Datasets:

Languages:
English
ArXiv:
License:
LTMeyer commited on
Commit
8bfba16
·
verified ·
1 Parent(s): 3b3ffe6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -6
README.md CHANGED
@@ -56,12 +56,14 @@ where \\(\Delta = \nabla \cdot \nabla\\) is the spatial Laplacian and \\(U\\) th
56
  $\\( U_n(t, \mathbf{x}) = \mathbf{n} \cdot \nabla U = 0, \quad t \in \mathbb{R}, \quad \mathbf{x} \in \partial \Omega. \\)$
57
 
58
  Upon taking the temporal Fourier transform, we get the inhomogeneous Helmholtz Neumann boundary value problem
59
- ```math
 
60
  \begin{align}
61
  -(\Delta + \omega^2)u &= \delta_{\mathbf{x}_0}, \quad \text{in } \Omega,\\
62
  u_n &= 0 \quad \text{on } \partial \Omega,
63
  \end{align}
64
- ```
 
65
  with outwards radiation conditions as described in [1]. The region \\(\Omega\\) lies above a corrugated boundary \\(\partial \Omega\\), extending with spatial period \\(d\\) in the \\(x_1\\) direction, and is unbounded in the positive \\(x_2\\) direction. The current example is a right-angled staircase whose unit cell consists of two equal-length line segments at \\(\pi/2\\) angle to each other.
66
 
67
  ![Gif](https://users.flatironinstitute.org/~polymathic/data/the_well/datasets/helmholtz_staircase/gif/pressure_normalized.gif)
@@ -96,12 +98,11 @@ the boundary) are enforced at the boundary.
96
  **Simulation time-step:** continuous in time (time-dependence is
97
  analytic).
98
 
99
- **Data are stored separated by (\\(\Delta t\\)):** \\(\Delta t =\frac{2\pi}{\omega N}\\), with \\(N = 50\\).
100
 
101
- **Total time range (\\(t_{min}\\) to \\(t_{max}\\)):** \\(t_{\mathrm{min}} = 0\\), $t_{\mathrm{max}} =
102
- \frac{2\pi}{\omega}$.
103
 
104
- **Spatial domain size (\\(L_x\\), \\(L_y\\), \\(L_z\\)):** \\(-8.0 \leq x_1 \leq 8.0\\) horizontally, and \\(-0.5 \geq x_2 \geq 3.5\\) vertically.
105
 
106
  **Set of coefficients or non-dimensional parameters evaluated:** \\(\omega\\)={0.06283032, 0.25123038, 0.43929689, 0.62675846, 0.81330465, 0.99856671, 1.18207893, 1.36324313, 1.5412579, 1.71501267, 1.88295798, 2.04282969, 2.19133479, 2.32367294, 2.4331094, 2.5110908}, with the sources coordinates being all combinations of \\(x\\)={-0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4} and \\(y\\)={-0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4}.
107
 
 
56
  $\\( U_n(t, \mathbf{x}) = \mathbf{n} \cdot \nabla U = 0, \quad t \in \mathbb{R}, \quad \mathbf{x} \in \partial \Omega. \\)$
57
 
58
  Upon taking the temporal Fourier transform, we get the inhomogeneous Helmholtz Neumann boundary value problem
59
+
60
+ $$
61
  \begin{align}
62
  -(\Delta + \omega^2)u &= \delta_{\mathbf{x}_0}, \quad \text{in } \Omega,\\
63
  u_n &= 0 \quad \text{on } \partial \Omega,
64
  \end{align}
65
+ $$
66
+
67
  with outwards radiation conditions as described in [1]. The region \\(\Omega\\) lies above a corrugated boundary \\(\partial \Omega\\), extending with spatial period \\(d\\) in the \\(x_1\\) direction, and is unbounded in the positive \\(x_2\\) direction. The current example is a right-angled staircase whose unit cell consists of two equal-length line segments at \\(\pi/2\\) angle to each other.
68
 
69
  ![Gif](https://users.flatironinstitute.org/~polymathic/data/the_well/datasets/helmholtz_staircase/gif/pressure_normalized.gif)
 
98
  **Simulation time-step:** continuous in time (time-dependence is
99
  analytic).
100
 
101
+ **Data are stored separated by ( \\(\Delta t\\)):** \\(\Delta t =\frac{2\pi}{\omega N}\\), with \\(N = 50\\).
102
 
103
+ **Total time range ( \\(t_{min}\\) to \\(t_{max}\\)):** \\(t_{\mathrm{min}} = 0\\), \\(t_{\mathrm{max}} = \frac{2\pi}{\omega}\\).
 
104
 
105
+ **Spatial domain size ( \\(L_x\\), \\(L_y\\), \\(L_z\\)):** \\(-8.0 \leq x_1 \leq 8.0\\) horizontally, and \\(-0.5 \geq x_2 \geq 3.5\\) vertically.
106
 
107
  **Set of coefficients or non-dimensional parameters evaluated:** \\(\omega\\)={0.06283032, 0.25123038, 0.43929689, 0.62675846, 0.81330465, 0.99856671, 1.18207893, 1.36324313, 1.5412579, 1.71501267, 1.88295798, 2.04282969, 2.19133479, 2.32367294, 2.4331094, 2.5110908}, with the sources coordinates being all combinations of \\(x\\)={-0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4} and \\(y\\)={-0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4}.
108