fact
stringlengths
10
4.79k
type
stringclasses
9 values
library
stringclasses
44 values
imports
listlengths
0
13
filename
stringclasses
718 values
symbolic_name
stringlengths
1
76
docstring
stringlengths
10
64.6k
@[simp ↓, expose] binderNameHint {α : Sort u} {β : Sort v} {γ : Sort w} (v : α) (binder : β) (e : γ) : γ := e
def
Init.BinderNameHint
[ "Init.Tactics" ]
Init/BinderNameHint.lean
binderNameHint
The expression `binderNameHint v binder e` defined to be `e`. If it is used on the right-hand side of an equation that is used for rewriting by `rw` or `simp`, and `v` is a local variable, and `binder` is an expression that (after beta-reduction) is a binder (`fun w => …` or `∀ w, …`), then it will rename `v` to the name used in that binder, and remove the `binderNameHint`. A typical use of this gadget would be as follows; the gadget ensures that after rewriting, the local variable is still `name`, and not `x`: ``` theorem all_eq_not_any_not (l : List α) (p : α → Bool) : l.all p = !l.any fun x => binderNameHint x p (!p x) := sorry example (names : List String) : names.all (fun name => "Waldo".isPrefixOf name) = true := by rw [all_eq_not_any_not] -- ⊢ (!names.any fun name => !"Waldo".isPrefixOf name) = true ``` If `binder` is not a binder, then the name of `v` attains a macro scope. This only matters when the resulting term is used in a non-hygienic way, e.g. in termination proofs for well-founded recursion. This gadget is supported by * `simp`, `dsimp` and `rw` in the right-hand-side of an equation * `simp` in the assumptions of congruence rules It is ineffective in other positions (hypotheses of rewrite rules) or when used by other tactics (e.g. `apply`).
@[simp] if_true {_ : Decidable True} (t e : α) : ite True t e = t := if_pos trivial @[simp] theorem if_false {_ : Decidable False} (t e : α) : ite False t e = e := if_neg id
theorem
Init.ByCases
[ "Init.Classical" ]
Init/ByCases.lean
if_true
`by_cases (h :)? p` splits the main goal into two cases, assuming `h : p` in the first branch, and `h : ¬ p` in the second branch. -/ syntax "by_cases " (atomic(ident " : "))? term : tactic macro_rules | `(tactic| by_cases $e) => `(tactic| by_cases h : $e) macro_rules | `(tactic| by_cases $h : $e) => `(tactic| open Classical in refine if $h:ident : $e then ?pos else ?neg) /-! ## if-then-else
ite_id [Decidable c] {α} (t : α) : (if c then t else t) = t := by split <;> rfl
theorem
Init.ByCases
[ "Init.Classical" ]
Init/ByCases.lean
ite_id
null
apply_dite (f : α → β) (P : Prop) [Decidable P] (x : P → α) (y : ¬P → α) : f (dite P x y) = dite P (fun h => f (x h)) (fun h => f (y h)) := by by_cases h : P <;> simp [h]
theorem
Init.ByCases
[ "Init.Classical" ]
Init/ByCases.lean
apply_dite
A function applied to a `dite` is a `dite` of that function applied to each of the branches.
apply_ite (f : α → β) (P : Prop) [Decidable P] (x y : α) : f (ite P x y) = ite P (f x) (f y) := apply_dite f P (fun _ => x) (fun _ => y)
theorem
Init.ByCases
[ "Init.Classical" ]
Init/ByCases.lean
apply_ite
A function applied to a `ite` is a `ite` of that function applied to each of the branches.
@[simp] dite_eq_ite [Decidable P] : (dite P (fun _ => a) (fun _ => b)) = ite P a b := rfl -- Remark: dite and ite are "defally equal" when we ignore the proofs. @[deprecated dite_eq_ite (since := "2025-10-29")]
theorem
Init.ByCases
[ "Init.Classical" ]
Init/ByCases.lean
dite_eq_ite
A `dite` whose results do not actually depend on the condition may be reduced to an `ite`.
dif_eq_if (c : Prop) {h : Decidable c} {α : Sort u} (t : α) (e : α) : dite c (fun _ => t) (fun _ => e) = ite c t e := match h with | isTrue _ => rfl | isFalse _ => rfl
theorem
Init.ByCases
[ "Init.Classical" ]
Init/ByCases.lean
dif_eq_if
null
noncomputable indefiniteDescription {α : Sort u} (p : α → Prop) (h : ∃ x, p x) : {x // p x} := choice <| let ⟨x, px⟩ := h; ⟨⟨x, px⟩⟩
def
Init.Classical
[ "Init.PropLemmas" ]
Init/Classical.lean
indefiniteDescription
null
noncomputable choose {α : Sort u} {p : α → Prop} (h : ∃ x, p x) : α := (indefiniteDescription p h).val
def
Init.Classical
[ "Init.PropLemmas" ]
Init/Classical.lean
choose
Given that there exists an element satisfying `p`, returns one such element. This is a straightforward consequence of, and equivalent to, `Classical.choice`. See also `choose_spec`, which asserts that the returned value has property `p`.
choose_spec {α : Sort u} {p : α → Prop} (h : ∃ x, p x) : p (choose h) := (indefiniteDescription p h).property
theorem
Init.Classical
[ "Init.PropLemmas" ]
Init/Classical.lean
choose_spec
null
em (p : Prop) : p ∨ ¬p := let U (x : Prop) : Prop := x = True ∨ p let V (x : Prop) : Prop := x = False ∨ p have exU : ∃ x, U x := ⟨True, Or.inl rfl⟩ have exV : ∃ x, V x := ⟨False, Or.inl rfl⟩ let u : Prop := choose exU let v : Prop := choose exV have u_def : U u := choose_spec exU have v_def : V v := choose_spec exV have not_uv_or_p : u ≠ v ∨ p := match u_def, v_def with | Or.inr h, _ => Or.inr h | _, Or.inr h => Or.inr h | Or.inl hut, Or.inl hvf => have hne : u ≠ v := by simp [hvf, hut] Or.inl hne have p_implies_uv : p → u = v := fun hp => have hpred : U = V := funext fun x => have hl : (x = True ∨ p) → (x = False ∨ p) := fun _ => Or.inr hp have hr : (x = False ∨ p) → (x = True ∨ p) := fun _ => Or.inr hp show (x = True ∨ p) = (x = False ∨ p) from propext (Iff.intro hl hr) have h₀ : ∀ exU exV, @choose _ U exU = @choose _ V exV := by rw [hpred]; intros; rfl show u = v from h₀ _ _ match not_uv_or_p with | Or.inl hne => Or.inr (mt p_implies_uv hne) | Or.inr h => Or.inl h
theorem
Init.Classical
[ "Init.PropLemmas" ]
Init/Classical.lean
em
**Diaconescu's theorem**: excluded middle from choice, Function extensionality and propositional extensionality.
exists_true_of_nonempty {α : Sort u} : Nonempty α → ∃ _ : α, True | ⟨x⟩ => ⟨x, trivial⟩
theorem
Init.Classical
[ "Init.PropLemmas" ]
Init/Classical.lean
exists_true_of_nonempty
null
noncomputable inhabited_of_nonempty {α : Sort u} (h : Nonempty α) : Inhabited α := ⟨choice h⟩
def
Init.Classical
[ "Init.PropLemmas" ]
Init/Classical.lean
inhabited_of_nonempty
null
noncomputable inhabited_of_exists {α : Sort u} {p : α → Prop} (h : ∃ x, p x) : Inhabited α := inhabited_of_nonempty (Exists.elim h (fun w _ => ⟨w⟩))
def
Init.Classical
[ "Init.PropLemmas" ]
Init/Classical.lean
inhabited_of_exists
null
noncomputable epsilon {α : Sort u} [h : Nonempty α] (p : α → Prop) : α := (strongIndefiniteDescription p h).val
def
Init.Classical
[ "Init.PropLemmas" ]
Init/Classical.lean
epsilon
All propositions are `Decidable`. -/ noncomputable scoped instance (priority := low) propDecidable (a : Prop) : Decidable a := choice <| match em a with | Or.inl h => ⟨isTrue h⟩ | Or.inr h => ⟨isFalse h⟩ noncomputable def decidableInhabited (a : Prop) : Inhabited (Decidable a) where default := inferInstance instance (a : Prop) : Nonempty (Decidable a) := ⟨propDecidable a⟩ noncomputable def typeDecidableEq (α : Sort u) : DecidableEq α := fun _ _ => inferInstance noncomputable def typeDecidable (α : Sort u) : PSum α (α → False) := match (propDecidable (Nonempty α)) with | (isTrue hp) => PSum.inl (@default _ (inhabited_of_nonempty hp)) | (isFalse hn) => PSum.inr (fun a => absurd (Nonempty.intro a) hn) noncomputable def strongIndefiniteDescription {α : Sort u} (p : α → Prop) (h : Nonempty α) : {x : α // (∃ y : α, p y) → p x} := @dite _ (∃ x : α, p x) (propDecidable _) (fun (hp : ∃ x : α, p x) => show {x : α // (∃ y : α, p y) → p x} from let xp := indefiniteDescription _ hp; ⟨xp.val, fun _ => xp.property⟩) (fun hp => ⟨choice h, fun h => absurd h hp⟩) /-- The Hilbert epsilon function.
epsilon_spec_aux {α : Sort u} (h : Nonempty α) (p : α → Prop) : (∃ y, p y) → p (@epsilon α h p) := (strongIndefiniteDescription p h).property
theorem
Init.Classical
[ "Init.PropLemmas" ]
Init/Classical.lean
epsilon_spec_aux
null
epsilon_spec {α : Sort u} {p : α → Prop} (hex : ∃ y, p y) : p (@epsilon α hex.nonempty p) := epsilon_spec_aux hex.nonempty p hex
theorem
Init.Classical
[ "Init.PropLemmas" ]
Init/Classical.lean
epsilon_spec
null
epsilon_singleton {α : Sort u} (x : α) : @epsilon α ⟨x⟩ (fun y => y = x) = x := @epsilon_spec α (fun y => y = x) ⟨x, rfl⟩
theorem
Init.Classical
[ "Init.PropLemmas" ]
Init/Classical.lean
epsilon_singleton
null
axiomOfChoice {α : Sort u} {β : α → Sort v} {r : ∀ x, β x → Prop} (h : ∀ x, ∃ y, r x y) : ∃ (f : ∀ x, β x), ∀ x, r x (f x) := ⟨_, fun x => choose_spec (h x)⟩
theorem
Init.Classical
[ "Init.PropLemmas" ]
Init/Classical.lean
axiomOfChoice
the axiom of choice
skolem {α : Sort u} {b : α → Sort v} {p : ∀ x, b x → Prop} : (∀ x, ∃ y, p x y) ↔ ∃ (f : ∀ x, b x), ∀ x, p x (f x) := ⟨axiomOfChoice, fun ⟨f, hw⟩ (x) => ⟨f x, hw x⟩⟩
theorem
Init.Classical
[ "Init.PropLemmas" ]
Init/Classical.lean
skolem
null
propComplete (a : Prop) : a = True ∨ a = False := match em a with | Or.inl ha => Or.inl (eq_true ha) | Or.inr hn => Or.inr (eq_false hn) -- this supersedes byCases in Decidable
theorem
Init.Classical
[ "Init.PropLemmas" ]
Init/Classical.lean
propComplete
null
byCases {p q : Prop} (hpq : p → q) (hnpq : ¬p → q) : q := Decidable.byCases (dec := propDecidable _) hpq hnpq -- this supersedes byContradiction in Decidable
theorem
Init.Classical
[ "Init.PropLemmas" ]
Init/Classical.lean
byCases
null
byContradiction {p : Prop} (h : ¬p → False) : p := Decidable.byContradiction (dec := propDecidable _) h
theorem
Init.Classical
[ "Init.PropLemmas" ]
Init/Classical.lean
byContradiction
null
@[simp] not_not : ¬¬a ↔ a := Decidable.not_not
theorem
Init.Classical
[ "Init.PropLemmas" ]
Init/Classical.lean
not_not
The Double Negation Theorem: `¬¬P` is equivalent to `P`. The left-to-right direction, double negation elimination (DNE), is classically true but not constructively.
@[simp low] protected dite_not [hn : Decidable (¬p)] (x : ¬p → α) (y : ¬¬p → α) : dite (¬p) x y = dite p (fun h => y (not_not_intro h)) x := by cases hn <;> rename_i g · simp [not_not.mp g] · simp [g] attribute [local instance] decidable_of_decidable_not in
theorem
Init.Classical
[ "Init.PropLemmas" ]
Init/Classical.lean
dite_not
Transfer decidability of `¬ p` to decidability of `p`. -/ -- This can not be an instance as it would be tried everywhere. def decidable_of_decidable_not (p : Prop) [h : Decidable (¬ p)] : Decidable p := match h with | isFalse h => isTrue (Classical.not_not.mp h) | isTrue h => isFalse h attribute [local instance] decidable_of_decidable_not in /-- Negation of the condition `P : Prop` in a `dite` is the same as swapping the branches.
@[simp low] protected ite_not (p : Prop) [Decidable (¬ p)] (x y : α) : ite (¬p) x y = ite p y x := dite_not (fun _ => x) (fun _ => y) attribute [local instance] decidable_of_decidable_not in @[simp low] protected theorem decide_not (p : Prop) [Decidable (¬ p)] : decide (¬p) = !decide p := byCases (fun h : p => by simp_all) (fun h => by simp_all) @[simp low] theorem not_forall {p : α → Prop} : (¬∀ x, p x) ↔ ∃ x, ¬p x := Decidable.not_forall
theorem
Init.Classical
[ "Init.PropLemmas" ]
Init/Classical.lean
ite_not
Negation of the condition `P : Prop` in a `ite` is the same as swapping the branches.
not_forall_not {p : α → Prop} : (¬∀ x, ¬p x) ↔ ∃ x, p x := Decidable.not_forall_not
theorem
Init.Classical
[ "Init.PropLemmas" ]
Init/Classical.lean
not_forall_not
null
not_exists_not {p : α → Prop} : (¬∃ x, ¬p x) ↔ ∀ x, p x := Decidable.not_exists_not
theorem
Init.Classical
[ "Init.PropLemmas" ]
Init/Classical.lean
not_exists_not
null
forall_or_exists_not (P : α → Prop) : (∀ a, P a) ∨ ∃ a, ¬ P a := by rw [← not_forall]; exact em _
theorem
Init.Classical
[ "Init.PropLemmas" ]
Init/Classical.lean
forall_or_exists_not
null
exists_or_forall_not (P : α → Prop) : (∃ a, P a) ∨ ∀ a, ¬ P a := by rw [← not_exists]; exact em _
theorem
Init.Classical
[ "Init.PropLemmas" ]
Init/Classical.lean
exists_or_forall_not
null
or_iff_not_imp_left : a ∨ b ↔ (¬a → b) := Decidable.or_iff_not_imp_left
theorem
Init.Classical
[ "Init.PropLemmas" ]
Init/Classical.lean
or_iff_not_imp_left
null
or_iff_not_imp_right : a ∨ b ↔ (¬b → a) := Decidable.or_iff_not_imp_right
theorem
Init.Classical
[ "Init.PropLemmas" ]
Init/Classical.lean
or_iff_not_imp_right
null
not_imp_iff_and_not : ¬(a → b) ↔ a ∧ ¬b := Decidable.not_imp_iff_and_not
theorem
Init.Classical
[ "Init.PropLemmas" ]
Init/Classical.lean
not_imp_iff_and_not
null
not_and_iff_not_or_not : ¬(a ∧ b) ↔ ¬a ∨ ¬b := Decidable.not_and_iff_not_or_not
theorem
Init.Classical
[ "Init.PropLemmas" ]
Init/Classical.lean
not_and_iff_not_or_not
null
not_iff : ¬(a ↔ b) ↔ (¬a ↔ b) := Decidable.not_iff @[simp] theorem imp_iff_left_iff : (b ↔ a → b) ↔ a ∨ b := Decidable.imp_iff_left_iff @[simp] theorem imp_iff_right_iff : (a → b ↔ b) ↔ a ∨ b := Decidable.imp_iff_right_iff @[simp] theorem and_or_imp : a ∧ b ∨ (a → c) ↔ a → b ∨ c := Decidable.and_or_imp @[simp] theorem not_imp : ¬(a → b) ↔ a ∧ ¬b := Decidable.not_imp_iff_and_not @[simp] theorem imp_and_neg_imp_iff (p : Prop) {q : Prop} : (p → q) ∧ (¬p → q) ↔ q := Iff.intro (fun (a : _ ∧ _) => (Classical.em p).rec a.left a.right) (fun a => And.intro (fun _ => a) (fun _ => a))
theorem
Init.Classical
[ "Init.PropLemmas" ]
Init/Classical.lean
not_iff
null
Exists.choose_spec {p : α → Prop} (P : ∃ a, p a) : p P.choose := Classical.choose_spec P grind_pattern Exists.choose_spec => P.choose
theorem
Init.Classical
[ "Init.PropLemmas" ]
Init/Classical.lean
Exists.choose_spec
Extract an element from an existential statement, using `Classical.choose`. -/ -- This enables projection notation. @[reducible] noncomputable def Exists.choose {p : α → Prop} (P : ∃ a, p a) : α := Classical.choose P /-- Show that an element extracted from `P : ∃ a, p a` using `P.choose` satisfies `p`.
f (x : Nat) : Int := x ``` then this is clearly not type correct as is, because `x` has type `Nat` but type `Int` is expected, and normally you will get an error message saying exactly that. But before it shows that message, it will attempt to synthesize an instance of `CoeT Nat x Int`, which will end up going through all the other typeclasses defined below, to discover that there is an instance of `Coe Nat Int` defined. This instance is defined as: ```
def
Init.Coe
[ "Init.Prelude" ]
Init/Coe.lean
f
null
f (x : Nat) : Int := Int.ofNat x ``` which is not a type error anymore. You can also use the `↑` operator to explicitly indicate a coercion. Using `↑x` instead of `x` in the example will result in the same output. Because there are many polymorphic functions in Lean, it is often ambiguous where the coercion can go. For example: ```
def
Init.Coe
[ "Init.Prelude" ]
Init/Coe.lean
f
null
f (x y : Nat) : Int := x + y ``` This could be either `↑x + ↑y` where `+` is the addition on `Int`, or `↑(x + y)` where `+` is addition on `Nat`, or even `x + y` using a heterogeneous addition with the type `Nat → Nat → Int`. You can use the `↑` operator to disambiguate between these possibilities, but generally Lean will elaborate working from the "outside in", meaning that it will first look at the expression `_ + _ : Int` and assign the `+` to be the one for `Int`, and then need to insert coercions for the subterms `↑x : Int` and `↑y : Int`, resulting in the `↑x + ↑y` version. Note that unlike most operators like `+`, `↑` is always eagerly unfolded at parse time into its definition. So if we look at the definition of `f` from before, we see no trace of the `CoeT.coe` function: ```
def
Init.Coe
[ "Init.Prelude" ]
Init/Coe.lean
f
null
f (x : Nat) : Int := x
def
Init.Coe
[ "Init.Prelude" ]
Init/Coe.lean
f
null
Coe (α : semiOutParam (Sort u)) (β : Sort v) where /-- Coerces a value of type `α` to type `β`. Accessible by the notation `↑x`, or by double type ascription `((x : α) : β)`. -/ coe : α → β attribute [coe_decl] Coe.coe
class
Init.Coe
[ "Init.Prelude" ]
Init/Coe.lean
Coe
`Coe α β` is the typeclass for coercions from `α` to `β`. It can be transitively chained with other `Coe` instances, and coercion is automatically used when `x` has type `α` but it is used in a context where `β` is expected. You can use the `↑x` operator to explicitly trigger coercion.
CoeTC (α : Sort u) (β : Sort v) where /-- Coerces a value of type `α` to type `β`. Accessible by the notation `↑x`, or by double type ascription `((x : α) : β)`. -/ coe : α → β attribute [coe_decl] CoeTC.coe
class
Init.Coe
[ "Init.Prelude" ]
Init/Coe.lean
CoeTC
Auxiliary class implementing `Coe*`. Users should generally not implement this directly.
CoeOut (α : Sort u) (β : semiOutParam (Sort v)) where /-- Coerces a value of type `α` to type `β`. Accessible by the notation `↑x`, or by double type ascription `((x : α) : β)`. -/ coe : α → β attribute [coe_decl] CoeOut.coe
class
Init.Coe
[ "Init.Prelude" ]
Init/Coe.lean
CoeOut
`CoeOut α β` is for coercions that are applied from left-to-right.
CoeOTC (α : Sort u) (β : Sort v) where /-- Coerces a value of type `α` to type `β`. Accessible by the notation `↑x`, or by double type ascription `((x : α) : β)`. -/ coe : α → β attribute [coe_decl] CoeOTC.coe
class
Init.Coe
[ "Init.Prelude" ]
Init/Coe.lean
CoeOTC
Auxiliary class implementing `CoeOut* Coe*`. Users should generally not implement this directly.
CoeHead (α : Sort u) (β : semiOutParam (Sort v)) where /-- Coerces a value of type `α` to type `β`. Accessible by the notation `↑x`, or by double type ascription `((x : α) : β)`. -/ coe : α → β attribute [coe_decl] CoeHead.coe
class
Init.Coe
[ "Init.Prelude" ]
Init/Coe.lean
CoeHead
`CoeHead α β` is for coercions that are applied from left-to-right at most once at beginning of the coercion chain.
CoeHTC (α : Sort u) (β : Sort v) where /-- Coerces a value of type `α` to type `β`. Accessible by the notation `↑x`, or by double type ascription `((x : α) : β)`. -/ coe : α → β attribute [coe_decl] CoeHTC.coe
class
Init.Coe
[ "Init.Prelude" ]
Init/Coe.lean
CoeHTC
Auxiliary class implementing `CoeHead CoeOut* Coe*`. Users should generally not implement this directly.
CoeTail (α : semiOutParam (Sort u)) (β : Sort v) where /-- Coerces a value of type `α` to type `β`. Accessible by the notation `↑x`, or by double type ascription `((x : α) : β)`. -/ coe : α → β attribute [coe_decl] CoeTail.coe
class
Init.Coe
[ "Init.Prelude" ]
Init/Coe.lean
CoeTail
`CoeTail α β` is for coercions that can only appear at the end of a sequence of coercions. That is, `α` can be further coerced via `Coe σ α` and `CoeHead τ σ` instances but `β` will only be the expected type of the expression.
CoeHTCT (α : Sort u) (β : Sort v) where /-- Coerces a value of type `α` to type `β`. Accessible by the notation `↑x`, or by double type ascription `((x : α) : β)`. -/ coe : α → β attribute [coe_decl] CoeHTCT.coe
class
Init.Coe
[ "Init.Prelude" ]
Init/Coe.lean
CoeHTCT
Auxiliary class implementing `CoeHead* Coe* CoeTail?`. Users should generally not implement this directly.
CoeDep (α : Sort u) (_ : α) (β : Sort v) where /-- The resulting value of type `β`. The input `x : α` is a parameter to the type class, so the value of type `β` may possibly depend on additional typeclasses on `x`. -/ coe : β attribute [coe_decl] CoeDep.coe
class
Init.Coe
[ "Init.Prelude" ]
Init/Coe.lean
CoeDep
`CoeDep α (x : α) β` is a typeclass for dependent coercions, that is, the type `β` can depend on `x` (or rather, the value of `x` is available to typeclass search so an instance that relates `β` to `x` is allowed). Dependent coercions do not participate in the transitive chaining process of regular coercions: they must exactly match the type mismatch on both sides.
CoeT (α : Sort u) (_ : α) (β : Sort v) where /-- The resulting value of type `β`. The input `x : α` is a parameter to the type class, so the value of type `β` may possibly depend on additional typeclasses on `x`. -/ coe : β attribute [coe_decl] CoeT.coe
class
Init.Coe
[ "Init.Prelude" ]
Init/Coe.lean
CoeT
`CoeT` is the core typeclass which is invoked by Lean to resolve a type error. It can also be triggered explicitly with the notation `↑x` or by double type ascription `((x : α) : β)`. A `CoeT` chain has the grammar `CoeHead? CoeOut* Coe* CoeTail? | CoeDep`.
CoeFun (α : Sort u) (γ : outParam (α → Sort v)) where /-- Coerces a value `f : α` to type `γ f`, which should be either be a function type or another `CoeFun` type, in order to resolve a mistyped application `f x`. -/ coe : (f : α) → γ f attribute [coe_decl] CoeFun.coe
class
Init.Coe
[ "Init.Prelude" ]
Init/Coe.lean
CoeFun
`CoeFun α (γ : α → Sort v)` is a coercion to a function. `γ a` should be a (coercion-to-)function type, and this is triggered whenever an element `f : α` appears in an application like `f x`, which would not make sense since `f` does not have a function type. `CoeFun` instances apply to `CoeOut` as well.
CoeSort (α : Sort u) (β : outParam (Sort v)) where /-- Coerces a value of type `α` to `β`, which must be a universe. -/ coe : α → β attribute [coe_decl] CoeSort.coe
class
Init.Coe
[ "Init.Prelude" ]
Init/Coe.lean
CoeSort
`CoeSort α β` is a coercion to a sort. `β` must be a universe, and this is triggered when `a : α` appears in a place where a type is expected, like `(x : a)` or `a → a`. `CoeSort` instances apply to `CoeOut` as well.
boolToProp : Coe Bool Prop where coe b := Eq b true
instance
Init.Coe
[ "Init.Prelude" ]
Init/Coe.lean
boolToProp
`↑x` represents a coercion, which converts `x` of type `α` to type `β`, using typeclasses to resolve a suitable conversion function. You can often leave the `↑` off entirely, since coercion is triggered implicitly whenever there is a type error, but in ambiguous cases it can be useful to use `↑` to disambiguate between e.g. `↑x + ↑y` and `↑(x + y)`. -/ syntax:1024 (name := coeNotation) "↑" term:1024 : term /-- `⇑ t` coerces `t` to a function. -/ syntax:1024 (name := coeFunNotation) "⇑" term:1024 : term /-- `↥ t` coerces `t` to a type. -/ syntax:1024 (name := coeSortNotation) "↥" term:1024 : term /-! # Basic instances
boolToSort : CoeSort Bool Prop where coe b := b
instance
Init.Coe
[ "Init.Prelude" ]
Init/Coe.lean
boolToSort
null
decPropToBool (p : Prop) [Decidable p] : CoeDep Prop p Bool where coe := decide p
instance
Init.Coe
[ "Init.Prelude" ]
Init/Coe.lean
decPropToBool
null
subtypeCoe {α : Sort u} {p : α → Prop} : CoeOut (Subtype p) α where coe v := v.val /-! # Coe bridge -/
instance
Init.Coe
[ "Init.Prelude" ]
Init/Coe.lean
subtypeCoe
null
@[coe_decl] Lean.Internal.liftCoeM {m : Type u → Type v} {n : Type u → Type w} {α β : Type u} [MonadLiftT m n] [∀ a, CoeT α a β] [Monad n] (x : m α) : n β := do let a ← liftM x pure (CoeT.coe a)
abbrev
Init.Coe
[ "Init.Prelude" ]
Init/Coe.lean
Lean.Internal.liftCoeM
Helper definition used by the elaborator. It is not meant to be used directly by users. This is used for coercions between monads, in the case where we want to apply a monad lift and a coercion on the result type at the same time.
@[coe_decl] Lean.Internal.coeM {m : Type u → Type v} {α β : Type u} [∀ a, CoeT α a β] [Monad m] (x : m α) : m β := do let a ← x pure (CoeT.coe a)
abbrev
Init.Coe
[ "Init.Prelude" ]
Init/Coe.lean
Lean.Internal.coeM
Helper definition used by the elaborator. It is not meant to be used directly by users. This is used for coercing the result type under a monad.
@[simp] inline {α : Sort u} (a : α) : α := a
def
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
inline
`inline (f x)` is an indication to the compiler to inline the definition of `f` at the application site itself (by comparison to the `@[inline]` attribute, which applies to all applications of the function).
id_def {α : Sort u} (a : α) : id a = a := rfl attribute [grind] id
theorem
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
id_def
null
@[expose] eagerReduce {α : Sort u} (a : α) : α := a
def
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
eagerReduce
A helper gadget for instructing the kernel to eagerly reduce terms. When the gadget wraps the argument of an application, then when checking that the expected and inferred type of the argument match, the kernel will evaluate terms more eagerly. It is often used to wrap `Eq.refl true` proof terms as `eagerReduce (Eq.refl true)` when using proof by reflection. As an example, consider the theorem: ``` theorem eq_norm (ctx : Context) (p₁ p₂ : Poly) (h : (p₁.norm == p₂) = true) : p₁.denote ctx = 0 → p₂.denote ctx = 0 ``` The argument `h : (p₁.norm == p₂) = true` is a candidate for `eagerReduce`. When applying this theorem, we would write: ``` eq_norm ctx p q (eagerReduce (Eq.refl true)) h ``` to instruct the kernel to use eager reduction when establishing that `(p.norm == q) = true` is definitionally equal to `true = true`.
@[inline] flip {α : Sort u} {β : Sort v} {φ : Sort w} (f : α → β → φ) : β → α → φ := fun b a => f a b @[simp] theorem Function.const_apply {y : β} {x : α} : const α y x = y := rfl @[simp] theorem Function.comp_apply {f : β → δ} {g : α → β} {x : α} : comp f g x = f (g x) := rfl
def
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
flip
`flip f a b` is `f b a`. It is useful for "point-free" programming, since it can sometimes be used to avoid introducing variables. For example, `(·<·)` is the less-than relation, and `flip (·<·)` is the greater-than relation.
Function.comp_def {α β δ} (f : β → δ) (g : α → β) : f ∘ g = fun x => f (g x) := rfl @[simp] theorem Function.const_comp {f : α → β} {c : γ} : (Function.const β c ∘ f) = Function.const α c := rfl @[simp] theorem Function.comp_const {f : β → γ} {b : β} : (f ∘ Function.const α b) = Function.const α (f b) := rfl @[simp] theorem Function.true_comp {f : α → β} : ((fun _ => true) ∘ f) = fun _ => true := rfl @[simp] theorem Function.false_comp {f : α → β} : ((fun _ => false) ∘ f) = fun _ => false := rfl @[simp] theorem Function.comp_id (f : α → β) : f ∘ id = f := rfl @[simp] theorem Function.id_comp (f : α → β) : id ∘ f = f := rfl attribute [simp] namedPattern
theorem
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
Function.comp_def
null
@[macro_inline] Empty.elim {C : Sort u} : Empty → C := Empty.rec
def
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
Empty.elim
`Empty.elim : Empty → C` says that a value of any type can be constructed from `Empty`. This can be thought of as a compiler-checked assertion that a code path is unreachable.
@[macro_inline] PEmpty.elim {C : Sort _} : PEmpty → C := fun a => nomatch a
def
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
PEmpty.elim
Decidable equality for Empty -/ instance : DecidableEq Empty := fun a => a.elim /-- `PEmpty.elim : Empty → C` says that a value of any type can be constructed from `PEmpty`. This can be thought of as a compiler-checked assertion that a code path is unreachable.
Thunk (α : Type u) : Type u where /-- Constructs a new thunk from a function `Unit → α` that will be called when the thunk is first forced. The result is cached. It is re-used when the thunk is forced again. -/ mk :: /-- Extract the getter function out of a thunk. Use `Thunk.get` instead. -/ -- The field is public so as to allow computation through it. fn : Unit → α attribute [extern "lean_mk_thunk"] Thunk.mk
structure
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
Thunk
Decidable equality for PEmpty -/ instance : DecidableEq PEmpty := fun a => a.elim /-- Delays evaluation. The delayed code is evaluated at most once. A thunk is code that constructs a value when it is requested via `Thunk.get`, `Thunk.map`, or `Thunk.bind`. The resulting value is cached, so the code is executed at most once. This is also known as lazy or call-by-need evaluation. The Lean runtime has special support for the `Thunk` type in order to implement the caching behavior.
@[extern "lean_thunk_pure"] protected Thunk.pure (a : α) : Thunk α := ⟨fun _ => a⟩
def
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
Thunk.pure
Stores an already-computed value in a thunk. Because the value has already been computed, there is no laziness.
@[inline] Thunk.fnImpl (x : Thunk α) : Unit → α := fun _ => x.get @[csimp] theorem Thunk.fn_eq_fnImpl : @Thunk.fn = @Thunk.fnImpl := rfl
def
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
Thunk.fnImpl
Gets the thunk's value. If the value is cached, it is returned in constant time; if not, it is computed. Computed values are cached, so the value is not recomputed. -/ -- NOTE: we use `Thunk.get` instead of `Thunk.fn` as the accessor primitive as the latter has an additional `Unit` argument @[extern "lean_thunk_get_own"] protected def Thunk.get (x : @& Thunk α) : α := x.fn () -- Ensure `Thunk.fn` is still computable even if it shouldn't be accessed directly. /-- Implementation detail.
@[inline] protected Thunk.map (f : α → β) (x : Thunk α) : Thunk β := ⟨fun _ => f x.get⟩
def
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
Thunk.map
Constructs a new thunk that forces `x` and then applies `x` to the result. Upon forcing, the result of `f` is cached and the reference to the thunk `x` is dropped.
@[inline] protected Thunk.bind (x : Thunk α) (f : α → Thunk β) : Thunk β := ⟨fun _ => (f x.get).get⟩ @[simp] theorem Thunk.sizeOf_eq [SizeOf α] (a : Thunk α) : sizeOf a = 1 + sizeOf a.get := by cases a; rfl
def
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
Thunk.bind
Constructs a new thunk that applies `f` to the result of `x` when forced.
thunkCoe : CoeTail α (Thunk α) where -- Since coercions are expanded eagerly, `a` is evaluated lazily. coe a := ⟨fun _ => a⟩
instance
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
thunkCoe
null
Eq.ndrecOn.{u1, u2} {α : Sort u2} {a : α} {motive : α → Sort u1} {b : α} (h : a = b) (m : motive a) : motive b := Eq.ndrec m h /-! # definitions -/
abbrev
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
Eq.ndrecOn.
A variation on `Eq.ndrec` with the equality argument first.
Iff (a b : Prop) : Prop where /-- If `a → b` and `b → a` then `a` and `b` are equivalent. -/ intro :: /-- Modus ponens for if and only if. If `a ↔ b` and `a`, then `b`. -/ mp : a → b /-- Modus ponens for if and only if, reversed. If `a ↔ b` and `b`, then `a`. -/ mpr : b → a @[inherit_doc] infix:20 " <-> " => Iff @[inherit_doc] infix:20 " ↔ " => Iff recommended_spelling "iff" for "↔" in [Iff, «term_↔_»]
structure
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
Iff
If and only if, or logical bi-implication. `a ↔ b` means that `a` implies `b` and vice versa. By `propext`, this implies that `a` and `b` are equal and hence any expression involving `a` is equivalent to the corresponding expression with `b` instead.
@[suggest_for Either] Sum (α : Type u) (β : Type v) where /-- Left injection into the sum type `α ⊕ β`. -/ | inl (val : α) : Sum α β /-- Right injection into the sum type `α ⊕ β`. -/ | inr (val : β) : Sum α β @[inherit_doc] infixr:30 " ⊕ " => Sum
inductive
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
Sum
prefer `↔` over `<->` -/ recommended_spelling "iff" for "<->" in [Iff, «term_<->_»] /-- The disjoint union of types `α` and `β`, ordinarily written `α ⊕ β`. An element of `α ⊕ β` is either an `a : α` wrapped in `Sum.inl` or a `b : β` wrapped in `Sum.inr`. `α ⊕ β` is not equivalent to the set-theoretic union of `α` and `β` because its values include an indication of which of the two types was chosen. The union of a singleton set with itself contains one element, while `Unit ⊕ Unit` contains distinct values `inl ()` and `inr ()`.
PSum (α : Sort u) (β : Sort v) where /-- Left injection into the sum type `α ⊕' β`.-/ | inl (val : α) : PSum α β /-- Right injection into the sum type `α ⊕' β`. -/ | inr (val : β) : PSum α β @[inherit_doc] infixr:30 " ⊕' " => PSum
inductive
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
PSum
The disjoint union of arbitrary sorts `α` `β`, or `α ⊕' β`. It differs from `α ⊕ β` in that it allows `α` and `β` to have arbitrary sorts `Sort u` and `Sort v`, instead of restricting them to `Type u` and `Type v`. This means that it can be used in situations where one side is a proposition, like `True ⊕' Nat`. However, the resulting universe level constraints are often more difficult to solve than those that result from `Sum`.
@[reducible] PSum.inhabitedLeft {α β} [Inhabited α] : Inhabited (PSum α β) := ⟨PSum.inl default⟩
def
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
PSum.inhabitedLeft
If the left type in a sum is inhabited then the sum is inhabited. This is not an instance to avoid non-canonical instances when both the left and right types are inhabited.
@[reducible] PSum.inhabitedRight {α β} [Inhabited β] : Inhabited (PSum α β) := ⟨PSum.inr default⟩
def
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
PSum.inhabitedRight
If the right type in a sum is inhabited then the sum is inhabited. This is not an instance to avoid non-canonical instances when both the left and right types are inhabited.
PSum.nonemptyLeft [h : Nonempty α] : Nonempty (PSum α β) := Nonempty.elim h (fun a => ⟨PSum.inl a⟩)
instance
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
PSum.nonemptyLeft
null
PSum.nonemptyRight [h : Nonempty β] : Nonempty (PSum α β) := Nonempty.elim h (fun b => ⟨PSum.inr b⟩)
instance
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
PSum.nonemptyRight
null
@[pp_using_anonymous_constructor] Sigma {α : Type u} (β : α → Type v) where /-- Constructs a dependent pair. Using this constructor in a context in which the type is not known usually requires a type ascription to determine `β`. This is because the desired relationship between the two values can't generally be determined automatically. -/ mk :: /-- The first component of a dependent pair. -/ fst : α /-- The second component of a dependent pair. Its type depends on the first component. -/ snd : β fst attribute [unbox] Sigma
structure
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
Sigma
Dependent pairs, in which the second element's type depends on the value of the first element. The type `Sigma β` is typically written `Σ a : α, β a` or `(a : α) × β a`. Although its values are pairs, `Sigma` is sometimes known as the *dependent sum type*, since it is the type level version of an indexed summation.
@[pp_using_anonymous_constructor] PSigma {α : Sort u} (β : α → Sort v) where /-- Constructs a fully universe-polymorphic dependent pair. -/ mk :: /-- The first component of a dependent pair. -/ fst : α /-- The second component of a dependent pair. Its type depends on the first component. -/ snd : β fst
structure
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
PSigma
Fully universe-polymorphic dependent pairs, in which the second element's type depends on the value of the first element and both types are allowed to be propositions. The type `PSigma β` is typically written `Σ' a : α, β a` or `(a : α) ×' β a`. In practice, this generality leads to universe level constraints that are difficult to solve, so `PSigma` is rarely used in manually-written code. It is usually only used in automation that constructs pairs of arbitrary types. To pair a value with a proof that a predicate holds for it, use `Subtype`. To demonstrate that a value exists that satisfies a predicate, use `Exists`. A dependent pair with a proposition as its first component is not typically useful due to proof irrelevance: there's no point in depending on a specific proof because all proofs are equal anyway.
Exists {α : Sort u} (p : α → Prop) : Prop where /-- Existential introduction. If `a : α` and `h : p a`, then `⟨a, h⟩` is a proof that `∃ x : α, p x`. -/ | intro (w : α) (h : p w) : Exists p
inductive
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
Exists
Existential quantification. If `p : α → Prop` is a predicate, then `∃ x : α, p x` asserts that there is some `x` of type `α` such that `p x` holds. To create an existential proof, use the `exists` tactic, or the anonymous constructor notation `⟨x, h⟩`. To unpack an existential, use `cases h` where `h` is a proof of `∃ x : α, p x`, or `let ⟨x, hx⟩ := h` where `. Because Lean has proof irrelevance, any two proofs of an existential are definitionally equal. One consequence of this is that it is impossible to recover the witness of an existential from the mere fact of its existence. For example, the following does not compile: ``` example (h : ∃ x : Nat, x = x) : Nat := let ⟨x, _⟩ := h -- fail, because the goal is `Nat : Type` x ``` The error message `recursor 'Exists.casesOn' can only eliminate into Prop` means that this only works when the current goal is another proposition: ``` example (h : ∃ x : Nat, x = x) : True := let ⟨x, _⟩ := h -- ok, because the goal is `True : Prop` trivial ```
ForInStep (α : Type u) where /-- The loop should terminate early. `ForInStep.done` is produced by uses of `break` or `return` in the loop body. -/ | done : α → ForInStep α /-- The loop should continue with the next iteration, using the returned state. `ForInStep.yield` is produced by `continue` and by reaching the bottom of the loop body. -/ | yield : α → ForInStep α deriving Inhabited
inductive
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
ForInStep
An indication of whether a loop's body terminated early that's used to compile the `for x in xs` notation. A collection's `ForIn` or `ForIn'` instance describes how to iterate over its elements. The monadic action that represents the body of the loop returns a `ForInStep α`, where `α` is the local state used to implement features such as `let mut`.
ForIn (m : Type u₁ → Type u₂) (ρ : Type u) (α : outParam (Type v)) where /-- Monadically iterates over the contents of a collection `xs`, with a local state `b` and the possibility of early termination. Because a `do` block supports local mutable bindings along with `return`, and `break`, the monadic action passed to `ForIn.forIn` takes a starting state in addition to the current element of the collection and returns an updated state together with an indication of whether iteration should continue or terminate. If the action returns `ForInStep.done`, then `ForIn.forIn` should stop iteration and return the updated state. If the action returns `ForInStep.yield`, then `ForIn.forIn` should continue iterating if there are further elements, passing the updated state to the action. More information about the translation of `for` loops into `ForIn.forIn` is available in [the Lean reference manual](lean-manual://section/monad-iteration-syntax). -/ forIn {β} (xs : ρ) (b : β) (f : α → β → m (ForInStep β)) : m β export ForIn (forIn)
class
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
ForIn
Monadic iteration in `do`-blocks, using the `for x in xs` notation. The parameter `m` is the monad of the `do`-block in which iteration is performed, `ρ` is the type of the collection being iterated over, and `α` is the type of elements.
ForIn' (m : Type u₁ → Type u₂) (ρ : Type u) (α : outParam (Type v)) (d : outParam (Membership α ρ)) where /-- Monadically iterates over the contents of a collection `xs`, with a local state `b` and the possibility of early termination. At each iteration, the body of the loop is provided with a proof that the current element is in the collection. Because a `do` block supports local mutable bindings along with `return`, and `break`, the monadic action passed to `ForIn'.forIn'` takes a starting state in addition to the current element of the collection with its membership proof. The action returns an updated state together with an indication of whether iteration should continue or terminate. If the action returns `ForInStep.done`, then `ForIn'.forIn'` should stop iteration and return the updated state. If the action returns `ForInStep.yield`, then `ForIn'.forIn'` should continue iterating if there are further elements, passing the updated state to the action. More information about the translation of `for` loops into `ForIn'.forIn'` is available in [the Lean reference manual](lean-manual://section/monad-iteration-syntax). -/ forIn' {β} (x : ρ) (b : β) (f : (a : α) → a ∈ x → β → m (ForInStep β)) : m β export ForIn' (forIn')
class
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
ForIn'
Monadic iteration in `do`-blocks with a membership proof, using the `for h : x in xs` notation. The parameter `m` is the monad of the `do`-block in which iteration is performed, `ρ` is the type of the collection being iterated over, `α` is the type of elements, and `d` is the specific membership predicate to provide.
DoResultPRBC (α β σ : Type u) where /-- `pure (a : α) s` means that the block exited normally with return value `a` -/ | pure : α → σ → DoResultPRBC α β σ /-- `return (b : β) s` means that the block exited via a `return b` early-exit command -/ | return : β → σ → DoResultPRBC α β σ /-- `break s` means that `break` was called, meaning that we should exit from the containing loop -/ | break : σ → DoResultPRBC α β σ /-- `continue s` means that `continue` was called, meaning that we should continue to the next iteration of the containing loop -/ | continue : σ → DoResultPRBC α β σ
inductive
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
DoResultPRBC
Auxiliary type used to compile `do` notation. It is used when compiling a do block nested inside a combinator like `tryCatch`. It encodes the possible ways the block can exit: * `pure (a : α) s` means that the block exited normally with return value `a`. * `return (b : β) s` means that the block exited via a `return b` early-exit command. * `break s` means that `break` was called, meaning that we should exit from the containing loop. * `continue s` means that `continue` was called, meaning that we should continue to the next iteration of the containing loop. All cases return a value `s : σ` which bundles all the mutable variables of the do-block.
DoResultPR (α β σ : Type u) where /-- `pure (a : α) s` means that the block exited normally with return value `a` -/ | pure : α → σ → DoResultPR α β σ /-- `return (b : β) s` means that the block exited via a `return b` early-exit command -/ | return : β → σ → DoResultPR α β σ
inductive
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
DoResultPR
Auxiliary type used to compile `do` notation. It is the same as `DoResultPRBC α β σ` except that `break` and `continue` are not available because we are not in a loop context.
DoResultBC (σ : Type u) where /-- `break s` means that `break` was called, meaning that we should exit from the containing loop -/ | break : σ → DoResultBC σ /-- `continue s` means that `continue` was called, meaning that we should continue to the next iteration of the containing loop -/ | continue : σ → DoResultBC σ
inductive
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
DoResultBC
Auxiliary type used to compile `do` notation. It is an optimization of `DoResultPRBC PEmpty PEmpty σ` to remove the impossible cases, used when neither `pure` nor `return` are possible exit paths.
DoResultSBC (α σ : Type u) where /-- This encodes either `pure (a : α)` or `return (a : α)`: * `pure (a : α) s` means that the block exited normally with return value `a` * `return (b : β) s` means that the block exited via a `return b` early-exit command The one that is actually encoded depends on the context of use. -/ | pureReturn : α → σ → DoResultSBC α σ /-- `break s` means that `break` was called, meaning that we should exit from the containing loop -/ | break : σ → DoResultSBC α σ /-- `continue s` means that `continue` was called, meaning that we should continue to the next iteration of the containing loop -/ | continue : σ → DoResultSBC α σ
inductive
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
DoResultSBC
Auxiliary type used to compile `do` notation. It is an optimization of either `DoResultPRBC α PEmpty σ` or `DoResultPRBC PEmpty α σ` to remove the impossible case, used when either `pure` or `return` is never used.
HasEquiv (α : Sort u) where /-- `x ≈ y` says that `x` and `y` are equivalent. Because this is a typeclass, the notion of equivalence is type-dependent. -/ Equiv : α → α → Sort v @[inherit_doc] infix:50 " ≈ " => HasEquiv.Equiv recommended_spelling "equiv" for "≈" in [HasEquiv.Equiv, «term_≈_»] /-! # set notation -/
class
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
HasEquiv
`HasEquiv α` is the typeclass which supports the notation `x ≈ y` where `x y : α`.
HasSubset (α : Type u) where /-- Subset relation: `a ⊆ b` -/ Subset : α → α → Prop export HasSubset (Subset)
class
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
HasSubset
Notation type class for the subset relation `⊆`.
HasSSubset (α : Type u) where /-- Strict subset relation: `a ⊂ b` -/ SSubset : α → α → Prop export HasSSubset (SSubset)
class
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
HasSSubset
Notation type class for the strict subset relation `⊂`.
Superset [HasSubset α] (a b : α) := Subset b a
abbrev
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
Superset
Superset relation: `a ⊇ b`
SSuperset [HasSSubset α] (a b : α) := SSubset b a
abbrev
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
SSuperset
Strict superset relation: `a ⊃ b`
Union (α : Type u) where /-- `a ∪ b` is the union of `a` and `b`. -/ union : α → α → α
class
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
Union
Notation type class for the union operation `∪`.
Inter (α : Type u) where /-- `a ∩ b` is the intersection of `a` and `b`. -/ inter : α → α → α
class
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
Inter
Notation type class for the intersection operation `∩`.
SDiff (α : Type u) where /-- `a \ b` is the set difference of `a` and `b`, consisting of all elements in `a` that are not in `b`. -/ sdiff : α → α → α
class
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
SDiff
Notation type class for the set difference `\`.
EmptyCollection (α : Type u) where /-- `∅` or `{}` is the empty set or empty collection. It is supported by the `EmptyCollection` typeclass. -/ emptyCollection : α @[inherit_doc] notation "{" "}" => EmptyCollection.emptyCollection @[inherit_doc] notation "∅" => EmptyCollection.emptyCollection recommended_spelling "empty" for "{}" in [EmptyCollection.emptyCollection, «term{}»] recommended_spelling "empty" for "∅" in [EmptyCollection.emptyCollection, «term∅»]
class
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
EmptyCollection
Subset relation: `a ⊆ b` -/ infix:50 " ⊆ " => Subset /-- Strict subset relation: `a ⊂ b` -/ infix:50 " ⊂ " => SSubset /-- Superset relation: `a ⊇ b` -/ infix:50 " ⊇ " => Superset /-- Strict superset relation: `a ⊃ b` -/ infix:50 " ⊃ " => SSuperset /-- `a ∪ b` is the union of `a` and `b`. -/ infixl:65 " ∪ " => Union.union /-- `a ∩ b` is the intersection of `a` and `b`. -/ infixl:70 " ∩ " => Inter.inter /-- `a \ b` is the set difference of `a` and `b`, consisting of all elements in `a` that are not in `b`. -/ infix:70 " \\ " => SDiff.sdiff recommended_spelling "subset" for "⊆" in [Subset, «term_⊆_»] recommended_spelling "ssubset" for "⊂" in [SSubset, «term_⊂_»] /-- prefer `⊆` over `⊇` -/ recommended_spelling "superset" for "⊇" in [Superset, «term_⊇_»] /-- prefer `⊂` over `⊃` -/ recommended_spelling "ssuperset" for "⊃" in [SSuperset, «term_⊃_»] recommended_spelling "union" for "∪" in [Union.union, «term_∪_»] recommended_spelling "inter" for "∩" in [Inter.inter, «term_∩_»] recommended_spelling "sdiff" for "\\" in [SDiff.sdiff, «term_\_»] /-! # collections -/ /-- `EmptyCollection α` is the typeclass which supports the notation `∅`, also written as `{}`.
Insert (α : outParam <| Type u) (γ : Type v) where /-- `insert x xs` inserts the element `x` into the collection `xs`. -/ insert : α → γ → γ export Insert (insert)
class
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
Insert
Type class for the `insert` operation. Used to implement the `{ a, b, c }` syntax.
Singleton (α : outParam <| Type u) (β : Type v) where /-- `singleton x` is a collection with the single element `x` (notation: `{x}`). -/ singleton : α → β export Singleton (singleton)
class
Init.Core
[ "Init.SizeOf" ]
Init/Core.lean
Singleton
Type class for the `singleton` operation. Used to implement the `{ a, b, c }` syntax.