Datasets:

Languages:
English
ArXiv:
License:
LTMeyer commited on
Commit
011bc9b
·
verified ·
1 Parent(s): 8bfba16

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -50,10 +50,10 @@ periodic, such as plane waves, but not for nonperiodic sources, e.g. a point sou
50
 
51
  While we solve equations in the frequency domain, the original time-domain problem is:
52
 
53
- $\\(\frac{\partial^2 U(t, \mathbf{x})}{\partial t^2} - \Delta U(t, \mathbf{x}) = \delta(t)\delta(\mathbf{x} - \mathbf{x}_0), \\)$
54
  where \\(\Delta = \nabla \cdot \nabla\\) is the spatial Laplacian and \\(U\\) the accoustic pressure. The sound-hard boundary \\(\partial \Omega\\) imposes Neumann boundary conditions,
55
 
56
- $\\( U_n(t, \mathbf{x}) = \mathbf{n} \cdot \nabla U = 0, \quad t \in \mathbb{R}, \quad \mathbf{x} \in \partial \Omega. \\)$
57
 
58
  Upon taking the temporal Fourier transform, we get the inhomogeneous Helmholtz Neumann boundary value problem
59
 
 
50
 
51
  While we solve equations in the frequency domain, the original time-domain problem is:
52
 
53
+ \\(\frac{\partial^2 U(t, \mathbf{x})}{\partial t^2} - \Delta U(t, \mathbf{x}) = \delta(t)\delta(\mathbf{x} - \mathbf{x}_0), \\)
54
  where \\(\Delta = \nabla \cdot \nabla\\) is the spatial Laplacian and \\(U\\) the accoustic pressure. The sound-hard boundary \\(\partial \Omega\\) imposes Neumann boundary conditions,
55
 
56
+ \\( U_n(t, \mathbf{x}) = \mathbf{n} \cdot \nabla U = 0, \quad t \in \mathbb{R}, \quad \mathbf{x} \in \partial \Omega. \\)
57
 
58
  Upon taking the temporal Fourier transform, we get the inhomogeneous Helmholtz Neumann boundary value problem
59