| import Mathlib | |
| set_option linter.unusedVariables.analyzeTactics true | |
| open Nat | |
| theorem imo_1981_p6 | |
| (f : ℕ → ℕ → ℕ) | |
| (h₀ : ∀ y, f 0 y = y + 1) | |
| (h₁ : ∀ x, f (x + 1) 0 = f x 1) | |
| (h₂ : ∀ x y, f (x + 1) (y + 1) = f x (f (x + 1) y)) : | |
| ∀ y, f 4 (y + 1) = 2 ^ (f 4 y + 3) - 3 := by | |
| have h₃: ∀ y, f 1 y = y + 2 := by | |
| intro y | |
| induction' y with n hn | |
| . simp_all only [zero_eq, zero_add] | |
| . nth_rw 1 [← zero_add 1] | |
| rw [h₂ 0 n, h₀ (f (0 + 1) n), hn] | |
| have h₄: ∀ y, f 2 y = 2 * y + 3 := by | |
| intro y | |
| induction' y with n hn | |
| . simp_all only [zero_eq, zero_add, mul_zero] | |
| . rw [h₂, h₃, hn, mul_add] | |
| have h₅: ∀ y, f 3 y = 2 ^ (y + 3) - 3 := by | |
| intro y | |
| induction' y with n hn | |
| . simp_all only [zero_eq, zero_add, mul_zero] | |
| omega | |
| . rw [h₂, h₄, hn] | |
| rw [Nat.mul_sub_left_distrib] | |
| ring_nf | |
| by_cases hn₀: 0 < n | |
| . rw [← Nat.add_sub_assoc, add_comm] | |
| . omega | |
| . have hn₂: 2 ^ 1 ≤ 2 ^ n := by exact Nat.pow_le_pow_of_le (by norm_num) hn₀ | |
| linarith | |
| . have hn₁: n = 0 := by linarith | |
| rw [hn₁] | |
| omega | |
| intro y | |
| induction' y with n hn | |
| . simp | |
| rw [h₂, h₁, h₅] | |
| . rw [hn, h₂, h₅, h₂, h₅] | |