Upload bayesiantests.py
Browse files- bayesiantests.py +488 -0
bayesiantests.py
ADDED
|
@@ -0,0 +1,488 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import numpy.matlib
|
| 3 |
+
|
| 4 |
+
LEFT, ROPE, RIGHT = range(3)
|
| 5 |
+
|
| 6 |
+
def correlated_ttest_MC(x, rope, runs=1, nsamples=50000):
|
| 7 |
+
"""
|
| 8 |
+
See correlated_ttest module for explanations
|
| 9 |
+
"""
|
| 10 |
+
if x.ndim == 2:
|
| 11 |
+
x = x[:, 1] - x[:, 0]
|
| 12 |
+
diff=x
|
| 13 |
+
n = len(diff)
|
| 14 |
+
nfolds = n / runs
|
| 15 |
+
x = np.mean(diff)
|
| 16 |
+
# Nadeau's and Bengio's corrected variance
|
| 17 |
+
var = np.var(diff, ddof=1) * (1 / n + 1 / (nfolds - 1))
|
| 18 |
+
if var == 0:
|
| 19 |
+
return int(x < rope), int(-rope <= x <= rope), int(rope < x)
|
| 20 |
+
|
| 21 |
+
return x+np.sqrt(var)*np.random.standard_t( n - 1, nsamples)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
## Correlated t-test
|
| 26 |
+
def correlated_ttest(x, rope, runs=1, verbose=False, names=('C1', 'C2')):
|
| 27 |
+
import scipy.stats as stats
|
| 28 |
+
"""
|
| 29 |
+
Compute correlated t-test
|
| 30 |
+
|
| 31 |
+
The function uses the Bayesian interpretation of the p-value and returns
|
| 32 |
+
the probabilities the difference are below `-rope`, within `[-rope, rope]`
|
| 33 |
+
and above the `rope`. For details, see `A Bayesian approach for comparing
|
| 34 |
+
cross-validated algorithms on multiple data sets
|
| 35 |
+
<http://link.springer.com/article/10.1007%2Fs10994-015-5486-z>`_,
|
| 36 |
+
G. Corani and A. Benavoli, Mach Learning 2015.
|
| 37 |
+
|
| 38 |
+
|
|
| 39 |
+
The test assumes that the classifiers were evaluated using cross
|
| 40 |
+
validation. The number of folds is determined from the length of the vector
|
| 41 |
+
of differences, as `len(diff) / runs`. The variance includes a correction
|
| 42 |
+
for underestimation of variance due to overlapping training sets, as
|
| 43 |
+
described in `Inference for the Generalization Error
|
| 44 |
+
<http://link.springer.com/article/10.1023%2FA%3A1024068626366>`_,
|
| 45 |
+
C. Nadeau and Y. Bengio, Mach Learning 2003.)
|
| 46 |
+
|
| 47 |
+
|
|
| 48 |
+
Args:
|
| 49 |
+
x (array): a vector of differences or a 2d array with pairs of scores.
|
| 50 |
+
rope (float): the width of the rope
|
| 51 |
+
runs (int): number of repetitions of cross validation (default: 1)
|
| 52 |
+
return: probablities (tuple) that differences are below -rope, within rope or
|
| 53 |
+
above rope
|
| 54 |
+
"""
|
| 55 |
+
if x.ndim == 2:
|
| 56 |
+
x = x[:, 1] - x[:, 0]
|
| 57 |
+
diff=x
|
| 58 |
+
n = len(diff)
|
| 59 |
+
nfolds = n / runs
|
| 60 |
+
x = np.mean(diff)
|
| 61 |
+
# Nadeau's and Bengio's corrected variance
|
| 62 |
+
var = np.var(diff, ddof=1) * (1 / n + 1 / (nfolds - 1))
|
| 63 |
+
if var == 0:
|
| 64 |
+
return int(x < rope), int(-rope <= x <= rope), int(rope < x)
|
| 65 |
+
pr = 1-stats.t.cdf(rope, n - 1, x, np.sqrt(var))
|
| 66 |
+
pl = stats.t.cdf(-rope, n - 1, x, np.sqrt(var))
|
| 67 |
+
pe=1-pl-pr
|
| 68 |
+
if verbose:
|
| 69 |
+
print('P({c1} > {c2}) = {pl}, P(rope) = {pe}, P({c2} > {c1}) = {pr}'.
|
| 70 |
+
format(c1=names[0], c2=names[1], pl=pl, pe=pe, pr=pr))
|
| 71 |
+
return pl, pe, pr
|
| 72 |
+
|
| 73 |
+
## SIGN TEST
|
| 74 |
+
def signtest_MC(x, rope, prior_strength=1, prior_place=ROPE, nsamples=50000):
|
| 75 |
+
"""
|
| 76 |
+
Args:
|
| 77 |
+
x (array): a vector of differences or a 2d array with pairs of scores.
|
| 78 |
+
rope (float): the width of the rope
|
| 79 |
+
prior_strength (float): prior strength (default: 1)
|
| 80 |
+
prior_place (LEFT, ROPE or RIGHT): the region to which the prior is
|
| 81 |
+
assigned (default: ROPE)
|
| 82 |
+
nsamples (int): the number of Monte Carlo samples
|
| 83 |
+
|
| 84 |
+
Returns:
|
| 85 |
+
2-d array with rows corresponding to samples and columns to
|
| 86 |
+
probabilities `[p_left, p_rope, p_right]`
|
| 87 |
+
"""
|
| 88 |
+
if prior_strength < 0:
|
| 89 |
+
raise ValueError('Prior strength must be nonegative')
|
| 90 |
+
if nsamples < 0:
|
| 91 |
+
raise ValueError('Number of samples must be a positive integer')
|
| 92 |
+
if rope < 0:
|
| 93 |
+
raise ValueError('Rope must be a positive number')
|
| 94 |
+
|
| 95 |
+
if x.ndim == 2:
|
| 96 |
+
x = x[:, 1] - x[:, 0]
|
| 97 |
+
nleft = sum(x < -rope)
|
| 98 |
+
nright = sum(x > rope)
|
| 99 |
+
nrope = len(x) - nleft - nright
|
| 100 |
+
alpha = np.array([nleft, nrope, nright], dtype=float)
|
| 101 |
+
alpha += 0.0001 # for numerical stability
|
| 102 |
+
alpha[prior_place] += prior_strength
|
| 103 |
+
return np.random.dirichlet(alpha, nsamples)
|
| 104 |
+
|
| 105 |
+
def signtest(x, rope, prior_strength=1, prior_place=ROPE, nsamples=50000,
|
| 106 |
+
verbose=False, names=('C1', 'C2')):
|
| 107 |
+
"""
|
| 108 |
+
Args:
|
| 109 |
+
x (array): a vector of differences or a 2d array with pairs of scores.
|
| 110 |
+
rope (float): the width of the rope
|
| 111 |
+
prior_strength (float): prior strength (default: 1)
|
| 112 |
+
prior_place (LEFT, ROPE or RIGHT): the region to which the prior is
|
| 113 |
+
assigned (default: ROPE)
|
| 114 |
+
nsamples (int): the number of Monte Carlo samples
|
| 115 |
+
verbose (bool): report the computed probabilities
|
| 116 |
+
names (pair of str): the names of the two classifiers
|
| 117 |
+
|
| 118 |
+
Returns:
|
| 119 |
+
p_left, p_rope, p_right
|
| 120 |
+
"""
|
| 121 |
+
samples = signtest_MC(x, rope, prior_strength, prior_place, nsamples)
|
| 122 |
+
|
| 123 |
+
winners = np.argmax(samples, axis=1)
|
| 124 |
+
pl, pe, pr = np.bincount(winners, minlength=3) / len(winners)
|
| 125 |
+
if verbose:
|
| 126 |
+
print('P({c1} > {c2}) = {pl}, P(rope) = {pe}, P({c2} > {c1}) = {pr}'.
|
| 127 |
+
format(c1=names[0], c2=names[1], pl=pl, pe=pe, pr=pr))
|
| 128 |
+
return pl, pe, pr
|
| 129 |
+
|
| 130 |
+
## SIGNEDRANK
|
| 131 |
+
def heaviside(X):
|
| 132 |
+
Y = np.zeros(X.shape);
|
| 133 |
+
Y[np.where(X > 0)] = 1;
|
| 134 |
+
Y[np.where(X == 0)] = 0.5;
|
| 135 |
+
return Y #1 * (x > 0)
|
| 136 |
+
|
| 137 |
+
def signrank_MC(x, rope, prior_strength=0.6, prior_place=ROPE, nsamples=50000):
|
| 138 |
+
"""
|
| 139 |
+
Args:
|
| 140 |
+
x (array): a vector of differences or a 2d array with pairs of scores.
|
| 141 |
+
rope (float): the width of the rope
|
| 142 |
+
prior_strength (float): prior strength (default: 0.6)
|
| 143 |
+
prior_place (LEFT, ROPE or RIGHT): the region to which the prior is
|
| 144 |
+
assigned (default: ROPE)
|
| 145 |
+
nsamples (int): the number of Monte Carlo samples
|
| 146 |
+
|
| 147 |
+
Returns:
|
| 148 |
+
2-d array with rows corresponding to samples and columns to
|
| 149 |
+
probabilities `[p_left, p_rope, p_right]`
|
| 150 |
+
"""
|
| 151 |
+
if x.ndim == 2:
|
| 152 |
+
zm = x[:, 1] - x[:, 0]
|
| 153 |
+
else:
|
| 154 |
+
zm = x
|
| 155 |
+
nm=len(zm)
|
| 156 |
+
if prior_place==ROPE:
|
| 157 |
+
z0=[0]
|
| 158 |
+
if prior_place==LEFT:
|
| 159 |
+
z0=[-float('inf')]
|
| 160 |
+
if prior_place==RIGHT:
|
| 161 |
+
z0=[float('inf')]
|
| 162 |
+
z=np.concatenate((zm,z0))
|
| 163 |
+
n=len(z)
|
| 164 |
+
z=np.transpose(np.asmatrix(z))
|
| 165 |
+
X=np.matlib.repmat(z,1,n)
|
| 166 |
+
Y=np.matlib.repmat(-np.transpose(z)+2*rope,n,1)
|
| 167 |
+
Aright = heaviside(X-Y)
|
| 168 |
+
X=np.matlib.repmat(-z,1,n)
|
| 169 |
+
Y=np.matlib.repmat(np.transpose(z)+2*rope,n,1)
|
| 170 |
+
Aleft = heaviside(X-Y)
|
| 171 |
+
alpha=np.concatenate((np.ones(nm),[prior_strength]),axis=0)
|
| 172 |
+
samples=np.zeros((nsamples,3), dtype=float)
|
| 173 |
+
for i in range(0,nsamples):
|
| 174 |
+
data = np.random.dirichlet(alpha, 1)
|
| 175 |
+
samples[i,2]=numpy.inner(np.dot(data,Aright),data)
|
| 176 |
+
samples[i,0]=numpy.inner(np.dot(data,Aleft),data)
|
| 177 |
+
samples[i,1]=1-samples[i,0]-samples[i,2]
|
| 178 |
+
|
| 179 |
+
return samples
|
| 180 |
+
|
| 181 |
+
def signrank(x, rope, prior_strength=0.6, prior_place=ROPE, nsamples=50000,
|
| 182 |
+
verbose=False, names=('C1', 'C2')):
|
| 183 |
+
"""
|
| 184 |
+
Args:
|
| 185 |
+
x (array): a vector of differences or a 2d array with pairs of scores.
|
| 186 |
+
rope (float): the width of the rope
|
| 187 |
+
prior_strength (float): prior strength (default: 0.6)
|
| 188 |
+
prior_place (LEFT, ROPE or RIGHT): the region to which the prior is
|
| 189 |
+
assigned (default: ROPE)
|
| 190 |
+
nsamples (int): the number of Monte Carlo samples
|
| 191 |
+
verbose (bool): report the computed probabilities
|
| 192 |
+
names (pair of str): the names of the two classifiers
|
| 193 |
+
|
| 194 |
+
Returns:
|
| 195 |
+
p_left, p_rope, p_right
|
| 196 |
+
"""
|
| 197 |
+
samples = signrank_MC(x, rope, prior_strength, prior_place, nsamples)
|
| 198 |
+
|
| 199 |
+
winners = np.argmax(samples, axis=1)
|
| 200 |
+
pl, pe, pr = np.bincount(winners, minlength=3) / len(winners)
|
| 201 |
+
if verbose:
|
| 202 |
+
print('P({c1} > {c2}) = {pl}, P(rope) = {pe}, P({c2} > {c1}) = {pr}'.
|
| 203 |
+
format(c1=names[0], c2=names[1], pl=pl, pe=pe, pr=pr))
|
| 204 |
+
return pl, pe, pr
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
def hierarchical(diff, rope, rho, upperAlpha=2, lowerAlpha =1, lowerBeta = 0.01, upperBeta = 0.1,std_upper_bound=1000, verbose=False, names=('C1', 'C2') ):
|
| 208 |
+
# upperAlpha, lowerAlpha, upperBeta, lowerBeta, are the upper and lower bound for alpha and beta, which are the parameters of
|
| 209 |
+
#the Gamma distribution used as a prior for the degress of freedom.
|
| 210 |
+
#std_upper_bound is a constant which multiplies the sample standard deviation, to set the upper limit of the prior on the
|
| 211 |
+
#standard deviation. Posterior inferences are insensitive to this value as this is large enough, such as 100 or 1000.
|
| 212 |
+
|
| 213 |
+
samples=hierarchical_MC(diff, rope, rho, upperAlpha, lowerAlpha, lowerBeta, upperBeta, std_upper_bound,names )
|
| 214 |
+
winners = np.argmax(samples, axis=1)
|
| 215 |
+
pl, pe, pr = np.bincount(winners, minlength=3) / len(winners)
|
| 216 |
+
if verbose:
|
| 217 |
+
print('P({c1} > {c2}) = {pl}, P(rope) = {pe}, P({c2} > {c1}) = {pr}'.
|
| 218 |
+
format(c1=names[0], c2=names[1], pl=pl, pe=pe, pr=pr))
|
| 219 |
+
return pl, pe, pr
|
| 220 |
+
|
| 221 |
+
def hierarchical_MC(diff, rope, rho, upperAlpha=2, lowerAlpha =1, lowerBeta = 0.01, upperBeta = 0.1, std_upper_bound=1000, names=('C1', 'C2') ):
|
| 222 |
+
# upperAlpha, lowerAlpha, upperBeta, lowerBeta, are the upper and lower bound for alpha and beta, which are the parameters of
|
| 223 |
+
#the Gamma distribution used as a prior for the degress of freedom.
|
| 224 |
+
#std_upper_bound is a constant which multiplies the sample standard deviation, to set the upper limit of the prior on the
|
| 225 |
+
#standard deviation. Posterior inferences are insensitive to this value as this is large enough, such as 100 or 1000.
|
| 226 |
+
|
| 227 |
+
import scipy.stats as stats
|
| 228 |
+
import pystan
|
| 229 |
+
#data rescaling, to have homogenous scale among all dsets
|
| 230 |
+
stdX = np.mean(np.std(diff,1)) #we scale all the data by the mean of the standard deviation of data sets
|
| 231 |
+
x = diff/stdX
|
| 232 |
+
rope=rope/stdX
|
| 233 |
+
|
| 234 |
+
#to avoid numerical problems with zero variance
|
| 235 |
+
for i in range(0,len(x)):
|
| 236 |
+
if np.std(x[i,:])==0:
|
| 237 |
+
x[i,:]=x[i,:]+np.random.normal(0,np.min(1/1000000000,np.abs(np.mean(x[i,:])/100000000)))
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
#This is the Hierarchical model written in Stan
|
| 241 |
+
hierarchical_code = """
|
| 242 |
+
/*Hierarchical Bayesian model for the analysis of competing cross-validated classifiers on multiple data sets.
|
| 243 |
+
*/
|
| 244 |
+
|
| 245 |
+
data {
|
| 246 |
+
|
| 247 |
+
real deltaLow;
|
| 248 |
+
real deltaHi;
|
| 249 |
+
|
| 250 |
+
//bounds of the sigma of the higher-level distribution
|
| 251 |
+
real std0Low;
|
| 252 |
+
real std0Hi;
|
| 253 |
+
|
| 254 |
+
//bounds on the domain of the sigma of each data set
|
| 255 |
+
real stdLow;
|
| 256 |
+
real stdHi;
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
//number of results for each data set. Typically 100 (10 runs of 10-folds cv)
|
| 260 |
+
int<lower=2> Nsamples;
|
| 261 |
+
|
| 262 |
+
//number of data sets.
|
| 263 |
+
int<lower=1> q;
|
| 264 |
+
|
| 265 |
+
//difference of accuracy between the two classifier, on each fold of each data set.
|
| 266 |
+
matrix[q,Nsamples] x;
|
| 267 |
+
|
| 268 |
+
//correlation (1/(number of folds))
|
| 269 |
+
real rho;
|
| 270 |
+
|
| 271 |
+
real upperAlpha;
|
| 272 |
+
real lowerAlpha;
|
| 273 |
+
real upperBeta;
|
| 274 |
+
real lowerBeta;
|
| 275 |
+
|
| 276 |
+
}
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
transformed data {
|
| 280 |
+
|
| 281 |
+
//vector of 1s appearing in the likelihood
|
| 282 |
+
vector[Nsamples] H;
|
| 283 |
+
|
| 284 |
+
//vector of 0s: the mean of the mvn noise
|
| 285 |
+
vector[Nsamples] zeroMeanVec;
|
| 286 |
+
|
| 287 |
+
/* M is the correlation matrix of the mvn noise.
|
| 288 |
+
invM is its inverse, detM its determinant */
|
| 289 |
+
matrix[Nsamples,Nsamples] invM;
|
| 290 |
+
real detM;
|
| 291 |
+
|
| 292 |
+
//The determinant of M is analytically known
|
| 293 |
+
detM <- (1+(Nsamples-1)*rho)*(1-rho)^(Nsamples-1);
|
| 294 |
+
|
| 295 |
+
//build H and invM. They do not depend on the data.
|
| 296 |
+
for (j in 1:Nsamples){
|
| 297 |
+
zeroMeanVec[j]<-0;
|
| 298 |
+
H[j]<-1;
|
| 299 |
+
for (i in 1:Nsamples){
|
| 300 |
+
if (j==i)
|
| 301 |
+
invM[j,i]<- (1 + (Nsamples-2)*rho)*pow((1-rho),Nsamples-2);
|
| 302 |
+
else
|
| 303 |
+
invM[j,i]<- -rho * pow((1-rho),Nsamples-2);
|
| 304 |
+
}
|
| 305 |
+
}
|
| 306 |
+
/*at this point invM contains the adjugate of M.
|
| 307 |
+
we divide it by det(M) to obtain the inverse of M.*/
|
| 308 |
+
invM <-invM/detM;
|
| 309 |
+
}
|
| 310 |
+
|
| 311 |
+
parameters {
|
| 312 |
+
//mean of the hyperprior from which we sample the delta_i
|
| 313 |
+
real<lower=deltaLow,upper=deltaHi> delta0;
|
| 314 |
+
|
| 315 |
+
//std of the hyperprior from which we sample the delta_i
|
| 316 |
+
real<lower=std0Low,upper=std0Hi> std0;
|
| 317 |
+
|
| 318 |
+
//delta_i of each data set: vector of lenght q.
|
| 319 |
+
vector[q] delta;
|
| 320 |
+
|
| 321 |
+
//sigma of each data set: : vector of lenght q.
|
| 322 |
+
vector<lower=stdLow,upper=stdHi>[q] sigma;
|
| 323 |
+
|
| 324 |
+
/* the domain of (nu - 1) starts from 0
|
| 325 |
+
and can be given a gamma prior*/
|
| 326 |
+
real<lower=0> nuMinusOne;
|
| 327 |
+
|
| 328 |
+
//parameters of the Gamma prior on nuMinusOne
|
| 329 |
+
real<lower=lowerAlpha,upper=upperAlpha> gammaAlpha;
|
| 330 |
+
real<lower=lowerBeta, upper=upperBeta> gammaBeta;
|
| 331 |
+
|
| 332 |
+
}
|
| 333 |
+
|
| 334 |
+
transformed parameters {
|
| 335 |
+
//degrees of freedom
|
| 336 |
+
real<lower=1> nu ;
|
| 337 |
+
|
| 338 |
+
/*difference between the data (x matrix) and
|
| 339 |
+
the vector of the q means.*/
|
| 340 |
+
matrix[q,Nsamples] diff;
|
| 341 |
+
|
| 342 |
+
vector[q] diagQuad;
|
| 343 |
+
|
| 344 |
+
/*vector of length q:
|
| 345 |
+
1 over the variance of each data set*/
|
| 346 |
+
vector[q] oneOverSigma2;
|
| 347 |
+
|
| 348 |
+
vector[q] logDetSigma;
|
| 349 |
+
|
| 350 |
+
vector[q] logLik;
|
| 351 |
+
|
| 352 |
+
//degrees of freedom
|
| 353 |
+
nu <- nuMinusOne + 1 ;
|
| 354 |
+
|
| 355 |
+
//1 over the variance of each data set
|
| 356 |
+
oneOverSigma2 <- rep_vector(1, q) ./ sigma;
|
| 357 |
+
oneOverSigma2 <- oneOverSigma2 ./ sigma;
|
| 358 |
+
|
| 359 |
+
/*the data (x) minus a matrix done as follows:
|
| 360 |
+
the delta vector (of lenght q) pasted side by side Nsamples times*/
|
| 361 |
+
diff <- x - rep_matrix(delta,Nsamples);
|
| 362 |
+
|
| 363 |
+
//efficient matrix computation of the likelihood.
|
| 364 |
+
diagQuad <- diagonal (quad_form (invM,diff'));
|
| 365 |
+
logDetSigma <- 2*Nsamples*log(sigma) + log(detM) ;
|
| 366 |
+
logLik <- -0.5 * logDetSigma - 0.5*Nsamples*log(6.283);
|
| 367 |
+
logLik <- logLik - 0.5 * oneOverSigma2 .* diagQuad;
|
| 368 |
+
|
| 369 |
+
}
|
| 370 |
+
|
| 371 |
+
model {
|
| 372 |
+
/*mu0 and std0 are not explicitly sampled here.
|
| 373 |
+
Stan automatically samples them: mu0 as uniform and std0 as
|
| 374 |
+
uniform over its domain (std0Low,std0Hi).*/
|
| 375 |
+
|
| 376 |
+
//sampling the degrees of freedom
|
| 377 |
+
nuMinusOne ~ gamma ( gammaAlpha, gammaBeta);
|
| 378 |
+
|
| 379 |
+
//vectorial sampling of the delta_i of each data set
|
| 380 |
+
delta ~ student_t(nu, delta0, std0);
|
| 381 |
+
|
| 382 |
+
//logLik is computed in the previous block
|
| 383 |
+
increment_log_prob(sum(logLik));
|
| 384 |
+
}
|
| 385 |
+
"""
|
| 386 |
+
datatable=x
|
| 387 |
+
std_within=np.mean(np.std(datatable,1))
|
| 388 |
+
|
| 389 |
+
Nsamples = len(datatable[0])
|
| 390 |
+
q= len(datatable)
|
| 391 |
+
if q>1:
|
| 392 |
+
std_among=np.std(np.mean(datatable,1))
|
| 393 |
+
else:
|
| 394 |
+
std_among=np.mean(np.std(datatable,1))
|
| 395 |
+
|
| 396 |
+
#Hierarchical data in Stan
|
| 397 |
+
hierachical_dat = {'x': datatable,
|
| 398 |
+
'deltaLow' : -np.max(np.abs(datatable)),
|
| 399 |
+
'deltaHi' : np.max(np.abs(datatable)),
|
| 400 |
+
'stdLow' : 0,
|
| 401 |
+
'stdHi' : std_within*std_upper_bound,
|
| 402 |
+
'std0Low' : 0,
|
| 403 |
+
'std0Hi' : std_among*std_upper_bound,
|
| 404 |
+
'Nsamples' : Nsamples,
|
| 405 |
+
'q' : q,
|
| 406 |
+
'rho' : rho,
|
| 407 |
+
'upperAlpha' : upperAlpha,
|
| 408 |
+
'lowerAlpha' : lowerAlpha,
|
| 409 |
+
'upperBeta' : upperBeta,
|
| 410 |
+
'lowerBeta' : lowerBeta}
|
| 411 |
+
|
| 412 |
+
#Call to Stan code
|
| 413 |
+
fit = pystan.stan(model_code=hierarchical_code, data=hierachical_dat,
|
| 414 |
+
iter=1000, chains=4)
|
| 415 |
+
|
| 416 |
+
la = fit.extract(permuted=True) # return a dictionary of arrays
|
| 417 |
+
mu = la['delta0']
|
| 418 |
+
stdh = la['std0']
|
| 419 |
+
nu = la['nu']
|
| 420 |
+
|
| 421 |
+
samples=np.zeros((len(mu),3), dtype=float)
|
| 422 |
+
for i in range(0,len(mu)):
|
| 423 |
+
samples[i,2]=1-stats.t.cdf(rope, nu[i], mu[i], stdh[i])
|
| 424 |
+
samples[i,0]=stats.t.cdf(-rope, nu[i], mu[i], stdh[i])
|
| 425 |
+
samples[i,1]=1-samples[i,0]-samples[i,2]
|
| 426 |
+
|
| 427 |
+
return samples
|
| 428 |
+
|
| 429 |
+
def plot_posterior(samples, names=('C1', 'C2')):
|
| 430 |
+
"""
|
| 431 |
+
Args:
|
| 432 |
+
x (array): a vector of differences or a 2d array with pairs of scores.
|
| 433 |
+
names (pair of str): the names of the two classifiers
|
| 434 |
+
|
| 435 |
+
Returns:
|
| 436 |
+
matplotlib.pyplot.figure
|
| 437 |
+
"""
|
| 438 |
+
return plot_simplex(samples, names)
|
| 439 |
+
|
| 440 |
+
|
| 441 |
+
def plot_simplex(points, names=('C1', 'C2')):
|
| 442 |
+
import matplotlib.pyplot as plt
|
| 443 |
+
from matplotlib.lines import Line2D
|
| 444 |
+
from matplotlib.pylab import rcParams
|
| 445 |
+
|
| 446 |
+
def _project(points):
|
| 447 |
+
from math import sqrt, sin, cos, pi
|
| 448 |
+
p1, p2, p3 = points.T / sqrt(3)
|
| 449 |
+
x = (p2 - p1) * cos(pi / 6) + 0.5
|
| 450 |
+
y = p3 - (p1 + p2) * sin(pi / 6) + 1 / (2 * sqrt(3))
|
| 451 |
+
return np.vstack((x, y)).T
|
| 452 |
+
|
| 453 |
+
vert0 = _project(np.array(
|
| 454 |
+
[[0.3333, 0.3333, 0.3333], [0.5, 0.5, 0], [0.5, 0, 0.5], [0, 0.5, 0.5]]))
|
| 455 |
+
|
| 456 |
+
fig = plt.figure()
|
| 457 |
+
fig.set_size_inches(8, 7)
|
| 458 |
+
|
| 459 |
+
nl, ne, nr = np.max(points, axis=0)
|
| 460 |
+
for i, n in enumerate((nl, ne, nr)):
|
| 461 |
+
if n < 0.001:
|
| 462 |
+
print("p{} is too small, switching to 2d plot".format(names[::-1] + ["rope"]))
|
| 463 |
+
coords = sorted(set(range(3)) - i)
|
| 464 |
+
return plot2d(points[:, coords], labels[coords])
|
| 465 |
+
|
| 466 |
+
# triangle
|
| 467 |
+
fig.gca().add_line(
|
| 468 |
+
Line2D([0, 0.5, 1.0, 0],
|
| 469 |
+
[0, np.sqrt(3) / 2, 0, 0], color='orange'))
|
| 470 |
+
# decision lines
|
| 471 |
+
for i in (1, 2, 3):
|
| 472 |
+
fig.gca().add_line(
|
| 473 |
+
Line2D([vert0[0, 0], vert0[i, 0]],
|
| 474 |
+
[vert0[0, 1], vert0[i, 1]], color='orange'))
|
| 475 |
+
# vertex labels
|
| 476 |
+
rcParams.update({'font.size': 16})
|
| 477 |
+
fig.gca().text(-0.08, -0.08, 'p({})'.format(names[0]), color='orange')
|
| 478 |
+
fig.gca().text(0.44, np.sqrt(3) / 2 + 0.05, 'p(rope)', color='orange')
|
| 479 |
+
fig.gca().text(1.00, -0.08, 'p({})'.format(names[1]), color='orange')
|
| 480 |
+
|
| 481 |
+
# project and draw points
|
| 482 |
+
tripts = _project(points[:, [0, 2, 1]])
|
| 483 |
+
plt.hexbin(tripts[:, 0], tripts[:, 1], mincnt=1, cmap=plt.cm.Blues_r)
|
| 484 |
+
# Leave some padding around the triangle for vertex labels
|
| 485 |
+
fig.gca().set_xlim(-0.2, 1.2)
|
| 486 |
+
fig.gca().set_ylim(-0.2, 1.2)
|
| 487 |
+
fig.gca().axis('off')
|
| 488 |
+
return fig
|