fact
stringlengths
1
2.11k
type
stringclasses
27 values
library
stringclasses
888 values
imports
listlengths
0
81
filename
stringlengths
9
106
symbolic_name
stringlengths
1
113
docstring
stringlengths
0
1.34k
Consensus\<comment> \<open>To avoid name clashes\<close> begin
locale
Abortable_Linearizable_Modules
[ "RDR" ]
Abortable_Linearizable_Modules/Consensus.thy
Consensus
null
single_use: fixes r rs shows "\<bottom> \<star> ([r]@rs) = Some (snd r)" proof (induct rs) case Nil thus ?case by simp next case (Cons r rs) thus ?case by auto qed
lemma
Abortable_Linearizable_Modules
[ "RDR" ]
Abortable_Linearizable_Modules/Consensus.thy
single_use
null
bot: "\<exists> rs . s = \<bottom> \<star> rs" proof (cases s) case None hence "s = \<bottom> \<star> []" by auto thus ?thesis by blast next case (Some v) obtain r where "\<bottom> \<star> [r] = Some v" by force thus ?thesis using Some by metis qed
lemma
Abortable_Linearizable_Modules
[ "RDR" ]
Abortable_Linearizable_Modules/Consensus.thy
bot
null
prec_eq_None_or_equal: fixes s1 s2 assumes "s1 \<preceq> s2" shows "s1 = None \<or> s1 = s2" using assms single_use proof - { assume 1:"s1 \<noteq> None" and 2:"s1 \<noteq> s2" obtain r rs where 3:"s1 = \<bottom> \<star> ([r]@rs)" using bot using 1 by (metis append_butlast_last_id pre_RDR.exec.simps(1)) obtain rs' where 4:"s2 = s1 \<star> rs'" using assms by (auto simp add:less_eq_def) have "s2 = \<bottom> \<star> ([r]@(rs@rs'))" using 3 4 by (metis exec_append) hence "s1 = s2" using 3 by (metis single_use) with 2 have False by auto } thus ?thesis by blast qed interpretation RDR \<delta> \<gamma> \<bottom> proof (unfold_locales) fix s r assume "contains s r" show "s \<bullet> r = s" proof - obtain rs where "s = \<bottom> \<star> rs" and "rs \<noteq> []" using \<open>contains s r\<close> by (auto simp add:contains_def, force) thus ?thesis by (metis \<delta>.simps(2) rev_exhaust single_use) qed
lemma
Abortable_Linearizable_Modules
[ "RDR" ]
Abortable_Linearizable_Modules/Consensus.thy
prec_eq_None_or_equal
null
Idempotence= SLin + fixes id1 id2 :: nat assumes id1:"0 < id1" and id2:"id1 < id2" begin lemmas ids = id1 id2
locale
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
Idempotence
Idempotence of the SLin I/O automaton
compositionwhere "composition \<equiv> hide ((ioa 0 id1) \<parallel> (ioa id1 id2)) {act . \<exists>p c av . act = Switch id1 p c av }" lemmas comp_simps = hide_def composition_def ioa_def par2_def is_trans_def start_def actions_def asig_def trans_def lemmas trans_defs = Inv_def Lin_def Resp_def Init_def Abort_def Reco_def declare if_split_asm [split]
definition
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
composition
null
trans_elim: fixes s t a s' t' P assumes "(s,t) \<midarrow>a\<midarrow>composition\<longrightarrow> (s',t')" obtains (Invoke1) i p c where "Inv p c s s' \<and> t = t'" and "i < id1" and "a = Invoke i p c" | (Invoke2) i p c where "Inv p c t t' \<and> s = s'" and "id1 \<le> i \<and> i < id2" and "a = Invoke i p c" | (Switch1) p c av where "Abort p c av s s' \<and> Init p c av t t'" and "a = Switch id1 p c av" | (Switch2) p c av where "s = s' \<and> Abort p c av t t'" and "a = Switch id2 p c av" | (Response1) i p ou where "Resp p ou s s'\<and> t = t'" and "i < id1" and "a = Response i p ou" | (Response2) i p ou where "Resp p ou t t' \<and> s = s'" and "id1 \<le> i \<and> i < id2" and "a = Response i p ou" | (Lin1) "Lin s s' \<and> t = t'" and "a = Linearize 0" | (Lin2) "Lin t t' \<and> s = s'" and "a = Linearize id1" | (Reco2) "Reco t t' \<and> s = s'" and "a = Recover id1" proof %invisible (cases a) case (Invoke i p c) with assms have "(Inv p c s s' \<and> t = t' \<and> i < id1) \<or> (Inv p c t t' \<and> s = s' \<and> id1 \<le> i \<and> i < id2)" by auto
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
trans_elim
null
f:: "(('a,'b,'c)SLin_state * ('a,'b,'c)SLin_state) \<Rightarrow> ('a,'b,'c)SLin_state" where "f (s1, s2) = \<lparr>pending = \<lambda> p. (if status s1 p \<noteq> Aborted then pending s1 p else pending s2 p), initVals = {}, abortVals = abortVals s2, status = \<lambda> p. (if status s1 p \<noteq> Aborted then status s1 p else status s2 p), dstate = (if dstate s2 = \<bottom> then dstate s1 else dstate s2), initialized = True\<rparr>"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
f
Definition of the Refinement Mapping
P1where "P1 (s1,s2) = (\<forall> p . status s1 p \<in> {Pending, Aborted} \<longrightarrow> fst (pending s1 p) = p)"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P1
Invariants
P2where "P2 (s1,s2) = (\<forall> p . status s2 p \<noteq> Sleep \<longrightarrow> fst (pending s2 p) = p)"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P2
null
P3where "P3 (s1,s2) = (\<forall> p . (status s2 p = Ready \<longrightarrow> initialized s2))"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P3
null
P4where "P4 (s1,s2) = ((\<forall> p . status s2 p = Sleep) = (initVals s2 = {}))"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P4
Used to prove P19 only
P5where "P5 (s1,s2) = (\<forall> p . status s1 p \<noteq> Sleep \<and> initialized s1 \<and> initVals s1 = {})"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P5
Used to prove P19 only
P6where "P6 (s1,s2) = (\<forall> p . (status s1 p \<noteq> Aborted) = (status s2 p = Sleep))"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P6
null
P7where "P7 (s1,s2) = (\<forall> c . status s1 c = Aborted \<and> \<not> initialized s2 \<longrightarrow> (pending s2 c = pending s1 c \<and> status s2 c \<in> {Pending, Aborted}))"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P7
null
P8where "P8 (s1,s2) = (\<forall> iv \<in> initVals s2 . \<exists> rs \<in> pendingSeqs s1 . iv = dstate s1 \<star> rs)"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P8
Only used in the proof of P8a
P8awhere "P8a (s1,s2) = (\<forall> ivs \<in> initSets s2 . \<exists> rs \<in> pendingSeqs s1 . \<Sqinter>ivs = dstate s1 \<star> rs)"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P8a
Only used in the proof of P8a
P9where "P9 (s1,s2) = (initialized s2 \<longrightarrow> dstate s1 \<preceq> dstate s2)"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P9
null
P10where "P10 (s1,s2) = ((\<not> initialized s2) \<longrightarrow> (dstate s2 = \<bottom>))"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P10
null
P11where "P11 (s1,s2) = (initVals s2 = abortVals s1)"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P11
null
P12where "P12 (s1,s2) = (initialized s2 \<longrightarrow> \<Sqinter> (initVals s2) \<preceq> dstate s2)"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P12
null
P13where "P13 (s1,s2) = (finite (initVals s2) \<and> finite (abortVals s1) \<and> finite (abortVals s2))"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P13
null
P14where "P14 (s1,s2) = (initialized s2 \<longrightarrow> initVals s2 \<noteq> {})"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P14
null
P15where "P15 (s1,s2) = (\<forall> av \<in> abortVals s1 . dstate s1 \<preceq> av)"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P15
null
P16where "P16 (s1,s2) = (dstate s2 \<noteq> \<bottom> \<longrightarrow> initialized s2)"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P16
null
P17where \<comment> \<open>For the Response1 case of the refinement proof, in case a response is produced in the first instance and the second instance is already initialized\<close> "P17 (s1,s2) = (initialized s2 \<longrightarrow> (\<forall> p . ((status s1 p = Ready \<or> (status s1 p = Pending \<and> contains (dstate s1) (pending s1 p))) \<longrightarrow> (\<exists> rs . dstate s2 = dstate s1 \<star> rs \<and> (\<forall> r \<in> set rs . fst r \<noteq> p))) \<and> ((status s1 p = Pending \<and> \<not> contains (dstate s1) (pending s1 p)) \<longrightarrow> (\<exists> rs . dstate s2 = dstate s1 \<star> rs \<and> (\<forall> r \<in> set rs . fst r = p \<longrightarrow> r = pending s1 p)))))"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P17
null
P18where "P18 (s1,s2) = (abortVals s2 \<noteq> {} \<longrightarrow> (\<exists> p . status s2 p \<noteq> Sleep))"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P18
Only used for proving P19
P19where "P19 (s1,s2) = (abortVals s2 \<noteq> {} \<longrightarrow> abortVals s1 \<noteq> {})"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P19
Only used for proving P19
P20where "P20 (s1,s2) = (\<forall> av \<in> abortVals s2 . dstate s2 \<preceq> av)"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P20
null
P21where "P21 (s1,s2) = (\<forall> av \<in> abortVals s2 . \<Sqinter>(abortVals s1) \<preceq> av)"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P21
null
P22where "P22 (s1,s2) = (initialized s2 \<longrightarrow> dstate (f (s1,s2)) = dstate s2)"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P22
null
P23where "P23 (s1,s2) = ((\<not> initialized s2) \<longrightarrow> pendingSeqs s1 \<subseteq> pendingSeqs (f (s1,s2)))"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P23
null
P25where "P25 (s1,s2) = (\<forall> ivs . (ivs \<in> initSets s2 \<and> initialized s2 \<and> dstate s2 \<preceq> \<Sqinter>ivs) \<longrightarrow> (\<exists> rs' \<in> pendingSeqs (f (s1,s2)) . \<Sqinter>ivs = dstate s2 \<star> rs'))"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P25
null
P26where "P26 (s1,s2) = (\<forall> p . (status s1 p = Aborted \<and> \<not> contains (dstate s2) (pending s1 p)) \<longrightarrow> (status s2 p \<in> {Pending,Aborted} \<and> pending s1 p = pending s2 p))"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P26
null
P1_invariant: shows "invariant (composition) P1" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P1 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P1 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" show "P1 (t1,t2)" using trans and hyp by (cases rule:trans_elim) auto qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P1_invariant
null
P2_invariant: shows "invariant (composition) P2" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P2 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P2 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" show "P2 (t1,t2)" using trans and hyp by (cases rule:trans_elim) auto qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P2_invariant
null
P16_invariant: shows "invariant (composition) P16" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P16 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P16 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" show "P16 (t1,t2)" using trans and hyp by (cases rule:trans_elim) auto qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P16_invariant
null
P3_invariant: shows "invariant (composition) P3" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P3 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P3 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" show "P3 (t1,t2)" using trans and hyp by (cases rule:trans_elim) auto qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P3_invariant
null
P4_invariant: shows "invariant (composition) P4" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P4 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P4 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" show "P4 (t1,t2)" using trans and hyp by (cases rule:trans_elim) auto qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P4_invariant
null
P5_invariant: shows "invariant (composition) P5" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P5 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P5 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" show "P5 (t1,t2)" using trans and hyp by (cases rule:trans_elim) auto qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P5_invariant
null
P13_invariant: shows "invariant (composition) P13" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P13 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P13 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" show "P13 (t1,t2)" using trans and hyp by (cases rule:trans_elim, auto) qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P13_invariant
null
P20_invariant: shows "invariant (composition) P20" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P20 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P20 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" and reach: "reachable (composition) (s1,s2)" from reach have P16:"P16 (s1,s2)" using P16_invariant and ids by (metis IOA.invariant_def) show "P20 (t1,t2)" using trans and hyp and P16 by (cases rule:trans_elim, auto simp add:safeInits_def safeAborts_def initAborts_def uninitAborts_def bot) qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P20_invariant
null
P18_invariant: shows "invariant (composition) P18" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P18 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P18 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" show "P18 (t1,t2)" using trans and hyp by (cases rule:trans_elim, auto) qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P18_invariant
null
P14_invariant: shows "invariant (composition) P14" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P14 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P14 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" show "P14 (t1,t2)" using trans and hyp by (cases rule:trans_elim, auto simp add:safeInits_def) qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P14_invariant
null
P15_invariant: shows "invariant (composition) P15" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P15 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P15 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" and reach: "reachable (composition) (s1,s2)" from reach have P5:"P5 (s1,s2)" using P5_invariant and ids by (metis IOA.invariant_def) show "P15 (t1,t2)" using trans and hyp and P5 by (cases rule:trans_elim, auto simp add:less_eq_def safeAborts_def initAborts_def) qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P15_invariant
null
P6_invariant: shows "invariant (composition) P6" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P6 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P6 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" show "P6 (t1,t2)" using trans and hyp by (cases rule:trans_elim, force+) qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P6_invariant
null
P7_invariant: shows "invariant (composition) P7" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P7 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P7 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" show "P7 (t1,t2)" using trans and hyp by (cases rule:trans_elim) auto qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P7_invariant
null
P10_invariant: shows "invariant (composition) P10" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P10 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P10 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" show "P10 (t1,t2)" using trans and hyp by (cases rule:trans_elim) auto qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P10_invariant
null
P11_invariant: shows "invariant (composition) P11" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P11 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P11 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" show "P11 (t1,t2)" using trans and hyp by (cases rule:trans_elim, force+) qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P11_invariant
null
P8_invariant: shows "invariant (composition) P8" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P8 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P8 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" and reach: "reachable (composition) (s1,s2)" from reach have P5:"P5 (s1,s2)" using P5_invariant and ids by (metis IOA.invariant_def) from reach have P1:"P1 (s1,s2)" using P1_invariant and ids by (metis IOA.invariant_def) from reach have P11:"P11 (s1,s2)" using P11_invariant and ids by (metis IOA.invariant_def) show "P8 (t1,t2)" using trans and hyp proof (cases rule:trans_elim) case (Invoke1 i p c) assume "P8 (s1,s2)" have "pendingSeqs s1 \<subseteq> pendingSeqs t1" proof - have "pending t1 = (pending s1)(p := (p,c))" and "status t1 = (status s1)(p := Pending)" and "status s1 p = Ready" using Invoke1(1) by auto hence "pendingReqs s1 \<subseteq> pendingReqs t1" by (simp add:pendingReqs_def) force thus ?thesis by (auto simp add:pendingSeqs_def) qed moreover have "initVals t2 = initVals s2" and "dstate t1 = dstate s1"
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P8_invariant
null
P8a_invariant: shows "invariant (composition) P8a" proof (auto simp:invariant_def) fix s1 s2 ivs assume 1:"reachable (composition) (s1,s2)" and 2:"ivs \<in> initSets s2" have 3:"finite ivs \<and> ivs \<noteq> {}" proof - have "P13 (s1,s2)" using P13_invariant 1 by (metis IOA.invariant_def) thus ?thesis using 2 finite_subset by (auto simp add:initSets_def) qed have 4:"\<forall> av \<in> ivs . \<exists> rs \<in> pendingSeqs s1 . av = dstate s1 \<star> rs" proof - have P8:"P8 (s1,s2)" using P8_invariant 1 by (metis IOA.invariant_def) thus ?thesis using 2 by (auto simp add:initSets_def) qed show "\<exists> rs \<in> pendingSeqs s1 . \<Sqinter>ivs = dstate s1 \<star> rs" using 3 4 glb_common_set by (simp add:pendingSeqs_def, metis) qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P8a_invariant
null
P12_invariant: shows "invariant (composition) P12" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P12 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P12 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" and reach: "reachable (composition) (s1,s2)" from reach have P13:"P13 (s1,s2)" using P13_invariant by (metis IOA.invariant_def) from reach have P14:"P14 (s1,s2)" using P14_invariant by (metis IOA.invariant_def) show "P12 (t1,t2)" using trans and hyp proof (cases rule:trans_elim) case (Invoke1 i p c) assume "P12 (s1,s2)" thus "P12 (t1,t2)" using Invoke1(1) by auto next case Lin1 assume "P12 (s1,s2)" thus "P12 (t1,t2)" using Lin1(1) by auto next case (Response1 i p ou) assume "P12 (s1,s2)" thus "P12 (t1,t2)" using Response1(1) by auto next case (Switch1 p c av) assume ih:"P12 (s1,s2)"
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P12_invariant
null
P19_invariant: shows "invariant (composition) P19" proof (auto simp only:invariant_def) fix s1 s2 assume 1:"reachable (composition) (s1,s2)" have P4:"P4 (s1,s2)" using P4_invariant 1 by (simp add:invariant_def) moreover have P18:"P18 (s1,s2)" using P18_invariant 1 by (metis IOA.invariant_def) moreover have P11:"P11 (s1,s2)" using P11_invariant 1 by (metis IOA.invariant_def) moreover ultimately show "P19 (s1,s2)" by auto qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P19_invariant
null
P9_invariant: shows "invariant (composition) P9" proof (auto simp only:invariant_def) fix s1 s2 assume 1:"reachable (composition) (s1,s2)" have P12:"P12 (s1,s2)" using P12_invariant 1 by (simp add:invariant_def) have P15:"P15 (s1,s2)" using P15_invariant 1 by (metis IOA.invariant_def) have P13:"P13 (s1,s2)" using P13_invariant 1 by (metis IOA.invariant_def) have P14:"P14 (s1,s2)" using P14_invariant 1 by (metis IOA.invariant_def) have P11:"P11 (s1,s2)" using P11_invariant 1 by (metis IOA.invariant_def) have "initialized s2 \<Longrightarrow> dstate s1 \<preceq> \<Sqinter>(abortVals s1)" using P13 P15 P14 P11 boundedI by simp thus "P9 (s1,s2)" using P12 P11 by simp (metis trans) qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P9_invariant
null
P17_invariant: shows "invariant (composition) P17" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P17 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P17 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" and reach:"reachable (composition) (s1,s2)" show "P17 (t1,t2)" using trans and hyp proof (cases rule:trans_elim) case (Invoke1 i p c) assume "P17 (s1,s2)" thus "P17 (t1,t2)" using Invoke1(1) by fastforce next case (Response1 i p ou) assume "P17 (s1,s2)" thus "P17 (t1,t2)" using Response1(1) by auto next case (Switch1 p c av) assume "P17 (s1,s2)" thus "P17 (t1,t2)" using Switch1(1) by auto next case (Invoke2 i p c) assume "P17 (s1,s2)" thus "P17 (t1,t2)" using Invoke2(1) by force next case (Response2 i p ou) assume "P17 (s1,s2)"
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P17_invariant
null
P21_invariant: shows "invariant (composition) P21" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P21 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P21 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" and reach: "reachable (composition) (s1,s2)" show "P21 (t1,t2)" proof (cases "initialized t2") case True moreover have P12:"P12 (t1,t2)" using P12_invariant reach trans by (metis invariant_def reachable_n) moreover have P11:"P11 (t1,t2)" using P11_invariant reach trans by (metis IOA.invariant_def reachable_n) moreover have P20:"P20 (t1,t2)" using P20_invariant reach trans by (metis IOA.invariant_def reachable_n) ultimately show "P21 (t1,t2)" by simp (metis pre_RDR.trans) next case False show "P21 (t1,t2)" using trans proof (cases rule:trans_elim) case (Switch2 p c av) obtain av where "abortVals t2 = abortVals s2 \<union> {av}"
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P21_invariant
null
P22_invariant: shows "invariant (composition) P22" proof (auto simp only:invariant_def) fix s1 s2 assume 1:"reachable (composition) (s1,s2)" have P9:"P9 (s1,s2)" using P9_invariant 1 by (simp add:invariant_def) show "P22 (s1,s2)" proof (simp only:P22.simps, rule impI) assume "initialized s2" show "dstate (f (s1,s2)) = dstate s2" proof (cases "dstate s2 = \<bottom>") case False thus ?thesis by auto next case True show "dstate (f (s1,s2)) = dstate s2" proof - have "dstate s1 \<preceq> dstate s2" using \<open>initialized s2\<close> and \<open>P9 (s1,s2)\<close> by auto hence "dstate s1 = dstate s2" using True by (metis antisym bot) thus ?thesis by auto qed qed qed qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P22_invariant
null
P23_invariant: shows "invariant (composition) P23" proof (auto simp only:invariant_def) fix s1 s2 assume 1:"reachable (composition) (s1,s2)" show "P23 (s1,s2)" proof (simp only:P23.simps, clarify) fix rs assume 2:"\<not>initialized s2" and 3:"rs\<in>pendingSeqs s1" show "rs\<in> pendingSeqs (f (s1,s2))" proof - { fix r assume 3:"r \<in> pendingReqs s1" have 4:"status s1 (fst r) = Pending \<or> status s1 (fst r) = Aborted" and 5:"pending s1 (fst r) = r" proof - have "P1 (s1,s2)" using 1 P1_invariant by (metis invariant_def) thus "status s1 (fst r) = Pending \<or> status s1 (fst r) = Aborted" and "pending s1 (fst r) = r" using 3 by (auto simp add:pendingReqs_def) qed have "r \<in> pendingReqs (f (s1,s2))" using 4 proof assume "status s1 (fst r) = Pending" with 5 show ?thesis by (auto simp add:pendingReqs_def) (metis SLin_status.distinct(9)) next assume 6:"status s1 (fst r) = Aborted" have 7:"pending s1 (fst r) = pending s2 (fst r)
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P23_invariant
null
P26_invariant: shows "invariant (composition) P26" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P26 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P26 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" and reach:"reachable composition (s1,s2)" show "P26 (t1,t2)" using trans and hyp proof (cases rule:trans_elim) case Lin2 hence 1:"dstate s2 \<preceq> dstate t2" by auto (metis less_eq_def) have 2:"t2 = s2\<lparr>dstate := dstate t2\<rparr>" and 3:"s1 = t1" using Lin2(1) by auto show ?thesis proof (simp, clarify) fix p assume 4:"status t1 p = Aborted" and 5:"\<not> contains (dstate t2) (pending t1 p)" have 6:"status s1 p = Aborted" using 3 4 by auto have 7:"pending s1 p = pending t1 p" using 3 by simp have 8:"\<not> contains (dstate s2) (pending s1 p)" using 1 5 7 by simp (metis contains_star less_eq_def) have 11:"status s2 p \<in> {Pending,Aborted}" and 9:"pending s1 p = pending s2 p" using hyp 6 8 by auto show "(status t2 p = Pending \<or> status t2 p = Aborted)
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P26_invariant
null
P25_invariant: shows "invariant (composition) P25" proof (auto simp only:invariant_def) fix s1 s2 assume reach:"reachable (composition) (s1,s2)" show "P25 (s1,s2)" proof (simp only:P25.simps, clarify) fix ivs assume 1:"ivs \<in> initSets s2" and 2:"initialized s2" and 3:"dstate s2 \<preceq> \<Sqinter>ivs" obtain rs' where 4:"dstate s2 \<star> rs' = \<Sqinter>ivs" and 5:"rs' \<in> pendingSeqs s1" and 6:"\<forall> r \<in> set rs' . \<not> contains (dstate s2) r" proof - have 5:"dstate s1 \<preceq> dstate s2" proof - have P9:"P9 (s1,s2)" using P9_invariant reach by (simp add:invariant_def) thus ?thesis using 2 by auto qed obtain rs where 6:"\<Sqinter>ivs = dstate s1 \<star> rs" and 7:"rs \<in> pendingSeqs s1" proof - have P8a:"P8a (s1,s2)" using P8a_invariant reach by (simp add:invariant_def) thus ?thesis using that 1 by auto qed have "\<exists> rs' . dstate s2 \<star> rs' = \<Sqinter> ivs \<and> rs' \<in> pendingSeqs s1" using 3 5 6 7 consistency[of "dstate s1" "dstate s2" "\<Sqinter>ivs" rs] by (force simp add:pendingSeqs_def) with this obtain rs' where "\<Sqinter>ivs = dstate s2 \<star> rs'" and "rs' \<in> pendingSeqs s1" by metis
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P25_invariant
null
idempotence: shows "((composition) =<| (ioa 0 id2))" proof - have same_input_sig:"inp (composition) = inp (ioa 0 id2)" \<comment> \<open>First we show that both automata have the same input and output signature\<close> using ids by auto moreover have same_output_sig:"out (composition) = out (ioa 0 id2)" \<comment> \<open>Then we show that output signatures match\<close> using ids by auto moreover have "traces (composition) \<subseteq> traces (ioa 0 id2)" \<comment> \<open>Finally we show trace inclusion\<close> proof - have "ext (composition) = ext (ioa 0 id2)" \<comment> \<open>First we show that they have the same external signature\<close> using same_input_sig and same_output_sig by simp moreover have "is_ref_map f (composition) (ioa 0 id2)" \<comment> \<open>Then we show that @{text f_comp} is a refinement mapping\<close> proof (auto simp only:is_ref_map_def) fix s1 s2 assume 1:"(s1,s2) \<in> ioa.start (composition)" show "f (s1,s2) \<in> ioa.start (ioa 0 id2)" proof - have 2:"ioa.start (ioa 0 id2) = start (0::nat)" by simp have 3:"ioa.start (composition) = start (0::nat) \<times> start id1" by fastforce show ?thesis using 1 2 3 by simp
theorem
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
idempotence
null
IOA= Sequences
locale
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
IOA
This theory is inspired and draws material from the IOA theory of Nipkow and Müller
'asignature = inputs::"'a set" outputs::"'a set" internals::"'a set" context IOA begin
record
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
'a
This theory is inspired and draws material from the IOA theory of Nipkow and Müller
actions:: "'a signature \<Rightarrow> 'a set" where "actions asig \<equiv> inputs asig \<union> outputs asig \<union> internals asig"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
actions
Signatures
externals:: "'a signature \<Rightarrow> 'a set" where "externals asig \<equiv> inputs asig \<union> outputs asig"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
externals
Signatures
locals:: "'a signature \<Rightarrow> 'a set" where "locals asig \<equiv> internals asig \<union> outputs asig"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
locals
null
is_asig:: "'a signature \<Rightarrow> bool" where "is_asig triple \<equiv> inputs triple \<inter> outputs triple = {} \<and> outputs triple \<inter> internals triple = {} \<and> inputs triple \<inter> internals triple = {}"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
is_asig
null
internal_inter_external: assumes "is_asig sig" shows "internals sig \<inter> externals sig = {}" using assms by (auto simp add:internals_def externals_def is_asig_def)
lemma
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
internal_inter_external
null
hide_asigwhere "hide_asig asig actns \<equiv> \<lparr>inputs = inputs asig - actns, outputs = outputs asig - actns, internals = internals asig \<union>actns\<rparr>"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
hide_asig
null
intwhere "int A \<equiv> internals (asig A)"
abbreviation
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
int
null
is_ioa::"('s,'a) ioa \<Rightarrow> bool" where "is_ioa A \<equiv> is_asig (asig A) \<and> (\<forall> triple \<in> trans A . (fst o snd) triple \<in> act A)"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
is_ioa
null
hidewhere "hide A actns \<equiv> A\<lparr>asig := hide_asig (asig A) actns\<rparr>"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
hide
null
is_trans::"'s \<Rightarrow> 'a \<Rightarrow> ('s,'a)ioa \<Rightarrow> 's \<Rightarrow> bool" where "is_trans s1 a A s2 \<equiv> (s1,a,s2) \<in> trans A" notation is_trans ("_ \<midarrow>_\<midarrow>_\<longrightarrow> _" [81,81,81,81] 100)
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
is_trans
null
rename_setwhere "rename_set A ren \<equiv> {b. \<exists> x \<in> A . ren b = Some x}"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
rename_set
null
renamewhere "rename A ren \<equiv> \<lparr>asig = \<lparr>inputs = rename_set (inp A) ren, outputs = rename_set (out A) ren, internals = rename_set (int A) ren\<rparr>, start = start A, trans = {tr. \<exists> x . ren (fst (snd tr)) = Some x \<and> (fst tr) \<midarrow>x\<midarrow>A\<longrightarrow> (snd (snd tr))}\<rparr>"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
rename
null
reachable:: "('s,'a) ioa \<Rightarrow> 's \<Rightarrow> bool" for A :: "('s,'a) ioa" where reachable_0: "s \<in> start A \<Longrightarrow> reachable A s" | reachable_n: "\<lbrakk> reachable A s; s \<midarrow>a\<midarrow>A\<longrightarrow> t \<rbrakk> \<Longrightarrow> reachable A t"
inductive
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
reachable
Reachable states and invariants
invariantwhere "invariant A P \<equiv> (\<forall> s . reachable A s \<longrightarrow> P(s))"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
invariant
null
invariantI: fixes A P assumes "\<And> s . s \<in> start A \<Longrightarrow> P s" and "\<And> s t a . \<lbrakk>reachable A s; P s; s \<midarrow>a\<midarrow>A\<longrightarrow> t\<rbrakk> \<Longrightarrow> P t" shows "invariant A P" proof - { fix s assume "reachable A s" hence "P s" proof (induct rule:reachable.induct) fix s assume "s \<in> start A" thus "P s" using assms(1) by simp next fix a s t assume "reachable A s" and "P s" and " s \<midarrow>a\<midarrow>A\<longrightarrow> t" thus "P t" using assms(2) by simp qed } thus ?thesis by (simp add:invariant_def) qed
theorem
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
invariantI
null
is_ioa_famwhere "is_ioa_fam fam \<equiv> \<forall> i \<in> ids fam . is_ioa (memb fam i)"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
is_ioa_fam
null
compatible2where "compatible2 A B \<equiv> out A \<inter> out B = {} \<and> int A \<inter> act B = {} \<and> int B \<inter> act A = {}"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
compatible2
null
compatible::"('id, ('s,'a)ioa) family \<Rightarrow> bool" where "compatible fam \<equiv> finite (ids fam) \<and> (\<forall> i \<in> ids fam . \<forall> j \<in> ids fam . i \<noteq> j \<longrightarrow> compatible2 (memb fam i) (memb fam j))"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
compatible
null
asig_comp2where "asig_comp2 A B \<equiv> \<lparr>inputs = (inputs A \<union> inputs B) - (outputs A \<union> outputs B), outputs = outputs A \<union> outputs B, internals = internals A \<union> internals B\<rparr>"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
asig_comp2
null
asig_comp::"('id, ('s,'a)ioa) family \<Rightarrow> 'a signature" where "asig_comp fam \<equiv> \<lparr> inputs = \<Union>i\<in>(ids fam). inp (memb fam i) - (\<Union>i\<in>(ids fam). out (memb fam i)), outputs = \<Union>i\<in>(ids fam). out (memb fam i), internals = \<Union>i\<in>(ids fam). int (memb fam i) \<rparr>"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
asig_comp
null
par2(infixr "\<parallel>" 10) where "A \<parallel> B \<equiv> \<lparr>asig = asig_comp2 (asig A) (asig B), start = {pr. fst pr \<in> start A \<and> snd pr \<in> start B}, trans = {tr. let s = fst tr; a = fst (snd tr); t = snd (snd tr) in (a \<in> act A \<or> a \<in> act B) \<and> (if a \<in> act A then fst s \<midarrow>a\<midarrow>A\<longrightarrow> fst t else fst s = fst t) \<and> (if a \<in> act B then snd s \<midarrow>a\<midarrow>B\<longrightarrow> snd t else snd s = snd t) }\<rparr>"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
par2
null
par::"('id, ('s,'a)ioa) family \<Rightarrow> ('id \<Rightarrow> 's,'a)ioa" where "par fam \<equiv> let ids = ids fam; memb = memb fam in \<lparr> asig = asig_comp fam, start = {s . \<forall> i\<in>ids . s i \<in> start (memb i)}, trans = { (s, a, s') . (\<exists> i\<in>ids . a \<in> act (memb i)) \<and> (\<forall> i\<in>ids . if a \<in> act (memb i) then s i \<midarrow>a\<midarrow>(memb i)\<longrightarrow> s' i else s i = (s' i)) } \<rparr>" lemmas asig_simps = hide_asig_def is_asig_def locals_def externals_def actions_def hide_def compatible_def asig_comp_def lemmas ioa_simps = rename_def rename_set_def is_trans_def is_ioa_def par_def
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
par
null
'atrace = "'a list"
type_synonym
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
'a
null
'atrace_module = traces::"'a trace set" asig::"'a signature" context IOA begin
record
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
'a
null
is_exec_frag_of::"('s,'a)ioa \<Rightarrow> ('s,'a)execution \<Rightarrow> bool" where "is_exec_frag_of A (s,(ps#p')#p) = (snd p' \<midarrow>fst p\<midarrow>A\<longrightarrow> snd p \<and> is_exec_frag_of A (s, (ps#p')))" | "is_exec_frag_of A (s, [p]) = s \<midarrow>fst p\<midarrow>A\<longrightarrow> snd p" | "is_exec_frag_of A (s, []) = True"
fun
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
is_exec_frag_of
null
is_exec_of::"('s,'a)ioa \<Rightarrow> ('s,'a)execution \<Rightarrow> bool" where "is_exec_of A e \<equiv> fst e \<in> start A \<and> is_exec_frag_of A e"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
is_exec_of
null
filter_actwhere "filter_act \<equiv> map fst"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
filter_act
null
schedulewhere "schedule \<equiv> filter_act o snd"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
schedule
null
tracewhere "trace sig \<equiv> filter (\<lambda> a . a \<in> externals sig) o schedule"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
trace
null
is_schedule_ofwhere "is_schedule_of A sch \<equiv> (\<exists> e . is_exec_of A e \<and> sch = filter_act (snd e))"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
is_schedule_of
null
is_trace_ofwhere "is_trace_of A tr \<equiv> (\<exists> sch . is_schedule_of A sch \<and> tr = filter (\<lambda> a. a \<in> ext A) sch)"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
is_trace_of
null
traceswhere "traces A \<equiv> {tr. is_trace_of A tr}"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
traces
null
traces_alt: shows "traces A = {tr . \<exists> e . is_exec_of A e \<and> tr = trace (ioa.asig A) e}" proof - { fix t assume a:"t \<in> traces A" have "\<exists> e . is_exec_of A e \<and> trace (ioa.asig A) e = t" proof - from a obtain sch where 1:"is_schedule_of A sch" and 2:"t = filter (\<lambda> a. a \<in> ext A) sch" by (auto simp add:traces_def is_trace_of_def) from 1 obtain e where 3:"is_exec_of A e" and 4:"sch = filter_act (snd e)" by (auto simp add:is_schedule_of_def) from 4 and 2 have "trace (ioa.asig A) e = t" by (simp add:trace_def schedule_def) with 3 show ?thesis by fast qed } moreover { fix e assume "is_exec_of A e" hence "trace (ioa.asig A) e \<in> traces A" by (force simp add:trace_def schedule_def traces_def is_trace_of_def is_schedule_of_def is_exec_of_def) } ultimately show ?thesis by blast qed lemmas trace_simps = traces_def is_trace_of_def is_schedule_of_def filter_act_def is_exec_of_def trace_def schedule_def
lemma
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
traces_alt
null
proj_trace::"'a trace \<Rightarrow> ('a signature) \<Rightarrow> 'a trace" (infixr "\<bar>" 12) where "proj_trace t sig \<equiv> filter (\<lambda> a . a \<in> actions sig) t"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
proj_trace
null
ioa_implements:: "('s1,'a)ioa \<Rightarrow> ('s2,'a)ioa \<Rightarrow> bool" (infixr "=<|" 12) where "A =<| B \<equiv> inp A = inp B \<and> out A = out B \<and> traces A \<subseteq> traces B"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
ioa_implements
null
cons_execwhere "cons_exec e p \<equiv> (fst e, (snd e)#p)"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
cons_exec
Operations on Executions
append_execwhere "append_exec e e' \<equiv> (fst e, (snd e)@(snd e'))"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
append_exec
Operations on Executions