigned int umin(const unsigned int a, const unsigned int b); +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the minimum value of the input \p long \p long \p int arguments. + * + * Calculate the minimum value of the arguments \p a and \p b. + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ long long int llmin(const long long int a, const long long int b); +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the minimum value of the input \p unsigned \p long \p long \p int arguments. + * + * Calculate the minimum value of the arguments \p a and \p b. + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ unsigned long long int ullmin(const unsigned long long int a, const unsigned long long int b); + +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +namespace std { +#endif +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Determine the minimum numeric value of the arguments. + * + * Determines the minimum numeric value of the arguments \p x and \p y. Treats NaN + * arguments as missing data. If one argument is a NaN and the other is legitimate numeric + * value, the numeric value is chosen. + * + * \return + * Returns the minimum numeric value of the arguments \p x and \p y. + * - If both arguments are NaN, returns NaN. + * - If one argument is NaN, returns the numeric argument. + * + * \note_accuracy_single + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float fminf(float x, float y) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl fminf(float x, float y); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Determine the minimum numeric value of the arguments. + * + * Determines the minimum numeric value of the arguments \p x and \p y. Treats NaN + * arguments as missing data. If one argument is a NaN and the other is legitimate numeric + * value, the numeric value is chosen. + * + * \return + * Returns the minimum numeric value of the arguments \p x and \p y. + * - If both arguments are NaN, returns NaN. + * - If one argument is NaN, returns the numeric argument. + * + * \note_accuracy_double + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double fmin(double x, double y) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl fmin(double x, double y); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +} /* std */ +#endif +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the maximum value of the input \p int arguments. + * + * Calculate the maximum value of the arguments \p a and \p b. + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int max(const int a, const int b); + +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the maximum value of the input \p unsigned \p int arguments. + * + * Calculate the maximum value of the arguments \p a and \p b. + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ unsigned int umax(const unsigned int a, const unsigned int b); +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the maximum value of the input \p long \p long \p int arguments. + * + * Calculate the maximum value of the arguments \p a and \p b. + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ long long int llmax(const long long int a, const long long int b); +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the maximum value of the input \p unsigned \p long \p long \p int arguments. + * + * Calculate the maximum value of the arguments \p a and \p b. + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ unsigned long long int ullmax(const unsigned long long int a, const unsigned long long int b); + +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +namespace std { +#endif +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Determine the maximum numeric value of the arguments. + * + * Determines the maximum numeric value of the arguments \p x and \p y. Treats NaN + * arguments as missing data. If one argument is a NaN and the other is legitimate numeric + * value, the numeric value is chosen. + * + * \return + * Returns the maximum numeric values of the arguments \p x and \p y. + * - If both arguments are NaN, returns NaN. + * - If one argument is NaN, returns the numeric argument. + * + * \note_accuracy_single + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float fmaxf(float x, float y) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl fmaxf(float x, float y); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Determine the maximum numeric value of the arguments. + * + * Determines the maximum numeric value of the arguments \p x and \p y. Treats NaN + * arguments as missing data. If one argument is a NaN and the other is legitimate numeric + * value, the numeric value is chosen. + * + * \return + * Returns the maximum numeric values of the arguments \p x and \p y. + * - If both arguments are NaN, returns NaN. + * - If one argument is NaN, returns the numeric argument. + * + * \note_accuracy_double + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double fmax(double, double) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl fmax(double, double); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the sine of the input argument. + * + * Calculate the sine of the input argument \p x (measured in radians). + * + * \return + * - sin( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - sin( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns NaN. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl sin(double x) __THROW; +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the cosine of the input argument. + * + * Calculate the cosine of the input argument \p x (measured in radians). + * + * \return + * - cos( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns 1. + * - cos( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns NaN. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl cos(double x) __THROW; +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +} /* std */ +#endif + +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the sine and cosine of the first input argument. + * + * Calculate the sine and cosine of the first input argument \p x (measured + * in radians). The results for sine and cosine are written into the + * second argument, \p sptr, and, respectively, third argument, \p cptr. + * + * \return + * - none + * + * \see ::sin() and ::cos(). + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ void sincos(double x, double *sptr, double *cptr) __THROW; +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the sine and cosine of the first input argument. + * + * Calculate the sine and cosine of the first input argument \p x (measured + * in radians). The results for sine and cosine are written into the second + * argument, \p sptr, and, respectively, third argument, \p cptr. + * + * \return + * - none + * + * \see ::sinf() and ::cosf(). + * \note_accuracy_single + * \note_fastmath + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ void sincosf(float x, float *sptr, float *cptr) __THROW; + +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +namespace std { +#endif +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the tangent of the input argument. + * + * Calculate the tangent of the input argument \p x (measured in radians). + * + * \return + * - tan( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - tan( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns NaN. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl tan(double x) __THROW; +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the square root of the input argument. + * + * Calculate the nonnegative square root of \p x, + * \latexonly $\sqrt{x}$ \endlatexonly + * \xmlonly + * + * + * + * x + * + * + * \endxmlonly. + * + * \return + * Returns + * \latexonly $\sqrt{x}$ \endlatexonly + * \xmlonly + * + * + * + * x + * + * + * \endxmlonly. + * - sqrt( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - sqrt( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * - sqrt(\p x) returns NaN if \p x is less than 0. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl sqrt(double x) __THROW; +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +} /* std */ +#endif +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the reciprocal of the square root of the input argument. + * + * Calculate the reciprocal of the nonnegative square root of \p x, + * \latexonly $1/\sqrt{x}$ \endlatexonly + * \xmlonly + * + * + * 1 + * + * / + * + * + * x + * + * + * \endxmlonly. + * + * \return + * Returns + * \latexonly $1/\sqrt{x}$ \endlatexonly + * \xmlonly + * + * + * 1 + * + * / + * + * + * x + * + * + * \endxmlonly. + * - rsqrt( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns +0. + * - rsqrt( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * \endxmlonly. + * - rsqrt(\p x) returns NaN if \p x is less than 0. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double rsqrt(double x); + +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the reciprocal of the square root of the input argument. + * + * Calculate the reciprocal of the nonnegative square root of \p x, + * \latexonly $1/\sqrt{x}$ \endlatexonly + * \xmlonly + * + * + * 1 + * + * / + * + * + * x + * + * + * \endxmlonly. + * + * \return + * Returns + * \latexonly $1/\sqrt{x}$ \endlatexonly + * \xmlonly + * + * + * 1 + * + * / + * + * + * x + * + * + * \endxmlonly. + * - rsqrtf( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns +0. + * - rsqrtf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * \endxmlonly. + * - rsqrtf(\p x) returns NaN if \p x is less than 0. + * + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float rsqrtf(float x); + +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +namespace std { +#endif +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the base 2 logarithm of the input argument. + * + * Calculate the base 2 logarithm of the input argument \p x. + * + * \return + * - log2( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * \endxmlonly. + * - log2(1) returns +0. + * - log2(\p x) returns NaN for \p x < 0. + * - log2( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * + * \note_accuracy_double + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double log2(double x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl log2(double x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the base 2 exponential of the input argument. + * + * Calculate + * \latexonly $2^x$ \endlatexonly + * \xmlonly + * + * + * + * 2 + * x + * + * + * \endxmlonly, + * the base 2 exponential of the input argument \p x. + * + * \return + * - exp2( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns 1. + * - exp2( + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * - + * + * + * \endxmlonly + * ) returns +0. + * - exp2( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * + * \note_accuracy_double + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double exp2(double x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl exp2(double x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the base 2 exponential of the input argument. + * + * Calculate + * \latexonly $2^x$ \endlatexonly + * \xmlonly + * + * + * + * 2 + * x + * + * + * \endxmlonly, + * the base 2 exponential of the input argument \p x. + * + * \return + * - exp2f( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns 1. + * - exp2f( + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * - + * + * + * \endxmlonly + * ) returns +0. + * - exp2f( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * + * \note_accuracy_single + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float exp2f(float x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl exp2f(float x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +} /* std */ +#endif +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the base 10 exponential of the input argument. + * + * Calculate + * \latexonly $10^x$ \endlatexonly + * \xmlonly + * + * + * + * 10 + * x + * + * + * \endxmlonly, + * the base 10 exponential of the input argument \p x. + * + * \return + * - exp10( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns 1. + * - exp10( + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * - + * + * + * \endxmlonly + * ) returns +0. + * - exp10( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double exp10(double x) __THROW; + +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the base 10 exponential of the input argument. + * + * Calculate + * \latexonly $10^x$ \endlatexonly + * \xmlonly + * + * + * + * 10 + * x + * + * + * \endxmlonly, + * the base 10 exponential of the input argument \p x. + * + * \return + * - exp10f( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns 1. + * - exp10f( + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * - + * + * + * \endxmlonly + * ) returns +0. + * - exp10f( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * + * \note_accuracy_single + * \note_fastmath + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float exp10f(float x) __THROW; + +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +namespace std { +#endif +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the base + * \latexonly $e$ \endlatexonly + * \xmlonly + * + * + * e + * + * + * \endxmlonly + * exponential of the input argument, minus 1. + * + * Calculate + * \latexonly $e^x$ \endlatexonly + * \xmlonly + * + * + * + * e + * x + * + * + * \endxmlonly + * -1, the base + * \latexonly $e$ \endlatexonly + * \xmlonly + * + * + * e + * + * + * \endxmlonly + * exponential of the input argument \p x, minus 1. + * + * \return + * - expm1( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly. + * - expm1( + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * - + * + * + * \endxmlonly + * ) returns -1. + * - expm1( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * + * \note_accuracy_double + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double expm1(double x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl expm1(double x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the base + * \latexonly $e$ \endlatexonly + * \xmlonly + * + * + * e + * + * + * \endxmlonly + * exponential of the input argument, minus 1. + * + * Calculate + * \latexonly $e^x$ \endlatexonly + * \xmlonly + * + * + * + * e + * x + * + * + * \endxmlonly + * -1, the base + * \latexonly $e$ \endlatexonly + * \xmlonly + * + * + * e + * + * + * \endxmlonly + * exponential of the input argument \p x, minus 1. + * + * \return + * - expm1f( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly. + * - expm1f( + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * - + * + * + * \endxmlonly + * ) returns -1. + * - expm1f( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * + * \note_accuracy_single + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float expm1f(float x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl expm1f(float x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the base 2 logarithm of the input argument. + * + * Calculate the base 2 logarithm of the input argument \p x. + * + * \return + * - log2f( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * \endxmlonly. + * - log2f(1) returns +0. + * - log2f(\p x) returns NaN for \p x < 0. + * - log2f( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * + * \note_accuracy_single + * \note_fastmath + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float log2f(float x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl log2f(float x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the base 10 logarithm of the input argument. + * + * Calculate the base 10 logarithm of the input argument \p x. + * + * \return + * - log10( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * \endxmlonly. + * - log10(1) returns +0. + * - log10(\p x) returns NaN for \p x < 0. + * - log10( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl log10(double x) __THROW; +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the base + * \latexonly $e$ \endlatexonly + * \xmlonly + * + * + * e + * + * + * \endxmlonly + * logarithm of the input argument. + * + * Calculate the base + * \latexonly $e$ \endlatexonly + * \xmlonly + * + * + * e + * + * + * \endxmlonly + * logarithm of the input argument \p x. + * + * \return + * - log( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * \endxmlonly. + * - log(1) returns +0. + * - log(\p x) returns NaN for \p x < 0. + * - log( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl log(double x) __THROW; +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the value of + * \latexonly $\log_{e}(1+x)$ \endlatexonly + * \xmlonly + * + * + * + * log + * + * e + * + * + * ( + * 1 + * + + * x + * ) + * + * \endxmlonly. + * + * Calculate the value of + * \latexonly $\log_{e}(1+x)$ \endlatexonly + * \xmlonly + * + * + * + * log + * + * e + * + * + * ( + * 1 + * + + * x + * ) + * + * \endxmlonly + * of the input argument \p x. + * + * \return + * - log1p( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly. + * - log1p(-1) returns + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * \endxmlonly. + * - log1p(\p x) returns NaN for \p x < -1. + * - log1p( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * + * \note_accuracy_double + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double log1p(double x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl log1p(double x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the value of + * \latexonly $\log_{e}(1+x)$ \endlatexonly + * \xmlonly + * + * + * + * log + * + * e + * + * + * ( + * 1 + * + + * x + * ) + * + * \endxmlonly. + * + * Calculate the value of + * \latexonly $\log_{e}(1+x)$ \endlatexonly + * \xmlonly + * + * + * + * log + * + * e + * + * + * ( + * 1 + * + + * x + * ) + * + * \endxmlonly + * of the input argument \p x. + * + * \return + * - log1pf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly. + * - log1pf(-1) returns + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * \endxmlonly. + * - log1pf(\p x) returns NaN for \p x < -1. + * - log1pf( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * + * \note_accuracy_single + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float log1pf(float x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl log1pf(float x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the largest integer less than or equal to \p x. + * + * Calculates the largest integer value which is less than or equal to \p x. + * + * \return + * Returns + * \latexonly $\lfloor x \rfloor$ \endlatexonly + * \xmlonly + * + * + * + * x + * + * + * + * \endxmlonly + * expressed as a floating-point number. + * - floor( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * \endxmlonly. + * - floor( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl floor(double x) __THROW; +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the base + * \latexonly $e$ \endlatexonly + * \xmlonly + * + * + * e + * + * + * \endxmlonly + * exponential of the input argument. + * + * Calculate + * \latexonly $e^x$ \endlatexonly + * \xmlonly + * + * + * + * e + * x + * + * + * \endxmlonly, + * the base + * \latexonly $e$ \endlatexonly + * \xmlonly + * + * + * e + * + * + * \endxmlonly + * exponential of the input argument \p x. + * + * \return + * - exp( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns 1. + * - exp( + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * - + * + * + * \endxmlonly + * ) returns +0. + * - exp( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl exp(double x) __THROW; +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the hyperbolic cosine of the input argument. + * + * Calculate the hyperbolic cosine of the input argument \p x. + * + * \return + * - cosh( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns 1. + * - cosh( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl cosh(double x) __THROW; +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the hyperbolic sine of the input argument. + * + * Calculate the hyperbolic sine of the input argument \p x. + * + * \return + * - sinh( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - sinh( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl sinh(double x) __THROW; +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the hyperbolic tangent of the input argument. + * + * Calculate the hyperbolic tangent of the input argument \p x. + * + * \return + * - tanh( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - tanh( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 1$ \endlatexonly + * \xmlonly + * + * + * ± + * 1 + * + * + * \endxmlonly. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl tanh(double x) __THROW; +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the nonnegative inverse hyperbolic cosine of the input argument. + * + * Calculate the nonnegative inverse hyperbolic cosine of the input argument \p x. + * + * \return + * Result will be in the interval [0, + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ]. + * - acosh(1) returns 0. + * - acosh(\p x) returns NaN for \p x in the interval [ + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * + * \endxmlonly + * , 1). + * - acosh( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly. + * + * \note_accuracy_double + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double acosh(double x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl acosh(double x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the nonnegative inverse hyperbolic cosine of the input argument. + * + * Calculate the nonnegative inverse hyperbolic cosine of the input argument \p x. + * + * \return + * Result will be in the interval [0, + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ]. + * - acoshf(1) returns 0. + * - acoshf(\p x) returns NaN for \p x in the interval [ + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * + * \endxmlonly + * , 1). + * - acoshf( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly. + * + * \note_accuracy_single + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float acoshf(float x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl acoshf(float x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the inverse hyperbolic sine of the input argument. + * + * Calculate the inverse hyperbolic sine of the input argument \p x. + * + * \return + * - asinh( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - asinh( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * \endxmlonly. + * + * \note_accuracy_double + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double asinh(double x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl asinh(double x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the inverse hyperbolic sine of the input argument. + * + * Calculate the inverse hyperbolic sine of the input argument \p x. + * + * \return + * - asinhf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - asinhf( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * \endxmlonly. + * + * \note_accuracy_single + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float asinhf(float x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl asinhf(float x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the inverse hyperbolic tangent of the input argument. + * + * Calculate the inverse hyperbolic tangent of the input argument \p x. + * + * \return + * - atanh( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - atanh( + * \latexonly $\pm 1$ \endlatexonly + * \xmlonly + * + * + * ± + * 1 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * \endxmlonly. + * - atanh(\p x) returns NaN for \p x outside interval [-1, 1]. + * + * \note_accuracy_double + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double atanh(double x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl atanh(double x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the inverse hyperbolic tangent of the input argument. + * + * Calculate the inverse hyperbolic tangent of the input argument \p x. + * + * \return + * - atanhf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - atanhf( + * \latexonly $\pm 1$ \endlatexonly + * \xmlonly + * + * + * ± + * 1 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * \endxmlonly. + * - atanhf(\p x) returns NaN for \p x outside interval [-1, 1]. + * + * \note_accuracy_single + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float atanhf(float x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl atanhf(float x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the value of + * \latexonly $x\cdot 2^{exp}$ \endlatexonly + * \xmlonly + * + * + * x + * + * + * 2 + * + * e + * x + * p + * + * + * + * \endxmlonly. + * + * Calculate the value of + * \latexonly $x\cdot 2^{exp}$ \endlatexonly + * \xmlonly + * + * + * x + * + * + * 2 + * + * e + * x + * p + * + * + * + * + * \endxmlonly + * of the input arguments \p x and \p exp. + * + * \return + * - ldexp(\p x, \p exp) is equivalent to scalbn(\p x, \p exp). + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl ldexp(double x, int exp) __THROW; +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the value of + * \latexonly $x\cdot 2^{exp}$ \endlatexonly + * \xmlonly + * + * + * x + * + * + * 2 + * + * e + * x + * p + * + * + * + * \endxmlonly. + * + * Calculate the value of + * \latexonly $x\cdot 2^{exp}$ \endlatexonly + * \xmlonly + * + * + * x + * + * + * 2 + * + * e + * x + * p + * + * + * + * + * \endxmlonly + * of the input arguments \p x and \p exp. + * + * \return + * - ldexpf(\p x, \p exp) is equivalent to scalbnf(\p x, \p exp). + * + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float ldexpf(float x, int exp) __THROW; +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the floating-point representation of the exponent of the input argument. + * + * Calculate the floating-point representation of the exponent of the input argument \p x. + * + * \return + * - logb( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * + * \endxmlonly. + * - logb( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly. + * + * \note_accuracy_double + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double logb(double x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl logb(double x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the floating-point representation of the exponent of the input argument. + * + * Calculate the floating-point representation of the exponent of the input argument \p x. + * + * \return + * - logbf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * + * \endxmlonly. + * - logbf( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly. + * + * \note_accuracy_single + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float logbf(float x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl logbf(float x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Compute the unbiased integer exponent of the argument. + * + * Calculates the unbiased integer exponent of the input argument \p x. + * + * \return + * - If successful, returns the unbiased exponent of the argument. + * - ilogb( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns INT_MIN. + * - ilogb(NaN) returns INT_MIN. + * - ilogb( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns INT_MAX. + * - Note: above behavior does not take into account FP_ILOGB0 nor FP_ILOGBNAN. + * + * \note_accuracy_double + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int ilogb(double x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP int __cdecl ilogb(double x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Compute the unbiased integer exponent of the argument. + * + * Calculates the unbiased integer exponent of the input argument \p x. + * + * \return + * - If successful, returns the unbiased exponent of the argument. + * - ilogbf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns INT_MIN. + * - ilogbf(NaN) returns INT_MIN. + * - ilogbf( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns INT_MAX. + * - Note: above behavior does not take into account FP_ILOGB0 nor FP_ILOGBNAN. + * + * \note_accuracy_single + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int ilogbf(float x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP int __cdecl ilogbf(float x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Scale floating-point input by integer power of two. + * + * Scale \p x by + * \latexonly $2^n$ \endlatexonly + * \xmlonly + * + * + * + * 2 + * n + * + * + * + * \endxmlonly + * by efficient manipulation of the floating-point + * exponent. + * + * \return + * Returns \p x * + * \latexonly $2^n$ \endlatexonly + * \xmlonly + * + * + * + * 2 + * n + * + * + * \endxmlonly. + * - scalbn( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , \p n) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - scalbn(\p x, 0) returns \p x. + * - scalbn( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * , \p n) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * \endxmlonly. + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double scalbn(double x, int n) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl scalbn(double x, int n); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Scale floating-point input by integer power of two. + * + * Scale \p x by + * \latexonly $2^n$ \endlatexonly + * \xmlonly + * + * + * + * 2 + * n + * + * + * + * \endxmlonly + * by efficient manipulation of the floating-point + * exponent. + * + * \return + * Returns \p x * + * \latexonly $2^n$ \endlatexonly + * \xmlonly + * + * + * + * 2 + * n + * + * + * \endxmlonly. + * - scalbnf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , \p n) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - scalbnf(\p x, 0) returns \p x. + * - scalbnf( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * , \p n) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * \endxmlonly. + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float scalbnf(float x, int n) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl scalbnf(float x, int n); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Scale floating-point input by integer power of two. + * + * Scale \p x by + * \latexonly $2^n$ \endlatexonly + * \xmlonly + * + * + * + * 2 + * n + * + * + * + * \endxmlonly + * by efficient manipulation of the floating-point + * exponent. + * + * \return + * Returns \p x * + * \latexonly $2^n$ \endlatexonly + * \xmlonly + * + * + * + * 2 + * n + * + * + * \endxmlonly. + * - scalbln( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , \p n) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - scalbln(\p x, 0) returns \p x. + * - scalbln( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * , \p n) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * \endxmlonly. + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double scalbln(double x, long int n) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl scalbln(double x, long int n); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Scale floating-point input by integer power of two. + * + * Scale \p x by + * \latexonly $2^n$ \endlatexonly + * \xmlonly + * + * + * + * 2 + * n + * + * + * + * \endxmlonly + * by efficient manipulation of the floating-point + * exponent. + * + * \return + * Returns \p x * + * \latexonly $2^n$ \endlatexonly + * \xmlonly + * + * + * + * 2 + * n + * + * + * \endxmlonly. + * - scalblnf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , \p n) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - scalblnf(\p x, 0) returns \p x. + * - scalblnf( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * , \p n) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * \endxmlonly. + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float scalblnf(float x, long int n) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl scalblnf(float x, long int n); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Extract mantissa and exponent of a floating-point value + * + * Decompose the floating-point value \p x into a component \p m for the + * normalized fraction element and another term \p n for the exponent. + * The absolute value of \p m will be greater than or equal to 0.5 and + * less than 1.0 or it will be equal to 0; + * \latexonly $x = m\cdot 2^n$ \endlatexonly + * \xmlonly + * + * + * x + * = + * m + * + * + * 2 + * n + * + * + * \endxmlonly. + * The integer exponent \p n will be stored in the location to which \p nptr points. + * + * \return + * Returns the fractional component \p m. + * - frexp( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , \p nptr) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * and stores zero in the location pointed to by \p nptr. + * - frexp( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * , \p nptr) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * and stores an unspecified value in the + * location to which \p nptr points. + * - frexp(NaN, \p y) returns a NaN and stores an unspecified value in the location to which \p nptr points. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl frexp(double x, int *nptr) __THROW; +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Extract mantissa and exponent of a floating-point value + * + * Decomposes the floating-point value \p x into a component \p m for the + * normalized fraction element and another term \p n for the exponent. + * The absolute value of \p m will be greater than or equal to 0.5 and + * less than 1.0 or it will be equal to 0; + * \latexonly $x = m\cdot 2^n$ \endlatexonly + * \xmlonly + * + * + * x + * = + * m + * + * + * 2 + * n + * + * + * \endxmlonly. + * The integer exponent \p n will be stored in the location to which \p nptr points. + * + * \return + * Returns the fractional component \p m. + * - frexpf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , \p nptr) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * and stores zero in the location pointed to by \p nptr. + * - frexpf( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * , \p nptr) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * and stores an unspecified value in the + * location to which \p nptr points. + * - frexpf(NaN, \p y) returns a NaN and stores an unspecified value in the location to which \p nptr points. + * + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float frexpf(float x, int *nptr) __THROW; +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Round to nearest integer value in floating-point. + * + * Round \p x to the nearest integer value in floating-point format, + * with halfway cases rounded away from zero. + * + * \return + * Returns rounded integer value. + * - round( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - round( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * \endxmlonly. + * + * \note_slow_round See ::rint(). + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double round(double x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl round(double x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Round to nearest integer value in floating-point. + * + * Round \p x to the nearest integer value in floating-point format, + * with halfway cases rounded away from zero. + * + * \return + * Returns rounded integer value. + * - roundf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - roundf( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * \endxmlonly. + * + * \note_slow_round See ::rintf(). + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float roundf(float x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl roundf(float x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Round to nearest integer value. + * + * Round \p x to the nearest integer value, with halfway cases rounded + * away from zero. If the result is outside the range of the return type, + * the behavior is undefined. + * + * \return + * Returns rounded integer value. + * + * \note_slow_round See ::lrint(). + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ long int lround(double x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP long int __cdecl lround(double x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Round to nearest integer value. + * + * Round \p x to the nearest integer value, with halfway cases rounded + * away from zero. If the result is outside the range of the return type, + * the behavior is undefined. + * + * \return + * Returns rounded integer value. + * + * \note_slow_round See ::lrintf(). + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ long int lroundf(float x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP long int __cdecl lroundf(float x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Round to nearest integer value. + * + * Round \p x to the nearest integer value, with halfway cases rounded + * away from zero. If the result is outside the range of the return type, + * the behavior is undefined. + * + * \return + * Returns rounded integer value. + * + * \note_slow_round See ::llrint(). + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ long long int llround(double x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP long long int __cdecl llround(double x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Round to nearest integer value. + * + * Round \p x to the nearest integer value, with halfway cases rounded + * away from zero. If the result is outside the range of the return type, + * the behavior is undefined. + * + * \return + * Returns rounded integer value. + * + * \note_slow_round See ::llrintf(). + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ long long int llroundf(float x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP long long int __cdecl llroundf(float x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Round to nearest integer value in floating-point. + * + * Round \p x to the nearest integer value in floating-point format, + * with halfway cases rounded to the nearest even integer value. + * + * \return + * Returns rounded integer value. + * - rint( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - rint( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * \endxmlonly. + */ +#if defined(__CUDA_ARCH__) || defined(__DOXYGEN_ONLY__) +/* + * We don't generate the declaration of rint for host compilation. + * This is acaully a workaround to compile the boost header file when + * Clang 3.8 is used as the host compiler. The boost header file has + * the following example code: + * namespace NS { extern "C" { double rint(double); } + * } + * + * After preprocessing, we get something like below: + * + * extern "C" { double rint(double x) throw(); } + * # 30 "/usr/include/math.h" 3 + * extern "C" { double rint(double x) throw(); } + * namespace NS { extern "C" { double rint(double); } } + * + * Although GCC accepts this output, Clang 3.8 doesn't. + * Furthermore, we cannot change the boost header file by adding "throw()" + * to rint's declaration there. So, as a workaround, we just don't generate + * our re-declaration for the host compilation. + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double rint(double x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl rint(double x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +#endif /* __CUDA_ARCH__ || __DOXYGEN_ONLY__ */ +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Round input to nearest integer value in floating-point. + * + * Round \p x to the nearest integer value in floating-point format, + * with halfway cases rounded to the nearest even integer value. + * + * \return + * Returns rounded integer value. + * - rintf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - rintf( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * \endxmlonly. + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float rintf(float x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl rintf(float x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Round input to nearest integer value. + * + * Round \p x to the nearest integer value, + * with halfway cases rounded to the nearest even integer value. + * If the result is outside the range of the return type, + * the behavior is undefined. + * + * \return + * Returns rounded integer value. + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ long int lrint(double x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP long int __cdecl lrint(double x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Round input to nearest integer value. + * + * Round \p x to the nearest integer value, + * with halfway cases rounded to the nearest even integer value. + * If the result is outside the range of the return type, + * the behavior is undefined. + * + * \return + * Returns rounded integer value. + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ long int lrintf(float x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP long int __cdecl lrintf(float x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Round input to nearest integer value. + * + * Round \p x to the nearest integer value, + * with halfway cases rounded to the nearest even integer value. + * If the result is outside the range of the return type, + * the behavior is undefined. + * + * \return + * Returns rounded integer value. + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ long long int llrint(double x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP long long int __cdecl llrint(double x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Round input to nearest integer value. + * + * Round \p x to the nearest integer value, + * with halfway cases rounded to the nearest even integer value. + * If the result is outside the range of the return type, + * the behavior is undefined. + * + * \return + * Returns rounded integer value. + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ long long int llrintf(float x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP long long int __cdecl llrintf(float x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Round the input argument to the nearest integer. + * + * Round argument \p x to an integer value in double precision floating-point format. Uses round to nearest rounding, with ties rounding to even. + * + * \return + * - nearbyint( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - nearbyint( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * \endxmlonly. + * + * \note_accuracy_double + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double nearbyint(double x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl nearbyint(double x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Round the input argument to the nearest integer. + * + * Round argument \p x to an integer value in single precision floating-point format. Uses round to nearest rounding, with ties rounding to even. + * + * \return + * - nearbyintf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - nearbyintf( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * \endxmlonly. + * + * \note_accuracy_single + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float nearbyintf(float x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl nearbyintf(float x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate ceiling of the input argument. + * + * Compute the smallest integer value not less than \p x. + * + * \return + * Returns + * \latexonly $\lceil x \rceil$ \endlatexonly + * \xmlonly + * + * + * + * x + * + * + * + * \endxmlonly + expressed as a floating-point number. + * - ceil( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - ceil( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * \endxmlonly. + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl ceil(double x) __THROW; +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Truncate input argument to the integral part. + * + * Round \p x to the nearest integer value that does not exceed \p x in + * magnitude. + * + * \return + * Returns truncated integer value. + * - trunc( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - trunc( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * \endxmlonly. + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double trunc(double x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl trunc(double x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Truncate input argument to the integral part. + * + * Round \p x to the nearest integer value that does not exceed \p x in + * magnitude. + * + * \return + * Returns truncated integer value. + * - truncf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - truncf( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * \endxmlonly. + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float truncf(float x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl truncf(float x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Compute the positive difference between \p x and \p y. + * + * Compute the positive difference between \p x and \p y. The positive + * difference is \p x - \p y when \p x > \p y and +0 otherwise. + * + * \return + * Returns the positive difference between \p x and \p y. + * - fdim(\p x, \p y) returns \p x - \p y if \p x > \p y. + * - fdim(\p x, \p y) returns +0 if \p x + * \latexonly $\leq$ \endlatexonly + * \xmlonly + * + * + * + * + * + * \endxmlonly \p y. + * \note_accuracy_single + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double fdim(double x, double y) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl fdim(double x, double y); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Compute the positive difference between \p x and \p y. + * + * Compute the positive difference between \p x and \p y. The positive + * difference is \p x - \p y when \p x > \p y and +0 otherwise. + * + * \return + * Returns the positive difference between \p x and \p y. + * - fdimf(\p x, \p y) returns \p x - \p y if \p x > \p y. + * - fdimf(\p x, \p y) returns +0 if \p x + * \latexonly $\leq$ \endlatexonly + * \xmlonly + * + * + * + * + * + * \endxmlonly \p y. + * \note_accuracy_single + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float fdimf(float x, float y) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl fdimf(float x, float y); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the arc tangent of the ratio of first and second input arguments. + * + * Calculate the principal value of the arc tangent of the ratio of first + * and second input arguments \p y / \p x. The quadrant of the result is + * determined by the signs of inputs \p y and \p x. + * + * \return + * Result will be in radians, in the interval [- + * \latexonly $\pi$ \endlatexonly + * \xmlonly + * + * + * π + * + * + * \endxmlonly + * , + + * \latexonly $\pi$ \endlatexonly + * \xmlonly + * + * + * π + * + * + * \endxmlonly + * ]. + * - atan2( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , -0) returns + * \latexonly $\pm \pi$ \endlatexonly + * \xmlonly + * + * + * ± + * π + * + * + * \endxmlonly. + * - atan2( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , +0) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly. + * - atan2( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , \p x) returns + * \latexonly $\pm \pi$ \endlatexonly + * \xmlonly + * + * + * ± + * π + * + * + * \endxmlonly + * for \p x < 0. + * - atan2( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , \p x) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * for \p x > 0. + * - atan2(\p y, + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $-\pi$ \endlatexonly + * \xmlonly + * + * + * - + * π + * + * + * \endxmlonly + * /2 for \p y < 0. + * - atan2(\p y, + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pi$ \endlatexonly + * \xmlonly + * + * + * π + * + * + * \endxmlonly + * /2 for \p y > 0. + * - atan2( + * \latexonly $\pm y$ \endlatexonly + * \xmlonly + * + * + * ± + * y + * + * + * \endxmlonly + * , + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * - + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \pi$ \endlatexonly + * \xmlonly + * + * + * ± + * π + * + * + * \endxmlonly + * for finite \p y > 0. + * - atan2( + * \latexonly $\pm y$ \endlatexonly + * \xmlonly + * + * + * ± + * y + * + * + * \endxmlonly + * , + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * for finite \p y > 0. + * - atan2( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * , \p x) returns + * \latexonly $\pm \pi$ \endlatexonly + * \xmlonly + * + * + * ± + * π + * + * + * \endxmlonly + * /2 for finite \p x. + * - atan2( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * , + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * - + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 3\pi$ \endlatexonly + * \xmlonly + * + * + * ± + * 3 + * π + * + * + * \endxmlonly + * /4. + * - atan2( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * , + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \pi$ \endlatexonly + * \xmlonly + * + * + * ± + * π + * + * + * \endxmlonly + * /4. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl atan2(double y, double x) __THROW; +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the arc tangent of the input argument. + * + * Calculate the principal value of the arc tangent of the input argument \p x. + * + * \return + * Result will be in radians, in the interval [- + * \latexonly $\pi$ \endlatexonly + * \xmlonly + * + * + * π + * + * + * \endxmlonly + * /2, + + * \latexonly $\pi$ \endlatexonly + * \xmlonly + * + * + * π + * + * + * \endxmlonly + * /2]. + * - atan( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly. + * - atan( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \pi$ \endlatexonly + * \xmlonly + * + * + * ± + * π + * + * + * \endxmlonly + * /2. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl atan(double x) __THROW; +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the arc cosine of the input argument. + * + * Calculate the principal value of the arc cosine of the input argument \p x. + * + * \return + * Result will be in radians, in the interval [0, + * \latexonly $\pi$ \endlatexonly + * \xmlonly + * + * + * π + * + * + * \endxmlonly + * ] for \p x inside [-1, +1]. + * - acos(1) returns +0. + * - acos(\p x) returns NaN for \p x outside [-1, +1]. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl acos(double x) __THROW; +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the arc sine of the input argument. + * + * Calculate the principal value of the arc sine of the input argument \p x. + * + * \return + * Result will be in radians, in the interval [- + * \latexonly $\pi$ \endlatexonly + * \xmlonly + * + * + * π + * + * + * \endxmlonly + * /2, + + * \latexonly $\pi$ \endlatexonly + * \xmlonly + * + * + * π + * + * + * \endxmlonly + * /2] for \p x inside [-1, +1]. + * - asin( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly. + * - asin(\p x) returns NaN for \p x outside [-1, +1]. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl asin(double x) __THROW; +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the square root of the sum of squares of two arguments. + * + * Calculate the length of the hypotenuse of a right triangle whose two sides have lengths + * \p x and \p y without undue overflow or underflow. + * + * \return Returns the length of the hypotenuse + * \latexonly $\sqrt{x^2+y^2}$ \endlatexonly + * \xmlonly + * + * + * + * + * x + * 2 + * + * + + * + * y + * 2 + * + * + * + * \endxmlonly. + * - hypot(\p x,\p y), hypot(\p y,\p x), and hypot(\p x, \p -y) are equivalent. + * - hypot(\p x, + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) is equivalent to fabs(\p x). + * - hypot( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ,\p y) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly, + * even if \p y is a NaN. + * + * \note_accuracy_double + */ +#if defined(_WIN32) +#if defined(_MSC_VER) && _MSC_VER < 1900 +static __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __CRTDECL hypot(double x, double y); +#else +extern _ACRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl hypot(double x, double y); +#endif +#else /* _WIN32 */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double hypot(double x, double y) __THROW; +#endif /* _WIN32 */ + +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +} /* std */ +#endif + +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate one over the square root of the sum of squares of two arguments. + * + * Calculate one over the length of the hypotenuse of a right triangle whose two sides have + * lengths \p x and \p y without undue overflow or underflow. + * + * \return Returns one over the length of the hypotenuse + * \latexonly $\frac{1}{\sqrt{x^2+y^2}}$ \endlatexonly + * \xmlonly + * + * + * + * + * 1 + * + * + * + * + * x + * 2 + * + * + + * + * y + * 2 + * + * + * + * + * + * \endxmlonly. + * - rhypot(\p x,\p y), rhypot(\p y,\p x), and rhypot(\p x, \p -y) are equivalent. + * - rhypot( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ,\p y) returns +0, + * even if \p y is a NaN. + * + * \note_accuracy_double + */ +extern __device__ __device_builtin__ double rhypot(double x, double y) __THROW; + +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +namespace std { +#endif +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the square root of the sum of squares of two arguments. + * + * Calculates the length of the hypotenuse of a right triangle whose two sides have lengths + * \p x and \p y without undue overflow or underflow. + * + * \return Returns the length of the hypotenuse + * \latexonly $\sqrt{x^2+y^2}$ \endlatexonly + * \xmlonly + * + * + * + * + * x + * 2 + * + * + + * + * y + * 2 + * + * + * + * \endxmlonly. + * - hypotf(\p x,\p y), hypotf(\p y,\p x), and hypotf(\p x, \p -y) are equivalent. + * - hypotf(\p x, + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) is equivalent to fabsf(\p x). + * - hypotf( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ,\p y) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly, + * even if \p y is a NaN. + * + * \note_accuracy_single + */ +#if defined(_WIN32) +static __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __CRTDECL hypotf(float x, float y); +#else /* _WIN32 */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float hypotf(float x, float y) __THROW; +#endif /* _WIN32 */ + +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +} /* std */ +#endif + +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate one over the square root of the sum of squares of two arguments. + * + * Calculates one over the length of the hypotenuse of a right triangle whose two sides have + * lengths \p x and \p y without undue overflow or underflow. + * + * \return Returns one over the length of the hypotenuse + * \latexonly $\frac{1}{\sqrt{x^2+y^2}}$ \endlatexonly + * \xmlonly + * + * + * + * + * 1 + * + * + * + * + * x + * 2 + * + * + + * + * y + * 2 + * + * + * + * + * + * \endxmlonly. + * - rhypotf(\p x,\p y), rhypotf(\p y,\p x), and rhypotf(\p x, \p -y) are equivalent. + * - rhypotf( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ,\p y) returns +0, + * even if \p y is a NaN. + * + * \note_accuracy_single + */ +extern __device__ __device_builtin__ float rhypotf(float x, float y) __THROW; + +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the square root of the sum of squares of three coordinates of the argument. + * + * Calculate the length of three dimensional vector in Euclidean space without undue overflow or underflow. + * + * \return Returns the length of 3D vector + * \latexonly $\sqrt{a^2+b^2+c^2}$ \endlatexonly + * \xmlonly + * + * + * + * + * a + * 2 + * + * + + * + * b + * 2 + * + * + + * + * c + * 2 + * + * + * + * \endxmlonly. + * - In the presence of an exactly infinite coordinate + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly + * is returned, even if there are NaNs. + * + * \note_accuracy_double + */ +extern __device__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl norm3d(double a, double b, double c) __THROW; + +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate one over the square root of the sum of squares of three coordinates. + * + * Calculate one over the length of three dimensional vector in Euclidean space without undue overflow or underflow. + * + * \return Returns one over the length of the 3D vector + * \latexonly $\frac{1}{\sqrt{a^2+b^2+c^2}}$ \endlatexonly + * \xmlonly + * + * + * + * + * 1 + * + * + * + * + * a + * 2 + * + * + + * + * b + * 2 + * + * + + * + * c + * 2 + * + * + * + * + * + * \endxmlonly. + * - In the presence of an exactly infinite coordinate + * \latexonly $+0$ \endlatexonly + * \xmlonly + * + * + * + + * 0 + * + * \endxmlonly + * is returned, even if there are NaNs. + * + * \note_accuracy_double + */ +extern __device__ __device_builtin__ double rnorm3d(double a, double b, double c) __THROW; + +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the square root of the sum of squares of four coordinates of the argument. + * + * Calculate the length of four dimensional vector in Euclidean space without undue overflow or underflow. + * + * \return Returns the length of 4D vector + * \latexonly $\sqrt{a^2+b^2+c^2+d^2}$ \endlatexonly + * \xmlonly + * + * + * + * + * a + * 2 + * + * + + * + * b + * 2 + * + * + + * + * c + * 2 + * + * + + * + * d + * 2 + * + * + * + * \endxmlonly. + * - In the presence of an exactly infinite coordinate + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly + * is returned, even if there are NaNs. + * + * \note_accuracy_double + */ +extern __device__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl norm4d(double a, double b, double c, double d) __THROW; + +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate one over the square root of the sum of squares of four coordinates. + * + * Calculate one over the length of four dimensional vector in Euclidean space without undue overflow or underflow. + * + * \return Returns one over the length of the 3D vector + * \latexonly $\frac{1}{\sqrt{a^2+b^2+c^2+d^2}}$ \endlatexonly + * \xmlonly + * + * + * + * + * 1 + * + * + * + * + * + * 2 + * + * + + * + * b + * 2 + * + * + + * + * c + * 2 + * + * + + * + * d + * 2 + * + * + * + * + * + * \endxmlonly. + * - In the presence of an exactly infinite coordinate + * \latexonly $+0$ \endlatexonly + * \xmlonly + * + * + * + + * 0 + * + * \endxmlonly + * is returned, even if there are NaNs. + * + * \note_accuracy_double + */ +extern __device__ __device_builtin__ double rnorm4d(double a, double b, double c, double d) __THROW; + +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the square root of the sum of squares of any number of coordinates. + * + * Calculate the length of a vector p, dimension of which is passed as an argument \p without undue overflow or underflow. + * + * \return Returns the length of the dim-D vector + * \latexonly $\sqrt{\sum_{i=0}^{dim-1} p_i^2}$ \endlatexonly + * \xmlonly + * + * + * + * + * + * p + * 0 + * + * 2 + * + * + + * + * + * p + * 1 + * + * 2 + * + * + ... + + * + * + * p + * + * dim + * - + * 1 + * + * + * 2 + * + * + * + * \endxmlonly. + * - In the presence of an exactly infinite coordinate + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly + * is returned, even if there are NaNs. + * + * \note_accuracy_double + */ + __device__ __device_builtin__ double norm(int dim, double const * p) __THROW; + +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the reciprocal of square root of the sum of squares of any number of coordinates. + * + * Calculates one over the length of vector \p p, dimension of which is passed as an argument, in Euclidean space without undue overflow or underflow. + * + * \return Returns one over the length of the vector + * \latexonly $\frac{1}{\sqrt{\sum_{i=0}^{dim-1} p_i^2}$ \endlatexonly + * \xmlonly + * + * + * + * + * 1 + * + * + * + * + * + * p + * 0 + * + * 2 + * + * + + * + * + * p + * 1 + * + * 2 + * + * + ... + + * + * + * p + * + * dim + * - + * 1 + * + * + * 2 + * + * + * + * + * + * \endxmlonly. + * - In the presence of an exactly infinite coordinate + * \latexonly $+0$ \endlatexonly + * \xmlonly + * + * + * + + * 0 + * + * \endxmlonly + * is returned, even if there are NaNs. + * + * \note_accuracy_double + */ +extern __device__ __device_builtin__ double rnorm(int dim, double const * p) __THROW; + +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the reciprocal of square root of the sum of squares of any number of coordinates. + * + * Calculates one over the length of vector \p p, dimension of which is passed as an argument, in Euclidean space without undue overflow or underflow. + * + * \return Returns one over the length of the vector + * \latexonly $\frac{1}{\sqrt{\sum_{i=0}^{dim-1} p_i^2}$ \endlatexonly + * \xmlonly + * + * + * + * + * 1 + * + * + * + * + * + * p + * 0 + * + * 2 + * + * + + * + * + * p + * 1 + * + * 2 + * + * + ... + + * + * + * p + * + * dim + * - + * 1 + * + * + * 2 + * + * + * + * + * + * \endxmlonly. + * - In the presence of an exactly infinite coordinate + * \latexonly $+0$ \endlatexonly + * \xmlonly + * + * + * + + * 0 + * + * \endxmlonly + * is returned, even if there are NaNs. + * + * \note_accuracy_single + */ + +extern __device__ __device_builtin__ float rnormf(int dim, float const * p) __THROW; + +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the square root of the sum of squares of any number of coordinates. + * + * Calculates the length of a vector \p p, dimension of which is passed as an argument without undue overflow or underflow. + * + * \return Returns the length of the dim-D vector + * \latexonly $\sqrt{\sum_{i=0}^{dim-1} p_i^2}$ \endlatexonly + * \xmlonly + * + * + * + * + * + * p + * 0 + * + * 2 + * + * + + * + * + * p + * 1 + * + * 2 + * + * + ... + + * + * + * p + * + * dim + * - + * 1 + * + * + * 2 + * + * + * + * \endxmlonly. + * - In the presence of an exactly infinite coordinate + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly + * is returned, even if there are NaNs. + * + * \note_accuracy_single + */ + __device__ __device_builtin__ float normf(int dim, float const * p) __THROW; + +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the square root of the sum of squares of three coordinates of the argument. + * + * Calculates the length of three dimensional vector in Euclidean space without undue overflow or underflow. + * + * \return Returns the length of the 3D vector + * \latexonly $\sqrt{a^2+b^2+c^2}$ \endlatexonly + * \xmlonly + * + * + * + * + * a + * 2 + * + * + + * + * b + * 2 + * + * + + * + * c + * 2 + * + * + * + * \endxmlonly. + * - In the presence of an exactly infinite coordinate + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly + * is returned, even if there are NaNs. + * + * \note_accuracy_single + */ + +extern __device__ __device_builtin__ float norm3df(float a, float b, float c) __THROW; + +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate one over the square root of the sum of squares of three coordinates. + * + * Calculates one over the length of three dimension vector in Euclidean space without undue overflow or underflow. + * + * \return Returns one over the length of the 3D vector + * \latexonly $\frac{1}{\sqrt{a^2+b^2+c^2}}$ \endlatexonly + * \xmlonly + * + * + * + * + * 1 + * + * + * + * + * a + * 2 + * + * + + * + * b + * 2 + * + * + + * + * c + * 2 + * + * + * + * + * + * \endxmlonly. + * - In the presence of an exactly infinite coordinate + * \latexonly $+0$ \endlatexonly + * \xmlonly + * + * + * + + * 0 + * + * \endxmlonly + * is returned, even if there are NaNs. + * + * \note_accuracy_single + */ +extern __device__ __device_builtin__ float rnorm3df(float a, float b, float c) __THROW; + +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the square root of the sum of squares of four coordinates of the argument. + * + * Calculates the length of four dimensional vector in Euclidean space without undue overflow or underflow. + * + * \return Returns the length of the 4D vector + * \latexonly $\sqrt{a^2+b^2+c^2+d^2}$ \endlatexonly + * \xmlonly + * + * + * + * + * a + * 2 + * + * + + * + * b + * 2 + * + * + + * + * c + * 2 + * + * + + * + * d + * 2 + * + * + * + * \endxmlonly. + * - In the presence of an exactly infinite coordinate + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly + * is returned, even if there are NaNs. + * + * \note_accuracy_single + */ +extern __device__ __device_builtin__ float norm4df(float a, float b, float c, float d) __THROW; + +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate one over the square root of the sum of squares of four coordinates. + * + * Calculates one over the length of four dimension vector in Euclidean space without undue overflow or underflow. + * + * \return Returns one over the length of the 3D vector + * \latexonly $\frac{1}{\sqrt{a^2+b^2+c^2+d^2}}$ \endlatexonly + * \xmlonly + * + * + * + * + * 1 + * + * + * + * + * a + * 2 + * + * + + * + * b + * 2 + * + * + + * + * c + * 2 + * + * + + * + * d + * 2 + * + * + * + * + * + * \endxmlonly. + * - In the presence of an exactly infinite coordinate + * \latexonly $+0$ \endlatexonly + * \xmlonly + * + * + * + + * 0 + * + * \endxmlonly + * is returned, even if there are NaNs. + * + * \note_accuracy_single + */ +extern __device__ __device_builtin__ float rnorm4df(float a, float b, float c, float d) __THROW; + +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +namespace std { +#endif +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the cube root of the input argument. + * + * Calculate the cube root of \p x, + * \latexonly $x^{1/3}$ \endlatexonly + * \xmlonly + * + * + * + * x + * + * 1 + * + * / + * + * 3 + * + * + * + * \endxmlonly. + * + * \return + * Returns + * \latexonly $x^{1/3}$ \endlatexonly + * \xmlonly + * + * + * + * x + * + * 1 + * + * / + * + * 3 + * + * + * + * \endxmlonly. + * - cbrt( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - cbrt( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * \endxmlonly. + * + * \note_accuracy_double + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double cbrt(double x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl cbrt(double x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the cube root of the input argument. + * + * Calculate the cube root of \p x, + * \latexonly $x^{1/3}$ \endlatexonly + * \xmlonly + * + * + * + * x + * + * 1 + * + * / + * + * 3 + * + * + * + * \endxmlonly. + * + * \return + * Returns + * \latexonly $x^{1/3}$ \endlatexonly + * \xmlonly + * + * + * + * x + * + * 1 + * + * / + * + * 3 + * + * + * + * \endxmlonly. + * - cbrtf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - cbrtf( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * \endxmlonly. + * + * \note_accuracy_single + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float cbrtf(float x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl cbrtf(float x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +} /* std */ +#endif +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate reciprocal cube root function. + * + * Calculate reciprocal cube root function of \p x. + * + * \return + * - rcbrt( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * \endxmlonly. + * - rcbrt( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double rcbrt(double x); + +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate reciprocal cube root function. + * + * Calculate reciprocal cube root function of \p x. + * + * \return + * - rcbrt( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * \endxmlonly. + * - rcbrt( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float rcbrtf(float x); +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the sine of the input argument + * \latexonly $\times \pi$ \endlatexonly + * \xmlonly + * + * + * × + * π + * + * \endxmlonly. + * + * Calculate the sine of \p x + * \latexonly $\times \pi$ \endlatexonly + * \xmlonly + * + * + * × + * π + * + * + * \endxmlonly + * (measured in radians), + * where \p x is the input argument. + * + * \return + * - sinpi( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - sinpi( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns NaN. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double sinpi(double x); +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the sine of the input argument + * \latexonly $\times \pi$ \endlatexonly + * \xmlonly + * + * + * × + * π + * + * \endxmlonly. + * + * Calculate the sine of \p x + * \latexonly $\times \pi$ \endlatexonly + * \xmlonly + * + * + * × + * π + * + * + * \endxmlonly + * (measured in radians), + * where \p x is the input argument. + * + * \return + * - sinpif( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - sinpif( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns NaN. + * + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float sinpif(float x); +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the cosine of the input argument + * \latexonly $\times \pi$ \endlatexonly + * \xmlonly + * + * + * × + * π + * + * \endxmlonly. + * + * Calculate the cosine of \p x + * \latexonly $\times \pi$ \endlatexonly + * \xmlonly + * + * + * × + * π + * + * + * \endxmlonly + * (measured in radians), + * where \p x is the input argument. + * + * \return + * - cospi( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns 1. + * - cospi( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns NaN. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double cospi(double x); +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the cosine of the input argument + * \latexonly $\times \pi$ \endlatexonly + * \xmlonly + * + * + * × + * π + * + * \endxmlonly. + * + * Calculate the cosine of \p x + * \latexonly $\times \pi$ \endlatexonly + * \xmlonly + * + * + * × + * π + * + * + * \endxmlonly + * (measured in radians), + * where \p x is the input argument. + * + * \return + * - cospif( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns 1. + * - cospif( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns NaN. + * + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float cospif(float x); +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the sine and cosine of the first input argument + * \latexonly $\times \pi$ \endlatexonly + * \xmlonly + * + * + * × + * π + * + * \endxmlonly. + * + * Calculate the sine and cosine of the first input argument, \p x (measured in radians), + * \latexonly $\times \pi$ \endlatexonly + * \xmlonly + * + * + * × + * π + * + * \endxmlonly. The results for sine and cosine are written into the + * second argument, \p sptr, and, respectively, third argument, \p cptr. + * + * \return + * - none + * + * \see ::sinpi() and ::cospi(). + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ void sincospi(double x, double *sptr, double *cptr); +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the sine and cosine of the first input argument + * \latexonly $\times \pi$ \endlatexonly + * \xmlonly + * + * + * × + * π + * + * \endxmlonly. + * + * Calculate the sine and cosine of the first input argument, \p x (measured in radians), + * \latexonly $\times \pi$ \endlatexonly + * \xmlonly + * + * + * × + * π + * + * \endxmlonly. The results for sine and cosine are written into the + * second argument, \p sptr, and, respectively, third argument, \p cptr. + * + * \return + * - none + * + * \see ::sinpif() and ::cospif(). + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ void sincospif(float x, float *sptr, float *cptr); + +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +namespace std { +#endif +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the value of first argument to the power of second argument. + * + * Calculate the value of \p x to the power of \p y. + * + * \return + * - pow( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , \p y) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * for \p y an odd integer less than 0. + * - pow( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , \p y) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * +* + + * + * + * + * \endxmlonly + * for \p y less than 0 and not an odd integer. + * - pow( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , \p y) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * for \p y an odd integer greater than 0. + * - pow( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , \p y) returns +0 for \p y > 0 and not an odd integer. + * - pow(-1, + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns 1. + * - pow(+1, \p y) returns 1 for any \p y, even a NaN. + * - pow(\p x, + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns 1 for any \p x, even a NaN. + * - pow(\p x, \p y) returns a NaN for finite \p x < 0 and finite non-integer \p y. + * - pow(\p x, + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * for + * \latexonly $| x | < 1$ \endlatexonly + * \xmlonly + * + * + * + * | + * + * x + * + * | + * + * < + * 1 + * + * \endxmlonly. + * - pow(\p x, + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * + * \endxmlonly + * ) returns +0 for + * \latexonly $| x | > 1$ \endlatexonly + * \xmlonly + * + * + * + * | + * + * x + * + * | + * + * > + * 1 + * + * \endxmlonly. + * - pow(\p x, + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns +0 for + * \latexonly $| x | < 1$ \endlatexonly + * \xmlonly + * + * + * + * | + * + * x + * + * | + * + * < + * 1 + * + * \endxmlonly. + * - pow(\p x, + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * for + * \latexonly $| x | > 1$ \endlatexonly + * \xmlonly + * + * + * + * | + * + * x + * + * | + * + * > + * 1 + * + * \endxmlonly. + * - pow( + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * + * \endxmlonly + * , \p y) returns -0 for \p y an odd integer less than 0. + * - pow( + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * + * \endxmlonly + * , \p y) returns +0 for \p y < 0 and not an odd integer. + * - pow( + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * + * \endxmlonly + * , \p y) returns + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * + * \endxmlonly + * for \p y an odd integer greater than 0. + * - pow( + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * + * \endxmlonly + * , \p y) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * for \p y > 0 and not an odd integer. + * - pow( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * , \p y) returns +0 for \p y < 0. + * - pow( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * , \p y) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * for \p y > 0. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl pow(double x, double y) __THROW; +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Break down the input argument into fractional and integral parts. + * + * Break down the argument \p x into fractional and integral parts. The + * integral part is stored in the argument \p iptr. + * Fractional and integral parts are given the same sign as the argument \p x. + * + * \return + * - modf( + * \latexonly $\pm x$ \endlatexonly + * \xmlonly + * + * + * ± + * x + * + * + * \endxmlonly + * , \p iptr) returns a result with the same sign as \p x. + * - modf( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * , \p iptr) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * and stores + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * in the object pointed to by \p iptr. + * - modf(NaN, \p iptr) stores a NaN in the object pointed to by \p iptr and returns a NaN. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl modf(double x, double *iptr) __THROW; +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the double-precision floating-point remainder of \p x / \p y. + * + * Calculate the double-precision floating-point remainder of \p x / \p y. + * The floating-point remainder of the division operation \p x / \p y calculated + * by this function is exactly the value x - n*y, where \p n is \p x / \p y with its fractional part truncated. + * The computed value will have the same sign as \p x, and its magnitude will be less than the magnitude of \p y. + * + * \return + * - Returns the floating-point remainder of \p x / \p y. + * - fmod( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , \p y) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * if \p y is not zero. + * - fmod(\p x, + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns \p x if \p x is finite. + * - fmod(\p x, \p y) returns NaN if \p x is + * \latexonly $\pm\infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * or \p y is zero. + * - If either argument is NaN, NaN is returned. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double __cdecl fmod(double x, double y) __THROW; +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Compute double-precision floating-point remainder. + * + * Compute double-precision floating-point remainder \p r of dividing + * \p x by \p y for nonzero \p y. Thus + * \latexonly $ r = x - n y$ \endlatexonly + * \xmlonly + * + * + * r + * = + * x + * + * n + * y + * + * \endxmlonly. + * The value \p n is the integer value nearest + * \latexonly $ \frac{x}{y} $ \endlatexonly + * \xmlonly + * + * + * + * x + * y + * + * + * \endxmlonly. + * In the case when + * \latexonly $ | n -\frac{x}{y} | = \frac{1}{2} $ \endlatexonly + * \xmlonly + * + * + * + * | + * + * n + * + * + * x + * y + * + * + * | + * + * = + * + * 1 + * 2 + * + * + * + * \endxmlonly + * , the + * even \p n value is chosen. + * + * \return + * - remainder(\p x, + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns NaN. + * - remainder( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * , \p y) returns NaN. + * - remainder(\p x, + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns \p x for finite \p x. + * + * \note_accuracy_double + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double remainder(double x, double y) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl remainder(double x, double y); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Compute single-precision floating-point remainder. + * + * Compute single-precision floating-point remainder \p r of dividing + * \p x by \p y for nonzero \p y. Thus + * \latexonly $ r = x - n y$ \endlatexonly + * \xmlonly + * + * + * r + * = + * x + * + * n + * y + * + * \endxmlonly. + * The value \p n is the integer value nearest + * \latexonly $ \frac{x}{y} $ \endlatexonly + * \xmlonly + * + * + * + * x + * y + * + * + * \endxmlonly. + * In the case when + * \latexonly $ | n -\frac{x}{y} | = \frac{1}{2} $ \endlatexonly + * \xmlonly + * + * + * + * | + * + * n + * + * + * x + * y + * + * + * | + * + * = + * + * 1 + * 2 + * + * + * + * \endxmlonly + * , the + * even \p n value is chosen. + * + * \return + * - remainderf(\p x, + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns NaN. + * - remainderf( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * , \p y) returns NaN. + * - remainderf(\p x, + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns \p x for finite \p x. + * + * \note_accuracy_single + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float remainderf(float x, float y) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl remainderf(float x, float y); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Compute double-precision floating-point remainder and part of quotient. + * + * Compute a double-precision floating-point remainder in the same way as the + * ::remainder() function. Argument \p quo returns part of quotient upon + * division of \p x by \p y. Value \p quo has the same sign as + * \latexonly $ \frac{x}{y} $ \endlatexonly + * \xmlonly + * + * + * + * x + * y + * + * + * + * \endxmlonly + * and may not be the exact quotient but agrees with the exact quotient + * in the low order 3 bits. + * + * \return + * Returns the remainder. + * - remquo(\p x, + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , \p quo) returns NaN + * and stores an unspecified value in the + * location to which \p quo points. + * - remquo( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * , \p y, \p quo) returns NaN + * and stores an unspecified value in the + * location to which \p quo points. + * - remquo(\p x, \p y, \p quo) returns NaN + * and stores an unspecified value in the + * location to which \p quo points if either of \p x or \p y is NaN. + * - remquo(\p x, + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * , \p quo) returns \p x and stores zero + * in the location to which \p quo points for finite \p x. + * + * \note_accuracy_double + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double remquo(double x, double y, int *quo) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl remquo(double x, double y, int *quo); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Compute single-precision floating-point remainder and part of quotient. + * + * Compute a single-precision floating-point remainder in the same way as the + * ::remainderf() function. Argument \p quo returns part of quotient upon + * division of \p x by \p y. Value \p quo has the same sign as + * \latexonly $ \frac{x}{y} $ \endlatexonly + * \xmlonly + * + * + * + * x + * y + * + * + * + * \endxmlonly + * and may not be the exact quotient but agrees with the exact quotient + * in the low order 3 bits. + * + * \return + * Returns the remainder. + * - remquof(\p x, + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , \p quo) returns NaN + * and stores an unspecified value in the + * location to which \p quo points. + * - remquof( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * , \p y, \p quo) returns NaN + * and stores an unspecified value in the + * location to which \p quo points. + * - remquof(\p x, \p y, \p quo) returns NaN + * and stores an unspecified value in the + * location to which \p quo points if either of \p x or \p y is NaN. + * - remquof(\p x, + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * , \p quo) returns \p x and stores zero + * in the location to which \p quo points for finite \p x. + * + * \note_accuracy_single + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float remquof(float x, float y, int *quo) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl remquof(float x, float y, int *quo); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the value of the Bessel function of the first kind of order 0 for the input argument. + * + * Calculate the value of the Bessel function of the first kind of order 0 for + * the input argument \p x, + * \latexonly $J_0(x)$ \endlatexonly + * \xmlonly + * + * + * + * J + * 0 + * + * ( + * x + * ) + * + * \endxmlonly. + * + * \return + * Returns the value of the Bessel function of the first kind of order 0. + * - j0( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns +0. + * - j0(NaN) returns NaN. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl j0(double x) __THROW; +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +} /* std */ +#endif + +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the value of the Bessel function of the first kind of order 0 for the input argument. + * + * Calculate the value of the Bessel function of the first kind of order 0 for + * the input argument \p x, + * \latexonly $J_0(x)$ \endlatexonly + * \xmlonly + * + * + * + * J + * 0 + * + * ( + * x + * ) + * + * \endxmlonly. + * + * \return + * Returns the value of the Bessel function of the first kind of order 0. + * - j0f( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns +0. + * - j0f(NaN) returns NaN. + * + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float j0f(float x) __THROW; + +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +namespace std { +#endif +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the value of the Bessel function of the first kind of order 1 for the input argument. + * + * Calculate the value of the Bessel function of the first kind of order 1 for + * the input argument \p x, + * \latexonly $J_1(x)$ \endlatexonly + * \xmlonly + * + * + * + * J + * 1 + * + * ( + * x + * ) + * + * \endxmlonly. + * + * \return + * Returns the value of the Bessel function of the first kind of order 1. + * - j1( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - j1( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - j1(NaN) returns NaN. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl j1(double x) __THROW; +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +} /* std */ +#endif + +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the value of the Bessel function of the first kind of order 1 for the input argument. + * + * Calculate the value of the Bessel function of the first kind of order 1 for + * the input argument \p x, + * \latexonly $J_1(x)$ \endlatexonly + * \xmlonly + * + * + * + * J + * 1 + * + * ( + * x + * ) + * + * \endxmlonly. + * + * \return + * Returns the value of the Bessel function of the first kind of order 1. + * - j1f( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - j1f( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - j1f(NaN) returns NaN. + * + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float j1f(float x) __THROW; + +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +namespace std { +#endif +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the value of the Bessel function of the first kind of order n for the input argument. + * + * Calculate the value of the Bessel function of the first kind of order \p n for + * the input argument \p x, + * \latexonly $J_n(x)$ \endlatexonly + * \xmlonly + * + * + * + * J + * n + * + * ( + * x + * ) + * + * \endxmlonly. + * + * \return + * Returns the value of the Bessel function of the first kind of order \p n. + * - jn(\p n, NaN) returns NaN. + * - jn(\p n, \p x) returns NaN for \p n < 0. + * - jn(\p n, + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns +0. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl jn(int n, double x) __THROW; +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +} /* std */ +#endif + +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the value of the Bessel function of the first kind of order n for the input argument. + * + * Calculate the value of the Bessel function of the first kind of order \p n for + * the input argument \p x, + * \latexonly $J_n(x)$ \endlatexonly + * \xmlonly + * + * + * + * J + * n + * + * ( + * x + * ) + * + * \endxmlonly. + * + * \return + * Returns the value of the Bessel function of the first kind of order \p n. + * - jnf(\p n, NaN) returns NaN. + * - jnf(\p n, \p x) returns NaN for \p n < 0. + * - jnf(\p n, + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns +0. + * + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float jnf(int n, float x) __THROW; + +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +namespace std { +#endif +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the value of the Bessel function of the second kind of order 0 for the input argument. + * + * Calculate the value of the Bessel function of the second kind of order 0 for + * the input argument \p x, + * \latexonly $Y_0(x)$ \endlatexonly + * \xmlonly + * + * + * + * Y + * 0 + * + * ( + * x + * ) + * + * \endxmlonly. + * + * \return + * Returns the value of the Bessel function of the second kind of order 0. + * - y0( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly + * ) returns + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * \endxmlonly. + * - y0(\p x) returns NaN for \p x < 0. + * - y0( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns +0. + * - y0(NaN) returns NaN. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl y0(double x) __THROW; +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +} /* std */ +#endif + +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the value of the Bessel function of the second kind of order 0 for the input argument. + * + * Calculate the value of the Bessel function of the second kind of order 0 for + * the input argument \p x, + * \latexonly $Y_0(x)$ \endlatexonly + * \xmlonly + * + * + * + * Y + * 0 + * + * ( + * x + * ) + * + * \endxmlonly. + * + * \return + * Returns the value of the Bessel function of the second kind of order 0. + * - y0f( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly + * ) returns + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * \endxmlonly. + * - y0f(\p x) returns NaN for \p x < 0. + * - y0f( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns +0. + * - y0f(NaN) returns NaN. + * + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float y0f(float x) __THROW; + +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +namespace std { +#endif +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the value of the Bessel function of the second kind of order 1 for the input argument. + * + * Calculate the value of the Bessel function of the second kind of order 1 for + * the input argument \p x, + * \latexonly $Y_1(x)$ \endlatexonly + * \xmlonly + * + * + * + * Y + * 1 + * + * ( + * x + * ) + * + * \endxmlonly. + * + * \return + * Returns the value of the Bessel function of the second kind of order 1. + * - y1( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly + * ) returns + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * \endxmlonly. + * - y1(\p x) returns NaN for \p x < 0. + * - y1( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns +0. + * - y1(NaN) returns NaN. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl y1(double x) __THROW; +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +} /* std */ +#endif + +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the value of the Bessel function of the second kind of order 1 for the input argument. + * + * Calculate the value of the Bessel function of the second kind of order 1 for + * the input argument \p x, + * \latexonly $Y_1(x)$ \endlatexonly + * \xmlonly + * + * + * + * Y + * 1 + * + * ( + * x + * ) + * + * \endxmlonly. + * + * \return + * Returns the value of the Bessel function of the second kind of order 1. + * - y1f( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly + * ) returns + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * \endxmlonly. + * - y1f(\p x) returns NaN for \p x < 0. + * - y1f( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns +0. + * - y1f(NaN) returns NaN. + * + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float y1f(float x) __THROW; + +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +namespace std { +#endif +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the value of the Bessel function of the second kind of order n for the input argument. + * + * Calculate the value of the Bessel function of the second kind of order \p n for + * the input argument \p x, + * \latexonly $Y_n(x)$ \endlatexonly + * \xmlonly + * + * + * + * Y + * n + * + * ( + * x + * ) + * + * \endxmlonly. + * + * \return + * Returns the value of the Bessel function of the second kind of order \p n. + * - yn(\p n, \p x) returns NaN for \p n < 0. + * - yn(\p n, + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + *) returns + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * \endxmlonly. + * - yn(\p n, \p x) returns NaN for \p x < 0. + * - yn(\p n, + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns +0. + * - yn(\p n, NaN) returns NaN. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl yn(int n, double x) __THROW; +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +} /* std */ +#endif + +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the value of the Bessel function of the second kind of order n for the input argument. + * + * Calculate the value of the Bessel function of the second kind of order \p n for + * the input argument \p x, + * \latexonly $Y_n(x)$ \endlatexonly + * \xmlonly + * + * + * + * Y + * n + * + * ( + * x + * ) + * + * \endxmlonly. + * + * \return + * Returns the value of the Bessel function of the second kind of order \p n. + * - ynf(\p n, \p x) returns NaN for \p n < 0. + * - ynf(\p n, + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * \endxmlonly. + * - ynf(\p n, \p x) returns NaN for \p x < 0. + * - ynf(\p n, + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns +0. + * - ynf(\p n, NaN) returns NaN. + * + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float ynf(int n, float x) __THROW; + +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the value of the regular modified cylindrical Bessel function of order 0 for the input argument. + * + * Calculate the value of the regular modified cylindrical Bessel function of order 0 for + * the input argument \p x, + * \latexonly $I_0(x)$ \endlatexonly + * \xmlonly + * + * + * + * I + * 0 + * + * ( + * x + * ) + * + * \endxmlonly. + * + * \return + * Returns the value of the regular modified cylindrical Bessel function of order 0. + * + * \note_accuracy_double + */ +extern __device__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl cyl_bessel_i0(double x) __THROW; +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the value of the regular modified cylindrical Bessel function of order 0 for the input argument. + * + * Calculate the value of the regular modified cylindrical Bessel function of order 0 for + * the input argument \p x, + * \latexonly $I_0(x)$ \endlatexonly + * \xmlonly + * + * + * + * I + * 0 + * + * ( + * x + * ) + * + * \endxmlonly. + * + * \return + * Returns the value of the regular modified cylindrical Bessel function of order 0. + * + * \note_accuracy_single + */ +extern __device__ __device_builtin__ float cyl_bessel_i0f(float x) __THROW; + +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the value of the regular modified cylindrical Bessel function of order 1 for the input argument. + * + * Calculate the value of the regular modified cylindrical Bessel function of order 1 for + * the input argument \p x, + * \latexonly $I_1(x)$ \endlatexonly + * \xmlonly + * + * + * + * I + * 1 + * + * ( + * x + * ) + * + * \endxmlonly. + * + * \return + * Returns the value of the regular modified cylindrical Bessel function of order 1. + * + * \note_accuracy_double + */ +extern __device__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl cyl_bessel_i1(double x) __THROW; +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the value of the regular modified cylindrical Bessel function of order 1 for the input argument. + * + * Calculate the value of the regular modified cylindrical Bessel function of order 1 for + * the input argument \p x, + * \latexonly $I_1(x)$ \endlatexonly + * \xmlonly + * + * + * + * I + * 1 + * + * ( + * x + * ) + * + * \endxmlonly. + * + * \return + * Returns the value of the regular modified cylindrical Bessel function of order 1. + * + * \note_accuracy_single + */ +extern __device__ __device_builtin__ float cyl_bessel_i1f(float x) __THROW; + +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +namespace std { +#endif +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the error function of the input argument. + * + * Calculate the value of the error function for the input argument \p x, + * \latexonly $\frac{2}{\sqrt \pi} \int_0^x e^{-t^2} dt$ \endlatexonly + * \xmlonly + * + * + * + * 2 + * + * π + * + * + * + * + * 0 + * x + * + * + * e + * + * + * + * t + * 2 + * + * + * + * d + * t + * + * \endxmlonly. + * + * \return + * - erf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - erf( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 1$ \endlatexonly + * \xmlonly + * + * + * ± + * 1 + * + * \endxmlonly. + * + * \note_accuracy_double + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double erf(double x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl erf(double x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the error function of the input argument. + * + * Calculate the value of the error function for the input argument \p x, + * \latexonly $\frac{2}{\sqrt \pi} \int_0^x e^{-t^2} dt$ \endlatexonly + * \xmlonly + * + * + * + * 2 + * + * π + * + * + * + * + * 0 + * x + * + * + * e + * + * + * + * t + * 2 + * + * + * + * d + * t + * + * \endxmlonly. + * + * \return + * - erff( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - erff( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 1$ \endlatexonly + * \xmlonly + * + * + * ± + * 1 + * + * \endxmlonly. + * + * \note_accuracy_single + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float erff(float x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl erff(float x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +} /* std */ +#endif + +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the inverse error function of the input argument. + * + * Calculate the inverse error function + * \latexonly $\erf^{-1}$ \endlatexonly + * \xmlonly + * + * + * + * erf + * + * - + * 1 + * + * + * + * + * \endxmlonly + * (\p x), of the input argument \p x in the interval [-1, 1]. + * + * \return + * - erfinv( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly. + * - erfinv(1) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * - erfinv(-1) returns + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * \endxmlonly. + * - erfinv(\p x) returns NaN for \p x outside [-1, +1]. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double erfinv(double x); +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the inverse error function of the input argument. + * + * Calculate the inverse error function + * \latexonly $\erf^{-1}$ \endlatexonly + * \xmlonly + * + * + * + * erf + * + * - + * 1 + * + * + * + * + * \endxmlonly + * (\p x), of the input argument \p x in the interval [-1, 1]. + * + * \return + * - erfinvf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly. + * - erfinvf(1) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * - erfinvf(-1) returns + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * \endxmlonly. + * - erfinvf(\p x) returns NaN for \p x outside [-1, +1]. + * + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float erfinvf(float x); + +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +namespace std { +#endif +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the complementary error function of the input argument. + * + * Calculate the complementary error function of the input argument \p x, + * 1 - erf(\p x). + * + * \return + * - erfc( + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * + * \endxmlonly + * ) returns 2. + * - erfc( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns +0. + * + * \note_accuracy_double + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double erfc(double x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl erfc(double x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the complementary error function of the input argument. + * + * Calculate the complementary error function of the input argument \p x, + * 1 - erf(\p x). + * + * \return + * - erfcf( + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * + * \endxmlonly + * ) returns 2. + * - erfcf( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns +0. + * + * \note_accuracy_single + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float erfcf(float x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl erfcf(float x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the natural logarithm of the absolute value of the gamma function of the input argument. + * + * Calculate the natural logarithm of the absolute value of the gamma function of the input argument \p x, namely the value of + * \latexonly $\log_{e}\left|\int_{0}^{\infty} e^{-t}t^{x-1}dt\right|$ \endlatexonly + * \xmlonly + * + * + * + * log + * + * e + * + * + * + * + * + * + * + * 0 + * + * + * + * + * + * + * e + * + * + * t + * + * + * + * t + * + * x + * + * 1 + * + * + * d + * t + * + * + * + * + * \endxmlonly + * + * \return + * - lgamma(1) returns +0. + * - lgamma(2) returns +0. + * - lgamma(\p x) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * if \p x + * \latexonly $\leq$ \endlatexonly + * \xmlonly + * + * + * + * + * + * \endxmlonly 0 and \p x is an integer. + * - lgamma( + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * - lgamma( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * + * \note_accuracy_double + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double lgamma(double x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl lgamma(double x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +} /* std */ +#endif + +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the inverse complementary error function of the input argument. + * + * Calculate the inverse complementary error function + * \latexonly $\erfc^{-1}$ \endlatexonly + * \xmlonly + * + * + * + * erfc + * + * - + * 1 + * + * + * + * + * \endxmlonly + * (\p x), of the input argument \p x in the interval [0, 2]. + * + * \return + * - erfcinv( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * - erfcinv(2) returns + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * \endxmlonly. + * - erfcinv(\p x) returns NaN for \p x outside [0, 2]. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double erfcinv(double x); +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the inverse complementary error function of the input argument. + * + * Calculate the inverse complementary error function + * \latexonly $\erfc^{-1}$ \endlatexonly + * \xmlonly + * + * + * + * erfc + * + * - + * 1 + * + * + * + * + * \endxmlonly + * (\p x), of the input argument \p x in the interval [0, 2]. + * + * \return + * - erfcinvf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * - erfcinvf(2) returns + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * \endxmlonly. + * - erfcinvf(\p x) returns NaN for \p x outside [0, 2]. + * + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float erfcinvf(float x); +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the inverse of the standard normal cumulative distribution function. + * + * Calculate the inverse of the standard normal cumulative distribution function for input argument \p x, + * \latexonly $\Phi^{-1}(x)$ \endlatexonly + * \xmlonly + * + * + * + * Φ + * + * + * 1 + * + * + * ( + * x + * ) + * + * \endxmlonly. The function is defined for input values in the interval + * \latexonly $(0, 1)$ \endlatexonly + * \xmlonly + * + * + * ( + * 0 + * , + * 1 + * ) + * + * \endxmlonly. + * + * \return + * - normcdfinv( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * \endxmlonly. + * - normcdfinv(1) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * - normcdfinv(\p x) returns NaN + * if \p x is not in the interval [0,1]. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double normcdfinv(double x); +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the inverse of the standard normal cumulative distribution function. + * + * Calculate the inverse of the standard normal cumulative distribution function for input argument \p x, + * \latexonly $\Phi^{-1}(x)$ \endlatexonly + * \xmlonly + * + * + * + * Φ + * + * + * 1 + * + * + * ( + * x + * ) + * + * \endxmlonly. The function is defined for input values in the interval + * \latexonly $(0, 1)$ \endlatexonly + * \xmlonly + * + * + * ( + * 0 + * , + * 1 + * ) + * + * \endxmlonly. + * + * \return + * - normcdfinvf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * \endxmlonly. + * - normcdfinvf(1) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * - normcdfinvf(\p x) returns NaN + * if \p x is not in the interval [0,1]. + * + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float normcdfinvf(float x); +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the standard normal cumulative distribution function. + * + * Calculate the cumulative distribution function of the standard normal distribution for input argument \p x, + * \latexonly $\Phi(x)$ \endlatexonly + * \xmlonly + * + * + * Φ + * ( + * x + * ) + * + * \endxmlonly. + * + * \return + * - normcdf( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns 1. + * - normcdf( + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * + * \endxmlonly + * ) returns +0. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double normcdf(double x); +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the standard normal cumulative distribution function. + * + * Calculate the cumulative distribution function of the standard normal distribution for input argument \p x, + * \latexonly $\Phi(x)$ \endlatexonly + * \xmlonly + * + * + * Φ + * ( + * x + * ) + * + * \endxmlonly. + * + * \return + * - normcdff( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns 1. + * - normcdff( + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * + * \endxmlonly + * ) returns +0 + + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float normcdff(float x); +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the scaled complementary error function of the input argument. + * + * Calculate the scaled complementary error function of the input argument \p x, + * \latexonly $e^{x^2}\cdot \textrm{erfc}(x)$ \endlatexonly + * \xmlonly + * + * + * + * e + * + * + * x + * 2 + * + * + * + * + * + * erfc + * + * ( + * x + * ) + * + * \endxmlonly. + * + * \return + * - erfcx( + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * - + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly. + * - erfcx( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns +0. + * + * \note_accuracy_double + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double erfcx(double x); +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the scaled complementary error function of the input argument. + * + * Calculate the scaled complementary error function of the input argument \p x, + * \latexonly $e^{x^2}\cdot \textrm{erfc}(x)$ \endlatexonly + * \xmlonly + * + * + * + * e + * + * + * x + * 2 + * + * + * + * + * + * erfc + * + * ( + * x + * ) + * + * \endxmlonly. + * + * \return + * - erfcxf( + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * - + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly. + * - erfcxf( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns +0. + * + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float erfcxf(float x); + +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +namespace std { +#endif +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the natural logarithm of the absolute value of the gamma function of the input argument. + * + * Calculate the natural logarithm of the absolute value of the gamma function of the input argument \p x, namely the value of + * \latexonly $\log_{e}\left|\int_{0}^{\infty} e^{-t}t^{x-1}dt\right|$ \endlatexonly + * \xmlonly + * + * + * + * log + * + * e + * + * + * + * + * + * + * + * 0 + * + * + * + * + * + * + * e + * + * + * t + * + * + * + * t + * + * x + * + * 1 + * + * + * d + * t + * + * + * + * + * \endxmlonly + * + * \return + * - lgammaf(1) returns +0. + * - lgammaf(2) returns +0. + * - lgammaf(\p x) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * if \p x + * \latexonly $\leq$ \endlatexonly + * \xmlonly + * + * + * + * + * + * \endxmlonly + * 0 and \p x is an integer. + * - lgammaf( + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * - lgammaf( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * + * \note_accuracy_single + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float lgammaf(float x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl lgammaf(float x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the gamma function of the input argument. + * + * Calculate the gamma function of the input argument \p x, namely the value of + * \latexonly $\int_{0}^{\infty} e^{-t}t^{x-1}dt$ \endlatexonly + * \xmlonly + * + * + * + * + * + * 0 + * + * + * + * + * + * + * e + * + * + * t + * + * + * + * t + * + * x + * + * 1 + * + * + * d + * t + * + * \endxmlonly. + * + * \return + * - tgamma( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * \endxmlonly. + * - tgamma(2) returns +1. + * - tgamma(\p x) returns NaN if \p x < 0 and \p x is an integer. + * - tgamma( + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * + * \endxmlonly + * ) returns NaN. + * - tgamma( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * + * \note_accuracy_double + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double tgamma(double x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl tgamma(double x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the gamma function of the input argument. + * + * Calculate the gamma function of the input argument \p x, namely the value of + * \latexonly $\int_{0}^{\infty} e^{-t}t^{x-1}dt$ \endlatexonly + * \xmlonly + * + * + * + * + * + * 0 + * + * + * + * + * + * + * e + * + * + * t + * + * + * + * t + * + * x + * + * 1 + * + * + * d + * t + * + * \endxmlonly. + * + * \return + * - tgammaf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * \endxmlonly. + * - tgammaf(2) returns +1. + * - tgammaf(\p x) returns NaN if \p x < 0 and \p x is an integer. + * - tgammaf( + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * + * \endxmlonly + * ) returns NaN. + * - tgammaf( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * + * \note_accuracy_single + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float tgammaf(float x) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl tgammaf(float x); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** \ingroup CUDA_MATH_DOUBLE + * \brief Create value with given magnitude, copying sign of second value. + * + * Create a floating-point value with the magnitude \p x and the sign of \p y. + * + * \return + * Returns a value with the magnitude of \p x and the sign of \p y. + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double copysign(double x, double y) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl copysign(double x, double y); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** \ingroup CUDA_MATH_SINGLE + * \brief Create value with given magnitude, copying sign of second value. + * + * Create a floating-point value with the magnitude \p x and the sign of \p y. + * + * \return + * Returns a value with the magnitude of \p x and the sign of \p y. + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float copysignf(float x, float y) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl copysignf(float x, float y); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Return next representable double-precision floating-point value after argument \p x in the direction of \p y. + * + * Calculate the next representable double-precision floating-point value + * following \p x in the direction of \p y. For example, if \p y is greater than \p x, ::nextafter() + * returns the smallest representable number greater than \p x + * + * \return + * - nextafter(\p x, \p y) = \p y if \p x equals \p y. + * - nextafter(\p x, \p y) = \p NaN if either \p x or \p y are \p NaN. + * + * \note_accuracy_double + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double nextafter(double x, double y) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl nextafter(double x, double y); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Return next representable single-precision floating-point value after argument \p x in the direction of \p y. + * + * Calculate the next representable single-precision floating-point value + * following \p x in the direction of \p y. For example, if \p y is greater than \p x, ::nextafterf() + * returns the smallest representable number greater than \p x + * + * \return + * - nextafterf(\p x, \p y) = \p y if \p x equals \p y. + * - nextafterf(\p x, \p y) = \p NaN if either \p x or \p y are \p NaN. + * + * \note_accuracy_single + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float nextafterf(float x, float y) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl nextafterf(float x, float y); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Returns "Not a Number" value. + * + * Return a representation of a quiet NaN. Argument \p tagp selects one of the possible representations. + * + * \return + * - nan(\p tagp) returns NaN. + * + * \note_accuracy_double + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double nan(const char *tagp) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl nan(const char *tagp); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Returns "Not a Number" value + * + * Return a representation of a quiet NaN. Argument \p tagp selects one of the possible representations. + * + * \return + * - nanf(\p tagp) returns NaN. + * + * \note_accuracy_single + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float nanf(const char *tagp) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl nanf(const char *tagp); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +} /* namespace std */ +#endif +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __isinff(float) __THROW; +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __isnanf(float) __THROW; + + +#if defined(__APPLE__) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __isfinited(double) __THROW; +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __isfinitef(float) __THROW; +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __signbitd(double) __THROW; +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __isnand(double) __THROW; +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __isinfd(double) __THROW; +#else /* __APPLE__ */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __finite(double) __THROW; +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __finitef(float) __THROW; +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __signbit(double) __THROW; +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __isnan(double) __THROW; +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __isinf(double) __THROW; +#endif /* __APPLE__ */ + +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __signbitf(float) __THROW; + +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +namespace std { +#endif +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Compute + * \latexonly $x \times y + z$ \endlatexonly + * \xmlonly + * + * + * x + * × + * y + * + + * z + * + * + * \endxmlonly + * as a single operation. + * + * Compute the value of + * \latexonly $x \times y + z$ \endlatexonly + * \xmlonly + * + * + * x + * × + * y + * + + * z + * + * + * \endxmlonly + * as a single ternary operation. After computing the value + * to infinite precision, the value is rounded once. + * + * \return + * Returns the rounded value of + * \latexonly $x \times y + z$ \endlatexonly + * \xmlonly + * + * + * x + * × + * y + * + + * z + * + * + * \endxmlonly + * as a single operation. + * - fma( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * , + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , \p z) returns NaN. + * - fma( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * , \p z) returns NaN. + * - fma(\p x, \p y, + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * + * \endxmlonly + * ) returns NaN if + * \latexonly $x \times y$ \endlatexonly + * \xmlonly + * + * + * x + * × + * y + * + * + * \endxmlonly + * is an exact + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * - fma(\p x, \p y, + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns NaN if + * \latexonly $x \times y$ \endlatexonly + * \xmlonly + * + * + * x + * × + * y + * + * + * \endxmlonly + * is an exact + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * \endxmlonly. + * + * \note_accuracy_double + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double fma(double x, double y, double z) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP double __cdecl fma(double x, double y, double z); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Compute + * \latexonly $x \times y + z$ \endlatexonly + * \xmlonly + * + * + * x + * × + * y + * + + * z + * + * + * \endxmlonly + * as a single operation. + * + * Compute the value of + * \latexonly $x \times y + z$ \endlatexonly + * \xmlonly + * + * + * x + * × + * y + * + + * z + * + * + * \endxmlonly + * as a single ternary operation. After computing the value + * to infinite precision, the value is rounded once. + * + * \return + * Returns the rounded value of + * \latexonly $x \times y + z$ \endlatexonly + * \xmlonly + * + * + * x + * × + * y + * + + * z + * + * + * \endxmlonly + * as a single operation. + * - fmaf( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * , + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , \p z) returns NaN. + * - fmaf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * , \p z) returns NaN. + * - fmaf(\p x, \p y, + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * + * \endxmlonly + * ) returns NaN if + * \latexonly $x \times y$ \endlatexonly + * \xmlonly + * + * + * x + * × + * y + * + * + * \endxmlonly + * is an exact + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * - fmaf(\p x, \p y, + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns NaN if + * \latexonly $x \times y$ \endlatexonly + * \xmlonly + * + * + * x + * × + * y + * + * + * \endxmlonly + * is an exact + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * \endxmlonly. + * + * \note_accuracy_single + */ +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float fmaf(float x, float y, float z) __THROW; +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ __CUDA_MATH_CRTIMP float __cdecl fmaf(float x, float y, float z); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +} /* std */ +#endif + + +/* these are here to avoid warnings on the call graph. + long double is not supported on the device */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __signbitl(long double) __THROW; +#if defined(__APPLE__) +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __isfinite(long double) __THROW; +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __isinf(long double) __THROW; +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __isnan(long double) __THROW; +#else /* __APPLE__ */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __finitel(long double) __THROW; +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __isinfl(long double) __THROW; +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int __isnanl(long double) __THROW; +#endif /* __APPLE__ */ + +#if defined(_WIN32) && defined(_M_AMD64) +extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl acosf(float) __THROW; +extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl asinf(float) __THROW; +extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl atanf(float) __THROW; +extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl atan2f(float, float) __THROW; +extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl cosf(float) __THROW; +extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl sinf(float) __THROW; +extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl tanf(float) __THROW; +extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl coshf(float) __THROW; +extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl sinhf(float) __THROW; +extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl tanhf(float) __THROW; +extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl expf(float) __THROW; +extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl logf(float) __THROW; +extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl log10f(float) __THROW; +extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl modff(float, float*) __THROW; +extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl powf(float, float) __THROW; +extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl sqrtf(float) __THROW; +extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl ceilf(float) __THROW; +extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl floorf(float) __THROW; +extern __CUDA_MATH_CRTIMP __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float __cdecl fmodf(float, float) __THROW; +#else /* _WIN32 && _M_AMD64 */ + +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +namespace std { +#endif +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the arc cosine of the input argument. + * + * Calculate the principal value of the arc cosine of the input argument \p x. + * + * \return + * Result will be in radians, in the interval [0, + * \latexonly $\pi$ \endlatexonly + * \xmlonly + * + * + * π + * + * + * \endxmlonly + * ] for \p x inside [-1, +1]. + * - acosf(1) returns +0. + * - acosf(\p x) returns NaN for \p x outside [-1, +1]. + * + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float acosf(float x) __THROW; +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the arc sine of the input argument. + * + * Calculate the principal value of the arc sine of the input argument \p x. + * + * \return + * Result will be in radians, in the interval [- + * \latexonly $\pi/2$ \endlatexonly + * \xmlonly + * + * + * π + * + * / + * + * 2 + * + * + * \endxmlonly + * , + + * \latexonly $\pi/2$ \endlatexonly + * \xmlonly + * + * + * π + * + * / + * + * 2 + * + * + * \endxmlonly + * ] for \p x inside [-1, +1]. + * - asinf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly. + * - asinf(\p x) returns NaN for \p x outside [-1, +1]. + * + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float asinf(float x) __THROW; + +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the arc tangent of the input argument. + * + * Calculate the principal value of the arc tangent of the input argument \p x. + * + * \return + * Result will be in radians, in the interval [- + * \latexonly $\pi/2$ \endlatexonly + * \xmlonly + * + * + * π + * + * / + * + * 2 + * + * + * \endxmlonly + * , + + * \latexonly $\pi/2$ \endlatexonly + * \xmlonly + * + * + * π + * + * / + * + * 2 + * + * + * \endxmlonly + * ]. + * - atanf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly. + * - atanf( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \pi$ \endlatexonly + * \xmlonly + * + * + * ± + * π + * + * + * \endxmlonly + * /2. + * + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float atanf(float x) __THROW; +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the arc tangent of the ratio of first and second input arguments. + * + * Calculate the principal value of the arc tangent of the ratio of first + * and second input arguments \p y / \p x. The quadrant of the result is + * determined by the signs of inputs \p y and \p x. + * + * \return + * Result will be in radians, in the interval [- + * \latexonly $\pi$ \endlatexonly + * \xmlonly + * + * + * π + * + * + * \endxmlonly + * , + + * \latexonly $\pi$ \endlatexonly + * \xmlonly + * + * + * π + * + * + * \endxmlonly + * ]. + * - atan2f( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , -0) returns + * \latexonly $\pm \pi$ \endlatexonly + * \xmlonly + * + * + * ± + * π + * + * + * \endxmlonly. + * - atan2f( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , +0) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly. + * - atan2f( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , \p x) returns + * \latexonly $\pm \pi$ \endlatexonly + * \xmlonly + * + * + * ± + * π + * + * + * \endxmlonly + * for \p x < 0. + * - atan2f( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , \p x) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * for \p x > 0. + * - atan2f(\p y, + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $-\pi$ \endlatexonly + * \xmlonly + * + * + * - + * π + * + * + * \endxmlonly + * /2 for \p y < 0. + * - atan2f(\p y, + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pi$ \endlatexonly + * \xmlonly + * + * + * π + * + * + * \endxmlonly + * /2 for \p y > 0. + * - atan2f( + * \latexonly $\pm y$ \endlatexonly + * \xmlonly + * + * + * ± + * y + * + * + * \endxmlonly + * , + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * - + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \pi$ \endlatexonly + * \xmlonly + * + * + * ± + * π + * + * + * \endxmlonly + * for finite \p y > 0. + * - atan2f( + * \latexonly $\pm y$ \endlatexonly + * \xmlonly + * + * + * ± + * y + * + * + * \endxmlonly + * , + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * for finite \p y > 0. + * - atan2f( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * , \p x) returns + * \latexonly $\pm \pi$ \endlatexonly + * \xmlonly + * + * + * ± + * π + * + * + * \endxmlonly + * /2 for finite \p x. + * - atan2f( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * , + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * - + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 3\pi$ \endlatexonly + * \xmlonly + * + * + * ± + * 3 + * π + * + * + * \endxmlonly + * /4. + * - atan2f( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * , + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \pi$ \endlatexonly + * \xmlonly + * + * + * ± + * π + * + * + * \endxmlonly + * /4. + * + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float atan2f(float y, float x) __THROW; +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the cosine of the input argument. + * + * Calculate the cosine of the input argument \p x (measured in radians). + * + * \return + * - cosf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns 1. + * - cosf( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns NaN. + * + * \note_accuracy_single + * \note_fastmath + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float cosf(float x) __THROW; +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the sine of the input argument. + * + * Calculate the sine of the input argument \p x (measured in radians). + * + * \return + * - sinf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - sinf( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns NaN. + * + * \note_accuracy_single + * \note_fastmath + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float sinf(float x) __THROW; +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the tangent of the input argument. + * + * Calculate the tangent of the input argument \p x (measured in radians). + * + * \return + * - tanf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - tanf( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns NaN. + * + * \note_accuracy_single + * \note_fastmath + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float tanf(float x) __THROW; +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the hyperbolic cosine of the input argument. + * + * Calculate the hyperbolic cosine of the input argument \p x. + * + * \return + * - coshf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns 1. + * - coshf( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float coshf(float x) __THROW; +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the hyperbolic sine of the input argument. + * + * Calculate the hyperbolic sine of the input argument \p x. + * + * \return + * - sinhf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - sinhf( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly. + * + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float sinhf(float x) __THROW; +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the hyperbolic tangent of the input argument. + * + * Calculate the hyperbolic tangent of the input argument \p x. + * + * \return + * - tanhf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - tanhf( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 1$ \endlatexonly + * \xmlonly + * + * + * ± + * 1 + * + * + * \endxmlonly. + * + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float tanhf(float x) __THROW; +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the natural logarithm of the input argument. + * + * Calculate the natural logarithm of the input argument \p x. + * + * \return + * - logf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * \endxmlonly. + * - logf(1) returns +0. + * - logf(\p x) returns NaN for \p x < 0. + * - logf( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * + * \note_accuracy_single + * \note_fastmath + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float logf(float x) __THROW; +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the base + * \latexonly $e$ \endlatexonly + * \xmlonly + * + * + * e + * + * + * \endxmlonly + * exponential of the input argument. + * + * Calculate + * \latexonly $e^x$ \endlatexonly + * \xmlonly + * + * + * + * e + * x + * + * + * \endxmlonly, + * the base + * \latexonly $e$ \endlatexonly + * \xmlonly + * + * + * e + * + * + * \endxmlonly + * exponential of the input argument \p x. + * + * \return + * - expf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns 1. + * - expf( + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * - + * + * + * \endxmlonly + * ) returns +0. + * - expf( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * + * \note_accuracy_single + * \note_fastmath + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float expf(float x) __THROW; +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the base 10 logarithm of the input argument. + * + * Calculate the base 10 logarithm of the input argument \p x. + * + * \return + * - log10f( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * \endxmlonly. + * - log10f(1) returns +0. + * - log10f(\p x) returns NaN for \p x < 0. + * - log10f( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * + * \note_accuracy_single + * \note_fastmath + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float log10f(float x) __THROW; +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Break down the input argument into fractional and integral parts. + * + * Break down the argument \p x into fractional and integral parts. The integral part is stored in the argument \p iptr. + * Fractional and integral parts are given the same sign as the argument \p x. + * + * \return + * - modff( + * \latexonly $\pm x$ \endlatexonly + * \xmlonly + * + * + * ± + * x + * + * + * \endxmlonly + * , \p iptr) returns a result with the same sign as \p x. + * - modff( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * , \p iptr) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * and stores + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * in the object pointed to by \p iptr. + * - modff(NaN, \p iptr) stores a NaN in the object pointed to by \p iptr and returns a NaN. + * + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float modff(float x, float *iptr) __THROW; +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the value of first argument to the power of second argument. + * + * Calculate the value of \p x to the power of \p y. + * + * \return + * - powf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , \p y) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * for \p y an odd integer less than 0. + * - powf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , \p y) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * for \p y less than 0 and not an odd integer. + * - powf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , \p y) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * for \p y an odd integer greater than 0. + * - powf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , \p y) returns +0 for \p y > 0 and not an odd integer. + * - powf(-1, + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns 1. + * - powf(+1, \p y) returns 1 for any \p y, even a NaN. + * - powf(\p x, + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns 1 for any \p x, even a NaN. + * - powf(\p x, \p y) returns a NaN for finite \p x < 0 and finite non-integer \p y. + * - powf(\p x, + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * for + * \latexonly $| x | < 1$ \endlatexonly + * \xmlonly + * + * + * + * | + * + * x + * + * | + * + * < + * 1 + * + * \endxmlonly. + * - powf(\p x, + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * + * \endxmlonly + * ) returns +0 for + * \latexonly $| x | > 1$ \endlatexonly + * \xmlonly + * + * + * + * | + * + * x + * + * | + * + * > + * 1 + * + * \endxmlonly. + * - powf(\p x, + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns +0 for + * \latexonly $| x | < 1$ \endlatexonly + * \xmlonly + * + * + * + * | + * + * x + * + * | + * + * < + * 1 + * + * \endxmlonly. + * - powf(\p x, + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * for + * \latexonly $| x | > 1$ \endlatexonly + * \xmlonly + * + * + * + * | + * + * x + * + * | + * + * > + * 1 + * + * \endxmlonly. + * - powf( + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * + * \endxmlonly + * , \p y) returns -0 for \p y an odd integer less than 0. + * - powf( + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * + * \endxmlonly + * , \p y) returns +0 for \p y < 0 and not an odd integer. + * - powf( + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * + * \endxmlonly + * , \p y) returns + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * + * \endxmlonly + * for \p y an odd integer greater than 0. + * - powf( + * \latexonly $-\infty$ \endlatexonly + * \xmlonly + * + * + * + * + * + * + * \endxmlonly + * , \p y) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * for \p y > 0 and not an odd integer. + * - powf( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * , \p y) returns +0 for \p y < 0. + * - powf( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * , \p y) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * for \p y > 0. + * + * \note_accuracy_single + * \note_fastmath + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float powf(float x, float y) __THROW; +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the square root of the input argument. + * + * Calculate the nonnegative square root of \p x, + * \latexonly $\sqrt{x}$ \endlatexonly + * \xmlonly + * + * + * + * x + * + * + * \endxmlonly. + * + * \return + * Returns + * \latexonly $\sqrt{x}$ \endlatexonly + * \xmlonly + * + * + * + * x + * + * + * \endxmlonly. + * - sqrtf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - sqrtf( + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * + * \endxmlonly + * ) returns + * \latexonly $+\infty$ \endlatexonly + * \xmlonly + * + * + * + + * + * + * \endxmlonly. + * - sqrtf(\p x) returns NaN if \p x is less than 0. + * + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float sqrtf(float x) __THROW; +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate ceiling of the input argument. + * + * Compute the smallest integer value not less than \p x. + * + * \return + * Returns + * \latexonly $\lceil x \rceil$ \endlatexonly + * \xmlonly + * + * + * + * x + * + * + * + * \endxmlonly + * expressed as a floating-point number. + * - ceilf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * - ceilf( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * \endxmlonly. + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float ceilf(float x) __THROW; +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the largest integer less than or equal to \p x. + * + * Calculate the largest integer value which is less than or equal to \p x. + * + * \return + * Returns + * \latexonly $\lfloor x \rfloor$ \endlatexonly + * \xmlonly + * + * + * + * x + * + * + * + * \endxmlonly + * expressed as a floating-point number. + * - floorf( + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * \endxmlonly. + * - floorf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * ) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * \endxmlonly. + * + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float floorf(float x) __THROW; +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the floating-point remainder of \p x / \p y. + * + * Calculate the floating-point remainder of \p x / \p y. + * The floating-point remainder of the division operation \p x / \p y calculated + * by this function is exactly the value x - n*y, where \p n is \p x / \p y with its fractional part truncated. + * The computed value will have the same sign as \p x, and its magnitude will be less than the magnitude of \p y. + * \return + * - Returns the floating-point remainder of \p x / \p y. + * - fmodf( + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * , \p y) returns + * \latexonly $\pm 0$ \endlatexonly + * \xmlonly + * + * + * ± + * 0 + * + * + * \endxmlonly + * if \p y is not zero. + * - fmodf(\p x, + * \latexonly $\pm \infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * ) returns \p x if \p x is finite. + * - fmodf(\p x, \p y) returns NaN if \p x is + * \latexonly $\pm\infty$ \endlatexonly + * \xmlonly + * + * + * ± + * + * + * + * \endxmlonly + * or \p y is zero. + * - If either argument is NaN, NaN is returned. + * + * \note_accuracy_single + */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float fmodf(float x, float y) __THROW; +#if defined(__QNX__) +/* redeclare some builtins that QNX uses */ +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float _FLog(float, int); +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float _FCosh(float, float); +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float _FSinh(float, float); +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float _FSinx(float, unsigned int, int); +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int _FDsign(float); +extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ int _Dsign(double); +#endif +#if defined(__QNX__) && !defined(_LIBCPP_VERSION) +} /* std */ +#endif +#endif /* _WIN32 && _M_AMD64 */ + +} + +#if !defined(__CUDACC_RTC__) +#include +#include + +#ifndef __CUDA_INTERNAL_SKIP_CPP_HEADERS__ +#include +#include +#endif /* __CUDA_INTERNAL_SKIP_CPP_HEADERS__ */ +#endif /* __CUDACC_RTC__ */ + +/******************************************************************************* +* * +* * +* * +*******************************************************************************/ + +#if defined(__CUDACC_RTC__) + +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int signbit(float x); +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int signbit(double x); +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int signbit(long double x); + +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isfinite(float x); +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isfinite(double x); +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isfinite(long double x); + +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isnan(float x); +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isnan(double x); +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isnan(long double x); + +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isinf(float x); +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isinf(double x); +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isinf(long double x); + +#elif defined(__GNUC__) + +#undef signbit +#undef isfinite +#undef isnan +#undef isinf + +#if defined(__APPLE__) + +__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int signbit(float x); +__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int signbit(double x); +__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int signbit(long double x); + +__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isfinite(float x); +__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isfinite(double x); +__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isfinite(long double x); + +__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isnan(double x) throw(); +#if !defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 7000 +__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isnan(float x); +__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isnan(long double x); +#else /* !(!defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 7000) */ +template +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool __libcpp_isnan(T) _NOEXCEPT; +inline _LIBCPP_INLINE_VISIBILITY __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool isnan(float x) _NOEXCEPT; +inline _LIBCPP_INLINE_VISIBILITY __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool isnan(long double x) _NOEXCEPT; +#endif /* !defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 7000 */ + +__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isinf(double x) throw(); +#if !defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 7000 +__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isinf(float x); +__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isinf(long double x); +#else /* !(!defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 7000) */ +template +__cudart_builtin__ __DEVICE_FUNCTIONS_DECL__ bool __libcpp_isinf(T) _NOEXCEPT; +inline _LIBCPP_INLINE_VISIBILITY __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool isinf(float x) _NOEXCEPT; +inline _LIBCPP_INLINE_VISIBILITY __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool isinf(long double x) _NOEXCEPT; +#endif /* !defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 7000 */ + +#else /* __APPLE__ */ + +#if ((defined _GLIBCXX_MATH_H) && _GLIBCXX_MATH_H) && (__cplusplus >= 201103L) +#if !defined(_NVHPC_CUDA) +namespace std { +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ constexpr bool signbit(float x); +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ constexpr bool signbit(double x); +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ constexpr bool signbit(long double x); +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ constexpr bool isfinite(float x); +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ constexpr bool isfinite(double x); +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ constexpr bool isfinite(long double x); +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ constexpr bool isnan(float x); +/* GCC 6.1 uses ::isnan(double x) for isnan(double x) if the condition is true */ +#if _GLIBCXX_HAVE_OBSOLETE_ISNAN && !_GLIBCXX_NO_OBSOLETE_ISINF_ISNAN_DYNAMIC +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isnan(double x) throw(); +#else /* !(_GLIBCXX_HAVE_OBSOLETE_ISNAN && !_GLIBCXX_NO_OBSOLETE_ISINF_ISNAN_DYNAMIC) */ +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ constexpr bool isnan(double x); +#endif /* _GLIBCXX_HAVE_OBSOLETE_ISNAN && !_GLIBCXX_NO_OBSOLETE_ISINF_ISNAN_DYNAMIC */ +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ constexpr bool isnan(long double x); +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ constexpr bool isinf(float x); +/* GCC 6.1 uses ::isinf(double x) for isinf(double x) if the condition is true. */ +#if _GLIBCXX_HAVE_OBSOLETE_ISINF && !_GLIBCXX_NO_OBSOLETE_ISINF_ISNAN_DYNAMIC +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isinf(double x) throw(); +#else /* !(_GLIBCXX_HAVE_OBSOLETE_ISINF && !_GLIBCXX_NO_OBSOLETE_ISINF_ISNAN_DYNAMIC) */ +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ constexpr bool isinf(double x); +#endif /* _GLIBCXX_HAVE_OBSOLETE_ISINF && !_GLIBCXX_NO_OBSOLETE_ISINF_ISNAN_DYNAMIC */ +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ constexpr bool isinf(long double x); +} +#endif + +#else /* !(((defined _GLIBCXX_MATH_H) && _GLIBCXX_MATH_H) && (__cplusplus >= 201103L)) */ + +#if defined(__QNX__) +#if (__QNX__) && !defined(_LIBCPP_VERSION) +/* QNX defines functions in std, need to declare them here */ +namespace std { +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool signbit(float x); +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool signbit(double x); +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool signbit(long double x); +} +#else +static __inline__ __DEVICE_FUNCTIONS_DECL__ bool signbit(const float x); +static __inline__ __DEVICE_FUNCTIONS_DECL__ bool signbit(const double x); +static __inline__ __DEVICE_FUNCTIONS_DECL__ bool signbit(const long double x); +#endif +static __inline__ __DEVICE_FUNCTIONS_DECL__ bool isfinite(const float a); +static __inline__ __DEVICE_FUNCTIONS_DECL__ bool isfinite(const double a); +static __inline__ __DEVICE_FUNCTIONS_DECL__ bool isfinite(const long double a); +static __inline__ __DEVICE_FUNCTIONS_DECL__ bool isnan(const float a); +static __inline__ __DEVICE_FUNCTIONS_DECL__ bool isnan(const double a); +static __inline__ __DEVICE_FUNCTIONS_DECL__ bool isnan(const long double a); +static __inline__ __DEVICE_FUNCTIONS_DECL__ bool isinf(const float a); +static __inline__ __DEVICE_FUNCTIONS_DECL__ bool isinf(const double a); +static __inline__ __DEVICE_FUNCTIONS_DECL__ bool isinf(const long double a); +#else /* ! __QNX__ */ +__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int signbit(const float x); +#if defined(__ICC) +__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int signbit(const double x) throw(); +#else /* !__ICC */ +__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int signbit(const double x); +#endif /* __ICC */ +__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int signbit(const long double x); + +__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isfinite(const float x); +#if defined(__ICC) +__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isfinite(const double x) throw(); +#else /* !__ICC */ +__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isfinite(const double x); +#endif /* __ICC */ +__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isfinite(const long double x); + +#if (defined(__ANDROID__) || defined(__HORIZON__)) && _LIBCPP_VERSION >= 8000 +template +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool __libcpp_isnan(T) _NOEXCEPT; +inline _LIBCPP_INLINE_VISIBILITY __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool isnan(float x) _NOEXCEPT; +#else /* !((defined(__ANDROID__) || defined(__HORIZON__)) && _LIBCPP_VERSION >= 8000) */ +__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isnan(float x); +#endif /* (defined(__ANDROID__) || defined(__HORIZON__)) && _LIBCPP_VERSION >= 8000 */ +#if defined(__ANDROID__) || defined(__HORIZON__) +#if !defined(_LIBCPP_VERSION) +__forceinline__ +#endif /* !defined(_LIBCPP_VERSION) */ +#if _LIBCPP_VERSION >= 7000 +#ifdef _LIBCPP_PREFERRED_OVERLOAD +_LIBCPP_INLINE_VISIBILITY _LIBCPP_PREFERRED_OVERLOAD __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool isnan(double x) _NOEXCEPT; +#endif /* _LIBCPP_PREFERRED_OVERLOAD */ +#else /* _LIBCPP_VERSION < 7000 */ +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isnan(double x); +#endif /* _LIBCPP_VERSION >= 7000 */ +#else /* !(__ANDROID__ || __HORIZON__) */ +__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isnan(double x) throw(); +#endif /* __ANDROID__ */ +#if (defined(__ANDROID__) || defined(__HORIZON__)) && _LIBCPP_VERSION >= 8000 +inline _LIBCPP_INLINE_VISIBILITY __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool isnan(long double x) _NOEXCEPT; +#else /* !( (defined(__ANDROID__) || defined(__HORIZON__)) && _LIBCPP_VERSION >= 8000) */ +__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isnan(long double x); +#endif /* (defined(__ANDROID__) || defined(__HORIZON__)) && _LIBCPP_VERSION >= 8000 */ + +#if (defined(__ANDROID__) || defined(__HORIZON__)) && _LIBCPP_VERSION >= 8000 +static __inline__ __cudart_builtin__ __DEVICE_FUNCTIONS_DECL__ unsigned __FLOAT_BITS(float __f); +static __inline__ __cudart_builtin__ __DEVICE_FUNCTIONS_DECL__ unsigned long long __DOUBLE_BITS(double __f); +template +__cudart_builtin__ __DEVICE_FUNCTIONS_DECL__ bool __libcpp_isinf(T) _NOEXCEPT; +inline _LIBCPP_INLINE_VISIBILITY __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool isinf(float x) _NOEXCEPT; +#else /* !( (defined(__ANDROID__) || defined(__HORIZON__)) && _LIBCPP_VERSION >= 8000) */ +__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isinf(float x); +#endif /* (defined(__ANDROID__) || defined(__HORIZON__)) && _LIBCPP_VERSION >= 8000 */ + +#if defined(__ANDROID__) || defined(__HORIZON__) +#if !defined(_LIBCPP_VERSION) +__forceinline__ +#endif /* !defined(_LIBCPP_VERSION) */ +#if _LIBCPP_VERSION >= 7000 +#ifdef _LIBCPP_PREFERRED_OVERLOAD +_LIBCPP_INLINE_VISIBILITY _LIBCPP_PREFERRED_OVERLOAD __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool isinf(double x) _NOEXCEPT; +#endif /* _LIBCPP_PREFERRED_OVERLOAD */ +#else /* _LIBCPP_VERSION < 7000 */ +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isinf(double x); +#endif /* _LIBCPP_VERSION >= 7000 */ +#else /* ! (__ANDROID__ || __HORIZON__) */ +__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isinf(double x) throw(); +#endif /* __ANDROID__ || __HORIZON__ */ +#if (defined(__ANDROID__) || defined(__HORIZON__)) && _LIBCPP_VERSION >= 8000 +inline _LIBCPP_INLINE_VISIBILITY __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool isinf(long double x) _NOEXCEPT; +#else /* !( (defined(__ANDROID__) || defined(__HORIZON__)) && _LIBCPP_VERSION >= 8000) */ +__forceinline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ int isinf(long double x); +#endif /* (defined(__ANDROID__) || defined(__HORIZON__)) && _LIBCPP_VERSION >= 8000 */ +#endif /* __QNX__ */ + +#endif /* ((defined _GLIBCXX_MATH_H) && _GLIBCXX_MATH_H) && (__cplusplus >= 201103L) */ +#endif /* __APPLE__ */ + +#if !defined(_LIBCPP_VERSION) +#if defined(__clang__) +#if __has_include() +#define __NV_GLIBCXX_VERSION 40800 +#endif /* __has_include() */ +#endif /* __clang__ */ + +#if !defined(__NV_GLIBCXX_VERSION) +#define __NV_GLIBCXX_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) +#endif /* !__NV_GLIBCXX_VERSION */ +#endif /* !defined(_LIBCPP_VERSION) */ + +#if !defined(__HORIZON__) || !defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 3800 +#if defined(__arm__) && !defined(_STLPORT_VERSION) && !_GLIBCXX_USE_C99 +#if !defined(__ANDROID__) || (defined(__NV_GLIBCXX_VERSION) && __NV_GLIBCXX_VERSION < 40800) + +#if defined(__QNX__) +/* QNX defines functions in std, need to declare them here */ +namespace std { +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ long long int abs (long long int a); +} +#elif defined(__HORIZON__) +#if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER) +#pragma GCC system_header +#endif +_LIBCPP_BEGIN_NAMESPACE_STD +__DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ long long int abs (long long int a) throw(); +_LIBCPP_END_NAMESPACE_STD +#else +static __inline__ __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ long long int abs(long long int a); +#endif /* __QNX__ || __HORIZON__*/ + +#endif /* !__ANDROID__ || (defined(__NV_GLIBCXX_VERSION) && __NV_GLIBCXX_VERSION < 40800) */ +#endif /* __arm__ && !_STLPORT_VERSION && !_GLIBCXX_USE_C99 */ +#endif /* !defined(__HORIZON__) || !defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 3800 */ + +#if defined(__NV_GLIBCXX_VERSION) && __NV_GLIBCXX_VERSION < 40800 && !defined(__ibmxl__) + +#if !defined(_STLPORT_VERSION) +namespace __gnu_cxx +{ +#endif /* !_STLPORT_VERSION */ + +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ long long int abs(long long int a); + +#if !defined(_STLPORT_VERSION) +} +#endif /* !_STLPORT_VERSION */ + +#endif /* defined(__NV_GLIBCXX_VERSION) && __NV_GLIBCXX_VERSION < 40800 && !__ibmxl__ */ + +namespace std +{ + template extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ T __pow_helper(T, int); + template extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ T __cmath_power(T, unsigned int); +} + +using std::abs; +using std::fabs; +using std::ceil; +using std::floor; +using std::sqrt; +#if !defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 3800 +using std::pow; +#endif /* !defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 3800 */ +using std::log; +using std::log10; +using std::fmod; +using std::modf; +using std::exp; +using std::frexp; +using std::ldexp; +using std::asin; +using std::sin; +using std::sinh; +using std::acos; +using std::cos; +using std::cosh; +using std::atan; +using std::atan2; +using std::tan; +using std::tanh; + +#elif defined(_WIN32) + +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ __CUDA_MATH_CRTIMP double __cdecl _hypot(double x, double y); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ __CUDA_MATH_CRTIMP float __cdecl _hypotf(float x, float y); + +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +static __inline__ __DEVICE_FUNCTIONS_DECL__ int signbit(long double a); +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +#if _MSC_VER >= 1900 +#define __SIGNBIT_THROW throw() +#else +#define __SIGNBIT_THROW +#endif +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ bool signbit(long double) __SIGNBIT_THROW; +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ __device_builtin__ __CUDA_MATH_CRTIMP int _ldsign(long double); +#undef __SIGNBIT_THROW +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ + +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +#define __RETURN_TYPE int +/** + * \ingroup CUDA_MATH_DOUBLE + * + * \brief Return the sign bit of the input. + * + * Determine whether the floating-point value \p a is negative. + * + * \return + * Reports the sign bit of all values including infinities, zeros, and NaNs. + * - With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. Returns + * true if and only if \p a is negative. + * - With other host compilers: __RETURN_TYPE is 'int'. Returns a + * nonzero value if and only if \p a is negative. + */ +static __inline__ __DEVICE_FUNCTIONS_DECL__ __RETURN_TYPE signbit(double a); +#undef __RETURN_TYPE +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +#define __RETURN_TYPE bool +#if _MSC_VER >= 1900 +#define __SIGNBIT_THROW throw() +#else +#define __SIGNBIT_THROW +#endif +/** + * \ingroup CUDA_MATH_DOUBLE + * + * \brief Return the sign bit of the input. + * + * Determine whether the floating-point value \p a is negative. + * + * \return + * Reports the sign bit of all values including infinities, zeros, and NaNs. + * - With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. Returns + * true if and only if \p a is negative. + * - With other host compilers: __RETURN_TYPE is 'int'. Returns a + * nonzero value if and only if \p a is negative. + */ +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ __RETURN_TYPE signbit(double) __SIGNBIT_THROW; +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ __device_builtin__ __CUDA_MATH_CRTIMP int _dsign(double); +#undef __RETURN_TYPE +#undef __SIGNBIT_THROW +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ + +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +#define __RETURN_TYPE int +/** + * \ingroup CUDA_MATH_SINGLE + * + * \brief Return the sign bit of the input. + * + * Determine whether the floating-point value \p a is negative. + * + * \return + * Reports the sign bit of all values including infinities, zeros, and NaNs. + * - With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. Returns + * true if and only if \p a is negative. + * - With other host compilers: __RETURN_TYPE is 'int'. Returns a nonzero value + * if and only if \p a is negative. + */ +static __inline__ __DEVICE_FUNCTIONS_DECL__ __RETURN_TYPE signbit(float a); +#undef __RETURN_TYPE +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +#define __RETURN_TYPE bool +#if _MSC_VER >= 1900 +#define __SIGNBIT_THROW throw() +#else +#define __SIGNBIT_THROW +#endif +/** + * \ingroup CUDA_MATH_SINGLE + * + * \brief Return the sign bit of the input. + * + * Determine whether the floating-point value \p a is negative. + * + * \return + * Reports the sign bit of all values including infinities, zeros, and NaNs. + * - With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. Returns + * true if and only if \p a is negative. + * - With other host compilers: __RETURN_TYPE is 'int'. Returns a nonzero value + * if and only if \p a is negative. + */ +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ __RETURN_TYPE signbit(float) __SIGNBIT_THROW; +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ __device_builtin__ __CUDA_MATH_CRTIMP int _fdsign(float); +#undef __RETURN_TYPE +#undef __SIGNBIT_THROW +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ + +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +static __inline__ __DEVICE_FUNCTIONS_DECL__ int isinf(long double a); +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +static __inline__ __DEVICE_FUNCTIONS_DECL__ bool isinf(long double a); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ + +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +#define __RETURN_TYPE int +/** + * \ingroup CUDA_MATH_DOUBLE + * + * \brief Determine whether argument is infinite. + * + * Determine whether the floating-point value \p a is an infinite value + * (positive or negative). + * \return + * - With Visual Studio 2013 host compiler: Returns true if and only + * if \p a is an infinite value. + * - With other host compilers: Returns a nonzero value if and only + * if \p a is an infinite value. + */ +static __inline__ __DEVICE_FUNCTIONS_DECL__ __RETURN_TYPE isinf(double a); +#undef __RETURN_TYPE +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +#define __RETURN_TYPE bool +/** + * \ingroup CUDA_MATH_DOUBLE + * + * \brief Determine whether argument is infinite. + * + * Determine whether the floating-point value \p a is an infinite value + * (positive or negative). + * \return + * - With Visual Studio 2013 host compiler: Returns true if and only + * if \p a is an infinite value. + * - With other host compilers: Returns a nonzero value if and only + * if \p a is an infinite value. + */ +static __inline__ __DEVICE_FUNCTIONS_DECL__ __RETURN_TYPE isinf(double a); +#undef __RETURN_TYPE +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ + +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +#define __RETURN_TYPE int +/** + * \ingroup CUDA_MATH_SINGLE + * + * \brief Determine whether argument is infinite. + * + * Determine whether the floating-point value \p a is an infinite value + * (positive or negative). + * + * \return + * - With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. Returns + * true if and only if \p a is an infinite value. + * - With other host compilers: __RETURN_TYPE is 'int'. Returns a nonzero + * value if and only if \p a is an infinite value. + */ +static __inline__ __DEVICE_FUNCTIONS_DECL__ __RETURN_TYPE isinf(float a); +#undef __RETURN_TYPE +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +#define __RETURN_TYPE bool +/** + * \ingroup CUDA_MATH_SINGLE + * + * \brief Determine whether argument is infinite. + * + * Determine whether the floating-point value \p a is an infinite value + * (positive or negative). + * + * \return + * - With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. Returns + * true if and only if \p a is an infinite value. + * - With other host compilers: __RETURN_TYPE is 'int'. Returns a nonzero + * value if and only if \p a is an infinite value. + */ +static __inline__ __DEVICE_FUNCTIONS_DECL__ __RETURN_TYPE isinf(float a); +#undef __RETURN_TYPE +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ + +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +static __inline__ __DEVICE_FUNCTIONS_DECL__ int isnan(long double a); +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +static __inline__ __DEVICE_FUNCTIONS_DECL__ bool isnan(long double a); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ + +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +#define __RETURN_TYPE int +/** + * \ingroup CUDA_MATH_DOUBLE + * + * \brief Determine whether argument is a NaN. + * + * Determine whether the floating-point value \p a is a NaN. + * \return + * - With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. + * Returns true if and only if \p a is a NaN value. + * - With other host compilers: __RETURN_TYPE is 'int'. Returns a + * nonzero value if and only if \p a is a NaN value. + */ +static __inline__ __DEVICE_FUNCTIONS_DECL__ __RETURN_TYPE isnan(double a); +#undef __RETURN_TYPE +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +#define __RETURN_TYPE bool +/** + * \ingroup CUDA_MATH_DOUBLE + * + * \brief Determine whether argument is a NaN. + * + * Determine whether the floating-point value \p a is a NaN. + * \return + * - With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. + * Returns true if and only if \p a is a NaN value. + * - With other host compilers: __RETURN_TYPE is 'int'. Returns a + * nonzero value if and only if \p a is a NaN value. + */ +static __inline__ __DEVICE_FUNCTIONS_DECL__ __RETURN_TYPE isnan(double a); +#undef __RETURN_TYPE +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ + +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +#define __RETURN_TYPE int +/** + * \ingroup CUDA_MATH_SINGLE + * + * + * \brief Determine whether argument is a NaN. + * + * Determine whether the floating-point value \p a is a NaN. + * \return + * - With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. + * Returns true if and only if \p a is a NaN value. + * - With other host compilers: __RETURN_TYPE is 'int'. Returns a + * nonzero value if and only if \p a is a NaN value. + */ +static __inline__ __DEVICE_FUNCTIONS_DECL__ __RETURN_TYPE isnan(float a); +#undef __RETURN_TYPE +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +#define __RETURN_TYPE bool +/** + * \ingroup CUDA_MATH_SINGLE + * + * + * \brief Determine whether argument is a NaN. + * + * Determine whether the floating-point value \p a is a NaN. + * \return + * - With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. + * Returns true if and only if \p a is a NaN value. + * - With other host compilers: __RETURN_TYPE is 'int'. Returns a + * nonzero value if and only if \p a is a NaN value. + */ +static __inline__ __DEVICE_FUNCTIONS_DECL__ __RETURN_TYPE isnan(float a); +#undef __RETURN_TYPE +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ + +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +static __inline__ __DEVICE_FUNCTIONS_DECL__ int isfinite(long double a); +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +static __inline__ __DEVICE_FUNCTIONS_DECL__ bool isfinite(long double a); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ + +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +#define __RETURN_TYPE int +/** + * \ingroup CUDA_MATH_DOUBLE + * + * \brief Determine whether argument is finite. + * + * Determine whether the floating-point value \p a is a finite value + * (zero, subnormal, or normal and not infinity or NaN). + * + * \return + * - With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. Returns + * true if and only if \p a is a finite value. + * - With other host compilers: __RETURN_TYPE is 'int'. Returns + * a nonzero value if and only if \p a is a finite value. + */ +static __inline__ __DEVICE_FUNCTIONS_DECL__ __RETURN_TYPE isfinite(double a); +#undef __RETURN_TYPE +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +#define __RETURN_TYPE bool +/** + * \ingroup CUDA_MATH_DOUBLE + * + * \brief Determine whether argument is finite. + * + * Determine whether the floating-point value \p a is a finite value + * (zero, subnormal, or normal and not infinity or NaN). + * + * \return + * - With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. Returns + * true if and only if \p a is a finite value. + * - With other host compilers: __RETURN_TYPE is 'int'. Returns + * a nonzero value if and only if \p a is a finite value. + */ +static __inline__ __DEVICE_FUNCTIONS_DECL__ __RETURN_TYPE isfinite(double a); +#undef __RETURN_TYPE +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ + +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +#define __RETURN_TYPE int +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Determine whether argument is finite. + * + * Determine whether the floating-point value \p a is a finite value + * (zero, subnormal, or normal and not infinity or NaN). + * + * \return + * - With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. Returns + * true if and only if \p a is a finite value. + * - With other host compilers: __RETURN_TYPE is 'int'. Returns + * a nonzero value if and only if \p a is a finite value. + */ +static __inline__ __DEVICE_FUNCTIONS_DECL__ __RETURN_TYPE isfinite(float a); +#undef __RETURN_TYPE +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +#define __RETURN_TYPE bool +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Determine whether argument is finite. + * + * Determine whether the floating-point value \p a is a finite value + * (zero, subnormal, or normal and not infinity or NaN). + * + * \return + * - With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. Returns + * true if and only if \p a is a finite value. + * - With other host compilers: __RETURN_TYPE is 'int'. Returns + * a nonzero value if and only if \p a is a finite value. + */ +static __inline__ __DEVICE_FUNCTIONS_DECL__ __RETURN_TYPE isfinite(float a); +#undef __RETURN_TYPE +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ + +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +template extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ T _Pow_int(T, int); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ long long int abs(long long int); +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +template extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ T _Pow_int(T, int) throw(); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ long long int abs(long long int) throw(); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ + +#endif /* __CUDACC_RTC__ */ + +#if __cplusplus >= 201103L +#define __NV_NOEXCEPT noexcept +#else /* !__cplusplus >= 201103L */ +#define __NV_NOEXCEPT throw() +#endif /* __cplusplus >= 201103L */ + +#if defined(_LIBCPP_VERSION) && defined(_LIBCPP_BEGIN_NAMESPACE_STD) && !defined(_STLPORT_VERSION) +#if defined(__clang__) +#pragma clang diagnostic push +#pragma clang diagnostic ignored "-Wc++11-extensions" +#endif /* __clang__ */ +#if _LIBCPP_VERSION < 3800 +_LIBCPP_BEGIN_NAMESPACE_STD +#endif /* _LIBCPP_VERSION < 3800 */ +#elif defined(__GNUC__) && !defined(_STLPORT_VERSION) +namespace std { +#endif /* defined(_LIBCPP_VERSION) && defined(_LIBCPP_BEGIN_NAMESPACE_STD) && !defined(_STLPORT_VERSION) || + __GNUC__ && !_STLPORT_VERSION */ + +#if defined(__CUDACC_RTC__) || defined(__GNUC__) + +#if defined(__CUDACC_RTC__) || \ + (defined(__NV_GLIBCXX_VERSION) && __NV_GLIBCXX_VERSION >= 40800) || \ + defined(__ibmxl__) +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ long long int abs(long long int); +#endif /* __CUDACC__RTC__ || + (defined(__NV_GLIBCXX_VERSION) && __NV_GLIBCXX_VERSION >= 40800) || + __ibmxl__ */ + +#endif /* __CUDACC_RTC__ || __GNUC__ */ + +#if defined(__CUDACC_RTC__) || \ + (!defined(_MSC_VER) || _MSC_VER < 1800) && \ + (!defined(_LIBCPP_VERSION) || (_LIBCPP_VERSION < 1101)) +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ long int __cdecl abs(long int); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl abs(float); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ double __cdecl abs(double); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl fabs(float); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl ceil(float); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl floor(float); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl sqrt(float); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl pow(float, float); + +#if !defined(__QNX__) + +#if defined(__GNUC__) && __cplusplus >= 201103L && !defined(_LIBCPP_VERSION) +template +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ +typename __gnu_cxx::__promote_2<_Tp, _Up>::__type pow(_Tp, _Up); +#else /* !(defined(__GNUC__) && __cplusplus >= 201103L && !defined(_LIBCPP_VERSION)) */ +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl pow(float, int); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ double __cdecl pow(double, int); +#endif /* defined(__GNUC__) && __cplusplus >= 201103L && !defined(_LIBCPP_VERSION) */ + +#endif /* !defined(__QNX__) */ + +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl log(float); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl log10(float); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl fmod(float, float); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl modf(float, float*); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl exp(float); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl frexp(float, int*); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl ldexp(float, int); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl asin(float); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl sin(float); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl sinh(float); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl acos(float); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl cos(float); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl cosh(float); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl atan(float); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl atan2(float, float); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl tan(float); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl tanh(float); +#else /* __CUDACC_RTC__ || + (!defined(_MSC_VER) || _MSC_VER < 1800) && + (!defined(_LIBCPP_VERSION) || (_LIBCPP_VERSION < 1101)) */ +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ long int __cdecl abs(long int) throw(); +#if defined(_LIBCPP_VERSION) +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ long long int __cdecl abs(long long int) throw(); +#endif /* defined(_LIBCPP_VERSION) */ +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl abs(float) throw(); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ double __cdecl abs(double) throw(); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl fabs(float) throw(); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl ceil(float) throw(); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl floor(float) throw(); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl sqrt(float) throw(); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl pow(float, float) throw(); +#if defined(_LIBCPP_VERSION) +#if (defined (__ANDROID__) || defined(__HORIZON__)) && (_LIBCPP_VERSION >= 9000) +template +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ +#if _LIBCPP_VERSION >= 14000 +typename std::__enable_if_t +#else /* _LIBCPP_VERSION < 14000 */ +typename std::_EnableIf +#endif /* _LIBCPP_VERSION >= 14000 */ +< + std::is_arithmetic<_A1>::value && + std::is_arithmetic<_A2>::value, + std::__promote<_A1, _A2> +>::type pow(_A1 __lcpp_x, _A2 __lcpp_y) __NV_NOEXCEPT; +#elif (defined(__APPLE__) && __clang_major__ >= 7) || _LIBCPP_VERSION >= 3800 || defined(__QNX__) +template +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ +#if _LIBCPP_VERSION >= 13000 +typename std::enable_if < +#else /* _LIBCPP_VERSION < 13000 */ +typename std::__lazy_enable_if < +#endif /* _LIBCPP_VERSION >= 13000 */ + std::is_arithmetic<_Tp>::value && std::is_arithmetic<_Up>::value, + std::__promote<_Tp, _Up> +>::type pow(_Tp __x, _Up __y) __NV_NOEXCEPT; +#else /* !((__APPLE__ && __clang_major__ >= 7) || _LIBCPP_VERSION >= 3800) */ +template +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ +typename enable_if < + std::is_arithmetic<_Tp>::value && std::is_arithmetic<_Up>::value, + typename std::__promote<_Tp, _Up>::type +>::type pow(_Tp __x, _Up __y) __NV_NOEXCEPT; +#endif /* (__APPLE__ && __clang_major__ >= 7) || _LIBCPP_VERSION >= 3800 */ +#else /* !defined(_LIBCPP_VERSION) */ +#if !(defined(__GNUC__) && __cplusplus >= 201103L) +#if (defined(_MSC_VER) && (_MSC_VER >= 1928)) && !(defined __CUDA_INTERNAL_SKIP_CPP_HEADERS__) +template && ::std:: is_arithmetic_v<_Ty2>, int> > [[nodiscard]] __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ ::std:: _Common_float_type_t<_Ty1, _Ty2> __cdecl pow(_Ty1 _Left, _Ty2 _Right) noexcept; +#else +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl pow(float, int) throw(); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ double __cdecl pow(double, int) throw(); +#endif /* (defined(_MSC_VER) && (_MSC_VER >= 1928)) && !(defined __CUDA_INTERNAL_SKIP_CPP_HEADERS__) */ +#endif /* !(defined(__GNUC__) && __cplusplus >= 201103L) */ +#endif /* defined(_LIBCPP_VERSION) */ +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl log(float) throw(); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl log10(float) throw(); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl fmod(float, float) throw(); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl modf(float, float*) throw(); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl exp(float) throw(); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl frexp(float, int*) throw(); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl ldexp(float, int) throw(); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl asin(float) throw(); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl sin(float) throw(); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl sinh(float) throw(); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl acos(float) throw(); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl cos(float) throw(); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl cosh(float) throw(); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl atan(float) throw(); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl atan2(float, float) throw(); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl tan(float) throw(); +extern __DEVICE_FUNCTIONS_DECL__ __cudart_builtin__ float __cdecl tanh(float) throw(); +#endif /* __CUDACC_RTC__ || + (!defined(_MSC_VER) || _MSC_VER < 1800) && + (!defined(_LIBCPP_VERSION) || (_LIBCPP_VERSION < 1101)) */ + +#if defined(_LIBCPP_VERSION) && defined(_LIBCPP_END_NAMESPACE_STD) && !defined(_STLPORT_VERSION) +#if _LIBCPP_VERSION < 3800 +_LIBCPP_END_NAMESPACE_STD +#endif /* _LIBCPP_VERSION < 3800 */ +#if defined(__clang__) +#pragma clang diagnostic pop +#endif /* __clang__ */ +#elif defined(__GNUC__) && !defined(_STLPORT_VERSION) +} +#endif /* defined(_LIBCPP_VERSION) && defined(_LIBCPP_BEGIN_NAMESPACE_STD) && !defined(_STLPORT_VERSION) || + __GNUC__ && !_STLPORT_VERSION */ + +#undef __DEVICE_FUNCTIONS_DECL__ +#undef __NV_NOEXCEPT + +#if defined(__CUDACC_RTC__) +#define __MATH_FUNCTIONS_DECL__ __host__ __device__ +#define __MATH_FUNCTIONS_DEVICE_DECL__ __device__ +#else /* __CUDACC_RTC__ */ +#define __MATH_FUNCTIONS_DECL__ static inline __host__ __device__ __cudart_builtin__ +#define __MATH_FUNCTIONS_DEVICE_DECL__ static inline __device__ __cudart_builtin__ +#endif /* __CUDACC_RTC__ */ + +#if (!defined(_MSC_VER) || _MSC_VER < 1800) +#if defined(__QNX__) || (defined(_LIBCPP_VERSION) && _LIBCPP_VERSION >= 3800) +#if defined(__QNX__) && (!defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 8000) +#if defined(_LIBCPP_VERSION) +#define __NV_NOEXCEPT _NOEXCEPT +_LIBCPP_BEGIN_NAMESPACE_STD +#else +#define __NV_NOEXCEPT +namespace std { +__host__ __device__ __cudart_builtin__ int ilogbf(float a); +#endif +#else /* !(defined(__QNX__) && (!defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 8000)) */ +#define __NV_NOEXCEPT _NOEXCEPT +#endif /* defined(__QNX__) && (!defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 8000) */ +__host__ __device__ __cudart_builtin__ float logb(float a) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ int ilogb(float a) __NV_NOEXCEPT; + +__host__ __device__ __cudart_builtin__ float scalbn(float a, int b) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ float scalbln(float a, long int b) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ float exp2(float a) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ float expm1(float a) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ float log2(float a) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ float log1p(float a) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ float acosh(float a) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ float asinh(float a) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ float atanh(float a) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ float hypot(float a, float b) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ float cbrt(float a) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ float erf(float a) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ float erfc(float a) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ float lgamma(float a) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ float tgamma(float a) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ float copysign(float a, float b) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ float nextafter(float a, float b) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ float remainder(float a, float b) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ float remquo(float a, float b, int *quo) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ float round(float a) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ long int lround(float a) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ long long int llround(float a) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ float trunc(float a) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ float rint(float a) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ long int lrint(float a) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ long long int llrint(float a) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ float nearbyint(float a) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ float fdim(float a, float b) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ float fma(float a, float b, float c) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ float fmax(float a, float b) __NV_NOEXCEPT; +__host__ __device__ __cudart_builtin__ float fmin(float a, float b) __NV_NOEXCEPT; +#if defined(__QNX__) && (!defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 8000) +#if defined(_LIBCPP_VERSION) +_LIBCPP_END_NAMESPACE_STD +using _VSTD::logb; +using _VSTD::ilogb; +using _VSTD::scalbn; +using _VSTD::scalbln; +using _VSTD::exp2; +using _VSTD::expm1; +using _VSTD::log2; +using _VSTD::log1p; +using _VSTD::acosh; +using _VSTD::asinh; +using _VSTD::atanh; +using _VSTD::hypot; +using _VSTD::cbrt; +using _VSTD::erf; +using _VSTD::erfc; +using _VSTD::lgamma; +using _VSTD::tgamma; +using _VSTD::copysign; +using _VSTD::nextafter; +using _VSTD::remainder; +using _VSTD::remquo; +using _VSTD::round; +using _VSTD::lround; +using _VSTD::llround; +using _VSTD::trunc; +using _VSTD::rint; +using _VSTD::lrint; +using _VSTD::llrint; +using _VSTD::nearbyint; +using _VSTD::fdim; +using _VSTD::fma; +using _VSTD::fmax; +using _VSTD::fmin; +#else +} +#endif +#endif /* defined(__QNX__) && (!defined(_LIBCPP_VERSION) || _LIBCPP_VERSION < 8000) */ +#undef __NV_NOEXCEPT +#else /* !(defined(__QNX__ ) || (defined(_LIBCPP_VERSION) && _LIBCPP_VERSION >= 3800)) */ +#if ((defined _GLIBCXX_MATH_H) && _GLIBCXX_MATH_H) && (__cplusplus >= 201103L) +namespace std { +__host__ __device__ __cudart_builtin__ constexpr float logb(float a); +__host__ __device__ __cudart_builtin__ constexpr int ilogb(float a); +__host__ __device__ __cudart_builtin__ constexpr float scalbn(float a, int b); +__host__ __device__ __cudart_builtin__ constexpr float scalbln(float a, long int b); +__host__ __device__ __cudart_builtin__ constexpr float exp2(float a); +__host__ __device__ __cudart_builtin__ constexpr float expm1(float a); +__host__ __device__ __cudart_builtin__ constexpr float log2(float a); +__host__ __device__ __cudart_builtin__ constexpr float log1p(float a); +__host__ __device__ __cudart_builtin__ constexpr float acosh(float a); +__host__ __device__ __cudart_builtin__ constexpr float asinh(float a); +__host__ __device__ __cudart_builtin__ constexpr float atanh(float a); +__host__ __device__ __cudart_builtin__ constexpr float hypot(float a, float b); +__host__ __device__ __cudart_builtin__ constexpr float cbrt(float a); +__host__ __device__ __cudart_builtin__ constexpr float erf(float a); +__host__ __device__ __cudart_builtin__ constexpr float erfc(float a); +__host__ __device__ __cudart_builtin__ constexpr float lgamma(float a); +__host__ __device__ __cudart_builtin__ constexpr float tgamma(float a); +__host__ __device__ __cudart_builtin__ constexpr float copysign(float a, float b); +__host__ __device__ __cudart_builtin__ constexpr float nextafter(float a, float b); +__host__ __device__ __cudart_builtin__ constexpr float remainder(float a, float b); +__host__ __device__ __cudart_builtin__ float remquo(float a, float b, int *quo); +__host__ __device__ __cudart_builtin__ constexpr float round(float a); +__host__ __device__ __cudart_builtin__ constexpr long int lround(float a); +__host__ __device__ __cudart_builtin__ constexpr long long int llround(float a); +__host__ __device__ __cudart_builtin__ constexpr float trunc(float a); +__host__ __device__ __cudart_builtin__ constexpr float rint(float a); +__host__ __device__ __cudart_builtin__ constexpr long int lrint(float a); +__host__ __device__ __cudart_builtin__ constexpr long long int llrint(float a); +__host__ __device__ __cudart_builtin__ constexpr float nearbyint(float a); +__host__ __device__ __cudart_builtin__ constexpr float fdim(float a, float b); +__host__ __device__ __cudart_builtin__ constexpr float fma(float a, float b, float c); +__host__ __device__ __cudart_builtin__ constexpr float fmax(float a, float b); +__host__ __device__ __cudart_builtin__ constexpr float fmin(float a, float b); +} +#else /* !(((defined _GLIBCXX_MATH_H) && _GLIBCXX_MATH_H) && (__cplusplus >= 201103L)) */ +__MATH_FUNCTIONS_DECL__ float logb(float a); + +__MATH_FUNCTIONS_DECL__ int ilogb(float a); + +__MATH_FUNCTIONS_DECL__ float scalbn(float a, int b); + +__MATH_FUNCTIONS_DECL__ float scalbln(float a, long int b); + +__MATH_FUNCTIONS_DECL__ float exp2(float a); + +__MATH_FUNCTIONS_DECL__ float expm1(float a); + +__MATH_FUNCTIONS_DECL__ float log2(float a); + +__MATH_FUNCTIONS_DECL__ float log1p(float a); + +__MATH_FUNCTIONS_DECL__ float acosh(float a); + +__MATH_FUNCTIONS_DECL__ float asinh(float a); + +__MATH_FUNCTIONS_DECL__ float atanh(float a); + +__MATH_FUNCTIONS_DECL__ float hypot(float a, float b); + +__MATH_FUNCTIONS_DECL__ float cbrt(float a); + +__MATH_FUNCTIONS_DECL__ float erf(float a); + +__MATH_FUNCTIONS_DECL__ float erfc(float a); + +__MATH_FUNCTIONS_DECL__ float lgamma(float a); + +__MATH_FUNCTIONS_DECL__ float tgamma(float a); + +__MATH_FUNCTIONS_DECL__ float copysign(float a, float b); + +__MATH_FUNCTIONS_DECL__ float nextafter(float a, float b); + +__MATH_FUNCTIONS_DECL__ float remainder(float a, float b); + +__MATH_FUNCTIONS_DECL__ float remquo(float a, float b, int *quo); + +__MATH_FUNCTIONS_DECL__ float round(float a); + +__MATH_FUNCTIONS_DECL__ long int lround(float a); + +__MATH_FUNCTIONS_DECL__ long long int llround(float a); + +__MATH_FUNCTIONS_DECL__ float trunc(float a); + +__MATH_FUNCTIONS_DECL__ float rint(float a); + +__MATH_FUNCTIONS_DECL__ long int lrint(float a); + +__MATH_FUNCTIONS_DECL__ long long int llrint(float a); + +__MATH_FUNCTIONS_DECL__ float nearbyint(float a); + +__MATH_FUNCTIONS_DECL__ float fdim(float a, float b); + +__MATH_FUNCTIONS_DECL__ float fma(float a, float b, float c); + +__MATH_FUNCTIONS_DECL__ float fmax(float a, float b); + +__MATH_FUNCTIONS_DECL__ float fmin(float a, float b); +#endif /* ((defined _GLIBCXX_MATH_H) && _GLIBCXX_MATH_H) && (__cplusplus >= 201103L) */ +#endif /* defined(__QNX__) || (defined(_LIBCPP_VERSION) && _LIBCPP_VERSION >= 3800) */ +#else /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ +extern __host__ __device__ __cudart_builtin__ float __cdecl logb(float) throw(); +extern __host__ __device__ __cudart_builtin__ int __cdecl ilogb(float) throw(); +extern __host__ __device__ __cudart_builtin__ float __cdecl scalbn(float, float) throw(); +extern __host__ __device__ __cudart_builtin__ float __cdecl scalbln(float, long int) throw(); +extern __host__ __device__ __cudart_builtin__ float __cdecl exp2(float) throw(); +extern __host__ __device__ __cudart_builtin__ float __cdecl expm1(float) throw(); +extern __host__ __device__ __cudart_builtin__ float __cdecl log2(float) throw(); +extern __host__ __device__ __cudart_builtin__ float __cdecl log1p(float) throw(); +extern __host__ __device__ __cudart_builtin__ float __cdecl acosh(float) throw(); +extern __host__ __device__ __cudart_builtin__ float __cdecl asinh(float) throw(); +extern __host__ __device__ __cudart_builtin__ float __cdecl atanh(float) throw(); +extern __host__ __device__ __cudart_builtin__ float __cdecl hypot(float, float) throw(); +extern __host__ __device__ __cudart_builtin__ float __cdecl cbrt(float) throw(); +extern __host__ __device__ __cudart_builtin__ float __cdecl erf(float) throw(); +extern __host__ __device__ __cudart_builtin__ float __cdecl erfc(float) throw(); +extern __host__ __device__ __cudart_builtin__ float __cdecl lgamma(float) throw(); +extern __host__ __device__ __cudart_builtin__ float __cdecl tgamma(float) throw(); +extern __host__ __device__ __cudart_builtin__ float __cdecl copysign(float, float) throw(); +extern __host__ __device__ __cudart_builtin__ float __cdecl nextafter(float, float) throw(); +extern __host__ __device__ __cudart_builtin__ float __cdecl remainder(float, float) throw(); +extern __host__ __device__ __cudart_builtin__ float __cdecl remquo(float, float, int *) throw(); +extern __host__ __device__ __cudart_builtin__ float __cdecl round(float) throw(); +extern __host__ __device__ __cudart_builtin__ long int __cdecl lround(float) throw(); +extern __host__ __device__ __cudart_builtin__ long long int __cdecl llround(float) throw(); +extern __host__ __device__ __cudart_builtin__ float __cdecl trunc(float) throw(); +extern __host__ __device__ __cudart_builtin__ float __cdecl rint(float) throw(); +extern __host__ __device__ __cudart_builtin__ long int __cdecl lrint(float) throw(); +extern __host__ __device__ __cudart_builtin__ long long int __cdecl llrint(float) throw(); +extern __host__ __device__ __cudart_builtin__ float __cdecl nearbyint(float) throw(); +extern __host__ __device__ __cudart_builtin__ float __cdecl fdim(float, float) throw(); +extern __host__ __device__ __cudart_builtin__ float __cdecl fma(float, float, float) throw(); +extern __host__ __device__ __cudart_builtin__ float __cdecl fmax(float, float) throw(); +extern __host__ __device__ __cudart_builtin__ float __cdecl fmin(float, float) throw(); +#endif /* (!defined(_MSC_VER) || _MSC_VER < 1800) */ + +__MATH_FUNCTIONS_DECL__ float exp10(const float a); + +__MATH_FUNCTIONS_DECL__ float rsqrt(const float a); + +__MATH_FUNCTIONS_DECL__ float rcbrt(const float a); + +__MATH_FUNCTIONS_DECL__ float sinpi(const float a); + +__MATH_FUNCTIONS_DECL__ float cospi(const float a); + +__MATH_FUNCTIONS_DECL__ void sincospi(const float a, float *const sptr, float *const cptr); + +__MATH_FUNCTIONS_DECL__ void sincos(const float a, float *const sptr, float *const cptr); + +__MATH_FUNCTIONS_DECL__ float j0(const float a); + +__MATH_FUNCTIONS_DECL__ float j1(const float a); + +__MATH_FUNCTIONS_DECL__ float jn(const int n, const float a); + +__MATH_FUNCTIONS_DECL__ float y0(const float a); + +__MATH_FUNCTIONS_DECL__ float y1(const float a); + +__MATH_FUNCTIONS_DECL__ float yn(const int n, const float a); + +__MATH_FUNCTIONS_DEVICE_DECL__ float cyl_bessel_i0(const float a); + +__MATH_FUNCTIONS_DEVICE_DECL__ float cyl_bessel_i1(const float a); + +__MATH_FUNCTIONS_DECL__ float erfinv(const float a); + +__MATH_FUNCTIONS_DECL__ float erfcinv(const float a); + +__MATH_FUNCTIONS_DECL__ float normcdfinv(const float a); + +__MATH_FUNCTIONS_DECL__ float normcdf(const float a); + +__MATH_FUNCTIONS_DECL__ float erfcx(const float a); + +__MATH_FUNCTIONS_DECL__ double copysign(const double a, const float b); + +__MATH_FUNCTIONS_DECL__ double copysign(const float a, const double b); + +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the minimum value of the input \p unsigned \p int arguments. + * + * Calculate the minimum value of the arguments \p a and \p b. + */ +__MATH_FUNCTIONS_DECL__ unsigned int min(const unsigned int a, const unsigned int b); + +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the minimum value of the input \p int and \p unsigned \p int arguments. + * + * Calculate the minimum value of the arguments \p a and \p b, perform integer promotion first. + */ +__MATH_FUNCTIONS_DECL__ unsigned int min(const int a, const unsigned int b); + +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the minimum value of the input \p unsigned \p int and \p int arguments. + * + * Calculate the minimum value of the arguments \p a and \p b, perform integer promotion first. + */ +__MATH_FUNCTIONS_DECL__ unsigned int min(const unsigned int a, const int b); + +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the minimum value of the input \p long \p int arguments. + * + * Calculate the minimum value of the arguments \p a and \p b. + */ +__MATH_FUNCTIONS_DECL__ long int min(const long int a, const long int b); + +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the minimum value of the input \p unsigned \p long \p int arguments. + * + * Calculate the minimum value of the arguments \p a and \p b. + */ +__MATH_FUNCTIONS_DECL__ unsigned long int min(const unsigned long int a, const unsigned long int b); + +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the minimum value of the input \p long \p int and \p unsigned \p long \p int arguments. + * + * Calculate the minimum value of the arguments \p a and \p b, perform integer promotion first. + */ +__MATH_FUNCTIONS_DECL__ unsigned long int min(const long int a, const unsigned long int b); + +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the minimum value of the input \p unsigned \p long \p int and \p long \p int arguments. + * + * Calculate the minimum value of the arguments \p a and \p b, perform integer promotion first. + */ +__MATH_FUNCTIONS_DECL__ unsigned long int min(const unsigned long int a, const long int b); + +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the minimum value of the input \p long \p long \p int arguments. + * + * Calculate the minimum value of the arguments \p a and \p b. + */ +__MATH_FUNCTIONS_DECL__ long long int min(const long long int a, const long long int b); + +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the minimum value of the input \p unsigned \p long \p long \p int arguments. + * + * Calculate the minimum value of the arguments \p a and \p b. + */ +__MATH_FUNCTIONS_DECL__ unsigned long long int min(const unsigned long long int a, const unsigned long long int b); + +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the minimum value of the input \p long \p long \p int and \p unsigned \p long \p long \p int arguments. + * + * Calculate the minimum value of the arguments \p a and \p b, perform integer promotion first. + */ +__MATH_FUNCTIONS_DECL__ unsigned long long int min(const long long int a, const unsigned long long int b); + +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the minimum value of the input \p unsigned \p long \p long \p int and \p long \p long \p int arguments. + * + * Calculate the minimum value of the arguments \p a and \p b, perform integer promotion first. + */ +__MATH_FUNCTIONS_DECL__ unsigned long long int min(const unsigned long long int a, const long long int b); + +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the minimum value of the input \p float arguments. + * + * Calculate the minimum value of the arguments \p a and \p b. + * Behavior is equivalent to ::fminf() function. + * + * Note, this is different from \p std:: specification + */ +__MATH_FUNCTIONS_DECL__ float min(const float a, const float b); + +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the minimum value of the input \p float arguments. + * + * Calculate the minimum value of the arguments \p a and \p b. + * Behavior is equivalent to ::fmin() function. + * + * Note, this is different from \p std:: specification + */ +__MATH_FUNCTIONS_DECL__ double min(const double a, const double b); + +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the minimum value of the input \p float and \p double arguments. + * + * Convert \p float argument \p a to \p double, followed by ::fmin(). + * + * Note, this is different from \p std:: specification + */ +__MATH_FUNCTIONS_DECL__ double min(const float a, const double b); + +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the minimum value of the input \p double and \p float arguments. + * + * Convert \p float argument \p b to \p double, followed by ::fmin(). + * + * Note, this is different from \p std:: specification + */ +__MATH_FUNCTIONS_DECL__ double min(const double a, const float b); + +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the maximum value of the input \p unsigned \p int arguments. + * + * Calculate the maximum value of the arguments \p a and \p b. + */ +__MATH_FUNCTIONS_DECL__ unsigned int max(const unsigned int a, const unsigned int b); + +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the maximum value of the input \p int and \p unsigned \p int arguments. + * + * Calculate the maximum value of the arguments \p a and \p b, perform integer promotion first. + */ +__MATH_FUNCTIONS_DECL__ unsigned int max(const int a, const unsigned int b); + +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the maximum value of the input \p unsigned \p int and \p int arguments. + * + * Calculate the maximum value of the arguments \p a and \p b, perform integer promotion first. + */ +__MATH_FUNCTIONS_DECL__ unsigned int max(const unsigned int a, const int b); + +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the maximum value of the input \p long \p int arguments. + * + * Calculate the maximum value of the arguments \p a and \p b. + */ +__MATH_FUNCTIONS_DECL__ long int max(const long int a, const long int b); + +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the maximum value of the input \p unsigned \p long \p int arguments. + * + * Calculate the maximum value of the arguments \p a and \p b. + */ +__MATH_FUNCTIONS_DECL__ unsigned long int max(const unsigned long int a, const unsigned long int b); + +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the maximum value of the input \p long \p int and \p unsigned \p long \p int arguments. + * + * Calculate the maximum value of the arguments \p a and \p b, perform integer promotion first. + */ +__MATH_FUNCTIONS_DECL__ unsigned long int max(const long int a, const unsigned long int b); + +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the maximum value of the input \p unsigned \p long \p int and \p long \p int arguments. + * + * Calculate the maximum value of the arguments \p a and \p b, perform integer promotion first. + */ +__MATH_FUNCTIONS_DECL__ unsigned long int max(const unsigned long int a, const long int b); + +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the maximum value of the input \p long \p long \p int arguments. + * + * Calculate the maximum value of the arguments \p a and \p b. + */ +__MATH_FUNCTIONS_DECL__ long long int max(const long long int a, const long long int b); + +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the maximum value of the input \p unsigned \p long \p long \p int arguments. + * + * Calculate the maximum value of the arguments \p a and \p b. + */ +__MATH_FUNCTIONS_DECL__ unsigned long long int max(const unsigned long long int a, const unsigned long long int b); + +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the maximum value of the input \p long \p long \p int and \p unsigned \p long \p long \p int arguments. + * + * Calculate the maximum value of the arguments \p a and \p b, perform integer promotion first. + */ +__MATH_FUNCTIONS_DECL__ unsigned long long int max(const long long int a, const unsigned long long int b); + +/** + * \ingroup CUDA_MATH_INT + * \brief Calculate the maximum value of the input \p unsigned \p long \p long \p int and \p long \p long \p int arguments. + * + * Calculate the maximum value of the arguments \p a and \p b, perform integer promotion first. + */ +__MATH_FUNCTIONS_DECL__ unsigned long long int max(const unsigned long long int a, const long long int b); + +/** + * \ingroup CUDA_MATH_SINGLE + * \brief Calculate the maximum value of the input \p float arguments. + * + * Calculate the maximum value of the arguments \p a and \p b. + * Behavior is equivalent to ::fmaxf() function. + * + * Note, this is different from \p std:: specification + */ +__MATH_FUNCTIONS_DECL__ float max(const float a, const float b); + +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the maximum value of the input \p float arguments. + * + * Calculate the maximum value of the arguments \p a and \p b. + * Behavior is equivalent to ::fmax() function. + * + * Note, this is different from \p std:: specification + */ +__MATH_FUNCTIONS_DECL__ double max(const double a, const double b); + +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the maximum value of the input \p float and \p double arguments. + * + * Convert \p float argument \p a to \p double, followed by ::fmax(). + * + * Note, this is different from \p std:: specification + */ +__MATH_FUNCTIONS_DECL__ double max(const float a, const double b); + +/** + * \ingroup CUDA_MATH_DOUBLE + * \brief Calculate the maximum value of the input \p double and \p float arguments. + * + * Convert \p float argument \p b to \p double, followed by ::fmax(). + * + * Note, this is different from \p std:: specification + */ +__MATH_FUNCTIONS_DECL__ double max(const double a, const float b); + +#undef __MATH_FUNCTIONS_DECL__ +#undef __MATH_FUNCTIONS_DEVICE_DECL__ + +/******************************************************************************* +* * +* * +* * +*******************************************************************************/ +#undef EXCLUDE_FROM_RTC + +extern "C"{ +inline __device__ void *__nv_aligned_device_malloc(size_t size, size_t align) +{ + __device__ void *__nv_aligned_device_malloc_impl(size_t, size_t); + return __nv_aligned_device_malloc_impl(size, align); +} +} + +#endif /* __cplusplus && __CUDACC__ */ + +#define EXCLUDE_FROM_RTC + +#if !defined(__CUDACC__) + +/******************************************************************************* +* * +* ONLY FOR HOST CODE! NOT FOR DEVICE EXECUTION * +* * +*******************************************************************************/ + +#include + +#if defined(_WIN32) +#pragma warning (push) +#pragma warning (disable : 4211) + +#endif /* _WIN32 */ + +__func__(double rsqrt(double a)); + +__func__(double rcbrt(double a)); + +__func__(double sinpi(double a)); + +__func__(double cospi(double a)); + +__func__(void sincospi(double a, double *sptr, double *cptr)); + +__func__(double erfinv(double a)); + +__func__(double erfcinv(double a)); + +__func__(double normcdfinv(double a)); + +__func__(double normcdf(double a)); + +__func__(double erfcx(double a)); + +__func__(float rsqrtf(float a)); + +__func__(float rcbrtf(float a)); + +__func__(float sinpif(float a)); + +__func__(float cospif(float a)); + +__func__(void sincospif(float a, float *sptr, float *cptr)); + +__func__(float erfinvf(float a)); + +__func__(float erfcinvf(float a)); + +__func__(float normcdfinvf(float a)); + +__func__(float normcdff(float a)); + +__func__(float erfcxf(float a)); + +__func__(int min(int a, int b)); + +__func__(unsigned int umin(unsigned int a, unsigned int b)); + +__func__(long long int llmin(long long int a, long long int b)); + +__func__(unsigned long long int ullmin(unsigned long long int a, unsigned long long int b)); + +__func__(int max(int a, int b)); + +__func__(unsigned int umax(unsigned int a, unsigned int b)); + +__func__(long long int llmax(long long int a, long long int b)); + +__func__(unsigned long long int ullmax(unsigned long long int a, unsigned long long int b)); + +#if defined(_WIN32) || defined(__APPLE__) || defined (__ANDROID__) + +__func__(int __isnan(double a)); + +#endif /* _WIN32 || __APPLE__ || __ANDROID__ */ + +#if defined(_WIN32) || defined(__APPLE__) || defined (__QNX__) + +__func__(void sincos(double a, double *sptr, double *cptr)); + +#endif /* _WIN32 || __APPLE__ || __QNX__ */ + +#if defined(_WIN32) || defined(__APPLE__) + +__func__(double exp10(double a)); + +__func__(float exp10f(float a)); + +__func__(void sincosf(float a, float *sptr, float *cptr)); + +__func__(int __isinf(double a)); + +#endif /* _WIN32 || __APPLE__ */ + +#if (defined(_WIN32) && (!defined(_MSC_VER) || _MSC_VER < 1800)) || defined (__ANDROID__) + +__func__(double log2(double a)); + +#endif /* (_WIN32 && (!defined(_MSC_VER) || _MSC_VER < 1800)) || __ANDROID__ */ + +#if defined(_WIN32) + +__func__(int __signbit(double a)); + +__func__(int __finite(double a)); + +__func__(int __signbitl(long double a)); + +__func__(int __signbitf(float a)); + +__func__(int __finitel(long double a)); + +__func__(int __finitef(float a)); + +__func__(int __isinfl(long double a)); + +__func__(int __isinff(float a)); + +__func__(int __isnanl(long double a)); + +__func__(int __isnanf(float a)); + +#endif /* _WIN32 */ + +#if defined(_WIN32) && (!defined(_MSC_VER) || _MSC_VER < 1800) + +__func__(double copysign(double a, double b)); + +__func__(double fmax(double a, double b)); + +__func__(double fmin(double a, double b)); + +__func__(double trunc(double a)); + +__func__(double round(double a)); + +__func__(long int lround(double a)); + +__func__(long long int llround(double a)); + +__func__(double rint(double a)); + +__func__(double nearbyint(double a)); + +__func__(long int lrint(double a)); + +__func__(long long int llrint(double a)); + +__func__(double fdim(double a, double b)); + +__func__(double scalbn(double a, int b)); + +__func__(double scalbln(double a, long int b)); + +__func__(double exp2(double a)); + +__func__(double log1p(double a)); + +__func__(double expm1(double a)); + +__func__(double cbrt(double a)); + +__func__(double acosh(double a)); + +__func__(double asinh(double a)); + +__func__(double atanh(double a)); + +__func__(int ilogb(double a)); + +__func__(double logb(double a)); + +__func__(double remquo(double a, double b, int *quo)); + +__func__(double remainder(double a, double b)); + +__func__(double fma (double a, double b, double c)); + +__func__(double nextafter(double a, double b)); + +__func__(double erf(double a)); + +__func__(double erfc(double a)); + +__func__(double lgamma(double a)); + +__func__(unsigned long long int __internal_host_nan_kernel(const char *s)); + +__func__(double nan(const char *tagp)); + +__func__(double __host_tgamma_kernel(double a)); + +__func__(double __host_stirling_poly(double a)); + +__func__(double __host_tgamma_stirling(double a)); + +__func__(double tgamma(double a)); + +__func__(float fmaxf(float a, float b)); + +__func__(float fminf(float a, float b)); + +__func__(float roundf(float a)); + +__func__(long int lroundf(float a)); + +__func__(long long int llroundf(float a)); + +__func__(float truncf(float a)); + +__func__(float rintf(float a)); + +__func__(float nearbyintf(float a)); + +__func__(long int lrintf(float a)); + +__func__(long long int llrintf(float a)); + +__func__(float logbf(float a)); + +__func__(float scalblnf(float a, long int b)); + +__func__(float log2f(float a)); + +__func__(float exp2f(float a)); + +__func__(float acoshf(float a)); + +__func__(float asinhf(float a)); + +__func__(float atanhf(float a)); + +__func__(float cbrtf(float a)); + +__func__(float expm1f(float a)); + +__func__(float fdimf(float a, float b)); + +__func__(float log1pf(float a)); + +__func__(float scalbnf(float a, int b)); + +__func__(float fmaf(float a, float b, float c)); + +__func__(int ilogbf(float a)); + +__func__(float erff(float a)); + +__func__(float erfcf(float a)); + +__func__(float lgammaf(float a)); + +__func__(float tgammaf(float a)); + +__func__(float remquof(float a, float b, int *quo)); + +__func__(float remainderf(float a, float b)); + +__func__(float copysignf(float a, float b)); + +__func__(float nextafterf(float a, float b)); + +__func__(float nanf(const char *tagp)); + +#endif /* _WIN32 && (!defined(_MSC_VER) || _MSC_VER < 1800) */ + +#if defined(_WIN32) +#pragma warning (pop) +#endif /* _WIN32 */ + +#endif /* !__CUDACC__ */ + +#undef EXCLUDE_FROM_RTC + +#if !defined(__CUDACC_RTC__) + +#include "math_functions.hpp" + +#endif /* !__CUDACC_RTC__ */ + +#endif /* !__MATH_FUNCTIONS_H__ */ + +#if defined(__UNDEF_CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS_MATH_FUNCTIONS_H__) +#undef __CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS__ +#undef __UNDEF_CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS_MATH_FUNCTIONS_H__ +#endif