| import Mathlib | |
| set_option linter.unusedVariables.analyzeTactics true | |
| open Real | |
| lemma le_a_sq | |
| (a b c : ℝ) : | |
| (a + b - c) * (a + c - b) ≤ a ^ 2 := by | |
| have h1: (a + b - c) * (a + c - b) = a ^ 2 - (b - c) ^ 2 := by | |
| linarith | |
| have h2: 0 ≤ (b - c) ^ 2 := by exact pow_two_nonneg (b - c) | |
| rw [h1] | |
| exact sub_le_self _ h2 | |
| theorem imo_1964_p2 | |
| (a b c : ℝ) | |
| (h₀ : 0 < a ∧ 0 < b ∧ 0 < c) | |
| (h₁ : c < a + b) | |
| (h₂ : b < a + c) | |
| (h₃ : a < b + c) : | |
| a ^ 2 * (b + c - a) + b ^ 2 * (c + a - b) + c ^ 2 * (a + b - c) ≤ 3 * a * b * c := by | |
| have ha : 0 < b + c - a := by exact sub_pos.mpr h₃ | |
| have hb : 0 < a + c - b := by exact sub_pos.mpr h₂ | |
| have hc : 0 < a + b - c := by exact sub_pos.mpr h₁ | |
| have h₄: ((a + b - c) * (a + c - b) * (b + c - a)) ^ 2 ≤ (a * b * c) ^ 2 := by | |
| have h₄₁: (a + b - c) * (a + c - b) ≤ a ^ 2 := by | |
| exact le_a_sq a b c | |
| have h₄₂: (a + b - c) * (b + c - a) ≤ b ^ 2 := by | |
| rw [add_comm a b] | |
| exact le_a_sq b a c | |
| have h₄₃: (a + c - b) * (b + c - a) ≤ c ^ 2 := by | |
| rw [add_comm a c, add_comm b c] | |
| exact le_a_sq c a b | |
| have h₄₄: ((a + b - c) * (a + c - b) * (b + c - a)) ^ 2 = ((a + b - c) * (a + c - b)) * | |
| ((a + b - c) * (b + c - a)) * ((a + c - b) * (b + c - a)) := by | |
| linarith | |
| rw [h₄₄] | |
| repeat rw [mul_pow] | |
| refine mul_le_mul ?_ h₄₃ ?_ ?_ | |
| . refine mul_le_mul h₄₁ h₄₂ ?_ ?_ | |
| . refine le_of_lt ?_ | |
| exact mul_pos hc ha | |
| . exact sq_nonneg a | |
| . refine le_of_lt ?_ | |
| exact mul_pos hb ha | |
| . refine le_of_lt ?_ | |
| simp_all only [sub_pos, gt_iff_lt, pow_pos, mul_pos_iff_of_pos_left] | |
| have h₅: (a + b - c) * (a + c - b) * (b + c - a) ≤ a * b * c := by | |
| refine le_of_pow_le_pow_left₀ (by norm_num) ?_ h₄ | |
| refine le_of_lt ?_ | |
| refine mul_pos ?_ h₀.2.2 | |
| exact mul_pos h₀.1 h₀.2.1 | |
| linarith | |