IMO-Steps / imo_proofs /imo_1969_p2.lean
roozbeh-yz's picture
Upload 42 files
1c3ffd8 verified
import Mathlib
set_option linter.unusedVariables.analyzeTactics true
open Real BigOperators
theorem imo_1969_p2
(m n : ℝ)
(k : ℕ)
(a : ℕ → ℝ)
(f : ℝ → ℝ)
-- (h₀ : 0 < k)
-- (h₁ : ∀ x, f x = ∑ i in Finset.range k, ((Real.cos (a i + x)) / (2^i)))
(h₁ : ∀ x, f x = Finset.sum (Finset.range k) fun i => ((Real.cos (a i + x)) / (2^i)))
(h₂ : f m = 0)
(h₃ : f n = 0)
(h₄: Finset.sum (Finset.range k) (fun i => (((cos (a i)) / (2 ^ i)))) ≠ 0) :
∃ t : ℤ, m - n = t * π := by
let Ccos := Finset.sum (Finset.range k) (fun i => (((cos (a i)) / (2 ^ i))))
let Csin := Finset.sum (Finset.range k) (fun i => (((sin (a i)) / (2 ^ i))))
have hCcos: Ccos = Finset.sum (Finset.range k) (fun i => (((cos (a i)) / (2 ^ i)))) := by
exact rfl
have hCsin: Csin = Finset.sum (Finset.range k) (fun i => (((sin (a i)) / (2 ^ i)))) := by
exact rfl
have h₅: ∀ x, f x = Ccos * cos x - Csin * sin x := by
intro x
rw [h₁ x]
have h₅₀: ∑ i ∈ Finset.range k, (cos (a i + x) / 2 ^ i)
= ∑ i ∈ Finset.range k, (((cos (a i) * cos (x) - sin (a i) * sin (x)) / (2^i))) := by
refine Finset.sum_congr (by rfl) ?_
simp
intros i _
refine (div_eq_div_iff ?_ ?_).mpr ?_
. exact Ne.symm (NeZero.ne' (2 ^ i))
. exact Ne.symm (NeZero.ne' (2 ^ i))
. refine mul_eq_mul_right_iff.mpr ?_
simp
exact cos_add (a i) x
rw [h₅₀]
ring_nf
rw [Finset.sum_sub_distrib]
have h₅₂: ∑ i ∈ Finset.range k, cos (a i) * cos x * (1 / 2) ^ i
= ∑ i ∈ Finset.range k, (cos (a i) * (1 / 2) ^ i) * cos x := by
refine Finset.sum_congr (by rfl) ?_
simp
intro i _
linarith
have h₅₃: ∑ x_1 ∈ Finset.range k, sin (a x_1) * sin x * (1 / 2) ^ x_1
= ∑ x_1 ∈ Finset.range k, ((sin (a x_1) * (1 / 2) ^ x_1) * sin x) := by
refine Finset.sum_congr (by rfl) ?_
simp
intro i _
linarith
rw [h₅₂, ← Finset.sum_mul _ _ (cos x)]
rw [h₅₃, ← Finset.sum_mul _ _ (sin x)]
ring_nf at hCcos
ring_nf at hCsin
rw [hCcos, hCsin]
have h₆: (∃ x, (f x = 0 ∧ cos x = 0)) → ∀ y, f y = Ccos * cos y := by
intro g₀
obtain ⟨x, hx₀, hx₁⟩ := g₀
have g₁: Finset.sum (Finset.range k) (fun i => (((sin (a i)) / (2 ^ i)))) = 0 := by
rw [h₅ x, hx₁] at hx₀
simp at hx₀
cases' hx₀ with hx₂ hx₃
. exact hx₂
. exfalso
apply sin_eq_zero_iff_cos_eq.mp at hx₃
cases' hx₃ with hx₃ hx₄
. linarith
. linarith
intro y
rw [h₅ y]
have g₂: Csin = 0 := by
linarith
rw [g₂, zero_mul]
exact sub_zero (Ccos * cos y)
by_cases hmn: (cos m = 0) ∨ (cos n = 0)
. have h₇: ∀ (x : ℝ), f x = Ccos * cos x := by
refine h₆ ?_
cases' hmn with hm hn
. use m
. use n
have h₈: ∀ x, f x = 0 → cos x = 0 := by
intros x hx₀
rw [h₇ x] at hx₀
refine eq_zero_of_ne_zero_of_mul_left_eq_zero ?_ hx₀
exact h₄
have hm₀: ∃ t:ℤ , m = (2 * ↑ t + 1) * π / 2 := by
refine cos_eq_zero_iff.mp ?_
exact h₈ m h₂
have hn₀: ∃ t:ℤ , n = (2 * ↑ t + 1) * π / 2 := by
refine cos_eq_zero_iff.mp ?_
exact h₈ n h₃
obtain ⟨tm, hm₁⟩ := hm₀
obtain ⟨tn, hn₁⟩ := hn₀
rw [hm₁, hn₁]
use (tm - tn)
rw [Int.cast_sub]
ring_nf
. push_neg at hmn
have h₇: tan m = tan n := by
have h₇₀: ∀ (x:ℝ), (f x = 0 ∧ cos x ≠ 0) → tan x = Ccos / Csin := by
intro x hx₀
rw [tan_eq_sin_div_cos]
symm
refine (div_eq_div_iff ?_ ?_).mp ?_
. simp
exact hx₀.2
. simp
have hx₁: Ccos * cos x ≠ 0 := by
refine mul_ne_zero ?_ hx₀.2
exact h₄
have hx₂: Ccos * cos x = Csin * sin x := by
rw [h₅ x] at hx₀
refine eq_of_sub_eq_zero ?_
exact hx₀.1
have hx₃: Csin * sin x ≠ 0 := by
rw [← hx₂]
exact hx₁
exact left_ne_zero_of_mul hx₃
. simp
symm
refine eq_of_sub_eq_zero ?_
rw [h₅ x] at hx₀
linarith
have h₇₁: tan m = Ccos / Csin := by
refine h₇₀ m ?_
constructor
. exact h₂
. exact hmn.1
have h₇₂: tan n = Ccos / Csin := by
refine h₇₀ n ?_
constructor
. exact h₃
. exact hmn.2
rw [h₇₁, h₇₂]
have h₈: sin (m - n) = 0 := by
have h₈₀: tan m - tan n = 0 := by exact sub_eq_zero_of_eq h₇
have h₈₁: (sin m * cos n - cos m * sin n) / (cos m * cos n) = 0 := by
rw [← div_sub_div (sin m) (sin n) hmn.1 hmn.2]
repeat rw [← tan_eq_sin_div_cos]
exact h₈₀
have h₈₂: sin (m - n) / (cos m * cos n) = 0 := by
rw [sin_sub]
exact h₈₁
apply div_eq_zero_iff.mp at h₈₂
cases' h₈₂ with h₈₂ h₈₃
. exact h₈₂
. exfalso
simp at h₈₃
cases' h₈₃ with h₈₄ h₈₅
. exact hmn.1 h₈₄
. exact hmn.2 h₈₅
apply sin_eq_zero_iff.mp at h₈
let ⟨t, ht⟩ := h₈
use t
exact ht.symm