--- license: mit --- # Quantum Electronic Integrals This dataset contains quantum interaction integrals between randomly sampled pairs/quadruples of Gaussian-Type Orbitals (GTOs). The targets were computed in julia using [GaussianBasis.jl](https://github.com/FermiQC/GaussianBasis.jl). ## Loading data from python See [qml/data/integrals.py](https://github.com/aklipf/qml). Loading a mono-electronic integral dataset should be as simple as: ```py from qml.data import MonoIntegral I_2_1 = MonoIntegral.h5read("integrals/mono_20k/mono_2_1.h5") ``` The `MonoIntegral` class inherits its `h5read` method from the `TensorDict` mixin. Each dataset contains its corresponding `TensorDict` dataclass, reading data from any compatible HDF5 storage (containing enough keys). # Mono-Electronic Integrals See [mono_20k](https://huggingface.co/datasets/qml/integrals/tree/main/mono_20k) and [mono_100k](https://huggingface.co/datasets/qml/integrals/tree/main/mono_100k) for 2-electron integrals. Each HDF5 file encodes an object of type: ```julia # jqml/Data.jl """ Object storing 1-electron integrals. """ struct MonoIntegral{T} <: ArrayFields l :: Vector{Int64} exp :: Union{SArray, Array{T}} xyz :: Union{SArray, Array{T}} overlap :: Array{T} kinetic :: Array{T} nuclear :: Array{T} Z :: Array{Int64} end ``` Input wave functions (ψ1, ψ2) are primitive, spherical GTO-shells with unit coefficients, i.e. ψ(C + r) = rˡ ⋅ Yₗₘ(r/|r|) ⋅ exp(-α |r|²) where C is `ψ.center`, α is `ψ.exp`, and the magnetic quantum number m takes all possible values in {-l, ..., l} within each subshell. ### Inputs: - `xyz` : center of ψ2 (ψ1 is centered at 0) - `l` : pair of angular momenta (l₁, l₂) - `exp` : exponents (α₁, α₂) - `Z` : atomic charges used to compute the nuclear integral. ### Targets: - `overlap` integrals `S₁₂ = ∫ ψ1 ⋅ ψ2` - `kinetic` integrals `T₁₂ = 1/2 * ∫ ∇ψ1 ⋅ ∇ψ2` - `nuclear` attraction integrals `N₁₂ = ∫ ψ1 ⋅ [(Z₁ / |r|) + (Z₂ / |r - xyz|)] ⋅ ψ2` ### Note: Mono-electronic integrals are square matrices of shape `D × D` with D = (2 * l1 + 1) + (2 * l2 + 1) Indices correspond to increasing values of `m1 ∈ {-l1, …, l1}` first, then increasing values of `m2 ∈ {-l2, …, l2}`. # Bi-Electronic Integrals Batches of 2-electron integrals are returned in the following sparse format: ```julia """Object for storing bi-electronic integrals""" struct BiIntegral4c{T} <: ArrayFields l :: Vector{Int64} exp :: Array{T} xyz :: Array{T} ijkl :: Array{Int16} Bijkl :: Array{Float64} index :: Vector{Int64} end ``` The `index` field has the same length as `ijkl` and `Bijkl`, and maps each integral element to the index of the corresponding input GTOs. See [bi_200](https://huggingface.co/datasets/qml/integrals/tree/main/bi_200)