File size: 100,531 Bytes
3669989
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
[
  {
    "id": 1,
    "name": "B001",
    "Cpp": "#include <iostream>\nusing namespace std;\n \nint main() {\n\t// 入力\n\tint A, B;\n\tcin >> A >> B;\n\t\n\t// 出力\n\tcout << A + B << endl;\n\treturn 0;\n}\n",
    "Python": "A, B = map(int, input().split()) # 入力\nprint(A + B) # 出力\n"
  },
  {
    "id": 2,
    "name": "B002",
    "Cpp": "#include <iostream>\nusing namespace std;\n \nint main() {\n\t// 入力\n\tint A, B;\n\tcin >> A >> B;\n\t\n\t// 答えを求める\n\tbool Answer = false;\n\tfor (int i = A; i <= B; i++) {\n\t\tif (100 % i == 0) Answer = true;\n\t}\n\t\n\t// 出力\n\tif (Answer == true) cout << \"Yes\" << endl;\n\telse cout << \"No\" << endl;\n\treturn 0;\n}\n",
    "Python": "# 入力\nA, B = map(int, input().split())\n\n# 答えを求める\nAnswer = False\nfor i in range(A, B + 1):\n\tif 100 % i == 0:\n\t\tAnswer = True\n\n# 出力\nif Answer == True:\n\tprint(\"Yes\")\nelse:\n\tprint(\"No\")\n"
  },
  {
    "id": 3,
    "name": "B003",
    "Cpp": "#include <iostream>\nusing namespace std;\n \nint main() {\n\t// 入力\n\tint N, A[109];\n\tcin >> N;\n\tfor (int i = 1; i <= N; i++) cin >> A[i];\n\t\n\t// 答えを求める\n\tbool Answer = false;\n\tfor (int i = 1; i <= N; i++) {\n\t\tfor (int j = i + 1; j <= N; j++) {\n\t\t\tfor (int k = j + 1; k <= N; k++) {\n\t\t\t\tif (A[i] + A[j] + A[k] == 1000) Answer = true;\n\t\t\t}\n\t\t}\n\t}\n\t\n\t// 出力\n\tif (Answer == true) cout << \"Yes\" << endl;\n\telse cout << \"No\" << endl;\n\treturn 0;\n}\n",
    "Python": "# 入力\nN = int(input())\nA = list(map(int, input().split()))\n\n# 答えを求める\nAnswer = False\nfor i in range(N):\n\tfor j in range(i+1, N):\n\t\tfor k in range(j+1, N):\n\t\t\tif A[i] + A[j] + A[k] == 1000:\n\t\t\t\tAnswer = True\n\n# 出力\nif Answer == True:\n\tprint(\"Yes\")\nelse:\n\tprint(\"No\")\n"
  },
  {
    "id": 4,
    "name": "B004",
    "Cpp": "#include <iostream>\n#include <string>\nusing namespace std;\n \nint main() {\n\t// 入力\n\tstring N;\n\tcin >> N;\n\t\n\t// 答えを求める\n\tint Answer = 0;\n\tfor (int i = 0; i < N.size(); i++) {\n\t\tint keta;\n\t\tint kurai = (1 << (N.size() - 1 - i));\n\t\tif (N[i] == '0') keta = 0;\n\t\tif (N[i] == '1') keta = 1;\n\t\tAnswer += keta * kurai;\n\t}\n\t\n\t// 出力\n\tcout << Answer << endl;\n\treturn 0;\n}\n",
    "Python": "# 入力\nN = input()\n\n# 答えを求める\nAnswer = 0\nfor i in range(len(N)):\n\tketa = 0\n\tkurai = (2 ** (len(N) - 1 - i))\n\tif N[i] == '1':\n\t\tketa = 1\n\tAnswer += keta * kurai\n\n# 出力\nprint(Answer)\n"
  },
  {
    "id": 5,
    "name": "B006",
    "Cpp": "#include <iostream>\nusing namespace std;\n \nint N, A[100009];\nint Q, L[100009], R[100009];\nint Atari[100009], Hazre[100009];\n \nint main() {\n\t// 入力\n\tcin >> N;\n\tfor (int i = 1; i <= N; i++) cin >> A[i];\n\tcin >> Q;\n\tfor (int i = 1; i <= Q; i++) cin >> L[i] >> R[i];\n \n\t// アタリの個数・ハズレの個数の累積和を求める\n\tAtari[0] = 0;\n\tHazre[0] = 0;\n\tfor (int i = 1; i <= N; i++) {\n\t\tAtari[i] = Atari[i - 1]; if (A[i] == 1) Atari[i] += 1;\n\t\tHazre[i] = Hazre[i - 1]; if (A[i] == 0) Hazre[i] += 1;\n\t}\n \n\t// 質問に答える\n\tfor (int i = 1; i <= Q; i++) {\n\t\tint NumAtari = Atari[R[i]] - Atari[L[i] - 1];\n\t\tint NumHazre = Hazre[R[i]] - Hazre[L[i] - 1];\n\t\tif (NumAtari > NumHazre) cout << \"win\" << endl;\n\t\telse if (NumAtari == NumHazre) cout << \"draw\" << endl;\n\t\telse cout << \"lose\" << endl;\n\t}\n\treturn 0;\n}\n",
    "Python": "# 入力\nN = int(input())\nA = list(map(int, input().split()))\nQ = int(input())\nL = [ None ] * Q\nR = [ None ] * Q\nfor i in range(Q):\n\tL[i], R[i] = map(int, input().split())\n\n# アタリの個数・ハズレの個数の累積和を求める\n# 配列 A が 0 番目から始まっていることに注意!\nAtari = [ 0 ] * (N + 1)\nHazre = [ 0 ] * (N + 1)\nfor i in range(1, N+1):\n\t# アタリについて計算\n\tAtari[i] = Atari[i - 1]\n\tif A[i - 1] == 1:\n\t\tAtari[i] += 1\n\t# ハズレについて計算\n\tHazre[i] = Hazre[i - 1]\n\tif A[i - 1] == 0:\n\t\tHazre[i] += 1\n\n# 質問に答える\nfor i in range(Q):\n\tNumAtari = Atari[R[i]] - Atari[L[i] - 1]\n\tNumHazre = Hazre[R[i]] - Hazre[L[i] - 1]\n\tif NumAtari > NumHazre:\n\t\tprint(\"win\")\n\telif NumAtari == NumHazre:\n\t\tprint(\"draw\")\n\telse:\n\t\tprint(\"lose\")\n"
  },
  {
    "id": 6,
    "name": "B007",
    "Cpp": "#include <iostream>\nusing namespace std;\n\nint N, T;\nint L[500009], R[500009];\nint Answer[500009], B[500009];\n\nint main() {\n\t// 入力\n\tcin >> T >> N;\n\tfor (int i = 1; i <= N; i++) cin >> L[i] >> R[i];\n\n\t// 前日比に加算\n\tfor (int i = 0; i <= T; i++) B[i] = 0;\n\tfor (int i = 1; i <= N; i++) {\n\t\tB[L[i]] += 1;\n\t\tB[R[i]] -= 1;\n\t}\n\n\t// 累積和をとる\n\tAnswer[0] = B[0];\n\tfor (int d = 1; d <= T; d++) Answer[d] = Answer[d - 1] + B[d];\n\n\t// 出力\n\tfor (int d = 0; d < T; d++) cout << Answer[d] << endl;\n\treturn 0;\n}\n",
    "Python": "# 入力\nT = int(input())\nN = int(input())\nL = [ None ] * N\nR = [ None ] * N\nfor i in range(N):\n\tL[i], R[i] = map(int, input().split())\n\n# \"前の時刻との差\" に加算\nB = [ 0 ] * (T + 1)\nfor i in range(N):\n\tB[L[i]] += 1\n\tB[R[i]] -= 1\n\n# 累積和をとる\nAnswer = [ None ] * (T + 1)\nAnswer[0] = B[0]\nfor d in range(1, T+1):\n\tAnswer[d] = Answer[d-1] + B[d]\n\n# 出力\nfor d in range(T):\n\tprint(Answer[d])\n"
  },
  {
    "id": 7,
    "name": "B008",
    "Cpp": "#include <iostream>\nusing namespace std;\n \n// 入力で与えられる変数\nint N, X[100009], Y[100009];\nint Q, A[100009], B[100009], C[100009], D[100009];\n \n// 各座標にある点の数 S[i][j]、二次元累積和 T[i][j]\nint S[1509][1509];\nint T[1509][1509];\n \nint main() {\n\t// 入力\n\tcin >> N;\n\tfor (int i = 1; i <= N; i++) cin >> X[i] >> Y[i];\n\tcin >> Q;\n\tfor (int i = 1; i <= Q; i++) cin >> A[i] >> B[i] >> C[i] >> D[i];\n \n\t// 各座標にある点の数を数える\n\tfor (int i = 1; i <= N; i++) S[X[i]][Y[i]] += 1;\n \n\t// 累積和をとる\n\tfor (int i = 0; i <= 1500; i++) {\n\t\tfor (int j = 0; j <= 1500; j++) T[i][j] = 0;\n\t}\n\tfor (int i = 1; i <= 1500; i++) {\n\t\tfor (int j = 1; j <= 1500; j++) T[i][j] = T[i][j - 1] + S[i][j];\n\t}\n\tfor (int i = 1; i <= 1500; i++) {\n\t\tfor (int j = 1; j <= 1500; j++) T[i][j] = T[i - 1][j] + T[i][j];\n\t}\n \n\t// 答えを求める\n\tfor (int i = 1; i <= Q; i++) {\n\t\tcout << T[C[i]][D[i]] + T[A[i] - 1][B[i] - 1] - T[A[i] - 1][D[i]] - T[C[i]][B[i] - 1] << endl;\n\t}\n\treturn 0;\n}\n",
    "Python": "# 入力(前半)\nN = int(input())\nX = [ None ] * N\nY = [ None ] * N\nfor i in range(N):\n\tX[i], Y[i] = map(int, input().split())\n\n# 入力(後半)\nQ = int(input())\nA = [ None ] * Q\nB = [ None ] * Q\nC = [ None ] * Q\nD = [ None ] * Q\nfor i in range(Q):\n\tA[i], B[i], C[i], D[i] = map(int, input().split())\n\n# 各座標にある点の数を数える\nS = [ [ 0 ] * 1501 for i in range(1501) ]\nfor i in range(N):\n\tS[X[i]][Y[i]] += 1\n\n# 累積和をとる\nT = [ [ 0 ] * 1501 for i in range(1501) ]\nfor i in range(1, 1501):\n\tfor j in range(1, 1501):\n\t\tT[i][j] = T[i][j-1] + S[i][j]\nfor j in range(1, 1501):\n\tfor i in range(1, 1501):\n\t\tT[i][j] = T[i-1][j] + T[i][j]\n\n# 答えを求める\nfor i in range(Q):\n\tprint(T[C[i]][D[i]] + T[A[i] - 1][B[i] - 1] - T[A[i] - 1][D[i]] - T[C[i]][B[i] - 1])\n"
  },
  {
    "id": 8,
    "name": "B009",
    "Cpp": "#include <iostream>\nusing namespace std;\n \n// 入力で与えられる変数\nint N;\nint A[100009], B[100009], C[100009], D[100009];\n \n// 座標 (i+0.5, j+0.5) に置かれている紙の数 T[i][j]\nint T[1509][1509];\n \nint main() {\n\t// 入力\n\tcin >> N;\n\tfor (int i = 1; i <= N; i++) cin >> A[i] >> B[i] >> C[i] >> D[i];\n \n\t// 各紙について +1/-1 を加算\n\tfor (int i = 0; i <= 1500; i++) {\n\t\tfor (int j = 0; j <= 1500; j++) T[i][j] = 0;\n\t}\n\tfor (int i = 1; i <= N; i++) {\n\t\tT[A[i]][B[i]] += 1;\n\t\tT[A[i]][D[i]] -= 1;\n\t\tT[C[i]][B[i]] -= 1;\n\t\tT[C[i]][D[i]] += 1;\n\t}\n \n\t// 二次元累積和をとる\n\tfor (int i = 0; i <= 1500; i++) {\n\t\tfor (int j = 1; j <= 1500; j++) T[i][j] = T[i][j - 1] + T[i][j];\n\t}\n\tfor (int i = 1; i <= 1500; i++) {\n\t\tfor (int j = 0; j <= 1500; j++) T[i][j] = T[i - 1][j] + T[i][j];\n\t}\n \n\t// 面積を数える\n\tint Answer = 0;\n\tfor (int i = 0; i <= 1500; i++) {\n\t\tfor (int j = 0; j <= 1500; j++) {\n\t\t\tif (T[i][j] >= 1) Answer += 1;\n\t\t}\n\t}\n\tcout << Answer << endl;\n\treturn 0;\n}\n",
    "Python": "# 入力\nN = int(input())\nA = [ None ] * N\nB = [ None ] * N\nC = [ None ] * N\nD = [ None ] * N\nfor i in range(N):\n\tA[i], B[i], C[i], D[i] = map(int, input().split())\n\n# 各紙について +1/-1 を加算\nT = [ [ 0 ] * 1501 for i in range(1501) ]\nfor i in range(N):\n\tT[A[i]][B[i]] += 1\n\tT[A[i]][D[i]] -= 1\n\tT[C[i]][B[i]] -= 1\n\tT[C[i]][D[i]] += 1\n\n# 累積和をとる\nfor i in range(0, 1501):\n\tfor j in range(1, 1501):\n\t\tT[i][j] = T[i][j-1] + T[i][j]\nfor i in range(1, 1501):\n\tfor j in range(0, 1501):\n\t\tT[i][j] = T[i-1][j] + T[i][j]\n\n# 面積を数える\nAnswer = 0\nfor i in range(1501):\n\tfor j in range(1501):\n\t\tif T[i][j] >= 1:\n\t\t\tAnswer += 1\n\n# 出力\nprint(Answer)\n"
  },
  {
    "id": 9,
    "name": "B011",
    "Cpp": "#include <iostream>\n#include <algorithm>\nusing namespace std;\n \nint N, A[100009];\nint Q, X[100009];\n \nint main() {\n\t// 入力\n\tcin >> N;\n\tfor (int i = 1; i <= N; i++) cin >> A[i];\n\tcin >> Q;\n\tfor (int i = 1; i <= Q; i++) cin >> X[i];\n \n\t// 配列 X をソート\n\tsort(A + 1, A + N + 1);\n \n\t// 質問に答える\n\tfor (int i = 1; i <= Q; i++) {\n\t\tint pos1 = lower_bound(A + 1, A + N + 1, X[i]) - A;\n\t\tcout << pos1 - 1 << endl;\n\t}\n\treturn 0;\n}\n",
    "Python": "import bisect\n\n# 入力\nN = int(input())\nA = list(map(int, input().split()))\nQ = int(input())\nX = [ None ] * Q\nfor i in range(Q):\n\tX[i] = int(input())\n\n# 配列 X をソート\nA.sort()\n\n# 質問に答える(配列 A は 0 番目から始まっていることに注意!)\nfor i in range(Q):\n\tpos1 = bisect.bisect_left(A, X[i])\n\tprint(pos1)\n"
  },
  {
    "id": 10,
    "name": "B012",
    "Cpp": "#include <iostream>\nusing namespace std;\n \n// 関数 f\ndouble f(double x) {\n\treturn x * x * x + x;\n}\n \nint main() {\n\t// 入力\n\tint N;\n\tcin >> N;\n \n\t// 二分探索\n\tdouble Left = 0, Right = 100, Mid;\n\tfor (int i = 0; i < 20; i++) {\n\t\tMid = (Left + Right) / 2.0;\n\t\tdouble val = f(Mid);\n \n\t\t// 探索範囲を絞る\n\t\tif (val > 1.0 * N) Right = Mid; // 左半分に絞られる\n\t\telse Left = Mid; // 右半分に絞られる\n\t}\n \n\t// 出力\n\tprintf(\"%.12lf\\n\", Mid);\n\treturn 0;\n}\n",
    "Python": "def f(x):\n\treturn x*x*x + x\n\nN = int(input())\n\n# 二分探索\nLeft = 0.0\nRight = 100.0\nfor i in range(20):\n\tMid = (Left + Right) / 2\n\tval = f(Mid)\n\n\t# 探索範囲を絞る\n\tif val > N:\n\t\tRight = Mid # 左半分に絞られる\n\telse:\n\t\tLeft = Mid # 右半分に絞られる\n\n# 出力\nprint(Mid)\n"
  },
  {
    "id": 11,
    "name": "B013",
    "Cpp": "#include <iostream>\nusing namespace std;\n \nlong long N, K;\nlong long A[100009];\nlong long S[100009]; // 累積和\nlong long R[100009]; // 左端が決まったとき、右端はどこまで行けるか\n \n// A[l] から A[r] までの合計値\nlong long sum(int l, int r) {\n\treturn S[r] - S[l - 1];\n}\n \nint main() {\n\t// 入力\n\tcin >> N >> K;\n\tfor (int i = 1; i <= N; i++) cin >> A[i];\n \n\t// 累積和をとる\n\tS[0] = 0;\n\tfor (int i = 1; i <= N; i++) S[i] = S[i - 1] + A[i];\n \n\t// しゃくとり法\n\tfor (int i = 1; i <= N; i++) {\n\t\tif (i == 1) R[i] = 0;\n\t\telse R[i] = R[i - 1];\n\t\twhile (R[i] < N && sum(i, R[i] + 1) <= K) {\n\t\t\tR[i] += 1;\n\t\t}\n\t}\n\t\n\t// 答えを求める\n\tlong long Answer = 0;\n\tfor (int i = 1; i <= N; i++) Answer += (R[i] - i + 1);\n\tcout << Answer << endl;\n\treturn 0;\n}\n",
    "Python": "# A[l] から A[r] までの合計値\ndef sum(l, r, S):\n\treturn S[r+1] - S[l]\n\n# 入力\nN, K = map(int, input().split())\nA = list(map(int, input().split()))\n\n# 累積和をとる\nS = [ 0 ] * (N + 1)\nfor i in range(1, N+1):\n\tS[i] = S[i-1] + A[i-1]\n\n# 配列の準備(R は 0 番目から始まることに注意)\nR = [ None ] * N\n\n# しゃくとり法\nfor i in range(N):\n\tif i == 0:\n\t\tR[i] = -1\n\telse:\n\t\tR[i] = R[i - 1]\n\twhile R[i] < N-1 and sum(i,R[i]+1,S) <= K:\n\t\tR[i] += 1\n\n# 答えを求める\nAnswer = 0\nfor i in range(N):\n\tAnswer += (R[i] - i + 1)\nprint(Answer)\n"
  },
  {
    "id": 12,
    "name": "B014",
    "Cpp": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n \n// 「配列 A にあるカードからいくつか選んだときの合計」として考えられるものを列挙\n// ビット全探索を使う\nvector<long long> Enumerate(vector<long long> A) {\n\tvector<long long> SumList;\n\tfor (int i = 0; i < (1 << A.size()); i++) {\n\t\tlong long sum = 0; // 現在の合計値\n\t\tfor (int j = 0; j < A.size(); j++) {\n\t\t\tint wari = (1 << j);\n\t\t\tif ((i / wari) % 2 == 1) sum += A[j];\n\t\t}\n\t\tSumList.push_back(sum);\n\t}\n\treturn SumList;\n}\n \nlong long N, K;\nlong long A[39];\n \nint main() {\n\t// 入力\n\tcin >> N >> K;\n\tfor (int i = 1; i <= N; i++) cin >> A[i];\n \n\t// カードを半分ずつに分ける\n\tvector<long long> L1, L2;\n\tfor (int i = 1; i <= N / 2; i++) L1.push_back(A[i]);\n\tfor (int i = N / 2 + 1; i <= N; i++) L2.push_back(A[i]);\n \n\t// それぞれについて、「あり得るカードの合計」を全列挙\n\tvector<long long> Sum1 = Enumerate(L1);\n\tvector<long long> Sum2 = Enumerate(L2);\n\tsort(Sum1.begin(), Sum1.end());\n\tsort(Sum2.begin(), Sum2.end());\n \n\t// 二分探索で Sum1[i] + Sum2[j] = K となるものが存在するかを見つける\n\tfor (int i = 0; i < Sum1.size(); i++) {\n\t\tint pos = lower_bound(Sum2.begin(), Sum2.end(), K - Sum1[i]) - Sum2.begin();\n\t\tif (pos < Sum2.size() && Sum2[pos] == K - Sum1[i]) {\n\t\t\tcout << \"Yes\" << endl;\n\t\t\treturn 0;\n\t\t}\n\t}\n\tcout << \"No\" << endl;\n\treturn 0;\n}\n",
    "Python": "import bisect\nimport sys\n\n# 「配列 A にあるカードからいくつか選んだときの合計」として考えられるものを列挙\n# ビット全探索を使う\ndef Enumerate(A):\n\tSumList = []\n\tfor i in range(2 ** len(A)):\n\t\tsum = 0 # 現在の合計値\n\t\tfor j in range(len(A)):\n\t\t\twari = (2 ** j)\n\t\t\tif (i // wari) % 2 == 1:\n\t\t\t\tsum += A[j]\n\t\tSumList.append(sum)\n\treturn SumList\n\n# 入力\nN, K = map(int, input().split())\nA = list(map(int, input().split()))\n\n# カードを半分ずつに分ける\nL1 = A[0:(N//2)]\nL2 = A[(N//2):N]\n\n# それぞれについて、「あり得るカードの合計」を全列挙\nSum1 = Enumerate(L1)\nSum2 = Enumerate(L2)\nSum1.sort()\nSum2.sort()\n\n# 二分探索で Sum1[i] + Sum2[j] = K となるものが存在するかを見つける\nfor i in range(len(Sum1)):\n\tpos = bisect.bisect_left(Sum2, K-Sum1[i])\n\tif pos<len(Sum2) and Sum2[pos]==K-Sum1[i]:\n\t\tprint(\"Yes\")\n\t\tsys.exit(0)\n\n# 見つからなかった場合\nprint(\"No\")\n"
  },
  {
    "id": 13,
    "name": "B016",
    "Cpp": "#include <iostream>\n#include <cmath>\n#include <algorithm>\nusing namespace std;\n\nint N, H[100009];\nint dp[100009];\n\nint main() {\n\t// 入力\n\tcin >> N;\n\tfor (int i = 1; i <= N; i++) cin >> H[i];\n\n\t// 動的計画法\n\tdp[1] = 0;\n\tdp[2] = abs(H[1] - H[2]);\n\tfor (int i = 3; i <= N; i++) {\n\t\tdp[i] = min(dp[i - 1] + abs(H[i - 1] - H[i]), dp[i - 2] + abs(H[i - 2] - H[i]));\n\t}\n\n\t// 出力\n\tcout << dp[N] << endl;\n\treturn 0;\n}\n",
    "Python": "# 入力\nN = int(input())\nH = list(map(int, input().split()))\n\n# 配列の準備\ndp = [ None ] * N\n\n# 動的計画法\ndp[0] = 0\ndp[1] = abs(H[0] - H[1])\nfor i in range(2, N):\n\tdp[i] = min(dp[i-1] + abs(H[i-1]-H[i]), dp[i-2] + abs(H[i-2]-H[i]))\n\n# 出力\nprint(dp[N-1])\n"
  },
  {
    "id": 14,
    "name": "B017",
    "Cpp": "#include <iostream>\n#include <cmath>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n \nint N, H[100009];\nint dp[100009];\nvector<int> Answer;\n \nint main() {\n\t// 入力\n\tcin >> N;\n\tfor (int i = 1; i <= N; i++) cin >> H[i];\n \n\t// 動的計画法\n\tdp[1] = 0;\n\tdp[2] = abs(H[1] - H[2]);\n\tfor (int i = 3; i <= N; i++) {\n\t\tdp[i] = min(dp[i - 1] + abs(H[i - 1] - H[i]), dp[i - 2] + abs(H[i - 2] - H[i]));\n\t}\n \n\t// 動的計画法の復元\n\tint Place = N;\n\twhile (true) {\n\t\tAnswer.push_back(Place);\n\t\tif (Place == 1) break;\n \n\t\t// どちらに移動するかを求める\n\t\tif (dp[Place - 1] + abs(H[Place - 1] - H[Place]) == dp[Place]) Place = Place - 1;\n\t\telse Place = Place - 2;\n\t}\n\treverse(Answer.begin(), Answer.end());\n \n\t// 答えを求める\n\tcout << Answer.size() << endl;\n\tfor (int i = 0; i < Answer.size(); i++) {\n\t\tif (i) cout << \" \";\n\t\tcout << Answer[i];\n\t}\n\tcout << endl;\n\treturn 0;\n}\n",
    "Python": "# 入力\nN = int(input())\nH = list(map(int, input().split()))\n\n# 配列の準備\ndp = [ None ] * N\n\n# 動的計画法\ndp[0] = 0\ndp[1] = abs(H[0] - H[1])\nfor i in range(2, N):\n\tdp[i] = min(dp[i-1] + abs(H[i-1]-H[i]), dp[i-2] + abs(H[i-2]-H[i]))\n\n# 答えの復元\n# 変数 Place は現在位置(ゴールから進んでいく)\nAnswer = []\nPlace = N-1\nwhile True:\n\tAnswer.append(Place + 1)\n\tif Place == 0:\n\t\tbreak\n\n\t# どこから部屋 Place に向かうのが最適かを求める\n\tif dp[Place-1] + abs(H[Place-1]-H[Place]) == dp[Place]:\n\t\tPlace = Place - 1\n\telse:\n\t\tPlace = Place - 2\nAnswer.reverse()\n\n# 答えを出力\nAnswer2 = [str(i) for i in Answer]\nprint(len(Answer))\nprint(\" \".join(Answer2))\n"
  },
  {
    "id": 15,
    "name": "B018",
    "Cpp": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n \nint N, S, A[69];\nbool dp[69][10009];\nvector<int> Answer;\n \nint main() {\n\t// 入力\n\tcin >> N >> S;\n\tfor (int i = 1; i <= N; i++) cin >> A[i];\n \n\t// 動的計画法 (i = 0)\n\tdp[0][0] = true;\n\tfor (int i = 1; i <= S; i++) dp[0][i] = false;\n \n\t// 動的計画法 (i >= 1)\n\tfor (int i = 1; i <= N; i++) {\n\t\tfor (int j = 0; j <= S; j++) {\n\t\t\tif (j < A[i]) {\n\t\t\t\tif (dp[i - 1][j] == true) dp[i][j] = true;\n\t\t\t\telse dp[i][j] = false;\n\t\t\t}\n\t\t\tif (j >= A[i]) {\n\t\t\t\tif (dp[i - 1][j] == true || dp[i - 1][j - A[i]] == true) dp[i][j] = true;\n\t\t\t\telse dp[i][j] = false;\n\t\t\t}\n\t\t}\n\t}\n \n\t// 選び方が存在しない場合\n\tif (dp[N][S] == false) {\n\t\tcout << \"-1\" << endl;\n\t\treturn 0;\n\t}\n \n\t// 答えの復元(Place は \"現在の総和\")\n\tint Place = S;\n\tfor (int i = N; i >= 1; i--) {\n\t\tif (dp[i - 1][Place] == true) {\n\t\t\tPlace = Place - 0; // カード i を選ばない\n\t\t}\n\t\telse {\n\t\t\tPlace = Place - A[i]; // カード i を選ぶ\n\t\t\tAnswer.push_back(i);\n\t\t}\n\t}\n\treverse(Answer.begin(), Answer.end());\n \n\t// 出力\n\tcout << Answer.size() << endl;\n\tfor (int i = 0; i < Answer.size(); i++) {\n\t\tif (i >= 1) cout << \" \";\n\t\tcout << Answer[i];\n\t}\n\tcout << endl;\n\treturn 0;\n}\n",
    "Python": "import sys\n\n# 入力\nN, S = map(int, input().split())\nA = list(map(int, input().split()))\n\n# 動的計画法(i=0)\ndp = [ [ None ] * (S + 1) for i in range(N + 1) ]\ndp[0][0] = True\nfor i in range(1, S+1):\n\tdp[0][i] = False\n\n# 動的計画法(i=1)\nfor i in range(1, N+1):\n\tfor j in range(0,S+1):\n\t\tif j < A[i-1]:\n\t\t\tif dp[i-1][j] == True:\n\t\t\t\tdp[i][j] = True\n\t\t\telse:\n\t\t\t\tdp[i][j] = False\n\n\t\tif j >= A[i-1]:\n\t\t\tif dp[i-1][j] == True or dp[i-1][j-A[i-1]] == True:\n\t\t\t\tdp[i][j] = True\n\t\t\telse:\n\t\t\t\tdp[i][j] = False\n\n# 選び方が存在しない場合\nif dp[N][S] == False:\n\tprint(\"-1\")\n\tsys.exit(0)\n\n# 答えの復元\nAnswer = []\nPlace = S\nfor i in reversed(range(1,N+1)):\n\tif dp[i-1][Place] == True:\n\t\tPlace = Place - 0 # カード i を選ばない\n\telse:\n\t\tPlace = Place - A[i-1] # カード i を選ぶ\n\t\tAnswer.append(i)\nAnswer.reverse()\n\n# 答えを出力\nAnswer2 = [str(i) for i in Answer]\nprint(len(Answer))\nprint(\" \".join(Answer2))\n"
  },
  {
    "id": 16,
    "name": "B019",
    "Cpp": "#include <iostream>\n#include <algorithm>\nusing namespace std;\n\nlong long N, W, w[109], v[109];\nlong long dp[109][100009];\n\nint main() {\n\t// 入力・配列の初期化\n\tcin >> N >> W;\n\tfor (int i = 1; i <= N; i++) cin >> w[i] >> v[i];\n\tfor (int i = 0; i <= N; i++) {\n\t\tfor (int j = 0; j <= 100000; j++) dp[i][j] = 1'000'000'000'000'000LL;\n\t}\n\n\t// 動的計画法\n\tdp[0][0] = 0;\n\tfor (int i = 1; i <= N; i++) {\n\t\tfor (int j = 0; j <= 100000; j++) {\n\t\t\tif (j < v[i]) dp[i][j] = dp[i - 1][j];\n\t\t\telse dp[i][j] = min(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i]);\n\t\t}\n\t}\n\n\t// 答えの出力\n\tlong long Answer = 0;\n\tfor (int i = 0; i <= 100000; i++) {\n\t\tif (dp[N][i] <= W) Answer = i;\n\t}\n\tcout << Answer << endl;\n\treturn 0;\n}\n",
    "Python": "# 入力\nN, W = map(int, input().split())\nw = [ None ] * (N + 1)\nv = [ None ] * (N + 1)\nfor i in range(1, N+1):\n\tw[i], v[i] = map(int, input().split())\n\n# 動的計画法\ndp = [ [ 10 ** 15 ] * 100001 for i in range(N + 1) ]\ndp[0][0] = 0\nfor i in range(1, N+1):\n\tfor j in range(100001):\n\t\tif j < v[i]:\n\t\t\tdp[i][j] = dp[i-1][j]\n\t\tif j >= v[i]:\n\t\t\tdp[i][j] = min(dp[i-1][j], dp[i-1][j-v[i]]+w[i])\n\n# 出力\nAnswer = 0\nfor i in range(100001):\n\tif dp[N][i] <= W:\n\t\tAnswer = i\nprint(Answer)\n"
  },
  {
    "id": 17,
    "name": "B020",
    "Cpp": "#include <iostream>\n#include <string>\n#include <algorithm>\nusing namespace std;\n \nint N, M, dp[2009][2009];\nstring S, T;\n \nint main() {\n\t// 入力\n\tcin >> S; N = S.size();\n\tcin >> T; M = T.size();\n \n\t// 動的計画法\n\tdp[0][0] = 0;\n\tfor (int i = 0; i <= N; i++) {\n\t\tfor (int j = 0; j <= M; j++) {\n\t\t\tif (i >= 1 && j >= 1 && S[i - 1] == T[j - 1]) {\n\t\t\t\tdp[i][j] = min({ dp[i - 1][j] + 1, dp[i][j - 1] + 1, dp[i - 1][j - 1] });\n\t\t\t}\n\t\t\telse if (i >= 1 && j >= 1) {\n\t\t\t\tdp[i][j] = min({ dp[i - 1][j] + 1, dp[i][j - 1] + 1, dp[i - 1][j - 1] + 1 });\n\t\t\t}\n\t\t\telse if (i >= 1) {\n\t\t\t\tdp[i][j] = dp[i - 1][j] + 1;\n\t\t\t}\n\t\t\telse if (j >= 1) {\n\t\t\t\tdp[i][j] = dp[i][j - 1] + 1;\n\t\t\t}\n\t\t}\n\t}\n \n\t// 出力\n\tcout << dp[N][M] << endl;\n\treturn 0;\n}\n",
    "Python": "# 入力\nS = input()\nT = input()\n\n# 配列の準備\ndp = [ [ None ] * (len(T) + 1) for i in range(len(S) + 1) ]\n\n# 動的計画法\ndp[0][0] = 0\nfor i in range(len(S)+1):\n\tfor j in range(len(T)+1):\n\t\tif i>=1 and j>=1 and S[i-1]==T[j-1]:\n\t\t\tdp[i][j] = min(dp[i-1][j]+1, dp[i][j-1]+1, dp[i-1][j-1])\n\t\telif i>=1 and j>=1:\n\t\t\tdp[i][j] = min(dp[i-1][j]+1, dp[i][j-1]+1, dp[i-1][j-1]+1)\n\t\telif i>=1:\n\t\t\tdp[i][j] = dp[i-1][j]+1\n\t\telif j>=1:\n\t\t\tdp[i][j] = dp[i][j-1]+1\n\n# 出力\nprint(dp[len(S)][len(T)])\n"
  },
  {
    "id": 18,
    "name": "B021",
    "Cpp": "#include <iostream>\n#include <algorithm>\nusing namespace std;\n \nint N;\nint dp[1009][1009];\nstring S;\n \nint main() {\n\t// 入力\n\tcin >> N;\n\tcin >> S;\n \n\t// 動的計画法(初期状態)\n\tfor (int i = 0; i < N; i++) dp[i][i] = 1;\n\tfor (int i = 0; i < N - 1; i++) {\n\t\tif (S[i] == S[i + 1]) dp[i][i + 1] = 2;\n\t\telse dp[i][i + 1] = 1;\n\t}\n \n\t// 動的計画法(状態遷移)\n\tfor (int LEN = 2; LEN <= N - 1; LEN++) {\n\t\tfor (int l = 0; l < N - LEN; l++) {\n\t\t\tint r = l + LEN;\n \n\t\t\tif (S[l] == S[r]) {\n\t\t\t\tdp[l][r] = max({ dp[l][r - 1], dp[l + 1][r], dp[l + 1][r - 1] + 2 });\n\t\t\t}\n\t\t\telse {\n\t\t\t\tdp[l][r] = max({ dp[l][r - 1], dp[l + 1][r] });\n\t\t\t}\n\t\t}\n\t}\n \n\t// 答えを求める\n\tcout << dp[0][N - 1] << endl;\n\treturn 0;\n}\n",
    "Python": "# 入力\nN = int(input())\nS = input()\n\n# 動的計画法(初期状態)\ndp = [ [ None ] * N for i in range(N) ]\nfor i in range(N):\n\tdp[i][i] = 1\nfor i in range(N-1):\n\tif S[i] == S[i+1]:\n\t\tdp[i][i+1] = 2\n\telse:\n\t\tdp[i][i+1] = 1\n\n# 動的計画法(状態遷移)\nfor LEN in range(2,N):\n\tfor l in range(N-LEN):\n\t\tr = l + LEN\n\t\tif S[l] == S[r]:\n\t\t\tdp[l][r] = max(dp[l][r-1], dp[l+1][r], dp[l+1][r-1]+2)\n\t\telse:\n\t\t\tdp[l][r] = max(dp[l][r-1], dp[l+1][r])\n\n# 出力\nprint(dp[0][N-1])\n"
  },
  {
    "id": 19,
    "name": "B022",
    "Cpp": "#include <iostream>\n#include <algorithm>\nusing namespace std;\n\nint N, A[100009], B[100009];\nint dp[100009];\n\nint main() {\n\t// 入力\n\tcin >> N;\n\tfor (int i = 2; i <= N; i++) cin >> A[i];\n\tfor (int i = 3; i <= N; i++) cin >> B[i];\n\n\t// 配列 dp の初期化\n\tdp[1] = 0;\n\tfor (int i = 2; i <= N; i++) dp[i] = 2000000000;\n\n\t// 動的計画法\n\tfor (int i = 1; i <= N; i++) {\n\t\tif (i <= N - 1) dp[i + 1] = min(dp[i + 1], dp[i] + A[i + 1]); // 部屋 i+1 に行く場合\n\t\tif (i <= N - 2) dp[i + 2] = min(dp[i + 2], dp[i] + B[i + 2]); // 部屋 i+2 に行く場合\n\t}\n\n\t// 出力\n\tcout << dp[N] << endl;\n\treturn 0;\n}\n",
    "Python": "# 入力(A, B が 0 番目から始まっていることに注意)\nN = int(input())\nA = list(map(int, input().split()))\nB = list(map(int, input().split()))\n\n# 配列 dp の初期化\ndp = [ 2000000000 ] * N\ndp[0] = 0\n\n# 動的計画法\nfor i in range(N):\n\tif i <= N-2:\n\t\tdp[i+1] = min(dp[i+1], dp[i] + A[i])\n\tif i <= N-3:\n\t\tdp[i+2] = min(dp[i+2], dp[i] + B[i])\n\n# 出力\nprint(dp[N-1])\n"
  },
  {
    "id": 20,
    "name": "B023",
    "Cpp": "#include <iostream>\n#include <cmath>\n#include <algorithm>\nusing namespace std;\n \nint N, X[19], Y[19];\ndouble dp[1 << 16][19];\n \nint main() {\n\t// 入力\n\tcin >> N;\n\tfor (int i = 0; i < N; i++) cin >> X[i] >> Y[i];\n \n\t// 配列 dp の初期化\n\tfor (int i = 0; i < (1 << N); i++) {\n\t\tfor (int j = 0; j < N; j++) dp[i][j] = 1e9;\n\t}\n \n\t// 動的計画法(dp[通った都市][今いる都市] となっている)\n\tdp[0][0] = 0;\n\tfor (int i = 0; i < (1 << N); i++) {\n\t\tfor (int j = 0; j < N; j++) {\n\t\t\tif (dp[i][j] >= 1e9) continue;\n \n\t\t\t// 都市 j から都市 k に移動したい!\n\t\t\tfor (int k = 0; k < N; k++) {\n\t\t\t\t// 既に都市 k を通っていた場合\n\t\t\t\tif ((i / (1 << k)) % 2 == 1) continue;\n \n\t\t\t\t// 状態遷移\n\t\t\t\tdouble DIST = sqrt(1.0 * (X[j] - X[k]) * (X[j] - X[k]) + 1.0 * (Y[j] - Y[k]) * (Y[j] - Y[k]));\n\t\t\t\tdp[i + (1 << k)][k] = min(dp[i + (1 << k)][k], dp[i][j] + DIST);\n\t\t\t}\n\t\t}\n\t}\n \n\t// 答えを出力\n\tprintf(\"%.12lf\\n\", dp[(1 << N) - 1][0]);\n\treturn 0;\n}\n",
    "Python": "# 入力\nN = int(input())\nX = [ None ] * N\nY = [ None ] * N\nfor i in range(N):\n\tX[i], Y[i] = map(int, input().split())\n\n# 配列 dp の初期化\ndp = [ [ 1000000000.0 ] * N for i in range(2 ** N) ]\n\n# 動的計画法(dp[通った都市][今いる都市] となっている)\ndp[0][0] = 0\nfor i in range(2 ** N):\n\tfor j in range(N):\n\t\tif dp[i][j] < 1000000000.0:\n\n\t\t\t# 都市 j から k に移動したい!\n\t\t\tfor k in range(N):\n\t\t\t\tif (i // (2 ** k)) % 2 == 0:\n\t\t\t\t\tDIST = ((1.0*(X[j]-X[k])* (X[j]-X[k]) + 1.0*(Y[j]-Y[k])*(Y[j]-Y[k])) ** 0.5)\n\t\t\t\t\tdp[i + (2 ** k)][k] = min(dp[i + (2 ** k)][k], dp[i][j] + DIST)\n\n# 出力\nprint(dp[(2 ** N) - 1][0])\n"
  },
  {
    "id": 21,
    "name": "B024",
    "Cpp": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n \nint N, X[100009], Y[100009];\nint LEN, L[100009];\n \n// 配列 A の最長増加部分列(LIS)の長さを計算する\n// 配列 dp を使わない実装方法を利用している\nint Get_LISvalue(vector<int> A) {\n\tLEN = 0;\n\tfor (int i = 1; i <= A.size(); i++) L[i] = 0;\n \n\t// 動的計画法\n\tfor (int i = 0; i < A.size(); i++) {\n\t\tint pos = lower_bound(L + 1, L + LEN + 1, A[i]) - L;\n\t\tL[pos] = A[i];\n\t\tif (pos > LEN) LEN += 1;\n\t}\n\treturn LEN;\n}\n \nint main() {\n\t// 入力\n\tcin >> N;\n\tfor (int i = 1; i <= N; i++) cin >> X[i] >> Y[i];\n \n\t// ソート\n\tvector<pair<int, int>> tmp;\n\tfor (int i = 1; i <= N; i++) tmp.push_back(make_pair(X[i], -Y[i]));\n\tsort(tmp.begin(), tmp.end());\n\t\n\t// LIS を求めるべき配列は?\n\tvector<int> A;\n\tfor (int i = 0; i < tmp.size(); i++) {\n\t\tA.push_back(-tmp[i].second);\n\t}\n \n\t// 出力\n\tcout << Get_LISvalue(A) << endl;\n\treturn 0;\n}\n",
    "Python": "import bisect\n\n# 配列 A の最長増加部分列(LIS)の長さを計算する\n# 配列 dp を使わない実装方法を利用している\ndef Get_LISvalue(A):\n\tLEN = 0\n\tL = []\n\tfor i in range(N):\n\t\tpos = bisect.bisect_left(L, A[i])\n\t\tif pos == LEN:\n\t\t\tL.append(A[i])\n\t\t\tLEN += 1\n\t\telse:\n\t\t\tL[pos] = A[i]\n\treturn LEN\n\n# 入力\nN = int(input())\nX = [ None ] * N\nY = [ None ] * N\nfor i in range(N):\n\tX[i], Y[i] = map(int, input().split())\n\n# ソート\ntmp = []\nfor i in range(N):\n\ttmp.append([X[i], -Y[i]])\ntmp.sort()\n\n# LIS を求めるべき配列は?\nA = []\nfor i in range(N):\n\tA.append(-tmp[i][1])\n\n# 出力\nprint(Get_LISvalue(A))\n"
  },
  {
    "id": 22,
    "name": "B026",
    "Cpp": "#include <iostream>\nusing namespace std;\n\nint N;\nbool Deleted[1000009]; // 整数 x が消されている場合に限り Deleted[x]=true\n\nint main() {\n\t// 入力\n\tcin >> N;\n\n\t// エラトステネスのふるい(i は √N 以下の最大の整数までループする)\n\tfor (int i = 2; i <= N; i++) Deleted[i] = false;\n\tfor (int i = 2; i * i <= N; i++) {\n\t\tif (Deleted[i] == true) continue;\n\t\tfor (int j = i * 2; j <= N; j += i) Deleted[j] = true;\n\t}\n\n\t// 答えを出力\n\tfor (int i = 2; i <= N; i++) {\n\t\tif (Deleted[i] == false) cout << i << endl;\n\t}\n\treturn 0;\n}\n",
    "Python": "# 入力\nN = int(input())\n\n# エラトステネスのふるい\n# 整数 x が消されている場合に限り Deleted[x]=true\nDeleted = [ False ] * 1000009\nLIMIT = int(N ** 0.5)\nfor i in range(2, LIMIT+1):\n\tif Deleted[i] == False:\n\t\tfor j in range(i*2, N+1, i):\n\t\t\tDeleted[j] = True\n\n# 答えを出力\nfor i in range(2, N+1):\n\tif Deleted[i] == False:\n\t\tprint(i)\n"
  },
  {
    "id": 23,
    "name": "B027",
    "Cpp": "#include <iostream>\nusing namespace std;\n\nint GCD(int A, int B) {\n\twhile (A >= 1 && B >= 1) {\n\t\tif (A >= B) {\n\t\t\tA = (A % B); // A の値を変更する場合\n\t\t}\n\t\telse {\n\t\t\tB = (B % A); // B の値を変更する場合\n\t\t}\n\t}\n\tif (A != 0) return A;\n\treturn B;\n}\n\nint main() {\n\tlong long A, B;\n\tcin >> A >> B;\n\tcout << A * B / GCD(A, B) << endl;\n\treturn 0;\n}\n",
    "Python": "def GCD(A, B):\n\twhile A >= 1 and B >= 1:\n\t\tif A >= B:\n\t\t\tA = A % B # A の値を変更する場合\n\t\telse:\n\t\t\tB = B % A # B の値を変更する場合\n\tif A >= 1:\n\t\treturn A\n\treturn B\n\n# 入力\nA, B = map(int, input().split())\nprint(A * B // GCD(A, B))\n"
  },
  {
    "id": 24,
    "name": "B028",
    "Cpp": "#include <iostream>\nusing namespace std;\n\nconst int mod = 1000000007;\nint N, a[10000009];\n\nint main() {\n\t// 入力\n\tcin >> N;\n\n\t// フィボナッチ数列の計算\n\ta[1] = 1;\n\ta[2] = 1;\n\tfor (int i = 3; i <= N; i++) {\n\t\ta[i] = (a[i - 1] + a[i - 2]) % mod;\n\t}\n\n\t// 出力\n\tcout << a[N] << endl;\n\treturn 0;\n}\n",
    "Python": "# 入力\nN = int(input())\n\n# フィボナッチ数の計算\na = [ None ] * (N + 1)\na[1] = 1\na[2] = 1\nfor i in range(3, N+1):\n\ta[i] = (a[i-1] + a[i-2]) % 1000000007\n\n# 出力\nprint(a[N])\n"
  },
  {
    "id": 25,
    "name": "B029",
    "Cpp": "#include <iostream>\nusing namespace std;\n\n// a の b 乗を m で割った余りを返す関数\n// 変数 a は a^1 → a^2 → a^4 → a^8 → a^16 → ・・・ と変化\nlong long Power(long long a, long long b, long long m) {\n\tlong long p = a, Answer = 1;\n\tfor (int i = 0; i < 60; i++) {\n\t\tlong long wari = (1LL << i);\n\t\tif ((b / wari) % 2 == 1) {\n\t\t\tAnswer = (Answer * p) % m; // 「a の 2^i 乗」が掛けられるとき\n\t\t}\n\t\tp = (p * p) % m;\n\t}\n\treturn Answer;\n}\n\nint main() {\n\tlong long a, b;\n\tcin >> a >> b;\n\tcout << Power(a, b, 1000000007) << endl;\n\treturn 0;\n}\n",
    "Python": "# a の b 乗を m で割った余りを返す関数\ndef Power(a, b, m):\n\tp = a\n\tAnswer = 1\n\tfor i in range(60):\n\t\twari = 2 ** i\n\t\tif (b // wari) % 2 == 1:\n\t\t\tAnswer = (Answer * p) % m # a の 2^i 乗が掛けられるとき\n\t\tp = (p * p) % m\n\treturn Answer\n\n# 入力\na, b = map(int, input().split())\n\n# 出力\nprint(Power(a, b, 1000000007))\n"
  },
  {
    "id": 26,
    "name": "B030",
    "Cpp": "#include <iostream>\nusing namespace std;\n\n// a の b 乗を m で割った余りを返す関数\n// 変数 a は a^1 → a^2 → a^4 → a^8 → a^16 → ・・・ と変化\nlong long Power(long long a, long long b, long long m) {\n\tlong long p = a, Answer = 1;\n\tfor (int i = 0; i < 30; i++) {\n\t\tint wari = (1 << i);\n\t\tif ((b / wari) % 2 == 1) {\n\t\t\tAnswer = (Answer * p) % m; // 「a の 2^i 乗」が掛けられるとき\n\t\t}\n\t\tp = (p * p) % m;\n\t}\n\treturn Answer;\n}\n\n// a ÷ b を m で割った余りを返す関数\nlong long Division(long long a, long long b, long long m) {\n\treturn (a * Power(b, m - 2, m)) % m;\n}\n\n// nCr mod 1000000007 を返す関数\nlong long ncr(int n, int r) {\n\tconst long long M = 1000000007;\n\n\t// 手順 1: 分子 a を求める\n\tlong long a = 1;\n\tfor (int i = 1; i <= n; i++) a = (a * i) % M;\n\n\t// 手順 2: 分母 b を求める\n\tlong long b = 1;\n\tfor (int i = 1; i <= r; i++) b = (b * i) % M;\n\tfor (int i = 1; i <= n - r; i++) b = (b * i) % M;\n\n\t// 手順 3: 答えを求める\n\treturn Division(a, b, M);\n}\n\nint main() {\n\t// 入力\n\tlong long H, W;\n\tcin >> H >> W;\n\n\t// 出力\n\tcout << ncr(H + W - 2, W - 1) << endl;\n\treturn 0;\n}\n",
    "Python": "# a の b 乗を m で割った余りを返す関数\ndef Power(a, b, m):\n\tp = a\n\tAnswer = 1\n\tfor i in range(30):\n\t\twari = 2 ** i\n\t\tif (b // wari) % 2 == 1:\n\t\t\tAnswer = (Answer * p) % m # a の 2^i 乗が掛けられるとき\n\t\tp = (p * p) % m\n\treturn Answer\n\n# a÷b を m で割った余りを返す関数\ndef Division(a, b, m):\n\treturn (a * Power(b, m - 2, m)) % m\n\n# nCr mod 1000000007 を返す関数\ndef ncr(n, r):\n\tM = 1000000007;\n\n\t# 手順 1: 分子 a を求める\n\ta = 1;\n\tfor i in range(1, n+1):\n\t\ta = (a*i) % M\n\n\t# 手順 2: 分母 b を求める\n\tb = 1;\n\tfor i in range(1, r+1):\n\t\tb = (b * i) % M\n\tfor i in range(1, n-r+1):\n\t\tb = (b * i) % M\n\n\t# 手順 3: 答えを求める\n\treturn Division(a, b, M);\n\n# 入力\nH, W = map(int, input().split())\n\n# 出力\nprint(ncr(H + W - 2, W - 1))\n"
  },
  {
    "id": 27,
    "name": "B031",
    "Cpp": "#include <iostream>\nusing namespace std;\n\nint main() {\n\tlong long N;\n\tcin >> N;\n\n\tlong long A1 = (N /   3); // 3 で割り切れるものの個数\n\tlong long A2 = (N /   5); // 5 で割り切れるものの個数\n\tlong long A3 = (N /   7); // 5 で割り切れるものの個数\n\tlong long A4 = (N /  15); // 3, 5 で割り切れるもの(= 15 の倍数)の個数\n\tlong long A5 = (N /  21); // 3, 7 で割り切れるもの(= 21 の倍数)の個数\n\tlong long A6 = (N /  35); // 5, 7 で割り切れるもの(= 35 の倍数)の個数\n\tlong long A7 = (N / 105); // 3, 5, 7 で割り切れるもの(= 105 の倍数)の個数\n\tcout << A1 + A2 + A3 - A4 - A5 - A6 + A7 << endl;\n\treturn 0;\n}\n",
    "Python": "# 入力\nN = int(input())\n\n# 計算\nA1 = (N //   3); # 3 で割り切れるものの個数\nA2 = (N //   5); # 5 で割り切れるものの個数\nA3 = (N //   7); # 5 で割り切れるものの個数\nA4 = (N //  15); # 3, 5 で割り切れるもの(= 15 の倍数)の個数\nA5 = (N //  21); # 3, 7 で割り切れるもの(= 21 の倍数)の個数\nA6 = (N //  35); # 5, 7 で割り切れるもの(= 35 の倍数)の個数\nA7 = (N // 105); # 3, 5, 7 で割り切れるもの(= 105 の倍数)の個数\n\n# 出力\nprint(A1 + A2 + A3 - A4 - A5 - A6 + A7)\n"
  },
  {
    "id": 28,
    "name": "B032",
    "Cpp": "#include <iostream>\nusing namespace std;\n\n// 配列 dp について: dp[x]=true のとき勝ちの状態、dp[x]=false のとき負けの状態\nint N, K, A[109];\nbool dp[100009];\n\nint main() {\n\t// 入力\n\tcin >> N >> K;\n\tfor (int i = 1; i <= K; i++) cin >> A[i];\n\n\t// 勝者を計算する\n\tfor (int i = 0; i <= N; i++) {\n\t\tdp[i] = false;\n\t\tfor (int j = 1; j <= K; j++) {\n\t\t\tif (i >= A[j] && dp[i - A[j]] == false) {\n\t\t\t\tdp[i] = true; // 負けの状態に遷移できれば、勝ちの状態\n\t\t\t}\n\t\t}\n\t}\n\n\t// 出力\n\tif (dp[N] == true) cout << \"First\" << endl;\n\telse cout << \"Second\" << endl;\n\treturn 0;\n}\n",
    "Python": "# 入力\nN, K = map(int, input().split())\nA = list(map(int, input().split()))\n\n# 勝者を計算する\n# 配列 dp について: dp[x]=true のとき勝ちの状態、dp[x]=false のとき負けの状態\ndp = [ None ] * (N + 1)\nfor i in range(N+1):\n\tdp[i] = False\n\tfor j in range(K):\n\t\tif i>=A[j] and dp[i-A[j]]==False:\n\t\t\tdp[i] = True # 負けの状態に遷移できれば、勝ちの状態\n\n# 出力\nif dp[N] == True:\n\tprint(\"First\")\nelse:\n\tprint(\"Second\")\n"
  },
  {
    "id": 29,
    "name": "B033",
    "Cpp": "#include <iostream>\nusing namespace std;\n\nint H, W;\nint N, A[200009], B[200009];\n\nint main() {\n\t// 入力\n\tcin >> N >> H >> W;\n\tfor (int i = 1; i <= N; i++) cin >> A[i] >> B[i];\n\n\t// 全部 XOR した値(ニム和)を求める\n\tint XOR_Sum = 0;\n\tfor (int i = 1; i <= N; i++) XOR_Sum = (XOR_Sum ^ (A[i] - 1));\n\tfor (int i = 1; i <= N; i++) XOR_Sum = (XOR_Sum ^ (B[i] - 1));\n\n\t// 出力\n\tif (XOR_Sum != 0) cout << \"First\" << endl;\n\tif (XOR_Sum == 0) cout << \"Second\" << endl;\n\treturn 0;\n}\n",
    "Python": "# 入力\nN, H, W = map(int, input().split())\nA = [ None ] * N\nB = [ None ] * N\nfor i in range(N):\n\tA[i], B[i] = map(int, input().split())\n\n# 全部 XOR した値(ニム和)を求める\nXOR_Sum = 0\nfor i in range(N):\n\tXOR_Sum = (XOR_Sum ^ (A[i]-1))\n\tXOR_Sum = (XOR_Sum ^ (B[i]-1))\n\n# 出力\nif XOR_Sum != 0:\n\tprint(\"First\")\nelse:\n\tprint(\"Second\")\n"
  },
  {
    "id": 30,
    "name": "B034",
    "Cpp": "#include <iostream>\nusing namespace std;\n\nlong long N, X, Y, A[100009];\n\nint main() {\n\t// 入力\n\tcin >> N >> X >> Y;\n\tfor (int i = 1; i <= N; i++) cin >> A[i];\n\n\t// Grundy 数を計算\n\tint XOR_Sum = 0;\n\tfor (int i = 1; i <= N; i++) {\n\t\tif (A[i] % 5 == 0 || A[i] % 5 == 1) XOR_Sum ^= 0;\n\t\tif (A[i] % 5 == 2 || A[i] % 5 == 3) XOR_Sum ^= 1;\n\t\tif (A[i] % 5 == 4) XOR_Sum ^= 2;\n\t}\n\n\t// 出力\n\tif (XOR_Sum != 0) cout << \"First\" << endl;\n\tif (XOR_Sum == 0) cout << \"Second\" << endl;\n\treturn 0;\n}\n",
    "Python": "# 入力\nN, X, Y = map(int, input().split())\nA = list(map(int, input().split()))\n\n# Grundy 数を計算\nXOR_Sum = 0\nfor i in range(N):\n\tGrundy = [0, 0, 1, 1, 2] # 5 で割った余りに対応する Grundy 数\n\tXOR_Sum ^= Grundy[A[i] % 5]\n\n# 出力\nif XOR_Sum != 0:\n\tprint(\"First\")\nelse:\n\tprint(\"Second\")\n"
  },
  {
    "id": 31,
    "name": "B036",
    "Cpp": "#include <iostream>\n#include <string>\nusing namespace std;\n \nint N, K;\nstring S;\n \nint main() {\n\t// 入力\n\tcin >> N >> K;\n\tcin >> S;\n \n\t// ON となっているものの個数を数える\n\tint numON = 0;\n\tfor (int i = 0; i < N; i++) {\n\t\tif (S[i] == '1') numON += 1;\n\t}\n \n\t// 答えを出力\n\tif (numON % 2 == K % 2) cout << \"Yes\" << endl;\n\telse cout << \"No\" << endl;\n\treturn 0;\n}\n",
    "Python": "# 入力\nN, K = map(int, input().split())\nS = input()\n\n# ON となっているものの個数を数える\nnumON = 0\nfor i in range(N):\n\tif S[i] == '1':\n\t\tnumON += 1\n\n# 答えを出力\nif numON%2 == K%2:\n\tprint(\"Yes\")\nelse:\n\tprint(\"No\")\n"
  },
  {
    "id": 32,
    "name": "B037",
    "Cpp": "#include <iostream>\n#include <string>\nusing namespace std;\n \nlong long N;\nlong long R[18][10]; // R[i][j] は「下から i 桁目が j となるような N 以下の整数の個数」\nlong long Power10[18];\n \nint main() {\n\t// 入力\n\tcin >> N;\n \n\t// 10 の N 乗を求める\n\tPower10[0] = 1;\n\tfor (int i = 1; i <= 16; i++) Power10[i] = 10LL * Power10[i - 1];\n \n\t// R[i][j] の値を計算\n\tfor (int i = 0; i <= 15; i++) {\n\t\t// 下から i 桁目の数字を求める\n\t\tlong long Digit = (N / Power10[i]) % 10LL;\n \n\t\t// R[i][j] の値を求める\n\t\tfor (int j = 0; j < 10; j++) {\n\t\t\tif (j < Digit) {\n\t\t\t\tR[i][j] = (N / Power10[i + 1] + 1LL) * Power10[i];\n\t\t\t}\n\t\t\tif (j == Digit) {\n\t\t\t\tR[i][j] = (N / Power10[i + 1]) * Power10[i] + (N % Power10[i]) + 1LL;\n\t\t\t}\n\t\t\tif (j > Digit) {\n\t\t\t\tR[i][j] = (N / Power10[i + 1]) * Power10[i];\n\t\t\t}\n\t\t}\n\t}\n \n\t// 答えを求める\n\tlong long Answer = 0;\n\tfor (int i = 0; i <= 15; i++) {\n\t\tfor (int j = 0; j < 10; j++) Answer += 1LL * j * R[i][j];\n\t}\n \n\t// 出力\n\tcout << Answer << endl;\n\treturn 0;\n}\n",
    "Python": "# 入力\nN = int(input())\n\n# 10 の N 乗を求める\nPower10 = [ None ] * 17\nfor i in range(17):\n\tPower10[i] = 10 ** i\n\n# R[i][j] の値を計算\nR = [ [ None ] * 10 for i in range(17) ]\nfor i in range(16):\n\t# 下から i 桁目の数字を求める\n\tDigit = (N // Power10[i]) % 10;\n\n\t# R[i][j] の値を求める\n\tfor j in range(10):\n\t\tif j < Digit:\n\t\t\tR[i][j] = (N // Power10[i + 1] + 1) * Power10[i]\n\t\tif j == Digit:\n\t\t\tR[i][j] = (N // Power10[i + 1]) * Power10[i] + (N % Power10[i]) + 1\n\t\tif j > Digit:\n\t\t\tR[i][j] = (N // Power10[i + 1]) * Power10[i]\n\n# 答えを求める\nAnswer = 0\nfor i in range(16):\n\tfor j in range(10):\n\t\tAnswer += j * R[i][j]\n\n# 出力\nprint(Answer)\n"
  },
  {
    "id": 33,
    "name": "B038",
    "Cpp": "#include <iostream>\n#include <string>\n#include <algorithm>\nusing namespace std;\n \nint N, ret1[1 << 18], ret2[1 << 18];\nstring S;\n \nint main() {\n\t// 入力\n\tcin >> N >> S;\n \n\t// 答えを求める\n\tint streak1 = 1; ret1[0] = 1; // streak1 は「何個 A が連続したか」+ 1\n\tfor (int i = 0; i < N - 1; i++) {\n\t\tif (S[i] == 'A') streak1 += 1;\n\t\tif (S[i] == 'B') streak1 = 1;\n\t\tret1[i + 1] = streak1;\n\t}\n\tint streak2 = 1; ret2[N - 1] = 1; // streak2 は「何個 B が連続したか」+ 1\n\tfor (int i = N - 2; i >= 0; i--) {\n\t\tif (S[i] == 'B') streak2 += 1;\n\t\tif (S[i] == 'A') streak2 = 1;\n\t\tret2[i] = streak2;\n\t}\n \n\t// 出力\n\tlong long Answer = 0;\n\tfor (int i = 0; i < N; i++) Answer += max(ret1[i], ret2[i]);\n\tcout << Answer << endl;\n\treturn 0;\n}\n",
    "Python": "# 入力\nN = int(input())\nS = input()\n\n# 配列の準備\nret1 = [ None ] * N\nret2 = [ None ] * N\n\n# 答えを求める(前半)\nstreak1 = 1 # streak1 は「何個 A が連続したか」+ 1\nret1[0] = 1\nfor i in range(N-1):\n\tif S[i] == 'A':\n\t\tstreak1 += 1\n\tif S[i] == 'B':\n\t\tstreak1 = 1\n\tret1[i+1] = streak1\n\n# 答えを求める(後半)\nstreak2 = 1\nret2[N-1] = 1\nfor i in reversed(range(N-1)):\n\tif S[i] == 'A':\n\t\tstreak2 = 1\n\tif S[i] == 'B':\n\t\tstreak2 += 1\n\tret2[i] = streak2\n\n# 出力\nAnswer = 0\nfor i in range(N):\n\tAnswer += max(ret1[i], ret2[i])\nprint(Answer)\n"
  },
  {
    "id": 34,
    "name": "B039",
    "Cpp": "#include <iostream>\nusing namespace std;\n \nint N, D;\nint X[2009], Y[2009];\nbool used[2009]; // used[i] は仕事 i を選んだかどうか\nint Answer = 0;\n \nint main() {\n\t// 入力\n\tcin >> N >> D;\n\tfor (int i = 1; i <= N; i++) cin >> X[i] >> Y[i];\n \n\t// 答えを求める\n\tfor (int i = 1; i <= D; i++) {\n\t\tint maxValue = 0; // 給料の最大値\n\t\tint maxID = -1;   // 給料が最大となる仕事の番号\n\t\tfor (int j = 1; j <= N; j++) {\n\t\t\tif (used[j] == true) continue;\n\t\t\tif (maxValue < Y[j] && X[j] <= i) {\n\t\t\t\tmaxValue = Y[j];\n\t\t\t\tmaxID = j;\n\t\t\t}\n\t\t}\n \n\t\t// 選べる仕事がある場合\n\t\tif (maxID != -1) {\n\t\t\tAnswer += maxValue;\n\t\t\tused[maxID] = true;\n\t\t}\n\t}\n \n\t// 出力\n\tcout << Answer << endl;\n\treturn 0;\n}\n",
    "Python": "# 入力\nN, D = map(int, input().split())\nX = [ None ] * N\nY = [ None ] * N\nfor i in range(N):\n\tX[i], Y[i] = map(int, input().split())\n\n# 配列の準備\n# used[i] は仕事 i を選んだかどうか\nused = [ False ] * N\n\n# 答えを求める\nAnswer = 0\nfor i in range(1, D+1):\n\tmaxValue = 0 # 給料の最大値\n\tmaxID = -1   # 給料が最大となる仕事の番号\n\tfor j in range(N):\n\t\tif used[j] == False and maxValue < Y[j] and X[j] <= i:\n\t\t\tmaxValue = Y[j]\n\t\t\tmaxID = j\n\n\t# 選べる仕事がある場合\n\tif maxID != -1:\n\t\tAnswer += maxValue\n\t\tused[maxID] = True\n\n# 出力\nprint(Answer)\n"
  },
  {
    "id": 35,
    "name": "B040",
    "Cpp": "#include <iostream>\nusing namespace std;\n \nlong long N, A[200009];\nlong long cnt[109];\nlong long Answer = 0;\n \nint main() {\n\t// 入力\n\tcin >> N;\n\tfor (int i = 1; i <= N; i++) cin >> A[i];\n \n\t// 個数を数える\n\tfor (int i = 0; i < 100; i++) cnt[i] = 0;\n\tfor (int i = 1; i <= N; i++) cnt[A[i] % 100] += 1;\n \n\t// 答えを求める\n\tfor (int i = 1; i < 50; i++) Answer += cnt[i] * cnt[100 - i];\n\tAnswer += cnt[0] * (cnt[0] - 1LL) / 2LL;\n\tAnswer += cnt[50] * (cnt[50] - 1LL) / 2LL;\n \n\t// 出力\n\tcout << Answer << endl;\n\treturn 0;\n}\n",
    "Python": "# 入力\nN = int(input())\nA = list(map(int, input().split()))\n \n# 個数を数える\ncnt = [ 0 ] * 100\nfor i in range(N):\n\tcnt[A[i] % 100] += 1\n \n# 答えを求める\nAnswer = 0\nfor i in range(1, 50):\n\tAnswer += cnt[i] * cnt[100-i]\nAnswer += cnt[0] * (cnt[0] - 1) // 2\nAnswer += cnt[50] * (cnt[50] - 1) // 2\n \n# 出力\nprint(Answer)\n"
  },
  {
    "id": 36,
    "name": "B041",
    "Cpp": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n \nint X, Y;\n \nint main() {\n\t// 入力\n\tcin >> X >> Y;\n \n\t// 逆から考えていく\n\tvector<pair<int, int>> Answer;\n\twhile (X >= 2 || Y >= 2) {\n\t\tAnswer.push_back(make_pair(X, Y));\n\t\tif (X > Y) X -= Y;\n\t\telse Y -= X;\n\t}\n\treverse(Answer.begin(), Answer.end());\n \n\t// 出力\n\tcout << Answer.size() << endl;\n\tfor (int i = 0; i < Answer.size(); i++) {\n\t\tcout << Answer[i].first << \" \" << Answer[i].second << endl;\n\t}\n\treturn 0;\n}\n",
    "Python": "# 入力\nX, Y = map(int, input().split())\n\n# 逆から考えていく\nAnswer = []\nwhile X>=2 or Y>=2:\n\tAnswer.append([X, Y])\n\tif X > Y:\n\t\tX -= Y\n\telse:\n\t\tY -= X\nAnswer.reverse()\n\n# 出力\nprint(len(Answer))\nfor i in range(len(Answer)):\n\tprint(str(Answer[i][0]) + ' ' + str(Answer[i][1]))\n"
  },
  {
    "id": 37,
    "name": "B042",
    "Cpp": "#include <iostream>\n#include <algorithm>\nusing namespace std;\n \nlong long N;\nlong long A[100009], B[100009];\n \n// omote=1 のとき表の総和が正、ura=1 のとき裏の総和が正\n// omote=2 のとき表の総和が負、ura=2 のとき裏の総和が負\nlong long solve(int omote, int ura) {\n\tlong long sum = 0;\n\tfor (int i = 1; i <= N; i++) {\n\t\tlong long card1 = A[i]; if (omote == 2) card1 = -A[i];\n\t\tlong long card2 = B[i]; if (ura == 2) card2 = -B[i];\n\t\t// カード i は選ぶべきか?\n\t\tif (card1 + card2 >= 0) {\n\t\t\tsum += (card1 + card2);\n\t\t}\n\t}\n\treturn sum;\n}\n \nint main() {\n\t// 入力\n\tcin >> N;\n\tfor (int i = 1; i <= N; i++) cin >> A[i] >> B[i];\n \n\t// 表の総和の正負と、裏の総和の正負を全探索\n\tlong long Answer1 = solve(1, 1);\n\tlong long Answer2 = solve(1, 2);\n\tlong long Answer3 = solve(2, 1);\n\tlong long Answer4 = solve(2, 2);\n \n\t// 答えを出力\n\tcout << max({ Answer1,Answer2,Answer3,Answer4 }) << endl;\n\treturn 0;\n}\n",
    "Python": "# omote=1 のとき表の総和が正、ura=1 のとき裏の総和が正\n# omote=2 のとき表の総和が負、ura=2 のとき裏の総和が負\ndef solve(omote, ura, A, B):\n\tsum = 0\n\tfor i in range(N):\n\t\tcard1 = A[i]\n\t\tif omote == 2:\n\t\t\tcard1 = -A[i]\n\t\tcard2 = B[i]\n\t\tif ura == 2:\n\t\t\tcard2 = -B[i]\n\t\t# カード i は選ぶべきか?\n\t\tif card1 + card2 >= 0:\n\t\t\tsum += (card1 + card2)\n\treturn sum\n\n# 入力\nN = int(input())\nA = [ None ] * N\nB = [ None ] * N\nfor i in range(N):\n\tA[i], B[i] = map(int, input().split())\n\n# 表の総和の正負と、裏の総和の正負を全探索\nAnswer1 = solve(1, 1, A, B);\nAnswer2 = solve(1, 2, A, B);\nAnswer3 = solve(2, 1, A, B);\nAnswer4 = solve(2, 2, A, B);\n\n# 出力\nprint(max(Answer1, Answer2, Answer3, Answer4))\n"
  },
  {
    "id": 38,
    "name": "B043",
    "Cpp": "#include <iostream>\nusing namespace std;\n \nint N, M;\nint A[200009];\nint Incorrect[200009];\n \nint main() {\n\t// 入力\n\tcin >> N >> M;\n\tfor (int i = 1; i <= M; i++) cin >> A[i];\n \n\t// 不正解数を求める\n\tfor (int i = 1; i <= N; i++) Incorrect[i] = 0;\n\tfor (int i = 1; i <= M; i++) Incorrect[A[i]] += 1;\n \n\t// 答えを出力\n\tfor (int i = 1; i <= N; i++) cout << M - Incorrect[i] << endl;\n\treturn 0;\n}\n",
    "Python": "# 入力\nN, M = map(int, input().split())\nA = list(map(int, input().split()))\n\n# 配列の準備\nIncorrect = [ 0 ] * (N + 1)\n\n# 不正解数を求める\nfor i in range(M):\n\tIncorrect[A[i]] += 1\n\n# 答えを出力\nfor i in range(1, N+1):\n\tprint(M - Incorrect[i])\n"
  },
  {
    "id": 39,
    "name": "B044",
    "Cpp": "#include <iostream>\nusing namespace std;\n \nint N, A[509][509];\nint Q, QueryType[200009], x[200009], y[200009];\nint T[509];\n \nint main() {\n\t// 入力\n\tcin >> N;\n\tfor (int i = 1; i <= N; i++) {\n\t\tfor (int j = 1; j <= N; j++) cin >> A[i][j];\n\t}\n \n\t// 配列 T を初期化\n\tfor (int i = 1; i <= N; i++) T[i] = i;\n \n\t// クエリの処理\n\tcin >> Q;\n\tfor (int i = 1; i <= Q; i++) {\n\t\tcin >> QueryType[i] >> x[i] >> y[i];\n\t\tif (QueryType[i] == 1) {\n\t\t\tswap(T[x[i]], T[y[i]]);\n\t\t}\n\t\tif (QueryType[i] == 2) {\n\t\t\tcout << A[T[x[i]]][y[i]] << endl;\n\t\t}\n\t}\n\treturn 0;\n}\n",
    "Python": "# 入力\nN = int(input())\nA = [ None ] * N\nfor i in range(N):\n\tA[i] = list(map(int, input().split()))\n\n# 配列 T を初期化\n# 配列 A が 0 始まりなので、配列 T も 0 始まり\nT = [ None ] * N\nfor i in range(N):\n\tT[i] = i\n\n# クエリの処理\nQ = int(input())\nfor i in range(Q):\n\tQuery = list(map(int, input().split()))\n\tif Query[0] == 1:\n\t\tT[Query[1]-1],T[Query[2]-1] = T[Query[2]-1],T[Query[1]-1]\n\tif Query[0] == 2:\n\t\tprint(A[T[Query[1]-1]][Query[2]-1])\n"
  },
  {
    "id": 40,
    "name": "B045",
    "Cpp": "#include <iostream>\nusing namespace std;\n \nlong long a, b, c;\n \nint main() {\n\t// 入力\n\tcin >> a >> b >> c;\n \n\t// 出力\n\tif (a + b + c == 0) cout << \"Yes\" << endl;\n\telse cout << \"No\" << endl;\n\treturn 0;\n}\n",
    "Python": "# 入力\na, b, c = map(int, input().split())\n\n# 出力\nif a + b + c == 0:\n\tprint(\"Yes\")\nelse:\n\tprint(\"No\")\n"
  },
  {
    "id": 41,
    "name": "B051",
    "Cpp": "#include <iostream>\n#include <stack>\nusing namespace std;\n \nint main() {\n\t// 入力\n\tstring S;\n\tcin >> S;\n \n\t// 左から順番に見ていく\n\t// 文字列は 0 文字目から始まることに注意\n\tstack<int> Stack;\n\tfor (int i = 0; i < S.size(); i++) {\n\t\tif (S[i] == '(') {\n\t\t\tStack.push(i + 1);\n\t\t}\n\t\tif (S[i] == ')') {\n\t\t\tcout << Stack.top() << \" \" << i + 1 << endl;\n\t\t\tStack.pop();\n\t\t}\n\t}\n\treturn 0;\n}\n",
    "Python": "# 入力\nS = input()\n\n# 左から順番に見ていく\n# 文字列は 0 文字目から始まることに注意\nStack = []\nfor i in range(len(S)):\n\tif S[i] == '(':\n\t\tStack.append(i + 1)\n\tif S[i] == ')':\n\t\tprint(Stack.pop(), i + 1)\n"
  },
  {
    "id": 42,
    "name": "B052",
    "Cpp": "#include <iostream>\n#include <queue>\nusing namespace std;\n \nint N, X;\nchar A[100009];\nqueue<int> Q;\n \nint main() {\n\t// 入力\n\tcin >> N >> X;\n\tfor (int i = 1; i <= N; i++) cin >> A[i];\n \n\t// シミュレーション\n\tQ.push(X); A[X] = '@';\n\twhile (!Q.empty()) {\n\t\tint pos = Q.front(); Q.pop();\n\t\tif (pos - 1 >= 1 && A[pos - 1] == '.') {\n\t\t\tA[pos - 1] = '@';\n\t\t\tQ.push(pos - 1);\n\t\t}\n\t\tif (pos + 1 <= N && A[pos + 1] == '.') {\n\t\t\tA[pos + 1] = '@';\n\t\t\tQ.push(pos + 1);\n\t\t}\n\t}\n \n\t// 出力\n\tfor (int i = 1; i <= N; i++) cout << A[i];\n\tcout << endl;\n\treturn 0;\n}\n",
    "Python": "from collections import deque\n\n\n# 入力\nN, X = map(int, input().split())\nX -= 1\nA = list(input())\n\n# シミュレーション\nQ = deque([X])\nQ.append(X)\nA[X] = '@'\nwhile Q:\n\tpos = Q.popleft()\n\tif pos - 1 >= 0 and A[pos - 1] == '.':\n\t\tA[pos - 1] = '@'\n\t\tQ.append(pos - 1)\n\tif pos + 1 < N and A[pos + 1] == '.':\n\t\tA[pos + 1] = '@'\n\t\tQ.append(pos + 1)\n\n# 出力\nprint(\"\".join(A))\n"
  },
  {
    "id": 43,
    "name": "B053",
    "Cpp": "#include <iostream>\n#include <vector>\n#include <queue>\nusing namespace std;\n\nlong long N, D;\nlong long X[200009], Y[200009];\nvector<long long> G[375]; // G[i] は i 日目から始まる仕事の給料のリスト\nlong long Answer = 0;\n\nint main() {\n\t// 入力\n\tcin >> N >> D;\n\tfor (int i = 1; i <= N; i++) {\n\t\tcin >> X[i] >> Y[i];\n\t\tG[X[i]].push_back(Y[i]);\n\t}\n\n\t// 答えを求める\n\tpriority_queue<long long> Q;\n\tfor (int i = 1; i <= D; i++) {\n\t\t// i 日目から始まる仕事をキューに追加\n\t\tfor (int j : G[i]) Q.push(j);\n\n\t\t// やる仕事を選択し、その仕事をキューから削除する\n\t\tif (!Q.empty()) {\n\t\t\tAnswer += Q.top();\n\t\t\tQ.pop();\n\t\t}\n\t}\n\n\t// 出力\n\tcout << Answer << endl;\n\treturn 0;\n}\n",
    "Python": "import heapq\n\n\nG = [list() for _ in range(2005)] # G[i] は i 日目から始まる仕事の給料のリスト\n\n# 入力\nN, D = map(int, input().split())\nfor _ in range(N):\n\tX, Y = map(int, input().split())\n\tG[X].append(Y)\n\n# 答えを求める\nQ = []\nAnswer = 0\nfor i in range(1, D + 1):\n\t# i 日目から始まる仕事をキューに追加\n\t# heap は最小値を取り出すので -1 倍する\n\tfor y in G[i]: heapq.heappush(Q, -y)\n\n\t# やる仕事を選択し、その仕事をキューから削除する\n\tif Q:\n\t\tAnswer -= heapq.heappop(Q)\n\n# 出力\nprint(Answer)\n"
  },
  {
    "id": 44,
    "name": "B054",
    "Cpp": "#include <iostream>\n#include <map>\nusing namespace std;\n \nint N, A[100009];\nmap<int, int> Map;\n \nint main() {\n\t// 入力\n\tcin >> N;\n\tfor (int i = 1; i <= N; i++) cin >> A[i];\n \n\t// 答えを求める\n\tlong long Answer = 0;\n\tfor (int i = 1; i <= N; i++) {\n\t\tAnswer += Map[A[i]];\n\t\tMap[A[i]] += 1;\n\t}\n \n\t// 出力\n\tcout << Answer << endl;\n\treturn 0;\n}\n",
    "Python": "Map = {}\n \n# 入力\nN = int(input())\nA = [int(input()) for _ in range(N)]\n\n# 答えを求める\nAnswer = 0\nfor a in A:\n\t# dict.get にはキーが存在しなかった場合のデフォルト値を設定できる\n\tAnswer += Map.get(a, 0)\n\tMap[a] = Map.get(a, 0) + 1\n\n# 出力\nprint(Answer)\n"
  },
  {
    "id": 45,
    "name": "B055",
    "Cpp": "#include <iostream>\n#include <set>\n#include <algorithm>\nusing namespace std;\n \nlong long Q, QueryType[100009], x[100009];\nset<long long> Set1, Set2;\n \n// r 以下の最大値を返す\nlong long GetDown(long long r) {\n\tauto itr = Set2.lower_bound(-r);\n \n\t// r 以下のものが存在しない場合、非常に小さい値を返す\n\tif (itr == Set2.end()) return -100000000000000LL;\n \n\t// 存在する場合\n\treturn -(*itr);\n}\n \n// r 以上の最小値を返す\nlong long GetUp(long long r) {\n\tauto itr = Set1.lower_bound(r);\n \n\t// r 以上のものが存在しない場合、非常に大きい値を返す\n\tif (itr == Set1.end()) return 100000000000000LL;\n \n\t// 存在する場合\n\treturn (*itr);\n}\n \nint main() {\n\t// 入力\n\tcin >> Q;\n\tfor (int i = 1; i <= Q; i++) cin >> QueryType[i] >> x[i];\n \n\t// クエリの処理\n\tfor (int i = 1; i <= Q; i++) {\n\t\tif (QueryType[i] == 1) {\n\t\t\tSet1.insert(x[i]);\n\t\t\tSet2.insert(-x[i]);\n\t\t}\n\t\tif (QueryType[i] == 2) {\n\t\t\tlong long v1 = GetDown(x[i]);\n\t\t\tlong long v2 = GetUp(x[i]);\n\t\t\tlong long Answer = min(x[i] - v1, v2 - x[i]);\n\t\t\tif (Answer == 100000000000000LL) cout << \"-1\" << endl;\n\t\t\telse cout << Answer << endl;\n\t\t}\n\t}\n\treturn 0;\n}\n",
    "Python": "# Python には C++ の std::set に相当する標準ライブラリが存在しません。\n# std::set に相当する外部のライブラリを使用するのが良いでしょう。\n\n# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py\nimport math\nfrom bisect import bisect_left, bisect_right\nfrom typing import Generic, Iterable, Iterator, TypeVar, Union, List\nT = TypeVar('T')\n\nclass SortedSet(Generic[T]):\n    BUCKET_RATIO = 50\n    REBUILD_RATIO = 170\n\n    def _build(self, a=None) -> None:\n        \"Evenly divide `a` into buckets.\"\n        if a is None: a = list(self)\n        size = self.size = len(a)\n        bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO)))\n        self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)]\n    \n    def __init__(self, a: Iterable[T] = []) -> None:\n        \"Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)\"\n        a = list(a)\n        if not all(a[i] < a[i + 1] for i in range(len(a) - 1)):\n            a = sorted(set(a))\n        self._build(a)\n\n    def __iter__(self) -> Iterator[T]:\n        for i in self.a:\n            for j in i: yield j\n\n    def __reversed__(self) -> Iterator[T]:\n        for i in reversed(self.a):\n            for j in reversed(i): yield j\n    \n    def __len__(self) -> int:\n        return self.size\n    \n    def __repr__(self) -> str:\n        return \"SortedSet\" + str(self.a)\n    \n    def __str__(self) -> str:\n        s = str(list(self))\n        return \"{\" + s[1 : len(s) - 1] + \"}\"\n\n    def _find_bucket(self, x: T) -> List[T]:\n        \"Find the bucket which should contain x. self must not be empty.\"\n        for a in self.a:\n            if x <= a[-1]: return a\n        return a\n\n    def __contains__(self, x: T) -> bool:\n        if self.size == 0: return False\n        a = self._find_bucket(x)\n        i = bisect_left(a, x)\n        return i != len(a) and a[i] == x\n\n    def add(self, x: T) -> bool:\n        \"Add an element and return True if added. / O(√N)\"\n        if self.size == 0:\n            self.a = [[x]]\n            self.size = 1\n            return True\n        a = self._find_bucket(x)\n        i = bisect_left(a, x)\n        if i != len(a) and a[i] == x: return False\n        a.insert(i, x)\n        self.size += 1\n        if len(a) > len(self.a) * self.REBUILD_RATIO:\n            self._build()\n        return True\n\n    def discard(self, x: T) -> bool:\n        \"Remove an element and return True if removed. / O(√N)\"\n        if self.size == 0: return False\n        a = self._find_bucket(x)\n        i = bisect_left(a, x)\n        if i == len(a) or a[i] != x: return False\n        a.pop(i)\n        self.size -= 1\n        if len(a) == 0: self._build()\n        return True\n    \n    def lt(self, x: T) -> Union[T, None]:\n        \"Find the largest element < x, or None if it doesn't exist.\"\n        for a in reversed(self.a):\n            if a[0] < x:\n                return a[bisect_left(a, x) - 1]\n\n    def le(self, x: T) -> Union[T, None]:\n        \"Find the largest element <= x, or None if it doesn't exist.\"\n        for a in reversed(self.a):\n            if a[0] <= x:\n                return a[bisect_right(a, x) - 1]\n\n    def gt(self, x: T) -> Union[T, None]:\n        \"Find the smallest element > x, or None if it doesn't exist.\"\n        for a in self.a:\n            if a[-1] > x:\n                return a[bisect_right(a, x)]\n\n    def ge(self, x: T) -> Union[T, None]:\n        \"Find the smallest element >= x, or None if it doesn't exist.\"\n        for a in self.a:\n            if a[-1] >= x:\n                return a[bisect_left(a, x)]\n    \n    def __getitem__(self, x: int) -> T:\n        \"Return the x-th element, or IndexError if it doesn't exist.\"\n        if x < 0: x += self.size\n        if x < 0: raise IndexError\n        for a in self.a:\n            if x < len(a): return a[x]\n            x -= len(a)\n        raise IndexError\n    \n    def index(self, x: T) -> int:\n        \"Count the number of elements < x.\"\n        ans = 0\n        for a in self.a:\n            if a[-1] >= x:\n                return ans + bisect_left(a, x)\n            ans += len(a)\n        return ans\n\n    def index_right(self, x: T) -> int:\n        \"Count the number of elements <= x.\"\n        ans = 0\n        for a in self.a:\n            if a[-1] > x:\n                return ans + bisect_right(a, x)\n            ans += len(a)\n        return ans\n\n# SortedSet ここまで\n \n# 入力\nQ = int(input())\nQuery = [tuple(map(int, input().split())) for _ in range(Q)]\n\n# クエリの処理\nINF = 1 << 61\nSet = SortedSet([-INF, INF]) # x より小さい / 大きい数が存在しなかったときのための番兵\n\nfor type, x in Query:\n\tif type == 1:\n\t\tSet.add(x)\n\tif type == 2:\n\t\tif len(Set) == 2:\n\t\t\tprint(-1)\n\t\t\tcontinue\n\t\tv1 = Set.le(x)\n\t\tv2 = Set.ge(x)\n\t\tAnswer = min(x - v1, v2 - x)\n\t\tprint(Answer)\n"
  },
  {
    "id": 46,
    "name": "B056",
    "Cpp": "#include <iostream>\n#include <string>\n#include <algorithm>\nusing namespace std;\n\n// 入力で与えられる変数など\nint N, Q, L[100009], R[100009];\nstring S;\nstring SRev; // S の逆順\n\n// 文字列を数値に変換した値(それぞれ S, SRev に対応)\nint T[100009];\nint TRev[100009];\n\n// ハッシュ値など\nlong long mod = 2147483647;\nlong long Power100[100009];\nlong long H[100009];    // S のハッシュ\nlong long HRev[100009]; // SRev のハッシュ\n\n// 文字列の l~r 番目を前から読んだ時のハッシュ値を返す関数\nlong long GetHashLeft(int l, int r) {\n\tlong long val = H[r] - (Power100[r - l + 1] * H[l - 1] % mod);\n\tif (val < 0) val += mod;\n\treturn val;\n}\n\n// 文字列の l~r 番目を後ろから読んだ時のハッシュ値を返す関数\nlong long GetHashRight(int l, int r) {\n\tint true_l = N + 1 - r;\n\tint true_r = N + 1 - l;\n\tlong long val = HRev[true_r] - (Power100[true_r - true_l + 1] * HRev[true_l - 1] % mod);\n\tif (val < 0) val += mod;\n\treturn val;\n}\n\nint main() {\n\t// 入力\n\tcin >> N >> Q;\n\tcin >> S;\n\tfor (int i = 1; i <= Q; i++) cin >> L[i] >> R[i];\n\tSRev = S;\n\treverse(SRev.begin(), SRev.end());\n\n\t// S, SRev の文字を数値に変換\n\tfor (int i = 1; i <= N; i++) T[i] = (int)(S[i - 1] - 'a') + 1;\n\tfor (int i = 1; i <= N; i++) TRev[i] = (int)(SRev[i - 1] - 'a') + 1;\n\n\t// 100 の n 乗を前計算\n\tPower100[0] = 1;\n\tfor (int i = 1; i <= N; i++) Power100[i] = (100LL * Power100[i - 1]) % mod;\n\n\t// S のハッシュ値を前計算\n\tH[0] = 1;\n\tfor (int i = 1; i <= N; i++) H[i] = (100LL * H[i - 1] + T[i]) % mod;\n\n\t// SRev のハッシュ値を前計算\n\tHRev[0] = 1;\n\tfor (int i = 1; i <= N; i++) HRev[i] = (100LL * HRev[i - 1] + TRev[i]) % mod;\n\n\t// クエリの処理\n\tfor (int i = 1; i <= Q; i++) {\n\t\tlong long v1 = GetHashLeft(L[i], R[i]);\n\t\tlong long v2 = GetHashRight(L[i], R[i]);\n\t\t// 左から読んだ時・右から読んだ時のハッシュ値が一致していれば回文\n\t\tif (v1 == v2) cout << \"Yes\" << endl;\n\t\telse cout << \"No\" << endl;\n\t}\n\treturn 0;\n}\n",
    "Python": "mod = 2147483647\n\n# 文字列の l~r 番目を前から読んだ時のハッシュ値を返す関数\ndef GetHashLeft(l: int, r: int) -> int:\n\tval = H[r] - Power100[r - l + 1] * H[l - 1]\n\treturn val % mod\n\n# 文字列の l~r 番目を後ろから読んだ時のハッシュ値を返す関数\ndef GetHashRight(l: int, r: int) -> int:\n\tl, r = N + 1 - r, N + 1 - l\n\tval = HRev[r] - Power100[r - l + 1] * HRev[l - 1]\n\treturn val % mod\n\n# 入力\nN, Q = map(int, input().split())\nS = input()\nQuery = [tuple(map(int, input().split())) for _ in range(Q)]\n\n# S の各文字を数値に変換\nS = list(S)\nfor i in range(N):\n\tS[i] = ord(S[i]) - ord('a') + 1\nSRev = S[::-1]\n\n# 100 の n 乗を前計算\nPower100 = [1] * (N + 1)\nfor i in range(N):\n\tPower100[i + 1] = Power100[i] * 100 % mod\n\n# S のハッシュ値を前計算\nH = [1] * (N + 1)\nfor i in range(N):\n\tH[i + 1] = (H[i] * 100 + S[i]) % mod\n\n# SRev のハッシュ値を前計算\nHRev = [1] * (N + 1)\nfor i in range(N):\n\tHRev[i + 1] = (HRev[i] * 100 + SRev[i]) % mod\n\n# クエリの処理\nfor L, R in Query:\n\tv1 = GetHashLeft(L, R)\n\tv2 = GetHashRight(L, R)\n\t# 左から読んだ時・右から読んだ時のハッシュ値が一致していれば回文\n\tif v1 == v2:\n\t\tprint(\"Yes\")\n\telse:\n\t\tprint(\"No\")\n"
  },
  {
    "id": 47,
    "name": "B057",
    "Cpp": "#include <iostream>\n#include <string>\nusing namespace std;\n \nint N, K;\nint dp[32][300009];\n \nint main() {\n\t// 入力\n\tcin >> N >> K;\n \n\t// 1 回操作した後の値を求める\n\tfor (int i = 1; i <= N; i++) {\n\t\tstring str = to_string(i);\n\t\tdp[0][i] = i;\n\t\tfor (int j = 0; j < str.size(); j++) {\n\t\t\tdp[0][i] -= (int)(str[j] - '0');\n\t\t}\n\t}\n \n\t// 前計算\n\tfor (int d = 1; d <= 29; d++) {\n\t\tfor (int i = 1; i <= N; i++) dp[d][i] = dp[d - 1][dp[d - 1][i]];\n\t}\n \n\t// 答えを求める\n\tfor (int i = 1; i <= N; i++) {\n\t\tint CurrentNum = i; // 現在の整数\n\t\tfor (int d = 29; d >= 0; d--) {\n\t\t\tif ((K / (1 << d)) % 2 != 0) CurrentNum = dp[d][CurrentNum];\n\t\t}\n\t\tcout << CurrentNum << endl;\n\t}\n\treturn 0;\n}\n",
    "Python": "dp = [[0] * 300009 for _ in range(30)]\n \n# 入力\nN, K = map(int, input().split())\n\n# 1 回操作した後の値を求める\nfor i in range(N + 1):\n\tdp[0][i] = i - sum(map(int, str(i)))\n\n# 前計算\nfor d in range(29):\n\tfor i in range(N + 1):\n\t\tdp[d + 1][i] = dp[d][dp[d][i]]\n\n# 答えを求める\nfor num in range(1, N + 1):\n\tfor d in range(30):\n\t\tif K & (1 << d):\n\t\t\tnum = dp[d][num]\n\tprint(num)\n"
  },
  {
    "id": 48,
    "name": "B058",
    "Cpp": "#include <iostream>\n#include <algorithm>\nusing namespace std;\n \nclass SegmentTree {\npublic:\n\tint dat[300000], siz = 1;\n \n\t// 要素 dat の初期化を行う(最初は全部ゼロ)\n\tvoid init(int N) {\n\t\tsiz = 1;\n\t\twhile (siz < N) siz *= 2;\n\t\tfor (int i = 1; i < siz * 2; i++) dat[i] = 0;\n\t}\n \n\t// クエリ 1 に対する処理\n\tvoid update(int pos, int x) {\n\t\tpos = pos + siz - 1;\n\t\tdat[pos] = x;\n\t\twhile (pos >= 2) {\n\t\t\tpos /= 2;\n\t\t\tdat[pos] = min(dat[pos * 2], dat[pos * 2 + 1]);\n\t\t}\n\t}\n \n\t// クエリ 2 に対する処理\n\t// u は現在のセル番号、[a, b) はセルに対応する半開区間、[l, r) は求めたい半開区間\n\tint query(int l, int r, int a, int b, int u) {\n\t\tif (r <= a || b <= l) return 1000000000; // 一切含まれない場合\n\t\tif (l <= a && b <= r) return dat[u]; // 完全に含まれる場合\n\t\tint m = (a + b) / 2;\n\t\tint AnswerL = query(l, r, a, m, u * 2);\n\t\tint AnswerR = query(l, r, m, b, u * 2 + 1);\n\t\treturn min(AnswerL, AnswerR);\n\t}\n};\n \nint N, L, R, X[100009];\nint dp[100009];\nSegmentTree Z;\n \nint main() {\n\t// 入力\n\tcin >> N >> L >> R;\n\tfor (int i = 1; i <= N; i++) cin >> X[i];\n \n\t// セグメント木の準備\n\tZ.init(N);\n\tdp[1] = 0;\n\tZ.update(1, 0);\n \n\t// 動的計画法\n\tfor (int i = 2; i <= N; i++) {\n\t\tint posL = lower_bound(X + 1, X + N + 1, X[i] - R) - X;\n\t\tint posR = lower_bound(X + 1, X + N + 1, X[i] - L + 1) - X - 1;\n\t\tdp[i] = Z.query(posL, posR + 1, 1, Z.siz + 1, 1) + 1;\n\t\tZ.update(i, dp[i]);\n\t}\n \n\t// 答えを出力\n\tcout << dp[N] << endl;\n\treturn 0;\n}\n",
    "Python": "import bisect\n\n\nINF = 1 << 61\nsiz = 1 << 17\ndat = [INF] * (siz * 2)\n\n# 代入 seg[i] = v\ndef update(i: int, v: int) -> None:\n\ti += siz\n\tdat[i] = v\n\twhile i > 1:\n\t\ti >>= 1\n\t\tdat[i] = min(dat[i * 2], dat[i * 2 + 1])\n\n# min(seg[l], seg[l + 1], ..., seg[r - 1]) を求める\ndef query(l: int, r: int) -> int:\n\tl += siz\n\tr += siz\n\tanswer = INF\n\twhile l < r:\n\t\tif l & 1:\n\t\t\tif answer > dat[l]:\n\t\t\t\tanswer = dat[l]\n\t\t\tl += 1\n\t\tif r & 1:\n\t\t\tr -= 1\n\t\t\tif answer > dat[r]:\n\t\t\t\tanswer = dat[r]\n\t\tl >>= 1\n\t\tr >>= 1\n\treturn answer\n\n# 入力\nN, L, R = map(int, input().split())\nX = list(map(int, input().split()))\ndp = [0] * N\n\n# 動的計画法\nupdate(0, 0)\nfor i in range(1, N):\n\tx = X[i]\n\tposL = bisect.bisect_left(X, x - R)\n\tposR = bisect.bisect_right(X, x - L)\n\tdp[i] = query(posL, posR) + 1\n\tupdate(i, dp[i])\n\nprint(dp[-1])\n"
  },
  {
    "id": 49,
    "name": "B059",
    "Cpp": "#include <iostream>\n#include <algorithm>\nusing namespace std;\n \nclass SegmentTree {\npublic:\n\tint dat[600000], siz = 1;\n \n\t// 要素 dat の初期化を行う(最初は全部ゼロ)\n\tvoid init(int N) {\n\t\tsiz = 1;\n\t\twhile (siz < N) siz *= 2;\n\t\tfor (int i = 1; i < siz * 2; i++) dat[i] = 0;\n\t}\n \n\t// クエリ 1 に対する処理\n\tvoid update(int pos, int x) {\n\t\tpos = pos + siz - 1;\n\t\tdat[pos] = x;\n\t\twhile (pos >= 2) {\n\t\t\tpos /= 2;\n\t\t\tdat[pos] = dat[pos * 2] + dat[pos * 2 + 1]; // 8.8 節から変更した部分\n\t\t}\n\t}\n \n\t// クエリ 2 に対する処理\n\tint query(int l, int r, int a, int b, int u) {\n\t\tif (r <= a || b <= l) return 0; // 8.8 節から変更した部分\n\t\tif (l <= a && b <= r) return dat[u];\n\t\tint m = (a + b) / 2;\n\t\tint AnswerL = query(l, r, a, m, u * 2);\n\t\tint AnswerR = query(l, r, m, b, u * 2 + 1);\n\t\treturn AnswerL + AnswerR; // 8.8 節から変更した部分\n\t}\n};\n \nint N, A[150009];\nSegmentTree Z;\n \nint main() {\n\t// 入力\n\tcin >> N;\n\tfor (int i = 1; i <= N; i++) cin >> A[i];\n \n\t// セグメント木の準備\n\tZ.init(N);\n \n\t// 答えを求める\n\tlong long Answer = 0;\n\tfor (int i = 1; i <= N; i++) {\n\t\tAnswer += Z.query(A[i] + 1, N + 1, 1, Z.siz + 1, 1);\n\t\tZ.update(A[i], 1);\n\t}\n \n\t// 出力\n\tcout << Answer << endl;\n\treturn 0;\n}\n",
    "Python": "siz = 1 << 18\ndat = [0] * (siz * 2)\n\n# 代入 seg[i] = v\ndef update(i: int, v: int) -> None:\n\ti += siz\n\tdat[i] = v\n\twhile i > 1:\n\t\ti >>= 1\n\t\tdat[i] = dat[i * 2] + dat[i * 2 + 1]\n\n# sum(seg[l], seg[l + 1], ..., seg[r - 1]) を求める\ndef query(l: int, r: int) -> int:\n\tl += siz\n\tr += siz\n\tanswer = 0\n\twhile l < r:\n\t\tif l & 1:\n\t\t\tanswer += dat[l]\n\t\t\tl += 1\n\t\tif r & 1:\n\t\t\tr -= 1\n\t\t\tanswer += dat[r]\n\t\tl >>= 1\n\t\tr >>= 1\n\treturn answer\n\n# 入力\nN = int(input())\nA = list(map(int, input().split()))\n\n# 答えを求める\nAnswer = 0\nfor a in A:\n\tAnswer += query(a + 1, siz)\n\tupdate(a, 1)\n\n# 出力\nprint(Answer)\n"
  },
  {
    "id": 50,
    "name": "B061",
    "Cpp": "#include <iostream>\n#include <vector>\nusing namespace std;\n \nint N, M, A[100009], B[100009];\nvector<int> G[100009];\n \nint main() {\n\t// 入力\n\tcin >> N >> M;\n\tfor (int i = 1; i <= M; i++) {\n\t\tcin >> A[i] >> B[i];\n\t\tG[A[i]].push_back(B[i]); // 「頂点 A[i] に隣接する頂点」として B[i] を追加\n\t\tG[B[i]].push_back(A[i]); // 「頂点 B[i] に隣接する頂点」として A[i] を追加\n\t}\n \n\t// 次数(= 友達の数)が最大となる生徒の番号を求める\n\tint MaxFriends = 0; // 友達の数の最大値\n\tint MaxID = 0;      // 番号\n\tfor (int i = 1; i <= N; i++) {\n\t\tif (MaxFriends < (int)G[i].size()) {\n\t\t\tMaxFriends = (int)G[i].size();\n\t\t\tMaxID = i;\n\t\t}\n\t}\n \n\t// 出力\n\tcout << MaxID << endl;\n\treturn 0;\n}\n",
    "Python": "# 入力\nN, M = map(int, input().split())\n\n# 友達の数を数える\nfriend = [0] * N\nfor _ in range(M):\n    A, B = map(int, input().split())\n    A -= 1\n    B -= 1\n    friend[A] += 1\n    friend[B] += 1\n\nmx = max(friend)\nans = friend.index(mx)\nprint(ans + 1)\n"
  },
  {
    "id": 51,
    "name": "B062",
    "Cpp": "#include <iostream>\n#include <vector>\n#include <string>\nusing namespace std;\n \n// 入力\nint N, M, A[100009], B[100009];\n \n// 深さ優先探索\nvector<int> G[100009];\nbool visited[100009];\n \n// 深さ優先探索の跡\nvector<int> Path, Answer;\n \nvoid dfs(int pos) {\n\t// ゴール地点にたどり着いた!\n\tif (pos == N) {\n\t\tAnswer = Path;\n\t\treturn;\n\t}\n \n\t// その他の場合\n\tvisited[pos] = true;\n\tfor (int i = 0; i < G[pos].size(); i++) {\n\t\tint nex = G[pos][i];\n\t\tif (visited[nex] == false) {\n\t\t\tPath.push_back(nex); // 頂点 nex を経路に追加\n\t\t\tdfs(nex);\n\t\t\tPath.pop_back(); // 頂点 nex を経路から削除\n\t\t}\n\t}\n\treturn;\n}\n \nint main() {\n\t// 入力\n\tcin >> N >> M;\n\tfor (int i = 1; i <= M; i++) {\n\t\tcin >> A[i] >> B[i];\n\t\tG[A[i]].push_back(B[i]);\n\t\tG[B[i]].push_back(A[i]);\n\t}\n \n\t// 深さ優先探索\n\tfor (int i = 1; i <= N; i++) visited[i] = false;\n\tPath.push_back(1); // 頂点 1(スタート地点)を経路に追加\n\tdfs(1);\n \n\t// 答えの出力\n\tfor (int i = 0; i < Answer.size(); i++) {\n\t\tif (i >= 1) cout << \" \";\n\t\tcout << Answer[i];\n\t}\n\tcout << endl;\n\treturn 0;\n}\n",
    "Python": "import sys\nsys.setrecursionlimit(1 << 20)  # 再帰上限がデフォルトで 1000 なので変更する\n\n# 入力\nN, M = map(int, input().split())\ng = [[] for _ in range(N)]\nfor i in range(M):\n    A, B = map(int, input().split())\n    A -= 1\n    B -= 1\n    g[A].append(B)\n    g[B].append(A)\n\n# 深さ優先探索\nvisited = [False] * (N + 1)\npath = []\n\ndef dfs(i: int):\n    path.append(i)\n    # ゴール地点にたどり着いた!\n    if i == N - 1:\n        # 答えを出力して終了\n        for x in path:\n            print(x + 1) # 1-indexed に変更\n        exit(0)\n\n    # その他の場合\n    visited[i] = True\n    for j in g[i]:\n        if not visited[j]:\n            dfs(j)\n    path.pop()\n\ndfs(0)\n"
  },
  {
    "id": 52,
    "name": "B063",
    "Cpp": "#include <iostream>\n#include <vector>\n#include <queue>\nusing namespace std;\n\n// 入力\nint H, W;\nint sx, sy, start; // スタートの座標 (sx, sy) と頂点番号 sx*H+sy\nint gx, gy, goal;  // ゴールの座標 (gx, gy) と頂点番号 gx*W+gy\nchar c[59][59];\n\n// グラフ・最短経路\nint dist[2509];\nvector<int> G[2509];\n\nint main() {\n\t// 入力\n\tcin >> H >> W;\n\tcin >> sx >> sy; start = sx * W + sy;\n\tcin >> gx >> gy; goal = gx * W + gy;\n\tfor (int i = 1; i <= H; i++) {\n\t\tfor (int j = 1; j <= W; j++) cin >> c[i][j];\n\t}\n\n\t// 横方向の辺 [(i, j) - (i, j+1)] をグラフに追加\n\tfor (int i = 1; i <= H; i++) {\n\t\tfor (int j = 1; j <= W - 1; j++) {\n\t\t\tint idx1 = i * W + j; // 頂点 (i, j) の頂点番号\n\t\t\tint idx2 = i * W + (j + 1); // 頂点 (i, j+1) の頂点番号\n\t\t\tif (c[i][j] == '.' && c[i][j + 1] == '.') {\n\t\t\t\tG[idx1].push_back(idx2);\n\t\t\t\tG[idx2].push_back(idx1);\n\t\t\t}\n\t\t}\n\t}\n\n\t// 縦方向の辺 [(i, j) - (i+1, j)] をグラフに追加\n\tfor (int i = 1; i <= H - 1; i++) {\n\t\tfor (int j = 1; j <= W; j++) {\n\t\t\tint idx1 = i * W + j; // 頂点 (i, j) の頂点番号\n\t\t\tint idx2 = (i + 1) * W + j; // 頂点 (i+1, j) の頂点番号\n\t\t\tif (c[i][j] == '.' && c[i + 1][j] == '.') {\n\t\t\t\tG[idx1].push_back(idx2);\n\t\t\t\tG[idx2].push_back(idx1);\n\t\t\t}\n\t\t}\n\t}\n\n\t// 幅優先探索の初期化\n\tfor (int i = 1; i <= H * W; i++) dist[i] = -1;\n\tqueue<int> Q;\n\tQ.push(start); dist[start] = 0;\n\n\t// 幅優先探索\n\twhile (!Q.empty()) {\n\t\tint pos = Q.front();\n\t\tQ.pop();\n\t\tfor (int i = 0; i < G[pos].size(); i++) {\n\t\t\tint to = G[pos][i];\n\t\t\tif (dist[to] == -1) {\n\t\t\t\tdist[to] = dist[pos] + 1;\n\t\t\t\tQ.push(to);\n\t\t\t}\n\t\t}\n\t}\n\n\t// 答えを出力\n\tcout << dist[goal] << endl;\n\treturn 0;\n}\n",
    "Python": "# 入力\nH, W = map(int, input().split())\nsx, sy = map(int, input().split())\nsx -= 1\nsy -= 1\ngx, gy = map(int, input().split())\ngx -= 1\ngy -= 1\nS = [input() for _ in range(H)]\n\nINF = 1 << 61\n# Python では多次元配列は 1 次元に flatten した方が速い (ここでは使わない)\ncost = [[INF] * W for _ in range(H)]\n\nq = [] # queue は list で再現できる\n# マスに訪れる部分を関数に切り出すと良い\ndef push(x: int, y: int, c: int):\n    if S[x][y] == '#':\n        return\n    if cost[x][y] <= c:\n        return\n    cost[x][y] = c\n    q.append((x, y))\n\n# 幅優先探索\npush(sx, sy, 0)\nfor x, y in q:\n    c2 = cost[x][y] + 1\n    push(x - 1, y, c2)\n    push(x, y - 1, c2)\n    push(x + 1, y, c2)\n    push(x, y + 1, c2)\n\nprint(cost[gx][gy])\n"
  },
  {
    "id": 53,
    "name": "B064",
    "Cpp": "#include <iostream>\n#include <queue>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n \n// 入力・グラフ\nint N, M, A[100009], B[100009], C[100009];\nvector<pair<int, int>> G[100009];\n \n// ダイクストラ法\nint cur[100009]; bool kakutei[100009];\npriority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> Q;\n \nint main() {\n\t// 入力\n\tcin >> N >> M;\n\tfor (int i = 1; i <= M; i++) {\n\t\tcin >> A[i] >> B[i] >> C[i];\n\t\tG[A[i]].push_back(make_pair(B[i], C[i]));\n\t\tG[B[i]].push_back(make_pair(A[i], C[i]));\n\t}\n \n\t// 配列の初期化\n\tfor (int i = 1; i <= N; i++) kakutei[i] = false;\n\tfor (int i = 1; i <= N; i++) cur[i] = 2000000000;\n \n\t// スタート地点をキューに追加\n\tcur[1] = 0;\n\tQ.push(make_pair(cur[1], 1));\n \n\t// ダイクストラ法\n\twhile (!Q.empty()) {\n\t\t// 次に確定させるべき頂点を求める\n\t\tint pos = Q.top().second; Q.pop();\n \n\t\t// Q の最小要素が「既に確定した頂点」の場合\n\t\tif (kakutei[pos] == true) continue;\n \n\t\t// cur[x] の値を更新する\n\t\tkakutei[pos] = true;\n\t\tfor (int i = 0; i < G[pos].size(); i++) {\n\t\t\tint nex = G[pos][i].first;\n\t\t\tint cost = G[pos][i].second;\n\t\t\tif (cur[nex] > cur[pos] + cost) {\n\t\t\t\tcur[nex] = cur[pos] + cost;\n\t\t\t\tQ.push(make_pair(cur[nex], nex));\n\t\t\t}\n\t\t}\n\t}\n \n\t// 答えの復元(Place は現在の位置:ゴールから出発)\n\tvector<int> Answer;\n\tint Place = N;\n\twhile (true) {\n\t\tAnswer.push_back(Place);\n\t\tif (Place == 1) break;\n \n\t\t// Place の前の頂点としては、一体どこが良いのか?\n\t\tfor (int i = 0; i < G[Place].size(); i++) {\n\t\t\tint nex = G[Place][i].first;\n\t\t\tint cost = G[Place][i].second;\n\t\t\tif (cur[nex] + cost == cur[Place]) {\n\t\t\t\tPlace = nex;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\treverse(Answer.begin(), Answer.end());\n \n\t// 出力\n\tfor (int i = 0; i < Answer.size(); i++) {\n\t\tif (i >= 1) cout << \" \";\n\t\tcout << Answer[i];\n\t}\n\tcout << endl;\n\treturn 0;\n}\n",
    "Python": "from heapq import heappush, heappop\n\nN, M = map(int, input().split())\ng = [[] for _ in range(N)]\nfor _ in range(M):\n    A, B, C = map(int, input().split())\n    A -= 1\n    B -= 1\n    g[A].append((B, C))\n    g[B].append((A, C))\n\nINF = 1 << 61\ncost = [INF] * N\nback = [-1] * N\nq = []\n\n# 頂点に訪れる部分を関数に切り出す\ndef push(prev: int, i: int, c: int):\n    if cost[i] <= c:\n        return\n    cost[i] = c\n    back[i] = prev\n    heappush(q, (c, i))\n\n# 復元の都合上後ろから Dijkstra 法\npush(-1, N - 1, 0)\nwhile q:\n    c, x = heappop(q)\n    if cost[x] != c:\n        continue # 同じ頂点から複数回探索しない (worst Θ(N^2) 時間になります)\n    for j, d in g[x]:\n        push(x, j, c + d)\n\n# 最短経路を復元\nans = [0]\nwhile ans[-1] != N - 1:\n    ans.append(back[ans[-1]])\n\nfor x in ans:\n    print(x + 1)"
  },
  {
    "id": 54,
    "name": "B065",
    "Cpp": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n \n// 入力される変数・答え\nint N, T, A[100009], B[100009];\nint Answer[100009];\n \n// グラフ・深さ優先探索\nvector<int> G[100009];\nbool visited[100009];\n \n// 深さ優先探索を行う関数(pos は現在位置)\n// 返り値は社員 pos の階級\nint dfs(int pos) {\n\t// 最初、社員 pos の階級を 0 に設定する\n\tvisited[pos] = true;\n\tAnswer[pos] = 0;\n \n\t// 探索をする\n\tfor (int i = 0; i < G[pos].size(); i++) {\n\t\tint nex = G[pos][i];\n\t\tif (visited[nex] == false) {\n\t\t\tint ret = dfs(nex);\n\t\t\tAnswer[pos] = max(Answer[pos], ret + 1); // 階級を更新する\n\t\t}\n\t}\n \n\t// 値を返す\n\treturn Answer[pos];\n}\n \nint main() {\n\t// 入力\n\tcin >> N >> T;\n\tfor (int i = 1; i <= N - 1; i++) {\n\t\tcin >> A[i] >> B[i];\n\t\tG[A[i]].push_back(B[i]); // A[i]→B[i] の方向に辺を追加\n\t\tG[B[i]].push_back(A[i]); // B[i]→A[i] の方向に辺を追加\n\t}\n \n\t// 深さ優先探索\n\tdfs(T);\n \n\t// 出力\n\tfor (int i = 1; i <= N; i++) {\n\t\tif (i >= 2) cout << \" \";\n\t\tcout << Answer[i];\n\t}\n\tcout << endl;\n\treturn 0;\n}\n",
    "Python": "import sys\nsys.setrecursionlimit(1 << 30)  # 再帰上限をなくす\n\nN, T = map(int, input().split())\nT -= 1\ng = [[] for _ in range(N)]\nfor _ in range(N - 1):\n    A, B = map(int, input().split())\n    A -= 1\n    B -= 1\n    g[A].append(B)\n    g[B].append(A)\n\nrank = [0] * N\n\n# 深さ優先探索\ndef dfs(parent: int, i: int) -> int:\n    for j in g[i]:\n        if j == parent:\n            continue\n        r = dfs(i, j) + 1\n        if rank[i] < r:\n            rank[i] = r\n    return rank[i]\ndfs(-1, T)\n\nprint(*rank)\n"
  },
  {
    "id": 55,
    "name": "B066",
    "Cpp": "#include <iostream>\n#include <vector>\nusing namespace std;\n \nclass UnionFind {\npublic:\n\tint par[100009];\n\tint siz[100009];\n \n\t// N 頂点の Union-Find を作成\n\tvoid init(int N) {\n\t\tfor (int i = 1; i <= N; i++) par[i] = -1; // 最初は親が無い\n\t\tfor (int i = 1; i <= N; i++) siz[i] = 1; // 最初はグループの頂点数が 1\n\t}\n \n\t// 頂点 x の根を返す関数\n\tint root(int x) {\n\t\twhile (true) {\n\t\t\tif (par[x] == -1) break; // 1 個先(親)がなければ、ここが根\n\t\t\tx = par[x]; // 1 個先(親)に進む\n\t\t}\n\t\treturn x;\n\t}\n \n\t// 要素 u と v を統合する関数\n\tvoid unite(int u, int v) {\n\t\tint RootU = root(u);\n\t\tint RootV = root(v);\n\t\tif (RootU == RootV) return; // u と v が同グループのときは処理を行わない\n\t\tif (siz[RootU] < siz[RootV]) {\n\t\t\tpar[RootU] = RootV;\n\t\t\tsiz[RootV] = siz[RootU] + siz[RootV];\n\t\t}\n\t\telse {\n\t\t\tpar[RootV] = RootU;\n\t\t\tsiz[RootU] = siz[RootU] + siz[RootV];\n\t\t}\n\t}\n \n\t// 要素 u と v が同一のグループかどうかを返す関数\n\tbool same(int u, int v) {\n\t\tif (root(u) == root(v)) return true;\n\t\treturn false;\n\t}\n};\n \n// 入力で与えられる変数・答え\nint N, M, A[100009], B[100009];\nint Q, QueryType[100009], x[100009], u[100009], v[100009];\nstring Answer[100009];\n \n// その他の変数\nUnionFind UF;\nbool cancelled[100009];\n \nint main() {\n\t// 入力\n\tcin >> N >> M;\n\tfor (int i = 1; i <= M; i++) cin >> A[i] >> B[i];\n\tcin >> Q;\n\tfor (int i = 1; i <= Q; i++) {\n\t\tcin >> QueryType[i];\n\t\tif (QueryType[i] == 1) cin >> x[i];\n\t\tif (QueryType[i] == 2) cin >> u[i] >> v[i];\n\t}\n \n\t// 最初に運休になっている路線を求める\n\tfor (int i = 1; i <= M; i++) cancelled[i] = false;\n\tfor (int i = 1; i <= Q; i++) {\n\t\tif (QueryType[i] == 1) cancelled[x[i]] = true;\n\t}\n \n\t// Union-Find の初期化(その日の最後の状態にする)\n\tUF.init(N);\n\tfor (int i = 1; i <= M; i++) {\n\t\tif (cancelled[i] == false && UF.same(A[i], B[i]) == false) {\n\t\t\tUF.unite(A[i], B[i]);\n\t\t}\n\t}\n \n\t// クエリを逆から処理\n\tfor (int i = Q; i >= 1; i--) {\n\t\tif (QueryType[i] == 1) {\n\t\t\t// 駅 A[x[i]] と駅 B[x[i]] を結ぶ路線が開通\n\t\t\tif (UF.same(A[x[i]], B[x[i]]) == false) UF.unite(A[x[i]], B[x[i]]);\n\t\t}\n\t\tif (QueryType[i] == 2) {\n\t\t\tif (UF.same(u[i], v[i]) == true) Answer[i] = \"Yes\";\n\t\t\telse Answer[i] = \"No\";\n\t\t}\n\t}\n \n\t// 出力\n\tfor (int i = 1; i <= Q; i++) {\n\t\tif (QueryType[i] == 2) cout << Answer[i] << endl;\n\t}\n\treturn 0;\n}\n",
    "Python": "# 辺を減らしながら連結性を答えるのは難しいので、クエリを逆向きにして辺を増やしながら答える\n\nN, M = map(int, input().split())\n\nedge = []\nfor _ in range(M):\n    A, B = map(int, input().split())\n    A -= 1\n    B -= 1\n    edge.append((A, B))\n\n# 最後まである辺を求める\nQ = int(input())\nquery = [list(map(int, input().split())) for _ in range(Q)]\nlast = [True] * M\nfor q in query:\n    if q[0] == 1:\n        q[1] -= 1\n        last[q[1]] = False\n    else:\n        q[1] -= 1\n        q[2] -= 1\n\n# union-find\nuf = [-1] * N\ndef root(i: int) -> int:\n    # path halving\n    while True:\n        if uf[i] < 0:\n            return i\n        if uf[uf[i]] < 0:\n            return uf[i]\n        uf[i] = uf[uf[i]]\n        i = uf[i]\ndef unite(i: int, j: int):\n    i = root(i)\n    j = root(j)\n    if i == j:\n        return\n    # マージテク (union by size)\n    if uf[i] > uf[j]:\n        i, j = j, i\n    uf[i] += uf[j]\n    uf[j] = i\n\nans = []\nfor i in range(M):\n    if last[i]:\n        A, B = edge[i]\n        unite(A, B)\n\nfor q in reversed(query):\n    if q[0] == 1:\n        A, B = edge[q[1]]\n        unite(A, B)\n    else:\n        _, U, V = q\n        ans.append(\"Yes\" if root(U) == root(V) else \"No\")\n\nfor s in reversed(ans):\n    print(s)\n"
  },
  {
    "id": 56,
    "name": "B067",
    "Cpp": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n \nclass UnionFind {\npublic:\n\tint par[100009];\n\tint siz[100009];\n \n\t// N 頂点の Union-Find を作成\n\tvoid init(int N) {\n\t\tfor (int i = 1; i <= N; i++) par[i] = -1; // 最初は親が無い\n\t\tfor (int i = 1; i <= N; i++) siz[i] = 1; // 最初はグループの頂点数が 1\n\t}\n \n\t// 頂点 x の根を返す関数\n\tint root(int x) {\n\t\twhile (true) {\n\t\t\tif (par[x] == -1) break; // 1 個先(親)がなければ、ここが根\n\t\t\tx = par[x]; // 1 個先(親)に進む\n\t\t}\n\t\treturn x;\n\t}\n \n\t// 要素 u と v を統合する関数\n\tvoid unite(int u, int v) {\n\t\tint RootU = root(u);\n\t\tint RootV = root(v);\n\t\tif (RootU == RootV) return; // u と v が同グループのときは処理を行わない\n\t\tif (siz[RootU] < siz[RootV]) {\n\t\t\tpar[RootU] = RootV;\n\t\t\tsiz[RootV] = siz[RootU] + siz[RootV];\n\t\t}\n\t\telse {\n\t\t\tpar[RootV] = RootU;\n\t\t\tsiz[RootU] = siz[RootU] + siz[RootV];\n\t\t}\n\t}\n \n\t// 要素 u と v が同一のグループかどうかを返す関数\n\tbool same(int u, int v) {\n\t\tif (root(u) == root(v)) return true;\n\t\treturn false;\n\t}\n};\n \n// Union-Find クラスの実装は 9.6 節参照\nint N, M;\nint A[100009], B[100009], C[100009];\nUnionFind UF;\n \nint main() {\n\t// 入力\n\tcin >> N >> M;\n\tfor (int i = 1; i <= M; i++) cin >> A[i] >> B[i] >> C[i];\n \n\t// 辺を長さの大きい順にソートする\n\tvector<pair<int, int>> EdgeList;\n\tfor (int i = 1; i <= M; i++) EdgeList.push_back(make_pair(C[i], i));\n\tsort(EdgeList.begin(), EdgeList.end());\n\treverse(EdgeList.begin(), EdgeList.end()); // 問題 A67 と異なる唯一の部分\n \n\t// 最大全域木を求める\n\tint Answer = 0; UF.init(N);\n\tfor (int i = 0; i < EdgeList.size(); i++) {\n\t\tint idx = EdgeList[i].second;\n\t\tif (UF.same(A[idx], B[idx]) == false) {\n\t\t\tUF.unite(A[idx], B[idx]);\n\t\t\tAnswer += C[idx];\n\t\t}\n\t}\n\tcout << Answer << endl;\n\treturn 0;\n}\n",
    "Python": "N, M = map(int, input().split())\n\nedge = []\nfor _ in range(M):\n    A, B, C = map(int, input().split())\n    A -= 1\n    B -= 1\n    edge.append((A, B, C))\n\n# 長さの逆順でソート\nedge.sort(key=lambda e: -e[2])\n\n# union-find\nuf = [-1] * N\ndef root(i: int) -> int:\n    # path halving\n    while True:\n        if uf[i] < 0:\n            return i\n        if uf[uf[i]] < 0:\n            return uf[i]\n        uf[i] = uf[uf[i]]\n        i = uf[i]\ndef unite(i: int, j: int) -> bool:\n    i = root(i)\n    j = root(j)\n    if i == j:\n        return False\n    # マージテク (union by size)\n    if uf[i] > uf[j]:\n        i, j = j, i\n    uf[i] += uf[j]\n    uf[j] = i\n    return True\n\n# クラスカル法\nans = 0\nfor A, B, C in edge:\n    if unite(A, B):\n        ans += C\n\nprint(ans)\n"
  },
  {
    "id": 57,
    "name": "B068",
    "Cpp": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n \nstruct Edge {\n\tint to, cap, rev;\n};\n \nclass MaximumFlow {\npublic:\n\tint size_ = 0;\n\tbool used[409];\n\tvector<Edge> G[409];\n \n\t// 頂点数 N の残余グラフを準備\n\tvoid init(int N) {\n\t\tsize_ = N;\n\t\tfor (int i = 0; i <= size_; i++) G[i].clear();\n\t}\n \n\t// 頂点 a から b に向かう、上限 c リットル/秒の辺を追加\n\tvoid add_edge(int a, int b, int c) {\n\t\tint Current_Ga = G[a].size(); // 現時点での G[a] の要素数\n\t\tint Current_Gb = G[b].size(); // 現時点での G[b] の要素数\n\t\tG[a].push_back(Edge{ b, c, Current_Gb });\n\t\tG[b].push_back(Edge{ a, 0, Current_Ga });\n\t}\n \n\t// 深さ優先探索(F はスタートから pos に到達する過程での \" 残余グラフの辺の容量 \" の最小値)\n\t// 返り値は流したフローの量(流せない場合は 0 を返す)\n\tint dfs(int pos, int goal, int F) {\n\t\t// ゴールに到着:フローを流せる!\n\t\tif (pos == goal) return F;\n\t\tused[pos] = true;\n \n\t\t// 探索する\n\t\tfor (int i = 0; i < G[pos].size(); i++) {\n\t\t\t// 容量 0 の辺は使えない\n\t\t\tif (G[pos][i].cap == 0) continue;\n \n\t\t\t// 既に訪問した頂点に行っても意味がない\n\t\t\tif (used[G[pos][i].to] == true) continue;\n \n\t\t\t// 目的地までのパスを探す\n\t\t\tint flow = dfs(G[pos][i].to, goal, min(F, G[pos][i].cap));\n \n\t\t\t// フローを流せる場合、残余グラフの容量を flow だけ増減させる\n\t\t\tif (flow >= 1) {\n\t\t\t\tG[pos][i].cap -= flow;\n\t\t\t\tG[G[pos][i].to][G[pos][i].rev].cap += flow;\n\t\t\t\treturn flow;\n\t\t\t}\n\t\t}\n \n\t\t// すべての辺を探索しても見つからなかった ・・・\n\t\treturn 0;\n\t}\n \n\t// 頂点 s から頂点 t までの最大フローの総流量を返す\n\tint max_flow(int s, int t) {\n\t\tint Total_Flow = 0;\n\t\twhile (true) {\n\t\t\tfor (int i = 0; i <= size_; i++) used[i] = false;\n\t\t\tint F = dfs(s, t, 1000000000);\n \n\t\t\t// フローを流せなくなったら操作終了\n\t\t\tif (F == 0) break;\n\t\t\tTotal_Flow += F;\n\t\t}\n\t\treturn Total_Flow;\n\t}\n};\n \nint N, P[159];\nint M, A[159], B[159];\nMaximumFlow Z;\n \nint main() {\n\t// 入力\n\tcin >> N >> M;\n\tfor (int i = 1; i <= N; i++) cin >> P[i];\n\tfor (int i = 1; i <= M; i++) cin >> A[i] >> B[i];\n \n\t// グラフを作る(前半パート)\n\tint Offset = 0;\n\tZ.init(N);\n\tfor (int i = 1; i <= N; i++) {\n\t\t// 効果が正の場合は、特急駅にしない場合(始点→i)のコストを P[i] に設定\n\t\tif (P[i] >= 0) {\n\t\t\tZ.add_edge(N + 1, i, P[i]);\n\t\t\tOffset += P[i];\n\t\t}\n\t\t// 効果が負の場合は、特急駅にする場合(i→終点)のコストを -P[i] に設定\n\t\tif (P[i] < 0) {\n\t\t\tZ.add_edge(i, N + 2, -P[i]);\n\t\t}\n\t}\n \n\t// グラフを作る(後半パート)\n\tfor (int i = 1; i <= M; i++) {\n\t\tZ.add_edge(A[i], B[i], 1000000000);\n\t}\n \n\t// 答えを求める\n\tint Answer = Offset - Z.max_flow(N + 1, N + 2);\n\tcout << Answer << endl;\n\treturn 0;\n}\n",
    "Python": "INF = 1 << 61\nclass Edge:\n    def __init__(self, to, cap, rev):\n        self.to = to\n        self.cap = cap\n        self.rev = rev\n\nclass FordFulkerson:\n    def __init__(self, N):\n        self.size = N\n        self.g = [[] for _ in range(N)]\n\n    def add_edge(self, a, b, c):\n        g = self.g\n        e = Edge(b, c, None)\n        rev = Edge(a, 0, e)\n        e.rev = rev\n        g[a].append(e)\n        g[b].append(rev)\n\n    def dfs(self, i, goal, F):\n        # ゴールに到着\n        if i == goal:\n            return F\n\n        self.visited[i] = True\n\n        for e in self.g[i]:\n            # 容量 0 の辺は使えない\n            if e.cap == 0:\n                continue\n            # 既に訪問した頂点に行かない\n            if self.visited[e.to]:\n                continue\n            # 目的地までのパスを探す\n            flow = self.dfs(e.to, goal, min(F, e.cap))\n            # フローを流せる場合、残余グラフの容量を flow だけ増減させる\n            if flow:\n                e.cap -= flow\n                e.rev.cap += flow\n                return flow\n        # すべての辺を探索しても見つからなかった\n        return 0\n\n    def max_flow(self, s, t):\n        ans = 0\n        while True:\n            self.visited = [False] * self.size\n            F = self.dfs(s, t, INF)\n\n            # フローを流せなくなったら操作終了\n            if F == 0:\n                break\n            ans += F\n        return ans\n\nN, M = map(int, input().split())\nP = list(map(int, input().split()))\n\n# グラフを構築\nS = N\nT = N + 1\ng = FordFulkerson(T + 1)\noffset = 0\nfor i in range(N):\n    if P[i] >= 0:\n        # 特急駅にしない場合のコスト\n        offset += P[i]\n        g.add_edge(S, i, P[i])\n    else:\n        # 特急駅にする場合のコスト\n        g.add_edge(i, T, -P[i])\n\nfor _ in range(M):\n    A, B = map(int, input().split())\n    A -= 1\n    B -= 1\n    g.add_edge(A, B, INF)\n\nprint(offset - g.max_flow(S, T))\n"
  },
  {
    "id": 58,
    "name": "B069",
    "Cpp": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n \nstruct Edge {\n\tint to, cap, rev;\n};\n \nclass MaximumFlow {\npublic:\n\tint size_ = 0;\n\tbool used[409];\n\tvector<Edge> G[409];\n \n\t// 頂点数 N の残余グラフを準備\n\tvoid init(int N) {\n\t\tsize_ = N;\n\t\tfor (int i = 0; i <= size_; i++) G[i].clear();\n\t}\n \n\t// 頂点 a から b に向かう、上限 c リットル/秒の辺を追加\n\tvoid add_edge(int a, int b, int c) {\n\t\tint Current_Ga = G[a].size(); // 現時点での G[a] の要素数\n\t\tint Current_Gb = G[b].size(); // 現時点での G[b] の要素数\n\t\tG[a].push_back(Edge{ b, c, Current_Gb });\n\t\tG[b].push_back(Edge{ a, 0, Current_Ga });\n\t}\n \n\t// 深さ優先探索(F はスタートから pos に到達する過程での \" 残余グラフの辺の容量 \" の最小値)\n\t// 返り値は流したフローの量(流せない場合は 0 を返す)\n\tint dfs(int pos, int goal, int F) {\n\t\t// ゴールに到着:フローを流せる!\n\t\tif (pos == goal) return F;\n\t\tused[pos] = true;\n \n\t\t// 探索する\n\t\tfor (int i = 0; i < G[pos].size(); i++) {\n\t\t\t// 容量 0 の辺は使えない\n\t\t\tif (G[pos][i].cap == 0) continue;\n \n\t\t\t// 既に訪問した頂点に行っても意味がない\n\t\t\tif (used[G[pos][i].to] == true) continue;\n \n\t\t\t// 目的地までのパスを探す\n\t\t\tint flow = dfs(G[pos][i].to, goal, min(F, G[pos][i].cap));\n \n\t\t\t// フローを流せる場合、残余グラフの容量を flow だけ増減させる\n\t\t\tif (flow >= 1) {\n\t\t\t\tG[pos][i].cap -= flow;\n\t\t\t\tG[G[pos][i].to][G[pos][i].rev].cap += flow;\n\t\t\t\treturn flow;\n\t\t\t}\n\t\t}\n \n\t\t// すべての辺を探索しても見つからなかった ・・・\n\t\treturn 0;\n\t}\n \n\t// 頂点 s から頂点 t までの最大フローの総流量を返す\n\tint max_flow(int s, int t) {\n\t\tint Total_Flow = 0;\n\t\twhile (true) {\n\t\t\tfor (int i = 0; i <= size_; i++) used[i] = false;\n\t\t\tint F = dfs(s, t, 1000000000);\n \n\t\t\t// フローを流せなくなったら操作終了\n\t\t\tif (F == 0) break;\n\t\t\tTotal_Flow += F;\n\t\t}\n\t\treturn Total_Flow;\n\t}\n};\n \nint N, M;\nchar C[59][24];\nMaximumFlow Z;\n \nint main() {\n\t// 入力\n\tcin >> N >> M;\n\tfor (int i = 1; i <= N; i++) {\n\t\tfor (int j = 0; j <= 23; j++) cin >> C[i][j];\n\t}\n \n\t// グラフを作る(前半パート)\n\tZ.init(N + 26);\n\tfor (int i = 1; i <= N; i++) {\n\t\tZ.add_edge(N + 25, i, 10); // 従業員は 10 時間までしか働けない\n\t}\n\tfor (int i = 0; i <= 23; i++) {\n\t\tZ.add_edge(N + i, N + 26, M); // シフトは M 人以上欲しい\n\t}\n \n\t// グラフを作る(後半パート)\n\tfor (int i = 1; i <= N; i++) {\n\t\tfor (int j = 0; j <= 23; j++) {\n\t\t\tif (C[i][j] == '1') Z.add_edge(i, N + j, 1);\n\t\t}\n\t}\n \n\t// 答えを求める\n\tint Answer = Z.max_flow(N + 25, N + 26);\n\tif (Answer == 24 * M) cout << \"Yes\" << endl;\n\telse cout << \"No\" << endl;\n\treturn 0;\n}\n",
    "Python": "INF = 1 << 61\nclass Edge:\n    def __init__(self, to, cap, rev):\n        self.to = to\n        self.cap = cap\n        self.rev = rev\n\nclass FordFulkerson:\n    def __init__(self, N):\n        self.size = N\n        self.g = [[] for _ in range(N)]\n\n    def add_edge(self, a, b, c):\n        g = self.g\n        e = Edge(b, c, None)\n        rev = Edge(a, 0, e)\n        e.rev = rev\n        g[a].append(e)\n        g[b].append(rev)\n\n    def dfs(self, i, goal, F):\n        # ゴールに到着\n        if i == goal:\n            return F\n\n        self.visited[i] = True\n\n        for e in self.g[i]:\n            # 容量 0 の辺は使えない\n            if e.cap == 0:\n                continue\n            # 既に訪問した頂点に行かない\n            if self.visited[e.to]:\n                continue\n            # 目的地までのパスを探す\n            flow = self.dfs(e.to, goal, min(F, e.cap))\n            # フローを流せる場合、残余グラフの容量を flow だけ増減させる\n            if flow:\n                e.cap -= flow\n                e.rev.cap += flow\n                return flow\n        # すべての辺を探索しても見つからなかった\n        return 0\n\n    def max_flow(self, s, t):\n        ans = 0\n        while True:\n            self.visited = [False] * self.size\n            F = self.dfs(s, t, INF)\n\n            # フローを流せなくなったら操作終了\n            if F == 0:\n                break\n            ans += F\n        return ans\n\nN, M = map(int, input().split())\n\n# グラフを構築 (二部マッチング)\nS = N + 24\nT = S + 1\ng = FordFulkerson(T + 1)\n\nfor i in range(N):\n    C = input()\n    g.add_edge(S, i, 10)\n    for j, c in enumerate(C):\n        if c == '1':\n            g.add_edge(i, N + j, 1)\nfor j in range(24):\n    g.add_edge(N + j, T, M)\n\nprint(\"Yes\" if g.max_flow(S, T) == M * 24 else \"No\")\n"
  }
]