fact
stringlengths
6
5.47k
type
stringclasses
15 values
library
stringclasses
1 value
imports
listlengths
0
4
filename
stringclasses
39 values
symbolic_name
stringlengths
2
26
docstring
stringclasses
1 value
stream (A:Type) := | snil : stream A | scons : A -> stream A -> stream A . Arguments scons {_} _ _.
CoInductive
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
stream
id_match_stream {A} (s:stream A) : stream A := match s with | snil => snil | scons x t => scons x t end.
Definition
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
id_match_stream
id_stream_eq : forall A (s:stream A), s = id_match_stream s. Proof. intros. destruct s; auto. Qed. (* A more relaxed notion of equivalence where the 0's can be inserted finitely often in either stream. *)
Lemma
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
id_stream_eq
seq_step (seq : stream nat -> stream nat -> Prop) : stream nat -> stream nat -> Prop := | seq_nil : seq_step seq snil snil | seq_cons : forall s1 s2 n (R : seq s1 s2), seq_step seq (scons n s1) (scons n s2) | seq_cons_z_l : forall s1 s2, seq_step seq s1 s2 -> seq_step seq (scons 0 s1) s2 | seq_cons_z_r : forall s1 s2, seq_step seq s1 s2 -> seq_step seq s1 (scons 0 s2) . #[export] Hint Constructors seq_step : core.
Inductive
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
seq_step
seq_step_mono : monotone2 seq_step. Proof. unfold monotone2. intros x0 x1 r r' IN LE. induction IN; eauto. Qed. #[export] Hint Resolve seq_step_mono : paco.
Lemma
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
seq_step_mono
seq (s t : stream nat) := paco2 seq_step bot2 s t . #[export] Hint Unfold seq : core.
Definition
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
seq
seq_step_refl : forall (R:stream nat -> stream nat -> Prop), (forall d, R d d) -> forall d, seq_step R d d. Proof. intros. destruct d; constructor; auto. Qed.
Lemma
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
seq_step_refl
seq_refl : forall s, seq s s. Proof. pcofix CIH. intros s. pfold. destruct s; auto. Qed.
Lemma
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
seq_refl
seq_symm : forall s1 s2, seq s1 s2 -> seq s2 s1. Proof. pcofix CIH. intros s1 s2 H. pfold. punfold H. induction H; try constructor; auto. pclearbot. right. apply CIH. punfold R. Qed. Require Import Program Classical.
Lemma
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
seq_symm
zeros_star (P: stream nat -> Prop) : stream nat -> Prop := | zs_base t (BASE: P t): zeros_star P t | zs_step t (LZ: zeros_star P t): zeros_star P (scons 0 t) . #[export] Hint Constructors zeros_star : core.
Inductive
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
zeros_star
zeros_star_mono : monotone1 zeros_star. Proof. red. intros. induction IN; eauto. Qed. #[export] Hint Resolve zeros_star_mono : core.
Lemma
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
zeros_star_mono
zeros_one (P: stream nat -> Prop) : stream nat -> Prop := | zo_step t (BASE: P t): zeros_one P (scons 0 t) . #[export] Hint Constructors zeros_one : core.
Inductive
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
zeros_one
zeros_one_mono : monotone1 zeros_one. Proof. pmonauto. Qed. #[export] Hint Resolve zeros_one_mono : paco.
Lemma
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
zeros_one_mono
infzeros := paco1 zeros_one bot1. #[export] Hint Unfold infzeros : core.
Definition
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
infzeros
nonzero : stream nat -> Prop := | nz_nil: nonzero snil | nz_cons n s (NZ: n <> 0): nonzero (scons n s) . #[export] Hint Constructors nonzero : core.
Inductive
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
nonzero
gseq_cons_or_nil (gseq: stream nat -> stream nat -> Prop) : stream nat -> stream nat -> Prop := | gseq_nil : gseq_cons_or_nil gseq snil snil | gseq_cons s1 s2 n (R: gseq s1 s2) (NZ: n <> 0) : gseq_cons_or_nil gseq (scons n s1) (scons n s2) . #[export] Hint Constructors gseq_cons_or_nil : core.
Inductive
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
gseq_cons_or_nil
gseq_step (gseq: stream nat -> stream nat -> Prop) : stream nat -> stream nat -> Prop := | gseq_inf s1 s2 (IZ1: infzeros s1) (IZ2: infzeros s2) : gseq_step gseq s1 s2 | gseq_fin s1 s2 t1 t2 (ZS1: zeros_star (fun t => t = s1) t1) (ZS2: zeros_star (fun t => t = s2) t2) (R: gseq_cons_or_nil gseq s1 s2) : gseq_step gseq t1 t2 . #[export] Hint Constructors gseq_step : core.
Inductive
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
gseq_step
gseq_step_mono : monotone2 gseq_step. Proof. unfold monotone2. intros. induction IN; eauto. eapply gseq_fin; eauto. destruct R; eauto. Qed. #[export] Hint Resolve gseq_step_mono : paco.
Lemma
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
gseq_step_mono
gseq (s t : stream nat) := paco2 gseq_step bot2 s t . #[export] Hint Unfold gseq : core.
Definition
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
gseq
nonzero_not_infzeros : forall s (ZST: zeros_star nonzero s) (INF: infzeros s), False. Proof. intros. revert INF. induction ZST. - intro INF. punfold INF. dependent destruction INF. dependent destruction BASE. intuition. - intro INF. apply IHZST. punfold INF. dependent destruction INF. pclearbot. eauto. Qed.
Lemma
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
nonzero_not_infzeros
infzeros_or_finzeros : forall s, infzeros s \/ zeros_star nonzero s. Proof. intros. destruct (classic (zeros_star nonzero s)); eauto. left. revert s H. pcofix CIH. intros. destruct s. - exfalso. eauto. - destruct n; [|exfalso; eauto]. pfold. econstructor. right. eauto. Qed.
Lemma
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
infzeros_or_finzeros
seq_infzeros_imply : forall s t (R: seq s t) (IZ: infzeros s), infzeros t. Proof. pcofix CIH. intros. punfold R. revert IZ. induction R; intros. - eapply paco1_mon. eauto. intros. inversion PR. - pfold. punfold IZ. dependent destruction IZ. pclearbot. eauto. - punfold IZ. dependent destruction IZ. pclearbot. eauto. - pfold. eauto. Qed.
Lemma
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
seq_infzeros_imply
seq_zeros_star_imply : forall s t (R: seq s t) (IZ: zeros_star nonzero s), zeros_star nonzero t. Proof. intros. revert t R. induction IZ; intros. - punfold R. induction R; pclearbot; eauto. + inversion BASE. eauto. + inversion BASE. intuition. - punfold R. remember(scons 0 t). generalize dependent t. induction R; intros; pclearbot; dependent destruction Heqs; eauto. Qed.
Lemma
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
seq_zeros_star_imply
seq_infzeros_or_finzeros : forall s t (R: seq s t), (infzeros s /\ infzeros t) \/ (zeros_star nonzero s /\ zeros_star nonzero t). Proof. intros. destruct (@infzeros_or_finzeros s). - eauto using seq_infzeros_imply. - eauto using seq_zeros_star_imply. Qed.
Lemma
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
seq_infzeros_or_finzeros
seq_zero_l : forall s t (EQ : seq (scons 0 s) t), seq s t. Proof. intros. punfold EQ. pfold. remember (scons 0 s). generalize dependent s. induction EQ; intros; dependent destruction Heqs0; pclearbot; eauto. punfold R. Qed.
Lemma
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
seq_zero_l
seq_zero_r : forall s t (EQ : seq s (scons 0 t)), seq s t. Proof. intros. punfold EQ. pfold. remember (scons 0 t). generalize dependent t. induction EQ; intros; dependent destruction Heqs0; pclearbot; eauto. punfold R. Qed.
Lemma
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
seq_zero_r
zero_gseq_l : forall r s t (R : paco2 gseq_step r s t), paco2 gseq_step r (scons 0 s) t. Proof. intros. punfold R. pfold. destruct R; eauto. econstructor; eauto. pfold. eauto. Qed.
Lemma
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
zero_gseq_l
zero_gseq_r : forall r s t (R : paco2 gseq_step r s t), paco2 gseq_step r s (scons 0 t). Proof. intros. punfold R. pfold. destruct R; eauto. econstructor; eauto. pfold. eauto. Qed.
Lemma
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
zero_gseq_r
seq_implies_gseq : forall s t (R: seq s t), gseq s t. Proof. pcofix CIH. intros. destruct (seq_infzeros_or_finzeros R) as [[]|[]]; eauto. induction H. - induction H0. + pfold. punfold R. dependent destruction R; pclearbot; eauto. * dependent destruction BASE. eauto 10. * dependent destruction BASE. intuition. * dependent destruction BASE0. intuition. + eauto using seq_zero_r, zero_gseq_r. - eauto using seq_zero_l, zero_gseq_l. Qed.
Lemma
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
seq_implies_gseq
gseq_implies_seq : forall s t (R: gseq s t), seq s t. Proof. pcofix CIH; intros. punfold R. destruct R. - punfold IZ1. punfold IZ2. dependent destruction IZ1. dependent destruction IZ2. pclearbot. pfold. econstructor. right. eauto. - induction ZS1; subst. + induction ZS2; subst. * pfold. dependent destruction R; pclearbot; eauto. * pfold. punfold IHZS2. + pfold. punfold IHZS1. Qed.
Lemma
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
gseq_implies_seq
gseq_cons_or_nil_nonzero_l : forall r s t (R : gseq_cons_or_nil r s t), nonzero s. Proof. intros; destruct R; eauto. Qed.
Lemma
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
gseq_cons_or_nil_nonzero_l
gseq_cons_or_nil_nonzero_r : forall r s t (R : gseq_cons_or_nil r s t), nonzero t. Proof. intros; destruct R; eauto. Qed.
Lemma
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
gseq_cons_or_nil_nonzero_r
zeros_star_nonzero_uniq : forall s1 s2 t (ZS1: zeros_star (fun s => s = s1) t) (ZS2: zeros_star (fun s => s = s2) t) (NZ1: nonzero s1) (NZ2: nonzero s2), s1 = s2. Proof. intros s1 s2 t ZS1. revert s2. induction ZS1; subst; intros. - induction ZS2; subst; eauto. inversion NZ1. intuition. - dependent destruction ZS2; eauto. inversion NZ2. intuition. Qed.
Lemma
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
zeros_star_nonzero_uniq
gseq_trans : forall d1 d2 d3 (EQL: gseq d1 d2) (EQR: gseq d2 d3), gseq d1 d3. Proof. pcofix CIH; intros. punfold EQL. punfold EQR. destruct EQL, EQR; eauto. - exfalso. eapply nonzero_not_infzeros, IZ2. eapply zeros_star_mono; eauto. simpl. intros. subst. destruct R; eauto. - exfalso. eapply nonzero_not_infzeros, IZ1. eapply zeros_star_mono; eauto. simpl. intros. subst. destruct R; eauto. - eapply zeros_star_nonzero_uniq in ZS2; eauto using gseq_cons_or_nil_nonzero_l, gseq_cons_or_nil_nonzero_r. subst. pfold. econstructor 2; eauto. destruct R; dependent destruction R0; pclearbot; eauto. Qed.
Lemma
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
gseq_trans
seq_trans : forall d1 d2 d3 (EQL: seq d1 d2) (EQR: seq d2 d3), seq d1 d3. Proof. eauto using gseq_trans, seq_implies_gseq, gseq_implies_seq. Qed. (** Tests for [pclearbot] **)
Lemma
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
seq_trans
plcearbot_test1 x y (H: upaco2 seq_step bot2 x y) : True. Proof. pclearbot. eauto. Qed.
Lemma
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
plcearbot_test1
plcearbot_test2 (H: forall x y, upaco2 seq_step bot2 x y) : True. Proof. pclearbot. eauto. Qed.
Lemma
root
[ "Require Import ZArith List String.", "Require Import Paco.", "Require Import Program Classical." ]
examples.v
plcearbot_test2
inv H := inversion H; subst; clear H. (*** Coinductive stream ***)
Ltac
root
[ "Require Import Paco.", "Require Import Program.", "Require Import RelationClasses.", "Require Import Morphisms." ]
example_upto.v
inv
stream := | snil | scons (n: nat) (s: stream) .
CoInductive
root
[ "Require Import Paco.", "Require Import Program.", "Require Import RelationClasses.", "Require Import Morphisms." ]
example_upto.v
stream
match_stream (s: stream) := match s with | snil => snil | scons n s => scons n s end.
Definition
root
[ "Require Import Paco.", "Require Import Program.", "Require Import RelationClasses.", "Require Import Morphisms." ]
example_upto.v
match_stream
unfold_stream s : s = match_stream s. Proof. destruct s; auto. Qed. (*** Concat of two streams ***)
Lemma
root
[ "Require Import Paco.", "Require Import Program.", "Require Import RelationClasses.", "Require Import Morphisms." ]
example_upto.v
unfold_stream
match_concat concat (s0 s1: stream): stream := match s0 with | snil => s1 | scons n s0 => scons n (concat s0 s1) end . CoFixpoint concat (s0 s1: stream): stream := match_concat concat s0 s1. Declare Scope stream_scope.
Definition
root
[ "Require Import Paco.", "Require Import Program.", "Require Import RelationClasses.", "Require Import Morphisms." ]
example_upto.v
match_concat
unfold_concat : forall s0 s1, s0 ++ s1 = match_concat concat s0 s1. Proof. intros. rewrite unfold_stream with (concat s0 s1). simpl. destruct (match_concat concat s0 s1) eqn:T; reflexivity. Qed. (*** Bisimulation between two streams ***)
Lemma
root
[ "Require Import Paco.", "Require Import Program.", "Require Import RelationClasses.", "Require Import Morphisms." ]
example_upto.v
unfold_concat
_sim (sim : stream -> stream -> Prop): stream -> stream -> Prop := | SimNil: _sim sim snil snil | SimCons n sl sr (REL: sim sl sr): _sim sim (scons n sl) (scons n sr) . #[export] Hint Constructors _sim : core.
Inductive
root
[ "Require Import Paco.", "Require Import Program.", "Require Import RelationClasses.", "Require Import Morphisms." ]
example_upto.v
_sim
_sim_mon : monotone2 (_sim). Proof. intros x0 x1 r r' IN LE. induction IN; auto. Qed. #[export] Hint Resolve _sim_mon : paco.
Lemma
root
[ "Require Import Paco.", "Require Import Program.", "Require Import RelationClasses.", "Require Import Morphisms." ]
example_upto.v
_sim_mon
sim (sl sr: stream) := paco2 (_sim) bot2 sl sr. #[export] Hint Unfold sim : core. (*** First (failing) attempt without upto technique ***)
Definition
root
[ "Require Import Paco.", "Require Import Program.", "Require Import RelationClasses.", "Require Import Morphisms." ]
example_upto.v
sim
sim_concat s0 s1 t0 t1 (EQ0: sim s0 t0) (EQ1: sim s1 t1) : @sim (concat s0 s1) (concat t0 t1) . Proof. revert_until s0. revert s0. pcofix CIH. intros. pfold. punfold EQ0. punfold EQ1. inv EQ0. - rewrite ! unfold_concat. cbn. eapply _sim_mon; eauto. intros. pclearbot. left. eapply paco2_mon; eauto. intros. red in PR0. contradict PR0. - rewrite ! unfold_concat. cbn. pclearbot. econstructor; eauto. left. inv EQ1. + (*** We are stuck here..? ***) admit. + pclearbot. pfold. (*** We are stuck here..? ***) admit. (*** TODO: give better explanation ***) Abort. (*** Second attempt with upto technique ***)
Lemma
root
[ "Require Import Paco.", "Require Import Program.", "Require Import RelationClasses.", "Require Import Morphisms." ]
example_upto.v
sim_concat
prefixC (R : stream -> stream -> Prop): stream -> stream -> Prop := | prefixC_intro s0 s1 t0 t1 (REL: sim s0 t0) (REL: R s1 t1) : prefixC R (concat s0 s1) (concat t0 t1) . #[export] Hint Constructors prefixC: core.
Inductive
root
[ "Require Import Paco.", "Require Import Program.", "Require Import RelationClasses.", "Require Import Morphisms." ]
example_upto.v
prefixC
prefixC_spec simC : prefixC <3= gupaco2 (_sim) (simC) . Proof. gcofix CIH. intros. destruct PR. punfold REL. inv REL. - rewrite ! unfold_concat. cbn. gbase. eauto. (* Note: "eauto with paco" also works *) - gstep. rewrite ! unfold_concat. cbn. econstructor; eauto. pclearbot. gbase. eauto. (* Note: "eauto with paco" also works *) Qed.
Lemma
root
[ "Require Import Paco.", "Require Import Program.", "Require Import RelationClasses.", "Require Import Morphisms." ]
example_upto.v
prefixC_spec
sim_concat s0 s1 t0 t1 (EQ0: sim s0 t0) (EQ1: sim s1 t1) : @sim (concat s0 s1) (concat t0 t1) . Proof. intros. ginit. { eapply cpn2_wcompat; pmonauto. } guclo prefixC_spec. Qed.
Lemma
root
[ "Require Import Paco.", "Require Import Program.", "Require Import RelationClasses.", "Require Import Morphisms." ]
example_upto.v
sim_concat
sim_concat_proper : Proper (sim ==> sim ==> sim) concat. Proof. repeat intro. eapply sim_concat; eauto. Qed.
Lemma
root
[ "Require Import Paco.", "Require Import Program.", "Require Import RelationClasses.", "Require Import Morphisms." ]
example_upto.v
sim_concat_proper
GeneralizedPaco0 .
Section
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
GeneralizedPaco0
rel := (rel0).
Local Notation
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
rel
RClo .
Section
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
RClo
rclo0 (clo: rel->rel) (r: rel): rel := | rclo0_base (IN: r): @rclo0 clo r | rclo0_clo' r' (LE: r' <0= rclo0 clo r) (IN: clo r'): @rclo0 clo r .
Inductive
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
rclo0
rclo0_mon_gen clo clo' r r' (IN: @rclo0 clo r) (LEclo: clo <1= clo') (LEr: r <0= r') : @rclo0 clo' r'. Proof. induction IN; intros. - econstructor 1. apply LEr, IN. - econstructor 2; [intros; eapply H, PR|apply LEclo, IN]. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
rclo0_mon_gen
rclo0_mon clo: monotone0 (rclo0 clo). Proof. repeat intro. eapply rclo0_mon_gen; [apply IN|intros; apply PR|apply LE]. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
rclo0_mon
rclo0_clo clo r: clo (rclo0 clo r) <0= rclo0 clo r. Proof. intros. econstructor 2; [|apply PR]. intros. apply PR0. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
rclo0_clo
rclo0_clo_base clo r: clo r <0= rclo0 clo r. Proof. intros. eapply rclo0_clo', PR. intros. apply rclo0_base, PR0. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
rclo0_clo_base
rclo0_rclo clo r: rclo0 clo (rclo0 clo r) <0= rclo0 clo r. Proof. intros. induction PR. - eapply IN. - econstructor 2; [eapply H | eapply IN]. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
rclo0_rclo
rclo0_compose clo r: rclo0 (rclo0 clo) r <0= rclo0 clo r. Proof. intros. induction PR. - apply rclo0_base, IN. - apply rclo0_rclo. eapply rclo0_mon; [apply IN|apply H]. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
rclo0_compose
Main . Variable gf: rel -> rel. Hypothesis gf_mon: monotone0 gf.
Section
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
Main
gpaco0 clo r rg : Prop := | gpaco0_intro (IN: @rclo0 clo (paco0 (compose gf (rclo0 clo)) (rg \0/ r) \0/ r)) .
Variant
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
gpaco0
gupaco0 clo r := gpaco0 clo r r.
Definition
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
gupaco0
gpaco0_def_mon clo : monotone0 (compose gf (rclo0 clo)). Proof. eapply monotone0_compose. apply gf_mon. apply rclo0_mon. Qed. #[local] Hint Resolve gpaco0_def_mon : paco.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
gpaco0_def_mon
gpaco0_mon clo r r' rg rg' (IN: @gpaco0 clo r rg) (LEr: r <0= r') (LErg: rg <0= rg'): @gpaco0 clo r' rg'. Proof. destruct IN. econstructor. eapply rclo0_mon. apply IN. intros. destruct PR; [|right; apply LEr, H]. left. eapply paco0_mon. apply H. intros. destruct PR. - left. apply LErg, H0. - right. apply LEr, H0. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
gpaco0_mon
gupaco0_mon clo r r' (IN: @gupaco0 clo r) (LEr: r <0= r'): @gupaco0 clo r'. Proof. eapply gpaco0_mon. apply IN. apply LEr. apply LEr. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
gupaco0_mon
gpaco0_base clo r rg: r <0= gpaco0 clo r rg. Proof. econstructor. apply rclo0_base. right. apply PR. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
gpaco0_base
gpaco0_gen_guard clo r rg: gpaco0 clo r (rg \0/ r) <0= gpaco0 clo r rg. Proof. intros. destruct PR. econstructor. eapply rclo0_mon. apply IN. intros. destruct PR; [|right; apply H]. left. eapply paco0_mon_gen; intros. apply H. apply PR. destruct PR. apply H0. right. apply H0. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
gpaco0_gen_guard
gpaco0_rclo clo r rg: rclo0 clo r <0= gpaco0 clo r rg. Proof. intros. econstructor. eapply rclo0_mon. apply PR. intros. right. apply PR0. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
gpaco0_rclo
gpaco0_clo clo r rg: clo r <0= gpaco0 clo r rg. Proof. intros. apply gpaco0_rclo. eapply rclo0_clo_base, PR. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
gpaco0_clo
gpaco0_gen_rclo clo r rg: gpaco0 (rclo0 clo) r rg <0= gpaco0 clo r rg. Proof. intros. destruct PR. econstructor. apply rclo0_compose. eapply rclo0_mon. apply IN. intros. destruct PR; [|right; apply H]. left. eapply paco0_mon_gen; intros; [apply H| |apply PR]. eapply gf_mon, rclo0_compose. apply PR. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
gpaco0_gen_rclo
gpaco0_step_gen clo r rg: gf (gpaco0 clo (rg \0/ r) (rg \0/ r)) <0= gpaco0 clo r rg. Proof. intros. econstructor. apply rclo0_base. left. pstep. eapply gf_mon. apply PR. intros. destruct PR0. eapply rclo0_mon. apply IN. intros. destruct PR0. - left. eapply paco0_mon. apply H. intros. destruct PR0; apply H0. - right. apply H. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
gpaco0_step_gen
gpaco0_step clo r rg: gf (gpaco0 clo rg rg) <0= gpaco0 clo r rg. Proof. intros. apply gpaco0_step_gen. eapply gf_mon. apply PR. intros. eapply gpaco0_mon. apply PR0. left; apply PR1. left; apply PR1. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
gpaco0_step
gpaco0_final clo r rg: (r \0/ paco0 gf rg) <0= gpaco0 clo r rg. Proof. intros. destruct PR. apply gpaco0_base, H. econstructor. apply rclo0_base. left. eapply paco0_mon_gen. apply H. - intros. eapply gf_mon. apply PR. intros. apply rclo0_base. apply PR0. - intros. left. apply PR. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
gpaco0_final
gpaco0_unfold clo r rg: gpaco0 clo r rg <0= rclo0 clo (gf (gupaco0 clo (rg \0/ r)) \0/ r). Proof. intros. destruct PR. eapply rclo0_mon. apply IN. intros. destruct PR; cycle 1. right; apply H. left. _punfold H; [|apply gpaco0_def_mon]. eapply gf_mon. apply H. intros. econstructor. eapply rclo0_mon. apply PR. intros. destruct PR0; cycle 1. right. apply H0. left. eapply paco0_mon. apply H0. intros. left. apply PR0. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
gpaco0_unfold
gpaco0_cofix clo r rg l (OBG: forall rr (INC: rg <0= rr) (CIH: l <0= rr), l <0= gpaco0 clo r rr): l <0= gpaco0 clo r rg. Proof. assert (IN: l <0= gpaco0 clo r (rg \0/ l)). { intros. apply OBG; [left; apply PR0 | right; apply PR0 | apply PR]. } clear OBG. intros. apply IN in PR. destruct PR. econstructor. eapply rclo0_mon. apply IN0. clear IN0. intros. destruct PR; [|right; apply H]. left. revert H. pcofix CIH. intros. _punfold H0; [..|apply gpaco0_def_mon]. pstep. eapply gf_mon. apply H0. intros. apply rclo0_rclo. eapply rclo0_mon. apply PR. intros. destruct PR0. - apply rclo0_base. right. apply CIH. apply H. - destruct H; [destruct H|]. + apply rclo0_base. right. apply CIH0. left. apply H. + apply IN in H. destruct H. eapply rclo0_mon. apply IN0. intros. destruct PR0. * right. apply CIH. apply H. * right. apply CIH0. right. apply H. + apply rclo0_base. right. apply CIH0. right. apply H. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
gpaco0_cofix
gpaco0_gupaco clo r rg: gupaco0 clo (gpaco0 clo r rg) <0= gpaco0 clo r rg. Proof. eapply gpaco0_cofix. intros. destruct PR. econstructor. apply rclo0_rclo. eapply rclo0_mon. apply IN. intros. destruct PR. - apply rclo0_base. left. eapply paco0_mon. apply H. intros. left; apply CIH. econstructor. apply rclo0_base. right. destruct PR; apply H0. - destruct H. eapply rclo0_mon. apply IN0. intros. destruct PR; [| right; apply H]. left. eapply paco0_mon. apply H. intros. destruct PR. + left. apply INC. apply H0. + right. apply H0. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
gpaco0_gupaco
gpaco0_gpaco clo r rg: gpaco0 clo (gpaco0 clo r rg) (gupaco0 clo (rg \0/ r)) <0= gpaco0 clo r rg. Proof. intros. apply gpaco0_unfold in PR. econstructor. apply rclo0_rclo. eapply rclo0_mon. apply PR. clear PR. intros. destruct PR; [|destruct H; apply IN]. apply rclo0_base. left. pstep. eapply gf_mon. apply H. clear H. intros. cut (@gupaco0 clo (rg \0/ r)). { intros. destruct H. eapply rclo0_mon. apply IN. intros. destruct PR0; [|right; apply H]. left. eapply paco0_mon. apply H. intros. destruct PR0; apply H0. } apply gpaco0_gupaco. eapply gupaco0_mon. apply PR. intros. destruct PR0; [apply H|]. eapply gpaco0_mon; [apply H|right|left]; intros; apply PR0. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
gpaco0_gpaco
gpaco0_uclo uclo clo r rg (LEclo: uclo <1= gupaco0 clo) : uclo (gpaco0 clo r rg) <0= gpaco0 clo r rg. Proof. intros. apply gpaco0_gupaco. apply LEclo, PR. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
gpaco0_uclo
gpaco0_weaken clo r rg: gpaco0 (gupaco0 clo) r rg <0= gpaco0 clo r rg. Proof. intros. apply gpaco0_unfold in PR. induction PR. - destruct IN; cycle 1. apply gpaco0_base, H. apply gpaco0_step_gen. eapply gf_mon. apply H. clear H. eapply gpaco0_cofix. intros. apply gpaco0_unfold in PR. induction PR. + destruct IN; cycle 1. apply gpaco0_base, H. apply gpaco0_step. eapply gf_mon. apply H. intros. apply gpaco0_base. apply CIH. eapply gupaco0_mon. apply PR. intros. destruct PR0; apply H0. + apply gpaco0_gupaco. eapply gupaco0_mon. apply IN. apply H. - apply gpaco0_gupaco. eapply gupaco0_mon. apply IN. apply H. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
gpaco0_weaken
GeneralMonotonicity . Variable gf: rel -> rel.
Section
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
GeneralMonotonicity
gpaco0_mon_gen (gf' clo clo': rel -> rel) r r' rg rg' (IN: @gpaco0 gf clo r rg) (gf_mon: monotone0 gf) (LEgf: gf <1= gf') (LEclo: clo <1= clo') (LEr: r <0= r') (LErg: rg <0= rg') : @gpaco0 gf' clo' r' rg'. Proof. eapply gpaco0_mon; [|apply LEr|apply LErg]. destruct IN. econstructor. eapply rclo0_mon_gen. apply IN. apply LEclo. intros. destruct PR; [| right; apply H]. left. eapply paco0_mon_gen. apply H. - intros. eapply LEgf. eapply gf_mon. apply PR. intros. eapply rclo0_mon_gen. apply PR0. apply LEclo. intros; apply PR1. - intros. apply PR. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
gpaco0_mon_gen
gpaco0_mon_bot (gf' clo clo': rel -> rel) r' rg' (IN: @gpaco0 gf clo bot0 bot0) (gf_mon: monotone0 gf) (LEgf: gf <1= gf') (LEclo: clo <1= clo'): @gpaco0 gf' clo' r' rg'. Proof. eapply gpaco0_mon_gen. apply IN. apply gf_mon. apply LEgf. apply LEclo. contradiction. contradiction. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
gpaco0_mon_bot
gupaco0_mon_gen (gf' clo clo': rel -> rel) r r' (IN: @gupaco0 gf clo r) (gf_mon: monotone0 gf) (LEgf: gf <1= gf') (LEclo: clo <1= clo') (LEr: r <0= r'): @gupaco0 gf' clo' r'. Proof. eapply gpaco0_mon_gen. apply IN. apply gf_mon. apply LEgf. apply LEclo. apply LEr. apply LEr. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
gupaco0_mon_gen
Compatibility . Variable gf: rel -> rel. Hypothesis gf_mon: monotone0 gf. Structure compatible0 (clo: rel -> rel) : Prop := compat0_intro { compat0_mon: monotone0 clo; compat0_compat : forall r, clo (gf r) <0= gf (clo r); }. Structure wcompatible0 clo : Prop := wcompat0_intro { wcompat0_mon: monotone0 clo; wcompat0_wcompat : forall r, clo (gf r) <0= gf (gupaco0 gf clo r); }.
Section
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
Compatibility
rclo0_dist clo (MON: monotone0 clo) (DIST: forall r1 r2, clo (r1 \0/ r2) <0= (clo r1 \0/ clo r2)): forall r1 r2, rclo0 clo (r1 \0/ r2) <0= (rclo0 clo r1 \0/ rclo0 clo r2). Proof. intros. induction PR. + destruct IN; [left|right]; apply rclo0_base, H. + assert (REL: clo (rclo0 clo r1 \0/ rclo0 clo r2)). { eapply MON. apply IN. apply H. } apply DIST in REL. destruct REL; [left|right]; apply rclo0_clo, H0. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
rclo0_dist
rclo0_compat clo (COM: compatible0 clo): compatible0 (rclo0 clo). Proof. econstructor. - apply rclo0_mon. - intros. induction PR. + eapply gf_mon. apply IN. intros. eapply rclo0_base. apply PR. + eapply gf_mon. * eapply COM. eapply COM. apply IN. apply H. * intros. eapply rclo0_clo. apply PR. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
rclo0_compat
rclo0_wcompat clo (COM: wcompatible0 clo): wcompatible0 (rclo0 clo). Proof. econstructor. - apply rclo0_mon. - intros. induction PR. + eapply gf_mon. apply IN. intros. apply gpaco0_base. apply PR. + eapply gf_mon. * eapply COM. eapply COM. apply IN. apply H. * intros. eapply gpaco0_gupaco. apply gf_mon. eapply gupaco0_mon_gen; intros; [apply PR|apply gf_mon|apply PR0| |apply PR0]. apply rclo0_clo_base, PR0. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
rclo0_wcompat
compat0_wcompat clo (CMP: compatible0 clo): wcompatible0 clo. Proof. econstructor. apply CMP. intros. apply CMP in PR. eapply gf_mon. apply PR. intros. apply gpaco0_clo, PR0. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
compat0_wcompat
wcompat0_compat clo (WCMP: wcompatible0 clo) : compatible0 (gupaco0 gf clo). Proof. econstructor. { red; intros. eapply gpaco0_mon. apply IN. apply LE. apply LE. } intros. apply gpaco0_unfold in PR; [|apply gf_mon]. induction PR. - destruct IN; cycle 1. + eapply gf_mon. apply H. intros. apply gpaco0_base, PR. + eapply gf_mon. apply H. intros. apply gpaco0_gupaco. apply gf_mon. eapply gupaco0_mon. apply PR. intros. apply gpaco0_step. apply gf_mon. eapply gf_mon. destruct PR0 as [X|X]; apply X. intros. apply gpaco0_base, PR1. - eapply gf_mon, gpaco0_gupaco, gf_mon. apply WCMP. eapply WCMP. apply IN. intros. apply H, PR. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
wcompat0_compat
wcompat0_union clo1 clo2 (WCMP1: wcompatible0 clo1) (WCMP2: wcompatible0 clo2): wcompatible0 (clo1 \1/ clo2). Proof. econstructor. - apply monotone0_union. apply WCMP1. apply WCMP2. - intros. destruct PR. + apply WCMP1 in H. eapply gf_mon. apply H. intros. eapply gupaco0_mon_gen. apply PR. apply gf_mon. intros; apply PR0. left; apply PR0. intros; apply PR0. + apply WCMP2 in H. eapply gf_mon. apply H. intros. eapply gupaco0_mon_gen. apply PR. apply gf_mon. intros; apply PR0. right; apply PR0. intros; apply PR0. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
wcompat0_union
Soundness . Variable gf: rel -> rel. Hypothesis gf_mon: monotone0 gf.
Section
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
Soundness
gpaco0_compat_init clo (CMP: compatible0 gf clo): gpaco0 gf clo bot0 bot0 <0= paco0 gf bot0. Proof. intros. destruct PR. revert IN. pcofix CIH. intros. pstep. eapply gf_mon; [| right; apply CIH, rclo0_rclo, PR]. apply compat0_compat with (gf:=gf). apply rclo0_compat. apply gf_mon. apply CMP. eapply rclo0_mon. apply IN. intros. destruct PR; [|contradiction]. _punfold H; [..|apply gpaco0_def_mon, gf_mon]. eapply gpaco0_def_mon. apply gf_mon. apply H. intros. destruct PR; [|destruct H0; contradiction]. left. apply H0. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
gpaco0_compat_init
gpaco0_init clo (WCMP: wcompatible0 gf clo): gpaco0 gf clo bot0 bot0 <0= paco0 gf bot0. Proof. intros. eapply gpaco0_compat_init. - apply wcompat0_compat, WCMP. apply gf_mon. - eapply gpaco0_mon_bot. apply PR. apply gf_mon. intros; apply PR0. intros. apply gpaco0_clo, PR0. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
gpaco0_init
gpaco0_unfold_bot clo (WCMP: wcompatible0 gf clo): gpaco0 gf clo bot0 bot0 <0= gf (gpaco0 gf clo bot0 bot0). Proof. intros. apply gpaco0_init in PR; [|apply WCMP]. _punfold PR; [..|apply gf_mon]. eapply gf_mon. apply PR. intros. destruct PR0; [|contradiction]. apply gpaco0_final. apply gf_mon. right. apply H. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
gpaco0_unfold_bot
Distributivity . Variable gf: rel -> rel. Hypothesis gf_mon: monotone0 gf.
Section
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
Distributivity
gpaco0_dist clo r rg (CMP: wcompatible0 gf clo) (DIST: forall r1 r2, clo (r1 \0/ r2) <0= (clo r1 \0/ clo r2)): gpaco0 gf clo r rg <0= (paco0 gf (rclo0 clo (rg \0/ r)) \0/ rclo0 clo r). Proof. intros. apply gpaco0_unfold in PR; [|apply gf_mon]. apply rclo0_dist in PR; [|apply CMP|apply DIST]. destruct PR; [|right; apply H]. left. revert H. pcofix CIH; intros. apply rclo0_wcompat in H0; [|apply gf_mon|apply CMP]. pstep. eapply gf_mon. apply H0. clear H0. intros. apply gpaco0_unfold in PR; [|apply gf_mon]. apply rclo0_compose in PR. apply rclo0_dist in PR; [|apply CMP|apply DIST]. destruct PR. - right. apply CIH. eapply rclo0_mon. apply H. intros. eapply gf_mon. apply PR. intros. apply gpaco0_gupaco. apply gf_mon. apply gpaco0_gen_rclo. apply gf_mon. eapply gupaco0_mon. apply PR0. intros. destruct PR1; apply H0. - assert (REL: @rclo0 clo (rclo0 clo (gf (gupaco0 gf clo ((rg \0/ r) \0/ (rg \0/ r))) \0/ (rg \0/ r)))). { eapply rclo0_mon. apply H. intros. apply gpaco0_unfold in PR. apply PR. apply gf_mon. } apply rclo0_rclo in REL. apply rclo0_dist in REL; [|apply CMP|apply DIST]. right. destruct REL; cycle 1. + apply CIH0, H0. + apply CIH. eapply rclo0_mon. apply H0. intros. eapply gf_mon. apply PR. intros. eapply gupaco0_mon. apply PR0. intros. destruct PR1; apply H1. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
gpaco0_dist
gpaco0_dist_reverse clo r rg: (paco0 gf (rclo0 clo (rg \0/ r)) \0/ rclo0 clo r) <0= gpaco0 gf clo r rg. Proof. intros. destruct PR; cycle 1. - eapply gpaco0_rclo. apply H. - econstructor. apply rclo0_base. left. revert H. pcofix CIH; intros. _punfold H0; [|apply gf_mon]. pstep. eapply gf_mon. apply H0. intros. destruct PR. + apply rclo0_base. right. apply CIH, H. + eapply rclo0_mon. apply H. intros. right. apply CIH0. apply PR. Qed.
Lemma
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
gpaco0_dist_reverse
Companion . Variable gf: rel -> rel. Hypothesis gf_mon: monotone0 gf.
Section
root
[ "Require Export Program.", "From Paco Require Import paco0 pacotac." ]
gpaco0.v
Companion