File size: 5,086 Bytes
0587dae 93423ab 0587dae 93423ab 0587dae 93423ab 0587dae 27ad58c 0587dae 27ad58c 0587dae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
using JSON3
using HDF5
using GaussianBasis
using StaticArrays
using Base
include("Shells.jl")
abstract type ArrayFields end
Base.iterate(data::F, state=1) where F <:ArrayFields = begin
nF = fieldcount(F)
state > nF ?
nothing :
((fieldname(F, state), getfield(data, state)), state + 1)
end
Base.length(data::F) where F <:ArrayFields = fieldcount(F)
"""
Mono-electronic Integrals.
Input wave functions (ψ1, ψ2) are primitive, spherical GTO-shells
with unit coefficients, i.e.
ψ(C + r) = rˡ ⋅ Yₗₘ(r/|r|) ⋅ exp(-α |r|²)
where C is `ψ.center`, α is `ψ.exp`, and the magnetic quantum number m
takes all possible values in {-l, ..., l} within each subshell.
# Inputs
- `xyz` : center of ψ2 (ψ1 is centered at 0)
- `l` : pair of angular momenta (l₁, l₂)
- `exp` : exponents (α₁, α₂)
- `Z` : atomic charges used to compute the nuclear integral.
# Targets
- `overlap` integrals `S₁₂ = ∫ ψ1 ⋅ ψ2`
- `kinetic` integrals `T₁₂ = 1/2 * ∫ ∇ψ1 ⋅ ∇ψ2`
- `nuclear` attraction integrals
`N₁₂ = ∫ ψ1 ⋅ [(Z₁ / |r|) + (Z₂ / |r - xyz|)] ⋅ ψ2`
# Note
Mono-electronic integrals are square matrices of shape `D × D` with
D = (2 * l1 + 1) + (2 * l2 + 1)
Indices correspond to increasing values of `m1 ∈ {-l1, …, l1}` first,
then increasing values of `m2 ∈ {-l2, …, l2}`.
"""
struct MonoIntegral{T} <: ArrayFields
l :: Vector{Int64}
exp :: Union{SArray, Array{T}}
xyz :: Union{SArray, Array{T}}
overlap :: Array{T}
kinetic :: Array{T}
nuclear :: Array{T}
Z :: Array{Int64}
end
"""
Object storing 2-electron 2-center integrals.
Electronic interactions (ij|ij) and (ij|ji) are quadratic
w.r.t. two input wave functions (ψi, ψj), characterized
by the same entries as `MonoIntegral`.
Targets:
- `coulomb` integral J
"""
struct BiIntegral2c{T} <: ArrayFields
l :: Tuple{Integer}
exp :: Array{T}
xyz :: Array{T}
coulomb :: Array{T}
end
"""Object for storing bi-electronic integrals"""
struct BiIntegral4c{T} <: ArrayFields
l :: Vector{Int64}
exp :: Array{T}
xyz :: Array{T}
ijkl :: Array{Int16}
Bijkl :: Array{Float32}
target_size :: Vector{Int32}
end
function BiIntegral4c(
l :: Vector{Int64},
exp :: Array{T},
xyz :: Array{T},
ijkl :: Array{Int16},
Bijkl :: Array{Float32}
) where T<:Real
target_size :: Array{Int32} = [length(Bijkl)]
BiIntegral4c{T}(l, exp, xyz, ijkl, Bijkl, target_size)
end
"Stack array fields, excluding constant fields"
function stack(rows::Vector{F}, exclude::Vector{Symbol}) where F<:ArrayFields
out = []
for f in fieldnames(F)
out_f = f ∈ exclude ?
getfield(rows[1], f) :
Base.stack([getfield(row, f) for row in rows])
push!(out, out_f)
end
F(out...)
end
function stack(rows::Vector{F}) where F<:ArrayFields
stack(rows, Symbol[])
end
function stack(rows::Vector{MonoIntegral}) :: MonoIntegral
stack(rows, [:l])
end
function stack(rows::Vector{BiIntegral4c}) :: BiIntegral4c
out = map(rows[1]) do field
k, fk = field
if k ∈ (:ijkl, :Bijkl, :target_size)
reduce(vcat, map(r -> getfield(r, k), rows))
elseif k == :l
rows[1].l
else
Base.stack(map(r -> getfield(r, k), rows))
end
end
BiIntegral4c(out...)
end
"Dump JSON output"
function JSONdump(out::String, dset::Any)
open(out, "w") do io
JSON3.pretty(io, dset)
end
end
"Dump HDF5 output"
function h5dump(out::String, dset::F) where F<:ArrayFields
h5open(out, "w") do io
foreach(dset) do (k, xk)
T = eltype(xk)
S = isa(xk, AbstractArray) ? size(xk) : (length(xk),)
dset = create_dataset(io, String(k), datatype(T), S)
write(dset, xk)
end
end
end
"""
mono_integral(basis::Basis)
Compute a dense mono-electronic integral matrix.
"""
function mono_integral(basis::Basis)
mol, shells = basis
bset = BasisSet("A-B*", mol, shells)
l = [shell.l for shell in shells]
a1, a2 = bset[1].exp, bset[2].exp
xyz = bset[2].atom.xyz
S = overlap(bset)
T = kinetic(bset)
N = nuclear(bset)
Z = [bset[1].atom.Z, bset[2].atom.Z]
MonoIntegral(l, [a1; a2], xyz, S, T, N, Z)
end
"""
bi_integral(basis::Basis[, cutoff=.000_01])
Compute a sparse bi-electronic integral matrix.
"""
function bi_integral(basis::Basis, cutoff::Float64 = .000_01)
# initialize basis set
mol, shells = basis
bset = BasisSet("mol", mol, shells)
l = [shell.l for shell in shells]
# compute integrals
B = sparseERI_2e4c(bset, .000_1)
if length(B[1]) >= 1
ijkl, Bijkl = Base.stack(B[1], dims=1), Vector{Float32}(B[2])
else
println("no ERI")
ijkl, Bijkl = Array{Int16}([1, 1, 1, 1]'), Vector{Float32}([0.])
end
exp = Base.stack(map(shell -> shell.exp, bset.basis))
xyz = Base.stack(map(shell -> shell.atom.xyz, bset.basis))
BiIntegral4c(l, exp, xyz, ijkl, Bijkl)
end
|